BS ISO 19012-1:2013

BSI Standards Publication

Microscopes — Designation of microscope objectives

Part 1: Flatness of field/Plan

BS ISO 19012-1:2013

National foreword

This British Standard is the UK implementation of ISO 19012-1:2013. It supersedes BS ISO 19012-1:2011 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee CPW/172, Optics and Photonics.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2013. Published by BSI Standards Limited 2013

ISBN 978 0 580 79527 5

ICS 37.020

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 May 2013.

Amendments issued since publication

Date Text affected

BS ISO 19012-1:2013

INTERNATIONAL STANDARD

ISO 19012-1

Third edition 2013-05-15

Microscopes — Designation of microscope objectives —

Part 1: Flatness of field/Plan

Microscopes — Désignation des objectifs de microscope — Partie 1: Planéité du champ/Plan

BS ISO 19012-1:2013 **ISO 19012-1:2013(E)**

COPYRIGHT PROTECTED DOCUMENT

© ISO 2013

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Cor	itent	S	Page				
Fore	word		iv				
1	Scop	e	1				
2	Norn	native references	1				
3	Terms and definitions						
4	Requirements						
	4.1	Indication	2				
	4.2	Definition of plan objectives	2				
	4.3	Determination of plan field number	2				
Anne	x A (in	formative) Depth of field in object space calculated by Berek's formula	4				
Bibli	ogranh	V	7				

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. www.iso.org/patents

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

The committee responsible for this document is ISO/TC 172, *Optics and photonics*, Subcommittee SC 5, *Microscopes and endoscopes*.

This third edition cancels and replaces the second edition (ISO 19012-1:2011) by the addition of "Petzval curvature".

ISO 19012 consists of the following parts, under the general title *Microscopes — Designation of microscope objectives*:

- Part 1: Flatness of field/Plan
- Part 2: Chromatic correction

The following parts are under preparation:

— Part 3: Spectral transmittance

Microscopes — Designation of microscope objectives —

Part 1:

Flatness of field/Plan

1 Scope

This part of ISO 19012 specifies the use of the marking "Plan" on microscope objectives, and defines the diameter of the sharp region of the primary image of a flat object surface. This part of ISO 19012 applies to visual observation using the combination of objective lens, tube lens and eyepiece, as specified by the manufacturer.

This marking is consistent with ISO 8578.

NOTE The flatness of the image field does not imply any degree of correction for other aberrations (ISO 10934-1).

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 10934-1, Optics and optical instruments — Vocabulary for microscopy — Part 1: Light microscopy

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 10934-1 and the following apply.

3.1

tangential structured object

object containing short lines perpendicular to the radii of the object field

3.2

tangential image surface

surface on which all tangential structured objects are focused and sharply imaged in the primary image space subject to no aberrations other than astigmatism and Petzval curvature

3.3

sagittal structured object

object containing short lines parallel to the radii of the object field

3.4

sagittal image surface

surface on which all sagittal structured objects are focused and sharply imaged in the primary image space subject to no aberrations other than astigmatism and Petzval curvature

3.5

astigmatic difference

dimensional difference along the optical axis in the tangential plane between the tangential and sagittal image surfaces

BS ISO 19012-1:2013 **ISO 19012-1:2013(E)**

3.6

plan field number

PFN

number which specifies the diameter, in millimetres, of the sharp region of the primary image of a flat object surface

3.7

objective field number

OFN

maximum field of view number of the eyepiece for which the objective is designed to be used

3.8

plan field ratio

PFR

ratio of the plan field number to the objective field number, defined as PFR = PFN/OFN

3.9

Petzval curvature

curvature of the Petzval surface, which denotes the basic field curvature

4 Requirements

4.1 Indication

Objective lenses named Plan or with Plan as part of the name in the markings shall also indicate the objective field number on the body of the lens. If the words "flat field" are used in the name in the marking, then the lenses shall also be marked "Plan" with an indication of the OFN on the body of the lens. The indication of objective field number does not apply to objective lenses sold before the year 2014.

Objective field numbers shall be expressed as follows:

18, 19, 20, 21, 22, 23, 24, 25, 26, 26.5, 27, 28, 29, 30 and so on

EXAMPLE In the case of the objective field number 25:

OFN25

4.2 Definition of plan objectives

The plan field ratio of a plan objective lens shall be at least 0,85.

4.3 Determination of plan field number

Let τ_t and τ_s be the respective distances of the tangential and sagittal image surfaces from the image plane, along the optical axis in a tangential plane. Using τ_t and τ_s , the average image surface distance, Δ , is defined as shown in Formula (1):

$$\Delta = (\tau_{\rm t} + \tau_{\rm s})/2 \tag{1}$$

The plan field number shall be specified by the maximum field of view of the primary image which satisfies the following conditions: the absolute values of both Δ and astigmatic difference $(\tau_t - \tau_s)$ are

less than or equal to the value δ calculated by Berek's formula [see Formula (2)], and the magnification of the eyepiece is $10 \times$.

$$\delta = \left(\frac{\omega}{M_{\text{TOT VIS}}} \cdot \frac{250\,000}{NA} + \frac{\lambda}{2 \cdot NA^2}\right) \cdot M_0^2 \tag{2}$$

where

 δ is the depth of focus in image space, in micrometres;

 ω is a physiological constant which describes the resolution of the human eye, taken

to be the angle 5' [ω is the arc of this angle (0,001 4)];

 $M_{\text{TOT VIS}}$ is the total visual magnification of the microscope;

NA is the numerical aperture of objective;

 λ is the wavelength of the e-line, in micrometres;

 M_0 is the magnification in the primary image plane.

The depth of field calculated by Berek's formula is expressed in Annex A.

Annex A

(informative)

Depth of field in object space calculated by Berek's formula

Berek's formula is as follows:

$$\delta_{\text{ob}} = n \cdot \left(\frac{\omega}{M_{\text{TOT VIS}}} \cdot \frac{250\,000}{NA} + \frac{\lambda}{2 \cdot NA^2} \right)$$

$$\omega$$
 = 0,001 4, λ = 0,55 μ m

Magnification of objective lens	4		4	4		4	4	5	!	5		5
NA of objective lens	0,10		0,13	0,16		0,20		0,12	0,15		0,16	
Magnification of eyepiece	10		10	10		10		10	10		10	
Depth of field at specimen:	114,82	ם כ	3,476	65,361		50,581		77,309	50	58,811		54,424
$\delta_{ m ob}$ (μ m)	114,02	25 0	3,470					77,305	, 30,			
Refractive index: n	1		1	1		1		1	1		1	
(dry: $n = 1$, oil immersion: $n = 1,515$)	1		1	1			1 1		1		1	
	1						1					
Magnification of objective lens	10		10	10			10		10		10	
NA of objective lens	0,22		0,25	0,30)	0,32		0,40		0,45	
Magnification of eyepiece	10		10	10			10		10		10	
Depth of field at specimen:	21,555		18,372	2 14,70		703 13		606	10,45	8	9	,127
$\delta_{ m ob}$ (μ m)			10,072	11,700		15			10,130		7,127	
Refractive index: n	1		1	1		1		1	1		1	
(dry: $n = 1$, oil immersion: $n = 1,515$)			1									
M (C) (C) (C) (C) (C)	20		20		20			0	20			20
Magnification of objective lens	20		20	20			20		20		20	
NA of objective lens	0,40		0,45	0,50		0,60		0,70		0,75		
Magnification of eyepiece	10		10	10		10		10		10		
Depth of field at specimen:	6,083		5,238		4,593	593		576	3,058	3	2,819	
$\delta_{ m ob}$ (μ m)												
Refractive index: <i>n</i>			1		1	L		1	1			1
(dry: $n = 1$, oil immersion: $n = 1,515$)												
Magnification of objective lens	40	40	40	40	4	10	40	40	40	40		40
NA of objective lens	0,55	0,60	0,65	0,70	+	75	0,85	0,95	1,00	1,2	-	1,30
Magnification of eyepiece	10	10	10	10	+ -	0	10	10	10	10		10
Depth of field at specimen:												
δ_{ob} ($\mu\mathrm{m}$)	2,494	2,217	1,993	1,808	1,6	552	1,408	1,224	1,740	1,32	25	1,265
Refractive index: <i>n</i>												
(dry: $n = 1$, oil immersion: $n = 1,515$)	1	1	1	1	1	1	1	1	1,515	1,51	.5	1,515
(ary. $n = 1$, on numer sion. $n = 1,313$)												
Magnification of objective lens	60		60	60		6	0	60	6	0		60
NA of objective lens	0,70		0,85	0,90		0,9	95	1,25	1,	30		1,40
Magnification of eyepiece	10		10	10		1	.0	10	1	.0		10
Depth of field at specimen:	1,391			0,985		0,917						
$\delta_{ m ob}$ (μ m)			1,064					0,972	0,9	0,925		0,842
Refractive index: <i>n</i>	1			1		1						
(dry: $n = 1$, oil immersion: $n = 1,515$)			1					1,515	1,5	1,515		1,515
	<u> </u>											

BS ISO 19012-1:2013 **ISO 19012-1:2013(E)**

Magnification of objective lens	63	63	63	63	63	63	63
NA of objective lens	0,70	0,75	0,80	0,95	1,25	1,32	1,40
Magnification of eyepiece	10	10	10	10	10	10	10
Depth of field at specimen:	1,351	1,227	1,121	0,888	0,938	0.875	0,812
$\delta_{ m ob}$ (μ m)	1,001	-,				,,,,,	0,012
Refractive index: n	1	1	1	1	1,515	1,515	1,515
(dry: $n = 1$, oil immersion: $n = 1,515$)			1				1,313

Magnification of objective lens	100	100	100	100	100	100
NA of objective lens	0,90	0,95	1,25	1,30	1,35	1,40
Magnification of eyepiece	10	10	10	10	10	10
Depth of field at specimen: $\delta_{ m ob}$ (μ m)	0,726	0,671	0,689	0,653	0,620	0,590
Refractive index: n (dry: $n = 1$, oil immersion: $n = 1,515$)	1	1	1,515	1,515	1,515	1,515

Bibliography

- [1] ISO 8578, Microscopes Marking of objectives and eyepieces
- [2] Berek M.. Grundlagen der Tiefenwahrnehmung im Mikroskop. *Marburger Sitzungsberichte*. 1927, **62** pp. 189–223

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

Revisions

Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services

Tel: +44 845 086 9001

Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions

Tel: +44 845 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

Email: knowledgecentre@bsigroup.com

Copyright & Licensing

Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

