BS ISO 18740:2016 ### **BSI Standards Publication** # Turbocompressors — Performance test code — Simplified acceptance test BS ISO 18740:2016 BRITISH STANDARD #### **National foreword** This British Standard is the UK implementation of ISO 18740:2016. The UK participation in its preparation was entrusted to Technical Committee MCE/8/-/1, Compressors - Safety. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2016. Published by BSI Standards Limited 2016 ISBN 978 0 580 81459 4 ICS 23.140 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 July 2016. Amendments/corrigenda issued since publication Date Text affected # INTERNATIONAL STANDARD ISO 18740:2016 ISO 18740 First edition 2016-07-15 # **Turbocompressors** — Performance test code — Simplified acceptance test Turbocompresseurs — Code d'essais des performances — Essai de réception simplifié BS ISO 18740:2016 ISO 18740:2016(E) #### **COPYRIGHT PROTECTED DOCUMENT** #### © ISO 2016, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Co | ntent | S | Page | | | | | |------|---------------------------|---|------|--|--|--|--| | For | eword | | iv | | | | | | Intr | oductio | n | v | | | | | | 1 | | e | | | | | | | _ | • | | | | | | | | 2 | | native references | | | | | | | 3 | Terms and definitions | | | | | | | | 4 | Symbols | | | | | | | | | 4.1
4.2 | Symbols and units | | | | | | | | | - | | | | | | | 5 | 5.1 | Test conditions, limitations and allowances 5.1 General | | | | | | | | 5.2 | Multi-stage compressor — Operational limitations | | | | | | | | 5.3 | Performance acceptance allowances | 4 | | | | | | 6 | Measuring methods | | | | | | | | | 6.1 | Measurement of volume flow rate at standard discharge point (package) | 4 | | | | | | | 6.2 | Method of determining condensate rate | | | | | | | | | 6.2.2 Collection and measurement of condensate | | | | | | | | | 6.2.3 Measurement of compressor power input | 5 | | | | | | | 6.3 | Measurement of shaft speed | 5 | | | | | | 7 | Test procedure and report | | | | | | | | | 7.1 | Preliminary tests and accordance test | | | | | | | | 7.2
7.3 | Preliminary test and acceptance test | | | | | | | | 7.4 | Readings | | | | | | | | 7.5 | Test report | 6 | | | | | | 8 | Com | putation of test results | | | | | | | | 8.1 | General | | | | | | | | 8.2 | Volume flow rate | | | | | | | | | 8.2.2 Influence of speed, temperatures, pressures, humidity | | | | | | | | | 8.2.3 Condensate formation correction factor | | | | | | | | 8.3 | Specific power consumption correction | | | | | | | | | 8.3.1 Inlet pressure correction | | | | | | | | | 8.3.3 Cooling water temperature correction | | | | | | | | 8.4 | Packaged compressor power input | | | | | | | Ann | ex A (in | formative) Example test report | 9 | | | | | | | liograph | | 11 | | | | | #### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 118, *Compressors and pneumatic tools, machines and equipment*, Subcommittee SC 6, *Air compressors and compressed air systems*. #### Introduction ISO 5389 is the primary International Standard for performance statements of dynamic compressors of all types. For electrically driven packaged air compressors of standard types, which are constructed to specifications determined by the manufacturer, and which are sold against performance data published in the manufacturer's sales documentation, ISO 5389 provides for demanding conditions to be met for such standard packages. To allow performance statements to be made for standard types, this simplified code has been developed where the performance statement can be given based on specified test conditions (see <u>Table 1</u>), where the key measured variables are maintained within identified test limitations (see <u>Table 2</u>). The performance statement is valid, provided it is within the identified acceptance allowances (see <u>Table 3</u>) for volume flow rate, specific power consumption, and unloaded power consumption. Whereas ISO 5389 addresses any type of dynamic compressor, this simplified International Standard addresses centrifugal compressors only which are of the fixed speed type and are electrically driven packaged air compressors. It is envisaged that at a later date, variable speed types will also be included. This International Standard will ultimately become an annex of ISO 5389 once sufficient experience has been gained from its use in the field. In its current form, it complements ISO 5389 for standard packages, but where acceptance tests are required to demonstrate fulfilment of the order conditions and guarantees specified by the client in a supply contract, then ISO 5389 is still the primary reference International Standard. # Turbocompressors — Performance test code — Simplified acceptance test #### 1 Scope This International Standard applies to any fixed (constant) speed, liquid cooled, packaged centrifugal air compressor which incorporates a centrifugal compression element of any type driven by an electric motor. This International Standard defines and describes acceptance tests for electrically driven packaged air compressors of standard types which are constructed to specifications determined by the manufacturer and which are sold against performance data published in the manufacturer's sales documentation. NOTE Items supplied shipped loose for installation at site are not considered to be a part of the compressor package. Such compressors are designed to draw in atmospheric air from their immediate surroundings and the performance data offered by the manufacturer usually relates to a normal ambient air inlet pressure. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 1217, Displacement compressors — Acceptance tests ISO 3857-1, Compressors, pneumatic tools and machines — Vocabulary — Part 1: General ISO 3857-2, Compressors, pneumatic tools and machines — Vocabulary — Part 2: Compressors ISO 5167-1, Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full — Part 1: General principles and requirements ISO 9300, Measurement of gas flow by means of critical flow Venturi nozzles #### 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO 3857-1, ISO 3857-2, ISO 1217 and the following apply. #### 3.1 #### ambient pressure absolute pressure of the atmospheric air measured in the vicinity of the compressor #### 3.2 #### ambient temperature total temperature of the atmospheric air in the vicinity of the compressor but unaffected by it #### 3.3 #### centrifugal air compressor comprise machines in which inlet, compression, and discharge are continuous flow processes Note 1 to entry: The gas is conveyed and compressed in impellers and decelerated with further increase in pressure in fixed vaned or vaneless stators. #### BS ISO 18740:2016 ISO 18740:2016(E) #### 3.4 #### external coolant liquid medium externally supplied to the compressor to which the compression heat is finally rejected #### 3.5 #### packaged compressor compressor unit, fully piped and wired and generally includes all ancillary items necessary for their effective operation as a complete self-contained air compressor installation #### 3.6 #### packaged compressor (electrical) power input sum of the electrical power inputs to the prime mover and all other ancillary and auxiliary items included in the standard package Note 1 to entry: The total given is at the specified electrical supply conditions (voltage, phase and frequency) stated by the manufacturer in his sales data at loaded test conditions. #### 3.7 #### pressure ratio discharge pressure divided by the inlet pressure #### 3.8 #### specific power consumption packaged compressor input power (3.6) per unit of compressor actual volume flow rate (3.12) #### 3.9 #### standard discharge point (package) terminal discharge point of the compressor, typically at the discharge flange of the package #### 3.10 #### standard inlet point (package) point at which ambient air enters the package Note 1 to entry: Unless otherwise indicated by the manufacturer. Note 2 to entry: If filter is not included, refer to <u>Table 1</u>. [SOURCE: ISO 1217:2009, 3.1.24, Note 2 to entry — modified] #### 3.11 #### unloaded power consumption sum of the electrical power inputs to the prime mover and all other ancillary and auxiliary items included in the standard package Note 1 to entry: The total given is at the specified electrical supply conditions (voltage, phase, and frequency) stated by the manufacturer in his sales data at unloaded test conditions. #### 3.12 #### volume flow rate #### 3.12.1 #### measured volume flow rate of air, compressed and delivered at the *standard discharge point* (3.9), referred to conditions of total temperature, total pressure and composition prevailing at the standard inlet point #### 3.12.2 #### corrected volume flow rate of air, compressed and delivered at the *standard discharge point* (3.9), corrected for machine behaviour at specified test conditions Note 1 to entry: The specified test conditions are given in Table 1. #### 4 Symbols #### 4.1 Symbols and units | Symbol | mbol Term | | Other practical units | | |----------------|----------------------------------------------------------------------------------|-------------------|---------------------------------------------|--| | f | Correction factor | | _ | | | f_1 | Correction factor for influence of speed, temperatures, pressures, and humidity | _ | _ | | | f_2 | Correction factor for condensed water vapour at the specified free air condition | _ | _ | | | f_4 | Correction factor for inlet pressure | _ | _ | | | f_5 | Correction factor for pressure ratio | _ | _ | | | f ₆ | Correction factor for cooling water temperature | _ | _ | | | m | Mass flow | kg/s | _ | | | N | Rotational frequency (shaft speed) | s-1 | min ⁻¹ | | | р | Pressure | Ра | MPa, bar, mbar | | | P | Power | W | MW, kW | | | П | Pressure ratio | 1 | _ | | | R | Specified gas constant | J/(kg·K) | _ | | | SPC | Specific power consumption | _ | _ | | | T | Thermodynamic temperature | K | | | | \dot{V} | Volume flow | m ³ /s | m ³ /h, m ³ /min, L/s | | #### 4.2 Subscripts | Subscript | Term | Remarks | |-----------|------------|-----------------------------------------------------------------------------------| | а | Absolute | | | amb | Ambient | Air, temperature | | cond | Condensate | | | corr | Corrected | | | g | Guarantee | | | m | Mass | Characterizes the mass specific rates of flow, energies, and volumes | | pk | Package | | | R | Reading | Indicates the quantities read during the test or predetermined as test conditions | | vap | Vapour | | | W | Coolant | | #### 5 Test conditions, limitations and allowances #### 5.1 General The test conditions shall be as close as is reasonably possible to the conditions specified in Table 1. Table 1 — Specified test conditions | Quantity | Unit | Value | | | | |---------------------------|----------|----------|----------|--|--| | Quantity | Unit | Option A | Option B | | | | Relative humidity | % | 0 | 60 | | | | Absolute ambient pressure | bara | 1 | 1 | | | | Inlet pressure drop | bara | 0,01 | 0,01 | | | | Inlet temperature | °C | 20 | 35 | | | | Coolant temperature | °C | 20 | 30 | | | | Gas constant | J/(kg·K) | 287 | 291 | | | When an inlet filter is not an integral part of the acceptance test, a test air filter/piping system with this inlet pressure drop specification shall be mounted. The option chosen shall be identified in published literature. The test limitations apply to either of the options in <u>Table 1</u> that have been selected for the chosen specified test conditions and shall not exceed those given in <u>Table 2</u>. Table 2 — Test limitations | Measured variable | Maximum permissible deviations | | | | | | |----------------------------|--------------------------------|--|--|--|--|--| | Speed | ±0,5 % | | | | | | | Absolute ambient pressure | ±5 % | | | | | | | Inlet temperature | ±8,5 °C | | | | | | | Coolant temperature | ±8,5 °C | | | | | | | Overall pressure ratio | ±2 % | | | | | | | External coolant flow rate | ±5 % | | | | | | #### 5.2 Multi-stage compressor — Operational limitations For multi-stage compressors, the machine should be capable of producing a minimum discharge pressure of 10 % greater than the required operating pressure at customer conditions. When it is not feasible to test a compressor within this limitation and the limitations specified in <u>Table 2</u>, it is recommended that the test should be carried out as an individually specified and guaranteed machine in accordance with ISO 5389. #### 5.3 Performance acceptance allowances The compressor on test will be deemed to be acceptable provided the results obtained do not differ from the specified performance by more than the allowances given in <u>Table 3</u>. Table 3 — Performance acceptance allowances | Volume flow rate | Specific power consumption | Unloaded power consumption | | | | |------------------|----------------------------|----------------------------|--|--|--| | ±4 % | +5 % | +10 % | | | | #### 6 Measuring methods #### 6.1 Measurement of volume flow rate at standard discharge point (package) The measurement of the volume flow rate at the standard discharge point (package) shall be done using ISO 5167-1 or ISO 9300. #### 6.2 Method of determining condensate rate #### 6.2.1 Condensate correction If the compressor package has no means of condensing moisture from the air being compressed, no correction shall be made for moisture content. If the compressor has means of condensing and ejecting moisture, e.g. intercooler(s), aftercooler(s), etc., correction of the volume flow rate may be made either by collection and measurement of the condensate ejected during the test according to <u>6.2.2</u> or entirely by calculation according to <u>8.2.3</u>. #### 6.2.2 Collection and measurement of condensate Before and after the acceptance test, carried out with the compressor running at the specified test conditions, the condensate shall be drained from all ejection positions before the standard discharge point in such a way that the steady state of the compressor's running is not disturbed. The average mass rate of condensate ejection during the test shall be calculated by dividing the mass of condensate drained after the test by the time between the draining operations. #### 6.2.3 Measurement of compressor power input Electrically driven packaged compressors will be assembled as a complete unit in accordance with the manufacturer's specification for their acceptance test. The measurement of the total electrical power supplied to the package will be made when it is running at the specified speed, ambient and discharge air conditions, supply voltage, and frequency. In these conditions, two basic methods are available to measure the input electrical power: - a) the double element watt meter method, which gives a direct indication of the electrical kW input; - b) a computation based on the separate measurement of voltage, current, and power factor of the electrical supply. #### 6.3 Measurement of shaft speed Shaft speed shall be determined by methods having an accuracy of 0,1 % or better. #### 7 Test procedure and report #### 7.1 Preliminary tests Preliminary tests may be performed to determine that the package is in suitable condition for the acceptance test to be conducted and to check the measuring instruments. #### 7.2 Preliminary test and acceptance test After a preliminary test has been made, this test may, by agreement, be considered the acceptance test, provided all requirements for an acceptance test have been met. #### 7.3 Adjustments During the test, no adjustments other than those required to maintain the test conditions and those required for normal operation of the package as given in the instruction manual shall be made. #### 7.4 Readings Before readings are taken, the package shall be run long enough to assure that steady state conditions are reached. #### 7.5 Test report The test report shall be short and simple without tolerance calculations and with only the essential corrections cited. An example test report is given in $\underline{\text{Annex A}}$. Those items included in the test shall be indicated from the listing given in $\underline{\text{Annex A}}$. #### 8 Computation of test results #### 8.1 General Test conditions never agree exactly with the specified conditions. Therefore, before test results and specified performance values are compared, corrections shall be applied to the measured values of volume flow rate, specific power consumption, and packaged input power. #### 8.2 Volume flow rate #### 8.2.1 Volume flow rate correction The corrected volume flow rate, $\dot{V}_{\rm corr}$, is calculated as follows. $$\dot{V}_{\text{corr}} = f_1 f_2 \dot{V}_{\text{R}} \tag{1}$$ where $\dot{V}_{\rm p}$ is the measured volume flow rate derived from the observed results of the test; f_1 is the correction factor for influence of speed, temperatures, pressures, and humidity, see 8.2.2; f_2 is the correction factor for condensed water vapour at the specified free air conditions, see 8.2.3. #### 8.2.2 Influence of speed, temperatures, pressures, humidity $$f_{1} = \frac{N_{g}}{N_{R}} + 1 - \frac{R_{g} T_{g} \ln(\Pi_{g})}{R_{R} T_{R} \ln(\Pi_{R})} \left(\frac{N_{R}}{N_{g}}\right)^{2} \left[1 + 0.8 \left[\frac{T_{Wg}}{T_{g}} - 1\right]\right]$$ (2) where $N_{\rm g}$ is the specified compressor input shaft speed in s⁻¹; $N_{\rm R}$ is the measured compressor input shaft speed in s⁻¹; R_g is the specified gas constant for air in J/(kg·K); $R_{\rm R}$ is the calculated gas constant for air at measured conditions in J/(kg·K); $T_{\rm g}$ is the specified absolute inlet temperature in K; $T_{\rm R}$ is the measured absolute inlet temperature in K; $\Pi_{\rm g}$ is the specified pressure ratio; Π_R is the measured pressure ratio; $T_{\rm Wg}$ is the specified coolant inlet temperature in K; $T_{\rm WR}$ is the measured coolant inlet temperature in K. #### 8.2.3 Condensate formation correction factor When condensate ejected during the test is collected and measured an allowance, f_2 , for this may be calculated as follows. $$f_2 = 1 + \frac{\dot{m}_{\text{cond}} R_{\text{vap}} T_{\text{R}}}{\dot{V}_{\text{R}} p_{\text{a,ambR}}}$$ (3) where $\dot{m}_{\rm cond}$ is the average mass rate of condensate ejection during the test in kg/s; R_{vap} is the gas constant of water vapour in J/(kg·K); $\dot{V}_{\rm R}$ is the measured volume flow rate derived from the observed test results in m³/s; $p_{a.ambR}$ is the measured absolute ambient pressure in Pa. As an alternative to the collection and measurement of condensate, Formula (4) may be used to calculate the correction factor, f_2 : $$f_2 = \frac{p_R}{p_R - p_{\text{vap,R}} \times X_R \times 0.378} - \frac{p_g}{p_g - p_{\text{vap,g}} \times X_g \times 0.378} + 1$$ (4) where $p_{\text{vap},R}$ is the vapour pressure of water in Pa at measured test conditions; $p_{\text{vap,g}}$ is the vapour pressure of water in Pa at specified test conditions; $p_{\rm g}$ is the specified absolute ambient pressure in Pa; $X_{\rm R}$ is the measured relative humidity at the obtaining free air conditions; $X_{\rm g}$ is the specified relative humidity at the specified free air conditions. #### 8.3 Specific power consumption correction The packaged specific compressor power input, $SPC_{pk,corr}$, is calculated as follows. $$SPC_{\text{pk,corr}} = f_4 f_5 f_6 SPC_{\text{R}}$$ (5) where #### BS ISO 18740:2016 ISO 18740:2016(E) $\mathit{SPC}_{\mathbf{R}}$ is the ${{P_{\mathbf{R}}} / \choose {V_{\mathbf{R}}}}$, the measured specific power consumption; f_4 is the correction factor for inlet pressure, see 8.3.1; f_5 is the correction factor for pressure ratio, see 8.3.2; f_6 is the correction factor for cooling water temperature, see <u>8.3.3.</u> #### 8.3.1 Inlet pressure correction $$f_4 = \frac{p_{\text{ag}}}{p_{\text{R}}} \tag{6}$$ where p_{ag} is the specified absolute inlet pressure in Pa; $p_{\rm R}$ is the measured absolute inlet pressure in Pa. #### 8.3.2 Pressure ratio correction $$f_5 = \frac{\ln(\Pi_g)}{\ln(\Pi_R)} \tag{7}$$ #### 8.3.3 Cooling water temperature correction $$f_6 = 1 + 0.8 \cdot \left[\left(\frac{T_{\text{Wg}}}{T_{\text{WR}}} \right) - 1 \right]$$ $$(8)$$ #### 8.4 Packaged compressor power input The packaged compressor power input, $P_{pk,corr}$, is calculated as follows. $$P_{\text{pkcorr}} = SPC_{\text{pk,corr}} \dot{V}_{\text{corr}}$$ (9) ## **Annex A** (informative) ### **Example test report** The following tabulated information is included to provide a guide for the layout and recording of the test. Table A.1 — Option A | Compressor details | | | | | | | | | | | |---------------------------------------------------------------------------------|---------------------------------------|------------------------|----------------|------------------|-----------------------------|--------------------|-----------------------------------|----------------------|-------------|--| | Manufacturer: Packaged (mounted) | | | | ded contro | ol valve | | | | | | | Model number: | Packaged (mounted) unloading silencer | | | | 1 | | | | | | | Serial number: | Packaged (m | ounted) unit c | ontrol pan | el | | 1 | | | | | | | Packaged (m | ounted) inlet f | filter | | | 1 | | | | | | | | Packaged (m | ounted) after | cooler | | | 1 | | | | | | | | | | | | | | | | | | | | | | Compressor | | | | | | | | | | | | | | 1 | | | | | | | | | | | | 1 | - | | | | | | | | | | | Indica | | | | | | | | | | | | 1 | included
items by | | | | | | Inlet control | valve | | | | placing a
cross in
boxes on | | | | | | | Unloading co | ontrol valve | | | | | | | | | | | | | | | | the right | | | | | | | | | | After cooler | | | | | | | | | | | | Control system | | | | | | | | | | | | Sound enclosure | | | | | | | | | | | | Liquid cooling water system | | | | | | | | | | | | Intake air filter | | | | | | | | | | | | Unloading silencer | | | | | | | | | | | | Oil lubrication system | | | | | | | | | | | Drain | | | | | | | | | | | | Non-return valve | | | | | | | | Test conditions | Units | Table 1 values options | | | tolerances | Acceptable range | | Actual value | | | | rest conditions | Units | A | В | Table 2 | tolerances | Min. | Min. Max. | | -caai vaide | | | Relative humidity | % | 0 | 60 | | n/a | n/a | n/a | | | | | Absolute ambient pressure | bar(a) | 1 | 1 | : | ±5 % | 0,95 | 1,05 | | | | | Inlet pressure drop (if applicable) ^a | bar(a) | 0,01 | 0,01 | | n/a | n/a | n/a | | | | | Inlet temperature | °C | 20 | 35 | | ±8,5 | | | | | | | Coolant temperature | °C | 20 | 30 | | ±8,5 | | | | | | | Overall pressure ratio | | | | : | ±2 % | | | | | | | External coolant flow rate | L/min | | | - | ±5 % | | | | | | | Speed | min-1 | | | ± | 0,5 % | | | | | | | Test results | | | | | Units | Table 3 tolerances | | Tes | ted value | | | Rated capacity at full load operating pressure | | | | m³/min | ±4 % | | | | | | | Full load operating pressure | | | | bar(g) | | | | | | | | Maximum pressure ^b | | | | | bar(g) | | | | | | | Total package input power at rated of | capacity a | nd full load op | erating pressu | ıre | kW | | | | | | | Specific package input power at rated capacity and full load operating pressure | | | | ssure | kW/m ³ | +5 % | | | | | | Total package input power in unloaded state | | | | | kW | +10 | % | | | | ^a If inlet air filter is not package mounted, a test air filter/piping system shall be substituted. The pressure drop of this system shall be measured at full load conditions and stated in this report. $^{^{\}rm b}$ For multi-stage compressors, the machine should be capable of producing a minimum discharge pressure of 10 % greater than the required operating pressure at customer conditions. ### **Bibliography** - [1] ISO 5389, Turbocompressors Performance test code - [2] ASME, Fluid Meters Their Theory and Applications, 6th Edition, Part II, Flow Measurement - $[3] \qquad \text{ASME PTC 10} \textit{Performance Test Code on Compressors and Exhausters}$ ### British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### Copyright in BSI publications All the content in BSI publications, including British Standards, is the property of and copyrighted by BSI or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Save for the provisions below, you may not transfer, share or disseminate any portion of the standard to any other person. You may not adapt, distribute, commercially exploit, or publicly display the standard or any portion thereof in any manner whatsoever without BSI's prior written consent. #### Storing and using standards Standards purchased in soft copy format: - A British Standard purchased in soft copy format is licensed to a sole named user for personal or internal company use only. - The standard may be stored on more than 1 device provided that it is accessible by the sole named user only and that only 1 copy is accessed at any one time. - A single paper copy may be printed for personal or internal company use only. Standards purchased in hard copy format: - A British Standard purchased in hard copy format is for personal or internal company use only. - It may not be further reproduced in any format to create an additional copy. This includes scanning of the document. If you need more than 1 copy of the document, or if you wish to share the document on an internal network, you can save money by choosing a subscription product (see 'Subscriptions'). #### **Reproducing extracts** For permission to reproduce content from BSI publications contact the BSI Copyright & Licensing team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email subscriptions@bsigroup.com. #### Revisions Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### **Useful Contacts** **Customer Services** Tel: +44 345 086 9001 **Email (orders):** orders@bsigroup.com **Email (enquiries):** cservices@bsigroup.com Subscriptions Tel: +44 345 086 9001 Email: subscriptions@bsigroup.com Knowledge Centre **Tel:** +44 20 8996 7004 $\textbf{Email:} \ knowledge centre @bsigroup.com$ Copyright & Licensing Tel: +44 20 8996 7070 Email: copyright@bsigroup.com #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK