BS ISO 18473-1:2015 ### **BSI Standards Publication** # Functional pigments and extenders for special applications Part 1: Nanoscale calcium carbonate for sealant application BS ISO 18473-1:2015 #### National foreword This British Standard is the UK implementation of ISO 18473-1:2015. The UK participation in its preparation was entrusted to Technical Committee STI/1, Pigments. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2015. Published by BSI Standards Limited 2015 ISBN 978 0 580 86236 6 ICS 87.060.10 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 August 2015. Amendments issued since publication Date Text affected BS ISO 18473-1:2015 # INTERNATIONAL STANDARD ISO 18473-1 First edition 2015-08-15 # Functional pigments and extenders for special applications — #### Part 1: # Nanoscale calcium carbonate for sealant application Pigments et matières de charges fonctionnels pour applications spéciales — Partie 1: Carbonate de calcium nanométrique pour les enduits BS ISO 18473-1:2015 **ISO 18473-1:2015(E)** #### COPYRIGHT PROTECTED DOCUMENT © ISO 2015, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Cont | e nts | age | |--------|--|------------------| | Forew | 'd | iv | | Introd | ction | V | | 1 | cope | 1 | | 2 | ormative references | 1 | | 3 | erms and definitions | | | 4 | equirements and test methods | 2 | | 5 | ampling | | | 6 | etermination of whiteness 1 Apparatus 2 Procedure 6.2.1 Sample preparation 6.2.2 Calibration of the apparatus 6.2.3 Determination 6.2.4 Calculation of whiteness | 3
3
4
4 | | 7 | Iarking and label | 4 | | 8 | est report | 4 | | Biblio | aphy | 5 | #### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 256, *Pigments, dyestuffs and extenders*. ISO 18473 consists of the following parts, under the general title *Functional pigments and extenders for special applications*: - Part 1: Nanoscale calcium carbonate for sealant application - Part 2: Nanoscale titanium dioxide for sunscreen application #### Introduction Sealants are widely used to prevent the penetration of air, gas, or liquid in many industries including construction, automobile, and electronics. Extenders are essential part of sealant formulation to reduce cost and improve their rheological and mechanical properties. Content of extenders vary significantly and can be as high as 50% (mass fraction). The most common extender in sealants is calcium carbonate (CaCO3) because it is readily available and comes in various sizes which act as a rheological modifier, a reinforcing agent, and opacifier. Commercial calcium carbonate can be divided into ground calcium carbonate (GCC) and precipitated calcium carbonate (PCC), possesses three crystal structures including calcite, aragonite, and vaterite, and exists in various morphologies such as cubic, spherical, spindle, fibrous, needle-like, etc. Calcium carbonates with calcite crystal structure and cubic or spherical morphology are most widely used in sealant applications. Nanoscale calcium carbonate (NCC) provides various sealants with improved performance and additional functionalities including thixotropy, flame resistance and improved durability and recyclability, and has become a major component in sealant formulation. Nanoscale calcium carbonate in the powdered form is readily manufactured nowadays, mostly through precipitation route to control the size and morphology. Surface treatment is crucial for utilizing NCC in sealants. Native CaCO₃ is hydrophilic. As a result, it tends to agglomerate in organic polymers and plasticizers. NCC, in particular, has a greater propensity for agglomeration because of its small size and large specific surface area. NCCs are surface treated to render them hydrophobic and improve their dispersibility in hydrophobic systems. Surface treatment also improves polymer matrix compatibility, thus improving interfacial adhesion between extender and polymer. It has been found that the particle size, specific surface area, mass fraction, morphology, pH value, magnesium content, oil absorption value, moisture content, and other characteristics of supplied nanoscale calcium carbonate all have impact on the performance of the sealant incorporating these nanoparticles. The need to specify the characteristics of NCC which relate to sealant performance comes from the following facts. First, the agreements between customers and suppliers do not always cover all material characteristics that have influences on performance and/or processability of sealants or they have been interpreted differently by the customers and suppliers. Second, nanomaterials are relatively new. Material properties can depend on the techniques to measure them. Therefore, providing information regarding characteristics of nanoscale calcium carbonate in sealants will facilitate the communication between customers and suppliers. This part of ISO 18473 lists the properties, measurements, and characteristics of nanoscale calcium carbonate and intents to aid its acceptance and application in sealants. ## Functional pigments and extenders for special applications — #### Part 1: ### Nanoscale calcium carbonate for sealant application #### 1 Scope This part of ISO 18473 specifies requirements and corresponding methods of test for surface treated nanoscale calcium carbonate in powder form for sealant application. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 787-2, General methods of test for pigments and extenders — Part 2: Determination of matter volatile at 105 $^{\circ}$ C ISO 787-5, General methods of test for pigments and extenders — Part 5: Determination of oil absorption value ISO 787-9, General methods of test for pigments and extenders — Part 9: Determination of pH value of an aqueous suspension ISO 3262-1, Extenders for paints — Specifications and methods of test — Part 1: Introduction and general test methods ISO 3262-6, Extenders for paints — Specifications and methods of test — Part 6: Precipitated calcium carbonate ISO 9277, Determination of the specific surface area of solids by gas adsorption — BET method ISO 15528, Paints, varnishes and raw materials for paints and varnishes — Sampling #### 3 Terms and definitions For the purposes of this part of ISO 18473, the following terms and definitions apply. #### 3.1 #### nanoscale size range from approximately 1 nm to 100 nm Note 1 to entry: Properties that are not extrapolations from a larger size will typically, but not exclusively, be exhibited in this size range. For such properties, the size limits are considered approximate. Note 2 to entry: The lower limit in this definition (approximately 1 nm) is introduced to avoid single and small groups of atoms from being designated as nano-objects or elements of nanostructures which can be implied by the absence of a lower limit. [SOURCE: ISO/TS 80004-2:2015, 2.1] #### 3.2 #### precipitated calcium carbonate synthetic calcium carbonate consisting of trigonal crystals (like those of calcite) or rhombic bipyramidal crystals (like those of aragonite) [SOURCE: ISO 3262-6:1998, 3.1] #### 4 Requirements and test methods Nanoscale calcium carbonate (powdered form) applied for industrial use of sealant shall comply with the requirements specified in Table 1. Table 1 — Requirements for nanoscale CaCO₃ used in sealant | Characteristic/Property | Unit | Requirement | Test method | |--|-------------------|--|--------------------------------| | Average crystal size,
mass based ^a | nm | ≤100 | XRD ^b method | | Median particle size by
mass distribution
(particle size
distribution is optional) ^a | nm | С | Centrifuge method ^d | | Median particle size by
number distribution
(particle size
distribution is optional) ^a | nm | С | TEM ^e method | | Specific surface area
(BET) ^f | m²/g | ≥16 | ISO 9277 | | Mass fraction of calcium carbonate | % (mass fraction) | ≥85 | ISO 3262-1 | | Insoluble residue in
hydrochloric acid | % (mass fraction) | ≤0,5g | ISO 3262-6 | | MgCO ₃ content | % (mass fraction) | To be agreed between the interested parties (if there is no agreement, it is not necessary to measure) | ISO 3262-1 | | DINP ^d or linseed oil
absorption | ml/100 g | ≥23 | ISO 787-5 | | Moisture | % (mass fraction) | To be agreed between the interested parties | ISO 787-2 | | Whiteness | _ | To be agreed between the interested parties | <u>Clause 6</u> | | pH value | _ | To be agreed between the interested parties | ISO 787-9 | a Characteristic for particle size to be agreed between the interested parties. b XRD — X-ray diffraction. A requirement can only be fixed as soon as a standardized test method is available. d Standard under development. e TEM — Transmission electron microscopy. BET — Brunauer-Emmett-Teller. The insoluble residue content is measured with the untreated CaCO₃. **Table 1** (continued) | Characteristic/Property | Unit | Requirement | Test method | |--|-------------------|---|---| | Amount of organic
treatment and general
chemical type (surface
treatment) | % (mass fraction) | To be agreed between the interested parties | To be agreed between the interested parties | - a Characteristic for particle size to be agreed between the interested parties. - b XRD X-ray diffraction. - c A requirement can only be fixed as soon as a standardized test method is available. - d Standard under development. - e TEM Transmission electron microscopy. - f BET Brunauer-Emmett-Teller. - The insoluble residue content is measured with the untreated CaCO₃. NOTE The crystal type and particle shape are important, but not required for decision for a nanoscale material or not. #### 5 Sampling Take a representative sample of the product to be tested as described in ISO 15528. Sample preparation shall always be carried out consistently so that repeated preparations based on replicate samples of a batch of powder (which was carefully mixed before being sampled or subdivided into samples) give closely comparable results. #### 6 Determination of whiteness #### 6.1 Apparatus Use ordinary laboratory apparatus and glassware together with the following. #### **6.1.1** Whiteness photometer or colour photometer. The apparatus shall have the following characteristics: - a) wavelength range from 380 nm to 780 nm, shall not exceed the range of 400 nm to 700 nm; - b) halfwidth of wavelength: the half-width of wave emitted from exit slit of the photometer shall be in the range of 10 nm; - c) luminous accuracy shall be in the 0,5 % of the full-scale luminous range; - d) deviation between the nominal wavelength and actual wavelength shall not exceed 0,5 nm. #### 6.1.2 Powder sample press. #### 6.2 Procedure #### 6.2.1 Sample preparation Place a quantity of sample into the pressing sampling implement and press it into a surfacing sample board without veining, staining, and spotting. Three sample boards shall be pressed for each batch of products. #### 6.2.2 Calibration of the apparatus Calibrate with a date transfer standard white plate as a working standard white plate (use MgO as white plate), then preheat the apparatus according to the operating instruction manual. Zero and calibrate the apparatus with the working standard white plate. #### 6.2.3 Determination Place three sample boards on the measured hole and measure the tristimulus value X_{10} , Y_{10} , Z_{10} for each board. Take the mean of determinations for the three sample boards as the result. #### 6.2.4 Calculation of whiteness The whiteness (R457) is given by the following formulae: $$X_{10} = \frac{X_{10}}{X_{10} + Y_{10} + Z_{10}} \tag{1}$$ $$y_{10} = \frac{Y_{10}}{X_{10} + Y_{10} + Z_{10}} \tag{2}$$ $$z_{10} = 1 - x_{10} - y_{10} = \frac{Z_{10}}{X_{10} + Y_{10} + Z_{10}}$$ (3) where X_{10} , Y_{10} , Z_{10} are the tristimulus values for the 10° observer; x_{10} , y_{10} , z_{10} are the chromaticity coordinates of the sample. Take the mean of parallel determinations as the result and make sure the absolute dispersion of parallel determinations is less than 0.5°. #### 7 Marking and label The outer packing shall clearly mark in a visible location the manufacturer name and address, product name, type, brand, net weight and batch number or production date, this ISO standard number, and a "store dry" mark. #### 8 Test report The test report shall contain at least the following information: - a) all information necessary to completely identify the product tested; - b) a reference to this part of ISO 18473, i.e. ISO 18473-1; - the results of the test, the method used where a choice is available, and whether or not the product complies with the relevant specification limits; - d) any deviation from the method of test specified; - e) the date of the test and place. ### **Bibliography** [1] ISO/TS 27687:2008, Nanotechnologies — Terminology and definitions for nano-objects — Nanoparticle, nanofibre and nanoplate ### British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com