BS ISO 17599:2015 ### **BSI Standards Publication** Technical product documentation (TPD) — General requirements of digital mock-up for mechanical products BS ISO 17599:2015 BRITISH STANDARD #### National foreword This British Standard is the UK implementation of ISO 17599:2015. The UK participation in its preparation was entrusted to Technical Committee TDW/4, Technical Product Realization. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2015. Published by BSI Standards Limited 2015 ISBN 978 0 580 79535 0 ICS 01.100.20 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 28 February 2015. Amendments/corrigenda issued since publication Date Text affected # INTERNATIONAL STANDARD ISO 17599:2015 ISO 17599 First edition 2015-01-15 # Technical product documentation (TPD) — General requirements of digital mock-up for mechanical products Documentation technique de produits (TPD) — Exigences générales de Digital mock-up pour les produits mécaniques #### COPYRIGHT PROTECTED DOCUMENT © ISO 2015 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland | Contents | | | | | |----------|--|---|----|--| | Fore | Forewordv | | | | | 1 | Scope | е | 1 | | | 2 | • | native references | | | | _ | | s and definitions | | | | 3 | | | | | | 4 | Abbr | eviations | 3 | | | 5 | | ification of digital mock-up | | | | | 5.1 | Development stage | | | | | 5.2 | Purposes | | | | | 5.3 | Data format | | | | 6 | _ | 4 | | | | | 6.1 | Geometric information | | | | | 6.2
6.3 | Constraint information
Engineering attributes | | | | | | | | | | 7 | Requirements of a digital mock-up model | | | | | | 7.1 | General principles | | | | | 7.2
7.3 | Relationship between all kinds of digital mock-upRequirements of complete digital mock-up | | | | | 7.3
7.4 | Requirements of sub-system digital mock-up | | | | | 7.5 | Requirements of scheme digital mock-up | | | | | 7.6 | Requirements of detailed digital mock-up | | | | | 7.7 | Requirements of manufacturing digital mock-up | 6 | | | | 7.8 | Requirements of geometry digital mock-up | | | | | 7.9 | Requirements of function digital mock-up | | | | | 7.10 | Requirements of performance digital mock-up | 6 | | | | 7.11
7.12 | Requirements of special-purpose digital mock-upRequirements of retrofit digital mock-up | | | | | | | | | | 8 | | irements of DMU building | | | | | 8.1 | General requirements | | | | | | 8.1.1 General principles 8.1.2 Fundamental requirements | | | | | | 8.1.3 Identification of parts or components | | | | | | 8.1.4 Definition and use of coordinate system | | | | | | 8.1.5 Colouring and texture rendering requirements | | | | | | 8.1.6 Model state | | | | | 8.2 | Detailed requirements of model building | | | | | | 8.2.1 Modelling of parts | | | | | | 8.2.2 Assembly modelling 8.2.3 Simulation modelling | | | | | | <u> </u> | | | | 9 | Simplification and lightweight models of digital mock-up | | | | | | 9.1
9.2 | Application | | | | | | • | | | | 10 | - | irements of management | | | | | 10.1 | General requirements | | | | | 10.2 | Management of the whole DMU life cycle | | | | | | 10.2.2 Management of design stage | | | | | | 10.2.3 Management of manufacture stage | | | | | | 10.2.4 Management of marketing and aftermarket stages | | | | | 10.3 | Requirements of data management | | | | | 10.4 | Configuration management | 16 | | | 11 | Requirements of review | | | | |--------------|------------------------|---|----|--| | | $11.\bar{1}$ | Purposes and aims of review | 16 | | | | 11.2 | Foundations of reviewing | 16 | | | | 11.3 | Materials of review | 17 | | | | 11.4 | Materials of review Contents to be reviewed | 17 | | | | | 11.4.1 Review of scheme digital mock-up | 19 | | | | | 11.4.2 Review of detailed digital mock-up | 19 | | | | | 11.4.3 Review of manufacturing digital mock-up | 20 | | | | 11.5 | Body of reviewers | 20 | | | | 11.6 | Process of review | 20 | | | | 11.7 | Summary of review | 21 | | | | | Summary of review | 21 | | | | | 11.7.2 Conclusion of review | 21 | | | | 11.8 | Recheck after review | | | | 12 | Appli | cation requirements
General requirements | 21 | | | | 12.1 | General requirements | 21 | | | | 12.2 | Detailed requirements | 21 | | | | | 12.2.1 Design stage | 21 | | | | | 12.2.2 Manufacture stage | 23 | | | | | 12.2.3 Marketing stage | 24 | | | | | 12.2.3 Marketing stage 12.2.4 Aftermarket stage | 24 | | | Bibliography | | | | | #### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT), see the following URL: Foreword — Supplementary information. The committee responsible for this document is ISO/TC 10, *Technical product documentation*, Subcommittee SC 6, *Mechanical engineering documentation*. # Technical product documentation (TPD) — General requirements of digital mock-up for mechanical products #### 1 Scope This International Standard specifies the requirements for the classification, composition, modelling, review, application, and management of digital mock-up. This International Standard for mechanical products is applicable to the building, management, review, and application of digital mock-up. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 10007:2003, Quality management systems — Guidelines for configuration management ISO 11442, Technical product documentation — Document management ISO 16792:2006, Technical product documentation — Digital product definition data practices #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### 3.1 #### digital mock-up (DMU) digital specification given to a complete mechanical product or sub-system with an independent function, not only of the geometric properties, but also of its function and/or performance in a particular field Note 1 to entry: The digital mock-up of the product is built at a design stage and is applicable to the whole life cycle of the product, including design, manufacture, marketing, and aftermarket. The digital mock-up could realize interference check, motion analysis, simulation of performance and manufacturing, technical training, advertising, maintenance planning, etc. #### 3.2 #### complete digital mock-up digital specification given to all the information of a complete mechanical product or its systems Note 1 to entry: The complete description pertains to mechanical components, system devices, function components, accessories, etc. #### 3.3 #### sub-system digital mock-up digital specification of all the information of sub-systems based on the different functional divisions of mechanical products EXAMPLE DMU of power, transmission, and control systems #### 3 4 #### scheme digital mock-up part of the complete DMU, which includes the digital specification of product plan design #### 3.5 #### detailed digital mock-up part of the complete DMU, which includes the digital specification of elaborate product design #### 3.6 #### manufacturing digital mock-up part of the
complete DMU, which includes the digital specification of product machining and assembling #### 3.7 #### geometry digital mock-up subset of the complete DMU, providing digital information specification, geometrically emphasized, extracted from officially released DMU #### 3.8 #### function digital mock-up subset of the complete DMU, providing a digital information specification, functionally emphasized, extracted from officially released DMU #### 3.9 #### performance digital mock-up subset of the complete DMU, providing a digital information specification, based on performance, extracted from officially released DMU #### 3.10 #### special-purpose digital mock-up description extracted or simplified from a complete product model of a digital mock-up for special purposes, such as simulation, technical training, and marketing #### 3.11 #### retrofit digital mock-up DMU of a new product, built on the basis of an existing one #### 3.12 #### simplification method which allows some features built without modelling or some parts (or components) without assembling during the modelling process Note 1 to entry: Through simplification, the geometric detailed representation can be simplified and the model loading efficiency can be improved provided that the simplification does not incur ambiguous understanding or bring about inconvenience to the use of a model. #### 3.13 #### lightweight method to extract patches from the product geometry model Note 1 to entry: It reduces resource expenditure in model loading, and it is suitable for large assembly, assembly simulation, advertising, technical training, etc. #### 3.14 #### annotation dimension(s), tolerance(s), note(s), text, or symbol(s) visible without any manual or external manipulation [SOURCE: ISO 16792:2006, 3.1] #### 3.15 #### configuration interrelated functional and physical characteristics of a product defined in product configuration information [SOURCE: ISO 10007:2003, 3.3] #### 3.16 #### product configuration information requirements for product design, realization, verification, operation, and support [SOURCE: ISO 10007:2003, 3.9] #### 3.17 #### configuration management coordinated activities to direct and control configuration [SOURCE: ISO 10007:2003, 3.6] #### 4 Abbreviations BOM bill of materials CAD computer-aided design CAE computer-aided engineering CAM computer-aided manufacturing CAPP computer-aided process planning DMU digital mock-up EBOM engineering bill of materials FMEA failure mode and effects analysis MBOM manufacturing bill of materials PBOM process bill of materials PDM product data management QC quality control TED theoretically exact dimension #### 5 Classification of digital mock-up #### 5.1 Development stage According to the development or life cycle stage, digital mock-up is generally divided into scheme digital mock-up, detailed digital mock-up, manufacturing digital mock-up, etc. #### 5.2 Purposes Digital mock-up can be established according to various special purposes, such as simulation, manufacture, technical training, marketing, and advertising. This classification is done in line with purposes. #### 5.3 Data format Digital mock-up can be classified according to the software type or data format. #### 6 Composition of digital mock-up #### 6.1 Geometric information The geometric information of DMU includes point, line, surface, body, and other relevant geometric information. #### 6.2 Constraint information The constraint information of DMU includes the constraints between parts or components and between the internal and/or external reference information of DMU. #### 6.3 Engineering attributes The engineering attributes of DMU include BOM, material properties, boundary conditions, loads, failure criteria, lifetime performance, rigidity, strength, reliability, maintainability, safety, and other information. #### 7 Requirements of a digital mock-up model #### 7.1 General principles Digital mock-up is the digital specification produced on a computer of a physical prototype, while the physical prototype is the materialized object of digital mock-up. The digital mock-up model shall - a) reflect the geometric attributes, functional characteristics, and performance properties of the physical prototype, - b) provide information representation required in the whole life cycle of a product with stability and completeness, - c) truly reflect the content of product characteristics where its forms may be various, and - d) be derivative, which can generate corresponding models depending on the different purposes. #### 7.2 Relationship between all kinds of digital mock-up For relationships between all kinds of digital mock-up, see Figure 1. Figure 1 — Relationship between all types of digital mock-up #### 7.3 Requirements of complete digital mock-up A complete digital mock-up shall be formed after the general assembly of each sub-system with each function modular included. It is a collective body involving information of a complete product in each field. It is also a system description of a product object in the computer. The complete DMU shall include, but not be limited to, - a) information which shall completely reflect product structure, layout, and position of each subsystem on the digital mock-up, - b) information which shall reflect the compatibility and maintainability on structure and system between a complete product and its sub-system, - c) information which shall reflect the working principles and the performance characteristics of one or each field concerned, and - d) complete information necessary for manufacturing, when the digital mock-up is transformed to physical prototype. #### 7.4 Requirements of sub-system digital mock-up The sub-system digital mock-up is a description of the sub-system with a given function. It shall include, but not be limited to, - a) information which shall completely show the distribution and location of geometry, structure, and components, - b) information which shall reflect the working principles and performance characteristics in a certain field, and - c) information which shall contain complete manufacturing information to transform sub-system digital mock-up into a physical prototype. #### 7.5 Requirements of scheme digital mock-up The scheme digital mock-up is formed at the scheme design stage. The definition and result of the scheme digital mock-up shall include, but not be limited to, - a) describing primary overall indicators of products and defining the primary product structural composition, - b) describing the product outline and carrying out industrial design evaluation, - c) establishment of basic parameters for each sub-system and enveloping space, - d) initial selection of standardized, purchased, finished parts, and equipment, - e) optimization of the scheme parameters and mechanism test models, and - f) carrying out overall layout design and scheme digital mock-up. #### 7.6 Requirements of detailed digital mock-up Detailed digital mock-up is formed at the detailed design stage. The definition and result of the detailed digital mock-up shall include, but not be limited to, - a) carrying out the overall design of system and mechanism, primary simulation and optimization of system through CAE calculation, and getting a detailed design scheme, - b) carrying out calculations of detailed mass, performance, and load of the product and generally evaluating system reliability, maintainability, etc., - c) carrying out the detailed assembly hierarchy division, space split, connection method, and interface definition of each sub-system and component model, and the calculation of envelope space of moving parts, - d) carrying out detailed product analysis, - e) verifying the parameters of overall design, including product function and performance, and modifying and optimizing partially if necessary, and - f) producing the assembly diagrams and engineering drawings of components and parts. #### 7.7 Requirements of manufacturing digital mock-up Manufacturing digital mock-up is formed at the technological design stage. The definition and result of the manufacturing digital mock-up shall include, but not be limited to, - a) design of tools, clamps, and gauges, - b) simulation of the technological process of the product, including virtual machining, assembly, workshop (factory), etc., and - c) technological documents generation. #### 7.8 Requirements of geometry digital mock-up The geometry digital mock-up of mechanical products shall include, but not be limited to, - a) information which can reflect each sub-system position in the digital mock-up, - b) information which can find the shape, dimension information, and geometric constraints of parts and components, and - c) product coordination, assembly, and fitting relations. #### 7.9 Requirements of function digital mock-up Function digital mock-up of mechanical products shall include the following information, but not be limited to. - a) product working principles, - b) product hierarchical tree, - c) composition of parts and components, their state, and manual instructions, - d) coordinative harmony in the mechanical and function between sub-systems, and - e) information of product operation and maintenance. #### 7.10 Requirements of performance digital mock-up Performance digital mock-up of mechanical products shall include the following information, but not be limited to, - a) performance indicators of product, - b) working characteristics of input and output, - c) sub-system indicators and performance coupling relations between sub-systems, - d) the safety factor and the stress and strain for the critical and important parts, and e) lifetime performance and its reliability indicator. #### 7.11 Requirements of special-purpose digital mock-up Special-purpose DMU shall be derived from the complete DMU and is subordinate to the complete DMU. It shall meet the following requirements: - a) When any change happens to the complete DMU, the derivative
special-purpose digital mock-up shall also change correspondingly. - b) Any model information lost as a result of the derivation process from the complete DMU model shall not affect the use of the special-purpose DMU. #### 7.12 Requirements of retrofit digital mock-up Retrofit digital mock-up shall meet the following requirements: - a) When retrofitting a new product, its complete digital mock-up shall be established. - b) As to partial modification, if the original product does not own the DMU model, the sub-system digital mock-up for the modified part shall be established. #### 8 Requirements of DMU building #### 8.1 General requirements #### 8.1.1 General principles - a) The digital mock-up shall provide the digital specification of the product, covering every stage of the life cycle of the mechanical product, while the information included by the digital mock-up shall improve gradually as the development process goes on. - b) Before the building of the DMU, full consideration of the modular design shall be taken into account, so as to facilitate the reuse, upgrade, and maintenance of the digital mock-up and ease the disassembly, recycling, and disposal when the product is scrapped. - c) DMU simplification and/or lightweight versions shall be permitted according to the product characteristics and places where the DMU is used. - d) The model of DMU shall be reviewed and appraised before its release. #### 8.1.2 Fundamental requirements - a) The DMU defines the nominal model. If the forms, orientation, and position of geometric elements are determined by the theoretically exact dimension (TED), DMU models should be built by the TEDs. - NOTE The scale of 1:1 is recommended to build the DMU. - b) The uniform unit shall be used in building DMU. If the length unit is not millimetre, it shall be an attribute of the model. - c) Before the modelling of a digital mock-up, a unified initial setting of modelling software shall be provided; usually, the setting items should include, but not be limited to, the start path of file loading, the initial screen and display environment, the initial modelling datum, the default view, layers, unit specification, design model precision, annotation format, basic model attributes, etc. #### 8.1.3 Identification of parts or components The identification of parts or components of digital mock-up shall meet the requirements as follows: - a) Uniqueness: All parts or components shall have unique identification to avoid confusion during data storage, share, and release. - b) Unification: The identifications of parts or components shall be unified. Each enterprise or industry organization should have rules of their own according to their characteristics. - c) Readability: The identifications of parts or components shall observe the regulations made by each enterprise or industry organization and high readability facilitates the management of documents of digital mock-up model. - d) Extensibility: The identifications of parts or components shall be extendable to add new information according to different applications. #### 8.1.4 Definition and use of coordinate system The definition and use of the coordinate system of the digital mock-up model shall abide by the following principles: - a) The coordinate system definition of the digital mock-up model shall be unified before product design, generally referring to the origin, orientation, naming of coordinate system, etc. - b) The coordinate system of the digital mock-up model should give concise and readable identifications. - c) The digital mock-up model shall have an absolute coordinate system and should establish a relative coordinate system during model building according to actual situation. #### 8.1.5 Colouring and texture rendering requirements Colouring and texture rendering of DMU shall meet the following requirements: - a) Easy to identify and operate. - b) For different purposes or at different stages; for example, when colouring DMU at the design stage, only 8.1.5 a) is observed; when the design is complete, the DMU models should assume the state of substantially dyed. When colouring the final DMU, either the product colour scheme or the colour of physical prototype or the user's practice and requirements should be taken into account. - c) When the texture rendering is given to DMU, the material properties of components shall be considered and the material texture shall be decided on. #### 8.1.6 Model state - a) For the mechanical product with kinematic pair, the submitted DMU model shall stay in stationary or stable state. - b) For the mechanical product with cyclic movement, the submitted DMU model shall stay in zero position in a motion cycle or keep stable under the effect of gravity. - c) Models of DMU with multi-status movement should be derived from the DMU model under stationary or stable state. #### 8.2 Detailed requirements of model building #### 8.2.1 Modelling of parts #### 8.2.1.1 Fundamental principles - a) The model of parts shall accurately express the design intent. - b) The model of a part shall not contain redundant elements. For example, it shall not comprise any geometry information which is not related to the model building result. - c) The modelling of a part should reflect that the design is for manufacturing and assembly, so as to enhance the manufacturability and ease of assembly. - d) The main frame of the model shall be built first, and then the detailed features of the model. - e) The parameterization to modelling of parts is recommended, and the inherent links and reference relations between data should be taken into account. #### 8.2.1.2 The general process of modelling of parts The general process of modelling of parts is as follows: - a) Set the initial environment of modelling software. - b) Define examination rules for future DMU model validation. - c) Create DMU model file, and then copy and quote the reference relation if necessary. - d) Build the main frame. - e) Build part from detailed geometric features, such as rounds, chamfers, and small holes. - f) Create 2D engineering drawings, if required. - g) Add other information as necessary, such as annotation, attributes, analysis data, and material description as described in ISO 16792. - h) Examine and validate the DMU model. #### 8.2.1.3 Fundamental requirements - a) The model of parts shall include engineering information, for instance, performance indicator, analysis data, material description, etc. - b) Part-modelling features shall be fully constrained, neither should they be under-constrained nor over-constrained, unless otherwise specified. - c) Priority shall be given to the geometric constraint, such as parallel, perpendicular, and aligned. The dimension constraint is in the second consideration. - d) The outline surface of the part model shall be smooth and ruled surfaces should be adopted. Model data shall provide machining information, such as reference plane, technological holes, and positioning datum. - e) Priority shall be given to parameterized series family table when modelling the standardized parts. - f) Models of purchased parts should be provided by the supplier. If the supplier cannot do it, the parts model shall be set up by the user. #### 8.2.2 Assembly modelling #### 8.2.2.1 Fundamental principles a) DMU models shall be assembled by hierarchy and by sub-systems (reflecting the physical sequences of assembly or disassembly of the product). - b) The assembly model shall include not only the information of parts or components but also the associativity between them. - c) The configuration status or released version of the DMU shall be recorded. - d) A complete assembly hierarchical tree shall be defined. #### 8.2.2.2 The process of assembly modelling There are two modes in assembly modelling: design from top to bottom and that from bottom to top design. For the product with simple structure, the mode from bottom to top should be recommended; for the newly designed product with complex structure, the mode from top to bottom is recommended. These two design modes do not conflict with each other, and they may be used in combination sometimes. The process from top to bottom is generally as follows: - a) Create top-level assembly model, and build layout model or skeleton model. - b) Define the assembly datum. - c) Create sub-assembly by the mode from top to bottom level by level, with the layout model as the design basis, until a complete assembly structure is formed. - d) Build the sub-assembly and models of parts. - e) Add relevant annotation and attribute description, as described in ISO 16792, including dimensional specification, geometrical specification with datum system or not, or surface texture specification or other types of specification and add when it is applicable, process capability index (or process performance index) and data. Refer to ISO 3534-2. - f) Create 2D engineering drawings as required. - g) Check the model according to the predefined inspection rules and modify any unconformities until the predefined requirements are met. The process from bottom to top is generally as follows: - a) Carry out the bottom part or component modelling. - b) Create assembly model file for the upper level. - c) Set up the assembly datum and assemble the part or component model level by level until the complete assembly structure is formed. - d) Add relevant annotation and attribute description, as described in ISO 16792, including dimensional specification, geometrical specification with datum system or not, or surface texture specification or other types of specification and add when it is applicable, process capability index (or process performance index) and data. Refer to ISO 3534-2. - e) Make 2D engineering drawings as required. - f) Check model according to the predefined inspection rules and modify any unconformities until the predefined requirements are met. #### 8.2.2.3 Assembly constraints #### 8.2.2.3.1
Principles for constraint selection a) The selection of the assembly constraint should reflect the constraint properties and motion relations of product object as truly as possible and selection shall be made about the constraint type which best reflects design intent. With regard to the moving product, the constraint shall truly reflect its mechanical motion characteristics. - b) Over-constraints or under-constraints shall be avoided. - c) According to design intent, the rational assembly datum shall be chosen and the assembly relations should be simplified as much as possible. #### 8.2.2.3.2 Model assembly without degree of freedom For a model assembly without freedom, each component shall be completely constrained. The commonly used static constraint should include, but not be limited to, one coordinate system being fitted to another, one axis to another, one plane to another, and one surface tangent to another. One constraint or a combination of several above constraints shall be used to give full constraints to a component. a) one coordinate system being fitted to another The position relations of components shall be constrained by the alignment or offset of coordinate systems. Each component should be constrained in the same coordinate system, in order to reduce unnecessary cross-referencing relationship between these components. b) one axis being fitted to another Axes of two components shall be constrained to be in superposition by alignment or insertion manner. This kind of constraint should be used commonly in fitting between the shaft and hole. c) one plane being fitted to another The position relations of components shall be constrained through alignment, matching or offset of plane to plane. If the normal direction of two planes is the same, this kind of constraint is called 'planes alignment'; if the normal direction of two planes is opposite, this kind of constraint is known as 'planes mate'; if the two planes are parallel and there is a certain offset distance between them, this kind of constraint is referred to as 'planes offset'. d) one surface tangent to another Two components position relationship shall be constrained by one surface tangent to another. #### 8.2.2.3.3 Model assembly with degree of freedom For a three-dimensional model assembly with degree of freedom, assembly shall be done according to the actual mechanical kinematic pair type. Constraints affected shall correspond with the kinetic characteristics of actual mechanical kinematic pair. The common mechanical kinematic pair includes, but is not limited to, the revolute, sliding, cylindrical, planar, spherical connection and special moving pairs, or the combination of these kinematic pairs. a) revolute pair Also known as 'hinge'; it refers to the relative rotation of one component around an axis of another. The mobile component has one rotational degree of freedom. b) sliding pair It refers to the linear motion of one component relative to another along a straight line. The mobile component has one sliding degree of freedom. c) cylindrical pair One component affects a linear motion along a cylindrical plane relative to another, and rotates around the axis of the cylinder. The mobile component has two degrees of freedom, i.e. one sliding degree of freedom and one rotational degree of freedom. #### d) planar pair One component moves on a certain plane relative to another and rotates around the normal line of the plane. The moving component has three degrees of freedom, i.e. two sliding degrees of freedom and one rotational degree of freedom. e) spherical connection pair One component rotates in any direction around the centre of the sphere relative to another. The mobile component has three rotational degrees of freedom. f) special moving pair It refers to the movement constrained by special drive mechanism which usually includes gear, cam, belt, chain, coupler, and screw pairs. #### 8.2.3 Simulation modelling #### 8.2.3.1 Fundamental requirements The simulation model is a subset of DMU and the digital specification expresses its capability necessary to show up product function and performance simulation. According to application, different simulation models shall be built, such as assembly simulation model, kinematic simulation model, finite element model, and dynamic simulation model. Full use shall be made of the existing geometric DMU to build simulation model, so as to reduce the work of model rebuilding. #### 8.2.3.2 Requirements of simulation modelling The general process of simulation modelling based on the geometry model is as follows: - a) The initial setting of simulation software shall be made. - b) Simplification of geometry DMU should be carried out with detail features being deleted, provided it does not affect the simulation result. Take for example, when mechanical finite element analysis model is to be built, the detail features in the geometry DMU should be deleted, such as the chamfers, small holes, and turned edges; when the analysis model of multi-body dynamic is to be built, the several components, whose interacting load at connections can do without analysis, shall be looked upon as a single component. - c) If necessary, the characteristics of geometric DMU should be transformed to the element characteristics in the finite element analysis, such as rod, beam, and shell. - d) When the geometric DMU is to be input, it shall be checked. If there are any features affecting simulation, or any loss of information, the model shall be repaired, or other data transmission should be chosen and input again. - e) The input model should be partially adjusted according to the needs of simulation. - f) Other definition information should be added to the simulation model if necessary, and the simulation model should be improved gradually. #### 8.2.3.3 Detailed requirements a) The existing geometric DMU, or the simplified model derived from the geometric DMU, shall be used as models of assembly simulation, and therefore the constraints on mass, motion, model assembly environment, measurement requirements, and output setting of key gap and distance should be supplied. - b) The existing geometric DMU, or the simplified model derived from the geometric DMU, should be used as models of kinematic simulation. Constraints on kinematic pair, drive type, load type, damp and friction co-efficient, measurement requirements, output setting, etc. should be supplied. - c) The mechanical finite element model should be simplified on the basis of the existing geometric DMU according to mechanics and the definition of meshing, load and boundary conditions, material and element attributes, solution, output setting, etc. should be supplied. - d) The dynamic analysis model should be simplified based on the existing geometric DMU to the largest extent according to the dynamic characteristics. The definition of the kinematic pair, dynamic constraint, load, solution, and output setting should be added. - e) The simulation model for other special fields shall be made from the existing DMU as the basis of the model. #### 9 Simplification and lightweight models of digital mock-up #### 9.1 Application Simplification and lightweight models of DMU shall be handled according to product features, development stages, and application purposes. The possible application of simplification and lightweight models of DMU can be used in the following situations: - a) designing plans or principles; - b) designing large assemblies; - c) visualization; - d) simulation and/or optimization; - e) simplified expression of engineering drawings; - f) special situations, such as places, where commercial secrets are to be hidden. #### 9.2 General requirements The following principles shall be observed when the DMU model is simplified or lightweight. - a) The identifier shall be added to the simplified or lightweight model, so as to be readily identified. - b) Misinterpretations shall be avoided. - c) The information expression of DMU at specific applications shall not be affected. #### 10 Requirements of management #### 10.1 General requirements - a) The management of the DMU shall include all stages of its life cycle of an assembly or a part. - b) There shall be agreement within the enterprise in DMU modelling, simulating, and managing software and its versions during the whole life cycle of products. - c) The manner and channels through which to exchange the data of digital model within, or between, enterprises shall be stipulated. - d) Assured software tools or normalized processes to manage the changes of the relevant DMU data produced at each stage of the whole life cycle shall be adopted. #### 10.2 Management of the whole DMU life cycle #### 10.2.1 General principles The DMU life cycle includes the various stages of design, manufacture, marketing, and aftermarket. The whole DMU life cycle should meet following requirements: - a) At the initial stage of DMU development, all the activities and processes related to DMU at each stage of the whole life cycle should be planned. - b) The inter-relationships between the stages of the whole life cycle should be certain, and the same is true with the input and outputs, as otherwise, the process would be affected. - c) The standardization department should establish requirements of DMU at each stage of the whole life cycle. #### 10.2.2 Management of design stage #### 10.2.2.1 Management of scheme design stage - a) The design process of scheme DMU usually includes specifying requirements for the top-level design of the DMU, the top-level layout of the complete DMU, releasing the design requirements of the sub-system, the designing and simulating of the digital model of the sub-system, checking and acceptance of the sub-system, the assembly and simulation of the complete DMU, and its review. - b) Generally, it is the responsibility of the quality control (QC) department to inspect and check the DMU top-level design and supervise
it. - c) It is the responsibility of the controlling design department to give an overall layout of the DMU, and delegate the requirements of the DMU designing to the sub-system. - d) Each sub-system design department should carry out designing and verifying the simulation of the scheme DMU according to the design requirements and the approved DMU should be presented to the controlling design department. - e) It is the responsibility of the QC department to inspect and check the scheme DMU of each sub-system. - f) It is the responsibility of the controlling design department to have the accepted DMU model assembled and its simulation verified, so as to have a wholesome DMU model. - g) It is the responsibility of the QC department to organize a review of the DMU model, and as for the requirements of specific review, see <u>Clause 11</u>. #### 10.2.2.2 Management of detailed design stage - a) The design process of detailed DMU generally includes the setting up and releasing of detailed DMU design requirements, detailed geometric DMU design and calculation, detailed function DMU design and simulation, detailed performance DMU design and verification, the collaborative design between mechanics and technology, detailed DMU review, and its release. - b) The QC department should determine the detailed DMU design and release specifications and be responsible for supervision. - c) The controlling design department should make detailed DMU design requirements based on scheme DMU, and then release them to the sub-systems. - d) Each sub-system design department should carry out sub-system detailed design and simulation based on detailed DMU design requirements. - e) The controlling design department should build a complete DMU based on the qualified and accepted sub-system DMU. - f) The controlling design department and sub-system design department should carry out engineering analysis, verification and optimization, simulation for test, etc. - g) The detailed DMU should include the following models: those of geometry, assembly, kinematic mechanism, static analysis, dynamic analysis, thermal analysis, electromagnetic analysis, ergonomics analysis, virtual assembly, logic control, etc. - h) The manufacturability of detailed DMU can be enhanced through the collaboration between the designing and technology departments. - i) The QC department shall organize the review of the detailed DMU, while it is the archives department's responsibility to officially release the qualified detailed DMU after review to manufacture department. #### 10.2.2.3 Management of technological design stage - a) The manufacturing DMU shall be built on the basis of the detailed DMU and its design process generally includes fixture design, technological simulation, designing of technological file, review and release of manufacturing DMU. - b) The technological design department should engage in simulations of virtual machining, assembling and factory (or workshop) through the manufacturing DMU, so as to obtain and provide basic data for technological designing. - c) The technological design department should carry out the conversion from EBOM to PBOM and test and verify the rationality of technological design on the basis of technological simulation of DMU. - d) The technological design department should carry out the work of designing fixtures on the basis of PBOM, the conversion from PBOM to MBOM, to create a manufacturing DMU that can be used in the work place. - e) The QC department should organize the review of the manufacturing DMU, while it is the archives department's responsibility to officially release the qualified manufacturing DMU to the work place. #### 10.2.3 Management of manufacture stage - a) The manufacturing department shall carry out manufacturing activities with the manufacturing DMU, which has been officially appraised and released. - b) The manufacturing department should carry out materials preparation, the work of machining and assembly operation instructions, product inspection, etc. on the basis of the manufacturing DMU. #### 10.2.4 Management of marketing and aftermarket stages - a) The marketing department should engage itself in product advertising, bidding, technical training, product service, recycling, remanufacturing, etc. with special-purpose DMU. - b) The special-purpose DMU can be simplified or aesthetically enhanced, but shall not deviate from the DMU nature, and it shall meet the requirements in actual use. #### 10.3 Requirements of data management - a) PDM should be used to carry out the management of DMU, and seamless integration should be realized between PDM and CAD/CAE/CAPP/CAM. - b) The DMU data of products at each stage of the whole life cycle shall be managed in a centralized manner, including geometry and simulation models, simulation result, correlation, etc. - c) The DMU data at each stage shall be managed according to hierarchy, type and version and the mechanism of index, and interrelation should be established, so as to guarantee the interrelatedness and uniformity. - d) The simulation model and simulation result of DMU at each stage should be managed and the correlation with geometry DMU should be kept. - e) The DMU basic model, including those of standardized parts and general parts, shall be stored and managed in a centralized mode to ensure uniformity. - f) The product data management department shall periodically check up the safety, integrity, and validity of the data of DMU. - g) The management mechanism of the safety authority of DMU data shall be established and periodically backup the data, and store the data of DMU used in routine operation in different computers, and back them up in different media, to avoid data missing or damage caused by natural or human factors. - h) Document management related to DMU shall be performed according to ISO 11442. #### **10.4 Configuration management** - a) The configuration management of DMU shall include activities such as configuration management planning, configuration identification, change control, configuration status accounting, and configuration audit as described in ISO 10007. - b) Configuration management planning of DMU shall include plans of design, acceptance, review, release, archiving of the DMU. - c) Configuration identification of DMU shall be performed according to ISO 11442. - d) Stage identification should be established for DMU, to show the current stage where the DMU stays now. - e) Engineering change management of DMU shall be performed according to ISO 10007. - f) Keep detailed record of the change process of DMU of each type. - g) Establish the baseline, which has a compulsory nature, and stage information of DMU for the qualified DMU after review at each stage and archive DMU, according to the baseline. - h) The QC department shall periodically carry out the audit for the changes of the configuration of the scheme DMU, detailed DMU, manufacturing DMU, etc. #### 11 Requirements of review #### 11.1 Purposes and aims of review The main aims of DMU reviewing are to ensure - a) applicability of the product, - b) conformity of the design, - c) coordination of all the sub-systems, and - d) manufacturability of the product. #### 11.2 Foundations of reviewing Reviewing is based on the following considerations: a) product R&D contracts; - b) R&D task statement of product; - c) overall R&D technology programme of product; - d) reliability programme of products and all sub-systems; - e) maintainability programme of products and all sub-systems; - f) quality assurance programme of products and all sub-systems; - g) standardization programme of products and all sub-systems; - h) product model norms and standards; - i) building requirements and specifications of DMU of products. #### 11.3 Materials of review The relevant materials submitted for review shall include - a) foundations to rely on for reviewing, - b) DMU and its demonstration environment, - c) review items, including demonstrations and inspection items, - d) relevant materials, including models, pictures, lantern slides, video screen, software, models, etc., and - e) technical reports on DMU. #### 11.4 Contents to be reviewed To be reviewed are such items as the scheme DMU, detailed DMU, and manufacturing DMU at their respective stages. For specific review requirements, see <u>Figure 2</u>. Figure 2 — Review of objects and items at each development stage #### 11.4.1 Review of scheme digital mock-up The objects for review of scheme DMU shall at least include - a) a clear diagram of product and each sub-system, - b) layout model of product and each sub-system, and - c) principal DMU model of product and each sub-system. The contents for review of scheme DMU shall at least include the following items: - a) Do the product outlines, colours, and materials meet requirements? - b) Does the interior space meet requirements? - c) Is the overall layout reasonable? - d) Are the assembly hierarchy divisions reasonable? - e) Does the mechanism motion meet requirements? - f) Are the working principles feasible? #### 11.4.2 Review of detailed digital mock-up The objects for review of detailed DMU shall at least include the following: - a) three-dimensional geometric models of parts or components of product and each sub-system; - b) assembly models of product and each sub-system; - c) mechanism motion models of product and each sub-system; - d) static analysis models of product and each sub-system; - e) dynamic analysis models of product and each sub-system; - f) temperature analysis models of product and each sub-system; - g) electromagnetic analysis models of product and each sub-system; - h) ergonomic analysis models of product and each sub-system; - i) virtual assembly models of product and each sub-system; - j) logic control models of product and each sub-system. The review of the detailed DMU shall include at least the following considerations: - a) Do the basic attributes (including
mass, volume, shape dimensions, rotary inertia, etc.) meet design requirements? - b) Are the assembly hierarchy divisions reasonable? - c) Does the mechanism motion track fulfil design requirements? - d) Does movement precision meet design requirements? - e) Do the parts or components interfere with other objects while in motion? - f) Does deformation fulfil design requirements? - g) Does stress meet design requirements? - h) Does resonance frequency meet design requirements? - i) Does the performance of heat dissipation meet design requirements? - j) Does electromagnetic screen performance meet design requirements? - k) Does logic control meet design requirements? - 1) Does ergonomic performance meet design requirements? - m) Are DMU components when manufactured easy to assemble? - n) Does the lifespan meet design requirements? - o) Does the reliability meet design requirements? #### 11.4.3 Review of manufacturing digital mock-up The objects for review of manufacturing DMU shall at least include the following: - a) model of machining technology; - b) model of assembly technology. The contents for review of detailed DMU shall include at least the following considerations: - a) Is the machining technology feasible? - b) Is the tool path correct? Does it interfere with fixtures? - c) Is the part or component assembly sequence reasonable? - d) Is the assembly track of parts or components reasonable? - e) Do parts or components interfere with each other during assembly? - f) Do parts or components interfere with fixture during assembly? #### 11.5 Body of reviewers The body of reviewers of DMU generally should consist of a review committee and several professional review groups. Their respective responsibilities shall be the following: - a) The review committee is responsible for the comprehensive technical review and final appraisal of conclusion reports of DMU. - b) The professional review groups are responsible for the assigned professional review work and preparation and submission of professional review reports to the review committee. #### 11.6 Process of review The process of review shall be determined according to the characteristics of the enterprise and its products. The following points should be considered: - a) The aims and foundation of review should be plain and clear, and the integrity of data for reviewing should be examined. - b) The contents of review should be clear and certain, and they should include complete DMU, DMUs at different stages, a sub-system DMU, and a special-purpose DMU. - c) The review plan should be worked out and the applications for reviewing compiled and the DMU models, demonstrative environment, and other related materials prepared. - d) The reviewing body and personnel shall be decided on. - e) After the actual reviewing of DMU is started, opinions of reviewing shall be obtained and the review report shall be formed. The actual steps are as follows: - The R&D team of DMU submits its report. - The review committee and professional review groups read and check up the items and related materials submitted by the R&D team. - The professional review groups watch the project demonstration. Technical interrogation and discussion are to be held according to the testing report and reviewing materials. - The review committee discusses and makes the final reviewing reports for DMU, based on professional reviewing report. - f) Rectification, improvement, and problems solution shall be done, so as to form a closed loop. #### 11.7 Summary of review #### 11.7.1 Report of review The report of the review should include the following: - a) review projects; - b) index; - c) the process and results of the demonstration; - d) exposition and conclusion; - e) existing problems; - f) suggestions. #### 11.7.2 Conclusion of review The review committee shall check and approve the review reports, make comprehensive appraisals, and work out weighing and balancing, and turn out its final reviewing report for DMU. #### 11.8 Recheck after review The R&D team shall resolve the problems arising from the review conclusion. The QC department shall organize the re-check of the resolved of problems. #### 12 Application requirements #### 12.1 General requirements The DMU of mechanical products should support all the activities in the whole life cycle of the product including design, manufacture, marketing, and aftermarket. #### 12.2 Detailed requirements #### 12.2.1 Design stage At the design stage, models of different functions and performances shall be derived from DMU, be checked and be optimized. By means of DMU, the fixture, machining, assembly, and factory (workshop) shall be simulated during manufacturing process. Besides, DMU shall be applied to retrofitting the design result. #### 12.2.1.1 Collaborative design The DMU shall support the coordination and collaboration of overall mechanical, technological designs, etc., and it should be also the support of concurrent development of products and the verification of simulation. #### 12.2.1.2 Engineering analysis The DMU shall support the engineering analysis of following items: #### a) performance evaluation Analysis of products shall be done by means of DMU. Its work shall include test and examination, verification, evaluation, identity, uniformity, and reliability of performance of products. #### b) spatial structural analysis The DMU shall be capable of being applied to the analysis of the structural shape, geometry dimensions of the product, to carry on the interference examination and clearance analysis so that designers can perceive and find the problems and solve them. #### c) motion analysis The DMU shall be used to analyse whether the product possesses the correct kinematic pair, to know its type of drive, and to get acquainted with the coefficient of damping and friction, in order to simulate motion track, acceleration, velocity, dead centre position, interference, and space. #### d) analysis of weight characteristics The DMU shall be used to analyse the product whether it possesses characteristics such as complete cubage, mass, in order to calculate the weight, centre of gravity, moment of inertia of rotation, density, volume and surface area, and other attributes. #### e) ergonomic analysis The DMU shall be used to analyse the human position and posture at operating, in order to evaluate the feasibility, convenience to operate, human fatigue characteristics, the visibility, and accessibility for operators at maintenance. #### f) FMEA The DMU shall be used to analyse potential failure mode of product, evaluate and analyse all kinds of potential dangers, so as to eliminate or decrease them to an acceptable level with the existing technique. #### g) cost analysis The DMU shall be used to analyse economic cost of product after comprehensively considering factors such as raw material, human labour, and depreciation charge of equipment. #### 12.2.1.3 Verification and optimization #### a) Calculation for verification The DMU shall be used to verify the product. It usually covers things such as areas in statics, dynamics, hydraulics, temperature and logic control, and electromagnetism. To support the verification calculation, DMU should provide the following engineering information: geometric properties, constrain information, material properties, failure criteria, boundary conditions, load properties, etc. #### b) Calculation for optimization The DMU shall be used to optimize the product. The optimization calculation usually covers such aspects as space configuration, mechanism, assembling, multi-discipline. DMU data needed should cover the optimization of goals, variables, boundary conditions, strategies, and iterative methods. #### 12.2.1.4 Simulation for test The DMU shall be used to provide information for product test and simulate different test conditions and guide the conduction of tests. Simulation of the failure modes appearing during tests shall be carried out and failure phenomena appearing during tests shall be reproduced in order to find out the cause of failure. #### 12.2.1.5 Fixture design The DMU shall be applied to planning the technological processes of a product, such as the design of tool, gauge fixture, and pattern. #### 12.2.1.6 Simulation of virtual machining The DMU shall be applied to the analysis of the feasibility of product machining, so as to provide data for the technological review of a product, for example, NC programme, machining parameter, machining precision, machining order, tool track and information, in order to realize the CAM simulation of DMU and technological design based on the DMU. #### 12.2.1.7 Simulation of virtual assembly The DMU shall be applied to the analysis of the process of assembly and disassembly of DMU on every level, in order to implement the interference and clearance checks of parts and corresponding fixture in the assembly and disassembly process; through analysing assembly sequences, track, and location, so as to carry out virtual assembly simulation of DMU. #### 12.2.1.8 Virtual factory (workshop) simulation The DMU shall be used to simulate the virtual factory (workshop) and evaluate the feasibility, the economic considerations, and the efficiency of manufacture in the factory (workshop), with the aim to optimize the manufacturing process. #### 12.2.1.9 Retrofitting design The completed DMU shall be used to provide any necessary information in retrofitting design for other similar new products. #### 12.2.2 Manufacture stage A manufacturing DMU shall be derived from the complete DMU during production. And by means of the manufacturing DMU, materials preparation, operation guidance, and inspection shall be done. #### 12.2.2.1 Materials preparation The DMU shall be used to calculate the materials needed in product manufacture, including the raw materials of the product, standardized parts, purchased parts, auxiliary materials, etc. #### 12.2.2.2 Operation guidance The operation of DMU shall
be demonstrated for the operator on the spot, so as to let him or her know the operation process. Take for example, preparation for production, requirements of manufacturing, and assembling. #### 12.2.2.3 Products inspection The DMU shall be used in the digital inspection of products or providing data for inspection. #### 12.2.3 Marketing stage #### 12.2.3.1 Product advertisement The model for advertising shall be derived from the DMU and product advertisement for vivid dynamic and static product data shall be provided, including lively pictures of products, animation, and other advertising materials, describing product structure, composition, working process, realized principles, etc. #### 12.2.3.2 Product bidding The DMU shall be used to realize quick retrofit and derivative designing to meet the requirements of the market quotation, timely bidding, and quick production. #### 12.2.4 Aftermarket stage #### 12.2.4.1 Technical training The DMU of technical training shall be derived from the DMU to provide data such as the texts, tables, curves, pictures and animations, and use and maintenance of the product in virtual reality. #### 12.2.4.2 Product service The maintenance DMU shall be derived from the DMU to provide relevant information for product service, for the following: - a) to help maintenance workers carry out the analysis of the product, covering the failure, its maintainability, and spare parts; - b) to provide data for the instruction manual of dynamic and static products, to help users make correct use of the various functions of the product, and carry on self-diagnosis and self-removal of failures; - c) to provide users with information needed in the actual use. #### 12.2.4.3 Recycle The DMU shall be used to provide the information necessary for product recycling, the evaluation necessary to be carried out, in disassembly and the recycling of products, so as to decrease its environmental impact. Simulation analysis of disassembly and recycling should be conducted to help the recycling personnel with the task. #### 12.2.4.4 Remanufacture When remanufacture is carried out for the product, the DMU should provide information for the tasks such as materials, product structure, and assembly mode. The information mentioned above should provide the appraisal of the scrap value, hardness, and easiness of disassembly and the ability for the product to be remanufactured. ### **Bibliography** [1] ISO 3534-2, Statistics — Vocabulary and symbols — Part 2: Applied statistics # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### Knowledge Centre Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com