BS ISO 17586:2016 # **BSI Standards Publication** # Soil quality — Extraction of trace elements using dilute nitric acid BS ISO 17586:2016 BRITISH STANDARD ### National foreword This British Standard is the UK implementation of ISO 17586:2016. The UK participation in its preparation was entrusted to Technical Committee EH/4, Soil quality. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2016. Published by BSI Standards Limited 2016 ISBN 978 0 580 79518 3 ICS 13.080.10 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 March 2016. Amendments issued since publication Date Text affected # INTERNATIONAL STANDARD ISO 17586:2016 ISO 17586 First edition 2016-02-15 # Soil quality — Extraction of trace elements using dilute nitric acid Qualité du sol — Extraction d'éléments traces à l'aide d'acide nitrique dilué BS ISO 17586:2016 **ISO 17586:2016(E)** # **COPYRIGHT PROTECTED DOCUMENT** # © ISO 2016, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Cor | ntents | Page | | | | | |-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--| | Fore | word | iv | | | | | | 1 | Scope | 1 | | | | | | 2 | | | | | | | | 3 | Terms and definitions | 1 | | | | | | 4 | | | | | | | | 5 | - | | | | | | | 6 | Scope Normative references Terms and definitions Principle Interferences Reagents Apparatus Procedure 8.1 Sample preparation 8.2 Determining water content 8.3 Extraction 8.4 Phase separation 8.5 Blank test 8.6 Measurement of trace elements Calculation Expression of results Test report Innex A (informative) Precision Innex B (informative) Notes on homogenization, initial sample mass and extraction | | | | | | | 7 | Scope Normative references Terms and definitions Principle Interferences Reagents Apparatus Procedure 8.1 Sample preparation 8.2 Determining water content 8.3 Extraction 8.4 Phase separation 8.5 Blank test 8.6 Measurement of trace elements Calculation Expression of results Test report Ex A (informative) Precision Ex B (informative) Notes on homogenization, initial sample mass and extraction | | | | | | | 8 | Procedure | 3 | | | | | | | 8.1 Sample preparation | 3 | | | | | | | 8.2 Determining water content | 3 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 8.6 Measurement of trace elements | 4 | | | | | | 9 | Calculation | 4 | | | | | | 10 | • | | | | | | | 11 | | | | | | | | Anno | ex A (informative) Precision | 7 | | | | | | Anno | ex B (informative) Notes on homogenization, initial sample mass and extraction | 13 | | | | | | Bibli | iography | 14 | | | | | # Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT), see the following URL: Foreword — Supplementary information. The committee responsible for this document is ISO/TC 190, *Soil quality*, Subcommittee SC 3, *Chemical methods and soil characteristics*. # Soil quality — Extraction of trace elements using dilute nitric acid WARNING — Users of this International Standard should be familiar with usual laboratory practice. This International Standard does not address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions. IMPORTANT — It is absolutely essential that tests conducted according to this International Standard be carried out by suitably trained staff. # 1 Scope This International Standard specifies a method of extracting trace elements from soil at approximately pH 0,5 using a dilute nitric acid solution. Using this method the potential environmental available trace elements as defined in ISO 17402 is extracted. The method is applicable for all soils and soil like materials. # 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 11464, Soil quality — Pretreatment of samples for physico-chemical analysis ISO 11465, Soil quality — Determination of dry matter and water content on a mass basis — Gravimetric method # 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. # 3.1 # test portion # analytical portion quantity of material, of proper size, for measurement of the concentration or other property of interest, removed from the test sample Note 1 to entry: The test portion may be taken from the field sample or from the laboratory sample directly if no preparation of the sample is required (e.g. with liquids), but usually it is taken from the prepared test sample. Note 2 to entry: A unit or increment of proper homogeneity, size, and fineness, needing no further preparation, may be a test portion. [SOURCE: ISO 11074:2005, 4.3.13] # 4 Principle The soil sample with particle size of <2 mm is extracted with (0.43 ± 0.02) mol/l nitric acid solution at a soil:solution ratio of 1:10 (m/V) for four hours at (20 ± 2) °C. After centrifugation of the suspension, # BS ISO 17586:2016 **ISO 17586:2016(E)** the liquid phase is filtered through an in-line membrane filter. The solution is then ready for the determination of elements by appropriate analytical methods. NOTE 1 The determination of trace elements in extracts can be performed using flame, hydride generation or electrothermal atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry, inductively coupled plasma mass spectrometry or any other sensitive technique. The pH after extraction is usually in the range of pH 0,5 to 1. For highly calcareous soils, the final pH shall be less than 1,0. In this case, the pH should be adjusted accordingly or the method may not work appropriately. NOTE 2 The range of pH 0,5 to 1 is required to extract the potential environmental availability of trace elements as defined in ISO 17402. # 5 Interferences Sulfide minerals will interfere, e.g. if pyrite in soil or sediment change from anaerobic to aerobic conditions and hydrogen sulfide is evolved by contact with nitric acid. Heavy metal sulfides will precipitate. The extraction is directly applicable to all types of soil, with less than 5 % carbonate. In order to ensure that soils with more carbonate are extracted at the proper pH, the amount of acid neutralised by the soil carbonate has to be accounted by adding extra acid. # 6 Reagents Reagents used shall be of analytical or higher grade. The blank value of the reagents shall be much smaller than the lowest element concentration to be determined. # 6.1 Water. Use only water complying with the requirements for ISO 3696 grade 2 water (electrical conductivity less than 0,1 mS m $^{-1}$ equivalent to resistivity greater than 0,01 M Ω m at 25 °C). It is recommended that the water be obtained from a water purification system that delivers high purity water having a resistivity greater than 0,18 M Ω m. - **6.2** Nitric acid, pro analysis, $w(HNO_3) = 63 \%$ to 68 %. - **6.3** Nitric acid, diluted, 5 mol/l. Put 350 ml of nitric acid (6.2) into 500 ml of water, cool to room temperature and fill up in a volumetric flask to 1 l with water. # **6.4** Nitric acid, diluted, 0,43 mol/l. Dilute 30 ml of nitric acid (65 %) to 1 l water (6.1). Add nitric acid (6.2) to the water. NOTE Using another percentage of nitric acid (6.2), adjust the amount of nitric acid to obtain 0.43 ± 0.02 mol/l. # 7 Apparatus All glassware used shall be thoroughly cleaned, e.g. with 5 % nitric acid to remove contaminants. - **7.1 Balance**, accuracy 0,01 g. - **7.2 Conical test tubes with screwing caps**, of nominal capacity 150 ml to 200 ml, made of polypropylene or another suitable material. Before use check cleanliness of tubes and caps. - **7.3 Shaking machine**, end-over-end shaker, capable for revolutions of (25 ± 10) per min, placed in a room with a constant temperature of (20 ± 2) °C. - 7.4 Membrane filter for connection with a disposable syringe of 0,45 µm pore size. - 7.5 Membrane filter for connection with a disposable syringe of $0.2 \mu m$. If necessary, clean the membrane filter and the syringe by rinsing with 5 % nitric acid. - **7.6 Disposable plastic syringe**, of nominal volume 10 ml or 20 ml with Luer-lock joint. - **7.7 Centrifuge**, capable to centrifuge the test tubes (7.2) at least at 1 000 g. - **7.8 Crushing equipment**: jaw crusher or cutting device. NOTE Due to crushing, contamination of the sample may occur to an extent which affects the concentration of some constituents of concern e.g. cobalt and tungsten from tungsten carbide equipment or chromium, nickel and molybdenum from stainless steel equipment. **7.9 Sieving equipment**, with 2 mm nominal screen size. NOTE Due to sieving, contamination of the sample may occur to an extent which affects the concentration of some constituents of concern, e.g. chromium, nickel and molybdenum from stainless steel or copper and zinc from brass equipment. # 8 Procedure # 8.1 Sample preparation The method can be applied to wet field samples (see also B.2) and samples pre-treated according to ISO 11464. The pre-treated test sample shall have a grain size less than or equal to 2 mm. Oversized material which is not of natural origin shall be removed and if the fraction > 2 mm exceeds 5 % (mass fraction), the entire oversized fraction shall be separated by sieving (7.9) and crushed with suitable crushing equipment (7.8) to grain size <2 mm. The drying temperature shall not exceed 40 °C. On no account the material shall be finely ground. # 8.2 Determining water content Determine the water content as specified in ISO 11465 using a separate test sample portion. # 8.3 Extraction - **8.3.1** Using a pipette or dispenser, add 100,0 ml of (0.43 ± 0.02) mol/l nitric acid solution (6.4) to (10 ± 0.1) g of the soil test portion (8.1) into a suitable test tube (7.2). - **8.3.2** Add, with a pipette, drop by drop, 0,50 ml of 5 mol/l nitric acid (6.4) for each mass fraction of calcium carbonate in percent which is above 5 %. - **8.3.3** Close the test tube with a screw cap, mount it to an end-over-end shaker (7.3) and extract the soil at room temperature (20 ± 2) °C and (25 ± 10) revolutions per min for (240 ± 10) min. NOTE After the addition of nitric acid, in case of effervescence, allow the foaming to stop; then continue. # 8.4 Phase separation - **8.4.1** Place the closed test tubes into a centrifuge and separate the solid phase by centrifugation at $1\,000\,g$ or higher for $10\,\text{min}$. - **8.4.2** Rinse the membrane filter and the syringe with at least 1 ml of extract solution and discard the rinsing solution. - **8.4.3** Filter a suitable amount for following analysis (e.g. 10 ml) of the supernatant solution directly from the sample test tube by pushing it through a syringe equipped with a 0,45 μ m disposable in-line membrane filter. - **8.4.4** Store the acid extract in a clean conical test tube. NOTE Because the extract is already acid, extra addition for stabilization is not necessary. # 8.5 Blank test Subject at least one blank to the same extraction procedure. # 8.6 Measurement of trace elements To determine the element fraction extracted with 0,43 mol/l nitric acid solution, the extract solution should be analysed with a sufficiently sensitive analytical method capable to determine concentrations down to the μ g/l level. Use inductively coupled plasma atomic emission spectrometry described in ISO 22036 or inductively coupled plasma mass spectrometry in ISO 17294-2, atomic absorption methods in ISO 11047 or ISO 20280. Carefully designed temperature programmes in connection with appropriate matrix modifier should be used with ET-AAS determination. Apply matrix matching in calibration solutions. Always expect non-negligible blank concentrations which shall be taken into account. # 9 Calculation Subtract the blank concentration of an element from the concentration in the sample solution. Calculate the extractable element mass fraction according to Formula (1) for air-dried samples or Formula (2) for wet-field sample. Air-dried sample: $$w_{x_{\text{air}}} = \frac{\rho_{\text{B}} \cdot V \cdot F \cdot \left(100 + w_{\text{H}_2\text{O}}\right)}{m_0 \cdot 100} \tag{1}$$ Wet-field sample. The equation corrects for the dilution by the water present in the sample: $$w_{x_{\text{wet}}} = \rho_{\text{B}} \cdot F \cdot \left[\frac{V}{m_{\text{d}}} + \frac{w_{\text{H}_2\text{O}}}{\rho_{\text{H}_2\text{O}} \cdot 100} \right]$$ (2) Determine the water content according to ISO 11465 and calculate using Formula (3). Water content in %: $$w_{\rm H_2O} = \frac{m_{\rm o} - m_{\rm d}}{m_{\rm d}} \cdot 100 \tag{3}$$ where | $w_{x_{\text{air}}}$ or $w_{x_{\text{wet}}}$ | is the nitric acid extractable mass fraction of an element (x) in soil, in micrograms per kilogram, $\mu g/kg$; | |----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------| | $ ho_{ m B}$ | is the blank-corrected concentration of the element (x), in micrograms per litre, $\mu g/l;$ | | V | is the volume of nitric acid added to the soil sample, in litres (nominal $0,1\ l$); | | F | is the dilution factor, $V_{\rm end}/V_{\rm i}$: $V_{\rm i}$ aliquot taken of nitric acid, diluted to volume $V_{\rm end}$ of analysis solution; | | m_0 | is the initial mass of air-dried or fresh-field sample, in kilograms, kg; | | $m_{\rm d}$ | is the mass of soil, dried according to ISO 11465, in kilograms, kg; | | $w_{\rm H_2O}$ | is the percentage of water in soil sample, determined according to ISO 11465; | | $\rho_{\rm H_2O}$ | is the density of water, usually taken as 1 kg/l. | Additionally, the concentration of the extracted element $\rho_{\rm M}$, in $\mu g/dm^3$, determined as specified in ISO 11465 may be calculated according to Formula (4). $$\rho_{M} = w_{x} \cdot \rho_{d} \tag{4}$$ where ρ_d is the bulk density of dry soil, determined in a separate analysis, in kilograms per cubic decimetre (kg/dm³). # 10 Expression of results Report the results expressed in µg/kg. EXAMPLE 1 $w_{Pb} = 20.3 \mu g/kg$. EXAMPLE 2 $w_{\text{Cd}} = 1.3 \, \mu\text{g/kg}$. The number of decimal places reported will generally depend on the precision of the analytical method used or on the limits of determination. As a rule, the contents should be reported with three significant decimal places, but only in two or even one in the vicinity of the limit of determination. # 11 Test report The test report shall contain at least the following information: - a) a reference to this International Standard, i.e. ISO 17586; - b) the identification of the sample; - c) details of sample pre-treatment, indicating whether the sample was used as collected from the field (wet or air-dried); # BS ISO 17586:2016 **ISO 17586:2016(E)** - d) the dry matter content according to ISO 11465; - e) the result of the determination of trace elements according to the analytical method used; - f) any details not specified in this standard or that are optional, and any circumstances that may have affected the result. # **Annex A** (informative) # **Precision** An inter-laboratory comparison on the determination of trace elements by extraction with diluted nitric acid according to this International Standard has been carried out in the beginning of 2015. The extracts were measured using the method applied in the individual laboratories. Most elements were analysed using ICP with AES or MS detection. One laboratory has used AAS including deuterium background correction and for arsenic the hydride technique. The final results are given in Tables A.2 and A.3. A more detailed report is available on www.wepal.nl. The statistical test was carried out according to the ISO 5725 series. Six samples were used that are part of the WEPAL proficiency scheme and distributed to 17 participating laboratories. Each soil sample should be extracted four times according to ISO 17586 and measured according the analytical procedures available in the laboratory. Six soil samples have been used with different soil properties ($\underline{\text{Table A.1}}$) and content of trace elements ($\underline{\text{Tables A.2}}$ and $\underline{\text{A.3}}$): | Parameter | 1 | 2 | 3 | 4 | 5 | 6 | |--------------------------|------|------|------|------|------|-----| | Clay (%) | 13,3 | 25,2 | 22,0 | 26,7 | 13,6 | 8,9 | | Organic matter (LOI) (%) | 5,6 | 5,3 | 5,3 | 12,0 | 3,0 | 2,1 | | CaCO ₃ (%) | 9,0 | 8,4 | 2,8 | 8,4 | 0 | 1,8 | Table A.1 — Consensus values of general soil parameters in the analysed soils All materials used were homogenized and grinded materials. They were sieved over 0,5 mm and distributed in pots to contain 100 g of soil. Before sending, it was checked if the soils were homogenous distributed in the pots using previous test results and specific analysis of total concentrations in a random selection of 10 pots. Participants have submitted their results electronically by www.wepal.nl. Outliers were identified using Cochran's test and Grubb's test described in ISO 5725-2. Although the laboratories were asked to analyse four replicates, two laboratories measured two replicates and one laboratory analysed three replicates. The results of the validation are summarized in <u>Tables A.2</u> and <u>A.3</u>. In these tables, we have added the total concentration measured using *aqua regia*. The concentration measured after extraction using ISO 17586 is a part of the total concentration. Table A.2 describes the results with more than four participating laboratories. For most elements, the repeatability and reproducibility are as expected for such an analysis, and the method is validated for these elements (all elements in Table A.2 with exception of B, Mo and Se). Higher values are obtained for B, Mo and Se. For Mo and Se this is caused by the low concentrations and the higher values for B shows that the method is less suitable for this element. $\underline{\text{Table A.3}}$ summarizes the results for elements with four or less than four participating laboratories. Repeatability and reproducibility of the elements in $\underline{\text{Table A.3}}$ are indicative. High values of repeatability and reproducibility are obtained for Sn. For all elements presented in <u>Tables A.2</u> and <u>A.3</u>, it has to be considered that they are the results of a chemical method and more precisely, the amount that can be extracted with a mild acid extraction (approximately pH 0,5). If this amount is representative for the bioavailable, fraction has to be proven using calibration studies (e.g. uptake by crops, effect on organisms, leaching to groundwater). The guideline on bioavailability, ISO 17402, stated that it is necessary to correlate the results of a chemical method and biologically measured effects. $Table \ A.2 - Results \ of \ validation \ for \ elements \ with \ more \ than \ four \ participating \ laboratories$ | Sample | Element | Aqua regia
extractable | 1 | n | Outliers | х | S_R | S_r | VC _R | VC _r | |--------|---------|---------------------------|----|----|----------|-------|-------|-------|-----------------|-----------------| | | | amount
mg/kg | | | % | | | | | | | 1 | Ala | 9,87 | 5 | 20 | 0,0 | 0,640 | 0,045 | 0,025 | 7,0 | 3,9 | | 2 | Ala | 18,9 | 5 | 20 | 0,0 | 0,940 | 0,043 | 0,023 | 4,2 | 2,7 | | 3 | Ala | 19,7 | 5 | 20 | 0,0 | 1,32 | 0,040 | 0,020 | 3,6 | 1,6 | | | Ala | | 5 | 20 | 0,0 | | | | | | | 4 | Ala | 26,4 | 5 | | | 2,29 | 0,18 | 0,05 | 7,8 | 2,4 | | 5 | | 13,6 | | 20 | 20,0 | 0,849 | 0,086 | 0,010 | 10,2 | 1,2 | | 6 | Ala | 9,15 | 5 | 20 | 0,0 | 0,481 | 0,053 | 0,015 | 11,1 | 3,1 | | 1 | As | 15,8 | 16 | 61 | 6,25 | 6,68 | 0,91 | 0,32 | 13,7 | 4,8 | | 2 | As | 10,4 | 16 | 61 | 0,0 | 4,19 | 0,48 | 0,16 | 11,4 | 3,9 | | 3 | As | 9,83 | 16 | 61 | 25,0 | 0,963 | 0,155 | 0,025 | 16,1 | 2,6 | | 4 | As | 42,4 | 16 | 61 | 12,5 | 19,11 | 1,57 | 0,49 | 8,2 | 2,5 | | 5 | As | 7,63 | 15 | 57 | 13,3 | 0,421 | 0,081 | 0,013 | 19,3 | 3,0 | | 6 | As | 3,09 | 15 | 57 | 13,3 | 0,611 | 0,055 | 0,033 | 9,0 | 5,5 | | 1 | В | 24,0 | 7 | 25 | 14,3 | 6,51 | 2,49 | 0,34 | 38,3 | 5,3 | | 2 | В | 28,3 | 7 | 25 | 28,6 | 5,05 | 1,95 | 0,13 | 38,7 | 2,6 | | 3 | В | 17,1 | 7 | 25 | 28,6 | 2,73 | 0,96 | 0,07 | 35,4 | 2,7 | | 4 | В | 73,0 | 7 | 25 | 14,3 | 4,54 | 1,82 | 0,24 | 40,0 | 5,3 | | 5 | В | 9,45 | 5 | 17 | 20,0 | 0,511 | 0,107 | 0,073 | 21,0 | 14,3 | | 6 | В | 10,3 | 6 | 21 | 33,3 | 1,26 | 0,15 | 0,08 | 11,7 | 6,3 | | 1 | Ва | 108 | 13 | 47 | 23,1 | 25,2 | 1,5 | 1,0 | 6,0 | 4,0 | | 2 | Ва | 40,9 | 12 | 46 | 8,3 | 15,9 | 0,9 | 0,3 | 5,5 | 2,1 | | 3 | Ва | 86,2 | 13 | 47 | 15,4 | 51,6 | 2,8 | 0,8 | 5,4 | 1,6 | | 4 | Ва | 826 | 13 | 47 | 7,7 | 345 | 34 | 10 | 9,9 | 2,8 | | 5 | Ва | 76,3 | 12 | 43 | 16,7 | 48,6 | 2,4 | 0,8 | 5,0 | 1,6 | | 6 | Ва | 52,3 | 12 | 43 | 8,3 | 32,5 | 2,5 | 0,9 | 7,7 | 2,7 | | 1 | Ве | 0,601 | 7 | 28 | 14,3 | 0,184 | 0,033 | 0,008 | 17,7 | 4,5 | | 2 | Ве | 0,882 | 8 | 32 | 12,5 | 0,271 | 0,034 | 0,006 | 12,6 | 2,2 | | 3 | Ве | 0,876 | 8 | 32 | 0,0 | 0,331 | 0,026 | 0,013 | 8,0 | 3,8 | | 4 | Ве | 1,58 | 8 | 32 | 0,0 | 0,689 | 0,078 | 0,027 | 11,3 | 3,9 | | 5 | Ве | 0,624 | 6 | 24 | 0,0 | 0,216 | 0,019 | 0,006 | 9,0 | 2,6 | | 6 | Ве | 0,538 | 6 | 24 | 0,0 | 0,115 | 0,009 | 0,004 | 7,5 | 3,8 | | 1 | Cd | 1,28 | 17 | 63 | 11,8 | 1,14 | 0,06 | 0,04 | 5,5 | 3,3 | | 2 | Cd | 0,222 | 15 | 57 | 13,3 | 0,180 | 0,043 | 0,006 | 23,8 | 3,3 | | 3 | Cd | 0,343 | 16 | 61 | 0,0 | 0,264 | 0,042 | 0,007 | 15,9 | 2,8 | | 4 | Cd | 8,35 | 17 | 63 | 0,0 | 7,44 | 1,06 | 0,13 | 14,2 | 1,8 | | 5 | Cd | 0,635 | 16 | 59 | 12,5 | 0,531 | 0,054 | 0,008 | 10,1 | 1,6 | | 6 | Cd | 0,178 | 14 | 53 | 14,3 | 0,138 | 0,011 | 0,008 | 7,7 | 5,9 | | 1 | Со | 5,86 | 13 | 47 | 7,7 | 2,22 | 0,35 | 0,14 | 15,6 | 6,4 | | 2 | Со | 7,15 | 13 | 47 | 7,7 | 2,48 | 0,27 | 0,06 | 10,9 | 2,5 | Table A.2 (continued) | Sample | Element | Aqua regia
extractable | 1 | n | Outliers | Х | S_R | S_r | VC _R | VCr | |--------|---------|---------------------------|----|----|----------|-------|-------|-------|-----------------|------| | | | amount | | | % | | | | | | | | | mg/kg | | | | | | | | | | 3 | Со | 8,86 | 13 | 47 | 15,4 | 1,81 | 0,30 | 0,03 | 16,3 | 1,5 | | 4 | Со | 18,6 | 13 | 47 | 15,4 | 8,61 | 0,98 | 0,22 | 11,4 | 2,5 | | 5 | Со | 7,72 | 12 | 43 | 25,0 | 2,26 | 0,19 | 0,08 | 8,4 | 3,4 | | 6 | Со | 3,88 | 12 | 43 | 8,3 | 0,97 | 0,09 | 0,04 | 9,0 | 3,8 | | 1 | Cr | 34,9 | 17 | 63 | 11,8 | 4,62 | 1,11 | 0,20 | 24,1 | 4,2 | | 2 | Cr | 35,1 | 16 | 59 | 6,3 | 2,07 | 0,55 | 0,05 | 26,6 | 2,6 | | 3 | Cr | 60,1 | 17 | 63 | 11,8 | 3,15 | 0,60 | 0,05 | 19,1 | 1,5 | | 4 | Cr | 185 | 17 | 63 | 17,6 | 65,8 | 13,2 | 1,4 | 20,0 | 2,2 | | 5 | Cr | 28,6 | 15 | 59 | 0,0 | 1,11 | 0,17 | 0,04 | 15,1 | 3,5 | | 6 | Cr | 13,2 | 15 | 51 | 7,1 | 0,786 | 0,117 | 0,024 | 14,9 | 3,0 | | 1 | Cu | 48,7 | 17 | 63 | 5,9 | 35,01 | 5,88 | 4,42 | 16,8 | 12,6 | | 2 | Cu | 10,6 | 17 | 63 | 23,5 | 4,81 | 0,54 | 0,09 | 11,2 | 1,9 | | 3 | Cu | 22,8 | 17 | 63 | 29,4 | 9,37 | 1,19 | 0,09 | 12,7 | 1,0 | | 4 | Cu | 153 | 17 | 63 | 17,6 | 109,2 | 8,9 | 2,4 | 8,2 | 2,2 | | 5 | Cu | 11,4 | 16 | 59 | 25,0 | 4,27 | 0,50 | 0,10 | 11,7 | 2,3 | | 6 | Cu | 28,4 | 16 | 59 | 0,0 | 18,67 | 1,96 | 0,74 | 10,5 | 3,9 | | 1 | Fea | 22,4 | 6 | 22 | 33,3 | 5,74 | 1,28 | 0,12 | 22,2 | 2,1 | | 2 | Fea | 21,7 | 6 | 22 | 33,3 | 2,96 | 0,59 | 0,07 | 19, | 2,2 | | 3 | Fea | 21,7 | 6 | 22 | 16,7 | 0,774 | 0,097 | 0,018 | 12,5 | 2,4 | | 4 | Fea | 35,7 | 6 | 22 | 0,0 | 5,94 | 1,13 | 0,21 | 19,1 | 3,6 | | 5 | Fea | 17,3 | 6 | 22 | 16,7 | 0,794 | 0,076 | 0,017 | 9,5 | 2,2 | | 6 | Fea | 9,14 | 6 | 22 | 0,0 | 0,397 | 0,085 | 0,015 | 21,3 | 3,8 | | 1 | Mn | 239 | 7 | 26 | 14,3 | 160 | 24,0 | 5,05 | 15,1 | 3,2 | | 2 | Mn | 470 | 7 | 26 | 0,0 | 338 | 59,9 | 14,2 | 17,7 | 4,2 | | 3 | Mn | 1 010 | 7 | 26 | 14,3 | 557 | 57,4 | 16,6 | 10,3 | 3,0 | | 4 | Mn | 1 040 | 7 | 26 | 0,0 | 763 | 141 | 25,2 | 18,5 | 3,3 | | 5 | Mn | 554 | 7 | 26 | 14,3 | 249 | 19,4 | 8,6 | 7,8 | 3,5 | | 6 | Mn | 304 | 7 | 26 | 0,0 | 184 | 18,3 | 6,41 | 9,9 | 3,5 | | 1 | Мо | 1,23 | 9 | 36 | 22,2 | 0,096 | 0,042 | 0,010 | 44,1 | 10,4 | | 2 | Мо | 0,322 | 9 | 36 | 11,1 | 0,023 | 0,017 | 0,003 | 72,3 | 11,9 | | 3 | Мо | 1,02 | 9 | 36 | 11,1 | 0,013 | 0,006 | 0,002 | 49,0 | 16,2 | | 4 | Мо | 1,41 | 9 | 36 | 0,0 | 0,077 | 0,030 | 0,007 | 38,8 | 8,7 | | 5 | Мо | 0,720 | 7 | 28 | 0,0 | 0,009 | 0,003 | 0,003 | 38,8 | 32,5 | | 6 | Мо | 0,222 | 7 | 27 | 28,6 | 0,011 | 0,002 | 0,001 | 15,3 | 14,1 | | 1 | Ni | 16,8 | 17 | 62 | 23,5 | 4,57 | 0,67 | 0,15 | 14,7 | 3,3 | | 2 | Ni | 21,4 | 17 | 62 | 17,6 | 4,06 | 0,62 | 0,09 | 15,3 | 2,2 | | 3 | Ni | 40,4 | 17 | 62 | 17,6 | 4,57 | 0,75 | 0,10 | 16,4 | 2,2 | | 4 | Ni | 55,0 | 17 | 62 | 23,5 | 17,2 | 1,6 | 0,3 | 9,1 | 1,9 | Table A.2 (continued) | Sample | Element | Aqua regia | 1 | n | Outliers | X | S_R | S_r | VC_R | VCr | |--------|---------|-----------------------|----|----|----------|---------|---------|---------|--------|------| | | | extractable
amount | | | % | | | | | | | | | mg/kg | | | , , | | | | | | | 5 | Ni | 19,0 | 16 | 58 | 18,8 | 2,12 | 0,27 | 0,04 | 12,8 | 2,1 | | 6 | Ni | 10,3 | 15 | 54 | 6,7 | 1,17 | 0,14 | 0,05 | 12,0 | 3,9 | | 1 | P | 558 | 7 | 28 | 0 | 391 | 24 | 9 | 6,2 | 2,4 | | 2 | P | 571 | 7 | 28 | 0,0 | 371 | 36 | 12 | 9,8 | 3,1 | | 3 | P | 962 | 7 | 28 | 14,3 | 366 | 13 | 6 | 3,4 | 1,7 | | 4 | P | 2 500 | 7 | 28 | 0,0 | 1623 | 61 | 27 | 3,8 | 1,7 | | 5 | P | 368 | 7 | 28 | 0,0 | 50,4 | 5,3 | 1,4 | 10,5 | 2,7 | | 6 | P | 573 | 7 | 28 | 0,0 | 412 | 37 | 18 | 9,0 | 4,3 | | 1 | Pb | 239 | 17 | 63 | 5,9 | 218 | 23 | 9 | 10,5 | 4,1 | | 2 | Pb | 31,4 | 17 | 63 | 23,5 | 25,1 | 4,2 | 0,7 | 16,9 | 2,8 | | 3 | Pb | 25,9 | 17 | 63 | 5,9 | 15,7 | 2,9 | 0,7 | 18,6 | 4,6 | | 4 | Pb | 285 | 17 | 63 | 29,4 | 240 | 14 | 4 | 6,0 | 1,5 | | 5 | Pb | 30,5 | 16 | 59 | 12,5 | 17,7 | 2,3 | 0,4 | 12,8 | 2,4 | | 6 | Pb | 18,5 | 16 | 58 | 12,5 | 12,3 | 1,3 | 0,9 | 10,8 | 7,3 | | 1 | Se | 0,437 | 7 | 28 | 42,9 | 0,068 2 | 0,077 2 | 0,002 3 | 113,3 | 3,4 | | 2 | Se | 0,275 | 7 | 28 | 28,6 | 0,059 9 | 0,061 1 | 0,002 7 | 102,0 | 4,4 | | 3 | Se | 0,155 | 7 | 28 | 28,6 | 0,049 4 | 0,0598 | 0,002 5 | 121,1 | 5,1 | | 4 | Se | 1,78 | 7 | 28 | 28,6 | 0,249 | 0,205 5 | 0,006 0 | 82,5 | 2,4 | | 5 | Se | 0,190 | 7 | 28 | 14,3 | 0,068 6 | 0,097 3 | 0,0042 | 141,8 | 6,1 | | 6 | Se | 0,270 | 6 | 24 | 33,3 | 0,005 7 | 0,004 2 | 0,003 0 | 73,9 | 52,3 | | 1 | Sr | 120 | 8 | 30 | 0 | 109,9 | 4,6 | 1,9 | 4,2 | 1,7 | | 2 | Sr | 89,4 | 8 | 30 | 0,0 | 77,8 | 4,3 | 1,3 | 5,6 | 1,6 | | 3 | Sr | 22,7 | 8 | 30 | 0,0 | 16,2 | 0,7 | 0,4 | 4,1 | 2,2 | | 4 | Sr | 133 | 8 | 30 | 12,5 | 106 | 5 | 2 | 4,6 | 1,5 | | 5 | Sr | 15,8 | 7 | 26 | 0,0 | 6,05 | 0,35 | 0,12 | 5,9 | 2,0 | | 6 | Sr | 26,7 | 7 | 26 | 14,3 | 22,5 | 1,8 | 1,1 | 8,1 | 5,1 | | 1 | Ti | 235 | 5 | 20 | 40 | 10,61 | 1,59 | 0,11 | 15,0 | 1,0 | | 2 | Ti | 346 | 5 | 20 | 20,0 | 5,48 | 0,66 | 0,14 | 12,1 | 2,5 | | 3 | Ti | 251 | 4 | 16 | 0,0 | 1,15 | 0,07 | 0,04 | 6,4 | 3,3 | | 4 | Ti | 416 | 5 | 20 | 0,0 | 29,8 | 5,3 | 0,8 | 17,7 | 2,7 | | 5 | Ti | 375 | 5 | 20 | 20,0 | 2,53 | 0,18 | 0,04 | 7,2 | 1,7 | | 6 | Ti | - | 5 | 20 | 0,0 | 3,11 | 0,18 | 0,12 | 5,7 | 3,8 | | 1 | V | 31,2 | 10 | 40 | 0 | 9,63 | 1,62 | 0,33 | 16,8 | 3,4 | | 2 | V | 35,8 | 10 | 40 | 0,0 | 8,45 | 1,37 | 0,24 | 16,3 | 2,9 | | 3 | V | 54,6 | 10 | 40 | 10,0 | 16,0 | 2,7 | 0,3 | 16,8 | 2,0 | | 4 | V | 56,1 | 10 | 40 | 0,0 | 16,0 | 3,2 | 0,3 | 19,9 | 2,1 | | 5 | V | 28,1 | 8 | 32 | 0,0 | 2,52 | 0,44 | 0,07 | 17,3 | 2,8 | | 6 | V | 15,4 | 9 | 36 | 0,0 | 2,73 | 0,28 | 0,12 | 10,3 | 4,4 | Table A.2 (continued) | Sample | Element | Aqua regia | 1 | n | Outliers | X | S_R | S_r | VC_R | VC _r | |--------|---------|-----------------------|----|----|----------|------|-------|-------|--------|-----------------| | | | extractable
amount | | | % | | | | | | | | | mg/kg | | | | | | | | | | 1 | Zn | 378 | 17 | 63 | 11,8 | 282 | 22 | 9 | 7,9 | 3,3 | | 2 | Zn | 83,0 | 17 | 63 | 17,6 | 33,0 | 3,8 | 0,7 | 11,6 | 2,3 | | 3 | Zn | 67,8 | 17 | 63 | 17,6 | 12,6 | 1,8 | 0,2 | 14,3 | 1,6 | | 4 | Zn | 1 030 | 17 | 63 | 11,8 | 624 | 90 | 13 | 14,4 | 2,1 | | 5 | Zn | 97,1 | 16 | 59 | 6,3 | 29,4 | 4,1 | 1,1 | 14,1 | 3,8 | | 6 | Zn | 63,8 | 16 | 59 | 0,0 | 29,8 | 3,1 | 1,4 | 10,4 | 4,6 | # Explanation of symbols *l* is the number of laboratories after elimination of outliers; *n* is the number of results; *x* is the mean value, in milligrams per kilogram; S_r is the repeatability standard deviation, in milligrams per kilogram; VC_r is the relative repeatability standard deviation, in percent; S_R is the reproducibility standard deviation, in milligrams per kilogram; VC_R is the relative reproducibility standard deviation, in percent; a Concentration in g/kg instead of mg/kg. Table A.3 — Results of validation for elements with four or less than four participating laboratories (indicative values) | Sample | Element | Aqua regia
extractable | l | n | Outliers | х | S_R | S_r | VC _R | VCr | |--------|---------|---------------------------|---|----|----------|-------|-------|-------|-----------------|-----| | | | amount | | | % | | | | | | | | | mg/kg | | | | | | | | | | 1 | Caa | 36,3 | 4 | 16 | 0,0 | 37,6 | 3,4 | 1,5 | 8,9 | 4,0 | | 2 | Caa | 35,1 | 4 | 16 | 0,0 | 35,0 | 2,6 | 1,4 | 7,3 | 4,0 | | 3 | Caa | 10,9 | 4 | 16 | 0,0 | 10,8 | 0,6 | 0,3 | 5,3 | 3,1 | | 4 | Caa | 36,2 | 4 | 16 | 25,0 | 36,4 | 2,6 | 0,7 | 7,1 | 1,9 | | 5 | Caa | 2,19 | 4 | 16 | 0,0 | 1,75 | 0,19 | 0,03 | 10,6 | 1,9 | | 6 | Caa | 8,27 | 4 | 16 | 0,0 | 8,32 | 1,16 | 0,50 | 13,9 | 6,0 | | 1 | K | 2 770 | 4 | 16 | 0,0 | 277 | 24,5 | 6,27 | 8,8 | 2,3 | | 2 | K | 4 710 | 4 | 16 | 25,0 | 412 | 41,6 | 8,34 | 10,1 | 2,0 | | 3 | K | 3 730 | 4 | 16 | 0,0 | 340 | 22,9 | 9,63 | 6,7 | 2,8 | | 4 | K | 5 570 | 4 | 16 | 0,0 | 276 | 16,3 | 10,2 | 5,9 | 3,7 | | 5 | К | 2 200 | 4 | 16 | 25,0 | 98,9 | 7,09 | 1,97 | 7,2 | 2,0 | | 6 | K | 3 190 | 4 | 16 | 0,0 | 279 | 19,5 | 10,4 | 7,0 | 3,7 | | 1 | Mg | 3 800 | 4 | 16 | 0,0 | 1486 | 101 | 28,0 | 6,8 | 1,9 | | 2 | Mg | 7 070 | 4 | 15 | 0,0 | 2 575 | 77,2 | 35,1 | 3,0 | 1,4 | | 3 | Mg | 8 510 | 4 | 16 | 0,0 | 2 990 | 122 | 32,9 | 4,1 | 1,1 | | 4 | Mg | 9 520 | 4 | 16 | 0,0 | 3 101 | 104 | 75,3 | 3,4 | 2,4 | | 5 | Mg | 2 470 | 4 | 16 | 0,0 | 168 | 26,3 | 2,52 | 15,7 | 1,5 | Table A.3 (continued) | Sample | Element | Aqua regia
extractable
amount | 1 | n | Outliers
% | X | S_R | S_r | VC _R | VCr | |------------|---------------|-------------------------------------|--------|----|---------------|---------|---------|---------|-----------------|------| | | | mg/kg | | | 70 | | | | | | | 6 | Mg | 4 050 | 4 | 16 | 0,0 | 299 | 55,4 | 13,7 | 18,5 | 4,6 | | 1 | Na | 248 | 4 | 16 | 0,0 | 150 | 9,77 | 7,22 | 6,5 | 4,8 | | 2 | Na | 181 | 4 | 16 | 0,0 | 70,0 | 3,95 | 1,34 | 5,6 | 1,9 | | 3 | Na | 85,4 | 4 | 16 | 0,0 | 20,6 | 1,14 | 0,64 | 5,5 | 3,1 | | 4 | Na | 324 | 4 | 16 | 0,0 | 132 | 5,44 | 3,93 | 4,1 | 3,0 | | 5 | Na | 93,1 | 4 | 16 | 25,0 | 22,9 | 0,73 | 0,42 | 3,2 | 1,8 | | 6 | Na | 105 | 4 | 16 | 25,0 | 22,1 | 1,91 | 1,99 | 8,6 | 9,0 | | 1 | Sb | 2,14 | 4 | 16 | 25 | 0,122 | 0,006 9 | 0,003 4 | 5,6 | 2,8 | | 2 | Sb | 0,332 | 4 | 16 | 0 | 0,0208 | 0,003 2 | 0,001 0 | 15,2 | 4,7 | | 3 | Sb | 0,575 | 4 | 16 | 0 | 0,033 8 | 0,0018 | 0,001 1 | 5,2 | 3,3 | | 4 | Sb | 3,03 | 4 | 16 | 0 | 0,23 3 | 0,037 3 | 0,007 2 | 16,0 | 3,1 | | 5 | Sb | 0,430 | 4 | 16 | 0 | 0,023 5 | 0,001 3 | 0,001 2 | 5,4 | 4,9 | | 6 | Sb | 0,391 | 4 | 16 | 0 | 0,030 7 | 0,002 5 | 0,002 7 | 8,3 | 8,8 | | 1 | Sn | 14,4 | 5 | 18 | 0 | 1,08 | 0,35 | 0,30 | 32,4 | 28,0 | | 2 | Sn | 1,88 | 3 | 12 | 0,0 | 0,020 | 0,004 | 0,002 | 21,9 | 8,1 | | 3 | Sn | 2,1 | 2 | 8 | 0,0 | 0,016 | 0,008 | 0,005 | 48,1 | 31,8 | | 4 | Sn | 23,7 | 5 | 18 | 20,0 | 2,21 | 0,69 | 0,03 | 31,3 | 1,3 | | 5 | Sn | 1,07 | 2 | 8 | 0,0 | 0,014 | 0,009 | 0,003 | 62,1 | 22,9 | | 6 | Sn | 1,78 | 3 | 12 | 0,0 | 0,016 | 0,008 | 0,004 | 49,0 | 22,6 | | For an exp | lanation of s | ymbols see <u>Table</u> | e A.2. | | | | | | | | # Annex B (informative) # Notes on homogenization, initial sample mass and extraction # **B.1** Homogenization of freshly collected samples Depending on their cohesion, freshly collected samples should be forced by hand through a 2 mm, 5 mm or 8 mm screen using gloves, For samples of mineral soils, particles exceeding about 2 mm in diameter can be picked out by hand, If homogenization is inadequate, larger sample masses may be extracted (e.g. 100 g of soil with 1 000 ml of extraction solution (0,43 mol/l nitric acid)), but the ratio of air-dried or freshly collected soil to solution shall be kept constant in order to obtain reproducible results, # **B.2** Extraction of organic horizons Samples from organic horizons shall be weighed out in the freshly collected state since dried samples are frequently hydrophobic or absorb only some of the extraction solution (0,43 mol/l nitric acid), The mixing of the sample can be improved by increasing the amounts extracted [e.g. 40 g of soil with 400 ml of extraction solution (0,43 mol/l nitric acid)] and adding glass beads (e.g. 20 g of beads with a diameter of 3 mm), The ratio of air-dried or freshly collected soil to solution shall be kept constant in order to obtain reproducible results. # **B.3** Extraction of reductomorphic horizons Samples from reductomorphic horizons shall be processed with oxygen excluded from the beginning of sampling to the extraction, Extraction should be carried out as soon as possible after sample preparation (in particular the reduction in size of large aggregates). # **Bibliography** - [1] ISO 11047, Soil quality Determination of cadmium, chromium, cobalt, copper, lead, manganese, nickel and zinc Flame and electrothermal atomic absorption spectrometric methods - [2] ISO 17294-2, Water quality Application of inductively coupled plasma mass spectrometry (ICP-MS) Part 2: Determination of 62 elements - [3] ISO 17924, Soil quality Assessment of human exposure from ingestion of soil and soil material Guidance on the application and selection of physiologically based extraction methods for the estimation of the human bioaccessibility/bioavailability of metals in soil - [4] ISO 19730, Soil quality Extraction of trace elements from soil using ammonium nitrate solution - [5] ISO 20280, Soil quality Determination of arsenic, antimony and selenium in aqua regia soil extracts with electrothermal or hydride-generation atomic absorption spectrometry - [6] ISO 22036, Soil quality Determination of trace elements in extracts of soil by inductively coupled plasma atomic emission spectrometry (ICP AES) - [7] ISO 5725-2, Accuracy (trueness and precision) of measurement methods and results Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method - [8] ISO 3696, Water for analytical laboratory use Specification and test methods - [9] ISO 11074:2005, Soil quality Vocabulary - [10] ISO 17402, Soil quality Requirements and guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. ### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. # **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. # **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. # **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### Revisions Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. # Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com # Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com