BS ISO 17560:2014 # **BSI Standards Publication** Surface chemical analysis — Secondary-ion mass spectrometry — Method for depth profiling of boron in silicon #### National foreword This British Standard is the UK implementation of ISO 17560:2014. It supersedes BS ISO 17560:2002 which is withdrawn. The UK participation in its preparation was entrusted to Technical Committee CII/60, Surface chemical analysis. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2014. Published by BSI Standards Limited 2014 ISBN 978 0 580 85636 5 ICS 71.040.40 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 September 2014. Amendments issued since publication Date Text affected INTERNATIONAL STANDARD ISO 17560:2014 ISO 17560 Second edition 2014-09-15 # Surface chemical analysis — Secondary-ion mass spectrometry — Method for depth profiling of boron in silicon Analyse chimique des surfaces — Spectrométrie de masse des ions secondaires — Dosage du bore dans le silicium par profilage d'épaisseur # **COPYRIGHT PROTECTED DOCUMENT** © ISO 2014 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland | Coı | ntents | Page | | | | |-------|--|----------------------------|--|--|--| | Fore | eword | iv | | | | | Intro | oduction | v | | | | | 1 | Scope | 1 | | | | | 2 | Normative reference | | | | | | 3 | Symbols and abbreviations | | | | | | 4 | Principle | | | | | | 5 | Reference materials 5.1 Reference materials for determination of relative-sensitivity factors 5.2 Reference materials for calibration of depth scale | 2 | | | | | 6 | Apparatus 6.1 Secondary-ion mass spectrometer 6.2 Stylus profilometer 6.3 Optical interferometer | 2
2 | | | | | 7 | Specimen | 3 | | | | | 8 | Procedure 8.1 Adjustment of secondary-ion mass spectrometer 8.2 Optimizing the secondary-ion mass spectrometer settings 8.3 Specimen introduction 8.4 Detected ions 8.5 Measurement of test specimen 8.6 Calibration | 3
3
4
4
4
4 | | | | | 9 | Expression of results | 6 | | | | | 10 | Test report | | | | | | Ann | ex A (informative) Statistical report of stylus profilometry measurements | 8 | | | | | Bibli | iography | 10 | | | | # **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 201, *Surface chemical analysis*, Subcommittee SC 6, *Secondary ion mass spectrometry*. Annex A of this International Standard is for information only. This second edition cancels and replaces the first edition (ISO 17560:2002), which has been technically revised. The revision also includes editorial correction. # Introduction This International Standard was prepared for the quantitative depth profiling of boron in silicon by secondary-ion mass spectrometry (SIMS). For quantitative depth profiling, calibration is necessary both for the concentration and the depth scales of the profile measured. A procedure for the determination of boron in silicon has been established as an International Standard, ISO 14237. Thus, the calibration of boron atomic concentration is performed by following ISO 14237. This International Standard describes standard procedures for depth profiling of boron in single-crystal, poly-crystal, or amorphous silicon using SIMS and for depth scale calibration using stylus profilometry or optical interferometry. # Surface chemical analysis — Secondary-ion mass spectrometry — Method for depth profiling of boron in silicon # 1 Scope This International Standard specifies a secondary-ion mass spectrometric method using magnetic-sector or quadrupole mass spectrometers for depth profiling of boron in silicon, and using stylus profilometry or optical interferometry for depth scale calibration. This method is applicable to single-crystal, polycrystal, or amorphous silicon specimens with boron atomic concentrations between 1×10^{16} atoms/cm³ and 1×10^{20} atoms/cm³, and to crater depths of 50 nm or deeper. #### 2 Normative reference The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 14237:2010, Surface chemical analysis — Secondary-ion mass spectrometry — Determination of boron atomic concentration in silicon using uniformly doped materials # 3 Symbols and abbreviations - C_i total boron atomic concentration in measurement cycle i, expressed in atoms per cubic centimetre (atoms/cm³) - C_i^{10} atomic concentration of the boron isotope with mass number 10 in measurement cycle i, expressed in atoms per cubic centimeter (atoms/cm³) - C_i^{11} atomic concentration of the boron isotope with mass number 11 in measurement cycle i, expressed in atoms per cubic centimeter (atoms/cm³) - d_i depth measured in measurement cycle i, expressed in micrometres (µm) or nanometers (nm) - d_t crater depth, expressed in micrometres (µm) or nanometres (nm) - I_i^{10} ion intensity of the boron isotope with mass number 10 in measurement cycle i, expressed in counts per second (counts/s) - I_i^{11} ion intensity of the boron isotope with mass number 11 in measurement cycle i, expressed in counts per second (counts/s) - I_i^{Si} ion intensity of silicon matrix in measurement cycle i, expressed in counts per second (counts/s) - J_i^{10} boron to silicon ion intensity ratio for the boron isotope with mass number 10 in measurement cycle i - J_i^{11} boron to silicon ion intensity ratio for the boron isotope with mass number 11 in measurement cycle i - $J_{\rm BG}^{10}$ mean background boron to silicon ion intensity ratio for the boron isotope with mass number 10 in measurement cycle i # BS ISO 17560:2014 **ISO 17560:2014(E)** - $J_{\rm BG}^{11}$ mean background boron to silicon ion intensity ratio for the boron isotope with mass number 11 in measurement cycle i - N total number of measurement cycles - T total measurement time, expressed in seconds (s) - $t_i^{\rm B}$ starting time of boron-ion acquisition in measurement cycle *i*, expressed in seconds (s) - $\Delta t_i^{\rm B}$ duration of boron-ion acquisition in each measurement cycle, expressed in seconds (s) - δ mass discrimination correction factor - λ wavelength of the light for optical interferometry, expressed in micrometres (µm) or nanometres (nm) RSFwork working relative-sensitivity factor SIMS secondary-ion mass spectrometry # 4 Principle An oxygen-ion beam or caesium-ion beam is scanned over the specimen surface and the emitted secondary-ions of boron and silicon from a gated region within the area scanned by the ion beam are detected and mass-analysed. The intensities of these mass-analysed signals are monitored as a function of sputtering time. The depth of the crater formed by the ion beam is measured by stylus profilometry or optical interferometry for depth scale calibration. NOTE Optical interferometry is generally applicable to crater depths in the range from $0.5 \mu m$ to $5 \mu m$. # 5 Reference materials ## 5.1 Reference materials for determination of relative-sensitivity factors The reference materials should be as specified in ISO 14237:2010, Clause 4. #### 5.2 Reference materials for calibration of depth scale For stylus profilometry calibration, certified reference materials or reference materials, which are traceable to certified reference materials, shall be used. # 6 Apparatus #### 6.1 Secondary-ion mass spectrometer The apparatus should be as specified in ISO 14237:2010, Clause 5. ## 6.2 Stylus profilometer Use a stylus profilometer with the sensitivity and tip shapes suitable for the crater shapes to be measured. # 6.3 Optical interferometer Use an optical interferometer with the sensitivity and functions suitable for the crater shapes to be measured. # 7 Specimen The specimen shall be cut to an appropriate size for analysis and degreased and washed if necessary. NOTE The accuracy of crater depth measurement is largely influenced by surface roughness. A mirror-polished wafer is preferable when accurate determination of the depth scale is necessary. #### 8 Procedure # 8.1 Adjustment of secondary-ion mass spectrometer **8.1.1** For oxygen-ion beam use, see $\underline{\text{Table 1}}$. For caesium-ion beam use, see $\underline{\text{Table 2}}$. Other conditions not shown here shall be set in accordance with the manufacturer's instructions or a local documented procedure. Table 1 — Measurement conditions for oxygen-ion beam | Primary-ion species | 02+ | |-------------------------|-----------------------------------------------------------------------------| | Secondary-ion polarity | Positive | | Primary-ion scan region | > three times the linear dimension of the analysed region in all directions | | Analysed region | Centred in the primary-ion scan region | Table 2 — Measurement conditions for caesium-ion beam | Primary-ion species | Cs+ | |-------------------------|-----------------------------------------------------------------------------| | Secondary-ion polarity | Negative | | Primary-ion scan region | > three times the linear dimension of the analysed region in all directions | | Analysed region | Centred in the primary-ion scan region | **8.1.2** For the primary-ion beam, the beam current and scan region can vary from specimen to specimen (see <u>8.5.2</u>). However, when oxygen gas is introduced into the chamber during oxygen-beam irradiation, the oxygen pressure and all the primary-ion beam irradiation conditions shall be the same for the measurements on all specimens. # 8.2 Optimizing the secondary-ion mass spectrometer settings - **8.2.1** Set the required instrument parameters and align the ion optics in accordance with the manufacturer's instructions or a local documented procedure. - **8.2.2** Ensure the stability of the primary-ion current and the mass spectrometer in accordance with the manufacturer's instructions or a local documented procedure. - **8.2.3** For a mass spectrometer whose transmission can be varied, use the same transmission for the measurements on both reference materials and test specimens. # 8.3 Specimen introduction Immediately prior to introduction of the specimens into the SIMS apparatus, dust particles shall be removed from the surfaces with a pressurized duster. After introducing the specimens into the analysis chamber, analysis shall not start until the pressure has recovered to the normal value recommended by the manufacturer or a local documented procedure. NOTE 1 Residual gases in the analysis chamber can produce a $^{10}B^{28}Si^{1}H^{-}$ background signal which interferes with the $^{11}B^{28}Si^{-}$ signal. This background can be reduced by improving the vacuum in the analysis chamber. NOTE 2 With an amorphous-silicon specimen, the background described in Note 1 will be present because of hydrogen in the specimen. #### 8.4 Detected ions - **8.4.1** When an oxygen-ion beam is used, both $^{10}B^+$ and $^{11}B^+$ shall be detected. When a caesium-ion beam is used, both $^{10}B^{28}Si^-$ and $^{11}B^{28}Si^-$ shall be detected. - **8.4.2** The ion species of silicon which has the appropriate ion intensity shall be detected, following the manufacturer's instructions or a local documented procedure. If the instrument has an electrometer detection mode, it is recommended that 28 Si+ be detected as the reference ion of B+ using the electrometer. For BSi- detection, Si₂- is preferable as the reference ion. For the pulse-counting mode, the instantaneous silicon-ion count rate should be less than 1×10^5 counts/s. NOTE When an amorphous-silicon specimen is analysed, note that Si-H cluster ions can interfere with the 29 Si-ion, 30 Si-ion, and their molecular-ion signals. Therefore, the 28 Si-ion or its molecular ions (e.g. 28 Si+, 28 Si₂+) are preferable as the matrix ion. ## 8.5 Measurement of test specimen - **8.5.1** Measurements shall be made in the central region of the specimen holder window. - **8.5.2** The primary-ion beam current and the beam scan area shall be chosen so that sufficient data points are obtained to record the details of the profile. It is useful to measure a test profile to determine these conditions. When the boron-ion intensity of the specimen is high (e.g. $\ge 1 \times 10^5$ counts/s), care shall be taken to avoid unacceptable nonlinearity in the detector response due to pulse overlap. If the boron-ion intensity is higher than 5×10^5 counts/s in the analysed area (i.e. gated area), the primary-ion current shall be reduced or, alternatively, the transmission of the mass spectrometer shall be reduced (see 8.2.3). In an ion microscope type instrument, ion intensities could be reduced by using a small field-limiting aperture. However, this would not reduce the instantaneous count rate from the analysed region. The overall transmission should be changed instead of using a small field aperture. NOTE For the linearity of the counting system with an electron multiplier, see References[2] and.[3] **8.5.3** The secondary-ion intensities of boron and silicon shall be measured alternately and cyclically. NOTE If the variation of silicon-ion intensity during one profile measurement is less than the value determined to be acceptable by the manufacturer's instructions or a local documented procedure, it can be regarded as constant. In this case, it is not necessary to measure the silicon-ion intensity cycle by cycle. It can be measured for any one cycle for each analysis position. #### 8.6 Calibration ## 8.6.1 Determination of relative-sensitivity factor Following the procedure in ISO 14237:2010, 7.6.2, the working relative-sensitivity factor RSFwork and the mass discrimination correction factor δ shall be obtained using the same measurement conditions as for the test specimen measurements. Calibration and test specimen measurements are preferably done on the same day. ## 8.6.2 Calibration of depth scale by stylus profilometry **8.6.2.1** Calibrate the stylus profilometer for crater depth measurements using the reference materials stipulated in <u>5.2</u>, in accordance with the manufacturer's instructions or a local documented procedure. NOTE Precision of stylus profilometry measurements was evaluated in an interlaboratory test programme. A statistical report of the interlaboratory tests is given in <u>Annex A</u>. **8.6.2.2** Measure the crater depth d_t using the calibrated stylus profilometer in accordance with the manufacturer's instructions or a local documented procedure. The stylus shall be scanned over the crater so that it starts from a negligibly sputtered region, passes through the central region of the crater, and stops at the other end in a negligibly sputtered region. #### 8.6.3 Calibration of depth scale by optical interferometry - **8.6.3.1** Measure the crater depth d_t using the calibrated optical interferometer in accordance with the manufacturer's instructions or a local documented procedure. The interference fringes used to make the measurement shall pass through the centre and start and finish in negligibly sputtered regions. - **8.6.3.2** Detailed procedures for measurement of interference fringes shall be in accordance with the manufacturer's instructions or a local documented procedure. Hereafter, general procedures are given. Draw two lines through the centre of two adjacent fringes (see Figure 1). One of the lines shall cross the centre of the crater (referred to as line R). Measure the distance x (in arbitrary units) between the two lines. Then, measure the shift y (in the same units) of the fringe centre at the crater bottom relative to line R. Count the number of fringes n intersected by line R at the crater edge. Figure 1 — Schematic drawing of interference fringes at a crater (n = 0) **8.6.3.3** The crater depth shall be obtained using Formula (1): $$d_t = \frac{\lambda}{2} \left(n + \frac{y}{x} \right) \tag{1}$$ Use a wavelength value determined by a traceable method. # 9 Expression of results **9.1** Ion intensity ratios of boron to silicon shall be determined for each measurement cycle using Formulae (2) and (3): $$J_i^{11} = \left(\frac{I_i^{11}}{I_i^{Si}}\right) \tag{2}$$ $$J_i^{10} = \left(\frac{I_i^{10}}{I_i^{Si}}\right) \tag{3}$$ **9.2** The boron atomic concentration of the test specimen shall be determined from Formulae (4) through (6) using the working relative-sensitivity factor RSFwork. $$C_i^{11} = RSF^{work} \times J_i^{11} \tag{4}$$ $$C_i^{10} = \frac{\text{RSF}^{\text{work}} \times J_i^{10}}{\delta} \tag{5}$$ $$C_i = C_i^{11} + C_i^{10} \tag{6}$$ **9.3** When necessary, the background intensity of boron shall be subtracted from the intensity ratio. The background intensity can be determined from a specimen not doped with boron (see ISO 14237:2010, 7.5.2.6). $$C_i^{11} = \text{RSF}^{\text{work}} \times \left(J_i^{11} - J_{\text{BG}}^{11}\right)$$ (7) $$C_i^{10} = \frac{\text{RSF}^{\text{work}} \times \left(J_i^{10} - J_{\text{BG}}^{10}\right)}{\delta}$$ (8) **9.4** The depth for measurement cycle shall be determined from Formula (9) using the crater depth d_t measured in 8.6 and assuming a constant sputtering rate: $$d_i = \left(t_i^{\mathrm{B}} + \frac{\Delta t^{\mathrm{B}}}{2}\right) \left(\frac{d_t}{T}\right) \tag{9}$$ **9.5** When the total number of measurement cycles N is so large that $\Delta t^{\rm B}/T$ is 0,1% or less, d_i can be calculated using Formula (10): $$d_i = \left(i - 1\right) \left(\frac{d_t}{N}\right) \tag{10}$$ NOTE The sputtering rate can vary in the initial stages of sputtering before the sputtering reaches a steady-state. **9.6** When graphical expression of the results is necessary, C_i (if necessary, $^{10}C_i$ and/or $^{11}C_i$) shall be plotted as ordinate and d_i as abscissa for the necessary measurement cycles. # 10 Test report The test report shall include the following information: - a) all information necessary for the identification of the specimen, the apparatus, the laboratory, and the date of analysis; - b) the reference materials used as specified in this International Standard (see <u>Clause 5</u>); - c) information about isotope ratio correction as specified in this International Standard (see <u>8.6.1</u>); - d) the results and the form in which they are expressed; - e) any unusual features noted during the analysis; - f) any operation not specified in this International Standard, as well as any optional operation which might have influenced the results. # Annex A (informative) # Statistical report of stylus profilometry measurements #### A.1 Introduction The stylus profilometry technique used was subjected to an interlaboratory test programme involving 20 laboratories. A reference material having three types of groove for depth scale calibration was measured. Repeatability and reproducibility were calculated in accordance with the principles of ISO 5725-2.[1] # A.2 Design of test programme Each participating laboratory was asked to measure the depths of three grooves and report three independent results. # A.3 Test specimen The test specimen used was a commercially available depth scale standard. The certified values of groove depth on the specimen were 2,33 μm (level 1), 0,27 μm (level 2), and 0,029 μm (level 3). The specimen was passed from one laboratory to the next. # A.4 Procedure of stylus measurement The depths of grooves were measured using stylus profilometry by each participant, in accordance with the manufacturer's instructions or a local documented procedure. Each groove was measured three times. # A.5 Statistical procedures # A.5.1 Scrutiny for consistency and outliers Cochran's test, Grubb's test, and the graphical consistency technique were applied independently to the data in accordance with ISO 5725-2. An outlier indicated by all the tests was excluded from the analysis of the level 3 specimen. # A.5.2 Computation of repeatability and reproducibility The number of laboratories completing the test programme was 20 for the 2,33 μm grooves and 0,27 μm grooves and 15 for the 0,029 μm groove (an outlier was excluded). The results from each laboratory were processed in accordance with ISO 5725-2 to give the mean value within-laboratory variance and between-laboratory variance. The corresponding repeatability and reproducibility were calculated. The following information was thus obtained: $$s_R^2 = s_r^2 + s_L^2 \tag{A.1}$$ where s_r^2 is the repeatability variance; s_L^2 is the between-laboratory variance; s_R^2 is the reproducibility variance. # A.6 Results of statistical analysis The results of the statistical analysis are given in <u>Table A.1</u>. Table A.1 — Repeatability and reproducibility of groove depth measurement | Level | Number of labora-
tories | Mean value
μm | S _r
μm | s _R
μm | |-------|-----------------------------|-------------------------|-------------------------|-----------------------------| | 1 | 20 | 2,32 | 4,98 × 10 ⁻³ | 1,99 × 10−2 | | 2 | 20 | 0,27 | 2,26 × 10− ³ | $3,94 \times 10^{-3}$ | | 3 | 14 | 0,029 | 7,76 × 10 ⁻⁴ | 7,98 × 10 ⁻⁴ | # **Bibliography** - [1] ISO 5725-2:1994, Accuracy (trueness and precision) of measurement methods and results Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method - [2] SEAH. M. P.: Channel Electron Multipliers Quantitative Intensity Measurement Efficiency, Gain, Linearity and Bias Effects. *J. Electron Spectrosc. Relat. Phenom.* 1990, **50** pp. 137–157 - [3] SEAH. M. P. and TOSA, M.: Linearity in Electron Counting and Detection Systems. *Surf. Int. Anal.* 1992, **18** pp. 240–246 # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### Revisions Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com