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Foreword 

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies 
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO 
technical committees. Each member body interested in a subject for which a technical committee has been 
established has the right to be represented on that committee. International organizations, governmental and 
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the 
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of technical committees is to prepare International Standards. Draft International Standards 
adopted by the technical committees are circulated to the member bodies for voting. Publication as an 
International Standard requires approval by at least 75 % of the member bodies casting a vote. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO shall not be held responsible for identifying any or all such patent rights. 

ISO 17458-2 was prepared by Technical Committee ISO/TC 22, Road vehicles, Subcommittee SC 3, 
Electrical and electronic equipment. 

ISO 17458 consists of the following parts, under the general title Road vehicles — FlexRay communications 
system: 

 Part 1: General information and use case definition 

 Part 2: Data link layer specification 

 Part 3: Data link layer conformance test specification 

 Part 4: Electrical physical layer specification 

 Part 5: Electrical physical layer conformance test specification 

http://dx.doi.org/10.3403/30253314U
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Introduction 

The FlexRay communications system is an automotive focused high speed network and was developed with 
several main objectives which were defined beyond the capabilities of established standardized bus systems 
like CAN and some other proprietary bus systems. Some of the basic characteristics of the FlexRay protocol 
are synchronous and asynchronous frame transfer, guaranteed frame latency and jitter during synchronous 
transfer, prioritization of frames during asynchronous transfer, single or multi-master clock synchronisation, 
time synchronisation across multiple networks, error detection and signalling, and scalable fault tolerance.  

The FlexRay communications system is defined for advanced automotive control applications. It serves as a 
communication infrastructure for future generation high-speed control applications in vehicles by providing:  

 A message exchange service that provides deterministic cycle based message transport; 

 Synchronisation service that provides a common time base to all nodes; 

 Start-up service that provides an autonomous start-up procedure; 

 Error management service that provides error handling and error signalling; 

 Wakeup service that addresses the power management needs; 

Since start of development the automotive industry world wide supported the specification development. The 
FlexRay communications system has been successfully implemented in production vehicles today. 

The ISO 17458 series specifies the use cases, the communication protocol and physical layer requirements of 
an in-vehicle communication network called "FlexRay communications system". 

This part of ISO 17458 has been established in order to define the protocol requirements for vehicle 
communication systems implemented on a FlexRay data link. 

To achieve this, it is based on the Open Systems Interconnection (OSI) Basic Reference Model specified in 
ISO/IEC 7498-1 and ISO/IEC 10731, which structures communication systems into seven layers. When 
mapped on this model, the protocol and physical layer requirements specified by ISO 17458 are broken into: 

 Diagnostic services (layer 7), specified in ISO 14229-1 [7], ISO 14229-4 [9]; 

 Presentation layer (layer 6), vehicle manufacturer specific; 

 Session layer services (layer 5), specified in ISO°14229-2 [8]; 

 Transport layer services (layer 4), specified in ISO 10681-2 [5]; 

 Network layer services (layer 3), specified in ISO 10681-2 [5]; 

 Data link layer (layer 2), specified in ISO 17458-2, ISO 17458-3; 

 Physical layer (layer 1), specified in ISO 17458-4, ISO 17458-5; 

in accordance with Table 1. 

http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00527826U
http://dx.doi.org/10.3403/30218760U
http://dx.doi.org/10.3403/30219764U
http://dx.doi.org/10.3403/30181278U
http://dx.doi.org/10.3403/30181278U
http://dx.doi.org/10.3403/30253314U
http://dx.doi.org/10.3403/30253317U
http://dx.doi.org/10.3403/30253320U
http://dx.doi.org/10.3403/30253323U
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Table 1 — FlexRay communications system specifications applicable to the OSI layers 

Applicability OSI 7 layers FlexRay communications system Vehicle manufacturer 
enhanced diagnostics 

Seven layer 
according to  
ISO 7498-1 

and  
ISO/IEC 
10731 

Application (layer 7) vehicle manufacturer specific ISO 14229-1, ISO 14229-4 

Presentation (layer 6) vehicle manufacturer specific vehicle manufacturer specific 

Session (layer 5) vehicle manufacturer specific ISO 14229-2 

Transport (layer 4) vehicle manufacturer specific 
ISO 10681-2 

Network (layer 3) vehicle manufacturer specific 

Data link (layer 2) ISO 17458-2, ISO 17458-3 

Physical (layer 1) ISO 17458-4, ISO 17458-5 

 

Table 1 shows ISO 17458 Parts 2 – 5 being the common standards for the OSI layers 1 and 2 for the FlexRay 
communications system and the vehicle manufacturer enhanced diagnostics. 

The FlexRay communications system column shows vehicle manufacturer specific definitions for OSI layers  
3 – 7. 

The vehicle manufacturer enhanced diagnostics column shows application layer services covered by 
ISO 14229-4 which have been defined in compliance with diagnostic services established in ISO 14229-1, but 
are not limited to use only with them. ISO 14229-4 is also compatible with most diagnostic services defined in 
national standards or vehicle manufacturer's specifications. The presentation layer is defined vehicle 
manufacturer specific. The session layer services are covered by ISO 14229-2. The transport protocol and 
network layer services are specified in ISO 10681. 

 

http://dx.doi.org/10.3403/30218760U
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Road vehicles — FlexRay communications system — Part 2: 
Data link layer specification 

1 Scope 

This part of ISO 17458 specifies the FlexRay communication protocol which is specified for a dependable 
automotive network. Some of the basic characteristics of the FlexRay protocol are synchronous and 
asynchronous frame transfer, guaranteed frame latency and jitter during synchronous transfer, prioritization of 
frames during asynchronous transfer, single or multi-master clock synchronisation 1) time synchronisation 
across multiple networks, error detection and signalling, and scalable fault tolerance2). 

2 Normative references 

The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies.  

ISO 17458-1, Road vehicles — FlexRay communications system — Part 1: General information and use case 
definition 

3 Terms, definitions, symbols and abbreviated terms 

3.1 Terms and definitions 

For the purposes of this document, the terms and definitions given in ISO 17458-1 and the following apply. 

3.1.1  
application data 
data produced and / or used by application tasks 

NOTE In the automotive context the term 'signal' is often used for application data exchanged among tasks. 

3.1.2  
bus 
communication system topology in which nodes are directly connected to a single, common communication 
media (as opposed to connection through stars, gateways, etc.) 

NOTE The term bus is also used to refer to the media itself. 

                                                      

1) Multi-master clock synchronisation refers to a synchronisation that is based on the clocks of several (three or more) 
synchronisation masters or sync nodes. 

2) Scalable fault tolerance refers to the ability of the FlexRay protocol to operate in configurations that provide various 
degrees of fault tolerance (i.e., single or dual channel clusters, clusters with many or few sync nodes, etc.). 

http://dx.doi.org/10.3403/30253311U
http://dx.doi.org/10.3403/30253311U
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3.1.3  
channel idle 
condition on the physical transmission medium when no node is transmitting, as perceived by each individual 
node in the network 

NOTE The detection of channel idle occurs some time after all nodes have actually stopped transmitting (due to idle 
detection times, channel effects, ringing, etc.). 

3.1.4  
clique 
set of communication controllers having the same view of certain systems properties 

EXAMPLE The global time value or the activity state of communication controllers. 

3.1.5  
cluster 
communication system of multiple nodes connected via at least one communication channel directly (bus 
topology), by active stars (star topology) or by a combination of bus and star connections (hybrid topologies) 

NOTE Clusters can be coupled by gateways. 

3.1.6  
coldstart node 
node capable of initiating the communication startup procedure on the cluster by sending startup frames 

NOTE TT-D coldstart nodes, TT-L coldstart nodes, and TT-E coldstart nodes are all considered to be coldstart 
nodes. By definition, all coldstart nodes are also sync nodes. 

3.1.7  
communication slot 
interval of time during which access to a communication channel is granted exclusively to a specific node for 
the transmission of a frame with a frame ID corresponding to the slot 

NOTE FlexRay distinguishes between static communication slots and dynamic communication slots. 

3.1.8  
cycle-dependent slot assignment 
method of assigning, for a given channel, an individual slot (identified by a specific slot number and a specific 
cycle counter number) or a set of slots (identified by a specific slot number and a set of communication cycle 
numbers) to a node 

3.1.9  
cycle-independent slot assignment 
method of assigning, for a given channel, the set of all communication slots having a specific slot number to a 
node (i.e., on the given channel, slots with the specific slot number are assigned to the node in all 
communication cycles) 

3.1.10  
cycle number 
positive integer used to identify a communication cycle 

NOTE The cycle number of each communication cycle is one greater than the cycle number of the previous cycle, 
except in cases where the previous cycle had the maximum cycle number value, in which case the cycle number has the 
value of zero. The cycle number of the first cycle is, by definition, zero. 

3.1.11  
cycle time 
time within the current communication cycle, expressed in units of macroticks 

NOTE Cycle time is reset to zero at the beginning of each communication cycle. 
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3.1.12  
dynamic segment 
portion of the communication cycle where the media access is controlled via a mini-slotting scheme 

NOTE 1 During this segment access to the media is dynamically granted on a priority basis to nodes with data to 
transmit. 

NOTE 2 Also known as Flexible Time Division Multiple Access (FTDMA). 

3.1.13  
dynamic slot / dynamic communication slot 
interval of time within the dynamic segment of the communication cycle consisting of one or more minislots 
during which access to a communication channel is granted exclusively to a specific node for transmission of 
a frame with a frame ID corresponding to the slot 

NOTE In contrast to a static communication slot, the duration of a dynamic communication slot may vary depending 
on the length of the frame. If no frame is sent, the duration of a dynamic communication slot equals that of one minislot. 

3.1.14  
frame 
structure used by the communication system to exchange information within the system 

NOTE A frame consists of a header segment, a payload segment and a trailer segment. The payload segment is 
used to convey application data. 

3.1.15  
frame identifier 
slot position in the static segment and priority in the dynamic segment 

NOTE A lower identifier indicates a higher priority. 

3.1.16  
global time 
combination of cycle counter and cycle time 

3.1.17  
Hamming distance 
minimum distance (i.e., the number of bits which differ) between any two valid code words in a binary code 

3.1.18  
implementation dependent 
behaviour that, subject to restrictions in the specification, may be chosen by an implementation designer. 
Implementation dependent behaviour shall be described in detail in the documentation of an implementation 

3.1.19  
key slot 
static slot that is used by a node to transmit sync and startup frames or the slot that is used to transmit when 
the node is operating in key slot only mode. 

3.1.20  
macrotick 
interval of time derived from the cluster-wide clock synchronisation algorithm 

NOTE A macrotick consists of an integral number of microticks. The actual number of microticks in a given macrotick 
is adjusted by the clock synchronisation algorithm. The macrotick represents the smallest granularity unit of the global 
time. 

3.1.21  
microtick 
interval of time derived directly from the CC's oscillator (possibly through the use of a prescaler) 
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NOTE The microtick is not affected by the clock synchronisation mechanisms, and is thus a node-local concept. 
Different nodes can have microticks of different duration. 

3.1.22  
minislot 
interval of time within the dynamic segment of the communication cycle that is of constant duration (in terms of 
macroticks) and that is used by the synchronized FTDMA media access scheme to manage media arbitration 

3.1.23  
non-coldstart node 
node that is not capable of initiating the communication startup procedure (i.e., does not transmit startup 
frames) 

3.1.24  
non-sync node 
node that is not configured to transmit sync frames. 

3.1.25  
non-synchronized operation 
operation of a node when the node does not have a notion of FlexRay time, i.e., has no knowledge of slot 
identifier, slot boundaries, cycle counter, or segment boundaries 

3.1.26  
network 
combination of the communication channels that connect the nodes of a cluster 

3.1.27  
node 
logical entity connected to the network that is capable of sending and / or receiving frames 

3.1.28  
null frame 
frame that contains no usable data in the payload segment 

NOTE A null frame is indicated by a bit in the header segment, and all data bytes in the payload segment are set to 
zero. 

3.1.29  
physical communication link 
inter-node connection through which signals are conveyed for the purpose of communication 

NOTE All nodes connected to a given physical communication link share the same electrical or optical signals (i.e., 
they are not connected through repeaters, stars, gateways, etc.). Examples of a physical communication link include a bus 
network or a point-to-point connection between a node and a star. A communication channel may be constructed by 
combining one or more physical communication links together using stars. 

3.1.30  
precision 
worst-case deviation between the corresponding macroticks of any two synchronized nodes in the cluster 

3.1.31  
slot 
see communication slot 

3.1.32  
slot ID (identifier) 
see slot number 
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3.1.33  
slot multiplexing 
technique of assigning, for a given channel, slots having the same slot identifier to different nodes in different 
communication cycles 

3.1.34  
slot number 
number used to identify a specific slot within a communication cycle 

3.1.35  
star 
device that allows information to be transferred from one physical communication link to one or more other 
physical communication links 

NOTE A star duplicates information present on one of its links to the other links connected to the star. A star can be 
either passive or active. For the purposes of this specification, all usages of the term "star" are references to an active star 
as described in ISO 17458-4. 

3.1.36  
startup frame 
FlexRay frame whose header segment contains an indicator that integrating nodes may use timerelated 
information from this frame for initialisation during the startup process 

NOTE Startup frames are always also sync frames. 

3.1.37  
static slot / static communication slot 
interval of time within the static segment of the communication cycle that is constant in terms of macroticks 
and during which access to a communication channel is granted exclusively to a specific node for 
transmission of a frame with a frame ID corresponding to the slot 

NOTE Unlike a dynamic communication slot, each static communication slot contains a constant number of 
macroticks regardless of whether or not a frame is sent in the slot. 

3.1.38  
static segment 
portion of the communication cycle where the media access is controlled via a static Time Division Multiple 
Access (TDMA) scheme 

NOTE During this segment access to the media is determined solely by the progression of time. 

3.1.39  
sync frame 
FlexRay frame whose header segment contains an indicator that the deviation measured between the frame's 
arrival time and its expected arrival time should be used by the clock synchronisation algorithm 

3.1.40  
sync node 
node configured to transmit sync frames 

NOTE Coldstart nodes and TT-D non-coldstart sync nodes are considered to be sync nodes. 

3.1.41  
synchronized operation 
operation of a node when the node has a notion of FlexRay time, i.e., has knowledge of slot identifier, slot 
boundaries, cycle counter, and segment boundaries 

3.1.42  
time gateway 
pair of nodes attached to different clusters connected by a time gateway interface 

http://dx.doi.org/10.3403/30253320U


BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

6 © ISO 2013 – All rights reserved 
 

3.1.43  
time gateway interface 
interface used by a time gateway source node to provide timing information for a time gateway sink node 

3.1.44  
time gateway sink node 
node configured as TT-E coldstart node, which is connected via a time gateway interface to a time gateway 
source node 

NOTE The time gateway sink node receives timing information from the time gateway source node. 

3.1.45  
time gateway source node 
node connected via a time gateway interface to a time gateway sink node 

NOTE The time gateway source node provides timing information for the time gateway sink node. 

3.1.46  
time sink cluster 
cluster using the TT-E synchronisation method 

NOTE The term emphasizes that the TT-E coldstart nodes of this cluster receive their timing from another cluster. 

3.1.47  
time source cluster 
cluster that provides the timing information for a time sink cluster 

3.1.48  
transmission slot assignment list 
structure identifying the set of all slots assigned to a node for transmission 

3.1.49  
TT-D cluster 
cluster in which the clock synchronisation uses the TT-D synchronisation method 

NOTE A TT-D cluster consists of two or more TT-D coldstart nodes, zero or more TT-D non-coldstart sync nodes 
and, zero or more non-sync nodes. 

3.1.50  
TT-D coldstart node 
coldstart node operating in a TT-D cluster 

NOTE This node has only a single key slot and sends a startup / sync frame in the configured key slot in each cycle 
on each configured channel. 

3.1.51  
TT-D non-coldstart sync node 
node that is configured to transmit sync frames but is not capable of initiating the communication startup 
procedure (i.e., does not send startup frames) 

3.1.52  
TT-D synchronisation method 
method of clock synchronisation in which the clock synchronisation is derived in a distributed manner from two 
or more sync nodes 

NOTE Two or more coldstart nodes are required to start up a cluster using this synchronisation method. 

3.1.53  
TT-E cluster 
cluster in which the clock synchronisation uses the TT-E synchronisation method 
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NOTE A TT-E cluster consists of one or more TT-E Coldstart nodes and zero or more non-sync nodes. 

3.1.54  
TT-E coldstart node 
coldstart node operating in a TT-E cluster 

NOTE This node has two key slots and sends startup / sync frames in both configured key slots in each cycle on 
each configured channel. A TT-E coldstart node is a time gateway sink (i.e., is configured for external synchronisation) 
and bases its timebase on the clock sync information derived from the time source cluster as delivered by the time 
gateway interface. 

3.1.55  
TT-E synchronisation method 
method of clock synchronisation in which the clock synchronisation is derived directly from the clock 
synchronisation of another FlexRay cluster 

NOTE In this method a single coldstart node is capable of starting up the cluster. 

3.1.56  
TT-L cluster 
cluster in which the clock synchronisation uses the TT-L synchronisation method 

NOTE A TT-L cluster consists of one TT-L Coldstart node and one or more non-sync nodes. 

3.1.57  
TT-L coldstart node 
coldstart node operating in a TT-L cluster 

NOTE This node has two key slots and sends startup / sync frames in both configured key slots in each cycle on 
each configured channel. 

3.1.58  
TT-L synchronisation method 
method of clock synchronisation in which the clock synchronisation is derived from the local clock of a single 
sync node, and in which a single coldstart node starts up the cluster 

3.2 Symbols 

∑ Summation symbol, a large upright capital Sigma 

∈ Element, lower-case epsilon 

∀ For all (given any), universal quantifier symbol, a turned "A" 

 

3.3 Abbreviated terms 

μs Microsecond 

μT Microtick 

AP Action Point 

BD Bus Driver 

BIST Built-In Self Test 

BITSTRB Bit Strobing Process 
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BSS Byte Start Sequence 

CAS Collision Avoidance Symbol 

CC Communication Controller 

CE Communication Element 

CHI Controller Host Interface 

CHIRP Channel Idle Recognition Point 

CODEC Coding and Decoding Process 

CRC Cyclic Redundancy Code 

CSP Clock Synchronisation Process 

CSS Clock Synchronisation Startup Process 

DTS Dynamic Trailing Sequence 

ECU Electronic Control Unit, same as node 

EMI Electromagnetic Interference 

ERRN Error Not signal 

FES Frame End Sequence 

FIFO First In First Out 

FSP Frame and Symbol Processing 

FSS Frame Start Sequence 

FTDMA Flexible Time Division Multiple Access 

FTM Fault-Tolerant Midpoint 

ID Identifier 

INH1 Inhibit signal 

MAC Media Access Control Process 

MT Macrotick 

MTG Macrotick Generation Process 

MTS  Media Access Test Symbol 

NIT  Network Idle Time 

NM  Network Management 

POC  Protocol Operation Control 

RxD  Receive data signal from bus driver 
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SDL Specification and Description Language 

SPI  Serial Peripheral Interface 

STBN  Standby Not signal 

SW  Symbol Window 

sync synchronisation 

TDMA  Time Division Multiple Access 

TRP  Time Reference Point 

TSS  Transmission Start Sequence 

TT-D Time-Triggered Local Distributed 

TT-E Time-Triggered External 

TT-L Time-Triggered Local Master 

TxD  Transmit Data signal from CC 

TxEN  Transmit Data Enable Not signal from CC 

WUDOP  Wakeup During Operation Pattern 

WUP  Wakeup Pattern 

WUPDEC  Wakeup Pattern Decoding Process 

WUS  Wakeup Symbol 



BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

10 © ISO 2013 – All rights reserved 
 

4 Document overview 

Figure 1 illustrates the document references.  
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Figure 1 — FlexRay document reference according to OSI model 
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5 Conventions 

5.1 General 

ISO 17458 are based on the conventions specified in the OSI Service Conventions (ISO/IEC 10731) as they 
apply for physical and data link layer (protocol). 

5.2 Notational conventions 

5.2.1 Parameter prefix conventions 

The following is a list of parameter prefix conventions: 

 <variable> ::= <prefix_1> [<prefix_2>] Name; 

 <prefix_1>::= a | c | v | g | p | z; 

 <prefix_2>::= d | s; 

Table 2 defines the parameter <prefix_1>. 

Table 2 — Definition of parameter <prefix_1> 

Naming 
convention 

Information type Description 

a Auxiliary 
parameter 

Auxiliary parameter used in the definition or derivation of other parameters 
or in the derivation of constraints. 

c Protocol constant Values used to define characteristics or limits of the protocol. These values 
are fixed for the protocol and cannot be changed. 

v Node variable Values that vary depending on time, events, etc. 

g Cluster parameter Parameter that shall have the same value in all nodes in a cluster, is 
initialized in the POC:default config state, and can only be changed while in 
the POC:config state. 

p Node parameter Parameter that may have different values in different nodes in the cluster, is 
initialized in the POC:default config state, and can only be changed while in 
the POC:config state. 

z Local SDL process 
variable 

Variables used in SDL processes to facilitate accurate representation of the 
necessary algorithmic behaviour. Their scope is local to the process where 
they are declared and their existence in any particular implementation is not 
mandated by the protocol. 

 

Table 3 defines the parameter <prefix_2>. 

Table 3 — Definition of parameter <prefix_2> 

Naming 
convention 

Information type Description 

d Time duration Value (variable, parameter, etc.) describing a time duration, the time 
between two points in time. 

s Set Set of values (variables, parameters, etc.). 

 

http://dx.doi.org/10.3403/00527826U
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5.2.2 Text coding 

Throughout the text several types of items are highlighted through the use of an italicized font. 

Parameters, constants and variables are highlighted in italics. An example is the parameter gdStaticSlot. This 
convention is not used within SDL diagrams, as it is assumed that such information is obvious. The meaning 
of the prefixes of parameters, constants, and variables is described in 5.2.1. 

SDL states are also highlighted in italics. An example is the SDL state POC:normal active. This highlighting 
convention is not used within SDL diagrams. Further notational conventions related to SDL states are 
described in 5.3.2. 

SDL signals are also highlighted in italics. An example is the SDL signal CHIRP on A. This convention is not 
used within the SDL diagrams themselves as the fact that an item is an input or output signal should be 
obvious. 

5.2.3 Implementation dependent behaviour 

While this specification defines the required behaviour of a FlexRay implementation in many respects, there 
are various decisions on the particulars of an implementation that, for flexibility reasons, are left up to the 
implementation designers. This specification defines the term "implementation dependent" to have the 
following meaning: 

 a behaviour (or a parameter or characterization of a behaviour, such as a default value) that, subject to 
restrictions contained in this specification, may be chosen by an implementation designer; 

 implementation dependent behaviour may vary from implementation to implementation, but the specific 
behaviour shall be described in detail in the documentation of the implementation. 

5.3 SDL conventions 

5.3.1 General 

The FlexRay protocol mechanisms described in this specification are presented using a graphical method 
loosely based on the Specification and Description Language (SDL) technique described in [10]. The intent of 
this description is not to provide a complete executable SDL model of the protocol mechanisms, but rather to 
present a reasonably unambiguous description of the mechanisms and their interactions. This description is 
intended to be read by humans, not by machines, and in many cases the description is optimized for 
understandability rather than exact syntactic correctness. 

The SDL descriptions in this specification are behavioural descriptions, not requirements on a particular 
method of implementation. In many cases the method of description was chosen for ease of understanding 
rather than efficiency of implementation. An actual implementation should have the same behaviour as the 
SDL description, but it need not have the same underlying structure or mechanisms. 

Several SDL diagrams have textual descriptions intended to assist the reader in understanding the behaviour 
depicted in the SDL diagrams. Some technical details are intentionally omitted from these explanations. 
Unless specifically mentioned, the behaviour depicted in the SDL diagrams takes precedence over any textual 
description. 

In SDL, transitions between states, and any processing that takes place along the paths involving these 
transitions, is assumed to take place in zero time. The descriptions of the protocol mechanisms rely on this 
zero time assumption to specify the proper behaviour of an implementation. Transitions and processing in a 
real implementation will not take place in zero time. The implementation designer shall comprehend any 
discrepancy between the implicit zero time assumption in the SDL description and the actual time taken in the 
chosen implementation technology and ensure that the implementation's behaviour is consistent with the 
behaviour described in the SDL. 
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5.3.2 SDL notational conventions 

States that exist within the various SDL processes are shown with the state symbol shaded in light gray. 
These states are named with all lowercase letters. Acronyms or proper nouns that appear in a state name are 
capitalized as appropriate. Examples include the states "wait for sync frame" and "wait for CE start". 

SDL states that are referenced in the text are prefixed with an identification of the SDL process in which they 
are located (for example, the state POC:normal active refers to the "normal active" state in the POC process). 
This convention is not used within the SDL diagrams themselves, as the process information should be 
obvious. 

The definitions of an SDL process are often spread over several different figures. The caption of each figure 
that contains SDL definitions indicates to which SDL process the figure belongs. 

5.3.3 SDL extensions 

5.3.3.1 General 

The SDL descriptions in this specification contain some constructs that are not a part of normal SDL. Also, 
some mechanisms described with constructs that are part of normal SDL expect that these constructs behave 
somewhat differently than is described in [10]. This subclause documents significant deviations from 
"standard" SDL. 

5.3.3.2 Microtick, macrotick and sample tick timers 

The representation of time in the FlexRay protocol is based on a hierarchy that includes microticks and 
macroticks (see clause 12 for details). Several SDL mechanisms need timers that measure a certain number 
of microticks or macroticks. This specification makes use of an extension of the SDL 'timer' construct to 
accomplish this. 

An SDL definition of the form 

μT timer 

defines a timer that counts in terms of microticks. This behaviour would be similar to that of an SDL system 
whose underlying time unit is the microtick. 

An SDL definition of the form 

MT timer 

defines a timer that counts in terms of macroticks. A macrotick timer uses the corrected macroticks generated 
by the macrotick generation process. Since the duration of a macrotick can vary, the duration of these timers 
can also vary, but the timers themselves remain synchronized to the macrotick-level timebase of the protocol. 

In all other respects both of these constructs behave in the same manner as normal SDL timers. 

In addition to the above, several SDL mechanisms used in the description of encoding make use of a timer 
that measures a certain number of ticks of the bit sample clock. An SDL definition of the form 

ST timer 

defines a timer that counts in terms of ticks of the bit sample clock (i.e., sample ticks). This behaviour would 
be similar to that of an SDL system whose underlying time unit is the sample tick. In all other respects this 
construct behaves in the same manner as a normal SDL timer. 
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There is a defined relationship between the "ticks" of the microtick timebase and the sample ticks of bit 
sampling. Specifically, a microtick consists of an integral number, pSamplesPerMicrotick, of sample ticks. As a 
result, there is a fixed phase relationship between the microtick timebase and the ticks of the sample clock. 

The time expression of a timer is defined in [10] by: 

<Time expression> = now + <Duration constant expression> 
 

In this specification the time expression is used in the following simplified way: 

<Time expression> = <Duration constant expression>3)  

5.3.3.3 Microtick behaviour of the 'now' – expression 

The behavioural descriptions of various aspects of the FlexRay system require the ability to take "timestamps" 
at the occurrence of certain events. The granularity of these timestamps is one microtick, and the timestamps 
taken by different processes need to be taken against the same underlying timebase. This specification 
makes use of an extension of the SDL concept of time to facilitate these timestamps. 

This specification assumes the existence of an underlying microtick timebase. This timebase, which is 
available to all processes, contains a microtick counter that is started at zero at some arbitrary epoch 
assumed to occur before system startup. As time progresses, this timebase increments the microtick counter 
without bound4). Explicit use of the SDL 'now' construct returns the value of this microtick counter. The 
difference between the timestamps of two events represents the number of microticks that have occurred 
between the events. 

5.3.3.4 Channel-specific process replication 

The FlexRay protocol described in this specification is a dual channel protocol. Several of the mechanisms in 
the protocol are replicated on a channel basis, i.e., essentially identical mechanisms are executed, one for 
channel A and one for channel B. This specification only provides SDL descriptions for the channel-specific 
processes on channel A - it is assumed that whenever a channel-specific process is defined for channel A 
there is another, essentially identical, process defined for channel B, even though this process is not explicitly 
described in the specification. 

Channel-specific processes have names that include the identity of their channel (for example, "Clock 
synchronisation startup process on channel A [CSS_A]"). In addition, some signals that leave a channel-
specific process have signal names that include the identity of their channel (for example, the signal  
integration aborted on A)5). 

5.3.3.5 Handling of priority input symbols 

The SDL language contains certain ambiguities regarding the order of execution of processes if multiple 
processes have input queues that are not empty. For example, the usage of timers and clock oscillator inputs 
causes multiple processes to be eligible for execution at the beginning of clock edges. Generally, this poses 
no problem for the FlexRay specification, but for certain special cases it is not possible to specify the required 
behaviour in an unambiguous way without additional language constructs. 

To resolve these situations the SDL priority input symbol is used, but with a slightly extended meaning. 
Whenever an input priority symbol is used, no other exit path of this state may be taken unless it is impossible 
that the priority input could be triggered on the current microtick clock edge. Effectively, the execution of the 
                                                      

3) If the duration time expression is zero or negative then the timer is started and expires immediately. 
4) This is in contrast to the vMicrotick variable, which is reset to zero at the beginning of each cycle. 
5) It is also possible for a signal leaving a channel-specific process to have a name that does not identify the channel. In 

such cases, a process that receives the SDL signal should behave identically regardless of which process sent the 
signal (i.e., the process receiving the signal effectively OR's the signals from all of the sending processes). 
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process in question is stalled until all other process have executed. Should multiple processes be in a state 
where they are sensitive to a priority input, all are executed last and in random order. The message queue is 
handled in the standard way, i.e. the signal triggering the priority input is removed from the queue while any 
signals placed before or after are preserved for the succeeding state. 

5.3.3.6 Signals to non-instantiated processes 

In various portions of the SDL behavioural descriptions the SDL sends signals that are received by a process 
that in some conditions may not be instantiated. As an example, the SDL in Figure 30 generates the signal 
CODEC control on B (NORMAL) even if the node is only attached to channel A (implying that the CODEC_B 
process is not instantiated). The sending of these signals should not be interpreted as requiring that 
processes that receive the signal should be instantiated - in such cases these signals should simply be 
ignored. This convention holds even if the only process that consumes the signal in question is a process that 
is not already instantiated. 

5.3.3.7 Exported and imported signals 

Certain features of the FlexRay protocol require that a certain direct communication between the two 
communication controllers of a time gateway is modeled within the SDL diagrams (for example, see 5.6.4). 
Signals marked with the EXP keyword are distributed within the local communication controller like any other 
signal, but are in addition are also forwarded to a second communication controller that is represented by a 
separate instance of the SDL diagrams. On the receiving end, these exported signals can be received by input 
symbols marked with the IMP keyword. Input symbols marked in this way are only sensitive to signals emitted 
with the EXP keyword of the other communication controller. 

5.4 Bit rates 

The FlexRay Communications System specifies three standard bit rates – 10 Mbit / s (corresponding to a 
nominal bit duration, gdBit, of 100 ns), 5 Mbit / s (corresponding to a gdBit of 200 ns), and 2,5 Mbit / s 
(corresponding to a gdBit of 400 ns). In order to be considered FlexRay conformant, a protocol 
implementation is required to support all three standard bit rates. 

5.5 Roles of a node in a FlexRay cluster 

There are three distinct roles a node can perform. 

 The role of a sync node enables a node to actively participate in the clock synchronisation algorithm 
performed by the cluster. Sync nodes transmit sync frames that are evaluated by all nodes of the cluster 
to perform an alignment of clock rate, that effectively determines the cycle length, and clock offset, that 
effectively determines the position of the cycle start. 

 The role of a coldstart node enables a node to initiate the communication. Coldstart nodes are allowed to 
start transmitting startup frames in the non-synchronized state with the intent of establishing a schedule. 
Nodes integrate onto that new schedule by evaluating the content and timing of the received startup 
frames. A coldstart node is always also a sync node and a startup frame is always also a sync frame. 

 A node that is neither a coldstart node nor a sync node is referred to as non-sync node. It performs no 
special task. 

5.6 Synchronisation methods 

5.6.1 General 

A FlexRay node supports three different synchronisation modes. The behaviour of the cluster depends on the 
employed synchronisation mode of the nodes in the cluster. 
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5.6.2 TT-D synchronisation method 

A cluster in which the coldstart nodes use the TT-D synchronisation method is a TT-D cluster. The TT-D 
synchronisation method uses a distributed algorithm to reduce the effect of any single failure. No critical task 
depends on any single node. A distributed startup instigated and carried through by two to fifteen coldstart 
nodes mitigates many adverse effects a single faulty coldstart node can have (see clause 11). A distributed 
clock synchronisation algorithm actively driven by two to fifteen sync nodes is robust against a number of 
Byzantine faults depending on the number of currently active sync nodes (see clause 12). 

The advantage of the TT-D synchronisation method over the others is increased fault-tolerance.  

 

TT-D coldstart 
node 1

TT-D coldstart 
node 2

TT-D coldstart 
node n

TT-D non-coldstart 
sync node 1

TT-D non-coldstart 
sync node 2

TT-D non-coldstart 
sync node m

non-sync
node 1

non-sync
node 2

non-sync
node p

 

Figure 2 — TT-D cluster 

 

Figure 2 shows the configuration of nodes in a TT-D cluster. The number of TT-D coldstart nodes n shall be 
equal to or greater than 2 and the sum of the number of TT-D coldstart nodes n and the number of TTD non-
coldstart sync nodes m shall be equal to or less than fifteen. The number of non-sync nodes p is not limited by 
the protocol. 

5.6.3 TT-L synchronisation method 

A cluster in which the sole coldstart node uses the TT-L synchronisation method is a TT-L cluster. The TTL 
synchronisation method is a modification of the TT-D synchronisation method that reduces the number of 
required coldstart nodes from two to one. The single TT-L coldstart node in a TT-L cluster essentially behaves 
like two regular TT-D coldstart nodes by transmitting two startup frames. In this way non-sync nodes of the 
TT-L cluster will behave as if they were placed in a TT-D cluster with two TT-D coldstart nodes regularly 
transmitting their startup / sync frames and will integrate and operate normally, unaware of the fact that the 
two frames they receive actually come from the same node. The schedule and timing of such a TTL cluster 
will depend entirely on the single TT-L coldstart node. 

The advantages of the TT-L synchronisation method are a reduced system complexity, a slightly reduced 
startup time, and an improved precision. 
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Figure 3 shows the configuration of nodes in a TT-L cluster. There exists exactly one TT-L coldstart node. The 
number of non-sync nodes p is not limited by the protocol. 
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Figure 3 — TT-L cluster 

 

5.6.4 TT-E synchronisation method 

A cluster in which the coldstart nodes use the TT-E synchronisation method is a TT-E cluster. The primary 
intent of the TT-E synchronisation method is to synchronize the schedule of the TT-E cluster, also called a 
time sink cluster, to a second FlexRay cluster, which is referred to as time source cluster. To that end, each 
TT-E coldstart node, also called a time gateway sink node, shall be paired with a node of its time source 
cluster; this pair of nodes is called a time gateway. The node on the time sink cluster side is then called a time 
gateway sink node while the node on the time source cluster side is called time gateway source node.  

Figure 4 depicts the basic setup. Depending on the synchronisation method employed by time source cluster, 
the time gateway source node may be a TT-D coldstart node, a TT-D non-coldstart sync node, a TT-L 
coldstart node, or a non-sync node6). 

The two nodes of the time gateway are connected via a time gateway interface, which is used by the time 
gateway source node to provide information about the schedule of the time source cluster to the time gateway 
sink node. 

Instead of the usual distributed startup, a TT-E coldstart node derives the cycle length and position of the 
cycle start from its time gateway source node and directly starts transmitting according to this schedule 
(slightly shifted with a fixed offset of cdTSrcCycleOffset microticks).  

Similar to the TT-L synchronisation method, each TT-E coldstart node transmits two startup frames, so that a 
single TT-E coldstart node suffices to start and maintain a TT-E cluster. Contrary to the TT-L synchronisation 
method, multiple TT-E coldstart nodes may be present in a TT-E cluster. As all TT-E coldstart nodes derive 
their schedule from the same cluster, they are implicitly synchronized to one another. 

 

                                                      

6) In theory it is also possible for the time gateway source node to be a TT-E coldstart node, but this would imply a time 
gateway that includes three or more distinct nodes. Such configurations are beyond the scope of this specification. 
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Figure 4 — Time synchronized cluster pair 

 

The advantage of the TT-E synchronisation method is the close coupling of the schedule of a TT-E cluster to 
another FlexRay cluster. In this way, a single FlexRay cluster may be split into synchronized sub-clusters to 
avoid limits on attached nodes placed upon a single FlexRay cluster by ISO 17458-4 or to enable a separation 
of nodes into multiple clusters according to communication needs for a more efficient use of the available 
bandwidth. 

Figure 5 shows the configuration of two connected clusters, the lower being a time sink cluster, the upper 
being a time source cluster, in this case a TT-D cluster. The TT-D cluster could also be replaced by a TT-L 
cluster or TT-E cluster7). The number of TT-E coldstart nodes 'i' shall be at least one and less than or equal 
to 7. The number of non-sync nodes 'k' is not limited by the protocol. 

The support of the TT-E synchronisation method is optional. This means that a FlexRay node may not support 
being a TT-E coldstart node, may not support being a time gateway source node, or may support neither of 
these features. 

 

                                                      

7) This specification does not provide configuration constraints for a "daisy-chain" of TT-E clusters. All configuration 
constraints assume that a time source cluster is either a TT-D cluster or a TT-L cluster. 

http://dx.doi.org/10.3403/30253320U


BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

© ISO 2013 – All rights reserved 19 
 

GWsink 1:
TT-E coldstart 

node 1

GWsink 2:
TT-E coldstart

node 2

GWsink i:
TT-E coldstart 

node i

non-sync
node 1

non-sync
node 2

non-sync
node k

GWsource 1 GWsource 2 GWsource i

TT-D coldstart 
node n

TT-D non-coldstart 
sync node m

non-sync
node p

TT-D coldstart 
node 2

TT-D non-coldstart 
sync node 2

non-sync
node 2

TT-D coldstart 
node 1

TT-D non-coldstart 
sync node 1

non-sync
node 1

TT-D cluster

TT-E cluster

 

Figure 5 — TT-E cluster 

Optional behaviour related to the feature of being a TT-E coldstart node is marked by dashed rectangles 
within the SDL diagrams. Each such rectangle is additionally annotated with the text "TT-E time gateway sink 
behaviour (optional)". An implementation not supporting the TT-E synchronisation method may choose not to 
implement the SDL content marked as optional. Further, such an implementation shall behave as if the value 
of the variable pExternalSync and in consequence also of the variable vExternalSync is fixed to false8). 

5.7 Network topology considerations 

5.7.1 General 

The following subclauses provide a brief overview of the possible topologies for a FlexRay system. This 
material is for reference only - detailed requirements and specifications may be found in ISO 17458-4. 

                                                      

8) As a result, it would be possible to redraw the SDL diagrams to remove the optional TT-E behaviour by eliminating all 
decision boxes involving pExternalSync or vExternalSync (which under these circumstances have a pre-determined 
outcome) and all optional material inside the dashed boxes. The remainder is the required behaviour for all FlexRay 
implementations. 

http://dx.doi.org/10.3403/30253320U


BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

20 © ISO 2013 – All rights reserved 
 

There are several ways to design a FlexRay cluster. It can be configured as a single-channel or dual-channel 
bus network, a single-channel or dual-channel star network, or in various hybrid combinations of bus and star 
topologies. 

A FlexRay cluster consists of at most two channels, identified as Channel A and Channel B. Each node in the 
cluster may be connected to either or both of the channels. In the fault free condition, all nodes connected to 
Channel A are able to communicate with all other nodes connected to Channel A, and all nodes connected to 
Channel B are able to communicate with all other nodes connected to Channel B. If a node needs to be 
connected to more than one cluster then the connection to each cluster shall be made through a different 
communication controller9). 

5.7.2 Passive bus topology 

Figure 6 shows the possible topology configuration of the communication network as a dual bus. A node can 
be connected to both channels A and B (nodes A, C, and E), only to channel A (node D), or only to channel B 
(node B). 

 

Channel A

Channel B

Node A Node B Node C Node D Node E

 

Figure 6 — Dual channel bus configuration 

 

The FlexRay communication network can also be a single bus. In this case, all nodes are connected to this 
bus. 

5.7.3 Active star topology 

A FlexRay communication network can be built as a multiple star topology. Similar to the bus topology, the 
multiple-star topology can support redundant communication channels. Each network channel shall be free of 
closed rings, and there can be no more than two active stars on a network channel10).  

NOTE there may be physical layer-related restrictions that limit the number of active stars for certain bit rates - see 
ISO 17458-4 for details. 

An incoming signal received on a branch of an active star is actively driven to all other branches of the active 
star. 

The configuration of a single redundant star network is shown in Figure 7. The logical structure (i.e., the node 
connectivity) of this topology is identical with that shown in Figure 6. It is also possible to create a single, non-
redundant star topology that has the same logical structure as the single bus mentioned above. 

 
                                                      

9) For example, it is not allowed for a communication controller to connect to Channel A of one cluster and Channel B 
of another cluster. 

10) A channel with two active stars would have the stars connected to each other. Communication between nodes 
connected to different stars would pass through both stars (a cascaded star topology). 

http://dx.doi.org/10.3403/30253320U
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Figure 7 — Dual channel single star configuration 

 

Figure 8 shows a single channel network built with two active stars. Each node has a point-to-point connection 
to one of the two active stars. The first active star (1A) is directly connected to the second active star (2A). 
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Figure 8 — Single channel cascaded star configuration 

 

NOTE1 it is also possible to have a redundant channel configuration with cascaded stars. An example of such a 
configuration is Figure 9.  

NOTE2 this example does not simply replicate the set of stars for the second channel - Star 1A connects nodes A, B, 
and C, while Star 1B connects nodes A, C, and E. 
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Figure 9 — Dual channel cascaded star configuration 

 

5.7.4 Active star topology combined with a passive bus top 

In addition to topologies that are composed either entirely of a bus topology or entirely of a star topology, it is 
possible to have hybrid topologies that are a mixture of bus and star configurations. The FlexRay system 
supports such hybrid topologies as long as the limits applicable to each individual topology are not exceeded. 
For example, the limit of two cascaded active stars also limits the number of cascaded active stars in a hybrid 
topology. 

There are a large number of possible hybrid topologies, but only two representative topologies are shown 
here. Figure 10 shows an example of one type of hybrid topology. In this example, some nodes (nodes A, B, 
C, and D) are connected using point-to-point connections to an active star. Other nodes (nodes E, F, and G) 
are connected to each other using a bus topology. This bus is also connected to an active star, allowing nodes 
E, F, and G to communicate with the other nodes. 
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Figure 10 — Single channel hybrid example 

 

A fundamentally different type of hybrid topology is shown in Figure 11. In this case, different topologies are 
used on different channels. Here, channel A is implemented as a bus topology connection, while channel B is 
implemented as a star topology connection. 

 

Node A Node B Node C Node D Node E

Star
1B

Channel A

 

Figure 11 — Dual channel hybrid example 

 

The protocol implications of topologies with stubs on the connection between active stars have not been fully 
analyzed. As a result, such topologies are not recommended and are not considered in this specification. 
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5.8 Example node architecture 

5.8.1 Objective 

This subclause is intended to provide insight into the FlexRay architecture by discussing an example node 
architecture and the interfaces between the FlexRay hardware devices. 

The information in this subclause is for reference only. The detailed specification of the interfaces is given in 
the electrical physical layer specification ISO 17458-4; references are made here to appropriate text passages 
from this document. 

Note that an active star component can also function in a role similar to a bus driver via the use of the optional 
BD-CC interface as specified in ISO 17458-4. The following subclauses describe the node architecture under 
the assumption that the CC interfaces to the channel(s) via a bus driver rather than via an active star. 

5.8.2 Overview 

Figure 12 depicts an example node architecture. One communication controller, one host, one power supply 
unit, and two bus drivers are depicted. Each communication channel has one bus driver to connect the node 
to the channel. In addition to the indicated communication and control data interfaces an optional interface 
between the bus driver and the power supply unit may exist. 
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Figure 12 — Logical interfaces 

 

http://dx.doi.org/10.3403/30253320U
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5.8.3 Host - communication controller interface 

The host and the communication controller share a substantial amount of information. The host provides 
control and configuration information to the CC and provides payload data that is transmitted during the 
communication cycle. The CC provides status information to the host and delivers payload data received from 
communication frames. Figure 13 illustrates the Host and the Communication Controller. 

Details of the interface between the host and the communication controller are specified in clause 13. 

 

Host Communication Controller

Configuration Data &
Status Information

Communication Data

 

Figure 13 — Host - communication controller interfaces 

 

5.8.4 Communication controller - bus driver interface 

The interface between the BD and the CC consists of three digital electrical signals. Two are outputs from the 
CC (TxD and TxEN) and one is an output from the BD (RxD). 

The CC uses the TxD (Transmit Data) signal to transfer the actual signal sequence to the BD for transmission 
onto the communication channel. TxEN (Transmit Data Enable Not) indicates the CC's request to have the 
bus driver present the data on the TxD line to its corresponding channel. 

The BD uses the RxD (Receive Data) signal to transfer the actual received signal sequence to the CC. 

Figure 14 shows the connection between the communication controller and the bus driver and the internal 
connection between the protocol engine and the pins. This data link layer specification does not specify a 
device but the behaviour of the FlexRay protocol. In the following the data link layer specification only refers to 
the internal signals TxD, TxEN, and RxD as depicted in Figure 14. 
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TxEN Transmit enable 

TxD Transmit data 
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Figure 14 — Communication controller - bus driver interface 

 

Between the internal and the external signals there are device specific port functions which are responsible for 
the electrical behavior of the pins, for example 

 I/O voltage level, 

 ESD protection, 

 behaviour during power up initialization, reset, or while depowered, and 

 pin multiplexing (e.g. the connection of the external pins associated with the RxD_external, TxD_external 
and TxEN_external signals either to the FlexRay protocol engine (i.e., the RxD, TxD, and TxEN signals, 
respectively), to some other function inside the CC implementation11), or to nothing at all). 

If the pins are connected to something other than the FlexRay protocol engine this specification places no 
requirements on the behavior of those pins. However, the behavior during power up initialization, reset, while 
depowered, and the default behavior prior to the configuration of any pin multiplexing, shall ensure that the 
bus driver does not actively drive the FlexRay bus12), and that the bus driver interprets the TxD signal as 
low13). 

Some requirements (e.g. the electrical characteristics and timing) on the port functions and the TxD_external, 
TxEN_external and RxD_external signals are specified in ISO 17458-4. 

                                                      

11) For example, if the CC implementation is part of a microcontroller it is possible that the microcontroller could be 
configured to use I/O pins either as the FlexRay I/O (RxD, TxD, and TxEN) or for some other purpose (perhaps general 
purpose I/O). 

12) This could be done, for example, by ensuring that the TxEN_external output is driven to active high, provided with a 
weak pull up, or set to high impedance. 

13) This could be done, for example, by ensuring that the TxD_external output is driven to active low, provided with a 
weak pull down, or set to high impedance. 

http://dx.doi.org/10.3403/30253320U
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5.8.5 Bus driver - host interface 

5.8.5.1 Overview 

The interface between the BD and the host allows the host to control the operating modes of the BD and to 
read error conditions and status information from the BD. 

This interface can be realized using hard-wired signals (see option A in Figure 15) or by a Serial Peripheral 
Interface (SPI) (see option B in Figure 16). 

5.8.5.2 Hard wired signals (option A) 

This implementation of the BD - host interface uses discrete hard wired signals. The interface consists of at 
least an STBN (Standby Not) signal that is used to control the BD's operating mode and an ERRN (Error Not) 
signal that is used by the BD to indicate detected errors. The interface could also include additional control 
signals (the "EN" signal is shown as an example) that support control of optional operational modes. 

Figure 15 illustrates an example of a bus driver with a host interface option A. 

 

STBN

EN

ERRN

Host Bus Driver

 

Key 

STBN Standby Not 

EN Enable 

ERRN Error Not 

Figure 15 — Example bus driver - host interface (option A) 

 

This interface is product specific; some restrictions are given in ISO 17458-4 that define minimum functionality 
to ensure interoperability. 

5.8.5.3 Serial peripheral interface (SPI) (option B) 

This implementation of the BD - host interface uses an SPI link to allow the host to command the BD 
operating mode and to read out the status of the BD. In addition, the BD has a hardwired interrupt output 
(INTN).  

http://dx.doi.org/10.3403/30253320U
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Figure 16 illustrates an example of a bus driver with a host interface option B. 

The electrical characteristics and timing of this interface are specified in ISO 17458-4. 
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Figure 16 — Example bus driver - host interface (option B) 

 

5.8.6 Bus driver - power supply interface (optional) 

The inhibit signal (INH1) is an optional interface that allows the BD to directly control the power supply of an 
ECU. This signal could also be used as one of a set of signals that control the power moding of the ECU.  

Figure 17 illustrates an example of a bus driver with a power supply interface. 

 

INH1

Power SupplyBus Driver

 

Key 

INH1 Inhibit signal 

Figure 17 — Bus driver - power supply interface 

 

The electrical characteristics and behaviour of the INH1 signal are specified in ISO 17458-4. 

5.8.7 Time gateway interface 

A time gateway sink node needs information on the schedule and clock synchronisation algorithm of its time 
gateway source node. The time gateway source node provides this information via the time gateway interface 

http://dx.doi.org/10.3403/30253320U
http://dx.doi.org/10.3403/30253320U
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to the time gateway sink node. This interface is unidirectional - no information flows back from the time 
gateway sink node to the time gateway source node. This interface is an optional feature only required to 
allow the node to be a time gateway source or time gateway sink node. Details of the interface between the 
time gateway source node and the time gateway sink node are specified in clause 12. The usage of this 
interface is indicated in the SDL diagrams by the EXP keyword on the transmitting end and the IMP keyword 
on the receiving end. 

Figure 18 illustrates a time gateway interface. 

 

Time Gateway Source 
Node

Time Gateway Sink Node
Time & Status Information

 

Figure 18 — Time gateway interface 

 

5.8.8 Testability requirements 

ISO 17458-3 contains additional implementation requirements. The purpose of these requirements is to 
facilitate testing, for example by establishing timing bounds for the availability of CHI information necessary to 
execute certain tests. 

6 Protocol operation control 

6.1 Principles 

6.1.1 General 

This subclause defines how the core mechanisms of the protocol are moded in response to host commands 
and protocol conditions. 

The primary protocol behaviour of FlexRay is embodied in four core mechanisms, each of which is described 
in a dedicated subclause of this specification for 

 Coding and Decoding (see clause 7), 

 Media Access Control (see clause 9), 

 Frame and Symbol Processing (see clause 10), and 

 Clock Synchronisation (see clause 12) 

In addition, the controller host interface (CHI) provides the mechanism for the host to interact in a structured 
manner with these core mechanisms and for the protocol mechanisms, including Protocol Operation Control 
(POC), to provide feedback to the host (see clause 13). 

Each of the core mechanisms possesses modal behaviour that allows it to alter its fundamental operation in 
response to high-level mode changes of the node. Proper protocol behaviour can only occur if the mode 
changes of the core mechanisms are properly coordinated and synchronized. The purpose of the POC is to 
react to host commands and protocol conditions by triggering coherent changes to core mechanisms in a 
synchronous manner, and to provide the host with the appropriate status regarding these changes. 

http://dx.doi.org/10.3403/30253317U


BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

30 © ISO 2013 – All rights reserved 
 

The necessary synchronisation of the core mechanisms is particularly evident during the wakeup, startup and 
reintegration procedures. These procedures are described in detail in clause 11. However, these procedures 
are wholly included in the POC as macros in the POC SDL models. They can be viewed as specialized 
extensions of the POC.  

6.1.2 Communication controller power moding 

Before the POC can perform its prescribed tasks the communication controller (CC) shall achieve a state 
where there is a stable power supply. Furthermore, the POC can only continue to operate while a stable 
power supply is present. 

Figure 19 depicts an overview of the CC power moding operation. 

 

power off

POC 
operational

reset

power on

 

Key 

POC Protocol Operation Control 

Figure 19 — Power moding of the communication controller 

 

NOTE Figure 19 illustrates the state labelled POC operational which is not actually a specific state but rather a 
superset of all operational states of the protocol operation control (see Figure 21). 

In the power off state there is insufficient power for the CC to operate14). In the power on state (including both 
reset and POC operational) the CC shall guarantee that all pins are in prescribed states. In the POC 
operational state the CC shall drive the pins in accordance with the product specification. The POC controls 
the other protocol mechanisms in the manner described in this subclause while the CC is in the POC 
operational state. 

                                                      

14) While the CC cannot enforce specific behaviour of the pins, there shall be product-specific behaviour specified (e.g. 
high impedance). 
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6.2 Description 

6.2.1 Protocol operation control context 

The relationships between the CHI, POC and the core mechanisms are depicted in Figure 2015). 
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Figure 20 — Protocol operation control context 

 

                                                      

15) The dark lines represent data flows between mechanisms that are relevant to this subclause. The lighter gray lines 
are relevant to the protocol, but not to this clause. 
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6.2.2 Operational overview 

6.2.2.1 General 

The POC SDL process is created as the CC enters the POC operational state and terminated when the CC 
exits it. The POC process is responsible for creating the SDL processes corresponding to the core 
mechanisms and informing those processes when they are required to terminate. It is also responsible for 
changing the mode of the core mechanisms of the protocol in response to changing conditions in the node.  

Mode changes of the core mechanisms occur when the POC itself changes states. Some of the POC state 
changes are simply a consequence of completing tasks. For example, the POC:normal active state (see 6.3.7) 
is entered as a consequence of completing the startup process. However, most of the POC state changes are 
a direct consequence of one of the following: 

 Host commands communicated to the POC via the CHI; 

 Error conditions detected either by the protocol engine or a product-specific built-in self-test (BIST) or 
sanity check. The host may also perform sanity checks, but the consequences of the host sanity checks 
are indicated to the POC as host commands. 

6.2.2.2 Host commands 

Strictly speaking, the POC is unaware of the commands issued by the host. Host interactions with the CC are 
processed by the CHI. The CHI is responsible for relaying relevant commands to the POC. While this is a 
minor distinction, the remainder of the POC description in this document treats the host commands as if they 
originated in the CHI. Similarly, status information from the POC that is intended for the host is simply 
provided to the CHI, which is then responsible for formatting it appropriately and relaying it to the host in a 
prescribed manner (see clause 13). 

Some host commands result in immediate changes being reflected in the moding of the core mechanisms 
while mode changes are deferred to the end of the communication cycle for others. In addition, some host 
commands are not processed in every POC state. The detailed behaviour corresponding to each command is 
captured in the SDL descriptions and accompanying text (see 6.3). They are briefly summarized in Table 4. If 
the host issues a specific CHI command while the POC is in a state other than the states shown in the "Where 
processed (POC States)" column in Table 4 the command shall be ignored (i.e., it shall have no effect on the 
protocol engine). 
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Table 4 — CHI host command summary 

CHI command Where processed (POC States) When processed 

ALL_SLOTS POC:normal active, POC:normal passive End of cycle 

ALLOW_COLDSTART All except: 

POC:default config, POC:config, POC:halt, 
POC:wakeup listen, POC:wakeup send, POC:wakeup 
detecta   

Immediate 

CLEAR_DEFERRED All except:  

POC:default config, POC:config, POC:ready, POC:halt 

Immediate 

CONFIG POC:default config, POC:ready Immediate 

CONFIG_COMPLETE POC:config Immediate 

DEFAULT_CONFIG POC:halt Immediate 

RUN POC:ready Immediate 

WAKEUP POC:ready Immediate 

FREEZE All Immediate 

IMMEDIATE_READY All except: 

POC:default config, POC:config, POC:ready, POC:halt 

Immediate 

DEFERRED_READY All except: 

POC:default config, POC:config, POC:ready, POC:halt, 
POC:normal active, POC:normal passive, POC:wakeup 
send, POC:coldstart collision resolution, POC:coldstart 
consistency check, POC:coldstart join 

Immediate 

DEFERRED_READY POC:normal active, POC:normal passive, 
POC:coldstart collision resolutionb, POC:coldstart 
consistency check, POC:coldstart join 

End of cycle 

DEFERRED_READY POC:wakeup send After transmission of a 
complete WUP or detection of 
wakeup collision 

DEFERRED_HALT All except:  

POC:halt, POC:normal active, POC:normal passive, 
POC:wakeup send, POC:coldstart collision resolution, 
POC:coldstart consistency check, POC:coldstart join 

Immediate 

DEFERRED_HALT POC:normal active, POC:normal passive, 
POC:coldstart collision resolutionb, POC:coldstart 
consistency check, POC:coldstart join 

End of cycle 

DEFERRED_HALT POC:wakeup send After transmission of a 
complete WUP or detection of 
wakeup collision 

a The ALLOW_COLDSTART command is processed as described in Figure 31 except when the POC is in the POC:integration 
listen state, in which case it is processed by the SDL in Figure 150. 

b In the POC:coldstart collision resolution state a deferred command is either processed at the end of the cycle or after a frame 
header or a CAS is received. 
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6.2.2.3 Error conditions 

6.2.2.3.1 General 

The POC contains two basic mechanisms for responding to errors. For significant errors, the POC:halt state is 
immediately entered. The POC also contains a three-state degradation model for errors that can be endured 
for a limited period of time. In this case entry to the POC:halt state is deferred, at least temporarily, to support 
possible recovery from a potentially transient condition. 

6.2.2.3.2 Errors causing immediate entry to the POC:halt state 

There are three general conditions that trigger entry to the POC:halt state: 

 Product-specific error conditions such as BIST errors and sanity checks; 

 Error conditions detected by the host that result in a FREEZE command being sent to the POC via the 
CHI; 

 Fatal error conditions detected by the FSP process.  

Product-specific errors are accommodated by the POC, but not described in this specification (see 6.3.4). 
Similarly, host detected error strategies are supported by the POC's ability to respond to a host FREEZE 
command (see 6.3.4), but the host-based mechanisms that trigger the command are beyond the scope of this 
specification. Only errors detected by the POC or one of the core mechanisms are explicitly detailed in this 
specification. 

6.2.2.3.3 Errors handled by the degradation model 

Integral to the POC is a three-state error handling mechanism referred to as the degradation model. It is 
designed to react to certain conditions detected by the clock synchronisation mechanism that are indicative of 
a problem, but that may not require immediate action due to the inherent fault tolerance of the clock 
synchronisation mechanism. This makes it possible to avoid immediate transitions to the POC:halt state while 
assessing the nature and extent of the errors.  

The degradation model is embodied in three POC states - POC:normal active, POC:normal passive, and 
POC:halt.  

In the POC:normal active state the node is assumed to be either error free, or at least within error bounds that 
allow continued "normal operation". Specifically, it is assumed that the node remains adequately time-
synchronized to the cluster to allow continued frame transmission without disrupting the transmissions of other 
nodes. 

In the POC:normal passive state, it is assumed that synchronisation with the remainder of the cluster has 
degraded to the extent that continued frame transmissions cannot be allowed because collisions with 
transmissions from other nodes are possible. Frame reception continues in the POC:normal passive state in 
support of host functionality and in an effort to regain sufficient synchronisation to allow a transition back to the 
POC:normal active state. 

If errors persist in the POC:normal passive state or if errors are severe enough, the POC can transition to the 
POC:halt state. In this state it is assumed that recovery back to the POC:normal active state cannot be 
achieved, so the POC halts the core mechanisms in preparation for reinitializing the node. 

The conditions for transitioning between the three states comprising the degradation model are configurable. 
Furthermore, transitions between the states are communicated to the host allowing the host to react 
appropriately and to possibly take alternative actions using one of the explicit host commands.  
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6.2.2.4 POC status 

In order for the host to react to POC state changes, the host shall be informed when POC state changes 
occur. This is the responsibility of the CHI. The POC supports the CHI by providing appropriate information to 
the CHI.  

Definition: T_POCStatus (1) 

The basic POC status information is provided to the CHI using the vPOC data structure. vPOC is of 
type T_POCStatus. 

 

newtype T_POCStatus 
struct 

State  T_POCState; 
Freeze  Boolean; 
CHIHaltRequest  Boolean; 
CHIReadyRequest  Boolean; 
ColdstartNoise  Boolean; 
SlotMode  T_SlotMode; 
ErrorMode  T_ErrorMode; 
WakeupStatus  T_WakeupStatus; 
StartupState  T_StartupState; 

endnewtype; 

 

 

Definition: T_POCState (2) 

The vPOC structure is an aggregation of nine distinct status variables. vPOC!State is used to indicate 
the state of the POC and is based on the T_POCState. 

 

newtype T_POCState 
literals CONFIG, DEFAULT_CONFIG, HALT, NORMAL_ACTIVE, NORMAL_PASSIVE, 
READY, STARTUP, WAKEUP; 

endnewtype; 

 

vPOC!Freeze is used to indicate that the POC has entered the POC:halt state due to an error condition 
requiring an immediate halt (see 6.3.4). vPOC!Freeze is Boolean. 

 

vPOC!CHIHaltRequest is used to indicate that a request has been received from the CHI to halt the 
POC at the end of the communication cycle (see 6.3.5.1). vPOC!CHIHaltRequest is Boolean. 

 

vPOC!CHIReadyRequest is used to indicate that a request has been received from the CHI to enter 
the POC:ready state at the end of the communication cycle (see 6.3.5.1). vPOC!CHIReadyRequest is 
Boolean. 

 

vPOC!ColdstartNoise indicates noisy channel conditions during POC:coldstart listen if the coldstart 
attempt of a leading coldstart node was completed successfully (see 11.3). vPOC!ColdstartNoise is 
Boolean. 

 

 

Definition: T_SlotMode (3) 

vPOC!SlotMode is used to indicate what slot mode the POC is in (see 6.3.5.2, 6.3.8.2.3, and 
6.3.8.2.4). vPOC!SlotMode is based on the T_SlotMode formal definition. 

 

newtype T_SlotMode 
literals KEYSLOT, ALL_PENDING, ALL; 
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endnewtype; 

 

Definition: vPOC!ErrorMode (4) 

vPOC!ErrorMode is used to indicate what error mode the POC is in (see subclauses 6.3.8.2.3 and 
6.3.8.2.4). vPOC!ErrorMode is based on the T_ErrorMode formal definition. 

 

newtype T_ErrorMode 
literals ACTIVE, PASSIVE, COMM_HALT; 

endnewtype; 
 

 

Definition: vPOC!WakeupStatus (5) 

vPOC!WakeupStatus is used to indicate the outcome of the execution of the WAKEUP mechanism 
(see Figure 30 and 11.2.3.2). vPOC!WakeupStatus is based on the T_WakeupStatus formal definition. 

 

newtype T_WakeupStatus 
literals UNDEFINED, RECEIVED_HEADER, RECEIVED_WUP, COLLISION_HEADER, 
COLLISION_WUP, COLLISION_UNKNOWN, TRANSMITTED; 

endnewtype; 

 

The meaning of the individual T_WakeupStatus values is outlined in 11.2.3.2. 
 

 

Definition: vPOC!StartupState (6) 

vPOC!StartupState is used to indicate the current substate of the startup procedure (see 11.3.5). 
vPOC!StartupState is based on the T_StartupState formal definition. 

 

newtype T_StartupState 
literals UNDEFINED, COLDSTART_LISTEN, INTEGRATION_COLDSTART_CHECK, 
COLDSTART_JOIN, COLDSTART_COLLISION_RESOLUTION, 
COLDSTART_CONSISTENCY_CHECK, INTEGRATION_LISTEN, INITIALIZE_SCHEDULE, 
INTEGRATION_CONSISTENCY_CHECK, COLDSTART_GAP, EXTERNAL_STARTUP; 

endnewtype; 

 

The individual T_StartupState values are the states within the STARTUP mechanism in 11.3.5.  

In addition to the vPOC data structure, the POC makes two counters available to the host via the CHI. 
These counters are vClockCorrectionFailed and vAllowPassiveToActive, and are described in 
6.3.8.2.5. 

 

 

6.2.2.5 SDL considerations for single channel nodes 

FlexRay supports configurations where a node is only attached to one of the two possible FlexRay channels 
(see 5.7). 

Process instantiation is depicted in Figure 23. The channel specific processes are readily identifiable by the 
"_A" or "_B" text in the process names. The POC only instantiates the channel specific processes related to 
channels that are actually attached. 
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Process termination signal generation is also depicted in Figure 23. The channel specific signals are 
identifiable by the "_A" or "_B" text in the signal names. Termination signals sent to a channel specific process 
that is not instantiated will have no effect. 

Process moding signals are generated throughout the POC. Figure 22 is an example that includes all of these 
moding signals. The channel specific moding signals are identifiable by the "on A" or "on B" text in the signal 
names. Moding signals, or any other signals, sent to a channel specific process that is not instantiated will 
have no effect. 

6.3 The protocol operation control process 

6.3.1 General 

This subclause contains the formalized specification of the POC process. Figure 21 depicts an overview of the 
POC states and how they interrelate16). 

 

config
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normal
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Figure 21 — Overview of protocol operation control 

6.3.2 POC SDL utilities 

The nature of the POC is that it performs tasks that often influence all of the core mechanisms simultaneously. 
From the perspective of SDL depiction these tasks are visually cumbersome. Macros are used in the POC for 
the sole purpose of simplifying the SDL presentation.  

In the SDL that follows, there are several instances where the POC transitions to the POC:ready or POC:halt 
states. Prior to doing so, the core mechanisms have to be moded appropriately. The two macros in Figure 22 
perform these tasks. PROTOCOL_ENGINE_READY modes the core mechanisms appropriately for entry to 

                                                      

16) The states depicted as wakeup and startup are actually procedures containing several states. The depiction is 
simplified for the purpose of an overview. 
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POC:ready, and PROTOCOL_ENGINE_HALT modes the core mechanisms appropriately for entry to 
POC:halt.  

 

PROTOCOL_
ENGINE_HALT

CODEC control on A (STANDBY),
CODEC control on B (STANDBY),
FSP control on A (STANDBY),
FSP control on B (STANDBY),
MAC control on A (STANDBY),
MAC control on B (STANDBY),
CSP control (STANDBY),
EXP sync state (UNSYNC)

PROTOCOL_
ENGINE_READY

CODEC control on A (READY),
CODEC control on B (READY),
FSP control on A (STANDBY),
FSP control on B (STANDBY),
MAC control on A (STANDBY),
MAC control on B (STANDBY),
CSP control (STANDBY),
EXP sync state (UNSYNC)

’update vPOC in CHI’;
’update vClockCorrectionFailed in CHI’;
reset(tWakeup);
reset(tWakeupNoise);
reset(tStartup);
reset(tStartupNoise);

vPOC!State := READY;
vPOC!StartupState := UNDEFINED;
vColdstartInhibit := true;
’update vPOC in CHI’;
reset(tWakeup);
reset(tWakeupNoise);
reset(tStartup);
reset(tStartupNoise);

pKeySlotOnlyEnabled ?

true

false

vPOC!SlotMode := KEYSLOT;vPOC!SlotMode := ALL;

 

Figure 22 — Macros to mode the core mechanisms for transitions to the POC:ready and POC:halt 
states [POC] 
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The SDL processes associated with the core mechanisms are created simultaneously by the POC. While the 
processes shall terminate themselves, the POC is also responsible for simultaneously triggering this in all of 
the processes. Figure 23 depicts the macros for performing these two tasks.  

 

TERMINATE_ALL_
PROCESSES terminate CODEC_A,

terminate CODEC_B,
terminate FSP_A,
terminate FSP_B,
terminate MAC_A,
terminate MAC_B,
terminate CSP,
terminate MTG

INSTANTIATE_ALL_
PROCESSES

CODEC_A, FSP_A, MAC_A 

’update vPOC in CHI’;pChannels ?

pChannels ?

else

 = B 

CODEC_B, FSP_B, MAC_B 

CSP, MTG

else

 = A 

 

Figure 23 — Macros for creating and terminating processes [POC] 

 

6.3.3 SDL organization 

From the perspective of procedural flow, the behaviour of the POC can be loosely decomposed into four 
components to facilitate discussion:  

 behaviours corresponding to host commands that preempt the regular behavioural flow; 

 behaviour that brings the POC to the POC:ready state; 

 behaviour leading from the POC:ready state to the POC:normal active state; 

 behaviour once the POC:normal active state has been reached, i.e., during "normal operation". 

The remainder of this subclause addresses these four components in succession, explaining the required 
behaviour using SDL diagrams. 
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6.3.4 Preempting commands 

There are two commands (FREEZE and IMMEDIATE_READY) that are used to preempt the normal 
behavioural flow of the POC. They are depicted in Figure 24. It should be emphasized that these commands 
also apply to the behaviour contained in the Wakeup and Startup macros (see Figure 30) that is detailed in 
clause 11.  

 

CHI IMMEDIATE_
READY command

ready

halt

vPOC!Freeze := true;

PROTOCOL_ENGINE_
HALT

PROTOCOL_ENGINE_
READY

CHI FREEZE command,
fatal protocol error, 
product-specific BIST 
or sanity check

vPOC!CHIHaltRequest := false;
vPOC!CHIReadyRequest := false;

*

external sync lost

TT-E time gateway sink behaviour 
(optional)

* (default config, config, 
ready, halt)

halt

PROTOCOL_ENGINE_
HALT

vPOC!State := HALT;

 

Figure 24 — POC preempting immediate commands [POC] 

 

When a serious error occurs, the POC is notified to halt the operation of the protocol engine. For this purpose, 
a freeze mechanism is supported. There are three methods for triggering the freeze mechanism: 

 a host FREEZE command relayed to the POC by the CHI; 

 a fatal protocol error signalled by the FSP process; 

 a product-specific error detected by a built-in self-test (BIST) or sanity check; 

In all three circumstances the POC shall set vPOC!Freeze to true as an indicator that the event has occurred, 
stop the protocol engine by setting all core mechanism to the STANDBY mode, and then transition to the 
POC:halt state17). 

                                                      

17) Values of vPOC!State and vPOC!StartupState are intentionally not altered so that the CHI can indicate to the host 
what state the POC was in at the time the freeze occurred. 
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At the host's discretion, the ongoing operation of the POC can be interrupted by immediately placing the POC 
in the POC:ready state. In response to this command, the POC modes the core mechanisms appropriately 
(see 6.3.2), and then transitions to POC:ready. 

6.3.5 Deferred commands 

6.3.5.1 DEFERRED_HALT, DEFERRED_READY and CLEAR_DEFERRED commands 

The POC supports two deferred control commands that will postpone action until the end of a cycle or a time 
where the command can be processed with minimal disruption to ongoing processes.  

The CHI may relay the DEFERRED_HALT command from the host at any time the POC is in a state other 
than POC:halt. The CHI may relay the DEFERRED_READY command from the host at any time that it would 
be allowed to relay the IMMEDIATE_READY command (see Table 4). If no communication is ongoing the 
effects of these commands is immediate. If communication is ongoing the effects of the commands are 
deferred, in most cases to the processing at the end of the cycle. If the POC is in the POC:wakeup send state 
a deferred command is processed after transmission of a complete WUP or detection of a wakeup collision. If 
the POC is in the POC:coldstart collision resolution state a deferred command is processed at the end of the 
cycle or after a frame header or a CAS is received. In all cases where the processing of the commands is 
deferred it is necessary to capture indications that the commands have occurred so that processing can take 
place at the appropriate time. Figure 25 depicts the procedure that captures these commands. 

If an additional DEFERRED_HALT or DEFERRED_READY command is relayed from the CHI prior to the 
POC acting on a previous deferred command, the POC will only act upon the most recently received 
command. 
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CHI DEFERRED_
HALT command

-

CHI DEFERRED_ 
READY command

-

normal active, normal passive, 
wakeup send, coldstart collision 
resolution, coldstart consistency 
check, coldstart join

CHI DEFERRED_
HALT command

CHI DEFERRED_
READY command

* (halt, normal active, normal 
passive, wakeup send, coldstart 
collision resolution, coldstart 
consistency check, coldstart join)

readyhalt

PROTOCOL_ENGINE_
HALT

PROTOCOL_ENGINE_
READY

vPOC!CHIHaltRequest:=false;
vPOC!CHIReadyRequest := false;

* (default config, config, ready, halt,
normal active, normal passive, 
wakeup send, coldstart collision 
resolution, coldstart consistency 
check, coldstart join)

vPOC!State := HALT;
vPOC!CHIHaltRequest:= 
false;
vPOC!CHIReadyRequest := 
false;

vPOC!CHIReadyRequest := true;
vPOC!CHIHaltRequest := false;
’update vPOC in CHI’;

vPOC!CHIHaltRequest := true;
vPOC!CHIReadyRequest := false;
’update vPOC in CHI’;

 

Figure 25 — POC preempting deferred commands [POC] 

 

The DEFERRED_HALT command shall be captured by setting the vPOC!CHIHaltRequest value to true if the 
command is not immediately processed. When processed at the end of the current cycle, the 
DEFERRED_HALT command will cause the POC to enter the POC:halt state. This is the standard method 
used by the host to shut down the CC. 

The DEFERRED_READY command shall be captured by setting the vPOC!CHIReadyRequest value to true if 
the command is not immediately processed. When processed at the end of the current cycle, the 
DEFERRED_READY command will cause the POC to enter the POC:ready state.  

While in the POC:wakeup send state the DEFERRED_HALT command will cause the POC to enter the 
POC:halt state after transmission of a complete WUP or detection of a wakeup collision. 

While in the POC:wakeup send state the DEFERRED_READY command will cause the POC to enter the 
POC:ready state after transmission of a complete WUP or detection of a wakeup collision. 
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Figure 26 depicts the HANDLE_DEFERRED_CHI_COMMANDS macro which is used in clause 11. 

 

HANDLE_DEFERRED_ 
CHI_COMMANDS

vPOC!CHIHalt-
Request ?

vPOC!CHIReady-
Request ?

false

false

ready halt

true

vPOC!State := HALT;

PROTOCOL_ENGINE_
HALT

PROTOCOL_ENGINE_
READY

true

 

Figure 26 — Macro to handle deferred CHI commands [POC] 

 

NOTE The macro shown in Figure 26 contains transitions to states that are defined outside of the macro (POC:ready 
and POC:halt). The reader should take care when interpreting this macro in higher level SDL diagrams, as the exits to 
other states will not appear in the higher-level diagram. 

It is possible to delete a captured DEFERRED_HALT or DEFERRED_READY command as long as the POC 
has not yet reacted on the deferred command. 

The CLEAR_DEFERRED command shall set the vPOC!CHIReadyRequest value and the 
vPOC!CHIHaltRequest value immediately to false.  

NOTE The CLEAR_DEFERRED command is not able to delete a deferred command in all POC states because in a 
number of POC states a deferred command is executed immediately (see Table 4). 

Figure 27 illustrates the cancelation of deferred commands. 

 

* (default config, 
config, ready, halt)

CHI CLEAR_
DEFERRED command

-

vPOC!CHIReadyRequest := false;
vPOC!CHIHaltRequest := false;
’update vPOC in CHI’;

 

Figure 27 — Cancelation of deferred commands [POC] 
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6.3.5.2 ALL_SLOTS command 

The CHI may relay the ALL_SLOTS command from the host at any time while the POC is in the POC:normal 
active or POC:normal passive states. Its effect is realized during the processing at the end of the cycle, but it 
is necessary to capture an indication that the command has occurred so that appropriate processing will occur 
at cycle end. Figure 28 depicts the procedure that captures this command. 

The ALL_SLOTS command shall be captured by setting vPOC!SlotMode to ALL_PENDING. The command 
shall be ignored if vPOC!SlotMode is not KEYSLOT. When processed at the end of the current cycle, the 
ALL_PENDING status causes the POC to enable the transmission of all frames for the node.  

 

normal active, 
normal passive

CHI ALL_SLOTS 
command

vPOC!SlotMode := 
ALL_PENDING;

’update vPOC in CHI’;

-

KEYSLOT

vPOC!SlotMode ? else

 

Figure 28 — Capture of the ALL_SLOTS command for end-of-cycle processing [POC] 

 

6.3.6 Reaching the POC:ready state 

6.3.6.1 State sequence to reach the POC:ready state 

The tasks that the POC executes in order to reach the POC:ready state serve primarily as an initialisation 
process for the POC and the core mechanisms. This initialisation process is depicted in Figure 29. 
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default config

CHI CONFIG command

config

CHI CONFIG_
COMPLETE command

ready

dcl vPOC T_POCStatus;
dcl vCycleCounter T_CycleCounter;
dcl zSyncCalcResult T_SyncCalcResult;
dcl zStartupX T_SyncFrameIDCount;
dcl zRefX Boolean;
dcl vClockCorrectionFailed Integer;
dcl vAllowPassiveToActive Integer;
dcl zChannelIdle T_ChannelBoolArray;
dcl vColdstartInhibit Boolean := true;

vPOC!State := DEFAULT_CONFIG;
vPOC!Freeze := false;
vPOC!CHIHaltRequest := false;
vPOC!CHIReadyRequest := false;
vPOC!ColdstartNoise := false;
vPOC!SlotMode := KEYSLOT;
vPOC!ErrorMode := ACTIVE;
vPOC!WakeupStatus := UNDEFINED;
vPOC!StartupState := UNDEFINED;
vClockCorrectionFailed := 0;
vAllowPassiveToActive := 0;
’update vPOC in CHI’;
’update vClockCorrectionFailed in CHI’;
'update vAllowPassiveToActive in CHI';

halt

CHI DEFAULT_CONFIG 
command

vPOC!State := CONFIG;
’update vPOC in CHI’;

TERMINATE_ALL_
PROCESSES

PROTOCOL_ENGINE_
READY

INSTANTIATE_ALL_
PROCESSES

pChannels ?

zChannelIdle(A) := false;
zChannelIdle(B) := false;

zChannelIdle(A) := true;
zChannelIdle(B) := false;

zChannelIdle(A) := false;
zChannelIdle(B) := true;

 = B  = A 

= A&B

 

Figure 29 — Reaching the POC:ready state [POC] 

 

The POC shall enter the POC:default config state when the CC enters the POC operational state (see 6.1.2). 
The POC:default config shall also be entered from the POC:halt state if a DEFAULT_CONFIG command is 
received from the CHI. In the latter case, the POC shall signal the core mechanisms to terminate so that they 
can be created again as a part of the normal initialisation process.  

Prior to entering the POC:default config state the POC shall initialize the elements of the vPOC data structure 
that are used to communicate the POC status to the CHI. With the exception of vPOC!SlotMode, the values 
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assumed by the vPOC elements are obvious initial values and are depicted in Figure 29. The initial value of 
vPOC!SlotMode is defaulted to KEYSLOT until the configuration process is carried out to set it to the value 
desired by the host. 

In the POC:default config state the POC awaits the explicit command from the host to enable configuration. 
The POC shall enter the POC:config state in response to the CONFIG command. Configuration of the CC is 
only allowed in the POC:config state and this state can only be entered with an explicit CONFIG command 
issued while the POC is in the POC:default config state or the POC:ready state (see 6.3.7). 

In the POC:config state the host configures the CC. The host is responsible for verifying this configuration and 
only allowing the initialisation to proceed when a proper configuration is verified. For this purpose, an explicit 
CONFIG_COMPLETE command is required for the POC to progress from the POC:config state. 

The POC shall transition to the POC:ready state in response to the CONFIG_COMPLETE command. On this 
transition, the POC shall create all of the core mechanism processes, incorporating the configuration values 
that were set in the POC:config state. It shall then update vPOC to reflect the new state, the newly configured 
value of slot mode 18 ) and the initial value of vColdstartInhibit. It shall then command all of the core 
mechanisms to their appropriate mode (see 6.3.2). The POC then transitions to the POC:ready state. 

6.3.6.2 Default configuration requirements 

POC:default config is a state that ensures that the CC has a defined, stable default configuration prior to 
application-specific configuration that takes place in the POC:config state. Upon entry into the POC:default 
config state the CC shall ensure that all configuration data or control data described in subclauses 13.3.1.1, 
13.3.1.2.2, 13.3.2.6.2, and 13.3.2.11 are set to defined values as described below. 

The default configuration that results from entry into the POC:default config state shall have the characteristic 
that if a host makes no modification to the default configuration prior to the issuance of a RUN or WAKEUP 
command then the operation following the command will have no impact to ongoing communication on the 
cluster. The following configurations are required: 

 all buffers (including FIFO buffers) shall be configured such that they can neither transmit nor receive; 

 no slot shall be assigned for transmission or reception; 

 the payload data valid flag of all message buffers shall be set to false; 

 pKeySlotID and pSecondKeySlotID shall be set to 0; 

 pKeySlotUsedForStartup shall be set to false; 

 pTwoKeySlotMode shall be set to false; 

 pWakeupPattern shall be set to 0; 

 pExternalSync (if applicable) shall be set to false; 

 no transmissions of WUDOP's or MTS's are scheduled (see 13.3.1.2.2). 

Other than the specific case described below, all other configuration data defined in subclauses 13.3.1.1, 
13.3.2.6.2, and 13.3.2.11 shall be set to implementation dependent predefined initialisation values. The 
initialisation values for each individual configuration in the default configuration shall be described in the 
documentation of the implementation. 

                                                      

18) The value is determined by the node configuration, pKeySlotOnlyEnabled, a Boolean used to indicate whether the 
key slot only mode is enabled. This supports an optional strategy to limit frame transmissions following startup to the 
key slots until the host confirms that the node is synchronized to the cluster and enables the remaining transmissions 
with an ALL_SLOTS command (see 6.3.5.2). 
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An exception to the previous requirement is the configuration for pChannels (refer to 13.3.1.1.3). For this 
parameter there is no requirement for a transition into the POC:default config state to cause this configuration 
parameter to be set to any specific value (it is allowed, but not required). 

6.3.7 Reaching the POC:normal active state 

6.3.7.1 Host commands before reaching the POC:normal active state 

Following the initialisation sequence (see 6.3.6) the CC resides in the POC:ready state (see Figure 30). From 
this state the CC is able to perform the necessary tasks to start or join an actively communicating cluster. 
There are three POC actions that can take place, each of which is initiated by a specific command from the 
CHI. These commands are WAKEUP, RUN, and CONFIG. 

config

CSP control (SYNC)

ready

CHI RUN commandCHI WAKEUP command CHI CONFIG command

vPOC!CHIReadyRequest := 
false;

vPOC!CHIHaltRequest:=false;
vPOC!ErrorMode := ACTIVE;
vPOC!State := STARTUP;
vPOC!ColdstartNoise := false;
’update vPOC in CHI’;

WAKEUP

STARTUP

CSP control (NOSYNC)

pKeySlotUsed-
ForSync ?

vPOC!SlotMode ? 

MAC control on A (ALL),
MAC control on B (ALL)

else

 KEYSLOT

true

false

normal active

ready

FSP control on A (GO),
FSP control on B (GO)

CODEC control on A (NORMAL),
CODEC control on B (NORMAL)

PROTOCOL_ENGINE_
READY

vPOC!CHIReadyRequest := 
false;
vPOC!CHIHaltRequest:=false;
vPOC!State := CONFIG;

TERMINATE_ALL_
PROCESSES

vPOC!CHIReadyRequest := 
false;

vPOC!CHIHaltRequest:=false;
vPOC!WakeupStatus := 
UNDEFINED;

vClockCorrectionFailed := 0;
vPOC!State := NORMAL_ACTIVE;
vPOC!StartupState := UNDEFINED;
’update vPOC in CHI’;
’update vClockCorrectionFailed in CHI’;

MAC control on A (KEYSLOTONLY),
MAC control on B (KEYSLOTONLY)

CODEC control on A (NORMAL),
CODEC control on B (NORMAL)

EXP sync state 
(ACTIVE)

pWakeupPattern ?

vPOC!State := WAKEUP;
’update vPOC in CHI’;

else

’update vPOC in CHI’;

 < 2 

 

Figure 30 — POC behaviour in preparation for normal operation [POC] 

The CONFIG command shall cause the host to re-enter the POC:config state to allow the host to alter the 
current CC configuration. Since the core mechanism processes are created on the transition back to 
POC:ready following the configuration process, the processes shall be terminated on the transition to 
POC:config. This is accomplished in the SDL with the TERMINATE_ALL_PROCESSES macro (see 6.3.2), 
which signals the individual processes so that they can terminate themselves. 
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The WAKEUP command shall cause the POC to commence the wakeup procedure in accordance with the 
configuration loaded into the CC when it was previously configured. This procedure is described in detail in 
11.2, and is represented in Figure 30 by the WAKEUP macro invocation. On completion of the wakeup 
procedure, the POC shall mode all the core mechanisms appropriately for POC:ready (see 6.3.2) and return 
to the POC:ready state. 

The RUN command shall cause the POC to commence a sequence of tasks to bring the POC to normal 
operation, i.e. the POC:normal active state. First, all internal status variables are reset to their starting 
values19). Then the startup procedure is executed. In Figure 30 this is represented by the STARTUP macro 
invocation. This procedure is described in detail in 11.3. This procedure modes the core mechanisms 
appropriately to perform the sequence of tasks necessary for the node to start or enter an actively 
communicating cluster.  

The startup procedure results in the node being synchronized to the timing of the cluster. At the end of the 
communication cycle, the POC shall mode the core mechanisms depending on the values of vPOC!SlotMode 
and the configuration pKeySlotUsedForSync as depicted in Figure 30: 

 the FSP mechanism shall be moded to GO for both channels; 

 if the node is a sync node (pKeySlotUsedForSync is true) CSP shall be moded to SYNC mode. 
Otherwise, CSP shall be moded to NOSYNC; 

 if the node is currently in key slot only mode (vPOC!SlotMode is KEYSLOT), then the POC shall mode 
the MAC to KEYSLOTONLY mode on both channels. If the node is not currently in key slot only mode 
(vPOC!SlotMode is ALL), then the POC shall mode the MAC to ALL mode on both channels. 

The POC shall then enter the POC:normal active state. 

6.3.7.2 Wakeup and startup support 

As indicated above, the Wakeup and Startup procedures are performed in logical extensions of the POC that 
are embodied in the WAKEUP and STARTUP macros. The POC behaviour captured in those macros is 
documented in clause 11 and is largely self-contained. However, there are two exceptions and they are 
depicted in Figure 31. 

 

                                                      

19) This is necessary because the POC:ready state may have been entered due to a DEFERRED_READY or 
IMMEDIATE_READY command from the CHI that caused the POC to enter POC:ready from a state where the status 
variables had already been altered (see 6.3.3). 
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CHI ALLOW_
COLDSTART command

-

CHIRP on A idle end on A CHIRP on B

-

zChannelIdle(A) := true; zChannelIdle(A) := false; zChannelIdle(B) := true;

vColdstartInhibit := false;

(default config, config, wakeup 
listen, coldstart listen, halt) *

(default config, config, integration 
listen, halt, wakeup listen, 
wakeup send, wakeup detect)

 *

idle end on B

zChannelIdle(B) := false;

 

Figure 31 — Conditions detected in support of the wakeup and startup procedures [POC] 

 

The behaviour of the POC during startup is influenced by whether the node is currently inhibited from acting 
as a leading coldstart node in the startup process (see 11.3.4). A restriction on the node's ability to act as a 
leading coldstart node is reflected in the Boolean variable vColdstartInhibit. While this value is acted upon in 
the startup procedure, the CHI also allows the host to change the variable to false by issuing the 
ALLOW_COLDSTART command while in the POC:ready state and any of the states that are part of startup, 
normal active, or normal passive.  

The POC sets the value of the vColdstartInhibit variable to true on all transitions into the POC:ready state. A 
system designer shall be aware of this behaviour, and shall ensure that the ALLOW_COLDSTART commands 
are issued such that vColdstartInhibit has the desired value when the RUN command is issued20). 

In a similar manner, both the wakeup and startup procedures shall be able to determine whether or not a 
given channel is idle. Again, this knowledge is acted upon in the wakeup and startup procedures, but it can 
change at any point in time once the POC:ready state is reached. Hence it is relevant in the current context. 

The channel idle status is captured using the mechanism depicted in Figure 31 and is stored in the 
appropriate element of the zChannelIdle array. The POC shall change the value of the appropriate 
zChannelIdle array element to false whenever a communication element start is signalled for the 
corresponding channel by the BITSTRB processes (see 7.4.2).  

Similarly, the POC shall change the value of the appropriate zChannelIdle array element to true whenever a 
channel idle recognition point (CHIRP) is signalled for the corresponding channel by the BITSTRB processes 
(see 7.4.2). 

                                                      

20) For example, if a WAKEUP command is issued after the host has already issued the ALLOW_COLDSTART 
command the vColdstartInhibit variable will be set to true at the completion of the wakeup attempt. A similar situation 
would occur if the host issues a CONFIG command after an ALLOW_COLDSTART command. 
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The zChannelIdle array is of type T_ChannelBoolArray. 

Definition: T_ChannelBoolArray (7) 

newtype T_ChannelBoolArray 
Array(T_Channel,Boolean); 

endnewtype; 
 

The index to the array is the channel identifier, which is of type T_Channel.  

 

Definition: T_Channel (8) 

newtype T_Channel 
literals A, B; 

endnewtype; 
 

 

6.3.8 Behaviour during normal operation 

6.3.8.1 General 

Other than the commands that preempt regular behavioural flow (see 6.3.4), there are two components of the 
POC behaviour once normal operation has begun.  

 The capture of deferred host commands that the CHI relays to the POC for later processing (see 6.3.5). 

 The cyclical processing of error status information and deferred host commands at the end of each cycle.  

6.3.8.2 Cyclic behaviour 

6.3.8.2.1 Recurring Tasks 

When the POC:normal active state is reached, the protocol's core mechanisms are set to the modes 
appropriate for performing the communication tasks for which the CC is intended. In the absence of atypical 
influences, the POC will remain in the POC:normal active state until the host initiates the shutdown process by 
issuing a command that causes a transition to the POC:halt or POC:ready state either immediately or at the 
cycle boundary.  

While in the POC:normal active state, the POC performs several tasks at the end of each communication 
cycle to determine if it is necessary to change its own operating mode or the operating modes of any of the 
core mechanisms. These changes result in appropriate moding commands to the core mechanisms. The 
remainder of this subclause describes the cyclical POC processing that evaluates whether there is a need for 
these mode changes and the moding consequences. 
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6.3.8.2.2 Cycle counter 

The moding decisions made by the POC at the end of each cycle depend on whether the current cycle 
number is even or odd. At the start of each cycle, the clock synchronisation mechanism signals the current 
cycle number to the POC with the  cycle start signal so that the POC can make this determination. The POC 
shall acquire the current cycle count as depicted in Figure 32. 

 

-

cycle start
(vCycleCounter)

* (external startup)

 

Figure 32 — POC determination of the cycle counter value [POC] 

 

6.3.8.2.3 POC:normal active state 

Following a successful startup the POC will reside in the POC:normal active state (see 6.3.7). As depicted in 
Figure 33 the POC performs a sequence of tasks at the end of each communication cycle for the purpose of 
determining whether the POC should change the moding of the core mechanisms before the beginning of the 
next communication cycle. The CSP process (see Figure 157) signals the completion of the clock correction 
calculation to the POC using the  SyncCalcResult signal.  

This signal results in the following. 

 If vPOC!SlotMode is ALL_PENDING, the POC shall change its value to ALL and enable all frame 
transmissions by moding MAC to ALL for both channels. This completes the POC's reaction to the 
ALL_SLOTS command received asynchronously during the preceding cycle (see 6.3.5.2). 

 The POC then performs a sequence of error checking tasks whose outcome determines the subsequent 
behaviour. This task sequence is represented by the invocation of the NORMAL_ERROR_CHECK macro 
in Figure 33. The details of this task sequence are described in 6.3.8.2.5.2. As a result the POC will be in 
one of the following states. 

 If the vPOC!ErrorMode is ACTIVE and the CHI did not relay a DEFERRED_HALT or a 
DEFERRED_READY command to the POC in the preceding communication cycle (see 6.3.5.1), the 
POC shall remain in the POC:normal active state. 

 If the vPOC!ErrorMode is PASSIVE and the CHI did not relay a DEFERRED_HALT or a 
DEFERRED_READY command to the POC in the preceding communication cycle (see 6.3.5.1), the 
POC shall mode the MAC and CSP to halt frame transmission and transition to the POC:normal 
passive state. 

 If vPOC!ErrorMode is COMM_HALT the POC shall halt the execution of the core mechanisms by 
moding them to STANDBY and transition to the POC:halt state. 

 If the CHI did relay a DEFERRED_HALT command to the POC in the preceding communication 
cycle (see 6.3.5.1), the POC shall stop the execution of the core mechanisms by moding them to 
STANDBY and transition to the POC:halt state. 
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 If the CHI did relay a DEFERRED_READY command to the POC in the preceding communication 
cycle (see 6.3.5.1), the POC shall stop the execution of the core mechanisms by moding them to 
STANDBY and transition to the POC:ready state. 

 

normal active

halt

vPOC!SlotMode ?

vPOC!SlotMode := ALL;
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else
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NORMAL_
ERROR_CHECK
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MAC control on A (ALL),
MAC control on B (ALL)

vPOC!State := HALT;

MAC control on A (NOCE),
MAC control on B (NOCE),
CSP control (NOSYNC),
EXP sync state (PASSIVE)

vAllowPassiveToActive :=0;
vPOC!State := NORMAL_PASSIVE;
’update vAllowPassiveToActive in CHI’;
’update vPOC in CHI’;
’update vClockCorrectionFailed in CHI’;

’update vPOC in CHI’;
’update vClock-

CorrectionFailed in CHI’;

SyncCalcResult(zSyncCalcResult, 
zStartupX, zRefX)

ready

 READY

PROTOCOL_ENGINE_
READY

EXP sync state 
(ACTIVE)

 

Figure 33 — Cyclical behaviour in the POC:normal active state [POC]21)  

 

6.3.8.2.4 POC:normal passive state 

The POC's behaviour in the POC:normal passive state is analogous its behaviour in the POC:normal active 
state (see 6.3.8.2.3). As depicted in Figure 34 the POC performs a sequence of tasks at the end of each 
communication cycle for the purpose of determining whether the POC should change the moding of the core 
mechanisms before the beginning of the next communication cycle. The CSP process (see Figure 157) 
signals the completion of the clock correction calculation to the POC using the  SyncCalcResult signal. 

This signal results in the following. 

                                                      

21) zStartupX is zStartupNodes in even cycles and zRxStartupPairs in odd cycles. zRefX is zRefNode in even cycles 
and zRefPair in odd cycles. See Figure 157 for details. 
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 If vPOC!SlotMode is ALL_PENDING, the POC shall change its value to ALL and enable all frame 
transmissions by moding Media Access Control process to ALL for both channels. This completes the 
POC's reaction to the ALL_SLOTS command received asynchronously during the preceding cycle (see 
6.3.5.2). 

 The POC then performs a sequence of error checking tasks whose outcome determines the subsequent 
behaviour. This task sequence is represented by the invocation of the PASSIVE_ERROR_CHECK macro 
in Figure 34. The details of this task sequence are described in 6.3.8.2.5.3. As a result the POC will be in 
one of the following states. 

 If the vPOC!ErrorMode is ACTIVE and the CHI did not relay a DEFERRED_HALT or a 
DEFERRED_READY command to the POC in the preceding communication cycle (see 6.3.5.1), the 
POC shall mode the MAC and CSP mechanisms to support resumption of frame transmission based 
on whether the node is a sync node (pKeySlotUsedForSync is true) and whether the node is 
currently in key slot only mode, and then transition to the POC:normal active state. 

 If the vPOC!ErrorMode is PASSIVE and the CHI did not relay a DEFERRED_HALT or a 
DEFERRED_READY command to the POC in the preceding communication cycle (see 6.3.5.1), the 
POC shall remain in to the POC:normal passive state. 

 If vPOC!ErrorMode is COMM_HALT the POC shall stop the execution of the core mechanisms by 
moding them to STANDBY and transition to the POC:halt state. 

 If the CHI did relay a DEFERRED_HALT command to the POC in the preceding communication 
cycle (see 6.3.5.1), the POC shall stop the execution of the core mechanisms by moding them to 
STANDBY and transition to the POC:halt state. 

 If the CHI did relay a DEFERRED_READY command to the POC in the preceding communication 
cycle (see 6.3.5.1), the POC shall stop the execution of the core mechanisms by moding them to 
STANDBY and transition to the POC:ready state. 
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Figure 34 — Cyclical behaviour in the POC:normal passive state [POC]22)  

 

6.3.8.2.5 Error checking during normal operation 

6.3.8.2.5.1 Error checking overview 

During normal operation (POC is in the POC:normal active or POC:normal passive state) error checking is 
performed by two similarly structured procedures described by the NORMAL_ERROR_CHECK (see 
Figure 35) and PASSIVE_ERROR_CHECK (see Figure 36) macros. In both cases, the macro determines a 

                                                      

22) zStartupX is zStartupNodes in even cycles and zRxStartupPairs in odd cycles. zRefX is zRefNode in even cycles 
and zRefPair in odd cycles. See Figure 157 for details. 
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new value of vPOC!ErrorMode which, in turn, determines the subsequent cycle-end behaviour (see 
subclauses 6.3.8.2.3 and 6.3.8.2.4). 

At the end of each communication cycle CSP communicates the error consequences of the clock 
synchronisation mechanism's rate and offset calculations. In the SDL this is accomplished with the  
SyncCalcResult signal whose first argument, zSyncCalcResult, assumes one of three values: 

 WITHIN_BOUNDS indicates that the calculations resulted in no errors; 

 MISSING_TERM indicates that either the rate or offset correction could not be calculated; 

 EXCEEDS_BOUNDS indicates that either the rate or offset correction term calculated was deemed too 
large when compared to the calibrated limits. 

The consequences of the EXCEEDS_BOUNDS value are processed in every cycle. The other two results are 
only processed at the end of odd cycles. 

The error checking behaviour is detailed in subclauses 6.3.8.2.5.2 and 6.3.8.2.5.3. A number of configuration 
alternatives and the need to verify cycle timing before resuming communication influence the detailed error 
checking behaviour. However, the basic concept can be grasped by considering the behaviour in the absence 
of these considerations. In the absence of these influences, the processing path is determined by the value of 
zSyncCalcResult as follows. 

 In all cycles (even or odd), zSyncCalcResult = EXCEEDS_BOUNDS causes the POC to transition to the 
POC:halt state. 

 In odd cycles, zSyncCalcResult = WITHIN_BOUNDS causes the POC to stay in, or transition to, the 
POC:normal active state. 

 In odd cycles, if zSyncCalcResult = MISSING_TERM. 

 The POC will transition to the POC:halt state if the MISSING_TERM value has persisted for at least 
gMaxWithoutClockCorrectionFatal odd cycles. 

 The POC will transition to (or remain in) the POC:normal passive state if the MISSING_TERM value 
has persisted for at least gMaxWithoutClockCorrectionPassive, but less than gMaxWithoutClock-
CorrectionFatal odd cycles. 

 Otherwise the POC stays in the POC:normal active state. 

6.3.8.2.5.2 Error checking details for the POC:normal active state 

The zSyncCalcResult value obtained from CSP is used to determine the new vPOC!ErrorMode as depicted in 
Figure 35. 

 If zSyncCalcResult is WITHIN_BOUNDS, the vPOC!ErrorMode remains ACTIVE. 

 If zSyncCalcResult is EXCEEDS_BOUNDS. 

 If the node is configured to allow communication to be halted due to severe clock calculation errors 
(pAllowHaltDueToClock is true), then the vPOC!ErrorMode is set to COMM_HALT. 

 If the node is configured not to allow communication to be halted due to severe clock calculation 
errors (pAllowHaltDueToClock is false), then the vPOC!ErrorMode is set to PASSIVE. 

 If zSyncCalcResult is MISSING_TERM and the cycle is even, the condition is ignored and 
vPOC!ErrorMode remains ACTIVE. 
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 If zSyncCalcResult is MISSING_TERM and the cycle is odd the behaviour is determined by how many 
consecutive odd cycles (vClockCorrectionFailed) have yielded MISSING_TERM. 

 If vClockCorrectionFailed < gMaxWithoutClockCorrectionPassive, then the vPOC!ErrorMode remains 
ACTIVE. 

 If gMaxWithoutClockCorrectionPassive <= vClockCorrectionFailed <   
gMaxWithoutClockCorrectionFatal, then the vPOC!ErrorMode is set to PASSIVE. 

 If vClockCorrectionFailed >= gMaxWithoutClockCorrectionFatal and  

 The node is configured to allow communication to be halted due to severe clock calculation 
errors (pAllowHaltDueToClock is true), then the vPOC!ErrorMode is set to COMM_HALT. 

 The node is configured not to allow communication to be halted due to severe clock calculation 
errors (pAllowHaltDueToClock is false), then the vPOC!ErrorMode is set to PASSIVE. 
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Figure 35 — Error checking in the POC:normal active state [POC] 
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6.3.8.2.5.3 Error checking details for the POC:normal passive state 

The zSyncCalcResult value obtained from CSP is used to determine the new vPOC!ErrorMode as depicted in 
Figure 36. 

 If zSyncCalcResult is WITHIN_BOUNDS and it is an even cycle the condition is ignored and 
vPOC!ErrorMode remains PASSIVE. 

 If zSyncCalcResult is WITHIN_BOUNDS and it is an odd cycle. 

 If the node is configured to disallow the resumption of transmissions following the entry to 
POC:normal passive (pAllowPassiveToActive is zero) vPOC!ErrorMode remains PASSIVE. 

 If the node is configured to allow the resumption of transmissions following the entry to POC:normal 
passive (pAllowPassiveToActive is non-zero) the behaviour is determined by how many consecutive 
odd cycles have yielded WITHIN_BOUNDS. 

 If less than pAllowPassiveToActive consecutive odd cycles have yielded WITHIN_BOUNDS, 
then the vPOC!ErrorMode remains PASSIVE. 

 If at least pAllowPassiveToActive consecutive odd cycles have yielded WITHIN_BOUNDS, the 
vPOC!ErrorMode depends on the number (zStartupX) of startup frame pairs observed in the 
preceding double cycle. 

 If the node has seen more than one startup frame pair (zStartupX > 1) then the 
vPOC!ErrorMode is set to ACTIVE. 

 If the node has seen only one startup frame pair (zStartupX = 1) and if the node is a 
coldstart node (pKeySlotUsedForStartup = true) then the vPOC!ErrorMode is set to 
ACTIVE. 

 If neither of the preceding two conditions is met then the vPOC!ErrorMode remains 
PASSIVE. 

 If zSyncCalcResult is EXCEEDS_BOUNDS: 

 If the node is configured to allow communication to be halted due to severe clock calculation errors 
(pAllowHaltDueToClock is true), then the vPOC!ErrorMode is set to COMM_HALT. 

 If the node is configured not to allow communication to be halted due to severe clock calculation 
errors (pAllowHaltDueToClock is false), then the vPOC!ErrorMode remains PASSIVE. 

 If zSyncCalcResult is MISSING_TERM and the cycle is even, the condition is ignored and 
vPOC!ErrorMode remains PASSIVE. 

 If zSyncCalcResult is MISSING_TERM and the cycle is odd, then the behaviour is determined by how 
many consecutive odd cycles have yielded MISSING_TERM. 

 If at least gMaxWithoutClockCorrectionFatal consecutive odd cycles have yielded MISSING_TERM, 
and 

 The node is configured to allow communication to be halted due to severe clock calculation 
errors (pAllowHaltDueToClock is true), then the vPOC!ErrorMode is set to COMM_HALT. 

 The node is configured not to allow communication to be halted due to severe clock calculation 
errors (pAllowHaltDueToClock is false), then the vPOC!ErrorMode remains PASSIVE. 



BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

58 © ISO 2013 – All rights reserved 
 

 If less than gMaxWithoutClockCorrectionFatal consecutive odd cycles have yielded MISSING_TERM 
then the vPOC!ErrorMode remains PASSIVE. 
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Figure 36 — Error checking in the POC:normal passive state [POC]23)  

                                                      

23) zStartupX is zStartupNodes in even cycles and zRxStartupPairs in odd cycles. zRefX is zRefNode in even cycles 
and zRefPair in odd cycles. See Figure 157 for details. 
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7 Coding and Decoding 

7.1 Principles 

This subclause describes the coding and decoding behaviour of the TxD, RxD, and TxEN interface signals 
between the communication controller and the bus driver. 

A node may support up to two independent physical layer channels, identified as channel A and channel B. 
Refer to 5.8.4 for additional information on the interface between the CC and the BD. The description in this 
subclause assumes a physical layer that appears to the protocol engine as a binary medium with two distinct 
levels, called HIGH and LOW24). A bit stream generated from these two levels is called a communication 
element (CE). 

A node shall use a non-return to zero (NRZ) signalling method for coding and decoding of a CE. This means 
that the generated bit level is either LOW or HIGH during the entire bit time gdBit. 

The node processes bit streams present on the physical media, extracts frame and symbol information, and 
passes this information to the relevant FlexRay processes. 

7.2 Description 

In order to support two channels each node shall implement two sets of independent coding and decoding 
processes, one for channel A and another for channel B. The subsequent paragraphs of this subclause 
specify the function of the coding and decoding for channel A. It is assumed that whenever a channel-specific 
process is defined for channel A there is another, essentially identical, process defined for channel B, even 
though this process is not explicitly described in the specification. 

The description of the coding and decoding behaviour is contained in three processes. These processes are 
the main coding and decoding process (CODEC) and the following two sub-processes: 

 Bit strobing process (BITSTRB); 

 Wakeup pattern decoding process (WUPDEC). 

The POC is responsible for creating the CODEC process before entering the POC:ready state. Once 
instantiated, the CODEC process is responsible for creating and terminating the subprocesses. The POC is 
responsible for sending a signal that causes a termination of the CODEC process. If the CODEC process is 
not executing (i.e., if it has not yet been instantiated or if it has been terminated) the TxEN and TxD outputs 
shall be HIGH25). 

The relationships between the coding / decoding and the other core mechanisms are depicted in Figure 3726). 

 

                                                      

24) Detailed bus state definitions may be found in ISO 17458-4. 
25) When a dual channel device is configured to operate in a single channel mode, the TxEN and TxD outputs shall be 

driven high on the unused channel. This requirement applies whenever the "logical" TxEN and TxD outputs are 
connected to physical pins. It is possible, for example, that an implementation allows more than one function to be 
combined on a physical pin. In such implementations, this specification places no requirements on the behaviour of 
those pins when they are not configured to be outputs of the FlexRay protocol. 

26) The dark lines represent data flows between mechanisms that are relevant to this subclause. The lighter gray lines 
are relevant to the protocol, but not to this clause. 

http://dx.doi.org/10.3403/30253320U


BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

60 © ISO 2013 – All rights reserved 
 

frame and symbol
processing

media access
control

clock 
synchronization

startup

macrotick
generation

clock 
synchronization

processing

protocol
operation

control

controller
host interface

coding / decoding 
processes
channel A

frame and symbol
processing
channel A

media access
control

channel A

clock 
synchronization

startup channel A

to channel interface from channel interface

to / from host

media 
access
control
channel B

coding / decoding
processes
channel B

frame and 
symbol
processing
channel B

clock 
synchronization

startup 
channel B

 

Figure 37 — Coding / Decoding context 

 

7.2.1 Frame and symbol encoding 

7.2.1.1 General 

This subclause specifies the behaviour of the mechanisms used by the node to encode the communication 
elements into a bit stream and how the transmitting node represents this bit stream to the bus driver for 
communication onto the physical media. 

7.2.1.2 Frame encoding 

7.2.1.2.1 Transmission start sequence 

The transmission start sequence (TSS) is used to initiate proper connection setup through the network. A 
transmitting node generates a TSS that consists of a continuous LOW for a period given by the parameter 
gdTSSTransmitter. 
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The purpose of the TSS is to mark the beginning of a transmission and to set up the path between the 
transmitter and receiver. This includes setting up the input and output connections of an active star as well as 
allowing the receiving bus driver the time necessary to realize that the bus is no longer idle. Further, the active 
low portion of the TSS allows a transmitting BD to actually begin transmission (since the BD will not actually 
begin transmitting after TxEN is activated until TxD is commanding an active low). During this set up, active 
stars and bus drivers truncate a number of bits at the beginning of a communication element. The TSS 
prevents the content of the frame or symbol27) from being truncated. 

7.2.1.2.2 Frame start sequence 

The frame start sequence (FSS) is used to compensate for a possible quantization error in the first byte start 
sequence after the TSS. The FSS shall consist of one HIGH gdBit time. The node shall append an FSS to the 
bit stream immediately following the TSS of a transmitted frame. 

7.2.1.2.3 Byte start sequence 

The byte start sequence (BSS) is used to provide bit stream timing information to the receiving devices. The 
BSS shall consist of one HIGH gdBit time followed by one LOW gdBit time. Each byte of frame data shall be 
sent on the channel as an extended byte sequence that consists of one BSS followed by eight data bits. 

7.2.1.2.4 Frame end sequence 

The frame end sequence (FES) is used to mark the end of the last byte sequence of a frame. The FES shall 
consist of one LOW gdBit time followed by one HIGH gdBit time. The node shall append an FES to the bit 
stream immediately after the last extended byte sequence of the frame. 

For frames transmitted in the static segment the second bit of the FES is the last bit in the transmitted bit 
stream. As a result, the transmitting node shall set the TxEN signal to HIGH at the end of the second bit of the 
FES. 

For frames transmitted in the dynamic segment the FES is followed by the dynamic trailing sequence (see 
below). 

7.2.1.2.5 Dynamic trailing sequence 

The dynamic trailing sequence (DTS), which is only used for frames transmitted in the dynamic segment, is 
used to indicate the exact point in time of the transmitter's minislot action point28) and prevents premature 
channel idle detection29) by the receivers. When transmitting a frame in the dynamic segment the node shall 
transmit a DTS immediately after the FES of the frame. 

The DTS consists of two parts - a variable-length period with the TxD output at the LOW level, followed by a 
fixed-length period with the TxD output at the HIGH level. The minimum length of the LOW period is one 
gdBit. After this minimum length the node leaves the TxD output at the LOW level until the next minislot action 
point. At the next minislot action point the node shall switch the TxD output to the HIGH level, and the node 
shall switch the TxEN output to the HIGH level after a delay of 1 gdBit after the minislot action point30). The 
duration of a DTS is variable and can assume any value between 2 gdBit (for a DTS composed of 1 gdBit 
LOW and 1 gdBit HIGH), and gdMinislot + 2 gdBit (if the DTS starts slightly later than one gdBit before a 
minislot action point). 

                                                      

27) A TSS is not used before transmission of a WUS or WUDOP because those symbols begin with a sufficiently long 
active low phase to achieve these goals. 

28) See also clause 13. 
29) See also 7.2.5. 
30) This ensures that there is a period of one gdBit during which the TxD output is at the HIGH level prior to the transition 

of TxEN output to the HIGH level. This is required for the stability of certain types of physical layers. 
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NOTE The processes defining the behaviour of the CODEC do not have any direct knowledge of the minislot action 
point - those processes are informed of the appropriate time to end the generation of the DTS by the signal stop 
transmission on A sent by the MAC process. 

7.2.1.2.6 Frame bit stream assembly 

In order to transmit a frame the node assembles a bit stream out of the frame data using the elements 
described above. The behaviour, which is described by the CODEC process (see Figure 55) consists of the 
following steps: 

a) Break the frame data down into individual bytes. 

b) Prepend a TSS at the start of the bit stream. 

c) Add an FSS at the end of the TSS. 

d) Create extended byte sequences for each frame data byte by adding a BSS before the bits of the byte. 

e) Assemble a continuous bit stream for the frame data by concatenating the extended byte sequences in 
the same order as the frame data bytes. 

f) Calculate the bytes of the frame CRC, create extended byte sequences for these bytes, and concatenate 
them to form a bit stream for the frame CRC. 

g) Append an FES at the end of the bit stream. 

h) Append a DTS after the FES (if the frame is to be transmitted in the dynamic segment). 

Steps a) - f) of the list above are performed by the prepbitstream function used by the CODEC process (see 
Figure 55). 

Figure 38 shows the bit stream of a frame transmitted in the static segment and related events relevant to the 
CODEC process: 
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Key 

a Input signal transmit frame on A (vCEType, vTF) received from the MAC process (see Figure 99) and output signal 
decoding halted on A sent to the FSP process (see Figure 119, Figure 120, and Figure 127). 

b Output signal frame transmitted on A sent to the FSP process (see Figure 119). 

c Output signal decoding started on A sent to the FSP process (see Figure 119). 

Figure 38 — Frame encoding in the static segment 
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Figure 39 shows the bit stream of a frame transmitted in the dynamic segment and related events relevant to 
the CODEC process: 
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Key 

a Input signal  transmit frame on A (vCEType, vTF) received from the MAC process (see Figure 104) and output signal 
decoding halted on A sent to the FSP process (see Figure 119, Figure 120, and Figure 127). 

b Output signal frame transmitted on A sent to the FSP process (see Figure 128). 

c Output signal DTS start on A sent to the MAC process (see Figure 104). 

d Input signal stop transmission on A received from the MAC process (see Figure 104). 

e Output signal decoding started on A sent to the FSP process (see Figure 128). 

Figure 39 — Frame encoding in the dynamic segment 

7.2.1.3 Symbol encoding 

7.2.1.3.1 General 

The FlexRay communication protocol defines four symbols that are represented by three distinct symbol bit 
patterns. 

 Pattern 1 = Collision Avoidance Symbol31) (CAS) and Media Access Test Symbol (MTS). 

 Pattern 2 = Wakeup Symbol (WUS). 

 Pattern 3 = Wakeup During Operation Pattern (WUDOP). 

The node shall encode the MTS and CAS in exactly the same manner. Receivers distinguish between these 
symbols based on the node's protocol status. The encoding process does not distinguish between these two 
symbols. The bit streams for each of the symbols are described in the subsequent subclauses. 

7.2.1.3.2 Collision avoidance symbol and media access test symbol 

The node shall transmit these symbols starting with the TSS, followed by a LOW level with a duration of 
cdCAS as shown in Figure 40. The node shall transmit these symbols with the edges of the TxEN signal being 
synchronous with the TxD at the start of transmission, and with TxD returning to high after a delay period 

                                                      

31) See also clause 11. 
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(defined by the parameter cdStaggerDelay) following the point that the TxEN signal returns to high at the end 
of transmission. For details refer to Figure 54 and Figure 6032). 

Figure 40 illustrates the bit stream for a CAS or MTS symbol and related events relevant to the CODEC 
process: 
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Key 

a Input signal transmit symbol on A (vCEType) received from the MAC process with vCEType = CAS_MTS (from 
Figure 95 if the node is sending a CAS or from Figure 108 if the node is sending an MTS) and output signal decoding 
halted on A sent to the FSP process (see Figure 119, Figure 120, and Figure 127). 

b Output signal decoding started on A sent to the FSP process (see Figure 128). 

NOTE See section 3.3 for the used abbreviated terms. 

Figure 40 — CAS and MTS symbol encoding 

 

7.2.1.3.3 Wakeup symbol 

The node shall support a dedicated wakeup symbol (WUS) composed of gdWakeupTxActive bits transmitted 
at a LOW level followed by gdWakeupTxIdle bits of 'idle'. A node generates a wakeup pattern (WUP) by 
repeating the wakeup symbol pWakeupPattern times 33). An example of a wakeup pattern formed by a 
sequence of two wakeup symbols is shown in Figure 41. 

 

                                                      

32) The delay in TxD at the end of transmission (i.e., a stagger in the deactivation of the TxEN and TxD outputs) is done 
to avoid the possibility of momentary glitches at the end of symbol transmission that could arise if systematic delays 
in CC, interface, or BD would cause the TxD signal to effectively transition before the TxEN signal is deactivated. By 
staggering the deactivation the possibility of such glitches is avoided. A similar situation that could arise at the start of 
transmission requires no special treatment due to the behavioural characteristics of the BD, where a transmission 
does not start until both the TxEN and TxD inputs are active (see ISO 17458-4 for further details). 

33) pWakeupPattern is a configurable parameter that indicates how many times the WUS is repeated to form a WUP. 
The required value of pWakeupPattern is affected by the number of active stars in the communication channel, and 
by the detailed wakeup forwarding characteristics of these active stars. Details of this configuration are beyond the 
scope of this document. Refer to ISO 17458-4 and the documentation of the active star components for further 
details. 

http://dx.doi.org/10.3403/30253320U
http://dx.doi.org/10.3403/30253320U
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Key 

a Input signal transmit symbol on A (vCEType) received from the POC process with vCEType = WUP (see 
Figure 132). 

b Output signal WUP transmitted on A sent to the POC process (see Figure 132). 

NOTE See section 3.3 for the used abbreviated terms. 

Figure 41 — Wakeup pattern consisting of two wakeup symbols 

 

The node shall transmit a WUS with the edges of the TxEN signal being synchronous to the TxD at the start of 
the WUS's low phase, and with TxD returning to high after a delay period (defined by the parameter 
cdStaggerDelay) following the point that the TxEN signal returns to high at the start of the WUS's idle phase 
(which is also the end of the WUS's low phase)34).  

NOTE There is no TSS transmission associated with a WUS.  

The node shall be capable of detecting activity on the channel during gdWakeupTxIdle inside a WUP as 
shown in Figure 42. 

Figure 42 shows an example bit stream that could result from a wakeup symbol collision and shows related 
events relevant to the CODEC and WUPDEC processes35). 

 

                                                      

34) The purpose of the staggering of the TxD and TxEN is the same as for transmission of the CAS/MTS - to avoid the 
possibility of glitches when the TxEN output is deactivated. 

35) In the figure, node 2 transmits a WUP even though node 1 had previously begun transmitting a WUP. This can occur 
if node 2 does not receive the WUS’s previously sent by node 1. One possible reason that this could occur is that the 
first several WUS’s of the wakeup pattern were used to wake up a sleeping star positioned between node 1 and 
node 2. On the other hand, node 3 may receive more of the WUS's sent by node 1 if the path between node 1 and 
node 3 consumes fewer WUS's than the path between node 1 and node 2. 
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Key 

a Input signal transmit symbol on A (vCEType) received from the POC process of node 1 with vCEType = WUP (see 
Figure 132). 

b Input signal transmit symbol on A (vCEType) received from the POC process of node 2 with vCEType = WUP (see 
Figure 132). 

c Output signal wakeup collision on A sent from the CODEC process of node 1 to the POC process of node 1 (see 
Figure 132). 

d Output signal wakeup decoded on A sent from the WUPDEC process of node 3 to the POC process (see 7.2.7.3.2) 
and to the FSP process (see Figure 117). 

Figure 42 — Wakeup symbol collision and wakeup pattern reception 

 

7.2.1.3.4 Wakeup During Operation Pattern (WUDOP) 

The node shall support the transmission of a Wakeup During Operation Pattern (WUDOP), intended to allow 
the node to send a pattern during normal operation that will cause a remote wakeup-capable BD that is in the 
low power state to detect a wakeup. The WUDOP consists of a sequence of LOW-HIGH-LOW-HIGH-LOW 
phases followed by a brief HIGH phase with a duration of a single bit36). The durations of all of the phases 
except for the last are gdWakeupTxActive bits. 

                                                      

36) The single bit of high at the end of the WUDOP is required for idle detection stability of certain types of physical 
layers. 
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Figure 43 shows the bit stream of a WUDOP and related events relevant to the CODEC process: 
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Key 

a Input signal transmit symbol on A (vCEType) received from the MAC process with vCEType = WUDOP (see 
Figure 108) and output signal decoding halted on A sent to the FSP process (see Figure 119, Figure 120, and 
Figure 127). 

b Output signal decoding started on A sent to the FSP process (see Figure 128). 

Figure 43 — Wakeup During Operation Pattern 

 

The node shall transmit a WUDOP with the leading edge of the TxEN signal synchronous to the TxD at the 
start of the WUDOP's first low phase, and with TxD returning to high one bit time before the TxEN signal 
returns to high at the end of the WUDOP.  

NOTE There is no TSS transmission associated with a WUDOP. 

Before and after the actively transmitted WUDOP, a receiver shall see phases of idle on the bus. This is 
achieved by an appropriate configuration of the symbol window action point (see B.4.11) and the size of the 
symbol window (see B.4.14). 

7.2.2 Sampling and majority voting 

The node shall perform sampling on the RxD input, i.e., for each channel sample clock period the node shall 
sample and store the level of the RxD input37). The node shall temporarily store the most recent cVoting-
Samples samples of the input. 

The node shall perform a majority voting operation on the sampled RxD signal. The purpose of the majority 
voting operation is to filter the RxD signal (the sampled RxD signal is the input and a voted RxD on A signal is 
the output). The majority voting mechanism is a filter for suppressing glitches (spikes) on the RxD input signal. 
In the context of this subclause a glitch is defined to be an event that changes the current condition of the 
physical layer such that its detected logic state is temporarily forced to a value different than what is being 
sent on the channel by the transmitting node. 

The decoder shall continuously evaluate the last stored cVotingSamples samples (i.e., the samples that are 
within the majority voting window) and shall calculate the number of HIGH samples. If the majority of the 
                                                      

37) CC's that support two channels shall perform the sampling and majority voting operations for both channels. The 
channels are independent (i.e., the mechanism results in two sets of voted values, one for channel A and another for 
channel B). 
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samples are HIGH then the voting unit output signal zVotedVal is HIGH, otherwise zVotedVal is LOW. The 
parameter zVotedVal captures the current value of the voted RxD on A signal as depicted within the BITSTRB 
process in Figure 74. 

Figure 44 depicts a sampling and majority voting example. A rising edge on the channel sample clock causes 
the current value from the RxD bit stream to be sampled and stored within a stabilizing flip-flop. The next 
rising edge on the sample clock shifts the value from the stabilizing flip-flop into the voting window. The 
majority of samples within the voting window determines the zVotedVal output; the level of zVotedVal changes 
as this majority changes. Single glitches that affect only one or two channel sample clock periods are 
suppressed. In the absence of glitches, the value of zVotedVal has a fixed delay of cVotingDelay + 
adInternalRxDelay38) sample clock periods relative to the value of the sampled RxD. 

All other mechanisms of the decoding process shall consume the signal bit strobed on A (zVotedVal) 
generated by the BITSTRB process (see Figure 74) and shall not directly consider the RxD serial data input 
signal. 
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voting window 11111 11111 11110 11100 1100110011 00111 11111 11110 11100 11000 10000 0000001111 00000 00000 00000 00001 00011 00111 01111

glitch

cVotingDelay  
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Figure 44 — Sampling and majority voting of the RxD input (adInternalRxDelay = 1) 

 

7.2.3 Bit clock alignment and bit strobing 

The bit clock alignment mechanism synchronizes the local bit clock used for bit strobing to the received bit 
stream represented by the zVotedVal variable. 

A sample counter shall count the samples of zVotedVal cyclically in the range of 1 to cSamplesPerBit. 

A bit synchronisation edge is used to realign the bit timing of the receiver (i.e., bit clock resynchronisation). 
The node shall enable the bit synchronisation edge detection each time a HIGH bit is strobed except when a 
HIGH bit is strobed while decoding bits from a byte in the header, payload or trailer. Synchronisation is 
enabled for the edge between the two bits in the BSS for these bytes. 

The bit clock alignment shall perform the bit synchronisation when it is enabled and when zVotedVal changes 
to LOW. 

When a bit synchronisation edge is detected (and bit synchronisation is enabled) the bit clock alignment shall 
not increment the sample counter but instead shall set it to a value of two for the next sample. The node shall 

                                                      

38) In this example the optional stabilizing flip-flop introduces the required minimum internal delay (adInternalRxDelay) of 
one sample up to the strobe point. Note that an additional delay after the determination of zVotedVal is possible, this 
delay would then increase the value of adInternalRxDelay. 
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only perform bit synchronisation on HIGH to LOW transitions of zVotedVal (i.e., on the falling edge of the 
majority voted samples)39). 

Whenever a bit synchronisation is performed, the bit clock alignment mechanism shall disable further bit 
synchronisations until it is enabled again as described above. The bit stream decoding process shall perform 
at most one bit synchronisation between any two consecutive bit strobe points. 

The bit synchronisation mechanism defines the phase of the cyclic sample counter, which in turn determines 
the position of the strobe point. The strobe point is the point in time when the cyclic sample counter value is 
equal to cStrobeOffset. 

A bit shall be strobed when the cyclic sample counter is at the value cStrobeOffset, if this does not coincide 
with a bit synchronisation. When this condition is fulfilled, the current value of zVotedVal is taken as the 
current bit value and is signalled to the other processes. This action is called bit strobing. 

Figure 45 depicts the mechanism of the bit synchronisation when a frame is received. 
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Figure 45 — Bit synchronisation 

 

The example from Figure 45 shows the nominal case of an FSS and BSS with cSamplesPerBit samples. At 
the bit synchronisation edge, the sample counter is set to '2' for the sample following the detected edge. 

The example also shows a misalignment after the received first header byte of the frame. The misalignment is 
reflected by the value of the sample counter at the start of the HIGH bit of the BSS (see the first highlighted 
area). The first expected sample (HIGH) of BSS n + 1 should occur when the sample counter value is '1'. 

Since it actually occurs when the sample counter value is '2', the edge was decoded with a delay of one 
channel sample clock period. Bit synchronisation, performed by resetting the sample counter, takes place with 
the next bit synchronisation edge (see second highlighted area). The effect of the bit synchronisation is that 
the distance of edge to the strobe point is the same as if the edge would have appeared at the expected 
sample (see also 7.2.8). 

To detect activity on a channel, it is necessary that at least cStrobeOffset consecutive LOW samples make it 
through the majority voter. This is a consequence of the combination of the majority voting and the bit 
synchronisation mechanisms. 

The SDL representation of the BITSTRB process is depicted in Figure 74.  

                                                      

39) This is necessary as the output of the physical layer may have different rise and fall times for rising and falling edges. 
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7.2.4 Implementation specific delays 

In addition to the delays on the path from RxD input to the signal bit strobed on A (zVotedVal) implied by the 
definition of the voting mechanism (cVotingDelay) and the bit strobing mechanism (cStrobeOffset) an actual 
implementation might need to add an additional delay (adInternalRxDelay) into this path. 

Such an additional delay might for example be the sum of delays introduced by stabilizing flip-flops after the 
RXD input or an additional flip-flop after the voting mechanism. The FlexRay data link layer specification 
tolerates such an additional delay in the range from cdInternalRxDelayMin to cdInternalRxDelayMax sample 
clock periods (see B.4.3.2.1). The important conformance test criteria is that the overall delay in this path is in 
the range defined by the sum of cVotingDelay + cStrobeOffset + adInternalRxDelay. 

If an implementation introduces an additional delay greater than cdInternalRxDelayMax or smaller than 
cdInternalRxDelayMin it internally has to compensate the delay. 

7.2.5 Channel idle detection 

The node shall use a channel idle detection mechanism to identify the end of the current communication 
element. Idle detection is done by means of a sample tick timer which is set to a duration of 
cChannelIdleDelimiter times cSamplesPerBit. This idle timer is started (or restarted) whenever a bit is strobed 
as low by the BITSTRB process - expiration of the timer (which implies that no bits have been strobed as low 
during the duration of the timer40) results in the detection of idle (i.e., the channel is considered to be idle).  

The channel continues to be considered idle until a bit is strobed as low, which causes the channel to be 
considered to be active and once again starts the idle timer. Channel idle detection is not active while the 
node is encoding a communication element - the decoding and encoding mechanisms are mutually exclusive 
and idle detection is a logical component of the decoding mechanism. 

When the CODEC process is instantiated by the POC, the CODEC process immediately instantiates the 
BITSTRB process and puts it in the GO mode where idle detection is performed. The initial assumption is that 
the channel is active, so cChannelIdleDelimiter times cSamplesPerBit sample ticks shall go by without 
strobing a low bit before the channel is considered to be idle (see 7.4.2). 

When the CODEC process is encoding a communication element, the BITSTRB process is placed in the 
STANDBY mode and idle detection is stopped. Following the completion of the encoding of a communication 
element, a mode control signal is sent to the BITSTRB process that causes the process to restart the idle 
timer and once again begin idle detection. 

Because of certain effects on the physical layer, a node that has just completed a transmission may 
experience a period of time where the signal seen at the RxD input does not reflect what is actually occurring 
on the bus. For example, for a period of time following the completion of a transmission the RxD input may 
indicate LOW even though no node in the system is actively driving the bus. In order to overcome this issue, 
when the BITSTRB process is restarted following a transmission it is placed into the BLIND mode.  

While operating in this mode, the BITSTRB process basically ignores the actual status of the RxD input and 
acts as if the RxD input was indicating HIGH at all times. The BITSTRB process remains in the BLIND mode 
for a configurable number of bit times (determined by the parameter gdIgnoreAfterTx) after which it returns to 
the GO mode where bits are strobed in the normal manner. Although no actual bits are strobed while the 
BITSTRB process is in the BLIND mode, when BITSTRB leaves the BLIND mode it behaves as if it had 
strobed gdIgnoreAfterTx consecutive HIGH bits. 

7.2.6 Action point and time reference point 

As defined in clause 9, an action point (AP) is an instant in time at which a node performs a specific action in 
alignment with its local time base, e.g. when a transmitter starts the transmission of a frame. 

                                                      

40) This is not necessarily equivalent to strobing cChannelIdleDelimiter consecutive high bits because under some 
circumstances the strobe point can be modified by the bit clock alignment mechanism discussed in 7.2.3. 
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The clock synchronisation algorithm requires a measurement of the time difference between the static slot 
action point of the transmitter of a sync frame and the static slot action point of the corresponding slot in the 
receiving node. Obviously, a receiving node does not have direct knowledge of the static slot action point of a 
different node. The clock synchronisation algorithm instead infers the time of the transmitter's action point by 
making a measurement of the arrival time of a received sync frame41). 

Due to certain effects on the physical transmission medium it is possible that the first edge at the start of a 
frame is delayed different than all other edges of the same frame, causing the TSS seen at the RxD input to 
be shorter or longer than the TSS that was transmitted. This effect is called TSS length change and it has 
various causes (e.g., connection setup in active stars, differences in propagation delays of rising and falling 
edges, etc.). The cumulative effect of all such causes on a TSS transmitted from node M to node N is to 
change the length of the TSS by dFrameTSSLengthChangeM,N. A node shall accept the TSS as valid if any 
number of consecutive strobed logical LOW bits in the range of 1 to (gdTSSTransmitter + 2) is detected42). 

Signals transmitted from a node M are received at node N with the propagation delay dPropagationDelayM,N. 
The propagation delay is considered to be the same for all corresponding edges in the transmit TxD signal of 
node M to the receive RxD signal at node N except for the first edge at the start of the frame. 

Figure 46 depicts the effect of propagation delay and TSS length change. For a more detailed description 
refer to ISO 17458-4. 
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Figure 46 — TSS length change and propagation 

 

As a result of TSS length change and propagation delay, it is not possible to know the precise relationship 
between when a receiver begins to see a TSS and when the transmitter started to send the TSS. It is 
necessary to base the time measurements of received frames on an element of the frame that is not affected 
by TSS length change. The receiving node takes the timestamp of a secondary time reference point (TRP) 
that occurs during the first BSS of a message and uses this to calculate the timestamp of a primary TRP that 
represents when the node should have seen the start of the TSS if the TSS had not been affected by TSS 
length change and propagation delay. The timestamp of the primary TRP is used as the observed arrival time 
of the frame by the clock synchronisation algorithm. 

The strobe point of the second bit of the first BSS in a frame (i.e., the first HIGH to LOW edge detected after a 
valid TSS) is defined to be the secondary TRP. A receiver shall capture a time stamp, zSecondaryTRP, at the 
secondary TRP of each potential frame start. 

                                                      

41) This is possible because transmission of the sync frame begins at the static slot action point of the transmitting node. 
42) The use of the "+ 2" constant places requirements on the EPL parameters such as dFrameTSSLengthChange and 

dFrameTSSEMIInfluence. See Table B.5 for additional details. 

http://dx.doi.org/10.3403/30253320U
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The node shall calculate a primary TRP, zPrimaryTRP, from the secondary TRP timestamp. The 
zPrimaryTRP timestamp serves as the sync frame's observed arrival time for the clock sync, and is passed 
onto the FSP process via the frame decoded on A (vRF) signal. Both zPrimaryTRP and zSecondaryTRP are 
measured in microticks. 

Figure 47 depicts definitions for the time reference point calculations and shows the following significant 
events. 
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Key 

a Transmitter static slot action point - the point at which the transmitter begins sending its frame. 

b Secondary TRP (timestamp zSecondaryTRP), located at the strobe point of the second bit of the first BSS. At this 
point in time, the decoding process shall provide the output signal potential frame start on A to the CSS on channel A 
process (see also 12.4.3). 

c Primary TRP (timestamp zPrimaryTRP), calculated from zSecondaryTRP by subtracting a fixed offset 
(pDecodingCorrection) and a delay compensation term (pDelayCompensation) that attempts to correct for the effects 
of propagation delay. This does not represent an actual event, but rather only indicates the point in time that the 
timestamp represents. 

Figure 47 — Time reference point definitions 

 

The difference between zPrimaryTRP and zSecondaryTRP is the summation of node parameters 
pDecodingCorrection and pDelayCompensation. The calculation of pDecodingCorrection is given in B.4.26. 

The Primary TRP timestamp is passed to the FSP process (and subsequently to the clock synchronisation 
process) via the PrimaryTRP element of the vRF structure (see Figure 72, Figure 118, Figure 120, and 
Figure 165). The clock synchronisation algorithm uses the deviation between zPrimaryTRP and the sync 
frame's expected arrival time to calculate and compensate the node's local clock deviation. For additional 
details concerning the time difference measurements see clause 12. 

7.2.7 Frame and symbol decoding 

7.2.7.1 Overview 

This subclause specifies the mechanisms used to perform bit stream decoding. The decoding part of the 
CODEC process interprets the bit stream observed at the voted RxD input of the node (provided by the 
sequence of bit strobed on A signals from the BITSTRB process). 
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The decoding part of the CODEC process does not perform concurrent decoding of frames and CAS / MTS 
symbols, i.e. for a given channel the CODEC process shall support only one decoding method (frame or 
CAS / MTS symbol) at a time. For example, once a new communication element is classified as a start of a 
frame then CAS / MTS decoding is not required until the channel has been detected as idle again after the 
end of the frame and / or after a decoding error is detected. 

In addition to the CODEC process the WUPDEC process is permanently performing wakeup pattern detection 
unless the CODEC is transmitting a CE or is in STANDBY. This detection is active even if the CODEC is 
currently decoding a frame or a CAS / MTS symbol. 

The decoding process shall support successful decoding43) of consecutive communication elements when the 
spacing between the last bit of the previous element and the first bit of the subsequent communication 
element is greater than or equal to cChannelIdleDelimiter bits. 

The bit stream decoding of the individual channels on a dual channel node shall operate independently from 
one another. 

The node shall derive the channel sample clock period gdSampleClockPeriod from the oscillator clock period 
directly or by means of division or multiplication. In addition to the channel sample clock period, the decoding 
process shall operate based on the programmed bit length as characterized by the parameter gdBit. The 
programmed bit length is an integer multiple of the channel sample clock period. It is defined to be the product 
of samples per bit cSamplesPerBit and the channel sample clock period gdSampleClockPeriod. 

The relation between the channel sample clock period and the microtick is characterized by the microtick 
prescaler pSamplesPerMicrotick. The channel sample clock and the microtick clock shall be synchronized, 
i.e., there shall be an integer multiplicative relationship between the two periods and the two clocks shall have 
a fixed phase relationship. 

7.2.7.2 Frame decoding 

A frame starts at CE start with the first strobed LOW bit after channel idle. The channel idle delimiter refers to 
the time required by the idle detection mechanism to determine that the channel is idle (see 7.2.5). In order for 
idle to occur all bits strobed during the channel idle delimiter shall be strobed as high. 

                                                      

43) The successful decoding does not necessarily imply successful reception in terms of being able to present the 
payload of the decoded stream to the host. 
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Figure 48 depicts the received frame bit stream of a frame and events in relation to the CODEC and the 
BITSTRB processes. 
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Key 

a Output signal idle end on A to the POC process shown in Figure 31, Figure 131, and Figure 142, and to the MAC 
process shown in Figure 102; output signal CE start on A to the MAC process shown in Figure 103, and to the FSP 
process shown in Figure 119. 

b Output signal potential frame start on A to the CSS process shown in Figure 162. 

c Output signal header received on A to the POC process shown in Figure 131, Figure 133, Figure 142, Figure 144, 
and Figure 146.  

d Output signal frame decoded on A (vRF) to the FSP process shown in Figure 120. 

e Output signal potential idle start on A to the MAC process shown in Figure 103; Output signal DTS received on A to 
the MAC process shown in Figure 103. 

f Output signal CHIRP on A to the MAC process shown in Figure 103 and Figure 102, to the FSP process shown in 
Figure 127, and to the POC process shown in Figure 31, Figure 131, and Figure 142.  

Figure 48 — Received frame bit stream 

 

The BITSTRB process shall output a potential idle start on A signal every time a bit strobed as high was 
preceded by a bit strobed as low. To keep the figure simple these signals are not shown in Figure 48 with the 
exception of the potential idle start at the end of the DTS. Although all of these potential idle start signals are 
processed by the MAC process, only the one associated with the end of the DTS is relevant to the operation 
of dynamic segment media access. 

7.2.7.3 Symbol decoding 

7.2.7.3.1 Collision avoidance symbol and media access test symbol decoding 

The node shall decode the CAS and MTS symbols in exactly the same manner. Since these symbols are 
encoded by a LOW level of duration cdCAS starting immediately after the TSS, it is not possible for receivers 
to detect the boundary between the TSS and the subsequent LOW bits that make up the CAS or MTS. 

As a result, the detection of a CAS or MTS shall be considered as valid coding if a LOW level with a duration 
between cdCASRxLowMin and gdCASRxLowMax is detected. 
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Figure 49 shows the received bit stream of a CAS / MTS and events in relation to the CODEC and the 
BITSTRB processes: 

 

strobing

High

Low

zVotedVal

Channel Idle Delimiter>= cChannelIdleDelimiter

a bCODEC
BITSTRB

POC
MAC
FSP

c

POC
MAC
FSP

POC
FSP

 

Key 

a Output signal idle end on A to the POC process shown in Figure 31, Figure 131, and Figure 142, and to the MAC 
process shown in Figure 102; output signal CE start on A to the MAC process shown in Figure 103, and to the FSP 
process shown in Figure 119. 

b Output signal CAS_MTS decoded on A to the POC process shown in Figure 131, Figure 142, Figure 144, and 
Figure 146, to the MAC process shown in Figure 103, and to the FSP process shown in Figure 121. 

c Output signal CHIRP on A to the POC process shown in Figure 31, Figure 131, and Figure 142, to the MAC process 
shown in Figure 103 and Figure 102, and to the FSP process shown in Figure 127. 

Figure 49 — Received CAS / MTS bit stream 

 

7.2.7.3.2 Wakeup symbol decoding 

The detection of either a WUDOP or a WUP composed of at least 2 WUS's shall be considered as valid 
coding if all of the following conditions are met: 

 a HIGH level with a duration of at least gdWakeupRxIdle is detected; 

 this is followed by a duration of at least gdWakeupRxLow at the LOW level. After this duration a window 
timer is started, even if the LOW level is still present. The timer will expire after gdWakeupRxWindow; 

 this is followed by a duration of at least gdWakeupRxIdle at the HIGH level; 

 this is followed by a duration of at least gdWakeupRxLow at the LOW level; 

 this is followed by a duration of at least gdWakeupRxIdle at the HIGH level; 

 the last three phases of HIGH, LOW and HIGH are received before the window timer that was started 
during the first LOW phase has expired. 

The bit stream received by node 3 in Figure 42 shows the reception of a WUP and the related event relevant 
to the WUPDEC process of node 3. The output signal wakeup decoded on A is sent to the POC process 
shown in Figure 131 and Figure 133, and to the FSP process shown in Figure 117.  
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7.2.7.4 Decoding error 

Exiting one of the decoding macros CAS_MTS_DECODING, FSS_BSS_DECODING, HEADER_DECODING, 
PAYLOAD_DECODING, or TRAILER_DECODING (shown in Figure 62) with an exit condition of decoding 
error shall abort and restart the decoding again. Prior to doing so, the FSP is informed about the decoding 
error. 

When a decoding error is detected the node shall treat the first wrong bit as the last bit of the current 
communication element, i.e. it shall terminate communication element decoding and shall wait for successful 
channel idle detection. 

It shall not lead to a decoding error if one or three HIGH bits (instead of exactly two HIGH bits) are strobed 
after the TSS. 

In the FSS-BSS sequence, it is possible that, due to the quantization error of one sample period from the 
receiver's point of view, an incoming HIGH level of 2 gdBit length (FSS + first bit of the BSS) may be 
interpreted as 

 (2 * cSamplesPerBit - 1), or 

 (2 * cSamplesPerBit), or 

 (2 * cSamplesPerBit + 1) samples long. 

This could also arise as a systematic effect due to slow / fast clocks of the node and the analog-to-digital 
conversion of the signal. 

Figure 50 shows an example FSS-BSS decoding with only (2 * cSamplesPerBit - 1) samples of HIGH. Under 
all conditions at least one leading HIGH bit between the TSS and the first data byte is accurately decoded. 

In addition to the effects of quantization, the presence of asymmetry could also result in additional reduction or 
lengthening of the actual duration of the HIGH period of the FSS-BSS sequence. Any amount of asymmetry 
that is accommodated by the decoding algorithm would still result in the strobing of between one and three 
bits at HIGH. Refer to ISO 17458-4 for additional details. 

 

High

Low
zVotedVal

TSS FSS

samples 1 0 0 0 0 0 0 0 0 0 1 1 1 1

gdSampleClockPeriod

sample count

1

3 4 2 3 4 5 2 3 4 5 6 7 8 1 2

1

2

1 1 1

3 4 5

sample counter 
reset

1 1 1

BSS

1 1 1 1 0 0 0 0 0 0 0 0

6 7 8 1 2 3 4 5 2 3 4 5 6 7 8

cStrobeOffset
sample counter 

reset  

Figure 50 — Start of frame with FSS BSS decoding 

 

7.2.8 Signal integrity 

In general, there are several conditions (e.g. clock oscillator differences, electrical characteristics of the 
transmission media or the transceivers, EMI etc.) that can cause variations of signal timing or introduce 
anomalies / glitches into the communication bit stream. The decoding function attempts to enable tolerance of 

http://dx.doi.org/10.3403/30253320U
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the physical layer against presence of one glitch in a bit cell when the length of the glitch is less than or equal 
to one channel sample clock period44). 

Asymmetric delays cause bit edges to occur earlier or later than would otherwise be expected from a 
receiver's perspective. This could contribute to individual receivers incorrectly determining a received bit 
value. To avoid this effect these delays shall be bounded such that the aggregate effect of asymmetric delays 
at any receiving node does not affect the majority of bit samples used in determining the voted value at the 
strobe offset. Asymmetry causes and effects are described and characterized in ISO 17458-4. 

7.3 Coding and decoding process 

7.3.1 Operating modes 

The POC shall set the operating mode of the CODEC for each communication channel.  

Definition (9) shows the formal definition of the CODEC operating modes. 

Definition: T_CodecMode (9) 

newtype T_CodecMode 
literals STANDBY, NORMAL, READY; 

endnewtype; 
 

 

 In the STANDBY mode, the execution of the CODEC and all of its subprocesses are effectively halted. 

 In the READY mode the bit strobe process BITSTRB and the wakeup detection process WUPDEC are 
executed but the CODEC process waits in its CODEC:ready state. 

 In the NORMAL mode the CODEC process, the bit strobe process BITSTRB and the wakeup detection 
process WUPDEC are executed. 

7.3.2 Coding and decoding process behaviour 

This subclause contains the formalized specification of the CODEC control process. Figure 51, Figure 52 and 
Figure 53 depict the specification of the CODEC control process and the termination of the CODEC process. 
When the CODEC process receives the POC signal terminate CODEC_A, the CODEC sends termination 
signals to its subprocesses before terminating itself. 

                                                      

44) There are specific cases where a single glitch cannot be tolerated and others where two glitches can be tolerated. 

http://dx.doi.org/10.3403/30253320U
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Figure 51 depicts the specification of the CODEC process. 

 

CODEC control on A
(zCodecMode)

zCodecMode ?

ready

NORMAL

dcl vCEType T_CEType;
dcl zCodecMode T_CodecMode;
dcl zBit T_BitLevel;
dcl zLowBitCnt Integer;
dcl vTF T_TransmitFrame;
dcl vRF T_ReceiveFrame;
dcl zBitStream T_BitStreamArray;
dcl zBitStreamLength Integer;
ST timer tWusIdle := gdWakeupTxIdle * cSamplesPerBit;
ST timer tBitDuration := cSamplesPerBit;
ST timer tStaggerDelay := cdStaggerDelay * cSamplesPerBit;

dcl zBitCnt Integer;
dcl zRemainingPattern Integer;
dcl zByteCnt Integer;
dcl zByte T_ByteArray;
dcl zByteStream T_ByteStreamArray;
dcl zCRCCheckPassed Boolean;
dcl zPayloadLength Integer;
dcl zSecondaryTRP T_MicrotickTime;
dcl zBssError Boolean;
dcl zAbortion Boolean;
dcl zDecodingError T_DecodingError;

set TxEN on A to HIGH,
set TxD on A to HIGH,
BITSTRB control on A (GO),
WUPDEC control on A (GO)

DECODING_A

STANDBY

standby

set TxEN on A to HIGH,
set TxD on A to HIGH,
BITSTRB control on A (STANDBY),
WUPDEC control on A (STANDBY)

vRF!Channel := A;

READY

BITSTRB_A,
WUPDEC_A

reset(tWusIdle);
reset(tBitDuration);

reset(tStaggerDelay);

 

Figure 51 — CODEC process [CODEC_A] 
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Figure 52 depicts the specification of the CODEC control process. 

 

STANDBY

set TxEN on A to HIGH,
set TxD on A to HIGH,
BITSTRB control on A (STANDBY),
WUPDEC control on A (STANDBY)

standby

ready

CODEC control on A
(zCodecMode)

* (standby, ready)

zCodecMode ? READY

-

NORMAL

set TxEN on A to HIGH,
set TxD on A to HIGH,
BITSTRB control on A (GO),
WUPDEC control on A (GO),
enable sync edge detect on A

reset(tWusIdle);
reset(tBitDuration);

reset(tStaggerDelay);

 

Figure 52 — Mode control of the CODEC process [CODEC_A] 

 

Figure 53 depicts the specification of the CODEC termination process. 

 

terminate CODEC_A

terminate BITSTRB_A,
terminate WUPDEC_A

set TxEN on A to HIGH,
set TxD on A to HIGH

 *

 

Figure 53 — Termination of the CODEC process [CODEC_A] 

 

7.3.3 Encoding behaviour 

The CODEC process receives the data to transmit from the media access control process. For frame 
transmission the variable vTF of type T_TransmitFrame is used45). 

Definition: T_TransmitFrame (10) 

newtype T_TransmitFrame 
struct 

 

                                                      

45) The frame sent on the channel also contains the frame CRC. The frame CRC is not part of the vTF variable - it is 
added to the frame by the CODEC. 
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Header T_Header; 
Payload T_Payload; 

endnewtype; 

The variable zBit is used to describe the level of the TxD and TxEN interface signals between the CODEC and 
a bus driver. The zBit variable is of type T_BitLevel. 

Definition: T_BitLevel (11) 

newtype T_BitLevel 
literals HIGH, LOW; 

endnewtype; 
 

 

The CODEC process provides the assembled bit stream via the TxD signal to the BD (with the SDL signals 
set TxD on A to HIGH and set TxD on A to LOW) and controls the BD via the TxEN signal (the SDL signals 
set TxEN on A to HIGH and set TxEN on A to LOW). The transmitting node shall set TxD to HIGH in the case 
of a '1' bit and shall set TxD to LOW in the case of a '0' bit. 

Figure 54 shows a high level view of the mechanisms used for encoding. After the reception of a transmit 
frame on A or transmit symbol on A signal the CODEC process follows one of four distinct paths depending on 
the type of communication element that is to be encoded. Each of these paths is described in a separate 
macro. Before any of the macros are executed, however, the CODEC process sets the TxEN output to LOW 
and puts the BITSTRB and WUPDEC processes into STANDBY mode. 

If the CE to be encoded is a frame, the FRAME_ENCODING macro is executed (see Figure 55). This macro 
calls the prepbitstream function, which takes the inbound frame vTF from the MAC process, prepares the bit 
stream zBitStream of type T_BitStreamArray for transmission, and calculates the bit stream length 
zBitStreamLength. The prepbitstream function shall break the frame data down into individual bytes, prepend 
a TSS, add an FSS at the end of the TSS, create a series of extended byte sequences by adding a BSS at the 
beginning of each byte of frame data, calculate the frame CRC bytes and create the extended byte sequences 
for the CRC, and assemble a continuous bit stream out of the extended byte sequences. 

Once the bit stream is prepared, the macro steps bit by bit through the stream and presents it to the bus. 
Following this, the FRAME_ENCODING macro calls the TRANSMIT_FES macro and, if the frame is sent in 
the dynamic segment, the TRANSMIT_DTS macro. Once all of these are complete, the macro sends a control 
signal to the BITSTRB process that restarts bit strobing in the BLIND mode. 

If the CE to be encoded is a CAS / MTS, the CAS_MTS_ENCODING macro is executed (see Figure 60). This 
macro simply sets the TxD output to LOW and leaves it at this state for an appropriate period of time (the 
duration of TSS plus the duration of the CAS). Once the necessary duration has passed (as indicated by the 
WAIT function described in Figure 58) the TxEN output is deactivated and the BITSTRB process is restarted 
in the BLIND mode. Following a delay of cdStaggerDelay bits (see 7.2.1.3.2), the TxD output is also 
deactivated. 

If the CE to be encoded is a Wakeup Pattern, the WUP_ENCODING macro is executed (see Figure 59). This 
macro loops through pWakeupPattern iterations, each one creating a WUS as described in 7.2.1.3.3. As the 
low phase of each WUS is completed, the WUP_ENCODING macro provides the necessary staggering of the 
TxD and TxEN outputs, and commands the BITSTRB process to the BLIND mode to begin the process of 
allowing the detection of wakeup symbol collisions. If a collision is detected (by detecting 
cdWakeupMaxCollision consecutive LOW bits) the WUP_ENCODING macro is aborted, signalling a wakeup 
collision. If no collision is detected, the macro will loop until all WUS's have been generated and then exit. 

If the CE to be encoded is a WUDOP, the WUDOP_ENCODING macro is executed (see Figure 61). This 
macro transmits a sequence of LOW-HIGH-LOW-HIGH-LOW phases followed by a brief HIGH phase. 
Following the last HIGH phase the TxEN output is deactivated and the BITSTRB process is restarted in the 
BLIND mode. 
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Definition: T_BitStreamArray (12) 

newtype T_BitStreamArray 
Array (Integer, T_BitLevel); 

endnewtype; 
 

 

Figure 54 depicts the encoding mechanism [CODEC_A]. 

 

* (standby, ready) 

transmit symbol on A 
(vCEType)

CAS_MTS

WUP_ENCODING_A

STATFRAME,
DYNFRAME

vCEType ?

WUP

wait for CE start

transmit frame on A 
(vCEType, vTF)

CAS_MTS_ENCODING
_A

FRAME_ENCODING_A

decoding halted on A,
WUPDEC control on A (STANDBY),
BITSTRB control on A (STANDBY),
set TxEN on A to LOW

WUDOP_ENCODING_
A

WUDOP

decoding started on A, 
WUPDEC control on A (GO)

 

Figure 54 — Encoding mechanism [CODEC_A] 

Immediately after instantiation of the CODEC process, the encoder sends the signal set TxEN on A to HIGH 
to disable the BD's transmitter. 

 

Definition: T_CEType (13) 

newtype T_CEType 
literals STATFRAME, DYNFRAME, CAS_MTS, WUP, WUDOP; 

endnewtype; 
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7.3.4 Encoding macros 

Figure 55 depicts the frame encoding macro FRAME_ENCODING_A [CODEC_A]. 

 

set(tBitDuration);

wait for end of bit

LOW

=zBitStreamLength

zBitCnt?

zBitCnt := zBitCnt+ 1;

else

set TxD on A to LOW set TxD on A to HIGH

zBitStream(zBitCnt) ? HIGH

prepbitstream(vTF, zBitStream, 
zBitStreamLength);

zBitCnt := 0;

stop transmission on A

TRANSMIT_DTS_A

TRANSMIT_FES_A

DYNFRAME

vCEType ?

done

frame transmitted on A

else

transmission
aborted

set TxEN on A to HIGH,
BITSTRB control on A (BLIND)

FRAME_ENCODING_A

tBitDuration

WAIT_A(1)

set TxD on A to HIGH

 

Figure 55 — Encoding macro FRAME_ENCODING_A [CODEC_A] 
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Figure 56 depicts the FES encoding macro TRANSMIT_FES_A [CODEC_A]. 

 

TRANSMIT_FES_A

set(tBitDuration);

tBitDuration

wait for end of FES bit 2

false

done

set TxD on A to HIGH

set(tBitDuration);
zAbortion := false;

wait for end of FES bit 1

set TxD on A to LOW

tBitDuration

transmission 
aborted

true

stop transmission on A

zAbortion := true;

stop transmission on A

zAbortion := true;zAbortion ?

 

Figure 56 — Encoding macro TRANSMIT_FES_A [CODEC_A] 

 



BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

84 © ISO 2013 – All rights reserved 
 

Figure 57 depicts the DTS encoding macro TRANSMIT_DTS_A [CODEC_A]. 

 

TRANSMIT_DTS_A

set(tBitDuration);

tBitDuration

wait for end of first DTS bit

DTS start on A

stop transmission on A

wait for DTS end

set TxD on A to LOW

stop transmission on A

 

Figure 57 — Encoding macro TRANSMIT_DTS_A [CODEC_A] 

 

Figure 58 depicts the procedure WAIT_A [CODEC_A]. 

 

zWait ?

wait for bit duration

set(tBitDuration);

else

tBitDuration

zWait := zWait - 1;

<= 0

WAIT_A(zWait)fpar       zWait;

 

Figure 58 — Procedure WAIT_A [CODEC_A] 
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Figure 59 depicts the WUP encoding macro WUP_ENCODING_A [CODEC_A]. 

 

zRemainingPattern := 
pWakeupPattern;

> 1

zRemainingPattern ? else

zRemainingPattern :=
zRemainingPattern - 1;

WUP transmitted on  A

set TxD on A to HIGH

set TxEN on A to HIGH,
BITSTRB control on A (BLIND)

set(tStaggerDelay);
zLowBitCnt := 0;

set(tWusIdle);

tStaggerDelay

WUP_ENCODING_A

BITSTRB control on A (STANDBY),
set TxEN on A to LOW,
set TxD on A to LOW

zBit ?

WusTxIdle decoding

elsezLowBitCnt ?

zLowBitCnt :=
zLowBitCnt + 1;

wakeup collision
on A

= cdWakeupMaxCollision

LOW

HIGH

zLowBitCnt := 0;

tWusIdle

WAIT_A(gdWakeup-
TxActive)

bit strobed on A (zBit)

 

Figure 59 — Encoding macro WUP_ENCODING_A [CODEC_A] 
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Figure 60 depicts the CAS / MTS encoding macro CAS_MTS_ENCODING_A [CODEC_A]. 

 

set TxEN on A to HIGH,
BITSTRB control on A (BLIND)

set TxD on A to HIGH

CAS_MTS_ENCODING_A

set TxD on A to LOW

WAIT_A
(gdTSSTransmitter+cdCAS)

WAIT_A 
(cdStaggerDelay)

 

Figure 60 — Encoding macro CAS_MTS_ENCODING_A [CODEC_A] 
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Figure 61 depicts the WUDOP encoding macro WUDOP_ENCODING_A [CODEC_A]. 

 

set TxD on A to HIGH

set TxEN on A to HIGH,
BITSTRB control on A (BLIND)

WUDOP_ENCODING_A

set TxD on A to LOW

WAIT_A
(gdWakeup-TxActive)

WAIT_A(1)

set TxD on A to HIGH

WAIT_A(gdWakeup-
TxActive)

set TxD on A to LOW

WAIT_A(gdWakeup-
TxActive)

set TxD on A to HIGH

WAIT_A(gdWakeup-
TxActive)

set TxD on A to LOW

WAIT_A(gdWakeup-
TxActive)

 

Figure 61 — Encoding macro WUDOP_ENCODING_A [CODEC_A] 

 

7.3.5 Decoding behaviour 

A receiving node shall decode the received bit stream provided by the BITSTRB process according to the 
CODEC process. 
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Figure 62 depicts the macro DECODING_A [CODEC_A]. 

 

WAIT_FOR_CE_START_A

CAS_MTS_DECODING
_A

TSS_DECODING_A TSS too long

FSS_BSS_DECODING_A

TSS ok

HEADER_DECODING_A

PAYLOAD_DECODING_A

FSS ok

header ok

payload ok

TRAILER_DECODING_A

trailer ok

CAS_MTS decoded

decoding error

decoding error

decoding error

decoding error

decoding error on A 
(zDecodingError)

decoding error

DECODING_A

zDecodingError := 
UNSPECIFIED;

 

Figure 62 — Decoding macro DECODING_A [CODEC_A] 

 

7.3.6 Decoding macros 

The following formal definitions are used within the frame decoding macros: 

Definition: T_ByteArray (14) 

newtype T_ByteArray 
Array (Integer, T_BitLevel); 

endnewtype; 
 

 

Definition: T_ByteStreamArray (15) 

newtype T_ByteStreamArray 
Array (Integer, T_ByteArray); 

endnewtype; 
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Definition: T_CRCCheckPassed (16) 

syntype 
T_CRCCheckPassed = Boolean 

endsyntype; 
 

 

Definition: T_MicrotickTime (17) 

syntype 
T_MicrotickTime = Integer 

endsyntype; 
 

 

Definition: T_ReceiveFrame (18) 

newtype T_ReceiveFrame 
struct 

PrimaryTRP  T_MicrotickTime; 
Channel  T_Channel; 
Header  T_Header; 
Payload  T_Payload; 

endnewtype; 

 

 

Definition: T_DecodingError (19) 

newtype T_DecodingError 
literals CAS_MTS_TOO_SHORT, FSS_TOO_LONG, UNSPECIFIED; 

endnewtype; 
 

 

Figure 63 depicts the macro WAIT_FOR_CE_START_A [CODEC_A]. 

 

wait for CE start

WAIT_FOR_CE_START_A

CE start on A

 

Figure 63 — Decoding macro WAIT_FOR_CE_START_A [CODEC_A] 
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Figure 64 depicts the macro TSS_DECODING_A [CODEC_A]. 

 

TSS_DECODING_A

bit strobed on A (zBit)

zBit ?

TSS decoding

LOW

zBitCnt:= 1;

zBitCnt := zBitCnt + 1;

zBitCnt ?

HIGH

> gdTSSTransmitter + 2

TSS okTSS too long

else

 

Figure 64 — Decoding macro TSS_DECODING_A [CODEC_A] 

 

Figure 65 depicts the macro CAS_MTS_DECODING_A [CODEC_A]. 

 

CAS_MTS_DECODING_A

bit strobed on A (zBit)

zBit ?

CAS_MTS decoding

else
zBitCnt ?

>= cdCASRxLowMin

CAS_MTS decoded on A
> gdCASRxLowMax

CAS_MTS decoded decoding error

zBitCnt := zBitCnt + 1;HIGH

LOW

else
zBitCnt ?

zDecodingError := 
CAS_MTS_TOO_SHORT;

zDecodingError := 
UNSPECIFIED;

 

Figure 65 — Decoding macro CAS_MTS_DECODING_A [CODEC_A] 
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Figure 66 depicts the macro FSS_BSS_DECODING_A [CODEC_A]. 

 

FSS_BSS_DECODING_A

bit strobed on A (zBit)

FSS_BSS decoding

zBitCnt := zBitCnt + 1;

zBit ?

potential frame start
on A

FSS ok

HIGH

zBitCnt ?

> 3

decoding error

else

LOW

zBitCnt := 1;

zSecondaryTRP := now;
vRF!PrimaryTRP := 
zSecondaryTRP - 
(pDecodingCorrection + 
pDelayCompensation[A]);

zDecodingError := 
FSS_TOO_LONG;

 

Figure 66 — Decoding macro FSS_BSS_DECODING_A [CODEC_A]46)  

 

                                                      

46) If a bit is strobed at a microtick boundary ’now’ should reflect the larger microtick value. 
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Figure 67 depicts the macro HEADER_DECODING_A [CODEC_A]. 

 

HEADER_DECODING_A

zByteCnt := 0;

false

zByteCnt ?

= 5

else

zCRCCheckPassed ?

true

false

header received on A

decoding errorheader ok

zCRCCheckPassed := 
call headerCRCcheck_A
(zByteStream(0:4));

zPayloadLength := 
call getpayloadlength_A
(zByteStream(2));

truezBssError ?

decoding error

zByteStream(zByteCnt) := 
zByte(0:7);

zByteCnt := zByteCnt + 1;

zByte := call 
BYTE_DECODING_A;

zBssError := call 
BSS_DECODING_A;

 

Figure 67 — Decoding macro HEADER_DECODING_A [CODEC_A] 

 

The function headerCRCcheck returns a Boolean, zCRCCheckPassed, which is true if the header CRC 
check was passed (see 8.5.3) and is false if the header CRC check fails. The function getpayloadlength 
returns zPayloadLength, the number of bytes in the payload segment of a frame. The CODEC process uses 
zPayloadLength to determine the correct length of a received frame. See also Figure 71 and Figure 72. 
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Figure 68 depicts the procedure BYTE_DECODING_A [CODEC_A]. 

 

bit strobed on A (zBit)

byte decoding

zBitCnt := 0;

zBitCnt := zBitCnt + 1;

zBitCnt ? else

zByte(zBitCnt) := zBit;

= 8

BYTE_DECODING_A

zByte

returns  T_ByteArray;

dcl  zBitCnt  Integer; 
dcl  zBit  T_BitLevel;
dcl  zByte   T_ByteArray;

enable sync edge detect 
on A

disable sync edge detect 
on A

 

Figure 68 — Procedure BYTE_DECODING_A [CODEC_A] 

 

Figure 69 depicts the procedure BSS_DECODING_A [CODEC_A]. 

bit strobed on A (zBit)

zBit ?

BSS first bit

HIGH

LOW

bit strobed on A (zBit)

zBit ?

BSS second bit

LOW

HIGH

BSS_DECODING_A returns  Boolean;

dcl  zBit  T_BitLevel;

truefalse  

Figure 69 — Procedure BSS_DECODING_A [CODEC_A] 
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Figure 70 depicts the macro FES_DECODING_A [CODEC_A]. 

FES_DECODING_A

bit strobed on A (zBit)

zBit ?

FES first bit

LOW

bit strobed on A (zBit)

zBit ?

FES second bit

HIGH

FES ok

HIGH

LOW

decoding error

frame decoded on A
(vRF)

 

Figure 70 — Decoding macro FES_DECODING_A [CODEC_A] 

 

Figure 71 depicts the macro PAYLOAD_DECODING_A [CODEC_A]. 

PAYLOAD_DECODING_A

true

false

zByteCnt ?

= zPayloadLength + 5
else

decoding errorpayload ok

zBssError ?

decoding error

zByteStream(zByteCnt) := 
zByte(0:7);

zByteCnt := zByteCnt + 1;

zByte := call 
BYTE_DECODING_A;

zBssError := call 
BSS_DECODING_A;

 

Figure 71 — Decoding macro PAYLOAD_DECODING_A [CODEC_A] 
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Figure 72 depicts the macro TRAILER_DECODING_A [CODEC_A]. 

 

TRAILER_DECODING_A

true

false

zByteCnt ?

= zPayloadLength + 7

else

zCRCCheckPassed ?

true

false

FES_DECODING_A decoding error

FES ok

vRF := call getRF_A 
(zByteStream (0:zByteCnt));

decoding error

trailer ok

zCRCCheckPassed := 
call frameCRCcheck_A 
(zByteStream (0:zByteCnt));

zBssError ?

decoding error

zByteStream(zByteCnt) := 
zByte(0:7);

zByteCnt := zByteCnt + 1;

zByteStream(zByteCnt) := 
zByte(0:7);

zByte := call 
BYTE_DECODING_A;

zByte := call 
BYTE_DECODING_A;

zBssError := call 
BSS_DECODING_A;

DTS_DECODING_A

 

Figure 72 — Decoding macro TRAILER_DECODING_A [CODEC_A] 

 

The function frameCRCcheck returns a Boolean, zCRCCheckPassed, which is true if the frame CRC check 
was passed (see 8.5.4) and is false if the frame CRC check fails. This function is channel specific due to the 
channel specific initialisation vectors of the CRC calculation (see 8.5.4 for details).  

The function getRF used in Figure 72 extracts decoded header and payload data from zByteStream and 
returns it via the structure variable vRF. 
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Figure 73 depicts the macro DTS_DECODING_A [CODEC_A]. 

 

DTS_DECODING_A

DTS  first bit

bit strobed on A (zBit)

zBit ?

wait for DTS reception end

bit strobed on A (zBit)

zBit ?

DTS received on A

LOW

HIGH

 LOW

HIGH

 

Figure 73 — Decoding macro DTS_DECODING_A [CODEC_A] 

 

7.4 Bit strobing process 

7.4.1 Operating modes 

The receiving node shall strobe the received data from the BD according to the bit strobing process BITSTRB.  

Definition (20) shows the formal definition of the BITSTRB operating modes: 

Definition: T_StrbMode (20) 

newtype T_StrbMode 
literals STANDBY, GO, BLIND; 

endnewtype; 
 

 

The bit strobing process BITSTRB has the following three operating modes. 

 In the STANDBY mode bit strobing is effectively halted. 

 In the GO mode the bit strobing process shall be executed. 
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 In the BLIND mode the bit strobing process is paused for a configurable interval. After expiration of this 
interval the mode is switched automatically to GO. 

With the instantiation of the CODEC process the bit strobing process BITSTRB is set in the mode GO and at 
any transition of the CODEC process to CODEC:standby the bit strobing process BITSTRB is set to 
STANDBY. 

7.4.2 Bit strobing process behaviour 

Figure 74 depicts the BITSTRB process [BITSTRB_A]. 

 

BITSTRB control on A
(zStrbMode)

zStrbMode ?STANDBY

standby

zSampleCounter := 1;
zEnEdgeDetect := true;
zEdgeDetectMode := true;
zVotedVal := HIGH;
zPrevVal := HIGH;
zPrevStrobedVal := HIGH;
zStrbMode := GO;

blind

tIgnoreAfterTx

wait for voted sample

set(tIgnoreAfterTx);
set(tIdle);

zChannelIdle := false;

GOBLIND

dcl zStrbMode T_StrbMode;
dcl zChannelIdle Boolean;
dcl zEnEdgeDetect Boolean;
dcl zEdgeDetectMode Boolean;
dcl zSampleCounter Integer;
dcl zVotedVal T_BitLevel;
dcl zPrevVal T_BitLevel;
dcl zPrevStrobedVal T_BitLevel;
ST timer tIgnoreAfterTx :=  gdIgnoreAfterTx * cSamplesPerBit;
ST timer tIdle := cChannelIdleDelimiter * cSamplesPerBit;

potential idle start on A

set(tIdle);
zChannelIdle := false;

potential idle start on A

see text for requirements on 
majority voter when leaving 
standby state

see text for requirements on 
majority voter at BITSTRB 
instantiation

tIdle

zChannelIdle := true;

CHIRP on A

 

Figure 74 — BITSTRB process [BITSTRB_A] 
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The BITSTRB process shall not be instantiated until all stored samples in the majority voter represent the 
cVotingSamples most recent samples of the RxD input, i.e., when initially instantiated the BITSTRB process 
will immediately begin operation based on real inputs (as opposed to initialisation values of the majority voter). 

On a transition out of the BITSTRB:standby state the majority voter shall behave as if it had been continuously 
sampling during the entire standby state47). 

Figure 75 depicts the state "wait for voted sample" and the handling of input signals received in this state. 

wait for voted sample

enable sync edge detect 
on A

zEdgeDetectMode := true;
zEdgeDetectMode := false;

zEnEdgeDetect := false;

false

true

disable sync edge detect 
on A

zSampleCounter := 2;
zEnEdgeDetect := false;

zSampleCounter := 
zSampleCounter + 1;

zSampleCounter ?

> cSamplesPerBit

zSampleCounter := 1;

zSampleCounter ?

bit strobed on A 
(zVotedVal)

= cStrobeOffset

else

zPrevStrobedVal := 
zVotedVal;

else

CHIRP on A

zChannelIdle := true;

zVotedVal ?

zChannelIdle ?

truefalse

LOW

zPrevStrobedVal ?

potential idle start on A

LOW

HIGH

HIGH

(zEnEdgeDetect = true)
and (zPrevVal = HIGH)
and (zVotedVal = LOW) ?

zEnEdgeDetect := true;

zEdgeDetectMode ?

falsetrue

tIdle
voted RxD on A

(zVotedVal) 

CE start on A,
idle end on A

zChannelIdle := false;

set(tIdle);

zPrevVal := zVotedVal;

 

Figure 75 — Wait for voted sample [BITSTRB_A] 

                                                      

47) This is not a requirement that an implementation shall actually sample when BITSTRB is in the BITSTRB:standby 
state - an implementation that restarted sampling several samples before the transition out of standby would also be 
acceptable. 
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Figure 76 depicts the BITSTRB process control and process termination [BITSTRB_A]. 

 

BITSTRB control on A
(zStrbMode)

zStrbMode ?

-

else

standby

STANDBY

terminate BITSTRB_A

idle end on A

reset(tIgnoreAfterTx);
reset(tIdle);

(standby)* *

 

Figure 76 — BITSTRB process control and process termination [BITSTRB_A] 

 

7.5 Wakeup pattern decoding process 

7.5.1 Operating modes 

The WUPDEC process is responsible for detecting wakeups present on the bus. Such wakeups could either 
come from WUPs that are transmitted as part of the initial FlexRay wakeup process or from WUDOPs that are 
transmitted as part of the wakeup during operation procedure. 

The wakeup pattern decoding process WUPDEC distinguishes between two modes.  

Definition (21) shows the WUPDEC operating modes: 

Definition: T_WupDecMode (21) 

newtype T_WupDecMode 
literals STANDBY, GO; 

endnewtype; 
 

 

 In the STANDBY mode, the wakeup pattern decoding process (WUPDEC) is effectively halted. 

 In the GO mode, the node shall decode wakeup patterns. 
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7.5.2 Wakeup pattern decoding process behaviour 

Figure 77 depicts the control of the wakeup pattern decoding process and its termination [WUPDEC_A]. 

 

standby

WUPDEC control on A
(zWupDecMode)

dcl zBit T_BitLevel;
dcl zLastLevel T_BitLevel;
dcl zWupDecMode T_WupDecMode;

ST timer tWUPWindow := gdWakeupRxWindow * cSamplesPerBit;
ST timer tWUPLow := gdWakeupRxLow * cSamplesPerBit;
ST timer tWUPHigh := gdWakeupRxIdle * cSamplesPerBit;

zWupDecMode ?

GO

standby

else

(standby)

zWupDecMode ?

STANDBY

else

standbybus level evaluation -

*

*

HIGH

zLastLevel ?

bit strobed on A 
(zLastLevel)

set(tWUPHigh);

LOW

wait for idle

reset(tWUPLow);
reset(tWUPHigh);

reset(tWUPWindow);

terminate
WUPDEC_A

WUPDEC control on A
(zWupDecMode)

 

Figure 77 — Control of the wakeup pattern decoding process and its termination [WUPDEC_A] 
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Figure 78 depicts the Control of the wakeup timer [WUPDEC_A]. 

 

set(tWUPLow);
reset(tWUPHigh);

reset(tWUPLow);
set(tWUPHigh);

-

wait for idle, low1 decoding, 
idle1 decoding, low2 
decoding, idle2 decoding

zBit ?

HIGH LOW

bit strobed on A (zBit)

true

zBit != zLastLevel ?

zLastLevel := zBit;

false

 

Figure 78 — Control of the wakeup timer [WUPDEC_A] 
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Figure 79 depicts the Wakeup pattern decoding [WUPDEC_A]. 

 

low1 decoding

set(tWUPWindow);

wakeup decoded on A 

reset(tWUPWindow);

idle1 decoding

wait for idle

low2 decoding
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Figure 79 — Wakeup pattern decoding [WUPDEC_A] 
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8 Frame Format 

8.1 Overview 

An overview of the FlexRay frame format is given in Figure 80. The frame consists of three segments. These 
are the header segment, the payload segment, and the trailer segment. 

Figure 80 depicts the FlexRay frame format. 

 

Header Segment Trailer SegmentPayload Segment

Frame ID
Payload
length

Header
CRC

Cycle
count

Data 0 Data 1 Data 2 Data n CRC CRC CRC

24 bits0 … 254 bytes6 bits11 bits7 bits11 bits1
bit

1
bit

1
bit

1
bit

1
bit

FlexRay Frame 5 + (0 … 254) + 3 bytes

area covered by Header CRC
Startup frame indicator

Sync frame indicator

Null frame indicator

Payload preamble indicator

Reserved bit

 

Figure 80 — FlexRay frame format 

 

The node shall transmit the frame on the network such that the header segment appears first, followed by the 
payload segment, and then followed by the trailer segment, which is transmitted last. Within the individual 
segments the node shall transmit the fields in left to right order as depicted in Figure 80, (in the header 
segment, for example, the reserved bit is transmitted first and the cycle count field is transmitted last). 

8.2 FlexRay header segment (5 bytes) 

8.2.1 General 

The FlexRay header segment consists of 5 bytes. These bytes contain the reserved bit, the payload preamble 
indicator, the null frame indicator, the sync frame indicator, the startup frame indicator, the frame ID, the 
payload length, the header CRC, and the cycle count. 
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8.2.2 Reserved bit (1 bit) 

The reserved bit is reserved for future protocol use. It shall not be used by the application and is defined as 
follows. 

 A transmitting node shall set the reserved bit to logical '0'. 

 A receiving node shall ignore the reserved bit48). 

Definition: T_Reserved (22) 

syntype T_Reserved = Integer 
constants 0 : 1 

endsyntype; 
 

 

8.2.3 Payload preamble indicator (1 bit) 

The payload preamble indicator indicates whether or not an optional vector is contained within the payload 
segment of the frame transmitted. 

 If the frame is transmitted in the static segment the payload preamble indicator indicates the presence of 
a network management vector at the beginning of the payload. 

 If the frame is transmitted in the dynamic segment the payload preamble indicator indicates the presence 
of a message ID at the beginning of the payload. 

If the payload preamble indicator is set to zero then the payload segment of the frame does not contain a 
network management vector or a message ID, respectively. 

If the payload preamble indicator is set to one then the payload segment of the frame contains a network 
management vector if it is transmitted in the static segment or a message ID if it is transmitted in the dynamic 
segment. 

Definition: T_PPIndicator (23) 

syntype T_PPIndicator = Integer 
constants 0 : 1 

endsyntype; 
 

 

8.2.4 Null frame indicator (1 bit) 

The null frame indicator indicates whether or not the frame is a null frame, i.e. a frame that contains no 
useable data in the payload segment of the frame49). The conditions under which a transmitting node may 

                                                      

48) The receiving node uses the value of the reserved bit for the Frame CRC checking process, but otherwise ignores its 
value (i.e., the receiver shall accept either a 1 or a 0 in this field). 

49) The null frame indicator indicates only whether payload data was available to the communication controller at the 
time the frame was sent. A null frame indicator set to zero informs the receiving node(s) that data in the payload 
segment shall not be used. If the bit is set to one data is present in the payload segment from the transmitting 
communication controller's perspective. The receiving node may still have to do additional checks to decide whether 
the data is actually valid from an application perspective. 
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send a null frame are detailed in clause 9. Nodes that receive a null frame may still use some information 
related to the frame50).  

 If the null frame indicator is set to zero then the payload segment contains no valid data. All bytes in the 
payload segment are set to zero, and the payload preamble indicator is set to zero. 

 If the null frame indicator is set to one then the payload segment contains data. 

Definition: T_NFIndicator (24) 

syntype T_NFIndicator = Integer 
constants 0 : 1 

endsyntype; 
 

 

8.2.5 Sync frame indicator (1 bit) 

The sync frame indicator indicates whether or not the frame is a sync frame, i.e. a frame that is utilized for 
system wide synchronisation of communication51). 

 If the sync frame indicator is set to zero then no receiving node shall consider the frame for 
synchronisation or synchronisation related tasks. 

 If the sync frame indicator is set to one then all receiving nodes shall utilize the frame for synchronisation 
if it meets other acceptance criteria (see below). 

The clock synchronisation mechanism (described in clause 12) makes use of the sync frame indicator. There 
are several conditions that result in the sync frame indicator being set to one and subsequently utilized by the 
clock synchronisation mechanism. Details of how the node shall set the sync frame indicator are specified in 
clause 9 and 12.8. 

Definition: T_SyFIndicator (25) 

syntype T_SyFIndicator = Integer 
constants 0 : 1 

endsyntype; 
 

 

8.2.6 Startup frame indicator (1 bit) 

The startup frame indicator indicates whether or not a frame is a startup frame. Startup frames serve a special 
role in the startup mechanism. Only coldstart nodes are allowed to transmit startup frames. 

 If the startup frame indicator is set to zero then the frame is not a startup frame. 

 If the startup frame indicator is set to one then the frame is a startup frame. 

The startup frame indicator shall only be set to one in the sync frames of coldstart nodes. Therefore, a frame 
with the startup frame indicator set to one shall also have the sync frame indicator set to one. As a result, all 
valid startup frames are also sync frames. 

                                                      

50) For example, the clock synchronisation algorithm will use the arrival time of null frames with the Sync frame indicator 
set to one (provided all other criteria for that frame's acceptance are met). 

51) Sync frames are only sent in the static segment. Please refer to the rules to configure sync frames. 
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The startup (described in clause 11) and clock synchronisation (described in clause 12) mechanisms utilize 
the startup frame indicator. In both cases, the condition that the startup frame indicator is set to one is only 
one of several conditions necessary for the frame to be used by the mechanisms. Details regarding how the 
node sets the startup frame indicator are specified in clause 9 52).  

Definition: T_SuFIndicator (26) 

syntype T_SuFIndicator = Integer 
constants 0 : 1 

endsyntype; 
 

 

8.2.7 Frame ID (11 bits) 

The frame ID defines the slot in which the frame should be transmitted. A frame ID is used no more than once 
on each channel in a communication cycle. Each frame that may be transmitted in a cluster has a frame ID 
assigned to it. 

The frame ID ranges from 1 to 2 04753). The frame ID 0 is an invalid frame ID54). The node shall transmit the 
frame ID such that the most significant bit of the frame ID is transmitted first with the remaining bits of the 
frame ID being transmitted in decreasing order of significance. 

Definition: T_FrameID (27) 

syntype T_FrameID = Integer 
constants 0 : 2047 55) 

endsyntype; 
 

 

8.2.8 Payload length (7 bits) 

The payload length field is used to indicate the size of the payload segment. The payload segment size is 
encoded in this field by setting it to the number of payload data bytes divided by two (e.g., a frame that 
contains a payload segment consisting of 72 bytes would be sent with the payload length set to 36)56).  

The payload length ranges from 0 to cPayloadLengthMax 57) which corresponds to a payload segment 
containing 2 * cPayloadLengthMax bytes. 

The payload length shall be fixed and identical for all frames sent in the static segment of a communication 
cycle. For these frames the payload length field shall be transmitted with the payload length set to 
gPayloadLengthStatic. 

                                                      

52) The configuration of exactly three nodes in a cluster as coldstart nodes avoids the formation of cliques during startup 
for several fault scenarios. It is also possible to configure more than three nodes as coldstart nodes but the clique 
avoidance mechanism will not work in this case. 

53) In binary: from (000 0000 0001)2 to (111 1111 1111)2. 
54) The frame ID of a transmitted frame is determined by the value of vSlotCounter(Ch) at the time of transmission (see 

clause 13). In the absence of faults, vSlotCounter(Ch) can never be zero when a slot is available for transmission. 
Received frames with frame ID zero will always be identified as erroneous because a slot ID mismatch is a certainty 
due to the fact that there is no slot with ID zero. 

55) Frame IDs range from 1 to 2 047. The zero is used to mark invalid frames, empty slots, etc. 
56) The payload length field does not include the number of bytes within the header and the trailer segments of the 

FlexRay frame. 
57) The electrical physical layer puts a restriction on the usable payload such that the overall transmission duration is 

limited (see ISO 17458-4. It may restrict the payload length at 2,5 and 5 Mbit / s. For details please refer to B.4.41 
and B.4.42. 

http://dx.doi.org/10.3403/30253320U
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The payload length may be different for different frames in the dynamic segment of a communication cycle. In 
addition, the payload length of a specific dynamic segment frame may vary from cycle to cycle. Finally, the 
payload lengths of a specific dynamic segment frame may be different on each configured channel. 

The node shall transmit the payload length such that the most significant bit of the payload length is 
transmitted first with the remaining bits of the payload length being transmitted in decreasing order of 
significance. 

Definition: T_Length (28) 

syntype T_Length = Integer 
constants 0 : cPayloadLengthMax 

endsyntype; 
 

 

8.2.9 Header CRC (11 bits) 

The header CRC contains a cyclic redundancy check code (CRC) that is computed over the sync frame 
indicator, the startup frame indicator, the frame ID, and the payload length. The CC shall not calculate the 
header CRC for a transmitted frame. The header CRC of transmitted frames is computed offline and provided 
to the CC by means of configuration (i.e., it is not computed by the transmitting CC)58). The CC shall calculate 
the header CRC of a received frame in order to check that the CRC is correct. 

The CRC is computed in the same manner for all configured channels. The CRC polynomial59) shall be  

x11 + x9 + x8 + x7 + x2 + 1 = (x + 1)*(x5 + x3 + 1)*(x5 + x4 + x3 + x + 1) 
 

The initialisation vector of the register used to generate the header CRC shall be 0x01A. 

With respect to the computation of the header CRC, the sync frame indicator shall be shifted in first, followed 
by the startup frame indicator, followed by the most significant bit of the frame ID, followed by subsequent bits 
of the frame ID, followed by the most significant bit of the payload length, and followed by subsequent bits of 
the payload length. 

The node shall transmit the header CRC such that the most significant bit of the header CRC is transmitted 
first with the remaining bits of the header CRC being transmitted in decreasing order of significance. 

A detailed description of how to generate and verify the header CRC is given in 8.5.3. 

Definition: T_HeaderCRC (29) 

syntype T_HeaderCRC = Integer 
constants 0 : 2047 

endsyntype; 
 

 

                                                      

58) For a given frame in the static segment the values of the header fields covered by the CRC do not change during the 
operation of the cluster in the absence of faults. Implicitly, the CRC does not need to change either. Offline 
calculation of the CRC makes it unlikely that a fault-induced change to the covered header fields will also result in a 
frame with a valid header CRC (since the CRC is not recalculated based on the modified header fields). 

59) This 11 bit CRC polynomial generates a (31,20) BCH code that has a minimum Hamming distance of 6. The 
codeword consists of the data to be protected and the CRC. In this application, this CRC protects exactly 20 bits of 
data (1 sync frame indicator bit + 1 startup frame indicator bit + 11 frame ID bits + 7 payload length bits = 20 bits). 
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8.2.10 Cycle count (6 bits) 

The cycle count indicates the transmitting node's view of the value of the cycle counter vCycleCounter at the 
time of frame transmission (see subclauses 9.3.3.2 and 9.3.4.2). 

The node shall transmit the cycle count such that the most significant bit of the cycle count is transmitted first 
with the remaining bits of the cycle count being transmitted in decreasing order of significance. 

Definition: T_CycleCounter (30) 

syntype T_CycleCounter = Integer 
constants 0 : 63 

endsyntype; 
 

 

8.2.11 Formal header definition 

The formal definitions of the fields in the previous subclauses and the header segment structure depicted in 
Figure 80 yield the following formal definition for the header segment: 

Definition: T_Header (31) 

newtype T_Header 
struct 

Reserved T_Reserved; 
PPIndicator T_PPIndicator; 
NFIndicator T_NFIndicator; 
SyFIndicator T_SyFIndicator; 
SuFIndicator T_SuFIndicator; 
FrameID T_FrameID; 
Length T_Length; 
HeaderCRC T_HeaderCRC; 
CycleCount T_CycleCounter; 

endnewtype; 

 

 

8.3 FlexRay payload segment (0 – 254 bytes) 

8.3.1 Payload 

The FlexRay payload segment contains 0 to 25460) bytes (0 to 127 two-byte words) of data. Because the 
payload length contains the number of two-byte words, the payload segment contains an even number of 
bytes. The bytes of the payload segment are identified numerically, starting at 0 for the first byte after the 
header segment and increasing by one with each subsequent byte. The individual bytes are referred to as 
"Data 0", "Data 1", "Data 2", etc., with "Data 0" being the first byte of the payload segment, "Data 1" being the 
second byte, etc. 

The frame CRC described in subclause 8.5.4 has a Hamming distance of six for payload lengths up to and 
including 248 bytes. For payload lengths greater than 248 bytes the CRC has a Hamming distance of four. 

For frames transmitted in the dynamic segment the first two bytes of the payload segment may optionally be 
used as a message ID field, allowing receiving nodes to filter or steer data based on the contents of this field. 

                                                      

60) The electrical physical layer puts a restriction on the usable payload such that the overall transmission duration is 
limited (see ISO 17458-4). It may restrict the payload length at 2,5 and 5 Mbit / s. For details please refer to B.4.41 
and B.4.42. 

http://dx.doi.org/10.3403/30253320U
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The payload preamble indicator in the frame header indicates whether the payload segment contains the 
message ID. 

For frames transmitted in the static segment the first 0 to 12 bytes of the payload segment may be used as a 
network management vector. The payload preamble indicator in the frame header indicates whether the 
payload segment contains the network management vector61). The length of the network management vector 
gNetworkManagementVectorLength is configured during the POC:config state and cannot be changed in any 
other state. gNetworkManagementVectorLength can be configured between 0 and 12 bytes, inclusive. 

Starting with payload "Data 0" the node shall transmit the bytes of the payload segment such that the most 
significant bit of the byte is transmitted first with the remaining bits of the byte being transmitted in decreasing 
order of significance62).  

The product specific host interface specification determines the mapping between the position of bytes in the 
buffer and the position of the bytes in the payload segment of the frame. 

Definition: T_Payload (32) 

newtype T_Payload 
Array(T_Length, Integer) 

endnewtype; 
 

 

8.3.2 NMVector 

A number of bytes in the payload segment of the FlexRay frame format in a frame transmitted in the static 
segment can be used as Network Management Vector (NMVector). 

 The length of the NMVector is configured during POC:config by the parameter 
gNetworkManagementVectorLength. All nodes in a cluster shall be configured with the same value for 
this parameter. 

 The NMVector may only be used in frames transmitted in the static segment. 

 At the transmitting node the NMVector is written by the host as application data. The communication 
controller has no knowledge about the NMVector and no mechanism inside the communication controller 
is based on the NMVector except the ORing function described in subclause 13.3.3.4. 

 The optional presence of NMVector is indicated in the frame header by the payload preamble indicator. 

 The bits in a byte of the NMVector shall be transmitted such that the most significant bit of a byte is 
transmitted first followed by the remaining bits being transmitted in decreasing order of significance. 

 The least significant byte of the NMVector is transmitted first followed by the remaining bytes in 
increasing order of significance63).  

Figure 81 depicts the payload segment of frames transmitted in the static segment. 

 

                                                      

61) Frames that contain network management data are not restricted to contain only network management data - the 
other bytes in the payload segment may be used to convey additional, non-Network Management data. 

62) If a message ID exists, the most significant byte of the message ID is transmitted first followed by the least significant 
byte of the message ID. If no message ID exists the transmission starts with the first payload data byte (Data 0) 
followed by the remaining payload data bytes. 

63) This allows lower bits to remain at defined positions if the length of the NMVector changes. 
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Figure 81 — Payload segment of frames transmitted in the static segment 

 

8.3.3 Message ID (16 bits) 

The first two bytes of the payload segment of the FlexRay frame format for frames transmitted in the dynamic 
segment can be used as receiver filterable data called the message ID. 

 The message ID is an application determined number that identifies the contents of the data segment. 

 The message ID can only be used in frames transmitted in the dynamic segment. 

 The message ID is 16 bits long. 

 At the transmitting node the message ID is written by the host as application data. The protocol engine 
has no knowledge about the message ID and no mechanism inside the protocol engine is based on the 
message ID. 

 At the receiving node the storage of a frame may depend on the result of a filtering process that makes 
use of the message ID. All frame checks done in Frame Processing (see clause 10) are unmodified (i.e., 
are not a function of the message ID). The use of the message ID filter is defined in subclause 
13.3.2.11.3.6. 

 The presence or absence of a message ID is indicated in the frame header by the payload preamble 
indicator. 

 If this mechanism is used, the most significant bit of the MessageID shall be placed in the most significant 
bit of the first byte of the payload segment. Subsequent bits of the message ID shall be placed in the next 
payload bits in order of decreasing significance. 

Figure 82 depicts the payload segment of frames transmitted in the dynamic segment. 
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Figure 82 — Payload segment of frames transmitted in the dynamic segment 
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8.4 FlexRay trailer segment 

The FlexRay trailer segment contains a single field, a 24-bit CRC for the frame. 

The Frame CRC field contains a cyclic redundancy check code (CRC) computed over the header segment 
and the payload segment of the frame. The computation includes all fields in these segments64). 

The CRC is computed using the same generator polynomial on both channels. The CRC polynomial65) shall 
be 

x24 + x22 + x20 + x19 + x18 + x16 + x14 + x13 + x11 + x10 + x8 + x7 + x6 + x3 + x 
+1 = (x + 1)2 * (x11 + x9 + x8 + x7 + x5 + x3 + x2 + x + 1)*(x11 + x9 + x8 + 
x7 + x6 + x3 +1) 
 

The node shall use a different initialisation vector depending on which channel the frame should be 
transmitted66)  

 The node shall use the initialisation vector 0xFEDCBA for frames sent on channel A. 

 The node shall use the initialisation vector 0xABCDEF for frames sent on channel B. 

With respect to the computation of the frame CRC, the frame fields shall be fed into the CRC generator in 
network order starting with the reserved bit, and ending with the least significant bit of the last byte of the 
payload segment. 

The frame CRC shall be transmitted such that the most significant bit of the frame CRC is transmitted first with 
the remaining bits of the frame CRC being transmitted in decreasing order of significance. 

A detailed description of how to generate or verify the Frame CRC is given in subclause 8.5.4. 

Definition: T_FrameCRC (33) 

syntype T_FrameCRC = Integer 
constants 0x000000 : 0xFFFFFF 

endsyntype; 
 

 

8.5 CRC calculation details 

8.5.1 Context of the CRC calculation 

The behaviour of the CODEC while processing a received frame depends on whether or not the received 
header and frame CRCs are verified to match the values locally calculated using the actual frame data (see 
Figure 67 and Figure 72). The CODEC also appends the CRC in the trailer segment of a transmitted frame 
(see subclause 7.2.1.2.6). The algorithm executed to calculate the CRC is the same in all cases except for the 
initial values of several algorithm parameters. 

                                                      

64) This includes the header CRC, as well as any Communication Controller-generated "padding" bytes that may be 
included in the payload segment. 

65) This 24-bit CRC polynomial generates a code that has a minimum Hamming distance of 6 for codewords up to 
2 048 bits in length and a minimum Hamming distance of 4 for codewords up to 4 094 bits in length. The codeword 
consists of all frame data and the CRC. This corresponds to H=6 protection for FlexRay frames with payload lengths 
up to 248 bytes and H=4 protection for longer payload lengths. 

66) Different initialisation vectors are defined to prevent a node from communicating if it has crossed channels, 
connection of a single channel node to the wrong channel, or shorted channels (both controller channels connected 
to the same physical channel). 
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8.5.2 CRC calculation algorithm 

Initialize the CRC shift register with the appropriate initialisation value. As long as bits (vNextBit) from the 
header or payload segment of the frame are available the while-loop is executed. The number of bits available 
in the payload segment is derived from the payload length field. The bits 67) of the header and payload 
segments are fed into the CRC register by using the variable vNextBit, bit by bit, in network order, e.g., for the 
FlexRay frame CRC calculation the first bit used as vNextBit is the reserved bit field, and the last bit used is 
the least significant bit of the last byte of the payload segment. 

The following pseudo code summarizes the CRC calculation algorithm: 

vCrcReg(vCrcSize - 1 : 0) = vCrcInit; // Initialize the CRC register 
while(vNextBit) 

// determine if the CRC polynomial has to be applied by taking 
// the exclusive OR of the most significant bit of the CRC register 
// and the next bit to be fed into the register 
 
vCrcNext = vNextBit EXOR vCrcReg(vCrcSize - 1); 
 
// Shift the CRC register left by one bit 
 
vCrcReg (vCrcSize - 1 : 1) = vCrcReg(vCrcSize - 2 : 0); 
vCrcReg(0) = 0; 
 
// Apply the CRC polynomial if necessary 
 
if vCrcNext 

vCrcReg(vCrcSize - 1 : 0) = 
vCrcReg(vCrcSize - 1 : 0) EXOR vCrcPolynomial; 

end; // end if 
end; // end while loop 

 

8.5.3 Header CRC calculation 

Among its other uses, the header CRC field of a FlexRay frame is intended to provide protection against 
improper modification of the sync frame indicator or startup frame indicator fields by a faulty communication 
controller (CC). The CC that is responsible for transmitting a particular frame shall not compute the header 
CRC field for that frame. Rather, the CC shall be configured with the appropriate header CRC for a given 
frame by the host68). 

When a CC receives a frame it shall perform the header CRC computations based on the header field values 
received and check the computed value against the header CRC value received in the frame. The frames 
from each channel are processed independently. The algorithm described in subclause 8.5.2 is used to 
calculate the header CRC. The parameters for the algorithm are defined as follows: 

FlexRay header CRC calculation algorithm parameters: 

vCrcSize = cHCrcSize; // (= 11) size of the register is 11 bits 
vCrcInit = cHCrcInit; // (= 0x1A) initialisation vector of header 
 // CRC for both channels 

                                                      

67) Transmitting nodes use the bit sequence that will be fed into the coding algorithm (see clause 7), including any 
controller generated padding bits. Receivers use the decoded sequence as received from the decoding algorithm 
(i.e., after the removal of any coding sequences (e.g. Byte Start Sequences, Frame Start Sequences, etc.)). 

68) This makes it unlikely that a fault in the CC that causes the value of a sync or startup frame indicator to change 
would result in a frame that is accepted by other nodes in the network because the header CRC would not match. 
Removing the capability of the transmitter to generate the CRC minimizes the possibility that a frame that results 
from a CC fault would have a proper header CRC. 
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vCrcPolynomial = cHCrcPolynomial; // (= 0x385) hexadecimal representation of 
 // the header CRC polynomial 

 

The results of the calculation (vCrcReg) are compared to the header CRC value in the frame. If the calculated 
and received values match the header CRC check passes, otherwise it fails. 

8.5.4 Frame CRC calculation 

The Frame CRC calculation is done inside the communication controller before transmission or after reception 
of a frame. It is part of the frame transmission process and the frame reception process. 

When a CC receives a frame it shall perform the frame CRC computations based on the header and payload 
field values received and check the computed value against the frame CRC value received in the frame. 

The frames from each channel are processed independently. The algorithm described in 8.5.2 is used to 
calculate the header CRC. The parameters for the algorithm are defined as follows: 

FlexRay frame CRC calculation algorithm parameters - channel A: 

vCrcSize = cCrcSize; // (= 24) size of the register is 24 bits 
vCrcInit = cCrcInit[A]; // (= 0xFEDCBA) initialisation vector of 
 // channel A 
vCrcPolynomial = cCrcPolynomial; // (= 0x5D6DCB) hexadecimal representation 
 // of the CRC polynomial 

 

FlexRay frame CRC calculation algorithm parameters - channel B: 

vCrcSize = cCrcSize; // (= 24) size of the register is 24 bits 
vCrcInit = cCrcInit[B]; // (= 0xABCDEF) initialisation vector of 
 // channel B 
vCrcPolynomial = cCrcPolynomial; // (= 0x5D6DCB) hexadecimal representation 
 // of the CRC polynomial 

 

The results of the calculation (vCrcReg) are compared to the frame CRC value in the frame on the appropriate 
channel. If the calculated and received values match the frame CRC check passes, otherwise it fails. 

The frame CRC value used in the trailer segment of a transmitted frame is calculated using the same 
algorithm and the same algorithm parameters, but it is calculated using the data content of the frame to be 
transmitted. 

9 Media Access Control 

9.1 Principles 

9.1.1 Overview 

In the FlexRay protocol, media access control is based on a recurring communication cycle. Within one 
communication cycle FlexRay offers the choice of two media access schemes. These are a static time division 
multiple access (TDMA) scheme, and a dynamic mini-slotting based scheme. 

9.1.2 Communication cycle 

The communication cycle is the fundamental element of the media access scheme within FlexRay. It is 
defined by means of a timing hierarchy. 
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The timing hierarchy consists of four timing hierarchy levels as depicted in Figure 83. 
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Figure 83 — Timing hierarchy within the communication cycle 

 

The highest level, the communication cycle level, defines the communication cycle. It contains the static 
segment, the dynamic segment, the symbol window and the network idle time (NIT). Within the static segment 
a static time division multiple access scheme is used to arbitrate transmissions as specified in 9.3.3. Within 
the dynamic segment a dynamic mini-slotting based scheme is used to arbitrate transmissions as specified in 
9.3.4. The symbol window is a communication period in which a symbol can be transmitted on the network as 
specified in 9.3.5. The network idle time is a communication-free period that concludes each communication 
cycle as specified in 9.3.6. 

The next lower level, the arbitration grid level, contains the arbitration grid that forms the backbone of FlexRay 
media arbitration. In the static segment the arbitration grid consists of consecutive time intervals, called static 
slots, in the dynamic segment the arbitration grid consists of consecutive time intervals, called minislots. 

The arbitration grid level builds on the macrotick level that is defined by the macrotick. The macrotick is 
specified in clause 12. Designated macrotick boundaries are called action points. These are specific instants 
at which transmissions shall start (in the static segment, dynamic segment and symbol window) and shall end 
(only in the dynamic segment). 

The lowest level in the hierarchy is defined by the microtick, which is described in clause 12. 

9.1.3 Communication cycle execution 

Apart from during startup the communication cycle is executed periodically with a period that consists of a 
constant number of macroticks. The communication cycles are numbered from 0 to gCycleCountMax. 

Arbitration within the static segment and the dynamic segment is based on the unique assignment of frame 
identifiers to the nodes in the cluster for each channel and a counting scheme that yields numbered 
transmission slots. The frame identifier determines the transmission slot and thus in which segment and when 
within the respective segment a frame shall be sent. The frame identifiers range from 1 to cSlotIDMax. 

The communication cycle always contains a static segment. The static segment contains a configurable 
number gNumberOfStaticSlots of static slots. All static slots consist of an identical number of macroticks. 
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The communication cycle may contain a dynamic segment. The dynamic segment contains a configurable 
number gNumberOfMinislots of minislots. All minislots consist of an identical number of macroticks. If no 
dynamic segment is required it is possible to configure gNumberOfMinislots to zero minislots. 

The communication cycle may contain a symbol window. The symbol window contains a configurable number 
gdSymbolWindow of macroticks. If no symbol window is required it is possible to configure gdSymbolWindow 
to zero macroticks. 

The communication cycle always contains a network idle time. The network idle time contains the remaining 
number of macroticks within the communication cycle that are not allocated to the static segment, dynamic 
segment, or symbol window. 

The constraints on the configuration of the communication cycle are defined in Annex B. 

Figure 84 illustrates the overall execution of the communication cycle. 
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Figure 84 — Time base triggered communication cycle 

 

The node shall maintain a cycle counter vCycleCounter that contains the number of the current 
communication cycle. Initialisation and maintenance of the cycle counter are specified in clause 12. 

The media access procedure is specified by means of the Media Access Control process for channel A. The 
node shall contain an equivalent Media Access Control process for channel B. 



BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

116 © ISO 2013 – All rights reserved 
 

9.1.4 Static segment 

9.1.4.1 Structure of the static segment 

Within the static segment a static time division multiple access scheme is applied to coordinate transmissions. 

In the static segment all communication slots are of identical, statically configured duration and all frames are 
of identical, statically configured length. For communication within the static segment the following constraints 
apply. 

 If a node has a key slot or key slots, that node shall transmit a frame in the key slot(s) on all connected 
channels in all communication cycles. 

 In slots other than the key slot(s), frames may be transmitted on either channel, or on both. 

 In a given communication cycle, no more than one node shall transmit a frame with a given frame ID on a 
given channel. It is allowed, however, for different nodes to transmit frames with the same frame ID on 
the same channel in different communication cycles. 

 If a non-sync node is configured to enter key slot mode after startup (i.e., pKeySlotOnlyEnabled is true) 
the node shall designate one frame as the key slot frame via the parameter pKeySlotID. 

9.1.4.2 Execution and timing of the static segment 

In order to schedule transmissions each node maintains a slot counter state variable vSlotCounter for channel 
A and a slot counter state variable vSlotCounter for channel B. Both slot counters are initialized with 1 at the 
start of each communication cycle and incremented at the end boundary of each slot. 

Figure 85 illustrates all transmission patterns that are possible for a single node within the static segment. In 
slot 1 the node transmits a frame on channel A and a frame on channel B. In slot 2 the node transmits a frame 
only on channel A69). In slot 3 no frame is transmitted on either channel. 
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Figure 85 — Structure of the static segment 

The number of static slots gNumberOfStaticSlots is a global constant for a given cluster. 

                                                      

69) Analogously, transmitting only on channel B is also allowed. 
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All static slots consist of an identical number of gdStaticSlot macroticks. The number of macroticks per static 
slot gdStaticSlot is a global constant for a given cluster. 

For any given node one or two70) static slots (as defined in pKeySlotID and, in some cases, pSecondKey-
SlotID) may be assigned to contain sync frames (as identified by pKeySlotUsedForSync), a special type of 
frame required for synchronisation within the cluster. Specific sync frames may be assigned to be startup 
frames (as identified by pKeySlotUsedForStartup). 

Figure 86 depicts the timing within the static segment. 
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Figure 86 — Timing within the static segment 

 

Each static slot contains an action point that is offset from the start of the slot by gdActionPointOffset 
macroticks. In the static segment frame transmissions start at the action point of the static slot. The number of 
macroticks contained in the action point offset gdActionPointOffset is a global constant for a given cluster. 

9.1.5 Dynamic segment 

9.1.5.1 Structure of the dynamic segment 

Within the dynamic segment a dynamic mini-slotting based scheme is used to arbitrate transmissions. 

In the dynamic segment the duration of communication slots may vary in order to accommodate frames of 
varying length. Frame lengths can be different for different slots in the same communication cycle, and can 
also be different for slots with the same identifier in different communication cycles. 

For communication within the dynamic segment the following constraints apply. 

 Sync frames, startup frames, and null frames are not allowed. 

                                                      

70) Clusters using the TT-D synchronisation mode have only one such slot, specified by pKeySlotID. Coldstart nodes of 
clusters using the TT-E or TT-L synchronisation modes have two such slots, identified by pKeySlotID and 
pSecondKeySlotID. 
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 In a given communication cycle, transmission of a given frame may be attempted on either channel, on 
both channels, or on neither channel71). Due to the independent nature of the channel-dependent media 
access processes it is possible that frame transmission that is attempted on both channels may be 
successful on one channel but unsuccessful on the other. It is also possible that a frame successfully 
transmitted on both channels is transmitted at different points in time on the different channels. 

 In a given communication cycle, no more than one node shall transmit a frame with a given frame ID on a 
given channel. It is allowed, however, for different nodes to transmit frames with the same frame ID on 
the same channel in different communication cycles. 

 A node cannot transmit frames in the dynamic segment when operating in key slot only mode. As a 
consequence, a node's key slot frames (as determined by the parameter pKeySlotID or 
pSecondKeySlotID) cannot be sent in the dynamic segment. 

9.1.5.2 Execution and timing of the dynamic segment 

In order to schedule transmissions each node continues to maintain the two slot counters - one for each 
channel - throughout the dynamic segment. While the slot counters for channel A and for channel B are 
incremented simultaneously within the static segment, they may be incremented independently according to 
the dynamic arbitration scheme within the dynamic segment. 

Figure 87 outlines the media access scheme within the dynamic segment. As illustrated in Figure 87, media 
access on the two communication channels may not necessarily occur simultaneously. Both communication 
channels do, however, use common arbitration grid timing that is based on minislots. 

The number of minislots gNumberOfMinislots is a global constant for a given cluster. 
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Figure 87 — Structure of the dynamic segment 

 

Each minislot contains an identical number of gdMinislot macroticks. The number of macroticks per minislot 
gdMinislot is a global constant for a given cluster. 

                                                      

71) In the dynamic segment a node can choose not to transmit in a particular slot even if it is the assigned owner of the 
slot. This may be contrasted with the static segment, where a node shall always send some type of frame (non-null 
or null) if it is the assigned owner of a slot. 
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Within the dynamic segment a set of consecutive dynamic slots that contain one or multiple minislots are 
superimposed on the minislots. The duration of a dynamic slot depends on whether or not communication, i.e. 
frame transmission or reception, takes place. The duration of a dynamic slot is established on a per channel 
basis.  

Figure 87 illustrates how the duration of a dynamic slot adapts depending on whether or not communication 
takes place. 

The node performs slot counting in the following way. 

 The dynamic slot consists of one minislot if no activity takes place on the channel, i.e. the communication 
channel is in the channel idle state throughout the corresponding minislot. 

 The dynamic slot consists of one or more minislots if activity takes place on the channel. If this activity is 
a legitimate frame transmission (as opposed to noise) the slot will consist of at least two minislots. 

Each minislot contains an action point that is offset from the start of the minislot. With the possible exception 
of the first dynamic slot (explained below), this offset is gdMinislotActionPointOffset macroticks. The number 
of macroticks within the minislot action point offset gdMinislotActionPointOffset is a global constant for a given 
cluster. 

Figure 88 depicts the detailed timing of a minislot. 
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Figure 88 — Timing within a minislot 

 

In the dynamic segment, frame transmissions start at the minislot action point of the first minislot of the 
corresponding dynamic slot. In the dynamic segment, frame transmissions also end at a minislot action point. 
This is achieved by means of the dynamic trailing sequence (DTS) as specified in clause 7. 

In contrast to a static slot, the dynamic slot consists of two distinct phases - a mandatory dynamic slot 
transmission phase and an optional dynamic slot idle phase.  

The dynamic slot transmission phase extends from the start of the dynamic slot to the end of the last minislot 
in which the transmission terminates. The dynamic slot idle phase is an optional phase that extends from the 
end of the dynamic slot transmission phase to the end of the dynamic slot. Both the dynamic slot transmission 
phase and the dynamic slot idle phase (if it exists) consist of an integral number of minislots.  

The optional dynamic slot idle phase is defined as a communication-free phase that provides additional time 
to allow all nodes to complete idle detection within the dynamic slot. A dynamic slot idle phase is not always 
required - in some cases the time difference between the point at which transmission ends (which always 
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occurs at a minislot action point) and the end of the minislot is sufficient to allow all nodes in the system to 
detect idle - such systems do not require a dynamic slot idle phase.  

In some cases, however, the time after the minislot action point would be insufficient to ensure that all nodes 
in the system can detect idle within the dynamic slot. In such systems, every dynamic slot actually used for 
transmission is extended by a dynamic slot idle phase, allowing all nodes to detect idle within the dynamic 
slot. 

Figure 89 depicts the structure of a dynamic slot that makes use of a dynamic slot idle phase. 
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Figure 89 — Structure of dynamic slots 

 

The start of the dynamic segment requires particular attention. The first action point in the dynamic segment 
occurs gdActionPointOffset macroticks after the end of the static segment if gdActionPointOffset is larger than 
gdMinislotActionPointOffset else it occurs gdMinislotActionPointOffset macroticks after the end of the static 
segment72). 

                                                      

72) This ensures that the duration of the gap following the last static frame transmission is at least as large as the gaps 
between successive frames within the static segment. 
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The two cases are illustrated in Figure 90. 
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Figure 90 — Timing at the boundary between the static and dynamic segments 

The node performs slot counter housekeeping on a per channel basis. At the end of every dynamic slot the 
node generally increments the slot counter vSlotCounter by one73). This is done until either  

 the channel's slot counter has reached cSlotIDMax, or 

 the dynamic segment has reached the minislot gNumberOfMinislots, i.e. the end of the dynamic segment. 

Once one of these conditions is met the node sets the corresponding slot counter to zero for the remainder of 
the communication cycle. 

The arbitration procedure ensures that all fault-free receiving nodes implicitly know the dynamic slot in which 
the transmission starts. Further, all fault-free receiving nodes also agree implicitly on the minislot in which slot 
counting is resumed. As a result, the slot counters of all fault-free receiving nodes match the slot counter of 
the fault-free transmitting node and the frame identifier contained in the frame. 

The arbitration of the dynamic segment relies heavily on the assumption that all CE start, potential idle start 
and CHIRP signals are generated in response to legitimate frame transmissions by other nodes. Should 
disturbances on the physical layer make it through the majority voting, this may be violated. As a 
consequence, it may occur that different nodes in the cluster have different notions of the slot counter value 
for a given minislot.  

Such a situation can also arise, for example, if the BD of a node is temporarily prevented from reception 
during a portion of the dynamic segment (i.e. by overtemperature or undervoltage conditions). Dynamic 
segment desynchronisation can also occur in certain situations where noise asymmetrically affects reception 
in the dynamic segment74). 

                                                      

73) Under special circumstances, the node may increase the slot counter by two to prevent a desynchronisation of slot 
counters due to disturbances on the physical link. 

74) This can occur in some situations even though the MAC process in the dynamic segment has several mechanisms to 
prevent desynchronisation when such noise exists. 
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When slot counter desynchronisation does occur in the dynamic segment its effect is limited to the specific 
instance of the dynamic segment. In other words, such desynchronisation will not affect the operation of the 
static segment or the overall clock synchronisation of the network, and will automatically be corrected at the 
end of the dynamic segment in which it occurred. The system designer should be aware of the possibility that 
slot counter desynchronisation could occur in the dynamic segment. 

The MAC has the ability to correct certain fault scenarios where activity caused by noise on the physical layer 
is shorter than cFrameThreshold bits and also short enough that both the start of the activity and the end of 
the idle detection following the activity both occur in a single minislot or within two adjacent minislots. 

If the MAC process detects such a noise event, it tries to revert to a state where it would have been if the 
noise event did not occur. This may cause an increment of the slot counter by two, or in some cases might 
even cause a slot counter increment during a subsequent reception (see Figure 103). To increase the 
robustness of the cluster, a node is prohibited from transmitting in the dynamic slot following a slot in which a 
noise event is detected. 

9.1.6 Symbol window 

Within the symbol window a single symbol, either an MTS or a WUDOP, may be sent. Arbitration among 
different senders is not provided by the protocol for the symbol window. If arbitration among multiple senders 
is required for the symbol window it has to be performed by means of a higher-level protocol. 

Figure 91 outlines the media access scheme within the symbol window. 

The number of macroticks per symbol window gdSymbolWindow is a global constant for a given cluster. The 
symbol window contains an action point that is offset from the start of the symbol window by 
gdSymbolWindowActionPointOffset macroticks. A symbol transmission starts at the action point within the 
symbol window. 
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Figure 91 — Timing within the symbol window 

 

9.1.7 Network idle time 

The network idle time serves as a phase during which the node calculates and applies clock correction terms. 
Clock synchronisation is specified in clause 12. 

The network idle time also serves as a phase during which an implementation may perform various 
communication cycle related tasks. 
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The network idle time contains the remaining number of macroticks within the communication cycle not 
allocated to the static segment, dynamic segment, or symbol window. 

9.2 Description 

9.2.1 Relationship to other processes 

The relationship between the Media Access Control processes and the other protocol processes is depicted in 
Figure 9275). 
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Figure 92 — Media access control context 

 

                                                      

75) The dark lines represent data flows between mechanisms that are relevant to this subclause. The lighter gray lines 
are relevant to the protocol, but not to this clause. 
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In order to support two channels each node needs to contain a media access control process for channel A 
and a media access control process for channel B. 

9.2.2 Operating modes 

The protocol operation control process sets the operating mode of media access control for each 
communication channel. 

 In the STANDBY mode media access is effectively halted. 

 In the NOCE mode the media access process is executed, but no frames or symbols are sent on the 
channels. 

 In the STARTUPFRAMECAS mode transmissions are restricted to the transmission of one startup null 
frame per cycle on each configured channel in each key slot if the node is configured to send a startup 
frame. In addition the node sends an initial CAS symbol prior to the first communication cycle. 

 In the STARTUPFRAME mode transmissions are restricted to the transmission of one startup null frame 
per cycle on each configured channel in each key slot if the node is configured to send a startup frame. 

 In the KEYSLOTONLY mode the transmissions are restricted based on the synchronisation type of the 
cluster and the role of the node. Sync nodes in a TT-D cluster have transmissions restricted to one sync 
frame per cycle on each configured channel. Coldstart nodes in a TT-E or TT-L cluster have 
transmissions restricted to two startup frames per cycle on each configured channel. Non-sync nodes in 
any cluster type have transmissions restricted to a single specified key slot frame76) per cycle on each 
configured channel. 

 In the ALL mode frames and symbols are sent in accordance with the node's transmission slot allocation. 

Definition (34) gives the formal definition of the MAC operating modes. 

Definition: T_MacMode (34) 

newtype T_MacMode 
literals STANDBY, NOCE, STARTUPFRAMECAS, STARTUPFRAME, KEYSLOTONLY, 

ALL; 
endnewtype; 

 

 

9.2.3 Significant events 

9.2.3.1 Event types 

Within the context of media access control the node needs to react to a set of significant events. These are 
reception-related events, transmission-related events, and timing-related events. 

9.2.3.2 Reception-related events 

Figure 93 depicts the reception-related events that are significant for media access control. 

 

                                                      

76) A node with pKeySlotID = 0 does not have a key slot, and thus will not transmit any frames when the MAC process is 
in the KEYSLOTONLY mode. 
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channel activechannel idle
channel idle
delimiter channel idle

channel idle
recognition 
point

communication 
element start

potential idle 
start

(DTS received)  

Figure 93 — Reception-related events for MAC 

 

For communication channel A the reception-relevant events are 

 communication element start on channel A (signal CE start on A, signal idle end on A), 

 potential idle start on channel A (signal potential idle start on A), 

 channel idle recognition point detected on channel A (signal CHIRP on A), 

 DTS high bit received on channel A (signal DTS received on A, only in the dynamic segment), and 

 bit strobed on channel A (signal bit strobed on A, not shown in Figure 93). 

 

For communication channel B the reception-relevant events are 

 communication element start on channel B (signal CE start on B, signal idle end on B), 

 potential idle start on channel B (signal potential idle start on B), 

 channel idle recognition point detected on channel B (signal CHIRP on B), 

 DTS high bit received on channel B (signal DTS received on B, only in the dynamic segment), and 

 bit strobed on channel B (signal bit strobed on B, not shown in Figure 93). 

The channel-specific BITSTRB processes will output a potential idle start signal every time a bit strobed as 
high was preceded by a bit strobed as low. To keep the figure simple these signals are not shown in Figure 93 
with the exception of the potential idle start at the end of channel activity. 
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9.2.3.3 Transmission-related events 

Figure 94 depicts the transmission-related events that are significant for media access control. 
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Figure 94 — Transmission-related events for MAC 

 

For communication channel A the transmission-relevant events are 

 the start of transmission ends the channel idle condition (signal idle end on A) and 

 the start of the dynamic trailing sequence within the transmission pattern on channel A (signal DTS start 
on A). 

For communication channel B the transmission-relevant events are 

 the start of transmission ends the channel idle condition (signal idle end on B) and 

 the start of the dynamic trailing sequence within the transmission pattern on channel B (signal DTS start 
on B). 

9.2.3.4 Timing-related events 

Both channels A and B are driven by the cycle start event that signals the start of each communication cycle 
(signal cycle start (vCycleCounter); where vCycleCounter provides the number of the current communication 
cycle). 

9.3 Media access control process 

9.3.1 States of the media access control process 

This subclause contains the formalized specification of the media access control process. The process is 
specified for channel A, the process for channel B is equivalent. 

For each communication channel the MAC process contains the states 

 a MAC:standby state, 

 a MAC:wait for CAS action point state, 

 a MAC:wait for the cycle start state, 

 a MAC:wait for the action point state, 

 a MAC:wait for the static slot boundary state, 
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 a MAC:wait for the AP transmission start state, 

 a MAC:wait for the DTS start state, 

 a MAC:wait for the AP transmission end state, 

 a MAC:wait for the end of the dynamic segment state, 

 a MAC:wait for the end of the minislot state, 

 a MAC:wait for the end of activity state, 

 a MAC:wait for the end of the dynamic slot state, 

 a MAC:wait for the symbol window action point state, and 

 a MAC:wait for the end of the symbol window state. 
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9.3.2 Initialisation and MAC:standby state 

Figure 95 depicts the specification of the media access process. 
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Figure 95 — Media access process [MAC_A] 
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Figure 96 depicts how mode changes are processed by the media access process. 
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Figure 96 — Media access control [MAC_A] 

 

As depicted in Figure 97 a node shall terminate the MAC process upon occurrence of the terminate event 
issued by the protocol operation control. 
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Figure 97 — Termination of the MAC process [MAC_A] 

 

9.3.3 Static segment related states 

9.3.3.1 State machine for the static segment media access control 

The node shall perform media access in the static segment as depicted in Figure 98. 
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Figure 98 — Media access in the static segment [MAC_A] 

 

The node shall start frame transmission at the action point of an assigned static slot if appropriate 
transmission conditions are met (see subclause 9.3.3.2). 

The transmission data that shall be sent is specified in the T_TransmitFrame data structure.  



BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

© ISO 2013 – All rights reserved 131 
 

Definition: T_SlotCounter (35) 

syntype T_SlotCounter = Integer 
constants 0 : 2047 

endsyntype; 
 

 

At the end boundary of every static slot the node shall increment the slot counter vSlotCounter for channel A 
and the slot counter vSlotCounter for channel B by one. 

9.3.3.2 Transmission conditions and frame assembly in the static segment 

The node shall assemble a frame for transmission in the static segment according to the macro 
ASSEMBLE_STATIC_FRAME. The macro is depicted for channel A. Channel B is handled analogously. 

In the static segment, whether or not a node shall transmit a frame depends on the current operating mode. 

If media access is operating in the NOCE mode then the node shall transmit no frame. 

If media access is operating in the STARTUPFRAMECAS mode or in the STARTUPFRAME mode then the 
node shall transmit a frame on each configured channel if the communication slot is an assigned startup slot. 

If media access is operating in the ALL mode then the node shall transmit a frame on a channel if the slot is 
assigned to the node for the channel. 

Data elements are imported from the CHI based on the channel, the current value of the slot counter, and the 
current value of the cycle counter. The CHI is assumed to return a data structure T_CHITransmission. 

Definition: T_CHITransmission (36) 

newtype T_CHITransmission 
struct 

Assignment T_Assignment; 
TxMessageAvailable Boolean; 
PPIndicator T_PPIndicator; 
HeaderCRC T_HeaderCRC; 
Length T_Length; 
Message T_Payload; 

endnewtype; 

 

 

Definition: T_Assignment (37) 

newtype T_Assignment 
literals UNASSIGNED, ASSIGNED; 

endnewtype; 
 

 

Assuming a variable vTCHI of type T_CHITransmission imported from the CHI, the node shall assemble the 
frame in the following way if vTCHI!Assignment is set to ASSIGNED. 

a) The reserved bit shall be set to zero. 

b) If vSlotCounter equals pKeySlotID, or if pTwoKeySlotMode is true and vSlotCounter equals 
pSecondKeySlotID, then 
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1) the startup frame indicator shall be set in accordance with pKeySlotUsedForStartup, and 

2) the sync frame indicator shall be set in accordance with pKeySlotUsedForSync. 

else 

3) the startup frame indicator shall be set to zero, and 

4) the sync frame indicator shall be set to zero. 

c) The frame ID field shall be set to the current value of the slot counter vSlotCounter. 

d) The length field shall be set to gPayloadLengthStatic. 

e) The header CRC shall be set to the value vTCHI!HeaderCRC retrieved from the CHI. 

f) The cycle count field shall be set to the current value of the cycle counter vCycleCounter. 

g) If the host has data available (vTCHI!TxMessageAvailable set to true) then 

1) the null frame indicator shall be set to one, and 

2) the payload preamble indicator shall be set to the value vTCHI!PPIndicator imported from the CHI, 
and 

3) if gPayloadLengthStatic > vTCHI!Length then the vTCHI!Length number of two-byte payload words 
shall be copied from vTCHI!Message to vTF!Payload.   
The remaining (gPayloadLengthStatic - vTCHI!Length) two-byte payload words in vTF!Payload shall 
be set to the padding pattern 0x0000. 

else if gPayloadLengthStatic = vTCHI!Length then vTCHI!Length number of two-byte payload words 
shall be copied from vTCHI!Message to vTF!Payload 

else the first gPayloadLengthStatic number of two-byte payload words shall be copied from 
vTCHI!Message to vTF!Payload. 

else if the host has no data available (vTCHI!TxMessageAvailable set to false) then 

4) the null frame indicator shall be set to zero, and 

5) the payload preamble indicator shall be set to zero, and 

6) gPayloadLengthStatic number of two-byte payload words in vTF!Payload shall be set to the padding 
pattern 0x0000. 



BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

© ISO 2013 – All rights reserved 133 
 

Figure 99 depicts the frame assembly in the static segment [MAC_A]. 
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Figure 99 — Frame assembly in the static segment [MAC_A] 
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The handling of a transmission in the first static slot in the first cycle following the startup of a TT-E coldstart 
node is different from the handling in subsequent slots and cycles77). In the first slot after a TT-E coldstart 
node's transition from the POC:external startup state to the POC:normal active state a TT-E coldstart node will 
only transmit a null frame, and only if this slot is a key slot, even if the media access is operating in the ALL 
mode. This is controlled by the variable zFirstTTESlot, which is set to true before the first cycle and set to 
false during the first slot. This variable enables the transmission of a null frame if the first slot is a key slot and 
disables transmission if the first slot is not a key slot. 

Figure 100 depicts the message copying and padding in the static segment [MAC_A]. 
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Figure 100 — Message copying and padding in the static segment [MAC_A] 

 

9.3.4 Dynamic segment related states 

9.3.4.1 State machine for the dynamic segment media access control 

The node shall perform media access in the dynamic segment as depicted in Figure 101 and subsequent 
Figures. 

In the dynamic segment the node shall increment the slot counter vSlotCounter at the end of each dynamic 
slot. If the increment would cause vSlotCounter to exceed the maximum slot ID cSlotIDMax then vSlotCounter 
is instead set to zero and remains at this value until the end of the dynamic segment. 

 

                                                      

77) The special handling in the first slot of the first cycle is necessary because of the short time between the cycle start 
signal from the time gateway source node and the start of the cycle in the time gateway sink node. This short time would 
make it difficult for a practical implementation to identify and select the buffer related to the first static slot. Limiting 
transmissions to null frames in the first slot, if this slot is a key slot, makes this task easier, and does not have a 
substantial impact on cluster startup. 
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Figure 101 — Media access in the dynamic segment [MAC_A] 

 

The macro DYN_SEG_LOOP keeps track of the dynamic slot counter during the dynamic segment (see 
Figure 103). 

At the start of each dynamic slot, the node checks whether there is still enough time left in the dynamic 
segment for a transmission or if no transmission is allowed in this dynamic slot due to the detection of a 
possible slot counter desynchronisation (as indicated by the variable zNoTxSlot).  

If a transmission is allowed, the node determines whether it has the right and need to transmit in the current 
dynamic slot and, if yes, does so. The transmission is described by the TRANSMIT_DYNAMIC_FRAME 
macro (see Figure 104). 

If the node does not transmit itself, it awaits transmissions of other nodes in the MAC:wait for the end of the 
minislot state. Should no CE start signal be detected before the end of the minislot, the node proceeds to the 
next dynamic slot. If a CE start signal is detected, the node notes the current minislot and starts to count the 
bits of the incoming communication element.  

The length of the incoming transmission is used as an indication of whether the incoming communication 
element is a dynamic frame or perhaps induced noise on the physical channel. Should the communication 
element end before the number of bits crosses the cFrameThreshold, the communication element is regarded 
as noise and the node tries to switch to a state where no noise was received.  

It does so by not applying the gdDynamicSlotIdlePhase lengthening of the dynamic slot on the one hand and 
by increasing the dynamic slot counter by two should a minislot boundary have occurred between the CE start 
signal and the CHIRP signal. The last potential idle start signal before the CHIRP signal marks the minislot in 
which the frame transmission ended, and is used to derive the last minislot of the dynamic slot.  
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A fault-free frame reception will also enable the detection of the DTS, which is indicated by the CODEC 
process with the DTS received signal. As soon as the DTS was received, the node locks down the end of the 
dynamic slot, with the intent that potential noise during the succeeding idle detection cannot affect the 
remaining dynamic slot length. 

After the reception of the CHIRP signal, the node awaits the end of the dynamic slot. A CE start signal at this 
point in time is generally an indication of a fault on the bus; either the preceding or the current communication 
element was noise or a frame transmitted due to a fault condition. In case that the preceding element was 
already categorized as noise due to its short length, the node treats the new communication element as frame 
and potentially adjusts the dynamic slot counter.  

Under normal circumstances (i.e., in the noise-free case), no CE start signal will be received during the 
MAC:wait for the end of the dynamic slot state and the dynamic slot will end at the end of the minislot where 
zMinislot is equal to zEndMinislot. The end of the dynamic slot causes the dynamic slot counter to be 
incremented and then exported to the CHI.  

If the received communication element was shorter than the frame threshold cFrameThreshold and the 
dynamic slot was either one or two minislots long the node will abstain from transmitting in the following 
dynamic slot and a resynchronisation attempt is noted for indication to the CHI at the end of the dynamic 
segment.  

If the received communication element was shorter than the frame threshold and the dynamic slot was two 
minislots long the dynamic slot counter is incremented twice instead of just once, as is normally the case. 

Figure 102 depicts the channel idle tracking. 
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Figure 102 — Channel idle tracking [MAC_A] 
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Figure 103 depicts the media access in the dynamic segment arbitration. 
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false
zMinislot = zEndMinislot

and zDTSReceived = true ?

zDTSReceived ?

false

true

true

zActiveBits := 1;
zIncSlotCounter := true;

zIncSlotCounter ?

false
true

zIncSlotCounter := false;
zMinislotCE := zMinislot - 1;

INCREASE_
SLOT_COUNTER_A

continue loop

INCREASE_
SLOT_COUNTER_A

continue loop

zMinislot = zMinislotCE +1
and
zFrameThreshold = false ?

exit 
loop

exit loop

wait for the end of 
the dynamic segment

wait for the end of 
the dynamic segment

tMinislot

zMinislot := zMinislot + 1;
set (tMinislot);

zMinislot ?

else

 = gNumberOf-
Minislots

 

Figure 103 — Media access in the dynamic segment arbitration [MAC_A] 
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Figure 104 depicts the transmission in the dynamic segment macro. 

 

wait for the AP
transmission start 

tMinislotActionPoint

wait for the AP
transmission end

wait for the DTS start 

zEndMinislot := zMinislot + 
gdDynamicSlotIdlePhase;

tMinislotActionPoint

stop transmission on A

transmit frame on A 
(DYNFRAME, vTF)

DTS start on A tMinislotActionPoint

elsezMinislot ?

= gNumberOfMinislots -
gdDynamicSlotIdlePhase

'set pLatestTx violation sta-
tus indicator on A in CHI';

vLastDynTxSlot := 
vSlotCounter;

TRANSMIT_
DYNAMIC_FRAME_A

tMinislot

zMinislot := zMinislot + 1;
set (tMinislotActionPoint);
set (tMinislot);

tMinislot

zMinislot := zMinislot + 1;
set (tMinislotActionPoint);
set (tMinislot);

 

Figure 104 — Transmission in the dynamic segment macro [MAC_A] 
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Figure 105 depicts the slot counter increase macro. 

 

INCREASE_
SLOT_COUNTER_A

vSlotCounter ?

else

vSlotCounter := 
vSlotCounter + 1;
’update vSlotCounter on A 
in CHI’;

vSlotCounter := 0;
’update vSlotCounter on A 
in CHI’;

>= cSlotIDMax

slot boundary on A
(vSlotCounter)

slot boundary on A
(vSlotCounter)

exit loop continue loop  

Figure 105 — Slot counter increase macro [MAC_A] 

 

The INCREASE_SLOT_COUNTER_A macro is called at the end of each dynamic slot to increase the 
dynamic slot counter and to communicate it to the CHI. If the dynamic slot counter were to surpass the 
maximum slot number cSlotIDMax, the slot counter shall not be incremented, but is instead reset to zero. 

The node shall then await the end of the dynamic segment. 

Figure 106 depicts the counting of active bits. 

 

wait for the end 
of activity

zActiveBits := zActiveBits + 
1;

bit strobed on A

-

zActiveBits ?

else

 = cFrameThreshold

 

Figure 106 — Counting of active bits [MAC_A] 

 

To categorize an incoming communication element as noise, the node determines whether it is shorter than 
the frame threshold cFrameThreshold. 
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9.3.4.2 Transmission conditions and frame assembly in the dynamic segment 

The node shall assemble a frame for transmission in the dynamic segment according to the macro 
ASSEMBLE_DYNAMIC_FRAME. The macro is depicted for channel A. Channel B is handled analogously. 

In the dynamic segment, the node shall only transmit a frame on a channel if all following conditions are 
fulfilled: 

 the media access is operating in the ALL mode; 

 the current minislot number is not larger than pLatestTx minislot (a node-specific upper bound); 

 the slot is assigned to the node; 

 consistent payload data can be imported from the CHI; 

 transmission is not prohibited in the slot by the zNoTxSlot variable (i.e., zNoTxSlot was not set to true in 
the previous slot); 

 there is at least a number of minislots equivalent to gdDynamicSlotIdlePhase before the end of the 
dynamic segment. 

Assuming a variable vTCHI of type T_CHITransmission imported from the CHI the node shall assemble the 
frame in the following way if vTCHI!Assignment equals ASSIGNED and vTCHI!TxMessageAvailable equals 
true: 

a) the reserved bit shall be set to zero; 

b) the sync frame indicator shall be set to zero; 

c) the startup frame indicator shall be set to zero; 

d) the payload preamble indicator shall be set to the value vTCHI!PPIndicator retrieved from the CHI; 

e) the frame ID field shall be set to the current value of the slot counter vSlotCounter; 

f) the length field shall be set to vTCHI!Length retrieved from the CHI; 

g) the header CRC shall be set to the value vTCHI!HeaderCRC retrieved from the CHI; 

h) the cycle count field shall be set to the current value of the cycle counter vCycleCounter; 

i) the null frame indicator shall be set to one; 

j) vTCHI!Length number of two-byte payload words shall be copied from vTCHI!Message to vTF!Payload. 
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Figure 107 depicts the frame assembly in the dynamic segment. 

 

vTCHI!TxMessage
Available ?

false

vTF!Header!Reserved := 0;
vTF!Header!SyFIndicator := 0;
vTF!Header!SuFIndicator := 0;
vTF!Header!FrameID := vSlotCounter;
vTF!Header!CycleCount := vCycleCounter;
vTF!Header!Length := vTCHI!Length;
vTF!Header!HeaderCRC := vTCHI!HeaderCRC;
vTF!Header!PPIndicator := vTCHI!PPIndicator;
vTF!Header!NFIndicator := 1;
'copy vTCHI!Length number of two-byte payload 
words from vTCHI!Message to vTF!Payload';

zMacMode ?else

ALL

true

ASSEMBLE_
DYNAMIC_FRAME_A

nothing to
transmit

frame vTF to
transmit

'import vTCHI on A from the 
CHI’

ASSIGNED

vTCHI!Assignment ?else

 

Figure 107 — Frame assembly in the dynamic segment [MAC_A] 

 

9.3.5 Symbol window related states 

The node shall perform media access in the symbol window as depicted in Figure 108. 

At the start of the symbol window the node shall set the slot counter vSlotCounter to zero. The node shall start 
symbol transmission at the action point of the symbol window if the media access is in the ALL mode and if a 
symbol is released for transmission. 
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false

zMacMode ?

transmit symbol on A 
(WUDOP)

ALL

else

wait for the end of 
the symbol window

tSymbolWindow

gdSymbolWindow ? = 0 

> 0

symbol window start
on A (vSlotCounter)

SYMBOL_WINDOW_A

wait for the symbol window
action point

tSymbolActionPoint

transmit symbol on A 
(CAS_MTS)

truevTransmitMTS_A ?

false

vSlotCounter := 0;
set (tSymbolActionPoint);
set (tSymbolWindow);
’update vSlotCounter on A in CHI’;
'import vTransmitMTS_A from CHI';
'import vTransmitWUDOP_A from CHI';

vTransmitWUDOP_A ?

true

 

Figure 108 — Media access in the symbol window [MAC_A] 

 

9.3.6 Network idle time 

Macro NIT in Figure 109 depicts the behaviour at the start of the network idle time. 

NIT start on A 
(vSlotCounter)

vSlotCounter := 0;
’update vSlotCounter on A in CHI’;

NIT_A

 

Figure 109 — Network idle time [MAC_A] 

At the start of the NIT the node shall set the slot counter vSlotCounter to zero. 
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10 Frame and Symbol processing 

10.1 Principles 

Frame and symbol processing (FSP) is the main processing layer between frame and symbol decoding, which 
is specified in clause 7, and the controller host interface, which is specified in clause 13. 

Frame and symbol processing checks the correct timing of frames and symbols with respect to the TDMA 
scheme, applies further syntactical tests to received frames, and checks the semantic correctness of received 
frames. 

10.2 Description 

10.2.1 Relationship to other processes 

The relationship between the Frame and Symbol Processing processes and the other protocol processes is 
depicted in Figure 11078). 

 

                                                      

78) The dark lines represent data flows between mechanisms that are relevant to this subclause. The lighter gray lines 
are relevant to the protocol, but not to this clause. 
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Figure 110 — Frame and symbol processing context 

 

In order to support two channels each node needs to contain a frame and symbol processing process for 
channel A and a frame and symbol processing process for channel B. 

10.2.2 Operating modes 

The protocol operation control process sets the operating mode of frame and symbol processing for each 
communication channel. 

 In the STANDBY mode the execution of the frame and symbol processing process shall be halted. 

 In the STARTUP mode the frame and symbol processing process shall be executed but no update of the 
CHI takes place, except for decoded wakeup patterns. 

 In the GO mode the frame and symbol processing process shall be executed and the update of the CHI 
takes place. 
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Definition (38) gives the formal definition of the FSP operating modes. 

Definition: T_FspMode (38) 

newtype T_FspMode 
literals STANDBY, STARTUP, GO; 

endnewtype; 
 

 

10.2.3 Significant events 

10.2.3.1 General 

Within the context of frame and symbol processing the node needs to react to a set of significant events. 
These are reception-related events, decoding-related events, and timing-related events. 

10.2.3.2 Reception-related events 

Figure 111 depicts the reception-related events that are significant for frame and symbol processing. 

 

channel idle
recognition 
point

communication 
element start

frame decoded
or

CAS/MTS decoded
or

decoding error

channel activechannel idle
channel idle

delimiter channel idle

wakeup decoded

 

Figure 111 — Reception-related events for FSP 

 

For communication channel A the reception-related events are 

 communication element start on channel A (signal CE start on A), 

 frame decoded on channel A (signal frame decoded on A (vRF), where vRF provides the timestamp of 
the primary time reference point and the header as well as the payload of the received frame as defined 
in Definition (18)), 

 CAS or MTS decoded on channel A (signal CAS_MTS decoded on A), 

 decoding error on channel on A (signal decoding error on A (zDecodingError)), 

 channel idle recognition point detected on channel A (signal CHIRP on A), 

 content error on channel B (signal content error on B)79), and 

                                                      

79) In order to address channel consistency checks for sync frames. 
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 wakeup decoded on channel A (signal wakeup decoded on A). 

For communication channel B the reception-related events are 

 communication element start on channel B (signal CE start on B), 

 frame decoded on channel B (signal frame decoded on B (vRF), where vRF provides the timestamp of 
the primary time reference point and the header as well as the payload of the received frame as defined 
in Definition (18)), 

 CAS or MTS decoded on channel B (signal CAS_MTS decoded on B), 

 decoding error on channel B (signal decoding error on B (zDecodingError)), 

 channel idle recognition point detected on channel B (signal CHIRP on B), 

 content error on channel A (signal content error on A), and 

 wakeup decoded on channel B (signal wakeup decoded on B). 

 

Definition (18) gives the formal definition of the T_ReceiveFrame data structure. 

10.2.3.3 Decoding-related events 

For communication channel A the decoding-related events are 

 decoding halted on channel A (signal decoding halted on A) and 

 decoding started on channel A (signal decoding started on A). 

For communication channel B the decoding-related events are 

 decoding halted on channel B (signal decoding halted on B) and 

 decoding started on channel B (signal decoding started on B). 

10.2.3.4 Timing-related events 

Figure 112 depicts the timing-related events that are significant for frame and symbol processing. 

static 
segment

start

static 
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start

slot
boundary

dynamic
segment

start
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communication cycle

slot
boundary

static
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slot
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dynamic
slot
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network
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time

NIT
start

 

Figure 112 — Timing-related events for FSP 



BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

© ISO 2013 – All rights reserved 147 
 

For communication channel A the relevant events are 

 static segment start on channel A (signal static segment start on A (vCycleCounter, vSlotCounter); where 
vCycleCounter holds the number of the current communication cycle and vSlotCounter holds the number 
of the communication slot that is just beginning on channel A), 

 slot boundary on channel A (signal slot boundary on A (vSlotCounter); where vSlotCounter holds the 
number of the communication slot that is just beginning on channel A), 

 dynamic segment start on channel A (signal dynamic segment start on A (vSlotCounter); where 
vSlotCounter holds the number of the current communication slot on channel A), 

 symbol window start on channel A (signal symbol window start on A (vSlotCounter); where vSlotCounter 
holds the value 0), and 

 network idle time (NIT) start on channel A (signal NIT start on A (vSlotCounter); where vSlotCounter 
holds the value 0). 

For communication channel B the relevant events are 

 static segment start on channel B (signal static segment start on B (vCycleCounter, vSlotCounter); where 
vCycleCounter holds the number of the current communication cycle and vSlotCounter holds the number 
of the communication slot that is just beginning on channel B), 

 slot boundary on channel B (signal slot boundary on B (vSlotCounter); where vSlotCounter holds the 
number of the communication slot that is just beginning on channel B), 

 dynamic segment start on channel B (signal dynamic segment start on B (vSlotCounter); where 
vSlotCounter holds the number of the current communication slot on channel B), 

 symbol window start on channel B (signal symbol window start on B (vSlotCounter); where vSlotCounter 
holds the value 0), and 

 network idle time (NIT) start on channel B (signal NIT start on B (vSlotCounter); where vSlotCounter 
holds the value 0). 

10.2.4 Status data 

For each communication channel the node shall provide a slot status that is updated in the CHI as specified in 
clause 13. 

Definition (39) gives the formal definition of the slot status. 

Definition: T_SlotStatus (39) 

newtype T_SlotStatus 
struct 

Channel T_Channel; 
SlotCount T_SlotCounter; 
CycleCount T_CycleCounter; 
ValidFrame Boolean; 
ValidMTS Boolean; 
SyntaxError Boolean; 
ContentError Boolean; 
Bviolation Boolean; 
FrameSent Boolean; 
TxConflict Boolean; 
NFIndicator T_NFIndicator; 
Segment T_Segment; 
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endnewtype; 

 

The slot status consists of the following elements. 

 Channel identifies the corresponding channel of the other slot status elements. 

 SlotCount holds the value of the slot counter of the corresponding slot. 

 CycleCount holds the value of the cycle counter of the corresponding cycle. 

 ValidFrame denotes whether a valid frame was received in a slot of the static or dynamic segment. The 
element is set to false if no valid frame was received (or if a frame was transmitted in the slot), or to true if 
a valid frame was received. 

 ValidMTS denotes whether a valid MTS was received in the symbol window. The element is set to false if 
no valid MTS was received, or to true if a valid MTS was received. 

 SyntaxError denotes whether a syntax error has occurred. A syntax error occurs if any of the following 
criteria are met: 

 the node starts transmitting while the channel is not in the idle state; 

 a decoding error occurs; 

 a frame is decoded in the symbol window or in the network idle time; 

 a CAS / MTS is decoded in the static segment, in the dynamic segment, or in the network idle time; 

 a frame is received within the slot after the reception of a semantically correct frame; 

 an otherwise valid frame is received before transmission in a slot that is used for transmission; 

 a syntactically valid frame is detected after transmission in a slot that is used for transmission. 

This element is set to false if no syntax error occurred, or to true if a syntax error did occur. Note, it is possible 
to have SyntaxError = true and ValidFrame = true. This could occur, for example, if a syntactically incorrect 
frame is received first, followed by a semantically correct and syntactically correct frame in the same slot. This 
would result in ValidFrame = true, SyntaxError = true, and ContentError = false. 

 ContentError denotes whether a content error has occurred. A content error occurs if any of the following 
criteria are met: 

 in the static segment the header length contained in the header of the received frame does not match 
the stored header length in gPayloadLengthStatic; 

 in the static segment the startup frame indicator contained in the header of the received frame is set 
to one while the sync frame indicator is set to zero; 

 in the static segment the null frame indicator contained in the header of the received frame is set to 
zero and the payload preamble indicator is set to one; 

 in the static or in the dynamic segment the frame ID contained in the header of the received frame 
does not match the current value of the slot counter or the frame ID equals zero in the dynamic 
segment; 
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 in the static or in the dynamic segment the cycle count contained in the header of the received frame 
does not match the current value of the cycle counter; 

 in the dynamic segment the sync frame indicator contained in the header of the received frame is set 
to one; 

 in the dynamic segment the startup frame indicator contained in the header of the received frame is 
set to one; 

 in the dynamic segment the null frame indicator contained in the header of the received frame is set 
to zero. 

This element is set to false if no content error occurred, or to true if a content error did occur. It is possible 
to have ContentError = true and ValidFrame = true. This could occur, for example, if a syntactically 
correct but semantically incorrect frame is received first, followed by a semantically correct and 
syntactically correct frame in the same slot. This would result in ValidFrame = true, SyntaxError = false, 
and ContentError = true. 

 BViolation denotes whether a boundary violation occurred at either beginning or end of the corresponding 
slot. A boundary violation occurs if the node does not consider the channel to be idle at the boundary of a 
slot. The element is set to false if no boundary violation occurred. See Table 9 for a description of the 
meaning of various combinations of ValidFrame, SyntaxError, ContentError, and BViolation. 

 FrameSent denotes whether a non-null frame was completely transmitted in the corresponding slot. The 
element is set to true if there was a complete non-null frame transmission in the slot, and otherwise it is 
set to false. 

 TxConflict denotes whether reception was ongoing at the time the node started a transmission. The 
element is set to false if reception was not ongoing, or to true if reception was ongoing. 

 NFIndicator denotes whether a null frame was received. The element is set to 0 if either a null frame, an 
invalid frame or nothing was received, or to 1 if a valid non-null frame was received80). 

 Segment denotes the segment in which the slot status was recorded. 

Definition: T_Segment (40) 

newtype T_Segment 
literals STUP, STATIC, DYNAMIC, SW, NIT; 

endnewtype; 
 

 

The element Segment is set to STUP during the non-synchronized startup phase. The values STATIC, 
DYNAMIC, SW, and NIT denote the static segment, the dynamic segment, the symbol window, and the 
network idle time, respectively. 

10.3 Frame and symbol processing process 

10.3.1 States of the frame and symbol processing process 

This subclause contains the formalized specification of the frame and symbol processing process. The 
process is specified for channel A, the process for channel B is equivalent. 

Figure 113 gives an overview of the frame and symbol processing-related state diagram. 

                                                      

80) The parameter NFIndicator is always set to 1 for valid frames in the dynamic segment. 
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For each communication channel the FSP process contains the five states 

 FSP:standby state, 

 FSP:wait for CE start state, 

 FSP:decoding in progress state, 

 FSP:wait for CHIRP state, and 

 FSP:wait for transmission end state. 

 

wait for
CE start

decoding
in progress

wait for
CHIRP

wait for 
transmission

end

standby

 

Figure 113 — State overview of the FSP state machine (shown for one channel) 

 

10.3.2 Initialisation and FSP:standby state 

As depicted in Figure 114, the node shall initially enter the FSP:standby state of the FSP process and wait for 
an FSP mode change initiated by the protocol operation control process. 

A node shall leave the FSP:standby state if the protocol operation control process sets the FSP mode to 
STARTUP or to GO. 
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else

standby

FSP control on A 
(zFspMode)

zFspMode ?STANDBY

wait for CE start

dcl zContentErrorOnB Boolean;
dcl zNullframe Boolean;
dcl zTransmit Boolean;
dcl zFspMode T_FspMode;
dcl zSegment T_Segment;
dcl vSS T_SlotStatus;
dcl vRF T_ReceiveFrame;
dcl zRF T_ReceiveFrame;
dcl vSlotCounter T_SlotCounter;
dcl vCycleCounter T_CycleCounter;
dcl zDecodingError T_DecodingError;

vSS!Channel := A;
vSS!ValidFrame := false;
vSS!ValidMTS := false;
vSS!SyntaxError := false;
vSS!ContentError := false;
vSS!BViolation := false;
vSS!NFIndicator := 0;
vSS!FrameSent := false;
vSS!TxConflict := false;
vSS!SlotCount := 0;
vSS!CycleCount := 0;
vSS!Segment := STUP;
zSegment := STUP;
vSlotCounter := 0;
vCycleCounter := 0;
zContentErrorOnB := false;
zNullframe := false;
zTransmit := false;

 

Figure 114 — FSP process [FSP_A] 

 

As depicted in Figure 115, a node shall enter the FSP:standby state from any state within the FSP process 
(with the exception of the FSP:standby state itself) if the protocol operation control process sets the FSP 
process to the STANDBY mode. 

 

*
(standby)

FSP control on A
(zFspMode)

zFspMode ?

-standby

STANDBY

else

content error on B

zContentErrorOnB := true;

transmitting null frame
on A

zNullframe := true;

 

Figure 115 — FSP control [FSP_A] 

 

In addition, the node shall apply cross-channel content checks to identify cross-channel inconsistencies 
whenever zSegment = STATIC81). 

                                                      

81) zSegment is STATIC during the static segment in normal operation, but can also be STATIC during some portions of 
startup. 
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As depicted in Figure 116, a node shall terminate the FSP process upon occurrence of the terminate event 
issued by the protocol operation control process. 

 

*

terminate FSP_A

 

Figure 116 — Termination of the FSP process [FSP_A] 

 

Depending on the operation mode of the FSP process and the segment, the FSP process relays decoded 
wakeup patterns from the WUPDEC process to the CHI as shown in Figure 117. 

 

*

wakeup decoded on A

zFspMode ?

GO

zSegment ?

SW, NIT else

else

’set wakeup received
indicator on A in CHI’; 

-
 

Figure 117 — CHI update of a decoded wakeup pattern [FSP_A] 

 

10.3.3 Macro SLOT_SEGMENT_END 

The macro SLOT_SEGMENT_END that is depicted in Figure 118 shall be called within the FSP process 

 at the end of each static slot, 

 at the end of each dynamic slot if a dynamic segment is configured (i.e., gNumberOfMinislots > 0), 

 at the end of the symbol window if the symbol window is configured (i.e., gdSymbolWindow > 0), and 

 at the end of the network idle time. 
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If a valid frame was received, the sync frame indicator of the received frame is set, and no content error was 
detected on the other channel a node shall assert valid sync frame on A (vRF). Such a frame is called a valid 
sync frame. 

If the FSP process is in the GO mode a node shall make the slot status vSS and received frame data vRF 
available to the CHI. 

A node shall initialize the slot status vSS for aggregation in the subsequent slot. 

Figure 118 depicts the slot and segment end macro [FSP_A]. 

vSS!ValidFrame := false;
vSS!ValidMTS := false;
vSS!SyntaxError := false;
vSS!ContentError := false;
vSS!FrameSent := false;
vSS!TxConflict := false;
vSS!SlotCount := vSlotCounter;
vSS!CycleCount:= vCycleCounter;
vSS!Segment := zSegment;
vSS!NFIndicator := 0;
zTransmit := false;
zContentErrorOnB := false;
zNullframe := false;

SLOT_SEGMENT_END_A

false

valid sync frame on A
(vRF)

true

vSS!ValidFrame = true
and
vRF!Header!SyFIndicator = 1
and
zContentErrorOnB = false ?

zFspMode ?

’update vSS on A in CHI’;

GO

else

zSegment ?

frame reception complete on A

NIT

else

vSS!ValidFrame ?

true

false

vSS!NFIndicator := 
vRF!Header!NFIndicator;
’update vRF on A in CHI’;

 

Figure 118 — Slot and segment end macro [FSP_A] 

10.3.4 FSP:wait for CE start state 

The FSP:wait for CE start state and the transitions out of this state are depicted in Figure 119. 

For each configured communication channel a node shall remain in the FSP:wait for CE start state until either 

 a communication element start is received, or 

 the node starts transmitting a communication element on the channel. 
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If either a slot boundary or one of the four segment boundaries is crossed then the node shall execute the 
SLOT_SEGMENT_END macro to provide the current slot status, and any frame data that may have been 
received, to the host interface for further processing. In this case the node shall remain in the FSP:wait for CE 
start state. 

 

symbol window start 
on A (vSlotCounter)

NIT start on A
(vSlotCounter)

wait for CE start

zSegment := SW; zSegment := NIT;

vSS!BViolation := false;

wait for CE start

CE start on A

decoding in progress wait for transmission end

dynamic segment start 
on A (vSlotCounter)

zSegment := DYNAMIC;

static segment start on A 
(vCycleCounter, vSlotCounter)

slot boundary on A 
(vSlotCounter)

zSegment := STATIC;

SLOT_SEGMENT_END
_A

decoding halted on A

 

Figure 119 — Transitions from the FSP:wait for CE start state [FSP_A] 

 

10.3.5 FSP:decoding in progress state 

10.3.5.1 Conditions to leave the FSP:decoding in progress state 

The FSP:decoding in progress state and the transitions out of this state are depicted in Figure 120 and 
Figure 121. 

For each configured communication channel a node shall remain in the FSP:decoding in progress state until 
either 

 the node starts transmitting on the communication channel, or 

 a decoding error occurs on the communication channel, or 

 a syntactically correct frame is decoded on the communication channel, or 

 a CAS / MTS symbol was decoded, or 
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 a slot boundary or one of the four segment boundaries is crossed. 

If either a slot boundary or one of the four segment boundaries is crossed then the node shall execute the 
SLOT_SEGMENT_END macro to provide the current slot status, and any frame data that may have been 
received, to the host interface for further processing. 

Figure 120 and Figure 121 are depicting the transitions from the FSP:decoding in progress state [FSP_A]. 

 

decoding error on A
(zDecodingError)

frame decoded on A
(zRF)

decoding in progress

wait for CHIRP

decoding halted on A

PROCESS_STATIC_
FRAME_A

STATIC

vSS!SyntaxError := true;

vSS!SyntaxError := true;
vSS!TxConflict := true;

false

PROCESS_DYNAMIC_
FRAME_A

DYNAMIC

PROCESS_STARTUP_
FRAME_A

STUP

wait for transmission end
vSS!ValidFrame ?

zSegment ?

false

vSS!SyntaxError := true;

else

true

vRF := zRF; vRF := zRF; vRF := zRF;

Note: The current frame information zRF is not 
assigned to vRF to avoid overwriting information 
from a valid frame received earlier in the slot.

true

zSegment = SW
and (zDecodingError = CAS_MTS_TOO_SHORT
or zDecodingError = FSS_TOO_LONG) ?

zTransmit ?

false

true

 

Figure 120 — Transitions from the FSP:decoding in progress state [FSP_A] 
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static segment 
start on A 
(vCycleCounter, 
vSlotCounter)

dynamic segment start 
on A (vSlotCounter)

symbol window start 
on A (vSlotCounter)

NIT start on A
(vSlotCounter)

CAS_MTS decoded on A

wait for CHIRP

vSS!ValidMTS := true;

SW

zSegment := DYNAMIC; zSegment := SW; zSegment := NIT;

vSS!SyntaxError := true;

else

vSS!BViolation:= true;

zSegment := STATIC;

slot boundary 
on A (vSlotCounter)

SLOT_SEGMENT_END
_A

decoding in progress

STUPzSegment ?

 

Figure 121 — Transitions from the FSP:decoding in progress state [FSP_A] 

 

10.3.5.2 Frame reception checks during non-synchronized operation 

The frame acceptance checks that the node shall apply during non-synchronized operation are defined in the 
macro PROCESS_STARTUP_FRAME depicted in Figure 122. 

For each configured communication channel the node shall accept each frame that fulfils all of the following 
criteria. 

 The frame ID included in the header of the frame is greater than 0 and not larger than the number of the 
last static slot gNumberOfStaticSlots. 

 The payload length included in the header of the frame equals the globally configured length for static 
frames gPayloadLengthStatic. 

 The sync frame indicator included in the header is set to one. 

 The startup frame indicator included in the header is set to one. 

 If the null frame indicator vRF!Header!NFIndicator is set to zero then the vRF!Header!PPIndicator is not 
set to one. 
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 The cycle counter included in the header of the frame is not larger than the configured maximum cycle 
counter gCycleCountMax. 

A frame that passes these checks is called a valid startup frame. 

If the cycle count value included in the header of a valid startup frame is even then the frame is called a valid 
even startup frame. 

If the cycle count value included in the header of a valid startup frame is odd then the frame is called a valid 
odd startup frame. 

 

vRF!Header!FrameID > 0
and
vRF!Header!FrameID <= gNumberOfStaticSlots
and
vRF!Header!Length = gPayloadLengthStatic
and
vRF!Header!SyFIndicator = 1 
and
vRF!Header!SuFIndicator = 1
and not
(vRF!Header!NFIndicator = 0
and
vRF!Header!PPIndicator = 1)
and
vRF!Header!CycleCount <= gCycleCountMax ?

false

vRF!Header!CycleCount ?

true

oddeven

PROCESS_STARTUP_
FRAME_A

valid odd startup frame
on A (vRF)

valid even startup frame
on A (vRF)

 

Figure 122 — Frame acceptance checks during non-synchronized operation [FSP_A] 

 

10.3.5.3 Frame reception checks during synchronized operation 

10.3.5.3.1 Frame reception checks in the static segment 

Figure 123 depicts the frame reception timing that shall be met by a syntactically valid frame in the static 
segment. 

The frame acceptance checks that the node shall apply during synchronized operation in the static segment 
are defined in the macro PROCESS_STATIC_FRAME depicted in Figure 124. 

For each configured communication channel the node shall accept the first frame that fulfils all of the following 
criteria. 

 The frame is contained within one static slot. 

 The payload length included in the header of the frame matches the globally configured value of the 
payload length of a static frame held in gPayloadLengthStatic. 

 The frame ID included in the header of the frame equals the value of the slot counter vSlotCounter. 

 The cycle count included in the header of the frame matches the value of the cycle counter 
vCycleCounter. 



BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

158 © ISO 2013 – All rights reserved 
 

 If the startup frame indicator in the header vRF!Header!SuFIndicator is set to one then the 
vRF!Header!SyFIndicator is not set to zero. 

 If the null frame indicator vRF!Header!NFIndicator is set to zero then the vRF!Header!PPIndicator is not 
set to one. 

 

macrotick

channel idle
delimiterchannel active channel idlechannel idle

start of frame with ID x must 
occur within static slot x

('CE start on A/B')

channel idle 
recognition point
('CHIRP on A/B')

static slot
 

Figure 123 — Frame reception timing for a static slot 

 

Figure 124 depicts the frame acceptance checks for the static segment [FSP_A]. 

 

vRF!Header!Length = gPayloadLengthStatic
and 
vRF!Header!FrameID = vSlotCounter
and
vRF!Header!CycleCount  = vCycleCounter 
and not 
(vRF!Header!SuFIndicator = 1 
and vRF!Header!SyFIndicator = 0) 
and not
(vRF!Header!NFIndicator = 0
and
vRF!Header!PPIndicator = 1) ?

PROCESS_STATIC_
FRAME_A

vSS!ContentError := true;vSS!ValidFrame := true;

true false

content error on A

 

Figure 124 — Frame acceptance checks for the static segment [FSP_A] 

 

10.3.5.3.2 Frame reception checks in the dynamic segment 

Figure 125 depicts the frame reception timing that shall be met by a syntactically valid frame in the dynamic 
segment. 

The frame acceptance checks that the node shall apply during synchronized operation in the dynamic 
segment are defined in the macro PROCESS_DYNAMIC_FRAME depicted in Figure 126. 



BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

© ISO 2013 – All rights reserved 159 
 

For each configured communication channel the node shall accept the first frame that fulfils all of the following 
criteria. 

 The frame ID included in the header of the frame is greater than 0 and matches the value of the slot 
counter vSlotCounter. 

 The cycle count included in the header of the frame matches the value of the cycle counter 
vCycleCounter. 

 The sync frame indicator included in the header is set to zero. 

 The startup frame indicator included in the header is set to zero. 

 The null frame indicator included in the header is set to one. 

dynamic slot

dynamic
slot idle
phase

channel idle 
delimiter channel idlechannel activechannel idle

start of frame with ID x
must occur within 

dynamic slot x
('CE start on A/B')

channel idle recognition point 
used to determine the end of  

the dynamic slot
('CHIRP on A/B')

minislots

 

Figure 125 — Frame reception timing for a dynamic slot 

 

Figure 126 depicts the frame acceptance checks for the dynamic segment [FSP_A]. 

vRF!Header!FrameID > 0
and
vRF!Header!FrameID = vSlotCounter
and
vRF!Header!CycleCount  = vCycleCounter
and
vRF!Header!SyFIndicator  = 0 
and
vRF!Header!SuFIndicator = 0
and
vRF!Header!NFIndicator =1 ?

PROCESS_DYNAMIC_
FRAME_A

vSS!ContentError := true;vSS!ValidFrame := true;

true false

 

Figure 126 — Frame acceptance checks for the dynamic segment [FSP_A] 
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10.3.6 FSP:wait for CHIRP state 

The FSP:wait for CHIRP state and the transitions out of this state are depicted in Figure 127. 

For each configured communication channel a node shall remain in the FSP:wait for CHIRP state until either  

 the channel idle recognition point is identified on the communication channel, or 

 the node starts transmitting on the communication channel. 

If either a slot boundary or one of the four segment boundaries is crossed then the node shall execute the 
SLOT_SEGMENT_END macro to provide the current slot status, and any frame data that may have been 
received, to the host interface for further processing. In this case the node shall remain in the FSP:wait for 
CHIRP state. 

 

wait for CHIRP

dynamic segment start 
on A (vSlotCounter)

symbol window start 
on A (vSlotCounter)

NIT start on A
(vSlotCounter)

CHIRP on A

wait for CE start

wait for transmission end

vSS!SyntaxError := true;
vSS!TxConflict := true;

wait for CHIRP

zSegment := DYNAMIC; zSegment := SW; zSegment := NIT;

vSS!BViolation:= true;

static segment start on A 
(vCycleCounter, vSlotCounter)

slot boundary on A 
(vSlotCounter)

zSegment := STATIC;

SLOT_SEGMENT_END
_A

decoding halted on A

vSS!SyntaxError := true;

decoding error on A ()

wait for CHIRP

 

Figure 127 — Transitions from the FSP:wait for CHIRP state [FSP_A] 
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10.3.7 FSP:wait for transmission end state 

The FSP:wait for transmission end state and the transitions out of this state are depicted in Figure 128. 

For each configured communication channel a node shall remain in the FSP:wait for transmission end state 
until either 

 the transmission ends on the channel, or 

 the slot boundary or one of the four segment boundaries is crossed. 

If either a slot boundary or one of the four segment boundaries is crossed then the node shall signal a fatal 
protocol error to the protocol operation control process. 

 

wait for transmission end

decoding started on A

fatal protocol error

wait for CHIRP

standby

slot boundary on A (),
static segment start on A (),
dynamic segment start on A (),
symbol window start on A (),
NIT start on A ()

’set transmission across slot 
boundary violation indicator on 
A in CHI’;

frame transmitted on A

zNullframe ?

wait for transmission end

vSS!FrameSent := true;

false

true vSS!ValidFrame := false;
vSS!SyntaxError := true;

vSS!ValidFrame ?

true

false

zTransmit := true;

 

Figure 128 — Transitions from the FSP:wait for transmission end state [FSP_A] 

 

11 Wakeup and Startup 

11.1 General 

This clause describes the protocol mechanisms available to allow a node to cause a transition of a FlexRay 
cluster from a sleep mode to a mode where nodes are ready to begin synchronized operation (wakeup) and to 
allow a node to either initiate synchronized operation or integrate into a cluster that is already operating 
(startup). 

First the protocol mechanisms of remote cluster wakeup are described in detail. Additional material in the form 
of application notes related to the interaction between the communication controller and host, as well as 
describing techniques for wakeup during operation, may be found in Annex C. 

Following the cluster wakeup subclause, communication startup is described. This subclause also describes 
the integration (or reintegration) of nodes into a communication cluster. 
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11.2 Cluster wakeup 

11.2.1 Principles 

This subclause describes the procedure82) used by communication controllers to initiate the remote cluster 
wakeup. The following procedures assume that the bus drivers in the system support the optional remote 
wakeup detection capability. 

The minimum prerequisite for a cluster wakeup is that the receivers of all bus drivers be supplied with power. 
A bus driver has the ability to wake up the other components of its node when it receives a wakeup pattern on 
its channel. At least one node in the cluster needs an external wakeup source. 

The host completely controls the wakeup procedure83). The communication controller provides the host the 
ability to transmit a special wakeup pattern (see clause 7) on each of its available channels separately. 

The wakeup pattern shall not be transmitted on both channels at the same time. This is done to prevent a 
faulty node from disturbing communication on both channels simultaneously with the transmission. The host 
shall configure which channel the communication controller shall wake up. The communication controller 
ensures that ongoing communication on this channel is not disturbed. 

The wakeup pattern then causes any fault-free receiving node to wake up if it is still asleep. Generally, the bus 
driver of the receiving node recognizes the wakeup pattern and triggers the node wakeup. The communication 
controller needs to recognize the wakeup pattern only during the wakeup (for collision resolution) and startup 
phases. 

The communication controller cannot verify whether all nodes connected to the configured channel are awake 
after the transmission of the wakeup pattern84) since these nodes cannot give feedback until the startup 
phase. The host shall be aware of possible failures of the wakeup and act accordingly. 

The wakeup procedure supports the ability for single-channel devices in a dual-channel system to initiate 
cluster wakeup by transmitting the wakeup pattern on the single channel to which they are connected. Another 
node, which has access to both channels, then assumes the responsibility for waking up the other channel 
and transmits a wakeup pattern on it (see Annex C). 

The wakeup procedure tolerates any number of nodes simultaneously trying to wake up a channel and 
resolves this situation such that eventually only one node transmits the wakeup pattern. Additionally, the 
wakeup pattern is collision resilient; so even in the presence of a fault causing two nodes to simultaneously 
transmit a wakeup pattern the signal resulting from the collision can still wake up the other nodes. 

11.2.2 Description 

The wakeup procedure is a subset of the Protocol Operation Control (POC) process. The relationship 
between the POC and the other protocol processes is depicted in Figure 12985). 

 

                                                      

82) To simplify discussion, the sequence of tasks executed while triggering the cluster wakeup is referred to here as the 
wakeup "procedure" even though it is realized as an SDL macro, and not an SDL procedure. The normal 
grammatical use of the term is intended rather than the precise SDL definition. Since SDL processes are not used in 
the wakeup mechanism, the usage does not introduce ambiguity. 

83) The host may force a mode change from wakeup mode to the POC:ready state. Note, however, that a forced mode-
change to the POC:ready state during wakeup may have consequences regarding the consistency of the cluster. 

84) For example, the transmission unit of the bus driver may be faulty. 
85) The dark lines represent data flows between mechanisms that are relevant to this subclause. The lighter gray lines 

are relevant to the protocol, but not to this clause. 
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Figure 129 — Protocol operation control context 

 

11.2.3 Wakeup support by the communication controller 

11.2.3.1 Host interaction 

The host shall initialize the wakeup of the FlexRay cluster. The host has to configure the wakeup channel 
pWakeupChannel while the communication controller is in the POC:config state. 

The host commands its communication controller to send a wakeup pattern on channel pWakeupChannel 
while the communication controller is in the POC:ready state. The communication controller then leaves the 
POC:ready state, begins the wakeup procedure (see Figure 130) and tries to transmit a wakeup pattern on the 
configured channel. Upon completion of the procedure it signals back the status of the wakeup attempt to the 
host (see 13.3.1.3.2). 

The host shall properly configure the communication controller before it may trigger the cluster wakeup. 

In the SDL description the wakeup procedure is realized as a macro that is called by the protocol operation 
control state machine (see clause 6). 
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11.2.3.2 Wakeup state diagram 

Figure 130 depicts the structure of the wakeup state machine [POC]. 

 

dcl zWakeupNoiseOut Boolean;
µT timer tWakeup := pdListenTimeout;
µT timer tWakeupNoise := gListenNoise * pdListenTimeout;

WAKEUP

WAKEUP_LISTEN

enter send

abort
wakeup

WAKEUP_SEND

wakeup complete

detect
collision
cause

FSP control on A (STARTUP),
FSP control on B (STARTUP),
MAC control on A (STANDBY),
MAC control on B (STANDBY),
CSP control (STANDBY)

WAKEUP_DETECT

 

Figure 130 — Structure of the wakeup state machine [POC] 

 

The parameter pWakeupChannel identifies the channel that the communication controller is configured to 
wake up. The host can only configure the wakeup channel in the POC:config state. After the communication 
controller has entered the POC:ready state the host can initiate wakeup on channel pWakeupChannel. 

Upon completing the wakeup procedure the communication controller shall return into the POC:ready state 
and signal to the host the result of the wakeup attempt. 

The return condition of the WAKEUP macro is formally defined as T_WakeupStatus in 6.2.2.4 in Definition (5). 

The return status variable vPOC!WakeupStatus is set by the POC to 

 UNDEFINED, if the host has not issued a WAKEUP command since the last entry to the POC:default 
config state (see Figure 29), or when the POC has not completed86) a wakeup requested by the host, or 

 RECEIVED_HEADER, if the communication controller has received a frame header without coding 
violation on either channel during the initial listen phase, or 

 RECEIVED_WUP, if the communication controller has received a valid wakeup pattern on channel 
pWakeupChannel during the initial listen phase, or 

 COLLISION_HEADER, if the communication controller has detected a collision during wakeup pattern 
transmission by receiving a valid header during the ensuing detection phase, or 

                                                      

86) This could occur if the wakeup is still in progress when the variable is examined by the host, if the POC aborted the 
wakeup prior to completion due to an IMMEDIATE_READY, DEFERRED_READY, DEFFERED_HALT, or FREEZE 
command from the host, or if the POC did not attempt a wakeup because pWakeupPattern < 2. 
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 COLLISION_WUP, if the communication controller has detected a collision during wakeup pattern 
transmission by receiving a valid wakeup pattern during the ensuing detection phase, or 

 COLLISION_UNKNOWN, if the communication controller has detected a collision but did not detect a 
subsequent reception event that would allow the collision to be categorized as either 
COLLISION_HEADER or COLLISION_WUP, or 

 TRANSMITTED, if the wakeup pattern was completely transmitted. 

11.2.3.3 The POC:wakeup listen state 

Figure 131 depicts the transitions from the POC:wakeup listen state [POC]. 

set (tWakeupNoise);
zWakeupNoiseOut := false;

wakeup listen

start transmission

false

tWakeupNoise

WAKEUP_LISTEN

abort wakeup

tWakeup

enter send

reset (tWakeup);set (tWakeup);

true

CHIRP on A idle end on ACHIRP on B idle end on B

zChannelIdle(A) := true; zChannelIdle(A) := false;zChannelIdle(B) := true; zChannelIdle(B) := false;

zChannelIdle(A) and 
zChannelIdle(B) ?

zChannelIdle(A) and 
zChannelIdle(B) ?

false

set (tWakeup);

true

vPOC!WakeupStatus := 
RECEIVED_HEADER;

header received on A,
header received on B

abort wakeup

zWakeupNoiseOut := false;
set (tWakeupNoise);

CAS_MTS decoded on A,
CAS_MTS decoded on B

vPOC!WakeupStatus := 
RECEIVED_WUP;

wakeup decoded on A wakeup decoded on B 

  = B 

= A

zWakeupNoiseOut ?

zWakeupNoiseOut := true;

continue waiting

true

pWakeupChannel ?

pWakeupChannel ?

else

else

CHECK_ATTACHED_
CHANNELS

false

 

Figure 131 — Transitions from the POC:wakeup listen state [POC]87)  

 

                                                      

87) If all attached channels are stuck continuously active low POC will remain in the wakeup until the host commands it 
to a different state. 
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The purpose of the POC:wakeup listen state is to inhibit the transmission of the wakeup pattern if existing 
communication or a startup is already in progress. 

The timer tWakeup enables a fast cluster wakeup in a noise free environment, while the timer tWakeupNoise 
enables wakeup under more difficult conditions when noise interference is present or if a single channel is 
permanently busy. 

When ongoing communication is detected or a wakeup of pWakeupChannel is already in progress, the 
wakeup attempt is aborted. 

11.2.3.4 The POC:wakeup send state 

Figure 132 depicts the Transitions from the POC:wakeup send state [POC]. 

 

wakeup send

vPOC!WakeupStatus  := 
TRANSMITTED;

= A

WUP transmitted on A, 
WUP transmitted on B

transmit symbol on A 
(WUP)

wakeup
complete

WAKEUP_SEND

detect collision
cause

wakeup collision on A,
wakeup collision on B

pWakeupChannel ?

transmit symbol on B 
(WUP)

= B

HANDLE_DEFERRED_ 
CHI_COMMANDS

vPOC!WakeupStatus  := 
COLLISION_UNKNOWN; This macro also contains 

transitions to states that are 
defined outside the macro.

HANDLE_DEFERRED_ 
CHI_COMMANDS

 

Figure 132 — Transitions from the POC:wakeup send state [POC] 

 

In this state, the communication controller transmits the wakeup pattern on the configured channel and checks 
for collisions. 

Since the communication controller transmits the wakeup pattern on pWakeupChannel, it cannot really 
determine whether another node sends a wakeup pattern or frame on this channel during its transmission. 
Only during the idle portions of the wakeup pattern can it listen to the channel. If during one of these idle 
portions activity is detected, the communication controller leaves the send phase and enters a succeeding 
monitoring phase (POC:wakeup detect state) so that the cause of the collision might be identified and 
presented to the host. 
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11.2.3.5 The POC:wakeup detect state 

Figure 133 depicts the transitions from the POC:wakeup detect state [POC]. 

 

wakeup detect

vPOC!WakeupStatus := 
COLLISION_WUP;

vPOC!WakeupStatus  := 
COLLISION_HEADER;

set (tWakeup);

header received on A,
header received on B

WAKEUP_DETECT

tWakeup

vPOC!WakeupStatus  := 
COLLISION_UNKNOWN;

wakeup decoded on A 

= A

wakeup decoded on B 

= B

pWakeupChannel ? pWakeupChannel ?else else

 

Figure 133 — Transitions from the POC:wakeup detect state [POC] 

 

In this state, the communication controller attempts to discover the reason for the wakeup collision 
encountered in the previous state (POC:wakeup send). 

There are circumstances where a collision is detected between a WUS and a frame, but the mechanism is not 
able to identify the actual cause of the collision, returning COLLISION_UNKNOWN instead. If the node that 
transmitted the frame that collided with the WUS transmits another frame within approximately two cycles the 
identification procedure will return COLLISION_HEADER, but if the node does not continue transmission the 
result may still be COLLISION_UNKNOWN. As a result, it is not possible to rely on the existence of a 
COLLISION_HEADER indication if the cause of a collision was actually a collision with a frame. If 
COLLISION_HEADER is returned, however, it is certain that frames were present on the network. 

This monitoring is bounded by the expiration of the timer tWakeup. The detection of either a wakeup pattern 
indicating a wakeup attempt by another node or the reception of a frame header indicating existing 
communication causes a direct transition to the POC:ready state. 

11.3 Communication startup and reintegration 

11.3.1 General 

A TDMA based communication scheme requires synchrony and alignment of all nodes that participate in 
cluster communication. A fault-tolerant, distributed startup strategy is specified for initial synchronisation of all 
nodes. This strategy is described in the following subclauses. 
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11.3.2 Principles 

11.3.2.1 Definition and properties 

Before communication startup can be performed, the cluster has to be awake, so the wakeup procedure has 
to be completed before startup can commence. The startup is performed on all channels synchronously 

The action of initiating a startup process is called a coldstart. Only a limited number of nodes may initiate a 
startup, they are called the coldstart nodes. The process outlined below effectively describes the startup 
procedure of FlexRay clusters using any synchronisation method. As the TT-E synchronisation method uses a 
drastically simplified startup process, much of the description is not relevant for TT-E coldstart nodes as 
indicated in the textual and SDL description. 

With the exception of TT-E clusters a coldstart attempt begins with the transmission of a collision avoidance 
symbol (CAS). Only the coldstart node that transmits the CAS transmits frames in the first four cycles after the 
CAS. It is then joined first by the other coldstart nodes (if present) and afterwards by all other nodes. 

A coldstart node has the configuration parameter pKeySlotUsedForStartup set to true and is configured with a 
frame header containing a startup frame indicator set to one (see clause 8). At least two fault-free coldstart 
nodes are necessary for the cluster to start up. In TT-D clusters consisting of two nodes, each node shall be a 
coldstart node. Each startup frame shall also be a sync frame; therefore each coldstart node will also be a 
sync node. In order to accommodate the possibility of the failure of a coldstart node, a TT-D cluster consisting 
of three or more nodes should configure at least three nodes as coldstart nodes88). 

A coldstart node that actively starts the cluster is also called a leading coldstart node. A coldstart node that 
integrates upon another coldstart node is also called a following coldstart node. By definition a TT-L coldstart 
node can never be a following coldstart node, as it is the sole coldstart node of its cluster. As TT-E coldstart 
nodes essentially skip the usual startup process, the distinction is meaningless for them. 

A node is in "startup" if its protocol operation control machine is in one of the states contained in the 
STARTUP macro (vPOC!State is set to STARTUP during this time, see Figure 30). During startup, a node 
may only transmit startup frames. Any coldstart node shall wake up the cluster or determine that it is already 
awake before entering startup (see C.2). 

11.3.2.2 Principle of operation 

11.3.2.2.1 General 

The system startup consists of two logical steps. In the first step dedicated coldstart nodes start up. In the 
second step the other nodes integrate to the coldstart nodes. 

11.3.2.2.2 Startup performed by the coldstart nodes 

During startup a coldstart node behaves as follows. 

 Only the coldstart nodes can initiate the cluster start up. 

 When the TT-D synchronisation method is used by the cluster, each of the TT-D coldstart nodes finishes 
its startup as soon as stable communication with one of the other coldstart nodes is established. A TT-L 
coldstart node always finishes the startup after six cycles. A TT-E coldstart node finishes its startup as 
soon as it receives the first cycle start from its time gateway source node after having previously received 
information about rate and offset correction terms and confirmation that the time gateway source node is 
in POC:normal active. 

                                                      

88) This does not imply any restrictions concerning which nodes may initiate a cluster wakeup. 
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11.3.2.2.3 Integration of the non-coldstart nodes 

During startup a non-coldstart node behaves as follows. 

 A non-coldstart node requires at least two startup frames with different frame IDs for integration. In a TT-
D cluster this condition ensures that each non-coldstart node always joins the majority of the coldstart 
nodes89). 

 Integrating non-coldstart nodes may start their integration before coldstart nodes have finished their 
startup. 

 Integrating non-coldstart nodes in a TT-D cluster will not finish their startup until at least two coldstart 
nodes have finished their startup. 

11.3.3 Description 

The startup procedure is a subset of the Protocol Operation Control (POC) process. The relationship between 
the POC and the other protocol processes is depicted in Figure 134. 

frame and symbol
processing

media access
control

clock 
synchronization

startup

macrotick
generation

clock 
synchronization

processing

protocol
operation

control

controller
host interface

coding / decoding 
processes
channel A

frame and symbol
processing
channel A

media access
control

channel A

clock 
synchronization

startup channel A

to channel interface from channel interface

to / from host

media 
access
control
channel B

coding / decoding
processes
channel B

frame and 
symbol
processing
channel B

clock 
synchronization

startup 
channel B

 

Figure 134 — Protocol operation control context 

                                                      

89) This is the case under the assumption that the cluster contains exactly the three recommended coldstart nodes. 
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11.3.4 Coldstart inhibit mode 

In coldstart inhibit mode the communication controller is prevented from initializing the TDMA communication 
schedule. The communication controller is automatically set into coldstart inhibit mode prior to entering the 
POC:ready state. The CC remains in this mode until the host commands the node to leave coldstart inhibit 
mode by means of an ALLOW_COLDSTART command issued after the POC enters the POC:ready state90). 

While in coldstart inhibit mode, the communication controller is not allowed to assume the role of a leading 
coldstart node, i.e., entering the coldstart path is prohibited. The node is still allowed to integrate into a running 
cluster or to act as a following coldstart node, transmitting startup frames after another coldstart node has 
started the initialisation of cluster communication. Once the node is synchronized and integrated into cluster 
communication, the coldstart inhibit mode does not restrict the node's ability to transmit frames. 

The coldstart inhibit status of a node is represented by the vColdstartInhibit variable, with a value of true 
indicating the node is in coldstart inhibit mode and a value of false indicating the node is not in coldstart inhibit 
mode. 

The coldstart inhibit mode can be used either to completely prohibit active startup attempts of a node (if the 
host never issues an ALLOW_COLDSTART command), or only delay them (if the host issues the CHI 
command during a startup procedure). As a result, the coldstart inhibit mode may be used to attempt to 
ensure that all fault-free coldstart nodes are ready for startup and in the POC:coldstart listen state before one 
of them initiates a coldstart attempt. 

A coldstart node in a TT-E cluster (i.e., a node with pExternalSync set to true) will never be in coldstart inhibit 
mode as it follows a fundamentally different path for startup. Such nodes will operate as a coldstart node even 
without the issuance of an ALLOW_COLDSTART command. 

11.3.5 Startup state diagram 

11.3.5.1 Overview of the different startup paths 

There are several ways that a node can enter communication. Subclause 11.3.5.2 describes the path followed 
by the leading coldstarter in a TT-D or TT-L cluster. Subclause 11.3.5.3 describes the paths available to a TT-
D coldstart node that does not act as the leading coldstarter. Subclause 11.3.5.5 describes the path followed 
by a TT-E coldstart node. Subclause 11.3.5.6 describes the path of a non-coldstart node in all cluster types. 

All of these subclauses provide only an overview91) of the operation - the precise behaviour is defined by the 
SDL descriptions in the subsequent clauses. 

                                                      

90) There is no mechanism that allows the host to explicitly place the node into coldstart inhibit mode - this happens 
automatically as part of the process of reaching POC:ready. 

91) There are a large number of paths possible involving multiple executions of the STARTUP_PREPARE macro (for 
example, paths involving one or more aborted startup attempts). No overview of these paths is provided, but their 
behaviour is explicitly defined by the SDL descriptions in this subclause. 
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Figure 135 depicts the startup state diagram [POC]. 
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Figure 135 — Startup state diagram [POC] 
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Figure 136 depicts the helpful macros for startup [POC]. 
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Figure 136 — Helpful macros for startup [POC] 
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Figure 137 depicts the example of state transitions for a fault-free startup. 
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Figure 137 — Example of state transitions for a fault-free startup92)  

 

11.3.5.2 Path of a TT-D leading coldstart node 

Node A in Figure 137 follows this path and is therefore called a leading coldstart node. 

When a coldstart node enters startup, it listens to its attached channels and attempts to receive FlexRay 
frames (see SDL macro COLDSTART_LISTEN in Figure 142). 

If no communication93) is received, the node commences a coldstart attempt. The initial transmission of a 
CAS symbol is succeeded by the first regular cycle. This cycle has the number zero. 

From cycle zero on, the node transmits its startup frame (with the exception of the coldstart gap or the abort of 
the startup attempt). Since each coldstart node is allowed to perform a coldstart attempt, it may occur that 
several nodes simultaneously transmit the CAS symbol and enter the coldstart path. This situation is resolved 
during the first four cycles after CAS transmission. As soon as a node that initiates a coldstart attempt 
receives a CAS symbol or a frame header during these four cycles, it reenters the listen state. 

Consequently, only one node remains in this path (see SDL macro COLDSTART_COLLISION_RESOLUTION 
in Figure 144). 

In cycle four, other coldstart nodes begin to transmit their startup frames. The node that initiated the coldstart 
collects all startup frames from cycle four and five and performs the clock correction as described in 
clause 12. If clock correction does not signal any errors and the node has received at least one valid startup 

                                                      

92) Several simplifications have been made within this diagram to make it more accessible, e.g. the state transitions do 
not occur on cycle change, but well before that (see clause 12). 

93) See Figure 142 for exact definition. 
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frame pair, the node leaves startup and enters operation (see SDL macro 
COLDSTART_CONSISTENCY_CHECK in Figure 145). 

11.3.5.3 Path of a TT-D following coldstart node 

Node B in Figure 137 follows this path and is therefore called a following coldstart node. 

When a coldstart node enters the startup, it listens to its attached channels and attempts to receive FlexRay 
frames (see SDL macro COLDSTART_LISTEN in Figure 142). 

If communication94) is received, it tries to integrate to a transmitting coldstart node95). It tries to receive a valid 
pair of startup frames to derive its schedule and clock correction from the coldstart node (see clause 12 and 
see SDL macro INITIALIZE_SCHEDULE in Figure 147).  

If these frame receptions have been successful, it collects all sync frames and performs clock correction in the 
following double cycle. If clock correction does not signal any errors and if the node continues to receive 
sufficient frames from the same node it has integrated on, it begins to transmit its startup frame; otherwise it 
reenters the listen state (see SDL macro INTEGRATION_COLDSTART_CHECK in Figure 148). 

If for the following three cycles the clock correction does not signal any errors and at least one other coldstart 
node is visible, the node leaves startup and enters operation. Thereby, it leaves startup at least one cycle after 
the node that initiated the coldstart (see SDL macro COLDSTART_JOIN in Figure 149). 

Another path, not shown in Figure 137, is also possible for an integrating coldstart node. If, at the time of the 
execution of the STARTUP_PREPARE macro, the node is prevented from acting as a leading coldstarter 
(either because the vColdstartInhibit flag is set to true, or because the vRemainingColdstartAttempts variable 
indicates there are no remaining coldstart attempts) the node will instead begin to act as a normal integrating 
node, waiting for a leading coldstarter to begin transmissions that will initialize the schedule (see SDL macro 
INTEGRATION_LISTEN). Once such communication is detected, the node then executes the 
INITIALIZE_SCHEDULE macro and behaves as described earlier in this subclause. 

11.3.5.4 Path of a TT-L coldstart node 

Node A in Figure 138 follows this path. 

When a TT-L coldstart node enters startup, it listens to its attached channels and attempts to receive FlexRay 
frames (see SDL macro COLDSTART_LISTEN in Figure 142) even though it is the sole provider of startup 
frames of its cluster. As no communication can be received, the node soon commences a coldstart attempt. 
The initial transmission of a CAS symbol is succeeded by the first regular cycle, which is given a cycle number 
of zero. 

 

                                                      

94) See clause 12 for exact definition. 
95) Presumably it is the node that initiated the coldstart, but not necessarily. 
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Figure 138 — Example of state transitions for a fault-free startup in a TT-L cluster96)  

 

From cycle zero on, the node transmits its two startup frames. 

As no collision with startup frames or CAS symbols transmitted by other nodes can occur (in the fault-free 
case), the TT-L coldstart node proceeds straight through the POC:coldstart collision resolution state. In the 
following two cycles, the TT-L coldstart node remains in POC:coldstart consistency check and always 
proceeds on to POC:normal active, as the two startup frames it provides are sufficient to initialize and 
maintain the TT-L cluster (see SDL macro COLDSTART_CONSISTENCY_CHECK in Figure 145). 

11.3.5.5 Path of a TT-E coldstart node 

Figure 139 depicts a system topology that is used to describe the path followed by TT-E coldstart nodes. In 
this figure, which depicts two independent time gateways, nodes M, N, P and Q are connected to the time 
source cluster (a cluster using the TT-D synchronisation mode) and nodes A, B, and C are connected to the 
time sink cluster. In the TT-D cluster, nodes N, P, and Q are coldstart nodes. 

Figure 140 depicts the path of nodes A and B, the coldstart nodes of the TT-E cluster. As Figure 141 shows, 
the behaviour of a node following this path is straightforward. 

 

                                                      

96) Please note that several simplifications have been made within this diagram to make it more accessible, e.g. the 
state transitions do not occur on cycle change, but well before that (see clause 12). 



BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

176 © ISO 2013 – All rights reserved 
 

Node C

Node M
time gateway 
source node 1

Node N
time gateway 
source node 2

TT-D cluster

TT-E cluster

time gateway 1 time gateway 2

Node QNode P
 

Node A
time gateway 
sink node 1

Node B
time gateway 
sink node 2

coldstart 
node

non-cold-
start node

Legend:

 

Figure 139 — Topology for the startup example of a TT-E cluster 

 

The node first starts the CSP, MAC and FSP processes and then awaits the first cycle start signal; receiving 
this, the node directly continues into POC:normal active. The cycle start signal is generated as soon as the 
(just started) CSP process has managed to synchronize itself onto the time gateway source (see Figure 156). 
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Figure 140 — Example of state transitions for a fault-free startup in a TT-E cluster97)  

 

Node A in Figure 140 enters POC:normal active very shortly after its time gateway source node (node M) has 
entered POC:normal active itself. The time gateway source node has provided the node A with all relevant 
information about clock correction values during cycles 18 and 19, but as node M was not yet in POC:normal 
active, node A could not proceed. Node A uses the cycle counter value provided by the time source gateway 
node and therefore directly starts with the cycle number 20, the same cycle number the time source cluster 
currently uses. The cycle schedules of Figure 140 have been drawn slightly offset to one another to symbolize 
the fixed offset of cdTSrcCycleOffset microticks between the cluster schedules. 

The second TT-E coldstart node, node B, also enters POC:normal active as soon as it has received all 
relevant terms from its time gateway source node (node N) and does not verify its view on the schedule 
against the already present startup frames. Node B is not required for node C to complete its startup. 

 

                                                      

97) Several simplifications have been made within this diagram to make it more accessible, e.g. the state transitions do 
not occur on cycle change, but well before that (see clause 12). 
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Figure 141 — External startup state [POC] 

 

11.3.5.6 Path of a non-coldstart node 

Node C in Figure 137, Node B in Figure 138, and Node C in Figure 140 follow this path. 

When a non-coldstart node enters startup, it listens to its attached channels and tries to receive FlexRay 
frames (see SDL macro INTEGRATION_LISTEN in Figure 150). 

If communication98) is received, it tries to integrate to a transmitting coldstart node. It tries to receive a valid 
pair of startup frames to derive its schedule and clock correction from the coldstart node (see clause 12 and 
see SDL macro INITIALIZE_SCHEDULE in Figure 147). 

In the following double cycles, it tries to find at least two startup frames that fit into its own schedule. In a TT-D 
cluster these frames will come from different coldstart nodes. If this fails, or if clock correction signals an error, 
the node aborts the integration attempt and tries again. 

After receiving two valid startup frame pairs with different frame IDs for two consecutive double cycles, the 
node leaves startup and enters operation. 

For TT-D clusters, this means that the non-coldstart node leaves startup at least two cycles later than the 
node that initiated the coldstart. Effectively, all nodes of a TT-D cluster can leave startup at the end of cycle 7, 
just before entering cycle 8 (see Figure 137 and SDL macro INTEGRATION_CONSISTENCY_CHECK in 
Figure 151). For TT-D and TT-E clusters, this time is reduced by one double cycle, as the two necessary 
startup frames are present as much earlier (see Figure 138 and Figure 140). 

                                                      

98) See clause 12 for exact definition. 
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11.3.5.7 The POC:coldstart listen state 

Figure 142 depicts the Transitions from the POC:coldstart listen state [POC]. 
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Figure 142 — Transitions from the POC:coldstart listen state [POC]99) 

 

                                                      

99) If all attached channels are stuck continuously active low POC will remain in the startup until the host commands it to 
a different state. 
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Figure 143 depicts the Macro CHECK_ATTACHED_CHANNELS [POC]. 
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Figure 143 — Macro CHECK_ATTACHED_CHANNELS [POC] 

 

A coldstart node still allowed100) to initiate a coldstart enters the POC:coldstart listen state before actually 
performing the coldstart. In this state the coldstart node tries to detect ongoing frame transmissions and 
coldstart attempts. 

This state is left and the POC:initialize schedule state is entered as soon as a valid startup frame has been 
received (see clause 12 for details of this mechanism), as the node tries to integrate on the node that has 
transmitted this frame. 

When neither CAS symbols nor frame headers can be detected for a predetermined time duration, the node 
initiates the coldstart and enters the POC:coldstart collision resolution state. The amount of time that has to 
pass before a coldstart attempt may be performed is defined by the two timers tStartup and tStartupNoise. 

The timer tStartup expires quickly, but is stopped whenever a channel is active (see clause 7 for a description 
of channel states). It is restarted when all attached channels are in idle state. The timer tStartupNoise is only 
restarted by the reception of correctly decoded headers or CAS symbols to guarantee a cluster startup when 
noise interference is present or if a single channel is permanently busy. 

                                                      

100) See macro STARTUP_PREPARE in Figure 136. The condition 'vRemainingColdstartAttempts > 1' arises from the 
necessity of using up one round through the POC:coldstart collision resolution state for the collision resolution and 
needing the second round for actually integrating the other nodes. 
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11.3.5.8 The POC:coldstart collision resolution state 

Figure 144 depicts the transitions from the POC:coldstart collision resolution state [POC]. 
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Figure 144 — Transitions from the POC:coldstart collision resolution state [POC] 

 

The purpose of this state is to detect and resolve collisions between multiple simultaneous coldstart attempts 
of several coldstart nodes. Each entry into this state starts a new coldstart attempt by this node. 

The reception of a complete header without coding errors or the reception of a valid CAS symbol causes the 
communication controller to abort the coldstart attempt. This resolves conflicts between multiple coldstart 
nodes performing a coldstart attempt at the same time, so only one leading coldstart node remains. 

In the fault-free case and under certain configuration constraints (see Annex A) only one coldstart node will 
proceed to the POC:coldstart consistency check state. The other nodes abort startup since they received a 
frame header from the successful coldstart node. 

The number of coldstart attempts that a node is allowed to make is restricted to the initial value of the variable 
vRemainingColdstartAttempts. vRemainingColdstartAttempts is reduced by one for each attempted coldstart. 
A node may enter the POC:coldstart listen state only if this variable is larger than one and it may enter the 
POC:coldstart collision resolution state only if this variable is larger than zero. A value of larger than one is 
required for entering the POC:coldstart listen state because one coldstart attempt may be used for performing 
the collision resolution, in which case the coldstart attempt could fail. 

After four cycles in this state, the node enters the POC:coldstart consistency check state. 
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11.3.5.9 The POC:coldstart consistency check state 

Figure 145 depicts the transitions from the POC:coldstart consistency check state [POC]. 

 

coldstart consistency 
check

 > 0
= 0

else

odd

even

vRemainingCold-
startAttempts ?

 > 0 

else

zStartupX ?

vCycleCounter ?

zStartupX ?

else

else

enter
operation

COLDSTART_CON-
SISTENCY_CHECK

enter
coldstart gap

abort startup

zColdstartAborted := true; 

SyncCalcResult (zSyncCalcResult, 
zStartupX, zRefX)

zSyncCalcResult ?

WITHIN_BOUNDS

vPOC!ColdstartNoise := 
zColdstartNoise;

vPOC!StartupState := COLDSTART_CONSISTENCY_CHECK;
’update vPOC in CHI’;

HANDLE_DEFERRED_ 
CHI_COMMANDS

This macro also contains 
transitions to states that are 
defined outside the macro.

 

Figure 145 — Transitions from the POC:coldstart consistency check state [POC]101)  

 

In this state, the leading coldstart node checks whether the frames transmitted by other following coldstart 
nodes (non-coldstart nodes cannot yet transmit in the fault-free case) fit into its schedule. 

If a TT-D coldstart node receives no valid startup frames in the even cycle in this state, it is assumed that the 
other coldstart nodes were not ready soon enough to initialize their schedule from the first two startup frames 
sent during the POC:coldstart collision resolution state. Therefore, if another coldstart attempt is allowed, the 
node enters the POC:coldstart gap state to wait for the other coldstart nodes to get ready. 

If a TT-D coldstart node has received a valid startup frame in the even cycle in this state, but the clock 
correction signals errors in the odd cycle or no valid pair of startup frames can be received in the double cycle, 
the node aborts the coldstart attempt. 

If a TT-D coldstart node has received a valid pair of startup frames and the clock correction signals no errors 
the node leaves startup and enters operation (see clause 6). 

                                                      

101) zStartupX is zStartupNodes in even cycles and zRxStartupPairs in odd cycles. zRefX is zRefNode in even cycles 
and zRefPair in odd cycles. See Figure 157 for details. 
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A TT-L coldstart node will enter operation after having remained for two cycles in this state, as it is the sole 
provider of startup frames of the cluster. 

11.3.5.10 The POC:coldstart gap state 

Figure 146 depicts the transitions from the POC:coldstart gap state [POC]. 

coldstart gap

zColdstartAborted := true; 

header received on A,
header received on B

SyncCalcResult

enter
coldstart collision 

resolution
abort startup

COLDSTART_GAP

FSP control on A (STARTUP),
FSP control on B (STARTUP),
MAC control on A (STARTUPFRAME),
MAC control on B (STARTUPFRAME),
CSP control (SYNC)

FSP control on A (STARTUP),
FSP control on B (STARTUP),
MAC control on A (NOCE) ,
MAC control on B (NOCE),
CSP control (NOSYNC)

CAS_MTS decoded on A,
CAS_MTS decoded on B

vPOC!StartupState := 
COLDSTART_GAP;

’update vPOC in CHI’;

 

Figure 146 — Transitions from the POC:coldstart gap state [POC] 

 

In the POC:coldstart gap state the leading coldstart node stops transmitting its startup frame. This causes all 
nodes currently integrating on the leading coldstart node to abort their integration attempt. 

In the same way as during the POC:coldstart collision resolution state, the leading coldstart node aborts the 
coldstart attempt if it receives a frame header or a valid CAS symbol. If it does not receive either, it proceeds 
after one cycle by reentering the POC:coldstart collision resolution state for another coldstart attempt. 
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11.3.5.11 The POC:initialize schedule state 

Figure 147 depicts the transitions from the POC:initialize schedule state [POC]. 

 

initialize schedule

integration aborted on A

INITIALIZE_
SCHEDULE

integration aborted on B

enter
startup prepare

integration started on A integration started on B

zIntegrating(B) := true;zIntegrating(A) := true;

zIntegrating(B) := false;zIntegrating(A) := false;

zIntegrating(A) or 
zIntegrating(B) ?

true

false

false

enter 
integration 

consistency check

integration successful on A (),
integration successful on B ()

pKeySlotUsed- 
ForStartup ?

true

enter 
integration 

coldstart check

vPOC!StartupState := 
INITIALIZE_SCHEDULE;

’update vPOC in CHI’;

 

Figure 147 — Transitions from the POC:initialize schedule state [POC] 

 

As soon as a valid startup frame has been received in one of the listen states (see Figure 135), the 
POC:initialize schedule state is entered. If clock synchronisation successfully receives a matching second 
valid startup frame and derives a schedule from them (indicated by receiving the signal integration successful 
on A or integration successful on B), the POC goes to the POC:integration coldstart check state (for coldstart 
nodes) or the POC:integration consistency check state (for non-coldstart nodes). 
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11.3.5.12 The POC:integration coldstart check state 

Figure 148 depicts the transitions from the POC:integration coldstart check state [POC]. 

 

integration
coldstart check

else

odd

vCycleCounter ?even

zStartupX ?

true

 = 0

enter
coldstart join

abort startup

INTEGRATION_ 
COLDSTART_CHECK

FSP control on A (STARTUP),
FSP control on B (STARTUP),
MAC control on A (NOCE),
MAC control on B (NOCE),
CSP control (NOSYNC)

zRefX ?

 = 1

false

> 1

WITHIN_BOUNDS

zSyncCalcResult ?

SyncCalcResult (zSyncCalcResult,
zStartupX, zRefX)

vPOC!StartupState := 
INTEGRATION_COLDSTART_CHECK;
’update vPOC in CHI’;

 

Figure 148 — Transitions from the POC:integration coldstart check state [POC]102)  

 

Only integrating (following) coldstart nodes pass through this state. In this state it shall be verified that the 
clock correction can be performed correctly, that at least one coldstart node is still available, and if exactly one 
coldstart node is available that it is the same coldstart node that was used to initialize the schedule. 

The clock correction is activated and if any error is signalled the integration attempt is aborted. 

During the first double cycle in this state either two valid startup frame pairs or the startup frame pair of the 
node that this node has integrated on shall be received; otherwise the node aborts the integration attempt. 

If at the end of the first double cycle in this state the integration attempt has not been aborted, the 
POC:coldstart join state is entered. 

                                                      

102) zStartupX is zStartupNodes in even cycles and zRxStartupPairs in odd cycles. zRefX is zRefNode in even cycles 
and zRefPair in odd cycles. See Figure 157 for details. 
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11.3.5.13 The POC:coldstart join state 

Figure 149 depicts the transitions from the POC:coldstart join state [POC]. 

 

coldstart join

zCycleTemp ?else

=3

 = 0zStartupX ?

 > 0

zCycleTemp := 
zCycleTemp  + 1;

else

enter
operation

COLDSTART_JOIN

abort startup

FSP control on A (STARTUP),
FSP control on B (STARTUP),
MAC control on A (STARTUPFRAME),
MAC control on B (STARTUPFRAME),
CSP control (SYNC)

WITHIN_BOUNDS

zSyncCalcResult ?

SyncCalcResult (zSyncCalcResult,
zStartupX, zRefX)

zCycleTemp  := 0;
vPOC!StartupState := COLDSTART_JOIN;
’update vPOC in CHI’;

HANDLE_DEFERRED_ 
CHI_COMMANDS

This macro also contains 
transitions to states that are 
defined outside the macro.

 

Figure 149 — Transitions from the POC:coldstart join state [POC]103)  

 

Only following coldstart nodes enter this state. Upon entry they begin transmitting startup frames and continue 
to do so in subsequent cycles. Thereby, the leading coldstart node and the nodes joining it can check if their 
schedules agree with each other. 

If the clock correction signals any error, the node aborts the integration attempt. 

If a node in this state sees at least one valid startup frame during all even cycles in this state and at least one 
valid startup frame pair during all double cycles in this state, it leaves startup and enters operation (see 
clause 6). 

                                                      

103) zStartupX is zStartupNodes in even cycles and zRxStartupPairs in odd cycles. zRefX is zRefNode in even cycles 
and zRefPair in odd cycles. See Figure 157 for details. 
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11.3.5.14 The POC:integration listen state 

Figure 150 depicts the transitions from the POC:integration listen state [POC]. 

 

integration listen

integration started on A

INTEGRATION_
LISTEN

enter
startup prepare

enter
initialize
schedule

integration started on B

zIntegrating(A) := true; zIntegrating(B) := true; vColdstartInhibit := false;

CHI ALLOW_COLDSTART 
command

vPOC!StartupState := 
INTEGRATION_LISTEN;

’update vPOC in CHI’;

 

Figure 150 — Transitions from the POC:integration listen state [POC] 

 

In this state the node waits for either a valid startup frame or for the vColdstartInhibit variable to be cleared. 

If the vColdstartInhibit variable is cleared the node reevaluates whether it is allowed to initiate a coldstart and 
consequently enter the POC:coldstart listen state. 



BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

188 © ISO 2013 – All rights reserved 
 

11.3.5.15 The POC:integration consistency check state 

Figure 151 depicts the transitions from the POC:integration consistency check state [POC]. 

 

integration
consistency check

else

odd

vCycleCounter ?even

enter
operation

zTwoSNSeen := 0;
zTwoSNRequired := false;
vPOC!StartupState := 
INTEGRATION_CONSISTENCY_CHECK;
’update vPOC in CHI’;

zStartupX ?

zTwoSNSeen := 
zTwoSNSeen + 1;

zTwoSNSeen := 0;

 > 1

 = 1

>=4

else zTwoSNSeen ?

zTwoSNRequired ?

zTwoSNRequired := true;

 = 0

abort startup

INTEGRATION_CON-
SISTENCY_CHECK

FSP control on A (STARTUP),
FSP control on B (STARTUP),
MAC control on A (NOCE),
MAC control on B (NOCE),
CSP control (NOSYNC)

false

true

zRefX ?

true

false

WITHIN_BOUNDS

zSyncCalcResult ?

SyncCalcResult (zSyncCalcResult,
zStartupX, zRefX)

 

Figure 151 — Transitions from the POC:integration consistency check state [POC]104) 

                                                      

104) zStartupX is zStartupNodes in even cycles and zRxStartupPairs in odd cycles. zRefX is zRefNode in even cycles 
and zRefPair in odd cycles. See Figure 157 for details.  
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Only integrating non-coldstart nodes pass through this state. In this state the node verifies that clock 
correction can be performed correctly and that enough coldstart nodes are sending startup frames that agree 
with the node's own schedule. 

Clock correction is activated and if any errors are signalled the integration attempt is aborted. 

During the first even cycle in this state, either two valid startup frames or the startup frame of the node that 
this node has integrated on shall be received; otherwise the node aborts the integration attempt. 

During the first double cycle in this state, either two valid startup frame pairs or the startup frame pair of the 
node that this node has integrated on shall be received; otherwise the node aborts the integration attempt. 

After the first double cycle, if less than two valid startup frames are received within an even cycle, or less than 
two valid startup frame pairs are received within a double cycle, the startup attempt is aborted. 

Nodes in this state need to see two valid startup frame pairs for two consecutive double cycles each to be 
allowed to leave startup and enter operation (see clause 6). Consequently, they leave startup at least one 
double cycle after the node that initiated the coldstart and only at the end of a cycle with an odd cycle number. 
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12 Clock synchronisation 

12.1 Introduction 

In a distributed communication system every node has its own clock. Because of temperature fluctuations, 
voltage fluctuations, and production tolerances of the timing source (i.e. oscillator), the internal time bases of 
the various nodes diverge after a short time, even if all the internal time bases are initially synchronized. 

Figure 152 depicts the clock synchronisation context. 
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Figure 152 — Clock synchronisation context 

 

A basic assumption for a time-triggered system is that every node in the cluster has approximately the same 
view of time and this common global view of time is used as the basis for the communication timing for each 
node. In this context, "approximately the same" means that the difference between any two nodes' views of 
the global time is within a specified tolerance limit. The maximum value of this difference is known as the 
precision. 
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The FlexRay protocol uses a distributed clock synchronisation mechanism in which each node individually 
synchronizes itself to the cluster by observing the timing of transmitted sync frames from other nodes. A fault-
tolerant algorithm is used. 

The relationship between the clock synchronisation processes and the other protocol processes is depicted in 
Figure 152105). 

12.2 Time representation 

12.2.1 Timing hierarchy 

The time representation inside a FlexRay node is based on cycles, macroticks and microticks. A macrotick is 
composed of an integer number of microticks. A cycle is composed of an integer number of macroticks (see 
Figure 153). 
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cycle level
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0 1 2 3 4 5 ...

gdMacrotick

gdCycle

vCycleCounter

vMacrotick

vMicrotick

gCycleCountMax

gMacroPerCycle - 1

pdMicrotick  

Figure 153 — Timing hierarchy 

 

Microticks are time units derived directly from the communication controller's (external) oscillator clock tick, 
optionally making use of a prescaler. Microticks are controller-specific units. They may have different 
durations in different controllers. The granularity of a node's internal local time is a microtick. 

The macroticks are synchronized on a cluster-wide basis. Within tolerances, the duration of a macrotick is 
identical throughout all synchronized nodes in a cluster. The duration of each local macrotick is an integer 
number of microticks; the number of microticks per macrotick may, however, differ from macrotick to macrotick 
within the same node. The number of microticks per macrotick may also differ between nodes, and depends 
on the oscillator frequency and the prescaler. Although any given macrotick consists of an integral number of 
microticks, the average duration of all macroticks in a given cycle may be non-integral (i.e., it may consist of a 
whole number of microticks plus a fraction of a microtick)106). 

                                                      

105) The dark lines represent data flows between mechanisms that are relevant to this subclause. The lighter gray lines 
are relevant to the protocol, but not to this subclause. 

106) This is true even for the nominal (uncorrected) average duration of a macrotick (for example 6 000 microticks 
distributed over 137 macroticks). 
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A cycle consists of an integer number of macroticks. The number of macroticks per cycle shall be identical in 
all nodes in a cluster, and remains the same from cycle to cycle. At any given time all nodes should have the 
same cycle number (except at cycle boundaries as a result of imperfect synchronisation in the cluster)107). 

12.2.2 Global and local time 

The global time of a cluster is the general common understanding of time inside the cluster. The FlexRay 
protocol does not have an absolute or reference global time; every node has its own local view of the global 
time. 

The local time is the time of the node's clock and is represented by the variables vCycleCounter, vMacrotick, 
and vMicrotick. vCycleCounter and vMacrotick shall be visible to the application. The update of vCycleCounter 
at the beginning of a cycle shall be atomic with the update of vMacrotick108). 

The local time is based on the local view of the global time. Every node uses the clock synchronisation 
algorithm to attempt to adapt its local view of time to the global time. 

The precision of a cluster is the maximum difference between the local times of any two synchronized nodes 
in the cluster. 

12.2.3 Parameters and variables 

vCycleCounter is the (controller-local) cycle number and is incremented by one at the beginning of each 
communication cycle. vCycleCounter ranges from 0 to gCycleCountMax. When gCycleCountMax is reached, 
the cycle counter vCycleCounter shall be reset to zero in the next communication cycle instead of being 
incremented. 

vMacrotick represents the current value of the (controller-local) macrotick and ranges from 
0 to (gMacroPerCycle - 1). gMacroPerCycle defines the (integer) number of macroticks per cycle. 

vMicrotick represents the current value of the (controller-local) microtick. 

Definition: T_Macrotick and T_Microtick (41) 

syntype 
T_Macrotick = Integer 

endsyntype; 

syntype 
T_Microtick = Integer 

endsyntype; 

 

 

The FlexRay "timing" will be configured by 

 gCycleCountMax, 

 gMacroPerCycle, and 

 two of the three parameters pMicroPerCycle, gdCycle and pdMicrotick. pMicroPerCycle is the node 
specific number of microticks per cycle, gdCycle is the cluster wide duration of one communication cycle, 
and pdMicrotick is the node specific duration of one microtick. The relation between these three 
parameters is described in B.4.16. 

                                                      

107) The cycle number discrepancy is at most one, and lasts no longer than the precision of the system. 
108) An atomic action is an action where no interruption is possible. 
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12.3 Synchronisation process 

Clock synchronisation consists of two main concurrent processes. The macrotick generation process (MTG) 
controls the cycle and macrotick counters and applies the rate and offset correction values. This process is 
explained in detail in 12.7. The clock synchronisation process (CSP) performs the initialisation at cycle start, 
the measurement and storage of deviation values, and the calculation of the offset and the rate correction 
values.  

Figure 154 illustrates the timing relationship between these two processes and the relationship to the media 
access schedule. 
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Figure 154 — Timing relationship between clock synchronisation operations and media access 
schedule 

The primary task of the clock synchronisation function is to ensure that the time differences between the 
nodes of a cluster stay within the precision.  

Two types of time differences between nodes can be distinguished between 

 Offset (phase) differences and 

 Rate (frequency) differences. 
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Methods are known to synchronize the local time base of different nodes using offset correction or rate 
correction. FlexRay uses a combination of both methods. The following conditions shall be fulfilled. 

 Rate correction and offset correction shall be done in the same way in all nodes. Rate correction shall be 
performed over the entire cycle. 

 Offset correction shall be performed only during the NIT in the odd communication cycle, starts at 
pOffsetCorrectionStart, and shall be finished before the start of the next communication cycle. 

 Offset changes (implemented by synchronizing the start time of the cycle) are described by the variable 
zOffsetCorrection. zOffsetCorrection indicates the number of microticks that are added to the offset 
correction segment of the network idle time. zOffsetCorrection may be negative. The value of 
zOffsetCorrection is determined by the clock synchronisation algorithm. The calculation of 
zOffsetCorrection takes place every cycle but a correction is only applied at the end of odd 
communication cycles. The calculation of zOffsetCorrection is based on values measured in a single 
communication cycle. Although the SDL indicates that this computation cannot begin before the NIT, an 
implementation may start the computation of this parameter within the dynamic segment or symbol 
window as long as the reaction to the computation (update of the CHI and transmission of the 
SyncCalcResult and offset calc ready signals) is delayed until the NIT. The calculation shall be complete 
before the offset correction phase begins. 

 Rate (frequency) changes are described by the variable zRateCorrection. zRateCorrection is an integer 
number of microticks that are added to the configured number of microticks in a communication cycle 
(pMicroPerCycle)109) zRateCorrection may be negative. The value of zRateCorrection is determined by 
the clock synchronisation algorithm and is only computed once per double cycle. The calculation of 
zRateCorrection takes place following the static segment in an odd cycle. The calculation of 
zRateCorrection is based on the values measured in an even-odd double cycle. Although the SDL 
indicates that this computation cannot begin before the NIT, an implementation may start the computation 
of this parameter within the dynamic segment or symbol window as long as the reaction to the 
computation (update of the CHI and transmission of the SyncCalcResult and rate calc ready signals) is 
delayed until the NIT. The calculation shall be completed before the next even cycle begins. 

The following data types will be used in the definition of the clock synchronisation process: 

Definition: T_EvenOdd and T_Deviation (42) 

newtype T_EvenOdd 
literals even, odd; 

endnewtype; 

syntype 
T_Deviation = T_Microtick 

endsyntype; 

 

 

The protocol operation control (POC) process sets the operating mode for the clock synchronisation process 
(CSP) (Figure 156) into one of the following modes. 

 In the STANDBY mode the clock synchronisation process is effectively halted. 

 In the NOSYNC mode CSP performs clock synchronisation under the assumption that it is not 
transmitting sync frames (i.e., it does not include its own clock in the clock correction computations). 

 In the SYNC mode CSP performs clock synchronisation under the assumption that it is transmitting sync 
frames (i.e., it includes its own clock in the clock correction computations). 

                                                      

109) pMicroPerCycle is the configured number of microticks per communication cycle without correction. 
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Definition (43) gives the formal definition of the CSP operating modes. 

Definition: T_CspMode and T_SyncCalcResult (43) 

newtype T_CspMode 
literals STANDBY, NOSYNC, SYNC; 

endnewtype; 

newtype T_SyncCalcResult 
literals WITHIN_BOUNDS, EXCEEDS_BOUNDS, MISSING_TERM; 

endnewtype; 

 

 

After the POC sets the CSP mode to something other than STANDBY, the CSP waits in the CSP:wait for 
startup state until the POC forces the node to a coldstart or to integrate into a cluster. The startup procedure, 
including its initialisation and interaction with other processes, is described in the macro 
INTEGRATION_CONTROL, which is explained in 12.4. 

Before further explanation of the processes an array is defined (Definition (44)), which is used to store the 
frame IDs of the sync frames that are considered in the clock correction process. 

Definition: T_ArrayIndex, T_SyncFrameIDCount, and T_FrameIDTable (44) 

syntype T_ArrayIndex = Integer 
constants 1 : cSyncFrameIDCountMax 

endsyntype; 

syntype T_SyncFrameIDCount = Integer 
constants 0 : cSyncFrameIDCountMax 

endsyntype; 

newtype T_FrameIDTable 
Array(T_ArrayIndex, T_FrameID) 

endnewtype; 

 

 

Definition: T_SyncExtern (45) 

newtype T_SyncExtern 
literals UNSYNC, ACTIVE, PASSIVE; 

endnewtype; 
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Figure 155 depicts the declarations for the clock synchronisation process [CSP]. 

 

dcl zAllOnA Boolean;
dcl zAllOnB Boolean;
dcl zCh T_Channel;
dcl zsDev T_DevTable;
dcl vMacrotick T_Macrotick;
dcl zEO T_EvenOdd;
dcl zID T_FrameID := 0;
dcl zCspMode  T_CspMode;
dcl zsMListAB T_DeviationTable;
dcl zsMRateAB T_DeviationTable;
dcl zStartupNodes T_SyncFrameIDCount;
dcl zRxStartupPairs T_SyncFrameIDCount;
dcl vStartupPairs T_SyncFrameIDCount;
dcl zLine, zPos, z T_SyncFrameIDCount;
dcl zRateCorrection T_Deviation;
dcl zOffsetCorrection T_Deviation;
dcl zActionPoint T_MicrotickTime;
dcl vCycleCounter T_CycleCounter;
dcl zSyncCalcResult T_SyncCalcResult;
dcl vsSyncIDListA T_FrameIDTable;
dcl vsSyncIDListB T_FrameIDTable;
dcl vExternalSync Boolean;
dcl zSyncExtern T_SyncExtern;
dcl zsID T_FrameIDTable;
dcl vRF T_ReceiveFrame;

dcl zRefNode Boolean;
dcl zRefPair Boolean;
dcl vExternOffsetControl T_ExternCorrection;
dcl vExternRateControl T_ExternCorrection;
dcl vInterimOffsetCorrection T_Deviation; 
dcl vInterimRateCorrection T_Deviation;

µT timer tMicroInitialOffset_A := pMicroInitialOffset[A];
µT timer tMicroInitialOffset_B := pMicroInitialOffset[B];

dcl zTSrcCycleStartRec Boolean;
dcl zIntCycleStartRec Boolean;
dcl zTSrcRateCorrRec Boolean;
dcl zTSrcOffsetCorrRec Boolean;
dcl zTSrcSyncCalcResRec Boolean;
dcl zTSrcRateCorrection T_Deviation;

dcl zTSrcOffsetCorrection T_Deviation;
dcl zTSrcSyncCalcResult T_SyncCalcResult;
dcl zExtCycleStartCounter  T_CycleCounter;

µT timer tCycleStartTimeout := cdCycleStartTimeout;
µT timer tTSrcCycleOffset := cdTSrcCycleOffset;

TT-E time gateway sink behaviour (optional)

 

Figure 155 — Declarations for the clock synchronisation process [CSP] 
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Figure 156 depicts the start of the clock synchronisation process [CSP]. 
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Figure 156 — Start of the clock synchronisation process [CSP] 
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Figure 157 depicts the wait for cycle start [CSP]. 

CALC_OFFSET

vCycleCounter ?

CALC_RATE

odd

cycle start 
(vCycleCounter)

wait for cycle start

EXP SyncCalcResult (zSyncCalc-
Result, zStartupNodes, zRefNode)

EXP SyncCalcResult (zSyncCalc-
Result, zRxStartupPairs, zRefPair)

INIT_MEASUREMENT

MEASUREMENT
zSyncCalcResult := WITHIN_BOUNDS;
'import vExternOffsetControl, 
vExternRateControl from CHI';

even

zTSrcCycleStart-
Rec ?

set(tCycleStartTimeout);
zIntCycleStartRec := true;

false

reset(tCycleStartTimeout);
zTSrcCycleStartRec := false;

true

vExternalSync ?

truefalse

EXP offset calc ready 
(zOffsetCorrection)

TT-E time gateway sink behaviour
(optional)

zTSrcRateCorrRec  := false;
zTSrcOffsetCorrRec  := false;
zTSrcSyncCalcResRec := false;

true

false

’update vInterimOffsetCorrection, 
vsSyncIDListA, vsSyncIDListB in CHI’;

vExternalSync ? falsevExternalSync ?

true

odd even

EXP rate calc ready 
(zRateCorrection)

’update vInterimRateCorrection, 
vStartupPairs in CHI’;

EXT_WAIT_SYNC standby

standby 

TT-E time gateway sink behaviour
(optional)

true

vExternalSync ?

EXT_WAIT_OFFSET standby

standby 

TT-E time gateway sink behaviour
(optional)

done

false

 

Figure 157 — Wait for cycle start [CSP] 
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Figure 158 depicts the measurement initialization for TT-E coldstart [CSP]. 

 

TT-E_INIT_MEASURE

pChannels ?

= A&B

 = A  = B

zsDev(1:2)(even:odd)(A:B)!Valid := true;
zsDev(1:2)(even:odd)(A:B)!Value := 0;
zsDev(2)(even:odd)(A:B)!Startup := true;

zsDev(1:2)(even:odd)(A)!Valid := true;
zsDev(1:2)(even:odd)(A)!Value := 0;
zsDev(2)(even:odd)(A)!Startup := true;

zsDev(1:2)(even:odd)(B)!Valid := true;
zsDev(1:2)(even:odd)(B)!Value := 0;
zsDev(2)(even:odd)(B)!Startup := true;

zsID(1:15) := 0; zLine := 2;
zsID(1) := pKeySlotID;
zsID(2) := pSecondKeySlotID;
zsDev(1:15)(even:odd)(A:B)!Valid := false;
zsDev(1:15)(even:odd)(A:B)!Startup := false;

 

Figure 158 — Measurement initialization for TT-E coldstart [CSP] 

 

After finishing the startup procedure a repetitive sequence consisting of cycle initialisation (see Figure 168), a 
measurement phase (see Figure 165), and offset (see Figure 144) and rate (see Figure 169) calculation is 
executed. 

All elements of this sequence are described below. The offset calculation will be done every cycle, the rate 
calculation only in the odd cycles. 

The clock synchronisation control (see Figure 159) handles mode changes done by the POC. It also handles 
process termination requests sent by the POC. 
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*
(standby)

CSP control
(zCspMode )

zCspMode ?

-

standby

STANDBY else

*

terminate CSP

terminate CSS_A,
terminate CSS_B

terminate CSS_A,
terminate CSS_B

reset macrotick 
generation

reset(tTSrcCycleOffset);
reset(tCycleStartTimeout);

true

TT-E time gateway sink
behaviour (optional)

pExternalSync ?false

reset(tMicroInitialOffset_A);
reset(tMicroInitialOffset_B);

 

Figure 159 — Clock synchronisation control and termination [CSP] 

 

12.4 Startup of the clock synchronisation 

12.4.1 Preconditions and startup types 

The startup of the node's clock synchronisation requires 

 the initialisation and start of the MTG process and 

 the initialisation and start of the CSP process. This process contains the repetitive tasks of measurement 
and storage of deviation values and the calculation of the offset and the rate correction values. 

There are two ways to start the clock synchronisation of a node. 

 The node is the leading coldstart node. 

 The node adopts the initialisation values (cycle counter, clock rate, and cycle start time) of a running 
coldstart node. 
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Figure 160 depicts the integration control [CSP]. 

run

A_active B_active

integration aborted on A

INTEGRATION_ 
CONTROL

integration aborted on B

terminate CSS_B

tMicroInitialOffset_A tMicroInitialOffset_B

continue integration on A continue integration on B

coldstart

run, A_active, B_active

integration request on A integration request on B

set(tMicroInitialOffset_A); set(tMicroInitialOffset_B);

-

reset(tMicroInitialOffset_A); reset(tMicroInitialOffset_B);

run, A_active

-

integration aborted on B

reset(tMicroInitialOffset_B);

run, B_active

-

integration aborted on A

reset(tMicroInitialOffset_A);

integration successful on A 
(zID, zRateCorrection)

integration successful on B 
(zID, zRateCorrection)

terminate CSS_A

CSS_A, CSS_B

terminate CSS_A,
terminate CSS_B

A_active

-

tMicroInitialOffset_A

continue integration on A

B_active

-

tMicroInitialOffset_B

continue integration on B

zOffsetCorrection := 0;
zRateCorrection := 0;

pChannels

= A&B

 = B 

CSS_BCSS_A

 = A 

 

Figure 160 — Integration control [CSP] 

 

The startup procedure will be entered when the CSP receives the signal attempt integration from the POC 
(see Figure 156). The control of the node's startup is described in the INTEGRATION_CONTROL macro 
depicted in Figure 160. 
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12.4.2 Coldstart startup 

If ongoing communication on the channels is not detected the POC may force the node to perform the role of 
the leading coldstart node of the cluster. This causes the following actions. 

 The clock synchronisation startup processes on channel A and B (CSS_A, CSS_B) will be terminated. 

 The INTEGRATION_CONTROL macro will be left. 

 The macrotick generation process (MTG) (see Figure 176) leaves the MTG:wait for start state. Depending 
on the initialisation values, macrotick and cycle start signals are generated and distributed to other 
processes. 

 The CSP waits for the cycle start. 

The CSP and MTG processes continue their schedules until the POC changes the CSP mode to STANDBY or 
an error is detected. 

12.4.3 Integration startup 

If ongoing communication is detected during startup, or if the node is not allowed to perform a coldstart, the 
node attempts to integrate into the timing of the cluster by adopting the rate, the cycle number, and cycle start 
instant of a coldstart node. To accomplish this, the CSP process (see Figure 160) instantiates the clock 
synchronisation startup processes for channel A and B (CSS_A, CSS_B). 

After their instantiation, the CSS_A process (see Figure 162) and the CSS_B process wait for a signal from 
the coding / decoding unit that a potential frame start was detected. The CSS process then takes a timestamp 
and waits for a signal indicating that a valid even startup frame was received. If no valid even startup frame 
was received the time stamp will be overwritten with the time stamp of the next potential frame start that is 
received. 

When a valid even startup frame is received the node is able to pre-calculate the initial values for the cycle 
counter and the macrotick counter. The node then waits for the corresponding odd startup frame. This frame 
is expected in a time window. When a potential frame start is detected in this time window the 
tMicroInitialOffset timer is started in the INTEGRATION_CONTROL macro. When this timer expires the MTG 
process (see Figure 176) is started using the pre-calculated initial values. A second potential frame start 
inside the time window leads to a restart of the tMicroInitialOffset timer. Only one channel can start the MTG 
process (the initial channel)110). Between the expiration of the timer tMicroInitialOffset and the reception of the 
complete startup frame, the other channel (the non-initial channel) can not start, stop, or change the MTG 
process, but it can receive potential frame start events and can start its own tMicroInitialOffset timer. The 
behaviour of the CSS process of the non-initial channel is the same as the behaviour of the CSS process of 
the initial channel except that the non-initial channel is unable to start the MTG process and is unable to 
terminate itself and the CSS process of the other channel. 

Figure 161 depicts the termination of the CSS process [CSS_A]. 

*

terminate CSS_A

 

Figure 161 — Termination of the CSS process [CSS_A] 
                                                      

110) There is no configuration that selects the channel that starts the MTG process. The process is started by the first 
channel that receives a potential frame start in the expected time window after reception of a valid even startup frame 
on the same channel (see Figure 162). 
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Figure 162 depicts the clock synchronisation startup process on channel A [CSS_A]. 

potential frame start on A 

wait for second startup frame

false

zRateCorrection := now - 
zFrameStart - pMicroPerCycle;

start macrotick generation (vCycle-
Counter, vMacrotick, zRateCorrection)

true
frame too 
early ?

frame too late

vRF!Header!FrameID ? 

true

 = zID 

else

zID := vRF!Header!FrameID;
vCycleCounter := (vRF!Header!CycleCount + 1) mod (gCycleCountMax + 1);
vMacrotick := (zID -1) * gdStaticSlot + pMacroInitialOffset[A];
reset(tID); set(tSecondFrame);

valid even startup frame 
on A (vRF)

wait for first startup frame

zFrameStart := 0; 
zID := 0;

integration started on A

tSecondFrame

integration aborted on A

false
frame too 
late ?

dcl zRateCorrection T_Deviation;
dcl vRF T_ReceiveFrame;
dcl zID T_FrameID := 0;
dcl vCycleCounter T_CycleCounter;
dcl zFrameStart T_MicrotickTime;
dcl vMacrotick T_Macrotick;
µT timer tID := 2 * (pMicroPerCycle + pRateCorrectionOut);
µT timer tSecondFrame := pMicroPerCycle + pRateCorrectionOut;
dcl zIntegration Boolean := false;
dcl zPotFrameStart Boolean;

 vRF!Header!FrameID ? = zID 

else

zIntegration := true;

zIntegration ?

true

false

zIntegration := false;
zPotFrameStart := false;

tID

zID := 0;

set(tID);
reset(tSecondFrame);

potential frame start on A 

zFrameStart := now;
zPotFrameStart := true;

 zPotFrameStart ?

true

false

continue integration on A

integration request on A

reset macrotick 
generation

zIntegration ?

true

false

integration successful on A 
(zID, zRateCorrection)

vRF!Header!CycleCount 
= vCycleCounter ? 

false

true

valid odd startup frame 
on A (vRF)

pMicroPerCycle - 
pRateCorrectionOut > now - 

zFrameStart ?

pMicroPerCycle + 
pRateCorrectionOut < now - 

zFrameStart ?

 

Figure 162 — Clock synchronisation startup process on channel A [CSS_A]111) 

 

The reception of the corresponding valid odd startup frame and the satisfaction of the conditions for 
integration leads to the termination of the CSS process for this channel. Before termination a signal is sent 
indicating successful integration; this signal causes the INTEGRATION_CONTROL macro of CSP to 
terminate the CSS process for the other channel (see Figure 160). This behaviour of this termination is 
depicted in Figure 161. 

The timer tSecondFrame in Figure 162 is used to restart the clock synchronisation startup process if the 
corresponding odd startup frame was not received after an appropriate period of time. 

                                                      

111) The priority input symbol on the CSS_A:wait for second startup frame state has been included to resolve the 
ambiguity that arises if the timer tSecondFrame expires at the same time a valid odd startup frame on A signal is 
received. 
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The variable zID is used to prohibit attempts to integrate on a coldstart node if an integration attempt on this 
coldstart node failed in the previous cycle. The timer tID prevents this prohibition from applying for more than 
one double cycle. 

12.5 Time measurement 

12.5.1 General 

Every node shall measure and store, by channel, the time differences (in microticks) between the expected 
and the observed arrival times of all sync frames received during the static segment. A data structure is 
introduced in 12.5.2. This data structure is used in the explanation of the initialisation (12.5.3) and the 
measurement, storage, and deviation calculation mechanisms (12.5.4). 

12.5.2 Data structure 

The following data types are introduced to enable a compact description of mechanisms related to clock 
synchronisation: 

Definition: T_DevValid (46) 

newtype T_DevValid 
struct 

Value  T_Deviation; 
Valid  Boolean; 
Startup  Boolean; 

endnewtype; 

 

 

Definition: T_ChannelDev, T_EOChDev, and T_DevTable (47) 

newtype T_ChannelDev 
Array(T_Channel, T_DevValid) 

endnewtype; 

newtype T_EOChDev 
Array(T_EvenOdd, T_ChannelDev) 

endnewtype; 

newtype T_DevTable 
Array(T_ArrayIndex, T_EOChDev) 

endnewtype; 

 

The structured data type T_DevTable is a three dimensional array with the dimensions line number (1 …15), 
communication channel (A or B), and communication cycle (even or odd). Each line is used to store the 
received data of one sync frame pair transmitted by the same node in the same slot in subsequent cycles. 

If the node is itself a sync node the first line is used to store a deviation of zero, corresponding to the deviation 
of its own sync frame. TT-E and TT-L sync nodes store zero deviations in the first two lines of the table, one 
for each of the two sync frames transmitted.  

Each element in this three dimensional array contains a deviation value (the structure element Value), a 
Boolean value indicating whether the deviation value is valid (the structure element Valid), and a Boolean 
value indicating whether the sync frame corresponding to this deviation was a startup frame (the structure 
element Startup). 

Figure 163 gives an example of this data structure. 
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channel A     channel B              channel A        channel B

even odd

line i 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

zsDev(11)(even)(A)!Value := 23;
zsDev(11)(even)(A)!Valid := true;

data structure T_DevTable

zsDev(14)(even)(A)!Valid and
zsDev(14)(odd)(A)!Valid ?

read access:

write access: table reset:
zsDev(1:15)(even:odd)(A:B)!Valid := false;
zsDev(1:15)(even:odd)(A:B)!Startup := false;

falsetrue

Value  Valid  Startup Value  Valid  Startup Value  Valid  Startup Value  Valid  Startup

17
12
14
13
-7
-5
1
9

22
-12
23
0
0
0
0

true
true
true
true
true
false
true
true
true
true
true
false
false
false
false

false
true
false
false
false
false
true
false
false
false
false
false
false
false
false

13
11
19
10
-6
-1
-5
17
12
-17
7
0
0
0
0

true
true
true
true
true
true
true
true
true
true
true
false
false
false
false

false
true
false
false
false
false
true
false
false
false
false
false
false
false
false

4
14
24
-11
-6
9
23
-15
17
-12
10
0
0
0
0

true
true
true
true
true
true
false
true
true
true
true
false
false
false
false

false
true
false
false
false
false
false
false
false
false
false
false
false
false
false

11
21
5
-8
27
-18
12
17
-15
7
-6
0
0
0
0

true
true
true
true
true
false
true
true
true
true
true
false
false
false
false

false
true
false
false
false
false
true
false
false
false
false
false
false
false
false

 

Figure 163 — Data structure example 

 

12.5.3 Initialisation 

The data structure introduced in 12.5.2 is used to instantiate a variable (zsDev). The variable zsDev will be 
initialized at the beginning of an even communication cycle112). Additionally, if the node is configured to 
transmit sync frames (mode SYNC), corresponding entries are stored in the variable as depicted in 
Figure 164. If the node is operating in the two key slot mode (i.e., is either a TT-L coldstart node or a TT-E 
coldstart node), entries corresponding to the second transmitted startup frame are also added to the variable 
zsDev. 

In contrast to the entries for the first sync frame, the entries for the second key slot are also flagged as 
belonging to a startup frame, which allows a TT-L coldstart node to proceed through the startup without having 
received any startup frames from other nodes (see clause 11). 

                                                      

112) TT-E coldstart nodes also initialize zsDev on the first cycle of operation regardless of whether it is an even or odd 
cycle. See Figure 156 and Figure 158 for details. 
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INIT_MEASUREMENT

vCycleCounter ?

zEO := odd;

evenodd

zCspMode  ?

SYNC

else

pChannels ?

zsDev(1)(zEO)(A:B)!Valid := true;
zsDev(1)(zEO)(A:B)!Value := 0;

zsDev(1)(zEO)(A)!Valid := true;
zsDev(1)(zEO)(A)!Value := 0;

zsDev(1)(zEO)(B)!Valid := true;
zsDev(1)(zEO)(B)!Value := 0;

= A&B

 = A  = B

pTwoKeySlotMode ? false

true

pChannels ?

zsDev(2)(zEO)(A:B)!Valid := true;
zsDev(2)(zEO)(A:B)!Value := 0;

zsDev(2)(zEO)(A:B)!Startup := true;

zsDev(2)(zEO)(A)!Valid := true;
zsDev(2)(zEO)(A)!Value := 0;

zsDev(2)(zEO)(A)!Startup := true;

zsDev(2)(zEO)(B)!Valid := true;
zsDev(2)(zEO)(B)!Value := 0;

zsDev(2)(zEO)(B)!Startup := true;

= A&B

 = A  = B

zEO := even;
zsDev(1:15)(even:odd)(A:B)!Valid := false;
zsDev(1:15)(even:odd)(A:B)!Startup := false;
zsID(1:15) := 0;
zLine := 0;

vCycleCounter ?

odd

even

zLine := 1;
zsID(zLine) := pKeySlotID;

vCycleCounter ?

odd

even

zLine := 2;
zsID(zLine) := pSecondKeySlotID;

 

Figure 164 — Initialisation of the data structure for measurement [CSP] 

12.5.4 Time measurement storage 

The expected arrival time of a static frame is the static slot action point, which is defined in clause 9. The MAC 
generates a signal when the static slot action point is reached. When the clock synchronisation process 
receives this action point signal a time stamp is taken and saved. 

During the reception of a frame the decoding unit takes a time stamp when the secondary time reference point 
is detected. This time stamp is based on the same microtick time base that is used for the static slot action 
point time stamp. The decoding unit then computes the primary time reference point by subtracting a 
configurable offset value from the secondary time reference point time stamp. This result is passed to the 
Frame and Symbol Processing process, which then passes the results to CSP for each valid sync frame 
received. Further information on the definition of the reference points may be found in 7.2.6. 
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wait for sync frame

valid sync frame
on A (vRF)

member(zsID, 
vRF!Header!FrameID) ?

zPos := position(zsID, 
vRF!Header!FrameID);

true false

else

zLine ?  >= gSyncFrameIDCountMax

action point on A,
action point on B

zActionPoint := now;

MEASUREMENT

true

vRF!Header! 
CycleCount ?

zEO := even; zEO := odd;

even odd

vRF!Header!
SuFIndicator ?

 = 0 

abs(zsDev(zPos) 
(zEO)(zCh)!Value) ?

= 1

else

zsDev(zPos)(zEO)(zCh)!
Startup := true;

<= pdAcceptedStartupRange

valid sync frame
 on B (vRF)

'set sync frame 
overflow indicator in CHI';

abs returns the 
absolute value

frame reception 
complete on A

frame reception 
complete on B

zAllOnA := true; zAllOnB := true;

zAllOnA = true and 
zAllOnB = true ?

false

zAllOnA := true; 
zAllOnB := false; 

pChannels ?

zAllOnA := false; 
zAllOnB := false; 

zAllOnA := false; 
zAllOnB := true; 

= A&B

 = A  = B

zCh := vRF!Channel;
zsDev(zPos)(zEO)(zCh)!Value := vRF!PrimaryTRP - zActionPoint;
zsDev(zPos)(zEO)(zCh)!Valid := true;

zLine := zLine+1; 
zPos := zLine;
zsID(zPos) := vRF!Header!FrameID;

member returns true if the 
defined FrameID exists in the 
list ’zsID’, otherwise returns 
false

position returns the index 
where the defined FrameID 
is located in the list ’zsID’

 

Figure 165 — Measurement and storage of the deviation values [CSP] 

 

The difference between the action point and primary time reference point time stamps, along with Booleans 
indicating that the data is valid and whether or not the frame is also a startup frame, is saved in the 
appropriate location in the previously defined data structure (see Figure 165). The measurement phase ends 
when the static segment ends. 
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The reception 113) of more than gSyncFrameIDCountMax unique sync frame identifiers in either a single 
communication cycle or an even / odd communication cycle pair indicates an error inside the cluster. This is 
reported to the host and only measurements corresponding to the first gSyncFrameIDCountMax unique sync 
frame identifiers are considered for the correction value calculations. 

12.6 Correction term calculation 

12.6.1 Fault-tolerant midpoint algorithm 

The technique used for the calculation of the correction terms is a fault-tolerant midpoint algorithm (FTM). The 
algorithm works as follows (see Figure 166 and Figure 167): 

a) The algorithm determines the value of a parameter, k, based on the number of values in the sorted list 
(see Table 5)114). 

Table 5 — FTM term deletion as a function of list size 

Number of values k 

1 - 2 0 

3 – 7 1 

> 7 2 

 

b) The measured values are sorted and the k largest and the k smallest values are discarded. 

c) The largest and the smallest of the remaining values are averaged for the calculation of the midpoint 
value. Note that the division by two of odd numbers should truncate towards zero such that the result is 
an integer number115). The resulting value is assumed to represent the node's deviation from the global 
time base and serves as the correction term. 

15

13

11

3

5

6

... + 17 / 2 = 8

 

Figure 166 — Example clock correction value calculation with k=2 

 

                                                      

113) Nodes that transmit sync frames, and are operating in the POC:normal active state, will also use their own sync 
frame measurement values in clock correction. For the purposes of this check, the node's own sync frame is 
considered to be implicitly received, even though there is no actual reception. As a result, the node's own sync frame 
is included in the count of sync frame identifiers that is checked against gSyncFrameIDCountMax. 

114) The parameter k is not the number of asymmetric faults that can be tolerated. 
115) Example: 17 / 2 = 8 and -17 / 2 = -8. 
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zLength := length(zList);

zLength ?

zCorrectValue := 0;

 = 0 

else

zList := sort(zList);

MIDTERM

zCorrectValue 

zLength ?  > 7 

zCorrectValue := (zList(1) + 
zList(zLength))/2;

 < 3 

 else 

zCorrectValue := (zList(2) + 
zList(zLength-1))/2;

zCorrectValue := (zList(3) + 
zList(zLength-2))/2;

fpar       zList
returns  T_Deviation;

dcl zLength T_ArrayIndex;
dcl zCorrectValue T_Deviation;

length returns the number of 
elements contained in zList

sort returns a sorted list 
beginning with the smallest and 
ending with the largest value

 

Figure 167 — Fault-Tolerant Midpoint Procedure [CSP] 

 

12.6.2 Calculation of the offset correction value 

The offset correction value zOffsetCorrection is a signed integer that indicates how many microticks the node 
should shift the start of its cycle. Negative values mean the NIT should be shortened (making the next cycle 
start earlier). Positive values mean the NIT should be lengthened (making the next cycle start later). 

In Figure 168 the procedure of the calculation of the offset correction value is described in detail. The following 
steps are covered in the SDL diagram in Figure 168. 

a) Selection of the previously stored deviation values. Only deviation values that were measured and stored 
in the current communication cycle are used. If a given sync frame ID has two deviation values (one for 
channel A and one for channel B) the smaller value will be selected. 

b) The number of received sync frames is checked and if an insufficient116) number of sync frames was 
received the error condition MISSING_TERM is set. 

c) The fault-tolerant midpoint algorithm is executed (see 12.6.1). 

d) The correction term is checked against specified limits. If the correction term is outside of the specified 
limits the error condition is set to EXCEEDS_BOUNDS and the correction term is set to the maximum or 
minimum value as appropriate (see 12.6.4). 

e) If appropriate, an external correction value supplied by the host is added to the calculated and checked 
correction term (see 12.6.5). 

                                                      

116) The number of sync frames that need to be received to be considered sufficient depends on the synchronisation 
mode and the node's role. For devices in a TT-D cluster, and for non-coldstart nodes in a TT-E or TT-L cluster, the 
reception of a single valid sync frame is considered sufficient. TT-E or TT-L coldstart nodes do not need to receive 
any sync frames, i.e., the number of received sync frames is always considered sufficient. Figure 168 implements 
this behaviour not by checking the number of received sync frames directly but rather by checking the number of 
entries in the zsMListAB array. 
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The following data structure is used to save and handle the selected data: 

Definition: T_DeviationTable (48) 

newtype T_DeviationTable 
Array(T_ArrayIndex, T_Deviation) 

endnewtype; 
 

else

 >= gSyncFrameIDCountMax 

length(zsMListAB) ? = 0 

= 1

else

z ?

else

truefalse

true

falsetrue

false

z := z+1;

zsDev(z)(zEO)(A)!Valid ?

zsDev(z)(zEO)(B)!Valid ?

zEO := odd;

append(zsMListAB, 
zsDev(z)(zEO)(B)!Value);

append(vsSyncIDListB, zsID(z));

append(zsMListAB,  
min(zsDev(z)(zEO)(A)!Value, 

zsDev(z)(zEO)(B)!Value));
append(vsSyncIDListA, zsID(z));
append(vsSyncIDListB, zsID(z));

append(zsMListAB,  
zsDev(z)(zEO)(A)!Value);

append(vsSyncIDListA, zsID(z));

zsDev(z)(zEO)(B)!Valid ? 

zCspMode ?

CALC_OFFSET

 > pOffsetCorrectionOut zOffsetCorrection ?

zOffsetCorrection := pOffsetCorrectionOut;
zSyncCalcResult := EXCEEDS_BOUNDS;

zOffsetCorrection := -pOffsetCorrectionOut;
zSyncCalcResult := EXCEEDS_BOUNDS;

 < -pOffsetCorrectionOut 

else

vCycleCounter ?

zEO := even;

odd even

zStartupNodes := 
zStartupNodes + 1;

zsDev(z)(zEO)(A)!Startup or 
zsDev(z)(zEO)(B)!Startup ?

true

zsID(z) ?

zRefNode := true;

= zID

false

SYNC

else

zOffsetCorrection := call 
MIDTERM(zsMListAB);

vExternOffsetControl is set by 
the host to one of { -1, 0, +1 } 

zSyncCalcResult := 
MISSING_TERM;

zOffsetCorrection := 0;

zsMListAB := [];
z := 0;
zStartupNodes := 0;
zRefNode := false;
vsSyncIDListA := [];
vsSyncIDListB := [];

zOffsetCorrection := zOffsetCorrection + 
vExternOffsetControl * pExternOffsetCorrection;

vInterimOffsetCorrection :=
zOffsetCorrection;

 

Figure 168 — Calculation of the offset correction value [CSP] 

The SDL abstraction of execution in zero time could lead the reader to the conclusion that the calculation of 
the offset correction value needs to complete in zero time. This is of course unachievable. It is anticipated that 
real implementations may take substantial time to calculate the correction, and that implementations may 
begin the calculation earlier than is shown in Figure 157 (i.e., may begin the calculation during the 
measurement process).  
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Therefore the following restriction on the time required for offset correction calculation is introduced: 

The offset correction calculation shall be completed no later than cdMaxOffsetCalculation after the end of the 
static segment or 1 MT after the start of the NIT, whichever occurs later. 

12.6.3 Calculation of the rate correction value 

The goal of the rate correction is to bring the rates of all nodes inside the cluster close together. The rate 
correction value is determined by comparing the corresponding measured time differences from two 
successive cycles. A detailed description is given by the SDL diagram depicted in Figure 169. 
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false

 >= gSyncFrameIDCountMax

else

true false

true

false true

false

>= pClusterDriftDamping  <= -pClusterDriftDamping

else

z := z+1;

CALC_RATE

z ?

zsDev(z)(even)(A)!Valid and  
zsDev(z)(odd)(A)!Valid ?

zsDev(z)(even)(B)!Valid and
zsDev(z)(odd)(B)!Valid ?

zsDev(z)(even)(B)!Valid and
zsDev(z)(odd)(B)!Valid ?

append(zsMRateAB, (zsDev(z)(odd)(A)!Value - 
zsDev(z)(even)(A)!Value));

append(zsMRateAB, (zsDev(z)(odd)(B)!Value - 
zsDev(z)(even)(B)!Value));

append(zsMRateAB, (zsDev(z)(odd)(A)!Value - 
zsDev(z)(even)(A)!Value + zsDev(z)(odd)(B)!Value 

- zsDev(z)(even)(B)!Value)/2);

zRateCorrection := (call MIDTERM 
(zsMRateAB)) + zRateCorrection ;

zRateCorrection ?

zRateCorrection := 0;
zRateCorrection := zRateCorrection + 

pClusterDriftDamping;
zRateCorrection := zRateCorrection - 

pClusterDriftDamping;

 > pRateCorrectionOut

else

zRateCorrection ? < -pRateCorrectionOut

zRateCorrection := -pRateCorrectionOut;
zSyncCalcResult := EXCEEDS_BOUNDS;

zRateCorrection := pRateCorrectionOut;
zSyncCalcResult := EXCEEDS_BOUNDS;

zRxStartupPairs := 
zRxStartupPairs+1;

true

zsID(z) ?

zRefPair := true;

= zID

else
length(zsMRateAB) ? = 0 

= 1

else

zCspMode ?SYNC

else

zSyncCalcResult := 
MISSING_TERM;

zSyncCalcResult ?

EXCEEDS_BOUNDSelse

(zsDev(z)(even)(A)!Startup and
zsDev(z)(odd)(A)!Startup) or 
(zsDev(z)(even)(B)!Startup and
zsDev(z)(odd)(B)!Startup) ?

zsMRateAB := [];
z := 0;
zRxStartupPairs := 0;
zRefPair := false;

vStartupPairs := 
zRxStartupPairs;

false true

vStartupPairs := 
zRxStartupPairs+ 1;

zRateCorrection := zRateCorrection + 
vExternRateControl * pExternRateCorrection;

vExternRateControl is set by 
the host to one of { -1, 0, +1 } 

vInterimRateCorrection :=
zRateCorrection;

zCspMode = SYNC and
pKeySlotUsedForStartup = true ?

 

Figure 169 — Calculation of the rate correction value [CSP] 

 

The rate correction value zRateCorrection is a signed integer indicating by how many microticks the node's 
cycle length should be changed. Negative values mean the cycle should be shortened; positive values mean 
the cycle should be lengthened. 
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The following steps are depicted in the SDL diagram in Figure 169. 

a) Pairs of previously stored deviation values are selected and the difference between the values within a 
pair is calculated. Pairs are selected that represent sync frames received on the same channel, in slots 
with the same slot number, on consecutive cycles. If there are two pairs for a given sync frame ID (one 
pair for channel A and another pair for channel B) the average of the differences is used. 

b) The number of received sync frame pairs is checked and if an insufficient117) number of sync frame pairs 
was received the error condition MISSING_TERM is set unless the error condition EXCEEDS_BOUNDS 
had been set previously118). 

c) The fault-tolerant midpoint algorithm is executed (see 12.6.1). 

d) A damping value pClusterDriftDamping for the rate correction term is applied. 

e) If appropriate, an external correction value supplied by the host is added to the calculated correction term 
(see 12.6.5). 

f) The correction term is checked against specified limits. If the correction term exceeds the specified limits 
the error condition is set to EXCEEDS_BOUNDS and the correction term is set to the maximum or 
minimum value as appropriate (see 12.6.4). 

In the list above division operations shall produce an integral result that is truncated towards zero119).  

The pClusterDriftDamping parameter should be configured in such a way that the damping value in all nodes 
has approximately the same duration120).  

The SDL abstraction of execution in zero time introduces similar problems for the rate correction calculation 
as are described in 12.6.2 for the offset correction calculation. Therefore the following restriction on the time 
required for rate correction calculation is introduced: 

The rate correction calculation shall be completed no later than cdMaxRateCalculation after the end of the 
static segment or 2 MT after the start of the NIT, whichever occurs later. 

12.6.4 Value limitations 

Before applying the calculated correction values, they shall be checked against pre-configured limits (see 
Figure 168 and Figure 169). 

If correction values are inside the limits, the node is considered fully synchronized. 

If either of the correction values is outside of the limits, the node is out of synchronisation. This corresponds to 
an error condition. Information on the handling of this situation is specified in clause 6. 

                                                      

117) The number of sync frame pairs that need to be received to be considered sufficient depends on the synchronisation 
mode and the node's role. For devices in a TT-D cluster, and for non-coldstart nodes in a TT-E or TT-L cluster, the 
reception of a single valid sync frame pair is considered sufficient. TT-E or TT-L coldstart nodes do not need to 
receive any sync frames, i.e., the number of received sync frame pairs is always considered sufficient. Figure 169 
implements this behaviour not by checking the number of received sync frame pairs directly but rather by checking 
the number of entries in the zsMRateAB array. 

118) The consequence of this behaviour is that in a TT-D cluster operating with only a single sync node the sync node 
would detect MISSING_TERM before the non-sync nodes. The non-sync nodes would not detect MISSING_TERM 
until the last sync node has stopped transmitting, presumably due to loss of synchronisation. As a consequence, in 
this circumstance different types of nodes would cease operation at different times. 

119) Example: 17 / 2 = 8 and -17 / 2 = -8. 
120) A node-specific configuration value is used to allow clusters that have different microtick durations in different nodes. 
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The correction values are inside the limits if: 

- pRateCorrectionOut <= zRateCorrection <= pRateCorrectionOut 

- pOffsetCorrectionOut <= zOffsetCorrection <= pOffsetCorrectionOut 

If both correction values are inside the limits the correction will be performed; if either value exceeds its 
preconfigured limit, an error is reported and the node enters the POC:normal passive or the POC:halt state 
depending on the configured behaviour (see clause 6). If a value is outside its pre-configured limit it is reduced 
or increased to its limit. If operation continues, the correction is performed with this modified value. 

12.6.5 Host-controlled external clock synchronisation 

During normal operation independent clusters can drift significantly. If synchronous operation is desired 
across multiple clusters, external synchronisation is necessary even though the nodes within each cluster are 
synchronized. This can be accomplished by the synchronous application of host-controlled external rate and 
offset correction terms to both clusters. 

The control data vExternRateControl and vExternOffsetControl of the external clock correction have three 
different values, +1 / -1 / 0 with the following meanings as specified in Table 6. 

Table 6 — External clock correction control 

Value +1 -1 0 

rate correction 
vExternRateControl 

increase cycle length by 
pExternRateCorrection 

decrease cycle length by 
pExternRateCorrection 

no change 

offset correction 
vExternOffsetControl 

start cycle later by 
pExternOffsetCorrection 

start cycle earlier by 
pExternOffsetCorrection 

no change 

 

The size of the external rate and the external offset correction values pExternOffsetCorrection and 
pExternRateCorrection are fixed and configured in the POC:config state. 

The application shall ensure that the external offset correction is performed in the same cycle with the same 
value in all nodes of a cluster and that the external rate correction is performed in the same double cycle with 
the same value in all nodes of a cluster. 

The type is defined as follows: 

Definition: T_ExternCorrection (49) 

syntype T_ExternCorrection = Integer 
constants -1, 0, +1 

endsyntype; 
 

 

The handling of the external correction values is depicted in Figure 168 and Figure 169. 

The configuration shall ensure that the addition of the external correction value can be performed even if the 
pre-configured limit is exceeded by the addition of an external correction term. 

12.6.6 TT-E time gateway sink correction determination 

A node operating as TT-E coldstart node supports additional functionality which is described in Figure 170 to 
Figure 175. This functionality is optional and is shown in the SDL diagrams as a dashed outline box labelled 
"TT-E time gateway sink behaviour". 
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A TT-E coldstart node calculates the clock correction values as any other node in the cluster based on the 
measured deviation between the expected and the observed arrival times of the sync frames, even though the 
calculated clock correction values will eventually be overwritten by the clock correction values provided by the 
time gateway source node. 

If a TT-E coldstart node is configured to switch to the local synchronisation method in case the 
synchronisation with the time gateway source node is lost, it will use the clock correction values it has 
calculated itself. 

However, as a TT-E coldstart node configured to switch to the local synchronisation method shall necessarily 
be the sole coldstart node of the TT-E cluster, the calculated correction values will always be zero, just as they 
are for a TT-L coldstart node. 

 

external cycle start

true

set(tCycleStartTimeout);
zTSrcCycleStartRec := true; standby

standby

fallbackreset(tCycleStartTimeout);
zIntCycleStartRec := false;

zIntCycleStartRec ?

true

false

vExternalSync ?

true

-

false

wait for sync frame, wait for cycle start, wait for cycle start imminent, 
wait for offset correction start imminent

vExternalSync ? false

tCycleStartTimeout

EXT_SYNC_ERROR

TT-E time gateway sink behaviour (optional)

 

Figure 170 — Cycle start supervision [CSP] 

 

Figure 170 above describes how the time gateway sink node continuously monitors that its locally generated 
cycle start signal is still synchronous to the one periodically sent by its time gateway source node. 

Should the externally generated cycle start event and the locally generated cycle start event be 
cdCycleStartTimeout or more microticks apart, the time gateway sink node assumes that it has lost 
synchronisation to the time gateway source node (see Figure 175). 
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*

IMP cycle start
(zExtCycleStartCounter)

set(tTSrcCycleOffset);

tTSrcCycleOffset

external cycle start
(zExtCycleStartCounter)

-

An implementation must take the propagation delay 
of the time gateway interface into account but still 
provide an offset of cdTSrcCycleOffset between the 
cycle starts of the source and sink clusters.

vExternalSync ?

true

false

TT-E time gateway sink behaviour (optional)

 

Figure 171 — External cycle start delay [CSP] 

 

The delay timer tTSrcCycleOffset provides a delay between the cycle starts of the time gateway source and 
time gateway sink clusters. It is intended that this offset is a protocol constant (i.e., cdTSrcCycleOffset).  

The SDL description makes the assumption that the cycle start event propagates across the time gateway 
interface in zero time, and thus the SDL describes a delay that is equal to the delay that is required between 
the two cycle starts. In practice, propagation across the time gateway interface will not take place in zero time 
– an implementation shall take this propagation time into account but still provide an offset of 
cdTSrcCycleOffset between the cycle starts in the two clusters.  

This may require an implementation to provide one or more configuration parameters, not described in this 
specification, if the propagation delay across the time gateway interface is not under the control of the 
implementation (for example, if the time gateway interface is external to the implementation). 

The time gateway sink node continuously monitors the time gateway interface and stores any received 
updates of clock correction values as depicted in Figure 172.  
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true

vExternalSync ?

true
false

vExternalSync  ? false

IMP rate calc ready 
(zTSrcRateCorrection)

IMP offset calc ready 
(zTSrcOffsetCorrection)

zTSrcRateCorrRec  := true;
zTSrcOffsetCorrRec  := 

true;

wait for sync frame, wait for cycle start, 
wait for cycle start imminent, wait for 
offset correction start imminent

-

fallback

standby

standby 

IMP sync state
(zSyncExtern)

zSyncExtern ?

ACTIVE, PASSIVE

IMP SyncCalcResult 
(zTSrcSyncCalcResult, ..., ...)

pFallBackInternal ?

true

zTSrcSyncCalcResult := 
WITHIN_BOUNDS;

false

zTSrcSyncCalcResRec   := 
true;

vExternalSync ?

true

vExternalSync ?

truefalse

else

false

EXT_SYNC_ERROR

The second and third arguments 
of this signal are not used.

TT-E time gateway sink behaviour (optional)

 

Figure 172 — Obtain external clock sync signals [CSP] 

 

Should the time gateway source node indicate that it is neither in the state POC:normal active nor in the state 
POC:normal passive, the time gateway sink node will behave as if it has lost synchronisation to the time 
gateway source node (see Figure 175). 

If the time gateway sink node is the sole provider of startup frames of the cluster, it shall not switch to 
POC:normal passive.  

To that end, the node overwrites the zSyncCalcResult value of the time gateway source node with the fault 
free value "WITHIN_BOUNDS" if it is configured to "fall back" to the local synchronisation method, which 
implies that it is the sole coldstart node. If several TT-E coldstart nodes are present in the cluster, it is 
obviously important that they all agree upon the schedule.  

Should the time gateway source node of one of the time gateway sink nodes have a problem with its clock 
synchronisation, it cannot ascertain the validity of its view on the time source cluster schedule.  

Therefore, its time gateway sink node should (also) enter POC:normal passive and only return to POC:normal 
active when its time gateway source node has recovered its synchronisation with the time source cluster. 
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done

standby

wait for offset
correction start imminent

offset correction start 
imminent

zTSrcOffsetCorr-
Rec  ?

false

fallback

vExternOffsetControl 
is set by the host to 
one of { -1, 0, +1 } 

vInterimOffsetCorrection := zTSrcOffsetCorrection;
zOffsetCorrection := zTSrcOffsetCorrection + 
vExternOffsetControl * pExternOffsetCorrection;true

EXT_SYNC_ERROR

EXT_WAIT_OFFSET

standby

TT-E time gateway sink behaviour (optional)

 

Figure 173 — Macro EXT_WAIT_OFFSET [CSP] 

 

The time gateway sink node requires an update of the offset correction term before it enters the offset 
correction phase. Figure 173 shows how it checks just before the start of the offset correction phase whether it 
has received a new offset correction term from its time gateway source node. If it has not received an update, 
it will behave as if it has lost synchronisation to the time gateway source node (see Figure 175). 

If it has received an update, it will discard its locally generated offset correction term and use the one supplied 
by the time gateway source node instead. 
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wait for
cycle start imminent

cycle start imminent

vExternRateControl 
is set by the host to 
one of { -1, 0, +1 } 

standby

odd

false

true

fallback

zTSrcSyncCalcResRec  = true
and zTSrcRateCorrRec  = true ?

vInterimRateCorrection := zTSrcRateCorrection;
zRateCorrection := zTSrcRateCorrection + 
vExternRateControl * pExternRateCorrection;
zSyncCalcResult := zTSrcSyncCalcResult;

EXT_SYNC_ERROR

vCycleCounter ?

even

zTSrcSyncCalc-
ResRec ?

true

EXT_WAIT_SYNC

even standby

EXT_SYNC_ERROR

false

odd

standby fallback

TT-E time gateway sink behaviour (optional)

zSyncCalcResult := 
zTSrcSyncCalcResult;

zSyncExtern = 
ACTIVE ?

true

zRxStartupPairs := 2;

false

 

Figure 174 — Macro EXT_WAIT_SYNC [CSP] 

 

The time gateway sink node requires an update of the rate correction term before it enters a new even cycle. 

Figure 174 shows how it checks just before the start of the new even cycle whether it was provided with a new 
rate correction term by its time gateway source node. If it has not received such an update, it will behave as if 
it has lost synchronisation to the time gateway source node (see Figure 175). 

If the time gateway sink node has received an update, it will discard its locally generated rate correction term 
and use the one supplied by the time gateway source node instead. In addition, if the zSyncExtern variable 
indicates that the time gateway source node is in POC:normal active the time gateway sink will set the 
variable zRxStartupPairs to 2 - this allows the time gateway sink to follow the time gateway source as it makes 
a transition from POC:normal passive to POC:normal active. 
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pFallBackInternal ?

false

external sync lost

vExternalSync := false;
’update vExternalSync

in CHI’;
reset (tCycleStartTimeout);
reset (tTSrcCycleOffset);

EXT_SYNC_ERROR

true

fallbackstandby

reset macrotick 
generation

TT-E time gateway sink behaviour (optional)

 

Figure 175 — Macro EXT_SYNC_ERROR [CSP] 

 

The macro EXT_SYNC_ERROR describes the behaviour of the time gateway sink node in the case that it 
determines a loss of synchronisation with the time gateway source node. In such a case, the time gateway 
sink node first informs the CHI. The CSP then checks whether it is configured to "fall back" to the local 
synchronisation method. If yes, it does so; if not, it stops the macrotick generation process and indicates the 
loss of synchronisation to the POC, which will then enter POC:halt. 

12.7 Clock correction 

Once calculated, the correction terms are used to modify the local clock in a manner that synchronizes it more 
closely with the global clock. This is accomplished by using the correction terms to adjust the number of 
microticks in each macrotick. 

The macrotick generation (MTG) process (see Figure 176) generates (corrected) macroticks. There are three 
different ways to begin the process of generating macroticks. 

 For a leading coldstart node, the protocol operation control (POC) process initiates macrotick generation 
(via the coldstart signal) if the conditions to start the node as a coldstart node are satisfied, or 

 For an integrating or following coldstart node, the clock synchronisation startup (CSS) processes initiate 
macrotick generation (via the start macrotick generation signal) upon the reception of an acceptable pair 
of startup frames, or 

 For a TT-E coldstart node, the clock synchronisation process (CSP) initiates macrotick generation (via the 
start macrotick generation signal) if the conditions to perform the startup of the time sink cluster are 
satisfied. 

Either of the three paths will set initial values for the cycle counter, the macrotick counter, and the rate 
correction value. A loop will be executed every microtick and, as a result, macroticks are generated that 
include a uniform distribution of a correction term over the entire time range. This loop is only left if the 
macrotick generation process is terminated by the POC process (e.g. in case of an error) or if a reset 
macrotick generation signal is received from the POC, CSP, CSS_A, or CSS_B process. 
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The relevant time range for the application of the rate correction term is the entire cycle; the time range for the 
application of the offset correction term is the time between the start of the offset correction until the next cycle 
start. The macrotick generation process handles this by two different initializations. At the cycle start the 
algorithm is initialized using only the rate correction value; at the start of the offset correction phase the 
algorithm is initialized again, this time including the offset correction values. 

Concurrent with the MTG process new measurement values are taken by the CSP and these values are used 
to calculate new correction values. These new correction values are ultimately applied and used by the 
macrotick generation process. The new offset correction value is applied at the start of offset correction period 
in an odd communication cycle, and the new rate correction value is applied at the cycle start in an even 
communication cycle. 
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zMicroDistribution ?else

<= 0

vMacrotick := (vMacrotick + 
1) mod gMacroPerCycle;

vMacrotick ? = pOffsetCorrectionStart 

even

false

vMacrotick ?

vCycleCounter := 
(vCycleCounter +1) mod 
(gCycleCountMax + 1);

zIntegrationRound := false;

 = 0 

else

oscillator 
microtick clock

vCycleCounter ?

macrotick (vMacrotick)

wait for microtick

else

initialize offset 
correction

initialize rate 
correction

wait for start

start macrotick generation (vCycle-
Counter, vMacrotick, zRateCorr)

coldstart

vMacrotick := gMacroPerCycle - 
gdStaticSlot; zRateCorr := 0; 
vCycleCounter := gCycleCountMax;
zIntegrationRound := true;

reset macrotick 
generation

offset calc ready 
(zOffsetCorr)

dcl zIntegrationRound Boolean;
dcl zMicroPerPeriod T_Microtick;
dcl zMacroPerPeriod T_Macrotick;
dcl zMicroDistribution T_Microtick;
dcl zRateCorrection T_Deviation := 0;
dcl vMacrotick T_Macrotick;
dcl vMicrotick T_Microtick := 0;
dcl vCycleCounter T_CycleCounter;
dcl zRateCorr T_Deviation := 0;
dcl zOffsetCorr T_Deviation := 0;

macrotick (vMacrotick)

zIntegrationRound := true;

zIntegrationRound := true;

zIntegrationRound ?
true

false

zIntegrationRound := false;

start macrotick generation (vCycle-
Counter, vMacrotick, zRateCorr)

’update vMacrotick in CHI’;

wait for startrate calc ready 
(zRateCorr)

vMacrotick ?

= 0

else

’update vMacrotick, 
vCycleCounter in CHI’;

zMicroDistribution := zMicroDistribution + zMicroPerPeriod;

zMicroDistribution := 0;
zMicroPerPeriod := pMicroPerCycle + 
zRateCorrection - vMicrotick + zOffsetCorr; 
zMacroPerPeriod := gMacroPerCycle - 
pOffsetCorrectionStart;

vMicrotick := vMicrotick + 1;
zMicroDistribution := zMicroDistribution - zMacroPerPeriod;

macrotick (vMacrotick),
EXP cycle start (vCycleCounter)

zRateCorrection := zRateCorr;
zMicroPerPeriod := pMicroPerCycle + zRateCorrection;
zMacroPerPeriod := gMacroPerCycle;
zMicroDistribution := 0;
vMicrotick := 0;
zOffsetCorr := 0;

GENERATE_IMMI-
NENT

pExternalSync ?

odd

true

 

Figure 176 — Macrotick generation [MTG] 

Figure 177 depicts the macro GENERATE_IMMINENT [MTG]. 
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GENERATE_IMMINENT

true

false

true

vMacrotick ?

= pOffsetCorrectionStart - 1 = gMacroPerCycle - 1

else

offset correction start 
imminent

cycle start imminent

pExternalSync ?

TT-E time gateway sink behaviour (optional)

false

zMicroDistribution <= zMacroPerPeriod 
and zMicroDistribution > 0 ?

 

Figure 177 — Macro GENERATE_IMMINENT [MTG] 

 

The macro GENERATE_IMMINENT encapsulates the generation of two signals used only by TT-E coldstart 
nodes. These signals are used to determine the points in time at which a TT-E coldstart node decides that it 
has lost synchronisation with its time gateway source if it has not received the appropriate clock correction 
value. The offset correction value should be received before the offset correction start imminent signal and the 
rate correction value should be received before the cycle start imminent signal, otherwise the TT-E coldstart 
node will assume a loss of synchronisation. 

Figure 178 depicts the termination of the MTG process [MTG]. 

 

*

terminate MTG

 

Figure 178 — Termination of the MTG process [MTG] 

 

12.8 Sync frame configuration  

12.8.1 Configuration rules 

FlexRay supports a distributed clock synchronisation that can be configured in many different ways. Table 7 
specifies a number of rules constraining the possible configurations. 
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Table 7 — Configuration rules for the clock synchronisation 

Element 
limit, range 

TT-D TT-L TT-E 

Number of sync nodes 2a… cSyncFrameIDCountMax 1 1 … floor( cSyncFrameIDCountMax / 2 ) 

Number of sync frame 
ID's 

number of sync nodes 2 = 2 * number of sync nodes 

Number of static slots >= number of sync frame ID's >=2 >= number of sync frame ID's 

a A TT-D cluster with only two sync nodes (each of which is also configured to be a coldstart node) would be able to start up and 
continue to operate, but a loss of either of the two sync nodes would result in the loss of all communication. 

 

12.8.2 TT-D cluster 

A TT-D cluster consists of a number of sync nodes and an arbitrary number of non-sync nodes. Each coldstart 
node is always a sync node but there can be more sync nodes than coldstart nodes. A number of nodes shall 
be configured as sync nodes depending on the following rules. 

 At least two nodes shall be configured to be sync nodes. 

 At least two of the sync nodes shall also be TT-D coldstart nodes. 

 At most cSyncFrameIDCountMax nodes shall be configured to be sync nodes. 

 Only nodes with pChannels = gChannels may be sync nodes (i.e., sync nodes shall be connected to all 
configured channels). 

 Sync nodes that support two channels shall send two sync frames in the static segment, one on each 
channel in the corresponding slot with the slot number which equals pKeySlotID121). Sync nodes that only 
support a single channel shall send one sync frame in the static segment. The sync frame shall be sent in 
the slot with the slot number which equals pKeySlotID. 

 The sync frames shall be sent in all slots with the same slot number, i.e. in each cycle. 

 Non-sync nodes shall not transmit frames with the sync frame indicator set to one. 

12.8.3 TT-E cluster 

A TT-E cluster consists only of coldstart nodes and an arbitrary number of non-sync nodes. In that respect the 
following rules shall be observed. 

 At least one node shall be configured to be a sync node. 

 Each sync node shall also be a TT-E coldstart node. 

 At most cSyncFrameIDCountMax / 2 nodes shall be configured to be sync nodes. 

 Only nodes with pChannels = gChannels may be sync nodes (i.e., sync nodes shall be connected to all 
configured channels). 

                                                      

121) The frames sent on the two channels in these slots do not need to be identical (i.e., they may have differing 
payloads), but they shall both be sync frames. 



BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

© ISO 2013 – All rights reserved 225 
 

 Sync nodes that support two channels shall send four sync frames in the static segment, two on each 
channel, in the slots with slot number equal to pKeySlotID or pSecondKeySlotID122). Sync nodes that 
support only a single channel shall send two sync frames in the static segment in the slots with slot 
number equal to pKeySlotID or pSecondKeySlotID. 

 The sync frames shall be sent in all slots with the same slot number, i.e. in each cycle. 

 Non-sync nodes shall not transmit frames with the sync frame indicator set to one. 

12.8.4 TT-L cluster 

A TT-L cluster consists only of a single coldstart node and an arbitrary number of non-sync nodes. In that 
respect the following rules shall be observed. 

 A single node shall be configured to be a sync node. 

 The single sync node shall be a TT-L coldstart node. 

 Only nodes with pChannels = gChannels may be sync nodes (i.e., sync nodes shall be connected to all 
configured channels). 

 Sync nodes that support two channels shall send four sync frames in the static segment, two on each 
channel, in the slots with slot number equal to pKeySlotID or pSecondKeySlotID123). Sync nodes that 
support only a single channel shall send two sync frames in the static segment in the slots with slot 
number equal to pKeySlotID or pSecondKeySlotID. 

 The sync frames shall be sent in all slots with the same slot number, i.e. in each cycle. 

 Non-sync nodes shall not transmit frames with the sync frame indicator set to one. 

12.9 Time gateway interface 

The time gateway interface connects two communication controllers. It provides information about the 
schedule of the time gateway source node to the time gateway sink node. 

The signals to be provided by the time gateway source node are marked in the SDL description using the EXP 
keyword. The signals in question are as follows. 

 cycle start  
This signal is used by the time gateway sink node to initialize its own schedule and later on to monitor if it 
still operates synchronously to the time gateway source node. 

 sync state  
This signal is used by the time gateway sink node to determine if the time gateway source node is in 
POC:normal active, POC:normal passive or a different state. 

 offset calc ready  
This signal is used by the time gateway sink node to perform the same clock offset correction as the time 
gateway source node. 

                                                      

122) The frames sent in these slots by a TT-E sync node do not need to be identical (i.e., different payloads may be sent 
on each channel, or in each of the key slots), but all shall be sync frames. 

123) The frames sent in these slots by a TT-L sync node do not need to be identical (i.e., different payloads may be sent 
on each channel, or in each of the key slots), but all shall be sync frames. 
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 rate calc ready  
This signal is used by the time gateway sink node to perform the same clock rate correction as the time 
gateway source node. 

 SyncCalcResult  
This signal is used by the time gateway sink node to determine if the time gateway source node maintains 
synchronisation with the time source cluster. 

The fixed offset of cdTSrcCycleOffset microticks between the schedule of the time gateway source node and 
the time gateway sink node ensures that each transferred piece of information arrives in time to be properly 
used by the time gateway sink node. 

13 Controller Host Interface 

13.1 Principles 

The controller host interface (CHI) manages the data and control flow between the host processor and the 
FlexRay protocol engine within each node124). The CHI contains two major interface blocks - the protocol data 
interface and the message data interface. The protocol data interface manages all data exchange relevant for 
the protocol operation and the message data interface manages all data exchange relevant for the exchange 
of messages as illustrated in Figure 179. 
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Figure 179 — Conceptual architecture of the controller host interface 

 

The protocol data interface manages the protocol configuration data, the protocol control data, and the 
protocol status data. The message data interface manages the message buffers, the message buffer 
configuration data, and the message buffer status data. 

In addition, the CHI provides a set of CHI services that define self-contained functionality that is transparent to 
the operation of the protocol. 

                                                      

124) Due to implementation constraints the CHI may add product specific delays for data or control signals exchanged 
between the host and the protocol engine. 



BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

© ISO 2013 – All rights reserved 227 
 

The descriptions of the CHI in this clause are behavioural descriptions, not requirements on a particular 
method of implementation. In many cases the method of description was chosen for ease of understanding 
rather than efficiency of implementation. An actual implementation should have the same behaviour as the 
description, but it need not have the same underlying structure or mechanisms. 

13.2 Description 

The relationships between the CHI and the other protocol processes are depicted in Figure 180125).  
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Figure 180 — Controller host interface context 

 

                                                      

125) The dark lines represent data flows between mechanisms that are relevant to this subclause. The lighter gray lines 
are relevant to the protocol, but not to this clause. 
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13.3 Interfaces 

13.3.1 Protocol data interface 

13.3.1.1 Protocol configuration data 

13.3.1.1.1 Host read and write access 

The host shall have write access to protocol configuration data only when the protocol is in the POC:config 
state.  

The host shall have read access to protocol configuration data regardless of the protocol state. 

13.3.1.1.2 Communication cycle timing configuration 

All configuration data relating to the following communication cycle timing parameters shall be treated as 
protocol configuration data: 

 the number of microticks pMicroPerCycle constituting the duration of the communication cycle; 

 the number of macroticks gMacroPerCycle within a communication cycle; 

  the number of static slots gNumberOfStaticSlots in the static segment; 

 the number of macroticks gdStaticSlot constituting the duration of a static slot within the static segment; 

 the number of macroticks gdActionPointOffset constituting the offset of the action point within static slots; 

 the number of macroticks gdMinislot constituting the duration of a minislot; 

 the number of minislots gNumberOfMinislots within the dynamic segment; 

 the number of macroticks gdMinislotActionPointOffset constituting the offset of the action point within a 
minislot of the dynamic slot; 

 the number of minislots gdDynamicSlotIdlePhase constituting the duration of the idle phase within a 
dynamic slot; 

 the number of the last minislot pLatestTx in which transmission can start in the dynamic segment; 

 the number of macroticks gdSymbolWindow constituting the duration of the symbol window; 

 the number of macroticks gdSymbolWindowActionPointOffset constituting the offset of the action point 
within the symbol window; 

 the cycle number gCycleCountMax after which the cycle counter is reset back to zero126). 

In addition to the above, an implementation shall allow a system designer control over the parameters 
gdSampleClockPeriod and pSamplesPerMicrotick. These parameters need not be directly implemented, but 
may instead be derived from other parameters not explicitly defined in this specification.  

For example, gdSampleClockPeriod may be derived from parameters that set the prescalers, phase-locked 
loop multipliers, etc. for an implementation's sample clock and the designer's knowledge of the design 
frequency of the underlying clocks. As a result, there is no specific requirement to be able to read or configure 

                                                      

126) The cycle counter will return to the same value after gCycleCountMax + 1 cycles. 



BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

© ISO 2013 – All rights reserved 229 
 

these exact parameters, but there is a requirement for a system designer to be able to control their values, 
i.e., to control the period of the sample clock and the duration of the microtick to allow the values for those 
quantities required by the specification. 

13.3.1.1.3 Protocol operation configuration 

All configuration data relating to the following protocol operation parameters shall be treated as protocol 
configuration data: 

 the number of consecutive even / odd cycle pairs with missing clock correction terms 
gMaxWithoutClockCorrectionFatal that will cause the protocol to transition from the POC:normal active or 
POC:normal passive state into the POC:halt state; 

 the number of consecutive even / odd cycle pairs with missing clock correction terms gMaxWithout 
ClockCorrectionPassive that will cause the protocol to transition from the POC:normal active to the 
POC:normal passive state; 

 the number of microticks pClusterDriftDamping constituting the cluster drift damping factor used for rate 
correction within clock synchronisation; 

 the number of macroticks pOffsetCorrectionStart between the start of the communication cycle and the 
start of the offset correction within the NIT; 

 the number of microticks pExternOffsetCorrection constituting the correction term used to correct the 
calculated offset correction value in the course of external clock synchronisation; 

 the number of microticks pExternRateCorrection constituting the correction term used to correct the 
calculated rate correction value in the course of external clock synchronisation; 

 the number of microticks pOffsetCorrectionOut constituting the upper bound for a permissible offset 
correction; 

 the number of microticks pRateCorrectionOut constituting the upper bound for a permissible rate 
correction and the maximum drift offset between two nodes operating with non-synchronized clocks for 
one communication cycle, 

 the Boolean parameter pAllowHaltDueToClock that controls the transition to the POC:halt state due to a 
clock synchronisation error; 

 the number of consecutive even / odd cycle pairs pAllowPassiveToActive during which valid clock 
synchronisation terms shall be received before the node transitions from the POC:normal passive state to 
the POC:normal active state, including the configuration data to disable transitions from the POC:normal 
passive state to the POC:normal active state; 

 the Boolean parameter pKeySlotOnlyEnabled that defines whether, after completing startup, a node is 
restricted to send only in its key slots or is allowed to transmit in all assigned slots; 

 the Boolean parameter pKeySlotUsedForStartup that defines whether the specific node shall send startup 
frames; 

 the Boolean parameter pKeySlotUsedForSync that defines whether the specific node shall send sync 
frames; 

 the slot ID of the key slot, pKeySlotID. A node that does not have a key slot would configure pKeySlotID 
to zero (a value which will never match any actual static slot ID). The effect of such a zero configuration 
for pKeySlotID is that no static slot has the characteristics of the key slot (and thus the node, in effect, 
does not have a key slot). The key slot, if the node has one, shall be assigned to the node by the CHI in 
all cycles. In particular, the slot ID indicated by a non-zero configuration of pKeySlotID is assigned to the 
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node (in the sense that for that slot the variable vTCHI!Assignment is set to ASSIGNED) on all configured 
channels in all communication cycles; 

 the slot ID of the second key slot, pSecondKeySlotID in which a second startup frame shall be sent when 
operating as coldstart node in a TT-L or TT-E cluster; 

 the number of microticks pDecodingCorrection used by the node to calculate the primary time reference 
point; 

 the enumeration pChannels that indicates the channels to which the node is connected. The configuration 
of channels supported by the device, pChannels, has a unique characteristic in that it may affect 
significant hardware details of the implementation. Dual channel devices shall be able to support single 
channel operation and single channel devices shall be configurable to work on either channel A or 
channel B. As a result, it is required that an implementation be able to configure pChannels, but the ability 
to configure this more than once while the CC is in the power on state (see 6.1.2) is not required. This 
mechanism does not need to be available in POC:config. A device may not, however, allow this 
parameter to be modified in the POC:ready, POC:normal active, POC:normal passive, or POC:halt states, 
or in any of the states that are defined in the WAKEUP and STARTUP macros of the POC process; 

 the maximum number of consecutive low bits gdCASRxLowMax which the node would accept as a valid 
CAS symbol; 

 the number of bits gdIgnoreAfterTx for which bit strobing is paused after a transmission; 

 the number of microticks pDelayCompensation[A] used to include the channel A specific reception delay 
in the calculation of the primary time reference point; 

 the number of microticks pDelayCompensation[B] used to include the channel B specific reception delay 
in the calculation of the primary time reference point; 

 the number of two-byte words gPayloadLengthStatic contained in the payload segment of a static frame; 

 the number of bits gdTSSTransmitter within the transmission start sequence; 

 the maximum number gSyncFrameIDCountMax of distinct sync frame identifiers that may be present in a 
given cluster; 

 the optional127) Boolean parameter pFallBackInternal that defines whether a time gateway sink node will 
switch to local clock operation when synchronisation with the time gateway source node is lost 
(pFallBackInternal = true) or will instead go to POC:halt (pFallBackInternal = false)128); 

 the optional129) Boolean parameter pExternalSync that defines whether the node begins operation130) 
with the clock synchronisation externally synchronized (pExternalSync = true) or not externally 
synchronized (pExternalSync = false); 

 the Boolean parameter pTwoKeySlotMode that defines whether the node operates as a coldstart node in 
a TT-E or TT-L cluster. 

13.3.1.1.4 Wakeup and startup configuration 

All configuration data relating to the following wakeup and startup parameters shall be treated as protocol 
configuration data: 
                                                      

127) The Boolean parameter is only required in implementations that implement a time gateway sink. 
128) This parameter shall not be set to true if the cluster contains more than one TT-E coldstart node. 
129) The Boolean parameter is only required in implementations that implement a time gateway sink. 
130) It is possible that the actual synchronisation mode of the cluster (as represented by the variable vExternalSync) can 

change from externally synchronized to not externally synchronized during the operation of the cluster. 
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 the number of bits gdWakeupRxIdle used by the node to test the duration of the received idle or ’active 
high’ parts of a wakeup; 

 the number of bits gdWakeupRxLow used by the node to test the duration of the received ’active low’ 
parts of a wakeup; 

 the number of bits gdWakeupRxWindow used by the node to test the duration of a received wakeup; 

 the number of bits gdWakeupTxIdle used by the node to transmit the idle part of the wakeup symbol; 

 the number of bits gdWakeupTxActive used by the node to transmit the ’active low’ part of the wakeup 
symbol and the ’active low’ and ’active high’ parts of a WUDOP; 

 the number of wakeup symbols pWakeupPattern to be sent by the node to create a wakeup pattern; 

 the enumeration pWakeupChannel that indicates on which channel a wakeup symbol shall be sent upon 
issuing the WAKEUP command; 

 the number of macroticks pMacroInitialOffset[A] between a static slot boundary and the subsequent 
macrotick boundary of the secondary time reference point based on the nominal macrotick duration; 

 the number of macroticks pMacroInitialOffset[B] between a static slot boundary and the subsequent 
macrotick boundary of the secondary time reference point based on the nominal macrotick duration; 

 the number of microticks pMicroInitialOffset[A] between the secondary time reference point on channel A 
and the macrotick boundary immediately following the secondary time reference point; 

 the number of microticks pMicroInitialOffset[B] between the secondary time reference point on channel B 
and the macrotick boundary immediately following the secondary time reference point; 

 the number of microticks pdAcceptedStartupRange constituting the expanded range of measured 
deviation for startup frames during integration; 

 the number of microticks pdListenTimeout constituting the upper limit for the startup and wakeup listen 
timeout; 

 the maximum number of times gColdstartAttempts that a node is permitted to attempt to start the cluster 
by initiating schedule synchronisation; 

 the upper limit gListenNoise of the number of startup and wakeup listen timeouts in the presence of noise. 

13.3.1.1.5 Network Management Vector configuration 

All configuration data relating to the following Network Management Vector parameters shall be treated as 
protocol configuration data: 

 the number of bytes gNetworkManagementVectorLength contained in the network management vector; 

 the Boolean parameter pNMVectorEarlyUpdate that defines the segment after which the accrued network 
management vector is exported to the CHI; 
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13.3.1.2 Protocol control data 

13.3.1.2.1 Control of the protocol operation control 

The CHI shall provide means for the host to send the following protocol control commands to the POC 
process of the protocol. The conditions under which these commands will be acted upon or ignored are 
defined in clause 13 and Table 4131) 

 An ALLOW_COLDSTART command that activates the capability of the node to coldstart the cluster. 

 An ALL_SLOTS command that controls the transition from the key slot only mode to the all slots 
transmission mode. 

 A CONFIG command that causes a transition of the POC process from either the POC:default config 
state or the POC:ready state to the POC:config state. 

 A CONFIG_COMPLETE command that causes a transition of the POC process from the POC:config 
state to the POC:ready state. 

 A FREEZE command that causes a transition of the POC process from any POC state to the POC:halt 
state. 

 An IMMEDIATE_READY command that causes an immediate transition of the POC process to the 
POC:ready state. 

 A RUN command that initiates the startup procedure. 

 A DEFAULT_CONFIG command that causes a transition of the POC process from the POC:halt state to 
the POC:default config state. 

 A DEFERRED_HALT command that causes a transition of the POC to the POC:halt state. 

 A WAKEUP command that initiates the wakeup procedure. 

 A DEFERRED_READY command that causes a transition of the POC process to the POC:ready state 
from all states except POC:default config, POC:config, POC:ready, POC:halt. 

 A CLEAR_DEFERRED command that removes any pending DEFERRED_READY or DEFERRED_HALT 
command. 

13.3.1.2.2 Control of MTS and WUDOP transmission 

The CHI shall provide means for the host  

 to control the transmission of MTS symbols on channel A within the symbol window. To perform this the 
CHI interacts with the protocol engine via the variable vTransmitMTS_A (as defined within the MAC_A 
process), 

 to control the transmission of MTS symbols on channel B within the symbol window. To perform this the 
CHI interacts with the protocol engine via the variable vTransmitMTS_B (as defined within the MAC_B 
process), 

                                                      

131) The CHI does not buffer host commands and issue them to the POC at a later time – they are essentially passed 
"immediately" to the POC process. 
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 to control the transmission of WUDOPs on channel A within the symbol window. To perform this the CHI 
interacts with the protocol engine via the variable vTransmitWUDOP_A132) (as defined within the MAC_A 
process), and 

 to control the transmission of WUDOPs on channel B within the symbol window. To perform this the CHI 
interacts with the protocol engine via the variable vTransmitWUDOP_B (as defined within the MAC_B 
process). 

The control of MTS transmission shall support, at a minimum, the ability of the host to request a single MTS 
transmission (i.e., a "one-shot" or manual MTS request). 

The control of the WUDOP transmission shall support the ability of the host to request a single WUDOP 
transmission (i.e., a "one-shot" or manual WUDOP request), but shall also support an automatic request by 
which the host can identify a set of FlexRay communication cycles in which the CC will transmit a WUDOP in 
the symbol window without additional host interaction. This automatic mechanism shall operate in addition to 
the manual mechanism (i.e., a WUDOP should be sent if either the manual or automatic mechanisms, or both, 
indicate that a WUDOP should be sent). 

The configuration of the specific cycles in which the automatic transmission of WUDOPs takes place shall 
support, at a minimum, the ability to define sets of communication cycles which equal the sets which can be 
defined using a Cycle_Repetition and a Cycle_Offset to determine the configuration: 

Automatically transmit a WUDOP in the symbol window if  

 vCycleCounter mod Cycle_Repetition = Cycle_Offset  

with 

 Cycle_Repetition selected from the set of {1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 50, 64}133), 

 Cycle_Offset selected from the set {0 … 63} with Cycle_Offset < Cycle_Repetition. 

It is not required that an implementation supports independent sets of repetition and offset parameters for 
each channel (i.e., a single set of parameters controlling automatic WUDOP generation for both channels is 
acceptable). It is acceptable, but not required, that the repetition and offset parameters controlling automatic 
WUDOP generation be modifiable during operation (i.e., when the node is in the POC:normal active state). It 
is required, however, that automatic WUDOP generation be independently controllable (i.e., switched on or 
off) on a per channel basis when the node is in the POC:normal active state134).  

A transition into the POC:ready state shall cause the CHI to reset any pending one-shot transmissions of 
WUDOP's or MTS's135). 

Transmissions in the symbol window shall be coordinated at a system level, i.e., the system designer shall 
ensure for each channel that in any given cycle at most one node will transmit either an MTS or a WUDOP in 
the symbol window on that channel. 

                                                      

132) This variable represents the control value of both the automatic and manual mechanisms for WUDOP transmission. 
133) These particular values of Cycle_Repetition are those that could be achieved by combining a "power of 2" filter with a 

"count to 5" filter. 
134) It is also allowable that automatic WUDOP generation can be switched on or off in other POC states, but the actual 

generation of WUDOPs will only take place when the node is in the POC:normal active state. 
135) This prevents unintentional WUDOP or MTS transmissions left over from previous operation for TT-E coldstart nodes 

(for example, if an IMMEDIATE_READY command is followed by a RUN command). 
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13.3.1.2.3 Control of external clock synchronisation 

The CHI shall provide means for the host 

 to control the application of the external offset correction parameter pExternOffsetCorrection using the 
control value vExternOffsetControl, 

 to control the application of the external rate correction parameter pExternRateCorrection using the 
control value vExternRateControl. 

A transition into the POC:ready state shall cause the CHI to set the variables that control the operation of the 
external rate and offset correction (i.e., vExternRateControl and vExternOffsetControl) such that no external 
rate or offset correction is requested. 

13.3.1.3 Protocol status data 

13.3.1.3.1 Overview and general behaviour 

The CHI shall provide the protocol status information described in the following subclauses. 

The following subclauses define a number of indicators. These indicators are a type of status information that 
can take on two distinct values, labelled as "set" and "reset". An indicator is set (i.e., given the "set" value) by 
the CHI when certain events occur in the execution of the protocol, and are, in general, reset (i.e., given the 
"reset" value) by the host. 

An implementation shall ensure that each indicator described in the following subclauses is reset under at 
least one of the following conditions: 

 every transition into the POC:default config state; 

 every transition into the POC:config state; 

 every transition out of the POC:config state. 

The specific behaviour of an implementation with respect to the reset behaviour of each indication is 
implementation dependent. 

13.3.1.3.2 Protocol operation control status 

The following protocol operation control status variables shall be provided in the CHI: 

 the status variable vPOC!State (as maintained by the POC process); 

 the flag vPOC!Freeze (as maintained by the POC process); 

 the flag vPOC!CHIReadyRequest (as maintained by the POC process); 

 the flag vPOC!CHIHaltRequest (as maintained by the POC process); 

 the flag vPOC!ColdstartNoise (as maintained by the POC process); 

 the status variable vPOC!SlotMode (as maintained by the POC process); 

 the status variable vPOC!ErrorMode (as maintained by the POC process); 
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 the number of consecutive even / odd cycle pairs vAllowPassiveToActive that have passed with valid rate 
and offset correction terms, but with the node still in POC:normal passive state due to a host configured 
delay to POC:normal active state (as maintained by the POC process); 

 the status variable vPOC!WakeupStatus (as maintained by the POC process); 

 the status variable vPOC!StartupState (as maintained by the POC process); 

 the optional136) flag vExternalSync (as maintained by the CSP process). 

13.3.1.3.3 Wakeup and startup status 

The number of remaining coldstart attempts vRemainingColdstartAttempts (as maintained by the POC 
process) shall be provided in the CHI as a startup status variable. 

The CHI shall provide indicators for the following wakeup and startup events: 

 a coldstart abort indicator that shall be set upon 'set coldstart abort indicator in CHI' (in accordance with 
the POC process) and reset under control of the host; 

 a wakeup pattern received indicator for channel A that shall be set upon 'set wakeup received indicator 
on A in CHI' (in accordance with the FSP_A process) and reset under control of the host; 

 a wakeup pattern received indicator for channel B that shall be set upon 'set wakeup received indicator 
on B in CHI' (in accordance with the FSP_B process) and reset under control of the host. 

13.3.1.3.4 Communication cycle timing status 

The following communication cycle timing variables shall be provided in the CHI: 

 the macrotick vMacrotick (as maintained by the MTG process); 

 the cycle counter vCycleCounter (as maintained by the MTG process); 

 the slot counter vSlotCounter for channel A (as maintained by the MAC_A process); 

 the slot counter vSlotCounter for channel B (as maintained by the MAC_B process). 

The values provided to the host by the CHI for vMacrotick, vCycleCounter and vSlotCounter for channel A and 
B shall be valid during the states POC:normal active and POC:normal passive. 

A snapshot of the following communication cycle timing variables shall be provided in the CHI: 

 the rate correction value vInterimRateCorrection (in accordance with the CSP process): 

 if vExternalSync 137) is false the rate correction value is based on the internally calculated values, is 
not limited by pRateCorrectionOut, and does not include any external rate correction value; 

 if vExternalSync is true the rate correction value is imported from the time gateway source and 
includes the limitation and external rate correction values as configured in the time gateway source. 

 the offset correction value vInterimOffsetCorrection (as maintained by the CSP process): 

                                                      

136) The status variable is only required in implementations that implement a time gateway sink. 
137) If the optional flag vExternalSync does not exist the communication controller shall behave as if vExternalSync is 

equal to false. Refer to 5.6.4. 
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 if vExternalSync is false the offset correction value is based on the internally calculated values, is not 
limited with pOffsetCorrectionOut, and does not include any external offset correction value; 

 if vExternalSync is true the offset correction value is imported from the time gateway source and 
includes the limitation and external offset correction values as configured in the time gateway source. 

The CHI shall provide indicators for the following communication cycle timing events: 

 a sync frame overflow indicator that shall be set upon 'set sync frame overflow indicator in CHI' (in 
accordance with the CSP process) and reset under control of the host; 

 a pLatestTx violation status indicator for channel A that shall be set upon 'set pLatestTx violation status 
indicator on A in CHI' (in accordance with the MAC_A process), and reset under control of the host; 

 a pLatestTx violation status indicator for channel B that shall be set upon 'set pLatestTx violation status 
indicator on B in CHI' (in accordance with the MAC_B process), and reset under control of the host; 

 a transmission across boundary violation status indicator for channel A that shall be set upon 'set 
transmission across slot boundary violation indicator on A in CHI' (in accordance with the FSP_A 
process); 

 a transmission across boundary violation status indicator for channel B that shall be set upon 'set 
transmission across slot boundary violation indicator on B in CHI' (in accordance with the FSP_B 
process). 

13.3.1.3.5 Synchronisation frame status 

A snapshot of the following information, derived from the vsSyncIDListA and vsSyncIDListB variables provided 
by the CSP process, shall be provided in the CHI: 

 A list containing the IDs of the sync frames received or transmitted on channel A within the even 
communication cycle as well as the number of valid entries contained in this list; 

 A list containing the IDs of the sync frames received or transmitted on channel B within the even 
communication cycle as well as the number of valid entries contained in this list; 

 A list containing the IDs of the sync frames received or transmitted on channel A within the odd 
communication cycle as well as the number of valid entries contained in this list; 

 A list containing the IDs of the sync frames received or transmitted on channel B within the odd 
communication cycle as well as the number of valid entries contained in this list. 

The information shall be updated no sooner than the start of the NIT and no later than 10 macroticks after the 
start of the offset correction phase of the NIT.  

NOTE This implies that for some NIT configurations the data update may complete after the start of the next cycle. 

The number of consecutive even / odd cycle pairs vClockCorrectionFailed that have passed without clock 
synchronisation having performed an offset or a rate correction due to lack of synchronisation frames (as 
maintained by the POC process) shall be provided in the CHI. 

13.3.1.3.6 Startup frame status 

The number of channel aligned startup frame pairs received or transmitted during the previous double cycle, 
aggregated across both channels, derived from the vStartupPairs variable provided by the CSP process, shall 
be provided in the CHI as a snapshot. 
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The availability of this information depends on the synchronisation method and role of the node in the cluster. 
For TT-E coldstart nodes the information shall be updated no sooner than one microtick before the end of the 
NIT in the odd cycle and no later than 10 macroticks after the start of the next cycle. For all other nodes the 
information shall be updated no sooner than the start of the NIT in the odd cycle and no later than 
10 macroticks after the start of the offset correction phase of the NIT.  

NOTE This implies that for some NIT configurations the data update may complete after the start of the next cycle. 

13.3.1.3.7 Symbol window status 

A snapshot of the following symbol window variables shall be provided in the CHI for the slot status vSS 
established for each channel at the end of the symbol window: 

 the flag vSS!ValidMTS for channel A (in accordance with the FSP_A process); 

 the flag vSS!ValidMTS for channel B (in accordance with the FSP_B process); 

 the flag vSS!SyntaxError for channel A (in accordance with the FSP_A process); 

 the flag vSS!SyntaxError for channel B (in accordance with the FSP_B process); 

 the flag vSS!BViolation for channel A (in accordance with the FSP_A process); 

 the flag vSS!BViolation for channel B (in accordance with the FSP_B process); 

 the flag vSS!TxConflict for channel A (in accordance with the FSP_A process); 

 the flag vSS!TxConflict for channel B (in accordance with the FSP_B process); 

The following list indicates the behaviour of the CHI depending on the activities detected on the RxD input. 

 The low phases of a WUDOP might cause an indication of a valid MTS even if only a WUDOP was 
actually present. This may or may not happen (depending on the data rate, which affects the duration of 
what is accepted as a valid MTS). 

 Because the low phases of a WUDOP can be considered as a valid MTS, the reception of multiple valid 
MTS's within a symbol window is not indicated as a syntax error. 

 Although the WUDOP is transmitted in the symbol window, an indication that a wakeup has been 
received may not occur until sometime during the NIT (i.e., the symbol window status may become 
available to the host before the indication that a wakeup has been received becomes available to the 
host). 

 In the normal situation, the reception of an MTS or WUDOP will not result in boundary violations or syntax 
errors (i.e., those conditions represent exceptional circumstances such as additional communication 
elements, noise on the link, etc.). 

 It is possible to detect a valid MTS, or to detect a wakeup, even in the presence of syntax errors or 
boundary violations 

13.3.1.3.8 NIT status 

A snapshot of the following NIT variables shall be provided in the CHI for the slot status vSS established for 
each channel at the end of the NIT: 

 the flag vSS!SyntaxError for channel A (in accordance with the FSP_A process); 

 the flag vSS!SyntaxError for channel B (in accordance with the FSP_B process); 
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 the flag vSS!BViolation for channel A (in accordance with the FSP_A process); 

 the flag vSS!BViolation for channel B (in accordance with the FSP_B process). 

13.3.1.3.9 Aggregated channel status 

The aggregated channel status provides the host with an accrued status of channel activity for all 
communication slots regardless of whether they are assigned for transmission or subscribed for reception. 
The status is aggregated over a period that is freely definable by the host. 

The CHI shall provide indicators for the following channel activity events: 

 a channel specific valid frame indicator for channel A that shall be set if a valid frame was received in any 
static or dynamic slot on channel A (i.e., one or more static or dynamic slots had vSS!ValidFrame equal to 
true) and reset under control of the host; 

 a channel specific valid frame indicator for channel B that shall be set if a valid frame was received in any 
static or dynamic slot on channel B (i.e., one or more static or dynamic slots had vSS!ValidFrame equal to 
true) and reset under control of the host; 

 a channel specific syntax error indicator for channel A that shall be set if one or more syntax errors were 
observed on channel A (i.e., one or more static or dynamic slots including symbol window and NIT had 
vSS!SyntaxError equal to true) and reset under control of the host; 

 a channel specific syntax error indicator for channel B that shall be set if one or more syntax errors were 
observed on channel B (i.e., one or more static or dynamic slots including symbol window and NIT had 
vSS!SyntaxError equal to true) and reset under control of the host; 

 a channel specific content error indicator for channel A that shall be set if one or more frames with a 
content error were received on channel A in any static or dynamic slot (i.e., one or more static or dynamic 
slots had vSS!ContentError equal to true) and reset under control of the host; 

 a channel specific content error indicator for channel B that shall be set if one or more frames with a 
content error were received on channel B in any static or dynamic slot (i.e., one or more static or dynamic 
slots had vSS!ContentError equal to true) and reset under control of the host; 

 a channel specific additional communication indicator for channel A that shall be set if one or more valid 
frames were received on channel A in slots that also contained any additional communication during the 
observation period (i.e., one or more slots had vSS!ValidFrame equal to true and any combination of 
either vSS!SyntaxError equal to true or vSS!ContentError equal to true or vSS!BViolation equal to true) 
and reset under control of the host; 

 a channel specific additional communication indicator for channel B that shall be set if one or more valid 
frames were received on channel B in slots that also contained any additional communication during the 
observation period (i.e., one or more slots had vSS!ValidFrame equal to true and any combination of 
either vSS!SyntaxError equal to true or vSS!ContentError equal to true or vSS!BViolation equal to true) 
and reset under control of the host; 

 a channel specific slot boundary violation indicator for channel A that shall be set if one or more slot 
boundary violations were observed on channel A (i.e., one or more static or dynamic slots including 
symbol window and NIT had vSS!BViolation equal to true) and reset under control of the host; 

 a channel specific slot boundary violation indicator for channel B that shall be set if one or more slot 
boundary violations were observed on channel B (i.e., one or more static or dynamic slots including 
symbol window and NIT had vSS!BViolation equal to true) and reset under control of the host; 
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 a channel specific transmission conflict indicator for channel A that shall be set if one or more 
transmission conflicts were observed on channel A (i.e., one or more static or dynamic slots and / or the 
symbol window had vSS!TxConflict equal to true) and reset under control of the host; 

 a channel specific transmission conflict indicator for channel B that shall be set if one or more 
transmission conflicts were observed on channel B (i.e., one or more static or dynamic slots and / or the 
symbol window had vSS!TxConflict equal to true) and reset under control of the host. 

13.3.1.3.10 Dynamic segment status 

The following dynamic segment status variables shall be provided in the CHI: 

 a channel specific value which represents the slot counter of the last frame transmitted by the node on 
channel A in the dynamic segment as reflected by the variable vLastDynTxSlot in the MAC_A process. It 
is updated at the end of the dynamic segment and would have a value of zero if no frame was transmitted 
during the dynamic segment138); 

 a channel specific value which represents the slot counter of the last frame transmitted by the node on 
channel B in the dynamic segment as reflected by the variable vLastDynTxSlot in the MAC_B process. It 
is updated at the end of the dynamic segment and would have a value of zero if no frame was transmitted 
during the dynamic segment; 

 a channel specific dynamic resynchronisation attempted flag as reflected by the variable vDynResync 
Attempt in the MAC_A process which is set if either a slot was skipped, or a transmission might have 
been blocked (i.e., the zNoTxSlot variable was set to true, whether or not this actually resulted in one less 
transmission in the system), otherwise it is reset. It is updated at the end of the dynamic segment; 

 a channel specific dynamic resynchronisation attempted flag as reflected by the variable vDynResync 
Attempt in the MAC_B process which is set if either a slot was skipped, or a transmission might have 
been blocked (i.e., the zNoTxSlot variable was set to true, whether or not this actually resulted in one less 
transmission in the system), otherwise it is reset. It is updated at the end of the dynamic segment. 

13.3.2 Message data interface 

13.3.2.1 Subject 

The message data interface addresses  

 the management of the communication slots in which the node shall transmit messages, 

 the subscription of messages the host wants to receive, and 

 the exchange of message data between the host and the protocol engine within the node. 

Message transmission pertains to the message data flow from the host out to a FlexRay network, and 
message reception pertains to the message data flow from a FlexRay network in to the host. 

13.3.2.2 Communication slot assignment 

A node in the POC:normal active state is able to transmit messages by sending frames on one or both 
channels of the FlexRay bus and is able to receive messages by receiving frames on one or both channels of 
the FlexRay bus. 

                                                      

138) This variable can be used to determine if the frame corresponding to a given slot in the dynamic segment was 
actually transmitted. This is especially beneficial for continuous transmission mode since then the "frame transmitted" 
flag is less useful. In the event of an aborted transmission due to a pLatestTx violation in the dynamic segment, this 
value will indicate the ID of the frame that was aborted. 
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The information on when a node shall send or receive a message is called communication slot assignment. 

Communication slot assignment shall be done for each available channel. 

A specific communication slot of a specific communication cycle can be identified by the pair of a slot number 
and a communication cycle number in either the static or the dynamic segment. 

Slot multiplexing, i.e. assigning slots having the same slot identifier but with different communication cycle 
numbers to different nodes, is allowed by the protocol in the static segment for slots which are not configured 
as key slots. The configuration of assignment shall ensure that transmission in the cluster is conflict-free139). 
Slot multiplexing is allowed for all slots in the dynamic segment. It is up to the application or the configuration 
to ensure that transmission in the cluster is conflict-free. 

13.3.2.3 Communication slot assignment for transmission 

13.3.2.3.1 General behaviour 

A specific TDMA slot (communication slot) in either the static or dynamic segment of a specific communication 
cycle shall be assigned to a node for transmission by assigning the corresponding slot identifier and 
communication cycle number for a channel to the node according to the constraints listed in subclauses 
9.1.4.1 and 9.1.5.1. 

A node in the POC:normal active state will always transmit a null frame or a non-null (data) frame in a slot 
assigned to this node for transmission within the static segment. A node in the POC:normal active state will 
always transmit a non-null (data) frame in a slot assigned to this node for transmission within the dynamic 
segment if an active transmit message buffer is found (see 13.3.2.7.6). 

13.3.2.3.2 Cycle-independent and cycle-dependent slot assignment 

The CHI shall provide the possibility to assign communication slots of a channel to the node for transmission 
independent of the cycle number, i.e. all slots sharing the slot ID in all communication cycles are assigned to 
this node on this channel. This method of assignment is referred to as "cycle-independent slot assignment". 

The CHI shall provide the possibility to assign individual slots (identified by the pair of a slot number and a 
cycle counter number) or sets of slots (identified by a slot number and a set of communication cycle numbers) 
of a channel to the node for transmission. This method of assignment is referred to as "cycle-dependent slot 
assignment". The CHI shall provide a mechanism to enable or disable the possibility of cycle-dependent slot 
assignment for slots located in the static segment140). The enable / disable mechanism for cycle-dependent 
slot assignment shall be available to the host only while the node is in the POC:config state. 

If cycle-dependent slot assignment is disabled, the CHI shall only allow cycle-independent slot assignment for 
communication slots in the static segment. In this case the node will transmit a frame in all slots of the static 
segment sharing the slot number of the assigned slot in all communication cycles. 

In the static segment when a slot in a communication cycle occurs and this slot is assigned to a node, the 
node shall transmit either a non-null frame or a null frame in that slot. Specifically, a null frame will be sent if 
there is no data ready, or if there is no transmit buffer configured for this slot (see 13.3.2.8.2). 

In the dynamic segment when a slot in a communication cycle occurs and this slot is assigned to a node, the 
node only transmits a non-null frame in this slot if an active transmit message buffer is found (see 13.3.2.7.6. 

                                                      

139) It is also possible to achieve slot multiplexing in the static segment by reconfiguring assignment during the operation 
in the system. In this case it is up to the application to ensure conflict-free transmission. 

140) The enable / disable mechanism allows the user to select between static segment behaviour consistent with the 
previous versions of the protocol (where a node that transmits in a slot with a specific slot number in any cycle shall 
transmit either a non-null frame or a null frame in all slots with this number in all cycles) and new static segment 
behaviour that allows a node to transmit in a slot with a specific slot number in only some cycles (i.e., it is no longer 
necessary that a node that transmits in a slot in a particular cycle shall transmit in all slots with this number). 
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In both segments the system designer shall ensure that no two nodes transmit in the same slot. 

13.3.2.3.3 Transmission slot assignment list 

The set of all slots assigned to a node for transmission is called the "transmission slot assignment list". 

An implementation may explicitly implement the transmission slot assignment list or derive it dynamically from 
the transmit buffer assignment (see 13.3.2.8.2) or implement a mixture of explicit and implicit assignment. 

In any case the implementation shall ensure that all requirements for the transmission slot assignment list in 
this subclause are fulfilled. This is especially true for the supported sets of slots which can be assigned to the 
node for transmission. The transmission slot assignment list has to support all combinations of sets of slots for 
which transmit buffers can be configured. 

The CHI has to ensure that at the beginning of each slot it provides up to date information to the protocol 
engine as described in 13.3.2.8.3. 

In the static segment this is especially true for the header CRC. If there is no transmit buffer configured for a 
specific entry of the transmission slot assignment list, the corresponding header CRC for this specific 
transmission slot assignment list entry shall be part of the transmission slot assignment list so that a valid null 
frame can be sent. Further descriptions of the mechanisms in this subclause assume that the transmission 
slot assignment list includes the corresponding header CRC for each entry. 

An implementation shall provide the ability to modify the transmission slot assignment list in all states other 
than POC:default config, and shall prevent modification of the transmission slot assignment list in the 
POC:default config state. 

An implementation shall provide a configurable mechanism to prevent the host from modifying the 
transmission slot assignment list in states other than POC:config. Configuration (i.e., enabling or disabling) of 
this mechanism shall only be possible in the POC:config state. It is allowed, but not required, that this 
configuration mechanism be the same mechanism that allows configuration of write access to the message 
buffer configuration information described in 13.3.2.6.2. 

Modification of the transmission slot assignment list shall only be possible in states other than POC:config if 
this capability was explicitly enabled during the POC:config state. 

13.3.2.3.4 Key slot assignment 

For key slots only cycle-independent slot assignment is allowed. Key slots shall be assigned to a node for all 
connected channels, i.e. all slots of all connected channels sharing the key slot IDs in all communication 
cycles are assigned to this node. 

The modification of the assignment of key slots shall only be possible during the POC:config state. The node 
shall ignore attempts to change the assignment of a key slot in all other states. 

13.3.2.4 Communication slot assignment for reception 

A node in the POC:normal active state can receive all frames and therefore all messages on the FlexRay bus. 
Frames which are relevant for the operation of the protocol (sync frames, for example) will be processed by 
the protocol engine automatically without the need of explicit assignment of the corresponding communication 
slots for reception. 

This specification gives no guidance on how communication slot assignment for reception shall be 
implemented. 

See 13.3.2.8.2, which describes requirements for message buffers used for reception. 
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13.3.2.5 Conflicting communication slot assignment for reception and transmission 

In the static segment if a node has been configured to receive a message in a specific slot it shall only do so if 
this slot has not also been assigned to the node for transmission. Transmission of messages in the static 
segment always has precedence over reception. 

In the dynamic segment transmission has precedence over reception in a specific slot if there is at least one 
transmit message buffer with valid payload data configured for this specific slot. 

13.3.2.6 Non-queued message buffers 

13.3.2.6.1 Structure and general behaviour 

Message transmission and reception operate on message buffers. A non-queued message buffer is a 
structure which consists of 

 message buffer configuration data, 

 message buffer status data, and 

 message data. 

Upon a transition from either the POC:normal active or POC:normal passive state to either the POC:halt or 
POC:ready state the CHI shall continue to provide the host access to the data that it would have provided had 
the POC remained in the POC:normal active or POC:normal passive states. Note that at this point the CHI will 
no longer update the data as the protocol engine will stop providing new data. 

The behaviour of the CHI upon attempted host access to buffer status or payload data that has never been 
updated by the CHI because no data was provided by the protocol engine is implementation dependent. It is 
required that the access to such data does not give the appearance that data was received or transmitted 
when such a reception or transmission did not actually take place. 

13.3.2.6.2 Message buffer configuration data 

The message buffer configuration data shall contain at least the following parameters for each message 
buffer: 

 a type indication (transmit or receive message buffer); 

 the channel identifier (A, B, or, for dual channel devices, A&B) on which the node shall transmit or receive 
a message using this buffer; 

 the slot identifier of the communication slot in which the node shall transmit or receive a message using 
this buffer; 

 the set of communication cycles in which the node shall transmit or receive a message using data 
provided in this message buffer. 

Additionally a message buffer configured for transmission needs to contain the following configuration 
parameters: 

 the length of the available message data in the buffer (MessageLength)141); 

                                                      

141) In the static segment MessageLength describes the number of two-byte words that are provided to the protocol 
engine by the CHI. The macro ASSEMBLE_STATIC_FRAME assures that a frame with the correct length (i.e., 
gPayloadLengthStatic) is transmitted by the protocol engine. In the dynamic segment this value describes the actual 
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 the payload preamble indicator (for the network management service or message ID filtering); 

 the header CRC; 

 a transmission mode indicator (single shot mode or continuous mode). 

The previously identified buffer configuration information is divided into two classes. 

 Class 1 Buffer Configuration Data: 

 the type indication; 

 the channel identifier; 

 the slot identifier; 

 the set of communication cycles. 

 Class 2 Buffer Configuration Data. 

 the length of the available message data; 

 the payload preamble indicator; 

 the header CRC; 

 the transmission mode indicator. 

The host shall have read access to both classes of message buffer configuration data independently of the 
protocol state. 

The host shall have write access to both classes of message buffer configuration data in the POC:config state. 

An implementation shall allow configuration of message buffers in all states other than POC:default config, 
and shall prevent configuration of message buffers in the POC:default config state. An implementation shall 
provide a configurable mechanism to prevent the host from writing certain classes of message buffer 
configuration data in states other than POC:config. The configuration of this mechanism, i.e., the selection of 
which classes of message buffer configuration data can be written, shall only be possible in the POC:config 
state. At a minimum, an implementation shall support the following configurations. 

 No write access to either Class 1 or Class 2 message buffer configuration data while in states other than 
POC:config and POC:default config. 

 Write access to both Class 1 and Class 2 message buffer configuration data while in states other than 
POC:config and POC:default config. 

 Write access to Class 2 message buffer configuration data but no write access to Class 1 buffer 
configuration data while in states other than POC:config and POC:default config. 

An implementation shall be capable of applying the previous configurations to all non-queued message 
buffers142) but an implementation may provide more fine-grained control, allowing sets of message buffers to 
have different restrictions. 

                                                                                                                                                                                  

number of two-byte words in the frame to be transmitted. 
142) An exception to this requirement applying to all buffers is that it is allowable that message buffers exclusively 

associated with key slots are always restricted from configuration in states other than POC:config. 
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The implementation shall ensure that it is not possible for the host to change the configuration data of a 
message buffer while the buffer is being used according to 13.3.2.8.3 or while it is updated by the controller. 

13.3.2.6.3 Message buffer status data 

The message buffer status shall be able to provide the following information to the host: 

 slot status; 

 a slot status updated indicator; 

 channel indication of the channel which the slot status refers to. 

The message buffer status shall be able to indicate the status information listed in 13.3.2.8.4 for a transmit 
message buffer or the status information listed in 13.3.2.9.3.1 for a receive message buffer. 

The CHI shall indicate that the slot status information of a message buffer has been updated by setting the 
corresponding slot status updated indicator to true. 

When the host (re)configures a message buffer (i.e., when the host performs a write access to the class 1 or 
class 2 configuration data for a buffer), the CHI shall set the slot status updated indicator of the corresponding 
message buffer to false. 

The CHI shall set the slot status updated indicator to false for all message buffers upon a transition from 
POC:ready state to either POC:coldstart listen, POC:external startup or POC:integration listen (i.e., upon a 
transition of the variable vPOC!State from READY to STARTUP). 

13.3.2.6.4 Message buffer payload data and payload data valid flag 

The payload data to be transmitted in a frame or the payload data which a node receives will be stored in the 
message buffer data portion of the corresponding message buffer (see subclauses 13.3.2.9.2 and 13.3.2.8.2). 

The CHI will grant the following access rights to the message buffer payload data: 

 for transmit buffers the host shall have read and write access to the data; 

 for receive buffers the host shall have read access to the data.  

The CHI will write the data on reception of the corresponding frame when the data is provided by the protocol 
engine. 

The CHI shall ensure that it always provides a consistent set of configuration and status and message data to 
the host in case of receive message buffers and to the protocol engine in case of transmit message buffers. 

Each message buffer shall provide a Boolean payload data valid flag associated with the message buffer 
payload data. 

The host shall be granted the same access rights to this flag as for the message buffer payload data. 

By setting this flag to true in a transmit message buffer the host indicates that the message buffer payload 
data in the message buffer is ready for transmission, i.e. the payload data is "valid". The CHI can change the 
value of the payload data valid flag when the corresponding frame has been sent depending on the 
transmission mode indicator (see 13.3.2.8.2). 

For receive buffers the CHI sets the payload data valid flag to true when the message buffer payload data 
actually contains the payload data of a received frame. 
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When the host (re)configures a message buffer (i.e., when the host performs a write access to the class 1 or 
class 2 configuration data for a buffer), the CHI shall set the payload data valid flag of the corresponding 
message buffer to false. 

The CHI shall set the payload data valid flag to false for all receive message buffers upon a transition from 
POC:ready state to either POC:coldstart listen, POC:external startup or POC:integration listen (i.e., upon a 
transition of the variable vPOC!State from READY to STARTUP). The payload data valid flag for transmit 
message buffers shall not be modified upon a transition from POC:ready state to any state143) 144). 

The CHI shall set the payload data valid flag to false for all transmit message buffers upon a transition into the 
POC:ready state from any state other than POC:config, POC:wakeup listen, POC:wakeup send, and 
POC:wakeup detect (i.e., when the vPOC!State variable changes from either STARTUP, NORMAL_ACTIVE, 
or NORMAL_PASSIVE to READY)145). 

13.3.2.6.5 Buffer enabling and buffer locking 

For the purposes of the selection of buffers, this part of ISO 17458-2 defines two additional concepts related 
to the availability of buffers – an enabled / disabled status and a locked / unlocked (buffer locking) status. 

In this context, a buffer being "enabled" refers to whether or not a buffer's configuration (see 13.3.2.6.2) is 
complete. A buffer that has not been configured, or is in the process of being configured or reconfigured, is 
considered disabled. A buffer whose configuration is complete, and is not in the process of being 
reconfigured, is considered enabled.  

NOTE The enabled / disabled status of a buffer has nothing to do with the host reading or making modifications to 
the status or payload data of the buffer (see buffer locking, described below). 

Buffer locking refers to an optional, implementation-specific mechanism often used to ensure that the host's 
accesses to a buffer's slot status and payload data information are atomic. When a buffer is locked the CHI 
will not update the buffer's slot status or payload data information, and will inform the protocol engine (via the 
vTCHI!TxMessageAvailable flag) that no data is available from the buffer. Buffer locking is an optional 
capability of an implementation, but if present, the locked / unlocked status shall be considered when deciding 
if a buffer is a candidate (see 13.3.2.7.2 and 13.3.2.7.3). 

13.3.2.7 Non-queued message buffer identification 

13.3.2.7.1 Principles of message buffer selection 

In case that the host has configured several non-queued message buffers for transmission and / or reception 
in a specific slot the CHI has to select an "active message buffer" at the beginning of this specific slot in a 
deterministic way according to the following general steps which will be detailed in the following subclauses. 

a) Identify the set of "candidate transmit buffers" and the set of "candidate receive buffers", i.e. message 
buffers which have been configured for the specific slot where the transmission or reception shall happen. 

b) Identify one buffer out of the set of the candidate transmit buffers for the specific channel as the "selected 
transmit buffer" and identify it as the "active message buffer" for the channel. If no transmit buffer is found 
then identify one buffer out of the set of the candidate receive buffers for the specific channel as the 
"selected receive buffer" and identify it as the "active message buffer" for the channel. 

                                                      

143) This allows an application to pre-configure payload data for transmission in the POC:ready or POC:config states, i.e. 
to prepare buffers for transmission before issuing the RUN command. 

144) The system designer should be aware that after issuing a RUN command the payload data valid flag is only cleared 
for receive buffers - the payload data valid flag for transmit buffers remains in the original state. 

145) This prevents unintentional transmissions due to payload data valid flags left over from previous operation (for 
example, if an IMMEDIATE_READY command is followed by a RUN command). 

http://dx.doi.org/10.3403/30253314U
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These steps shall be performed on a per channel basis, i.e., if the communication controller is configured for 
dual channel operation the identification process shall be performed for each channel without considering the 
result of the other channel. As a result the CHI in this case may identify two active message buffers, one for 
each channel146). 

13.3.2.7.2 Candidate transmit message buffer identification 

If a slot is assigned to the node according to the transmission slot assignment list the CHI shall evaluate  

 the message buffer configuration (type indication, slot identifier, channel identifier and set of 
communication cycles) and the payload data valid flag of all non-queued message buffers AND 

 the current status of the buffer locking (if applicable) AND 

 the segment in which the slot with the specific slot identifier is located AND 

 the current protocol state vPOC!State of the protocol engine AND 

 the current slot mode vPOC!SlotMode of the protocol engine  

to identify the set of the candidate transmit message buffers for this slot. 

The following table determines for a given buffer whether it becomes a member of the set of candidate 
transmit buffers (value true in the "candidate" column).  

The table uses the term "buffer match" to indicate that 

 the type indication of the buffer identifies it as transmit buffer AND 

 the slot identifier matches the slot number of the specific slot AND 

 the channel identifier is included in pChannels AND 

 the specific communication cycle is in the set of communication cycles AND 

 the message buffer is enabled (see 13.3.2.6.5) by the host AND 

 if the implementation supports buffer locking (see 13.3.2.6.5) the message buffer is not locked by the 
host.  

Buffer match evaluates to true if all the conditions above are met. It evaluates to false if one or more of these 
conditions are not met.  

Table 8 specifies the transmit message buffer candidate. 

                                                      

146) A message buffer that is configured for both channels can be the only active message buffer. 
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Table 8 — Transmit message buffer candidate 

Buffer 
match 

Segment vPOC!State 
payload data valid 

flag 
vPOC!SlotMode Candidate 

true dynamic NORMAL_ACTIVE true KEYSLOT or 
ALL_PENDING 

false 

true dynamic NORMAL_ACTIVE true ALL true 

true dynamic NORMAL_ACTIVE false don't care false 

true dynamic all but 
NORMAL_ACTIVE 

don't care don't care false 

true static don't care don't care don't care true 

false don't care don't care don't care don't care false 

 

If a slot is not assigned to the node for transmission according to the transmission slot assignment list, then 
the set of the candidate transmit message buffers for this slot is empty. 

13.3.2.7.3 Candidate receive message buffer identification 

A non-queued message buffer will be included in the set of candidate receive message buffers for a slot when 

 the type indication of the buffer is set to receive buffer AND 

 the slot identifier matches the slot number of the specific slot AND 

 the channel identifier is included in pChannels AND 

 the specific communication cycle is in the set of communication cycles AND  

 the message buffer is enabled (see 13.3.2.6.5) by the host AND 

 if the implementation supports buffer locking (see 13.3.2.6.5), the message buffer is not locked by the 
host AND 

 for the static segment only the CHI does not consider the slot / channel combination to be assigned for 
transmission (i.e., the value of vTCHI!Assignment that is passed to the protocol engine is UNASSIGNED). 

If none of the configured receive message buffers fulfils all these conditions, then the set of candidate receive 
message buffers is empty for the slot. 

13.3.2.7.4 Selected transmit buffer identification 

In case that more than one message buffer is member of the set of candidate transmit message buffers, the 
CHI has to select one specific message buffer out of this set. This selection process is implementation 
dependent, but has to meet all of the following requirements. 

 The selection process has to be deterministic so that the host can predict the result. 

 If there is at least one candidate transmit message buffer there shall be a selected transmit message 
buffer. 

 The selected transmit message buffer shall be one of the candidate transmit message buffers. 

 If one or more of the transmit candidate message buffers have the payload data valid flag set to true the 
selected message buffer shall be one of these. 
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 If the set of candidate transmit message buffers is empty, no buffer will become the selected transmit 
buffer. 

13.3.2.7.5 Selected receive buffer identification 

In case that more than one message buffer is member of the set of candidate receive message buffers, the 
CHI has to select one specific message buffer out of this set. This selection process is implementation 
dependent, but has to meet all of the following requirements. 

 The selection process has to be deterministic so that the host can predict the result. 

 If there is at least one candidate receive message buffer there shall be a selected receive message 
buffer. 

 The selected receive message buffer shall be one of the candidate receive message buffers. 

 If the set of candidate receive message buffers is empty, no buffer will become the selected receive 
buffer. 

13.3.2.7.6 Active message buffer identification 

The active message buffer is determined according to the following rules. 

 If there is a selected transmit message buffer then the active message buffer is the selected transmit 
message buffer. 

 If there is no selected transmit message buffer but there is a selected receive message buffer the active 
message buffer is the selected receive message buffer. 

 If there is neither a selected transmit message buffer nor a selected receive message buffer then there is 
no active message buffer. 

Depending on the value of the type indication the active message buffer will be called "active transmit 
message buffer" or "active receive message buffer" in the following subclauses. 

For a given channel there can be at most one active message buffer at a time - independent of its type. 

13.3.2.8 Message transmission 

13.3.2.8.1 General concept 

Message transmission is primarily determined by the concept of the transmission slot assignment list (see 
13.3.2.3). Transmit message buffers provide the information (e.g. payload data) which shall be transmitted but 
in principle transmission could take place without a transmit buffer being configured. 

13.3.2.8.2 Transmit buffer configuration 

A transmit buffer shall be configured for a transmission based on the channel identifier and the slot 
assignment information describing in which slot the transmission shall occur. 

For frames transmitted in the static segment, the following channel configuration shall be supported: 

 configured for channel A; 

 configured for channel B; 

 for dual channel devices, configured for channel A and for channel B. 
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For frames transmitted in the dynamic segment, the following channel configurations shall be supported: 

 configured for channel A; 

 configured for channel B. 

It shall be possible to configure a transmit buffer for a single slot or for a set of slots sharing the same slot 
identifier in a configurable set of communication cycles. 

The configuration of the set of communication cycles shall support, at a minimum, the ability to define sets of 
communication cycles which equal the sets which can be defined using a Cycle_Repetition and a 
Cycle_Offset to determine the configuration: 

 The transmit buffer is configured for a transmission slot if vCycleCounter mod Cycle_Repetition = 
Cycle_Offset 

with 

 Cycle_Repetition selected from the set of {1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 50, 64}; 

 Cycle_Offset selected from the set {0 … 63} with Cycle_Offset < Cycle_Repetition. 

In case the CHI allows that multiple buffers are configured for the same slot the CHI has to select a unique 
buffer for transmission in a deterministic way which is predictable by the host (see 13.3.2.6.5). 

Each transmit buffer is associated with a payload data valid flag and a transmission mode indicator. 

The payload data valid flag denotes whether the message contained in the transmit buffer is valid or not. 

For each transmit buffer the CHI shall ensure that the protocol engine either 

 is provided with a consistent set of valid message data from the transmit buffer, or 

 receives an indication that a consistent read of message data is not possible or that the transmit buffer 
contains no valid message (i.e. when the payload data valid flag is set to false). 

The CHI shall support at least two modes, which determine how the payload data valid flag shall be updated 
after a transmission. 

 Single shot transmission mode:  
When payload data has been provided by the host and marked as valid by setting the payload data valid 
flag to true, the data remains valid until the data has been transmitted (i.e., the protocol engine returns 
vSS!FrameSent as true). After the transmission, the CHI shall automatically invalidate the data by setting 
the payload data valid flag to false (i.e., the payload data is transmitted exactly once147) as the result of 
the buffer update by the host). 

 Continuous transmission mode:  
When payload data has been provided by the host and marked as valid by setting the payload data valid 
flag to true, the data remains valid until the host explicitly marks the data as invalid by setting the payload 
data valid flag to false (i.e., the payload data is transmitted repeatedly until the host invalidates the buffer 
data). 

                                                      

147) In the static segment null frames may be transmitted when the payload data valid flag is false. 
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13.3.2.8.3 Transmit buffer identification for message retrieval 

The protocol engine interacts with the controller host interface by importing the message data provided by the 
CHI at the start of each slot according to the media access control processes defined in clause 9. The protocol 
engine imports data elements from the CHI as defined in 9.3. 

In response to each request the CHI shall perform the following steps. 

a) The CHI shall check whether the slot is assigned to the node on the relevant channel by querying the 
transmission slot assignment list for the relevant channel using vCycleCounter and the channel-specific 
value for vSlotCounter. 

b) If the slot is not assigned to the node then the CHI shall return vTCHI with vTCHI!Assignment set to 
UNASSIGNED else vTCHI!Assignment shall be set to ASSIGNED and the subsequent steps shall be 
executed. 

c) vTCHI!HeaderCRC shall be set to the value of the header CRC retrieved from the transmission slot 
assignment list148). 

d) The active transmit message buffer shall be identified according to the process described in 13.3.2.7. 

e) If there is no active transmit message buffer then the CHI shall signal to the protocol engine that the 
communication slot is assigned but without any message data available by setting 
vTCHI!TxMessageAvailable to false and returning vTCHI. 

f) If there is an active transmit message buffer then a consistent read of its data shall be attempted. 

g) If a consistent read is not possible (i.e., if the buffer is locked149)), or the payload data valid flag is set to 
false, then the CHI shall signal to the protocol engine that the communication slot is assigned but without 
any message data available by setting vTCHI!TxMessageAvailable to false and returning vTCHI. 

h) If a consistent read is possible, the CHI shall signal to the protocol engine that the message data is 
available for this communication slot by setting 

 vTCHI!TxMessageAvailable to true, 

 vTCHI!PPIndicator to the value retrieved from the transmit buffer configuration data as defined by the 
message ID filtering service in 13.3.3.3 and the network management service in 13.3.3.4, 

 vTCHI!Length to the length of the message MessageLength held in the corresponding transmit 
buffer, 

 vTCHI!Message to the message data from the transmit buffer  

and returning vTCHI. 

13.3.2.8.4 Transmit buffer status 

A message buffer configured for transmission shall be able to hold a snapshot of the following status 
information: 

                                                      

148) The header CRC information in the transmission slot assignment list may be derived dynamically from information in 
the transmit buffer configuration. 

149) See 13.3.2.6.5. In most circumstances a buffer could not be an active transmit message buffer if it is locked. It is 
possible, however, that the buffer is locked by the host after it has already been selected as the active transmit 
message buffer. 
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 a frame transmitted indicator that shall be set to true if a frame that was not a null frame was completely 
transmitted150). The CHI shall set the frame transmitted indicator to true if there was a complete frame 
transmission in the slot (vSS!FrameSent is true), and shall leave the frame transmitted indicator at its 
current value if there was not a complete frame transmission in the slot (vSS!FrameSent is false). The 
CHI shall provide a mechanism which allows the host to reset the frame transmitted indicator; 

 a syntax error flag that shall be set if a syntax error was observed in the transmission slot 
(vSS!SyntaxError set to true) or cleared if no syntax error was observed in the transmission slot 
(vSS!SyntaxError set to false); 

 a content error flag that shall be set if a content error was observed in the transmission slot 
(vSS!ContentError set to true) or cleared if no content error was observed in the transmission slot 
(vSS!ContentError set to false); 

 a slot boundary violation flag that shall be set if a slot boundary violation, i.e. channel active at the start or 
at the end of the slot, was observed in the transmission slot (vSS!BViolation set to true) or cleared if no 
slot boundary violation was observed in the transmission slot (vSS!BViolation set to false); 

 a transmission conflict flag that shall be set if a transmission conflict error was observed in the 
transmission slot (vSS!TxConflict set to true) or cleared if no transmission conflict error was observed in 
the transmission slot (vSS!TxConflict set to false); 

 a valid frame flag that shall reflect the status of the vSS!ValidFrame variable in the transmission slot 
status151).  

The slot status updated indicator shall be set to true by the CHI when the slot status has been updated. The 
CHI shall provide a mechanism that allows the host to reset this indicator. 

If a transmit buffer is configured for both channel A and channel B it shall be capable of storing the above 
listed status information separately for each channel, and it shall be possible to determine the corresponding 
channel for each set of status information. 

13.3.2.9 Message reception 

13.3.2.9.1 Receive buffer types 

Message reception operates on queued and / or non-queued receive buffers. A non-queued receive buffer is a 
data storage structure 

 for which the host has access to the data through a read operation, 

 for which the protocol engine has access to the data through a write operation, and 

 in which new values overwrite former values. 

Refer to subclauses 13.3.2.9.2 and 13.3.2.9.3 for the requirements on non-queued receive buffers. 

A queued receive buffer is a data storage structure 

 for which the host has access to the data through a read operation, 

                                                      

150) A frame is considered completely transmitted at the start of transmission of the FES. See the frame transmitted on A 
signal in Figure 55 for details. 

151) In most cases vSS!ValidFrame will be set to false if a transmit buffer was selected as the active buffer, but there are 
circumstances where it could be set to true even though a transmit buffer was selected (if, for example, transmission 
is prohibited because the MAC is in the KEYSLOTONLY mode or if the node is in the POC:normal passive state). 
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 for which the protocol engine has access to the data through a write operation, and 

 in which new values are queued behind former values. 

Refer to 13.3.2.11 for the requirements on queued receive buffers / FIFO's. 

13.3.2.9.2 Non-queued receive buffer configuration 

For each slot on each channel the protocol engine provides a tuple of values to the CHI consisting of a slot 
status vSS of the communication slot in the current communication cycle and, if a semantically valid frame 
was received in this communication slot on this channel, the contents vRF of the first semantically valid frame. 
Subclause 13.3.2.7 describes how a specific receive buffer is selected based on this tuple. 

In general, a receive buffer will be configured with the following: 

 a slot identifier configuration identifying a single slot identifier; 

 a channel configuration identifying a set of channels (A, B, or both A and B); 

 a cycle counter configuration identifying a set of communication cycles. 

It shall be possible to configure a receive buffer for a single slot or for a set of slots sharing the same slot 
identifier in a configurable set of communication cycles. 

The configuration of the set of communication cycles shall support, at a minimum, defining sets of 
communication cycles which equal the sets which can be defined using a Cycle_Repetition and a 
Cycle_Offset to determine the configuration: 

The receive buffer is configured for a reception slot if  

 vCycleCounter mod Cycle_Repetition = Cycle_Offset 

with 

 Cycle_Repetition selected from the set of {1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 50, 64} 

 Cycle_Offset selected from the set {0 … 63} with Cycle_Offset < Cycle_Repetition 

For frames received in the static segment, the following channel configuration shall be supported: 

 receive buffer configured for channel A; 

 receive buffer configured for channel B; 

 for dual channel devices, receive buffer configured for both channel A and channel B. In this case the CHI 
shall select among the information provided by the channel specific FSP processes of the protocol 
engine. If the protocol engine provides only a single valid frame, that frame should be stored in the buffer, 
regardless of which channel it was received on. If the protocol engine provides two valid frames (one from 
each channel), and only one of the frames is a non-null frame, the non-null frame should be stored in the 
buffer, regardless of which channel this non-null frame was received on. If the protocol engine provides 
two valid frames and both are non-null frames152) the receive buffer shall store the frame that was 
received on channel A153). 

                                                      

152) If both valid frames are null frames only the slot status from both channels is stored in the buffer. 

153) The preference for channel A is entirely arbitrary, serving only to define a deterministic behaviour. 
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Subclause 13.3.2.7 defines the requirements for resolving situations when more than one non-queued receive 
buffer can serve as a candidate buffer for a given slot / cycle / channel combination. This process can result in 
ambiguity in a case where one buffer is configured for channel A only (or channel B only, or channel A&B) 
while another buffer is configured for both channel A and channel B for the same (or an overlapping) slot / 
cycle combination. This specification makes no requirements on the buffer selection behaviour of an 
implementation for such configurations – the behaviour in these circumstances is implementation 
dependent154). 

For frames received in the dynamic segment, the following channel configurations shall be supported: 

 receive buffer configured for channel A; 

 receive buffer configured for channel B. 

For each receive buffer the CHI shall ensure that the host either 

 is provided with a consistent set of message data from the receive buffer, or 

 receives an indication that a consistent read of the message data is not possible. 

For each receive buffer the CHI shall ensure that the information provided by the protocol engine is written to 
the corresponding receive buffer either 

 consistently, i.e. perform a consistent write of its data as if in one indivisible operation, or 

 not at all. In this case the payload data valid flag shall be set to false, so the host can assess that receive 
buffer contents were lost.  

In case the CHI allows that multiple buffers are configured for the same slot the CHI has to select a unique 
buffer in a deterministic way which is predictable by the host (see 13.3.2.6.5). 

If for the same slot both a receive buffer and a transmit buffer are configured, by following the process 
described in 13.3.2.6.5 the CHI will ensure that the content of the active transmit buffer is provided to the 
protocol engine. In such a case the transmission has priority over the reception. 

Each receive buffer shall hold up to a buffer specific bound of two-byte words. 

For non-queued receive buffers this buffer specific bound may be set individually for each receive buffer within 
a node between 1 and cPayloadLengthMax. 

13.3.2.9.3 Non-queued receive buffer contents 

Each receive buffer shall contain slot status data as well as frame contents data. 

13.3.2.9.3.1 Slot status data 

A message buffer configured for reception shall be able to store a snapshot of the following slot status 
variables: 

 a valid frame flag that shall be set if a syntactically and semantically correct frame was received in the 
corresponding slot (vSS!ValidFrame set to true) and cleared if no valid frame was received 
(vSS!ValidFrame set to false); 

                                                      

154) The use of such a configuration is not recommended. 
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 a syntax error flag that shall be set if a syntax error was observed in the corresponding slot 
(vSS!SyntaxError set to true) or cleared if no syntax error was observed in the corresponding slot 
(vSS!SyntaxError set to false); 

 a content error flag that shall be set if a content error was observed in the corresponding slot 
(vSS!ContentError set to true) or cleared if no content error was observed in the corresponding slot 
(vSS!ContentError set to false); 

 a slot boundary violation flag that shall be set if a slot boundary violation, i.e. channel active at the start or 
at the end of the slot, was observed in the corresponding slot (vSS!BViolation set to true) or cleared if no 
slot boundary violation was observed in the corresponding slot (vSS!BViolation set to false); 

 a null frame indicator flag that shall be set according to the value of the vSS!NFIndicator status of the 
corresponding slot. If no valid frame was received the flag vSS!NFIndicator will be set to 0. This flag will 
only have a value of 1 if the slot contained a valid, non-null frame. 

The slot status updated indicator shall be set to true for the message buffer by the CHI when the slot status 
has been updated. The CHI shall provide a mechanism that allows the host to reset this indicator. 

If a receive buffer is configured for both channel A and channel B it has to be capable of storing the above 
listed status information separately for each channel, and it shall be possible to determine the corresponding 
channel for each set of status information. 

Table 9 lists all possible combinations of ValidFrame, SyntaxError, ContentError and BViolation for the static 
and the dynamic segment along with a set of interpretations concerning the number of syntactically155) and 
semantically156) valid frames received in a static or dynamic slot, respectively. 

                                                      

155) A frame is syntactically valid if it fulfils the decoding rules defined in 7.3.5 including the check for a valid header CRC 
and a valid frame CRC in accordance with the number of two-byte payload words as denoted in the header of the 
frame. 

156) A semantically valid frame is a syntactically valid frame that also fulfils a set of content related criteria. 
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Table 9 — Slot status interpretation 

Valid 
Frame 

Syntax 
Error 

Content 
Error 

BViolation Nothing 
was 

received 
(silence) 

One or more 
syntactically 
valid frames 

were 
received 

At least one 
semantically 
valid frame 

was 
received 

Additional 
activity and a 
semantically 
valid frame 

was received 

false false false false Yes No No - 

false true false false No No No - 

false false true false No Yes No - 

false true true false No Yes No - 

false false false true No No No - 

false true false true No No No - 

false false true true No Yes No - 

false true true true No Yes No - 

true false false false No Yes Yes No 

true true false false No Yes Yes Yesa  

true false true false No Yes Yes Yes 

true true true false No Yes Yes Yes 

true false false true No Yes Yes Yes 

true true false true No Yes Yes Yes 

true false true true No Yes Yes Yes 

true true true true No Yes Yes Yes 

a The syntax error indication may be caused by additional activity, but it could also be caused by a decoding error in the second bit 
of the FES of a frame otherwise free of decoding errors. In the latter case, there may or may not be additional activity. 

 

13.3.2.9.3.2 Frame contents data 

A message buffer configured for reception shall be able to store a snapshot of the following frame contents 
variables at the end of the communication slot if a valid frame was received in the slot (vSS!ValidFrame is 
equal to true) and the frame contained valid payload data (vRF!Header!NFIndicator is equal to one)157) and 
the buffer was the active message buffer: 

 the reserved bit vRF!Header!Reserved; 

 the frame ID vRF!Header!FrameID; 

 the cycle counter vRF!Header!CycleCount; 

 the length field vRF!Header!Length; 

 the header CRC vRF!Header!HeaderCRC; 

 the payload preamble indicator vRF!Header!PPIndicator; 

                                                      

157) The reception of a null frame should not cause a snapshot of the frame contents data to be stored in the buffer. 
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 a flag that indicates that the buffer has been updated at some point during operation. This flag should be 
set to zero at buffer configuration, and be set to one when the buffer is updated as a result of the 
reception of a valid, non-null frame. Note that this behaviour could be achieved by simply copying the 
vRF!Header!NFIndicator flag whenever the vRF structure is passed to the CHI from the protocol engine; 

 the sync frame indicator vRF!Header!SyFIndicator; 

 the startup frame indicator vRF!Header!SuFIndicator; 

 vRF!Header!Length number of two-byte payload data words from vRF!Payload, if vRF!Header!Length 
does not exceed the buffer length BufferLength of the receive message buffer; 

 BufferLength number of two-byte payload data words from vRF!Payload, if vRF!Header!Length exceeds 
the buffer length BufferLength of the receive message buffer158); 

 if a receive buffer is configured for both channel A and channel B it shall also store the channel indicator 
vRF!Channel allowing the determination of the source of the frame contents data stored in the buffer. 

An exception to the normally required behaviour exists during the first slot of the first cycle of operation of a 
TT-E coldstart node. Due to the short time between availability of information on the current cycle count and 
the start of the first cycle of operation it may not be possible for an implementation to complete a search of the 
entire set of buffers during the first slot. As a result, it may be possible that even though a buffer may be 
configured that an implementation may not be aware of this in time to behave as described in this part of 
ISO 17458. As a result, a specific exception is made for the first slot of the first cycle after a TT-E coldstart 
node's transition from the POC:external startup state to the POC:normal active state - such a node is allowed, 
but not required, to update the frame contents data for a receive buffer for this slot. 

13.3.2.10 Non-queued message buffer status update 

For a given channel the protocol engine makes the slot status vSS available to the CHI at the end of each 
slot159).  

In case that there is an active message buffer available for the given channel the CHI shall copy a snapshot of 
the relevant vSS status information into the status data of the active message buffer (see subclauses 
13.3.2.8.4 and 13.3.2.9.3.1). 

The active message buffer is available for the status update when  

 the active message buffer has been identified at the start of the slot  

AND 

 the host did not reconfigure the active message buffer between the time of the identification of the active 
message buffer and the point in time the status update should occur 

AND 

 the active message buffer is not locked at the time the status update should occur (see 13.3.2.6.5) 

AND in case of an active transmit message buffer 

 there has been no write access by the host to the message buffer between the time the payload is 
provided to the protocol engine and the point in time at which the status update should occur. 

                                                      

158) The host can assess such a truncation through the data element vRF!Header!Length. 
159) During the startup phase no buffer update will take place. 



BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

© ISO 2013 – All rights reserved 257 
 

If an active message buffer is configured for both channels, only the portion of the status relevant for the 
channel(s) for which the active message buffer has been identified will be updated160). 

In case there is no active message buffer available for the given channel at the time of the slot status update 
no non-queued message buffer will be updated with status information. 

An exception to the normally required behaviour exists during the first slot of the first cycle of operation of a 
TT-E coldstart node. Due to the short time between availability of information on the current cycle count and 
the start of the first cycle of operation it may not be possible for an implementation to complete a search of the 
entire set of buffers during the first slot. As a result, it may be possible that even though a buffer may be 
configured that an implementation may not be aware of this in time to behave as described in this part of 
ISO 17458. As a result, a specific exception is made for the first slot of the first cycle after a TT-E coldstart 
node's transition from the POC:external startup state to the POC:normal active state - such a node is allowed, 
but not required, to update the frame contents data for a receive buffer for this slot. 

13.3.2.11 General concept 

13.3.2.11.1 The concept of queued receive buffers 

Queued receive buffers, also referred to as FIFO buffers, are a class of receive buffer that are capable of 
storing status information and payload data for more than one frame. Information is placed into the FIFO by 
the CHI and is removed from the FIFO by the host. The FIFO represents a queue, i.e., it is possible that 
multiple messages go into the FIFO before any of the messages are removed by the host, and it is possible 
that the host reads multiple messages that have already been previously placed in the FIFO even though no 
additional messages have been placed into the FIFO. 

The FlexRay FIFO preserves the order of the messages which are placed into the FIFO - messages are 
removed from the FIFO in the same order they are placed into the FIFO (i.e., it has a "First In First Out" 
behaviour). Refer to 13.3.2.11.4 for additional details. 

When the host removes a message from the FIFO the removal frees up FIFO resources that can be used to 
store additional messages in the FIFO. As long as the host removes the entries from the FIFO often enough 
that the FIFO does not fill up, all messages that should go into the FIFO are made available to the host161). 

13.3.2.11.2 Basic FIFO behaviour 

13.3.2.11.2.1 Design of a FIFO buffer 

A FIFO buffer consists of a number of entries, each of which is capable of storing information related to the 
reception of a frame. Status variables and frame contents data are only stored in a FIFO buffer when the 
admittance criteria are passed (see 13.3.2.11.3) and the FIFO buffer is selected (see 13.3.2.11.2.2).  

Unlike non-queued receive buffers, FIFO buffers have no requirement to store slot status information for a slot 
if no valid frame was received. 

                                                      

160) Under certain configurations this could result in only one of the two sets of channel-specific status information being 
updated. This could happen, for example, if the configuration allows a buffer configured for both channels to be 
selected as the active buffer on one channel and not the active buffer on the other channel. Since there is only one 
slot status updated flag for a buffer, the host would not be able to determine that such a "half update" took place. As 
a result, configurations in which this could occur should be avoided. 

161) If the host does not remove the messages from the FIFO often enough eventually the FIFO will reach its limits and 
an overrun will occur. The behaviour of the FIFO in this case is implementation dependent. 
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A FIFO buffer shall be able to store a snapshot of the following slot status variables when a frame is admitted 
into the FIFO: 

 a syntax error flag that shall be set if a syntax error was observed in the corresponding slot 
(vSS!SyntaxError set to true) or cleared if no syntax error was observed in the corresponding  slot 
(vSS!SyntaxError set to false); 

 a content error flag that shall be set if a content error was observed in the corresponding slot 
(vSS!ContentError set to true) or cleared if no content error was observed in the corresponding slot 
(vSS!ContentError set to false); 

 a slot boundary violation flag that shall be set if a slot boundary violation, i.e. channel active at the start or 
at the end of the slot, was observed in the corresponding slot (vSS!BViolation set to true) or cleared if no 
slot boundary violation was observed in the corresponding slot (vSS!BViolation set to false); 

 a null frame indicator flag that shall be set according to the value of the vSS!NFIndicator status of the 
corresponding slot. If no valid frame was received the flag vSS!NFIndicator will be set to 0. This flag will 
only have a value of 1 if the slot contained a valid, non-null frame. 

A FIFO buffer shall be able to store a snapshot of the following frame contents variables when a frame is 
admitted into the FIFO: 

 the reserved bit vRF!Header!Reserved; 

 the frame ID vRF!Header!FrameID; 

 the cycle counter vRF!Header!CycleCount; 

 the length field vRF!Header!Length; 

 the header CRC vRF!Header!HeaderCRC; 

 the payload preamble indicator vRF!Header!PPIndicator; 

 The sync frame indicator vRF!Header!SyFIndicator; 

 the startup frame indicator vRF!Header!SuFIndicator; 

 vRF!Header!Length number of two-byte payload data words from vRF!Payload, if vRF!Header!Length 
does not exceed the width of the selected FIFO buffer (see 13.3.2.11.4); 

 a number of two-byte words equal to the width of the selected FIFO buffer from vRF!Payload, if 
vRF!Header!Length exceeds the width of the selected FIFO buffer; 

 if a FIFO may be configured to admit frames from both channel A and channel B it shall be capable of 
storing the channel indicator vRF!Channel allowing the determination of the source of the frame contents 
data stored in a FIFO entry. 

Unlike non-queued receive buffers, FIFO buffers have no requirement to store slot status information for a slot 
if no valid frame was received. 

For each FIFO buffer entry the CHI shall ensure that the host either 

 is provided with a consistent set of message data from the receive buffer, or 

 receives an indication that a consistent read of the message data is not possible. 
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For each FIFO buffer entry the CHI shall ensure that the data provided by the protocol engine is written to the 
corresponding FIFO buffer either 

 consistently, i.e. perform a consistent write of its data in one indivisible operation, or 

 not at all. In this case a flag shall be provided through which the host can assess that receive buffer 
contents were lost. 

13.3.2.11.2.2 Admittance into a FIFO 

A FIFO buffer has a set of admittance criteria (that determines when the CHI puts frame status and payload 
data from the protocol engine into the FIFO). When a frame matches all of the admittance criteria (see 
13.3.2.11.3) it is placed into the FIFO. 

A frame is only considered for admittance into a FIFO if no match for the frame is found within the configured 
non-queued receive buffers (i.e., the FIFO's have lower priority than the non-queued receive buffers described 
in 13.3.2.9.2). 

If the CHI supports multiple FIFO's and if the admittance criteria for the FIFO's are configurable such that a 
single frame can meet the admittance criteria of more than one FIFO the CHI shall select a unique FIFO buffer 
in a deterministic, implementation dependent manner. 

The host shall have read access to admittance criteria independent of the protocol state. 

The host shall have write access to the admittance criteria in the POC:config state. 

Enabling and disabling the write access to the admittance criteria during POC:normal active state and 
POC:normal passive state shall only be possible in the POC:config state. 

Host write access to the admittance criteria shall be possible in POC:normal active state and in POC:normal 
passive state, if this was explicitly enabled during POC:config state. 

When the host is changing the set of admittance criteria in the POC:normal active state or in the POC:normal 
passive state, the CHI shall prevent that an inconsistent set of admittance criteria (i.e., the changes are 
incomplete) is applied. 

After changing the admittance criteria in the POC:normal active state or POC:normal passive state, the CHI 
shall continue to provide host access to the existing entries in the FIFO. New entries shall be placed into the 
FIFO according to the new admittance criteria. 

An exception to the normally required behaviour exists during the first slot of the first cycle of operation of a 
TT-E coldstart node. Due to the short time between availability of information on the current cycle count and 
the start of the first cycle of operation it may not be possible for an implementation to complete a search of the 
entire set of non-queued buffers during the first slot. As a result, it may be possible that even though a non-
queued buffer is configured that an implementation may not be aware of this in time to behave as described in 
this part of ISO 17458. Further, it may not be possible for an implementation that implements the majority of 
the FIFO admittance checks prior to the start of a slot to complete all checks in time to process a frame 
received in the first slot of operation. As a result, a specific exception is made for the first slot of the first cycle 
after a TT-E coldstart node's transition from the POC:external startup state to the POC:normal active state - 
such a node is allowed, but not required, to consider a received frame for admittance into a FIFO buffer. If an 
implementation does consider a frame for admission it shall meet all of the requirements described in this 
subclause, specifically, that there be no match for the frame within the configured non-queued receive 
buffers 162). 

                                                      

162) As a result, an implementation that is not able to search all non-queued buffers is not allowed to consider 
the frame for admittance into a FIFO buffer. 
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13.3.2.11.2.3 Reading and removal from a FIFO 

The CHI shall provide a method to allow the host to read the slot status data and frame contents data stored 
in the first (oldest) FIFO entry. In addition, the CHI shall provide a mechanism to allow the host to remove the 
first entry from the FIFO without requiring the host to read the entire FIFO entry. 

It shall be possible for the host to read any portion of the slot status data and / or the frame contents data of 
the first entry in the FIFO and then make a decision as to whether or not to read the remaining data in the 
FIFO entry and still have access to the remaining data, i.e., it is not acceptable for a read of any portion of the 
data alone to cause data to be lost163). 

It shall be possible for the host to read information out of the FIFO (and remove messages from the FIFO) at 
that same time that other frames are being placed into the FIFO. 

Upon a transition from either the POC:normal active or POC:normal passive state to either the POC:halt or 
POC:ready state the CHI shall continue to provide host access to the FIFO buffer entries that it would have 
provided had the POC remained in the POC:normal active or POC:normal passive states. 

The behaviour of the CHI upon attempted host access to queued buffer status or payload data that has never 
been updated is implementation dependent. It is required, however, that the access to such data does not 
give the appearance that data was received when such a reception did not actually take place. 

13.3.2.11.3 FIFO admittance criteria 

13.3.2.11.3.1 Overview 

An implementation shall be capable of determining which frames will be placed into a FIFO structure. The 
decision as to whether or not a frame is placed into a FIFO buffer is based on a series of five admittance 
criteria: 

 FIFO frame validity admittance criteria; 

 FIFO channel admittance criteria; 

 FIFO frame identifier admittance criteria; 

 FIFO cycle counter admittance criteria; 

 FIFO message identifier admittance criteria. 

Each received frame for which there is no active non-queued buffer is a candidate for admission into a FIFO 
received buffer164). Each candidate frame is checked against the FIFO admittance criteria to determine if is 
placed into a FIFO receive buffer. 

A frame shall pass all five of the admittance criteria in order to be placed into a FIFO buffer - if one or more of 
the admittance criteria fail the frame will not be placed into a FIFO buffer. 

An implementation shall support the admittance criteria (and configuration of the admittance criteria) as 
described in the following subclauses. 

                                                      

163) In this context being "lost" is different from being removed from the FIFO - depending on the implementation, it may 
be possible to remove an entry from the FIFO without the data being lost. 

164) An interesting situation can arise if a non-queued buffer is configured to receive a frame on both channels, and valid 
frames actually occur on both channels. In this case, even though the payload information for only one of the frames 
can be stored in the receive buffer (see 13.3.2.9.2), both frames actually have an active non-queued buffer (for 
example, the active buffer will store slot status information affected by the frames on both channels). As a result, 
neither frame would be a candidate for admission into a FIFO receive buffer. 
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13.3.2.11.3.2 FIFO frame validity admittance criteria 

An implementation shall be capable of admitting or not admitting a frame into the FIFO based on the validity of 
the frame. In addition, an implementation shall be capable of being configured to admit or not admit valid null 
frames into the FIFO. Specifically, the frame validity admittance criteria shall have a single Boolean 
configuration, AdmitNullFrame. 

The frame validity admittance criteria shall have the following behaviour. 

 If AdmitNullFrame = false,  
then all valid non-null frames (i.e., frames that cause an FSP process to generate an 'update vRF on A in 
CHI' or 'update vRF on B in CHI' - refer to Figure 118) shall be considered to pass the FIFO frame validity 
admittance criteria. All other frames (or other activity) shall be considered to fail the frame validity 
admittance criteria. 

 If AdmitNullFrame = true,  
then all valid frames (vSS!ValidFrame is equal to true) shall be considered to pass the FIFO frame validity 
admittance criteria165). All other frames (or other activity) shall be considered to fail the frame validity 
admittance criteria. 

13.3.2.11.3.3 FIFO channel admittance criteria 

An implementation shall be capable of being configured to admit or not admit a frame into the FIFO based on 
the channel on which the frame was received. Specifically, an implementation shall be capable of configuring 
the FIFO channel admittance criteria such that a frame shall be considered to pass these admittance criteria 

 only if the frame was received on Channel A, or 

 only if the frame was received on Channel B, or 

 regardless of whether the frame was received on Channel A or Channel B166).  

If the FIFO channel admittance criteria is configured for the last option (i.e., to admit frames regardless of 
channel), and for a given slot frames are received on both channel A and channel B, and both frames pass all 
of the other admittance criteria, then both frames shall be accepted into a FIFO structure167). 

13.3.2.11.3.4 FIFO frame identifier admittance criteria 

An implementation shall be capable of being configured to admit or not admit a frame into the FIFO based on 
the Frame ID168) of the received frame. Specifically, the FIFO frame identifier admittance criteria shall be 
considered to be passed only if the received frame identifier belongs to a configurable set of frame identifiers 
referred to as the FIFO frame identifier set. If the received frame identifier is not a member of the FIFO frame 
identifier set the FIFO frame identifier admittance criteria shall be considered to be failed. 

                                                      

165) These criteria include all frames that would be admitted when AdmitNullFrame = false, but also include valid null 
frames. 

166) It is required that dual channel implementations be able to be configured to support the reception of frames on either 
channel A or channel B into some FIFO structure, but if more than one FIFO structure is available, then it is not 
necessary that frames from channel A and channel B be received into the same FIFO structure. See 13.3.2.11.4 for 
further information. 

167) The required behaviour of the FIFO differs from the optional behaviour of receive buffers in the static segment 
defined in 13.3.2.9.2. If the admittance criteria is set for both channel A and channel B, then both frames, rather than 
just the first valid non-null frame, shall be entered into a FIFO structure. 

168) This admittance criterion is actually based on the current value of the slot counter at the time the frame is received 
rather than on the Frame ID received in the frame. Since the frame validity admittance criteria will only admit valid 
frames into the FIFO, the only frames that could be admitted in the FIFO are those whose received frame identifier 
matches the current slot counter. The term frame identifier is used in this subclause for clarity only - strictly speaking, 
the implementation would be based on the slot counter at the time of frame reception. 
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At a minimum, the FIFO frame identifier set shall be capable of being configured to any set that could be 
configured with the following abstract definition169). 

Define four parameters, Range1min, Range1max, Range2min, and Range2max, each configurable in the range 
of {0 … cSlotIDMax}. The FIFO frame identifier set is the set of all frame identifiers Frame ID in the range  
{1 … cSlotIDMax} such that 

 Range1min <= Frame ID <= Range1max 

or 

 Range2min <= Frame ID <= Range2max 

NOTE The individual ranges identified above can cross the boundary between the static and dynamic segment, i.e., 
Range1min could be an identifier within the static segment and Range1max could be an identifier within the dynamic 
segment. The FIFO frame identifier definition above applies even if Frame ID lies in a different segment than the minimum 
or maximum value of the range configuration. 

13.3.2.11.3.5 FIFO cycle counter admittance criteria 

An implementation shall be capable of being configured to admit or not admit a frame into the FIFO based on 
the cycle counter value at the time the frame is received. Specifically, the FIFO cycle counter admittance 
criteria shall be considered to be passed only if the cycle counter value when the frame was received belongs 
to a configurable set of cycle counter values referred to as the FIFO cycle counter set. If the cycle counter 
when the frame was received is not a member of the FIFO cycle counter value set the FIFO cycle counter 
value admittance criteria shall be considered to be failed. 

At a minimum, the FIFO cycle counter set shall be capable of being configured to any set that could be 
configured with the following abstract definition170). 

Define two parameters, Cycle_Repetition and Cycle_Offset, with: 

 Cycle_Repetition selected from the set of {1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 50, 64}; 

 Cycle_Offset selected from the set {0 .. 63}; 

 Cycle_Offset < Cycle_Repetition; 

The FIFO cycle counter value set is the set of all cycle counter values Cycle_Counter in the range of {0 .. 63} 
such that vCycleCounter mod Cycle_Repetition = Cycle_Offset 

13.3.2.11.3.6 Message identifier admittance criteria 

An implementation shall be capable of being configured to admit or not admit a frame into the FIFO based on 
the value of the optional Message ID that can be present in frames received in the dynamic segment. 

Message identifier admittance criteria shall have the following characteristics. 

                                                      

169) An implementation does not need to explicitly support the parameters in the abstract definition, but needs to be able 
to generate all of the FIFO frame identifier sets that could be generated by the abstract definition. 

170) An implementation does not need to explicitly support the parameters in the abstract definition, but needs to be able 
to generate all of the FIFO cycle counter sets that could be generated by the abstract definition. 
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The message identifier admittance criteria shall have three configurable parameters171): 

 MsgIDMask, an integer in the range of {0 … 65 535}, which determines the bitwise AND mask value for 
the admittance criteria; 

 MsgIDMatch, an integer in the range of {0 … 65 535}, which determines the bitwise comparison value for 
the admittance criteria; 

 AdmitWithoutMessageID, a Boolean configuration which determines whether or not frames received in 
the dynamic segment that don't contain a message ID will be admitted into the FIFO. 

The message identifier admittance criteria shall have the following behaviour: 

 If the frame was received in the static segment the frame is considered to have passed the message 
identifier admittance criteria, or 

 If the frame was received in the dynamic segment and does not contain a message identifier (i.e., the 
payload preamble indicator of the frame is set to zero), the behaviour depends on the 
AdmitWithoutMessageID configuration of the FIFO. 

 If AdmitWithoutMessageID = false the frame is considered to fail the message identifier admittance 
criteria. 

 If AdmitWithoutMessageID = true the frame is considered to pass the message identifier admittance 
criteria. 

or 

 If the frame was received in the dynamic segment and does contain a message identifier (i.e., the 
payload preamble indicator of the frame is set to one), the admittance depends on the value of the 
message identifier, MessageID, and the FIFO configurations MsgIDMask and MsgIDMatch. Specifically, 
the frame is considered to pass the message identifier admittance criteria if 

( MessageID & MsgIDMask ) = MsgIDMatch 
 

otherwise the frame is considered to fail the message identifier admittance criteria. Here the "&" symbol 
represents a bitwise AND of the binary representation of the values of MessageID and MsgIDMask172). 

13.3.2.11.4 FIFO performance requirements 

An implementation shall provide at least one FIFO receive buffer structure. 

A FIFO receive buffer structure shall have a depth of at least eight entries (i.e., in the absence of entries being 
removed from the FIFO by the host, the FIFO shall be capable of storing at least eight frames from the 
protocol engine without any loss or overwrite of frame contents data or slot status data). 

Each entry in a FIFO receive structure also has a "width", i.e., each entry in a FIFO shall be capable of storing 
a number of bytes of frame payload data greater than or equal to the implementation's capability to store 
payload data for non-queued receive buffers. If a valid message is received whose payload is longer than the 

                                                      

171) Unlike other FIFO admittance criteria, an implementation shall explicitly support the specified parameters of the 
message ID admittance criteria, i.e., it is not acceptable to support other means of configuring these admittance 
criteria. 

172) For example, if MsgIDMask = 3 855 (0x0F0F) and MsgIDMatch = 1 537 (0x0601), then a frame with a MessageID of 
38 641 (0x96F1) would pass the admittance criteria, but a frame with MessageID 1 538 (0x0602) would fail the 
criteria. Note that a configuration with MsgIDMask = 0 and MsgIDMatch = 0 would pass this criteria for any frame 
regardless of message identifier. 
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configured width of a FIFO entry, or is longer than the implementation's maximum width for FIFO's, the 
implementation shall store the message's first payload bytes up to the configured or maximum length in the 
FIFO entry. 

At a minimum an implementation shall provide the capability to store at least eight entries with the width 
defined above (i.e., the depth and width requirements shall be met simultaneously). 

An implementation that supports two channels shall be capable of receiving frames from each channel into 
some FIFO structure173). 

The requirements on buffer depth and width, FIFO admittance criteria, etc. are channel independent (i.e., the 
FIFO's of an implementation need to be able to support the indicated number of frames entirely on channel A, 
entirely on channel B, or any mixture of channel A and B174).  

NOTE there is no requirement that an implementation needs to support the indicated number of messages on both 
channel A and Channel B at the same time, or that the FIFO admittance criteria are able to be independently set for 
Channel A and Channel B. 

A dual channel implementation shall be able to support simultaneous reception on channel A and B (i.e., if 
frames appear on both channels at the same time, or with arbitrary overlap, and both frames meet the 
admittance criteria for the FIFO, then both shall be entered into some FIFO receive buffer structure). 

An implementation shall place frames into a FIFO in the order that they were received (i.e., a frame that was 
received earlier would be removed from a FIFO before a frame that was received later). There is no 
requirement for an implementation to maintain the relative order of frames received into different FIFO's, but it 
is required that a FIFO preserve the relative order of all messages received into the same FIFO. 

13.3.2.11.5 FIFO status information 

The following information on the status of a FIFO receive buffer structure shall be provided in the CHI. 

 The number of occupied entries currently in the FIFO 

 An overrun indicator is set if a FIFO overrun condition has occurred. An overrun occurs when a frame 
matches all of the FIFO admittance criteria but the FIFO is not capable of increasing the total number of 
entries in the FIFO. The overrun indicator shall remain set until explicitly cleared by the host. The 
behaviour of the FIFO upon the occurrence of an overflow condition, and in recovery from an overflow 
condition, is implementation dependent. 

 Information that allows the host to determine how much of the FIFO remains available to accept 
additional information. The form of this information depends on the structure of the FIFO and is 
implementation dependent175). 

In addition to the previous status information, an implementation shall provide the ability to notify the host via 
an interrupt request when the available resources of the FIFO have fallen below a configurable level. 

The nature of the configurability is dependent on the structure of the FIFO and is implementation 
dependent176). 

                                                      

173) The intention is to allow implementations that dedicate separate FIFO's for each channel as well as implementations 
that support a single FIFO that can receive messages from either channel. 

174) For example, a dual channel implementation shall be able support the reception of eight frames from channel A 
alone, or eight frames from channel B alone, seven from channel A and one from channel B, six from channel A and 
two from channel B, or any combination that adds up to eight frames total. 

175) For fixed size FIFO's with a fixed number of entries the number of messages currently in the FIFO would meet this 
requirement. For FIFO's with variable size structures some other implementation dependent mechanism to determine 
the amount of the FIFO resources available shall be provided. 

176) For example, a FIFO that offers a fixed number of fixed size entries might be configurable based on the number of 
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13.3.3 CHI Services 

13.3.3.1 Macrotick timer service 

The CHI shall provide at least two absolute timers capable of notifying the host at expiration. 

Each of the required timers shall, at a minimum, be capable of being configured with the following expiration 
criteria. 

 To expire at an absolute time in terms of cycle count and macrotick, i.e. the timer would expire at a 
configurable macrotick in a configurable communication cycle, and 

 To expire at a configurable macrotick only (i.e., the timer would expire at a configurable macrotick 
independent of cycle count) 

In addition, each of the required timers shall, at a minimum, be capable of supporting the following two modes 
of operation. 

 A non-repetitive mode of operation where the timer will expire once the configured expiration criteria 
occurs and will not expire again until restarted or reconfigured by the host, and 

 A repetitive mode of operation where the timer will expire every time the configured expiration criteria 
occurs (i.e., the timer can expire multiple times without further interaction from the host). 

It shall be possible to configure and activate a timer when the protocol is in either the POC:normal active state 
or the POC:normal passive state177). All absolute timers shall be deactivated when the protocol leaves the 
POC:normal active state or the POC:normal passive state apart from transitions between the POC:normal 
active state and the POC:normal passive state. It shall also be possible for the host to deactivate an absolute 
timer in any state that allows the timer to be activated. Once deactivated, a timer shall be explicitly activated 
again by the host before it can expire again. 

13.3.3.2 Interrupt service 

The interrupt service provides a set of configurable interrupt requests to the host based on a set of interrupt 
sources reflecting events that occur in the protocol engine or the CHI. 

At a minimum, an implementation shall provide the following interrupt sources. 

 Each timer (as described in 13.3.3.1) provided by an implementation shall be able to act as an interrupt 
source with the event being the expiration of the timer. 

 The FlexRay cycle shall act as an interrupt source with the event being the start of a FlexRay cycle. This 
requirement is in addition to the previous timer requirement (i.e., it is not acceptable to meet this 
requirement through the use of a timer as specified in 13.3.3.1). 

 State transitions of the Protocol Operation Control process shall act as an interrupt source. This source 
shall only signal an event whenever the POC transitions to the POC:halt, POC:ready, POC:normal active 
or POC:normal passive states for any reason other than the processing of an IMMEDIATE_READY or 
FREEZE command. 

 Each FIFO structure shall act as an interrupt source with the event being a frame reception that causes 
the available resources of the FIFO structure fall below a configurable level (refer to 13.3.2.11.5). 

                                                                                                                                                                                  

entries in the FIFO. A FIFO based on variable size entries might be configurable based on the fraction of the storage 
space remaining in the FIFO. 

177) It is allowed, but not required, for an implementation to support configuration/activation of an absolute timer in states 
other than POC:normal active and POC:normal passive. 
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An implementation shall provide a mechanism that allows the events of interrupt sources to generate interrupt 
requests (i.e., maps interrupt source events to interrupt requests). In general, a single interrupt request is 
allowed to support more than one interrupt source, however at least one of the mandated absolute timers (see 
13.3.3.1) shall provide a dedicated interrupt request that is not shared with any other interrupt source. 

It shall be possible for the host to enable and disable the generation of interrupt requests for interrupt sources. 
When interrupt request generation is enabled for an interrupt source the event defined for the interrupt source 
shall cause the generation of a corresponding interrupt request. When interrupt request generation is disabled 
for an interrupt source the event defined for the interrupt source shall not cause the generation of a 
corresponding interrupt request. 

An implementation shall provide control of interrupt request generation with at least two levels. At the first 
level, it shall be possible for the host to individually control whether interrupt request generation is enabled or 
disabled for each interrupt source. At the second level, it shall be possible for the host to globally disable all 
interrupt request generation regardless of the individual interrupt request generation enabled / disabled status 
of each interrupt source. Specifically, if interrupt request generation is globally disabled no interrupt source will 
generate interrupt requests; if interrupt request generation is not globally disabled each interrupt source shall 
generate interrupt requests according to its individual interrupt request generation status. 

An implementation shall provide an interrupt status indication for each interrupt source. The interrupt status 
indication for an interrupt source shall be set when the interrupt source's event occurs178) and shall remain set 
until reset under control of the host. 

13.3.3.3 Message ID filtering service 

The message ID filtering service provides means for selecting receive buffers based on a message ID that 
may be exchanged in the first two bytes of the payload segment of selected frames within the dynamic 
segment that have the payload preamble indicator set to one in the header of the frame. 

To support this service the message buffer configuration data shall allow the host to configure the payload 
preamble indicator for each transmit buffer so that the host can configure whether the message data contains 
a message ID or not (refer to 13.3.2.6.2). 

Message ID filtering is required for at least one FIFO receive buffer structure as described in subclauses 
13.3.2.11.3.6 and 13.3.2.11.4. 

13.3.3.4 Network management service 

The network management service provides means for exchanging and processing network management data. 
This service supports high-level host-based network management protocols that provide cluster-wide 
coordination of shutdown decisions based on the actual application state. The network management service 
may also be used by applications to implement other functionality. 

Network management is performed by exchanging a network management vector in selected network 
management enabled frames within the static segment of the communication cycle that have the payload 
preamble indicator set to one in the header of the frame. The payload preamble indicator of the message 
buffer configuration data allows the host to configure whether or not a message contains a network 
management vector. 

Throughout each communication cycle the CHI shall maintain an accrued network management vector by 
applying a bit-wise OR between the current accrued network management vector and each 179) network 

                                                      

178) The interrupt status indication of an interrupt source is set whenever the corresponding event occurs irrespective of 
whether interrupt request generation is individually enabled for the interrupt source or whether interrupt request 
generation is globally disabled. 

179) Only valid frames reported to the CHI (via the vRF structures of the channel-specific FSP processes) are considered. 
If more than one frame occurs in a slot on a given channel only the first valid frame (i.e., the one reported in vRF) is 
considered. 
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management vector received in a valid frame on each channel (regardless of whether or not any receive 
buffer is configured to explicitly receive the valid frame)180).  

 If pNMVectorEarlyUpdate is set to false, the protocol status data shall contain a snapshot of the accrued 
network management vector that shall be updated no sooner than the end of the cycle and no later than 
the availability of the NIT status information or the availability of the payload data from the last static slot, 
whichever occurs later. The snapshot shall contain the value of the accrued network management vector 
at the end of the cycle, and shall include the effects of any reception that may have occurred in the last 
static slot. 

 If pNMVectorEarlyUpdate is set to true, the protocol status data shall contain a snapshot of the accrued 
network management vector that shall be updated no sooner than the end of the static segment and no 
later than the availability of the payload data from the last static slot. The snapshot shall contain the value 
of the accrued network management vector at the end of the static segment (i.e., shall include the effects 
of any reception that may have occurred in the last static slot). 

 These updates take place as long as the protocol is in either the POC:normal active state or the 
POC:normal passive state. 

 The accrued network management vector is set to zero at the beginning of each communication 
cycle181).  

 Following the completion of startup, the NM vector snapshot shall be set to all zeros prior to the first 
update of the NM vector snapshot (when this occurs depends on the configuration parameter 
pNMVectorEarlyUpdate). 

In addition to the capabilities provided above, it is also possible for implementers to provide additional types of 
Network Management Services, for example, providing direct (non-OR'd) access to the NM Vector data. 

                                                      

180) In this context, a frame is only considered valid if vSS!ValidFrame status is set to true when the protocol engine 
exports the slot status vSS to the CHI at the end of a slot or segment. For example, frames that are received in a slot 
which is also used for transmission shall not be accrued into the network management vector since such frames will 
have vSS!ValidFrame set to false when the slot status is exported to the CHI. 

181) Even though in some circumstances the snapshot of the NM vector might be presented to the CHI after the end of 
the cycle, it shall represent the status of the accrued NM vector from the previous cycle. As a result, the snapshot 
shall be taken before the vector is set to zero at the beginning of the subsequent cycle. 
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Annex A 
(normative) 

 
System parameters 

A.1 Protocol constants 

Table A.1 defines the Protocol constants. 

Table A.1 — Protocol constants 

Name Description Value 

cChannelIdleDelimiter Duration of the channel idle delimiter. 11 gdBit 

cClockDeviationMax Maximum clock frequency deviation, equivalent to 1500 ppm (1500 ppm = 
1500 / 1000000 = 0,0015). 

0,0015 

cCrcInit[A] Initialisation vector for the calculation of the frame CRC on channel A 
(hexadecimal). 

0xFEDCBA 

cCrcInit[B] Initialisation vector for the calculation of the frame CRC on channel B 
(hexadecimal). 

0xABCDEF 

cCrcPolynomial Frame CRC polynomial (hexadecimal). 0x5D6DCB 

cCrcSize Size of the frame CRC calculation register. 24 bits 

cCycleCountMax Maximum cycle counter value in any cluster. 63 

cdBSS Duration of the Byte Start Sequence. 2 gdBit 

cdCAS Duration of the logical low portion of the collision avoidance symbol (CAS) 
and media access test symbol (MTS). 

30 gdBit 

cdCASActionPointOffset Initialisation value of the CAS action point offset timer. 1 MT 

cdCASRxLowMin Lower limit of the CAS acceptance window. 29 gdBit 

cdCycleMax Maximum cycle length. 16 000 µs 

cdCycleStartTimeout Maximum allowed jitter between the 'external cycle start' from the time 
gateway source and the internal 'cycle start' of the time gateway sink. 

5 µT 

cdFES Duration of the Frame End Sequence. 2 gdBit 

cdFSS Duration of the Frame Start Sequence. 1 gdBit 

cdInternalRxDelayMax Maximum value of the implementation specific delay on the receive path of 
the decoder. 

4 samples a   

cdInternalRxDelayMin Minimum value of the implementation specific delay on the receive path of 
the decoder.  

1 sample a 

a This value is based on the experience of the semiconductor manufacturers. 
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Table A.1 — (continued) 

Name Description Value 

cdMaxMTNom b   Maximum duration of a nominal macrotick. An implementation shall be 
able to support nominal macrotick durations between cdMinMTNom and 
cdMaxMTNom. 

6 µs 

cdMinMTNom c   Minimum duration of a nominal macrotick. An implementation shall be able 
to support nominal macrotick durations between cdMinMTNom and 
cdMaxMTNom. 

1 µs 

cdStaggerDelay Delay used to stagger the deactivation of the TxD and TxEN outputs 
during CAS / MTS and WUP transmission to eliminate the possibility of 
brief glitches. The TxD output will remain LOW for cdStaggerDelay 
following the deactivation of TxEN. 

1 gdBit 

cdTSrcCycleOffset The delay between the cycle starts of the time gateway source and time 
gateway sink for a cluster operating in TT-E external sync mode. 

40 µT 

cdWakeupMaxCollision Number of continuous bit times at LOW during the idle phase of a WUS 
that will cause a sending node to detect a wakeup collision. 

5 gdBit 

cdWakeupTxActive Duration of the LOW phase of a transmitted wakeup symbol and the active 
(i.e., HIGH or LOW) phases of a transmitted WUDOP. 

6 µs 

cdWakeupTxIdle Duration of the idle phase between two low phases inside a wakeup 
pattern. 

18 µs 

cFrameThreshold Threshold used to differentiate noise from activity arising from a frame in 
the dynamic segment media access. Activity exceeding this threshold is 
assumed to have come from frame transmission as opposed to noise. 

80 gdBit 

cHCrcInit Initialisation vector for the calculation of the header CRC on channel A or 
channel B (hexadecimal). 

0x01A 

cHCrcPolynomial Header CRC polynomial (hexadecimal). 0x385 

cHCrcSize Size of header CRC calculation register. 11 bits 

cMicroPerMacroMin Minimum number of microticks per macrotick during the offset correction 
phase. 

20 µT 

cMicroPerMacroNomMin Minimum number of microticks in a nominal (uncorrected) macrotick. 40 µT 

cMicroPerMacroNomMax Maximum number of microticks in a nominal (uncorrected) macrotick. 240 µT 

cPayloadLengthMax Maximum length of the payload segment of a frame. 127 two-byte 
words 

cPropagationDelayMax Maximum allowable propagation delay arising from the physical layer and 
analogue effects inherent in the FlexRay CC's involved in the transmission 
and reception of a communication element. These are the delays that 
occur between the points labelled as TP1_FF and TP4_FF in Figure 110 of 
ISO 17458-4. 

2,5 µs 

cSamplesPerBit Number of samples taken in the determination of a bit value. 8 

cSlotIDMax Highest slot ID number. 2 047 

cStaticSlotIDMax Highest static slot ID number. 1 023 

b This parameter is only introduced to be able to define a minimum conformance class range that all implementations shall support. 
Note that this macrotick duration may not be achievable for all microtick durations - see B.4.5 for details. 

c This parameter is only introduced to be able to define a minimum conformance class range that all implementations shall support. 
Note that this macrotick duration may not be achievable for all bit rates or microtick durations - see B.2 and B.4.5 for details. 

 

http://dx.doi.org/10.3403/30253320U
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Table A.1 — (continued) 

Name Description Value 

cStrobeOffset Sample where bit strobing is performed (first sample of a bit is considered 
as sample 1). 

5 

cSyncFrameIDCountMax Maximum number of distinct sync frame identifiers that may be present in 
any cluster. 

15 

cVotingDelay Number of samples of delay between the RxD input and the majority voted 
output in the glitch-free case. 

(cVoting-
Samples -1) / 

2 

cVotingSamples Numbers of samples in the voting window used for majority voting of the 
RxD input. 

5 

 

A.2 Performance constants 

Table A.2 defines the performance constants. 

Table A.2 — Performance constants 

Name Description Value 

cdMaxOffsetCalculation Maximum time allowed for calculation of the offset correction value, 
measured from the end of the static segment. In some situations the offset 
correction calculation deadline is actually longer - see 12.6.2 for details. 

1 350 μT 

cdMaxRateCalculation Maximum time allowed for calculation of the rate correction value, 
measured from the end of the static segment. In some situations the rate 
correction calculation deadline is actually longer - see 12.6.3 for details. 

1 500 μT 
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Annex B 
(normative) 

 
Configuration constraints 

B.1 General 

This appendix specifies the configurable parameters of the FlexRay protocol. This appendix also identifies the 
configurable range of the parameters, and gives constraints on the values that the parameters may take on. 
All implementations that support a given parameter shall support at least the parameter range identified in this 
appendix. An implementation is allowed, however, to support a broader range of configuration values. 

Following functions are used for the configuration parameter calculation: 

 Function ceil(x) returns the nearest integer greater than or equal to x; 

 Function floor(x) returns the nearest integer less than or equal to x; 

 Function max(x1; x2;…; xn) returns the maximum value from the set of arguments {x1, x2,…, xn }. If the 
arguments xi are compound expressions composed of multiple parameters, then the values selected for 
each of the parameters should be the ones that maximize the overall value of xi; 

 Function min(x1; x2;…; xn) returns the minimum value from the set of arguments {x1, x2,…, xn }. If the 
arguments xi are compound expressions composed of multiple parameters, then the values selected for 
each of the parameters should be the ones that minimize the overall value of xi; 

 Function round(x) returns the integer value closest to x using asymmetric arithmetic rounding; 

 Function if(c; x; y) returns x if condition c is true, otherwise y; 

 [ ] denotes units; 

 maxM,N(...) means the maximum of all paths from node M to node N with M,N = 1, ..., number of nodes 
and M <> N; 

 Function or(c1; c2) returns true if either condition c1 or condition c2 (or both) are true, otherwise returns 
false; 

 Function minN(xN) returns the value x of node N that represents the minimum of all nodes of a cluster; 

 Function maxN(xN) returns the value x of node N that represents the maximum of all nodes of a cluster. 

B.2 Bit rates 

The FlexRay data link layer specification defines three standard bit rates – 10 Mbit / s, 5 Mbit / s, and 2,5 
Mbit / s. The configuration ranges shown in this appendix reflect the necessary parameter ranges for an 
implementation that supports operation at all three standard speeds. 
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B.3 Parameters 

B.3.1 Global cluster parameters 

B.3.1.1 Protocol relevant 

Protocol relevant global cluster parameters are parameters used within the SDL models to describe the 
FlexRay protocol. They shall have the same value in all nodes of a cluster. 

Table B.1 defines the Global protocol relevant parameters. 

Table B.1 — Global protocol relevant parameters 

Name Description Range 

gColdstartAttempts Maximum number of times a node in the cluster is permitted to 
attempt to start the cluster by initiating schedule synchronisation. 

2 – 31 

gCycleCountMax a  Maximum cycle counter value in a given cluster. [7, 9 , ..., 
cCycleCountMax] 

gdActionPointOffset Number of macroticks the action point is offset from the beginning of 
a static slot. 

1 – 63 MT 

gdCASRxLowMax Upper limit of the CAS acceptance window. 28 – 254 gdBit 

gdDynamicSlotIdlePhase Duration of the idle phase within a dynamic slot. 0 – 2 Minislot 

gdIgnoreAfterTx Duration that bit strobing is paused after a transmission.  0 – 15 gdBit 

gdMinislot Duration of a minislot. 2 – 63 MT 

gdMinislotActionPointOffset Number of macroticks the minislot action point is offset from the 
beginning of a minislot. 

1 – 31 MT 

gdStaticSlot Duration of a static slot. 3 – 664 MT 

gdSymbolWindow Duration of the symbol window. 0 – 162 MT 

gdSymbolWindowAction-
PointOffset 

Number of macroticks the action point is offset from the beginning of 
the symbol window. 

1 – 63 MT 

gdTSSTransmitter Number of bits in the Transmission Start Sequence. 1 – 15 gdBit 

gdWakeupRxIdle Number of bits used by the node to test the duration of the 'idle' or 
HIGH phase of a received wakeup. 

8 – 59 gdBit 

gdWakeupRxLow Number of bits used by the node to test the duration of the LOW 
phase of a received wakeup. 

8 – 59 gdBit 

gdWakeupRxWindow The size of the window, expressed in bits, used to detect wakeups. 76 – 485 gdBit 

gdWakeupTxActive Number of bits used by the node to transmit the LOW phase of a 
wakeup symbol and the HIGH and LOW phases of a WUDOP. 

15 – 60 gdBit 

gdWakeupTxIdle Number of bits used by the node to transmit the 'idle' part of a 
wakeup symbol. 

45 – 180 gdBit 

a This parameter shall be an odd integer. 
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Table B.1 — (continued) 

Name Description Range 

gListenNoise Upper limit for the startup listen timeout and wakeup listen timeout in 
the presence of noise. This is used as a multiplier of the node 
parameter pdListenTimeout. 

2 – 16 

gMacroPerCycle Number of macroticks in a communication cycle. 8 – 16 000 MT 

gMaxWithoutClockCor-
rectionFatal 

Threshold used for testing the vClockCorrectionFailed counter. Defines 
the number of consecutive even / odd cycle pairs with missing clock 
correction terms that will cause the protocol to transition from the 
POC:normal active or POC:normal passive state into the POC:halt 
state.b   

1 – 15 even / odd 
cycle pairs 

gMaxWithoutClockCor-
rectionPassive 

Threshold used for testing the vClockCorrectionFailed counter. Defines 
the number of consecutive even / odd cycle pairs with missing clock 
correction terms that will cause the protocol to transition from the 
POC:normal active state to the POC:normal passive state.b  

1 – 15 even / odd 
cycle pairs 

gNumberOfMinislots Number of minislots in the dynamic segment. 0 – 7 988 

gNumberOfStaticSlots Number of static slots in the static segment. 2 – 
cStaticSlotIDMax 

gPayloadLengthStatic Payload length of a static frame.c   0 – 
cPayloadLength

Max two-byte 
words 

gSyncFrameIDCountMax Maximum number of distinct sync frame identifiers present in a given 
cluster. 

2 – 
cSyncFrameIDCo

untMax 

b If gMaxWithoutClockCorrectionPassive is set to a value greater than or equal to gMaxWithoutClockCorrectionFatal then the CC 
enters the POC:halt state directly (i.e., without first entering the POC:normal passive state). 

c All static frames in a cluster have the same payload length. For 2,5 Mbit / s the payload length is restricted by the maximum 
transmission duration of adTxMax. See B.4.41. 

 

B.3.1.2 Protocol related 

Protocol related global cluster parameters are parameters that have a meaning in the context of the FlexRay 
protocol but are not used within the SDL models. These parameters are used in the configuration constraints. 
They shall have the same value in all nodes of a cluster. 
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Table B.2 defines the global protocol related parameters. 

Table B.2 — Global protocol related parameters 

Name Description Range 

gChannels The channels that are used by the cluster. [A, B, A&B] 

gClockDeviationMax Maximum frequency deviation of the time sources inside a 
cluster from their nominal frequencies. 

0 < gClockDeviationMax <= 
cClockDeviationMax 

gClusterDriftDamping The cluster drift damping factor, based on the longest 
microtick adMicrotickMax used in the cluster. Used to 
compute the local cluster drift damping factor 
pClusterDriftDamping. 

0 – 5 µT 

gdBit Nominal bit time. [0,1, 0,2, 0,4] µs 

gdCycle a Length of the cycle. 24 µs – cdCycleMax 

gdMacrotick Duration of the cluster wide nominal macrotick. 1 – 6 µs 

gdNIT Duration of the Network Idle Time. 2 – 15 978 MT 

gdSampleClockPeriod Sample clock period. [0,0125, 0,025, 0,05] µs 

gExternOffsetCorrection  External offset correction value applied in a cluster. 0 – 0,35 µs 

gExternRateCorrection External rate correction value applied in a cluster. 0 – 0,35 µs 

gNetworkManagement-
VectorLength 

Length of the Network Management vector in a cluster. 0 – 12 bytes 

a See the calculation for the minimum value of pMicroPerCycle in B.4.16. Maximum value is given by cdCycleMax. The minimum 
value is a theoretical minimum. Implementations may require larger minimum cycle length because of other conditions (for example 
performance constants given in Table A.2). 

 

B.3.2 Node parameters 

B.3.2.1 Protocol relevant 

Protocol relevant node parameters are parameters used within the SDL models to describe the FlexRay 
protocol. They may have different values in different nodes of a cluster. 
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Table B.3 defines the local node protocol relevant parameters. 

Table B.3 — Local node protocol relevant parameters 

Name Description Range 

pAllowHaltDueToClock Boolean parameter that controls the transition to the 
POC:halt state due to clock synchronisation errors.  

If set to true, the CC is allowed to transition to POC:halt. 

If set to false, the CC will not transition to the POC:halt state 
but will enter or remain in the POC:normal passive state 
(self healing would still be possible). 

Boolean 

pAllowPassiveToActive Number of consecutive even / odd cycle pairs that shall 
have valid clock correction terms before the CC will be 
allowed to transition from the POC:normal passive state to 
POC:normal active state. If set to zero, the CC is not 
allowed to transition from POC:normal passive to 
POC:normal active. 

0 – 31 even / odd cycle pairs 

pChannels Channels to which the node is connected. [A, B, A&B] 

pClusterDriftDamping Local cluster drift damping factor used for rate correction. 0 – 10 µT 

pdAcceptedStartupRange Expanded range of measured clock deviation allowed for 
startup frames during integration. 

29 – 2 743 µT 

pDecodingCorrection Value used by the receiver to calculate the difference 
between primary time reference point and secondary time 
reference point. 

12 – 136 µT 

pDelayCompensation[A], 
pDelayCompensation[B] 

Value used to compensate for reception delays on the 
indicated channel. 

4 – 211 µT 

pdListenTimeout Value for the startup listen timeout and wakeup listen 
timeout. Although this is a node local parameter, the real 
time equivalent of this value should be the same for all 
nodes in the cluster. 

1 926 – 2 567 692 µT 

pExternalSync Parameter indicating whether the node is externally 
synchronized (operating as time gateway sink in an TT-E 
cluster) or locally synchronized. If pExternalSync is set to 
true then pTwoKeySlotMode shall also be set to true. 

Boolean 

pExternOffsetCorrection Number of microticks added or subtracted to the NIT to carry 
out a host-controlled external offset correction. 

0 – 28 µT 

pExternRateCorrection Number of microticks added or subtracted to the cycle to 
carry out a host-controlled external rate correction. 

0 – 28 µT 

pFallBackInternal  Parameter indicating whether a time gateway sink node will 
switch to local clock operation when synchronisation with the 
time gateway source node is lost (pFallBackInternal = true) 
or will instead go to POC:halt (pFallBackInternal = false). 

Boolean 

pKeySlotID ID of the key slot, i.e., the slot used to transmit the startup 
frame, sync frame, or designated key slot frame. If this 
parameter is set to zero the node does not have a key slot. 

0 – cStaticSlotIDMax 

pKeySlotOnlyEnabled Parameter indicating whether or not the node shall enter key 
slot only mode following startup. 

Boolean 
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Table B.3 — (continued) 

Name Description Range 

pKeySlotUsedForStartup Parameter indicating whether the key slot(s) are used to 
transmit startup frames. If pKeySlotUsedForStartup is set to 
true then pKeySlotUsedForSync shall also be set to true. If 
pTwoKeySlotMode is set to true then both 
pKeySlotUsedForSync and pKeySlotUsedForStartup shall 
also be set to true. 

Boolean 

pKeySlotUsedForSync Parameter indicating whether the key slot(s) are used to 
transmit sync frames. If pKeySlotUsedForStartup is set to 
true then pKeySlotUsedForSync shall also be set to true. If 
pTwoKeySlotMode is set to true then both 
pKeySlotUsedForSync and pKeySlotUsedForStartup shall 
also be set to true. 

Boolean 

pLatestTx Number of the last minislot in which a frame transmission 
can start in the dynamic segment. 

0 – 7 988 Minislot 

pMacroInitialOffset[A], 

pMacroInitialOffset[B] 

Integer number of macroticks between the static slot 
boundary and the following macrotick boundary of the 
secondary time reference point based on the nominal 
macrotick duration. 

2 – 68 MT 

pMicroInitialOffset[A], 
pMicroInitialOffset[B] 

Number of microticks between the secondary time reference 
point and the macrotick boundary immediately following the 
secondary time reference point. The parameter depends on 
pDelayCompensation[Ch] and therefore it has to be set 
independently for each channel. 

0 – 239 µT 

pMicroPerCycle Nominal number of microticks in the communication cycle of 
the local node. If nodes have different microtick durations 
this number will differ from node to node. 

960 – 1 280 000 µT 

pOffsetCorrectionOut Magnitude of the maximum permissible offset correction 
value. 

15 – 16 082 µT 

pOffsetCorrectionStart Start of the offset correction phase within the NIT, expressed 
as the number of macroticks from the start of cycle. 

7 – 15 999 MT 

pRateCorrectionOut Magnitude of the maximum permissible rate correction value 
and the maximum drift offset between two nodes operating 
with non-synchronized clocks for one communication cycle. 

3 – 3 846 µT 

pSecondKeySlotID ID of the second key slot, in which a second startup frame 
shall be sent when operating as a coldstart node in a TT-L 
or TT-E cluster. If this parameter is set to zero the node 
does not have a second key slot. 

0 - cStaticSlotIDMax 

pTwoKeySlotMode  Parameter indicating whether node operates as a coldstart 
node in a TT-E or TT-L cluster. If pTwoKeySlotMode is set 
to true then both pKeySlotUsedForSync and 
pKeySlotUsedForStartup shall also be set to true. If 
pExternalSync is set to true then pTwoKeySlotMode shall 
also be set to true. 

Boolean 

pWakeupChannel Channel used by the node to send a wakeup pattern. 
pWakeupChannel shall be selected from among the 
channels configured by pChannels. 

[A, B] 

pWakeupPattern Number of repetitions of the wakeup symbol that are 
combined to form a wakeup pattern when the node enters 
the POC:wakeup send state. 

0 – 63 a 

a A value of 0 or 1 prevents transmission of a wakeup pattern. 
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B.3.2.2 Protocol related 

Protocol related node parameters are parameters that have a meaning in the context of the FlexRay protocol 
but are not used within the SDL models. They may have different values in different nodes of a cluster. 

Table B.4 defines the local node protocol related parameters. 

Table B.4 — Local node protocol related parameters 

Name Description Range 

pdMicrotick Duration of a microtick. [0,0125, 0,025, 0,05] µs 

pNMVectorEarlyUpdate Parameter indicating when the update of the Network 
Management Vector in the CHI shall take place. 

If pNMVectorEarlyUpdate is set to false, the update shall 
take place after the NIT. 

If pNMVectorEarlyUpdate is set to true, the update shall take 
place after the end of the static segment. 

Boolean 

pPayloadLengthDynMax Maximum payload length for dynamic frames.a   0 - cPayloadLengthMax 

pSamplesPerMicrotick Number of samples per microtick. [1, 2] 

a For bit rates of less than 10 Mbit / s the payload length is restricted by the maximum transmission duration adTxMax. See B.4.42. 

 

B.3.3 Physical layer parameters 

For values of the following parameters please refer to ISO 17458-4. 

Table B.5 defines the physical layer parameters. 

Table B.5 — Physical layer parameters 

Name Description 

dBDRx01 Time by which a positive edge is delayed in a receiving node. 

dBDRx10 Time by which a negative edge is delayed in a receiving node. 

dBDRxai Idle reaction time. Time by which a transmission becomes lengthened in a receiving node 
(when bus is switched from active to idle). If the last actively driven bit was HIGH the idle 
detection in the CC is not delayed. 

dBDTx01 Time by which a positive edge is delayed in a transmitting node. 

dBDTx10 Time by which a negative edge is delayed in a transmitting node. 

dBDTxRxai Delay between the rising edge of the TxEN signal at the BD when TxD is still low and the 
RxD signal at the BD going to high. 

dBDTxActiveMax Maximum duration of activation of a BD's TxEN input. 

dBDTxai Propagation delay of TxEN to bus activity on a transition from bus active to bus idle, i.e., the 
time by which a transmission becomes lengthened in a transmitting node when bus is 
switched from active to idle. 

dBDTxia Propagation delay of TxEN to bus activity on a transition from bus idle to bus active, i.e., the 
time by which a transmission becomes shortened in a transmitting node when bus is 
switched from idle to active. 
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Table B.5 — (continued) 

Name Description 

dBDTxDM Absolute time difference between dBDTxia and dBDTxai. 

dCCRxD01 Time by which a rising edge on the CC's RxD pin is delayed by analogue effects inside the 
CC. 

dCCRxD10 Time by which a falling edge on the CC's RxD pin is delayed by analogue effects inside 
the CC. 

dCCTxD01 Delay for the rising edge of the TxD signal between the digital domain inside the CC and 
the output pin of the CC. 

dCCTxD10 Delay for the falling edge of the TxD signal between the digital domain inside the CC and 
the output pin of the CC. 

dCCTxEN01 Delay for the rising edge of the TxEN signal between the digital domain inside the CC and 
the output pin of the CC. 

dBranchRxActiveMax Maximum duration of activity of an incoming branch of an active star. 

dFrameTSSEMIInfluenceM,N Assumed maximum shortening or lengthening of the TSS as a result of the influence of 
EMI effects on a TSS that is transferred from node M to node N (as a result, this term 
depends on the number of physical communication links, and thus the number of stars, 
between nodes M and N). A positive value indicates a length ening of the TSS. This value 
corresponds to the ISO 17458-4 parameters dFrameTSSEMIInfluence0AS, 
dFrameTSSEMIInfluence1AS, or dFrameTSSEMIInfluence2AS, depending on the number 
of active stars on the path between node M and node N.  

For the purposes of the calculations of parameter ranges, this specification assumes the 
minimum and maximum values from a two star system, even though ISO 17458-4 places 
restrictions on such systems at certain bit rates. 

dFrameTSSLength 
ChangeM,N 

Amount by which the TSS is shortened or lengthened by the network (including active 
stars) for a frame sent from node M to node N. This parameter does not include the 
stochastic effects of EMI. A positive value indicates a lengthening of the TSS. This value 
corresponds to the ISO 17458-4 parameters dFrameTSSLengthChange0AS, 
dFrameTSSLengthChange1AS, or dFrameTSSLengthChange2AS, depending on the 
number of active stars on the path between node M and node N. 

For the purposes of the calculations of parameter ranges, this specification assumes the 
minimum and maximum values from a two star system, even though ISO 17458-4 places 
restrictions on such systems at certain bit rates.a   

dPropagationDelayM,N Propagation delay from the TxD input pin of the transmitting BD (TP1_BD) of node M to 
the RxD output pin of the receiving BD (TP4_BD) of node N. 

dRing Duration of ringing on one segment of the network. If CAS / MTS or WUS symbols are 
transmitted, this value is used to calculate the time by which idle detection is delayed 
compared with a network without ringing. 

dRingRxDM,N Maximum time including the duration of ringing and idle reaction times when ring ing 
occurs after the transmission of a frame or WUDOP, between node M to node N. This 
value corresponds to the ISO 17458-4 parameters dRingRxD0, dRingRxDAS1, dRingRxD1, 
dRingRxDAS2 or dRingRxD2, depending on the number of active stars on the path between 
node M and node N. 

For the purposes of the calculations of parameter ranges, this specification assumes the 
maximum value from a two star system, even though ISO 17458-4 places restrictions on 
such systems at certain bit rates. 

a The frame decoding mechanism, a portion of which is described in Figure 64, relies on the assumption that the effects of the TSS 
length change and the TSS EMI influences, combined with the appropriate bit strobing and quantization effects, can increase the 
receiver's perspective of the length of a TSS by at most two bit times. The maximum values for dFrameTSSLengthChange and 
dFrameTSSEMIInfluence given in ISO 17458-4 satisfy this assumption. 
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Table B.5 — (continued) 

Name Description 

dRxUncertainty Time following the end of a transmission where instability may occur on RxD as a result of 
echoes and or ringing. During this time the RxD output may change states several times and 
may not reflect the actual condition of the bus. 

dStarDelay01k Time by which a rising edge is delayed by star k. 

dStarDelay10k Time by which a falling edge is delayed by star k. 

dStarFES1LengthChange Length change of the last bit of a frame that passes through an active star. 

nStarPathM,N Number of stars on the signal path from any node M to a node N in a network with active 
stars. 

dStarSymbolEndLength 
Change 

Time by which the edge from low to idle after a symbol transmission is delayed by the 
effects of idle reaction times of the active star when a symbol passes through an active star. 
This time does not include the propagation delay inside the active star. 

dStarTSSLengthChange Frame TSS length change caused by an active star. 

dStarTxRxai Delay between the rising edge of the TxEN signal at the active star's CC interface when TxD 
is still low and the RxD signal of the active star's CC interface going to high. 

dSymbolEMIInfluenceM,N Assumed maximum shortening or lengthening of the symbol as a result of the influence of 
EMI effects on a symbol that is transferred from node M to node N (as a result, this term 
depends on the number of physical communication links, and thus the number of stars, 
between nodes M and N). A positive value indicates a lengthening of the symbol. This value 
corresponds to the ISO 17458-4 parameters dSymbolEMIInfluence0AS, 
dSymbolEMIInfluence1AS, or dSymbolEMIInfluence2AS, depending on the number of active 
stars on the path between node M and node N.  

For the purposes of the calculations of parameter ranges, this specification assumes the 
minimum and maximum values from a two star system, even ISO 17458-4 places 
restrictions on such systems at certain bit rates. 

dSymbolLengthChangeM,N Amount by which a symbol is shortened or lengthened by the network (including active 
stars) for a symbol sent from node M to node N. This parameter does not include the 
stochastic effects of EMI. A positive value indicates a lengthening of the symbol. This value 
corresponds to the ISO 17458-4 parameters dSymbolLengthChange0AS, 
dSymbolLengthChange1AS, or dSymbolLengthChange2AS, depending on the number of 
active stars on the path between node M and node N. 

For the purposes of the calculations of parameter ranges, this specification assumes the 
minimum and maximum values from a two star system, even though ISO 17458-4 places 
restrictions on such systems at certain bit rates. 

dWU0Detect Acceptance timeout for detection of a LOW phase in a wakeup pattern. The maximum value 
of this parameter represents a duration that will be accepted as a LOW phase by all BDs. 

dWUIdleDetect Acceptance timeout for detection of an Idle phase in a wakeup pattern. The maximum value 
of this parameter represents a duration that will be accepted as an Idle phase by all BDs. 

dWUTimeout Acceptance timeout for wakeup pattern recognition. The minimum value of this parameter 
represents a pattern duration that would be accepted as a wakeup by all BDs. 
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B.3.4 Auxiliary parameters 

The following parameters are only introduced for configuration constraints. 

Table B.6 defines the auxiliary parameters for configuration constraints. 

Table B.6 — Auxiliary parameters for configuration constraints 

Name Description 

aAssumedPrecision Assumed precision of the application network. 

aBestCasePrecision Upper bound for the clock deviation between two nodes (precision) assuming no faults 
are present in the cluster. 

adActionPointDifference Amount by which the static slot action point offset is greater than the minislot action 
point offset (zero if static slot action point is smaller than minislot action point). 

adBitMax Maximum bit time taking into account the allowable clock deviation of each node. 

adBitMin Minimum bit time taking into account the allowable clock deviation of each node. 

adDTSLow Duration of the low phase of the Dynamic Trailing Sequence. 

adInitializationErrorMax The maximum initialisation error that shall be tolerated by an integrating node. 

adInternalRxDelay Additional implementation dependent delay on the receive path of the decoder up to 
the strobe point, i. e. an additional synchronisation unit in front of the majority voting 
mechanism. 

It is in the responsibility of the semiconductor manufacturer to specify this 
implementation dependent value for its devices. 

adLineDelay[Ch]M,N The contribution of the propagation delay attributed to the path lengths and the specific 
line delays T’0 of the various segments of the communication path between node M 
and node N (see ISO 17458-4). This value also includes delays attributed to the circuit 
board traces between the CC and the BD in both the transmitter and the receiver. 

adMaxIdleDetectionDelayAfter-
HIGH 

Maximum time by which idle detection is delayed when ringing occurs after the 
transmission of a frame or WUDOP. 

adMicrotickDistError Maximum time difference in a node arising from the integral (i.e., non-fractional) 
distribution of microticks across different macroticks vs. an ideal distribution that 
allowed fractional microticks. The value is based on the local microtick pdMicrotick. 

adMicrotickMax Maximum microtick length of all microticks configured within a cluster. 

adMicrotickMaxDistError Maximum time difference in a cluster arising from the integral (i.e., non-fractional) 
distribution of microticks across different macroticks vs. an ideal distribution that 
allowed fractional microticks. The value is based on the largest microtick in the cluster, 
adMicrotickMax. 

adOffsetCorrection The duration in macroticks of the offset correction phase of the NIT. 

adPropagationDelayMax Maximum propagation delay of a cluster. 

adPropagationDelayMin Minimum propagation delay of a cluster. 

adRemOffsetCalculation Time after the beginning of the NIT necessary to ensure completion of the offset 
correction calculation. 

adRemRateCalculation  Time after the beginning of the NIT necessary to ensure completion of the rate 
correction calculation. 
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Table B.6 — (continued) 

Name Description 

adSymbolWindowGuardInterval Required period of inactivity to ensure that symbols transmitted in the symbol window 
are perceived by all receivers as beginning in the symbol window. 

adTxDyn Upper bound on the duration of a dynamic frame transmission. 

adTxMax Maximum transmission duration of a CC (expressed in µs). 

adTxStat Upper bound on the duration of a static frame transmission. 

aFrameLength Frame length in bits of a frame including transmission start sequence, frame start 
sequence and frame end sequence but without idle detection time. 

aFrameLengthDynamic Frame length in bits of a dynamic frame (see aFrameLength). 

aFrameLengthStatic Frame length in bits of a static frame (see aFrameLength) 

aMicroPerMacroNom The nominal number of microticks per macrotick for a node. Note that this number 
need not be an integer. The allowable range for this auxiliary variable is bounded by 
cMicroPerMacroNomMin and cMicroPerMacroNomMax. 

aMinislotPerDynamicFrame Number of minislots needed to transmit a frame in the dynamic segment. 

aMixedTopologyError A term that expresses in microseconds the effect that the difference in propagation 
delay between the time source and time sink clusters has on the precision of the time 
sink cluster. 

aNegativeOffsetCorrectionMax The maximum amount of time by which the offset correction phase of the NIT might 
need to be shortened to account for negative offset corrections. 

anRingPathM,N Number of segments between node M and node N where ringing occurs. 

aOffsetCorrectionMax Cluster global magnitude of the maximum necessary offset correction value. 

aPayloadLength Payload length in two-byte words. 

aPayloadLengthDynamic Payload length in two-byte words of a dynamic frame. 

aPositiveOffsetCorrectionMax The maximum amount of time by which the offset correction phase of the NIT might 
need to be lengthened to account for positive offset corrections. 

aSinkPrecision An upper bound for the clock deviation between two nodes in the time sink cluster in a 
TT-E system. Different definitions of this parameter exist depending on the nature of 
the time source cluster. 

aWorstCasePrecision Upper bound for the clock deviation between two nodes (precision) when a limited 
number of Byzantine faults are present in the clock synchronisation of the cluster (see 
[11]). 

 

B.4 Calculation of configuration parameters for nodes in a TT-D cluster 

B.4.1 General 

This subclause describes how the configuration parameters are calculated for nodes operating in TT-D 
cluster. Unless specified differently in B.5, B.6, or B.7 these calculations also apply for nodes operating in TT-
L or TT-E clusters. 

B.4.2 gClockDeviationMax 

Clock sources for communication controllers in a cluster deviate from each other. The parameter 
gClockDeviationMax defines the maximum clock frequency deviation of any node in the cluster from the 
node's nominal clock frequency, defined as a ratio of the absolute value of the maximum frequency deviation 
to the nominal clock frequency, i.e., the actual clock frequency will be in the range as defined in the 
equation (1). 



BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

282 © ISO 2013 – All rights reserved 
 

Definition of equation (1) 

(1 - gClockDeviationMax) * fnominal <= factual <= (1 + gClockDeviationMax) * fnominal  

where 

fnominal is the node's nominal clock frequency and factual is the node's actual clock frequency. The 
definition of certain startup mechanisms and the calculation of the ranges of the FlexRay 
configuration parameters makes it necessary to limit the maximum allowed clock deviation in a 
cluster to the protocol constant cClockDeviationMax: 

 

 

Definition of constraint (1) 

0 < gClockDeviationMax <= cClockDeviationMax  

 

NOTE that physical layer effects such as asymmetric propagation delays of rising and falling edges may put 
additional constraints on the maximum allowable clock deviation for certain physical layer topologies. Refer to ISO 17458-
4 for additional details. 

The calculation of the parameter ranges in this annex is based on an assumption that  
gClockDeviationMax = cClockDeviationMax but for simplicity gClockDeviationMax is not included in the tables 
showing the calculation of the parameter ranges. 

B.4.3 Attainable precision 

B.4.3.1 Introduction 

Various error terms influence the attainable precision of the FlexRay clock synchronisation algorithm (see 
[11]). In order to choose proper configuration parameters it is necessary to know the attainable precision of 
the application network. In order to simplify the equations the following calculations assume that the 
configurations for propagation delay compensation are configured to a value of identical time in all nodes (see 
B.4.26 for details). 

B.4.3.2 Propagation Delay 

B.4.3.2.1 adInternalRxDelay 

An implementation of the protocol may, for practical reasons, introduce an additional delay between the RxD 
pin of the communication controller and the circuits responsible for majority voting and bit strobing182) (see 
7.2.4). 

The allowed range of adInternalRxDelay for an implementation is 

Definition of equation (2) 

cdInternalRxDelayMin <= adInternalRxDelay <= cdInternalRxDelayMax  

 

                                                      

182) This could be, for example, an additional sample delay for evaluation of zVotedVal and setting zSampleCounter or an 
additional synchronisation register prior to the voting registers (to avoid metastability effects). 
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The parameter adInternalRxDelay is implementation dependent and, like other implementation dependent 
behaviour, shall be specified in the documentation of an implementation. 

B.4.3.2.2 adPropagationDelayMax 

A parameter for the maximum propagation delay adPropagationDelayMax[μs] of the cluster is introduced with 

Definition of constraint (2) 

 adPropagationDelayMax[Ch][µs] = maxM,N( adLineDelay[Ch]M,N[µs] + 

  max( dCCTxD01[Ch]M[µs] + dBDTx01[Ch]M[µs] + 

 
[µs] + dBDRx01[Ch]N[µs] + dCCRxD01[Ch]N[µs] ; 

  dCCTxD10[Ch]M[µs] + dBDTx10[Ch]M[µs] +  

 
[µs] + dBDRx10[Ch]N[µs] + dCCRxD10[Ch]N[µs] ) + 

  (1 samples + adInternalRxDelayN[samples] + cVotingDelay[samples] + 

  (cStrobeOffset[samples] - 1 samples) ) *  

  gdSampleClockPeriod[µs / samples] / (1 - gClockDeviationMax) ) 

 

 

Definition of equation (3) 

adPropagationDelayMax[µs] = max( adPropagationDelayMax[A][µs]; 

 adPropagationDelayMax[B][µs] ) 

 

 

Definition of equation (4) 

adPropagationDelayMin[µs] = min( adPropagationDelayMin[A][µs]; adPropagationDelayMin[B][µs] )  

 

The parameters used in the constraints and equations above have the respective meaning. 

 dCCTxD01[Ch]M and dBDTx01[Ch]M are the contributions to the propagation delay of a rising edge 
caused by analogue effects of the CC and BD of the transmitting node M on channel Ch. 

 dCCTxD10[Ch]M and dBDTx10[Ch]M are the contributions to the propagation delay of a falling edge 
caused by analogue effects of the CC and BD of the transmitting node M on channel Ch. 

 dBDRx01[Ch]N and dCCRxD01[Ch]N are the contributions to the propagation delay of a rising edge 
caused by analogue effects of the BD and CC of the receiving node N on channel Ch. 

 dBDRx10[Ch]N and dCCRxD10[Ch]N are the contributions to the propagation delay of a falling edge 
caused by analogue effects of the BD and CC of the receiving node N on channel Ch. 
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 dStarDelay01k is the propagation delay of a rising edge and dStarDelay10k is the propagation delay of a 
falling edge of star k. 

 adLineDelay[Ch]M,N is the contribution of the propagation delay attributed to the path lengths and the 
specific line delays T’0 of the various segments of the communication path between node M and node N 
(see ISO 17458-4.)183).  

 nStarPath[Ch]M,N is the number of active stars between node M and N on Channel Ch. 

 1 sample is the delay between the edge occurring on the bus and the sampling edge. 

 adInternalRxDelayN[samples] is the implementation dependent delay on the receive path of the decoder 
up to the strobe point of node N. 

 cVotingDelay ist the delay introduced by the majority voting. 

 cStrobeOffset - 1 sample is the delay introduced by the bit strobing process (BITSTRB). 

For the purpose of deriving ranges for parameters within this annex it is assumed that the portion of the 
propagation delay caused by the physical layer and the analogue effects of the FlexRay CC's involved in 
communication is bounded by cPropagationDelayMax; this is true for all clusters adhering to ISO 17458-4. 
This leads to the following equation: 

Definition of equation (5) 

adPropagationDelayMaxMax[µs] = maxN( cPropagationDelayMax[µs] + 

 (1 samples + adInternalRxDelayN[samples] + cVotingDelay[samples] + 

 (cStrobeOffset[samples] - 1 samples) ) * gdSampleClockPeriod[µs / samples] / 

 (1 - gClockDeviationMax) ) 

 

 

Table B.7 defines the calculations for adPropagationDelayMaxMax. 

Table B.7 — Calculations for adPropagationDelayMaxMax 

Bit Rate 
Mbit / s 

2,5 5 10 

gdSampleClockPeriod[µs] 0,050 0,025 0,0125 

maxN( adInternalRxDelayN
Max[samples] ) 4 

adPropagationDelayMaxMax[µs] 3,051 2,775 2,638 

 

The value of adPropagationDelayMax should be estimated for the given network topology using the estimated 
propagation delay of transmitter, line, star, receiver, and the communication controller internal delay. 

                                                      

183) Any time delay introduced by the circuit board traces between the TxD output of the CC and the TxD input of the BD 
(on the transmitter) and the RxD output of the BD and the RxD input of the CC (on the receiver) are assumed to be 
included in the adLineDelay[Ch]M,N parameter. The contributions of these terms is expected to be small (on the order 
of 1-2 ns), and certainly smaller than the value implied for this contribution by the difference between 
cPropagationDelayMax and dPropagationDelayM,N. 

http://dx.doi.org/10.3403/30253320U
http://dx.doi.org/10.3403/30253320U


BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

© ISO 2013 – All rights reserved 285 
 

To allow calcuation of the minimum value of adPropagationDelayMax it is assumed that physical layer effects 
of Constraint (2) are zero. With this one gets 

Definition of equation (6) 

adPropagationDelayMaxMin[µs] = maxN( (1 samples + adInternalRxDelayN[samples] + 

  cVotingDelay[samples] + cStrobeOffset[samples] - 1 samples) * 

  gdSampleClockPeriod[µs / samples] / (1 - gClockDeviationMax) ) 

 

 

Table B.8 defines the calculations for adPropagationDelayMaxMin. 

Table B.8 — Calculations for adPropagationDelayMaxMin 

Bit Rate 
Mbit / s 

2,5 5 10 

gdSampleClockPeriod[µs] 0,050 0,025 0,0125 

maxN( adInternalRxDelayN
Min[samples] ) 1 

adPropagationDelayMaxMin[µs] 0,401 0,200 0,100 

 

B.4.3.2.3 adPropagationDelayMin 

The formula for adPropagationDelayMin takes following effects into account: 

 physical layer effects as listed for adPropagationDelayMax; 

 the effects of the decoding unit, i.e., the majority voting delay and the strobing delay; 

 the minimum of the internal delays caused by the implementations. 

Without taking the physical layer influences into account184) one gets 

Definition of constraint (3) 

adPropagationDelayMin[µs]  >=  

 minN( adInternalRxDelayN[samples] + cVotingDelay[samples] +  

 (cStrobeOffset[samples] - 1 samples) ) * gdSampleClockPeriod[µs / samples] /   

 (1 + gClockDeviationMax) 

 

 

                                                      

184) Obviously it is not possible for the physical layer to introduce no propagation delay, but an assumption of zero 
propagation delay is conservative and would result in parameter ranges that would accommodate any practical 
minimum propagation delay. 
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Taking the physical layer effects into account one gets 

Definition of constraint (4) 

adPropagationDelayMin[Ch][µs]  = minM,N( adLineDelay[Ch]M,N[µs]  +   

  min( dCCTxD01[Ch]M[µs] + dBDTx01[Ch]M[µs] + 

  
 [µs]  

+ dBDRx01[Ch]N[µs] + 

  dCCRxD01[Ch]N[µs] ;    

  dCCTxD10[Ch]M[µs]  + dBDTx10[Ch]M[µs]  + 

  
 [µs] 

+ dBDRx10[Ch]N[µs]  + 

  dCCRxD10[Ch]N[µs] )  + (adInternalRxDelayN[samples]  + 

  cVotingDelay[samples]  + (cStrobeOffset[samples] - 1 samples) ) * 

  gdSampleClockPeriod[µs / samples]  / (1 + gClockDeviationMax) )  

 

With Constraint (3) the minimum can be calculated to be as defined in Table B.9, which defines the 
calculations for adPropagationDelayMinMin. 

Table B.9 — Calculations for adPropagationDelayMinMin 

Bit Rate 
Mbit / s 

2,5 5 10 

gdSampleClockPeriod[µs] 0,050 0,025 0,0125 

minN( adInternalRxDelayN
Min[samples] ) 1 

adPropagationDelayMinMin[µs] 0,349 0,175 0,087 

 

To allow calculation of the maximum value of adPropagationDelayMin it is assumed that the physical layer 
effects of Constraint (4) are bounded by the upper limit of cPropagationDelayMax. With this one gets: 

Definition of equation (7) 

adPropagationDelayMinMax[µs] = minN( cPropagationDelayMax[µs] + 

 (adInternalRxDelayN[samples] + cVotingDelay[samples] + 

 cStrobeOffset[samples] - 1 samples) *  

 gdSampleClockPeriod[µs / samples] / (1 + gClockDeviationMax) ) 

defines the calculations for adPropagationDelayMinMax. 
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Table B.10 defines the calculations for adPropagationDelayMinMax. 

Table B.10 — Calculations for adPropagationDelayMinMax 

Bit Rate 
Mbit / s 

2,5 5 10 

gdSampleClockPeriod[µs] 0,050 0,025 0,0125 

minN( adInternalRxDelayN
Max[samples] ) 4 

adPropagationDelayMinMax[µs] 2,999 2,750 2,625 

 

B.4.3.3 Microtick Distribution Error 

The macrotick generation process generates macrotick events, which are naturally restricted to a discrete grid 
determined by the local microtick clock. Compared to an ideal macrotick generation process, which would be 
able to generate events at any point in time, the restriction to the microtick grid introduces a discretization 
error. The macrotick generation process is designed to prevent the accumulation of this discretization error; it 
is assured that the duration of any number of consecutive, discrete macroticks only deviates from the duration 
of the corresponding ideal, non-discrete macroticks by at most the duration of a single microtick. This single 
microtick shall be taken into consideration when converting an amount of real time into a number of discrete 
local macroticks of a node.  

The auxiliary variable adMicrotickDistError is introduced to capture the effect of the discretization of the 
macrotick clock in a given node: 

Definition of equation (8) 

adMicrotickDistError[µs] = pdMicrotick[µs] / (1 - gClockDeviationMax)  

 

Table B.11 defines the calculations for adMicrotickDistError. 

Table B.11 — Calculations for adMicrotickDistError 

pdMicrotick[µs] 0,050 0,025 0,0125 

adMicrotickDistError[µs] 0,050075 0,025038 0,012519 

 

The values for adMicrotickDistError for various microtick durations are calculated in Table B.11. 

The auxiliary variable adMicrotickMaxDistError is introduced to capture the effect of the discretization of the 
macrotick clocks in a cluster, and is therefore based on the longest microtick in a cluster: 

Definition of equation (9) 

adMicrotickMaxDistError[µs] = adMicrotickMax[µs] / (1 - gClockDeviationMax)  

 

Table B.12 defines the calculations for adMicrotickMaxDistError. 
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Table B.12 — Calculations for adMicrotickMaxDistError 

adMicrotickMax[µs] 0,050 0,025 0,0125 

adMicrotickMaxDistError[µs] 0,050075 0,025038 0,012519 

 

The values for adMicrotickMaxDistError for various microtick durations are calculated in Table B.12. These 
values are used in the calculations of parameter ranges but are not specifically included in the tables. 

B.4.3.4 Worst-case precision 

First of all, a parameter defining the maximum microtick length of a cluster is introduced: 

Definition of equation (10) 

adMicrotickMax[µs] = max( { x | x = pdMicrotick of each node } )  

 

The worst-case error before the clock correction185) is given by 

Definition of equation (11) 

aWorstCasePrecision[µs] = (38 µT + 20 * gClusterDriftDamping[µT]) * adMicrotickMax[µs / µT] / 

 (1 - gClockDeviationMax) + adMicrotickMaxDistError[µs] + 

 2 * (adPropagationDelayMax[µs] - adPropagationDelayMin[µs]) 

 

 

It is important to note that the attainable precision directly depends on network topology 
(adPropagationDelayMax) and the maximum microtick used in the cluster (adMicrotickMax). 

Examinations within the FlexRay consortium have shown that a value of gClusterDriftDamping = 5 µT is 
enough to prevent cluster drifts. Since cluster precision becomes worse as gClusterDriftDamping increases, 
gClusterDriftDamping is limited to 5 µT. 

Table B.13 defines the calculation of the worst-case precision. 

                                                      

185) Please note that in case the correction cannot be performed at the end of a double cycle, e.g. because no sync 
frames could be received due to a transitory disturbance on the network, the precision of the cluster can get worse 
than the value indicated in Equation (11). This should be taken into consideration if nodes of a cluster are allowed to 
remain in POC:normal active while no clock correction values could be derived, i.e. when 
gMaxWithoutClockCorrectionPassive is configured to be larger than 1. While the additional worsening of the 
precision will generally be rather small, an estimate depends heavily on the underlying error assumptions and is 
beyond the scope of this document. 
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Table B.13 — Calculation of the worst-case precision 

Bit Rate 
Mbit / s 

2,5 5 10 

adMicrotickMax[µs] 0,050 0,050 0,025 0,025 0,0125 

gClusterDriftDampingMax[µT] 5 

adPropagationDelayMaxMax[µs] 3,051 2,775 2,638 

adPropagationDelayMinMin[µs] 0,349 0,175 0,087 

aWorstCasePrecisionMax[µs] 12,364 12,160 8,680 8,582 6,842 

 

B.4.3.5 Best-case precision 

The best-case precision can be calculated using a simplified version of Equation (11) which does not take 
Byzantine errors into account. 

Definition of equation (12) 

aBestCasePrecision[µs] = (13 µT + 6 * gClusterDriftDamping[µT]) * adMicrotickMax[µs / µT] / 

 (1 - gClockDeviationMax) + adMicrotickMaxDistError[µs] + 

 adPropagationDelayMax[µs] - adPropagationDelayMin[µs] 

 

 

It is not possible to reach a precision better than calculated in Equation (12). 

Table B.14 defines the calculation of the best-case precision. 

Table B.14 — Calculation of the best-case precision 

Bit Rate 
Mbit / s 

2,5 5 10 

adMicrotickMax[µs] 0,050 0,050 0,025 0,025 0,0125 

gClusterDriftDampingMin[µT] 0 

min( adPropagationDelayMax[µs] - adPropagationDelayMin[µs] ) 0 

aBestCasePrecisionMax[µs] 0,701 0,701 0,351 0,351 0,175 

 

B.4.3.6 Assumed precision 

An assumed precision of the cluster, aAssumedPrecision is introduced. The aAssumedPrecision parameter is 
necessary to derive additional constraints on other timing parameters. This parameter is given by 

Definition of constraint (5) 

aAssumedPrecision[µs] >= aBestCasePrecision[µs]   

 

For purposes of configuration of the cluster, it is suggested that the assumed precision be set equal to the 
worst case precision: 
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Definition of equation (13) 

aAssumedPrecision[µs] = aWorstCasePrecision[µs]   

 

Parameter ranges in this specification are calculated assuming that the maximum and minimum value of 
aAssumedPrecision are aWorstCasePrecisionMax and aBestCasePrecisionMin, respectively. 

B.4.4 Ringing 

Due to physical layer effects, a node may experience a period of instability on the physical layer after the end 
of a transmission. During this period the bus level may exceed the thresholds for detecting active low and 
active high and may switch multiple times between the active low and active high state, ending on either of 
these states. This is called ringing. 

The duration of ringing depends mainly on the topology, especially on the number of active stars. For details 
refer to ISO 17458-4. 

From the perspective of a communication controller ringing can happen after the end of a frame or symbol 
transmission and would show up as one or multiple transitions between LOW and HIGH on the RxD input. 

Ringing has various effects - some of them are listed below. 

 After the reception of a FES high bit, ringing delays the start of the idle phase. 

 After the reception of a DTS high bit, ringing delays the start of the idle phase. Ringing can trigger 
additional potential idle start signals sent to the MAC process, which has an influence in case of a 
dynamic frame decoding error. 

 After the reception of a symbol, ringing delays the start of the idle phase. 

 After the transmission of a WUS low phase, ringing may appear to the transmitting node as if a collision 
with another node's WUS low phase had happened. 

When ringing occurs after a transmission that ends on a high bit (which is the case for frames and WUDOPs), 
from the perspective of the physical layer the start of idle detection is delayed by the duration of ringing itself 
plus the idle reaction times within the network. This delay is specified by the parameter dRingRxDM,N as 
described in ISO 17458-4. 

In cases where no ringing occurs the reception of the last transmitted high bit is counted as idle by the idle 
detection mechanism of the receiving CCs - for them the bus needs to be idle for only  
(cChannelIdleDelimiter - 1) gdBit after the last high bit was transmitted (which is of course taken into account 
by the configuration constraints). If ringing occurs, however, the last high bit that was received before ringing 
cannot be taken into account for idle detection, and therefore the receiving CCs need to see HIGH for 
cChannelIdleDelimiter gdBit after the end of the idle reaction time. 

The overall time by which idle detection is delayed inside the receiving CCs is described by the following 
equation (and will be zero if no ringing occurs): 

Definition of equation (14) 

adMaxIdleDetectionDelayAfterHIGH[µs] = maxM,N( if( dRingRxDM,N[µs] > 0; 

            dRingRxDM,N[µs] + adBitMax[µs]; 0 ) ) 

 

 

http://dx.doi.org/10.3403/30253320U
http://dx.doi.org/10.3403/30253320U
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When ringing occurs after a transmission that ends on a low bit (which is the case for CAS / MTS and WUS 
symbols) idle detection is only delayed beyond the time already considered by the symbol length change 
parameter by the actual duration of the ringing. 

The duration of ringing is specified by the parameter dRing as described in ISO 17458-4. 

In principle, ringing can occur on every segment of the cluster except the link between two active stars. The 
auxiliary variable anRingPathM,N is introduced to define the number of segments that could ring between node 
M and node N in a given cluster: 

Definition of equation (15) 

0 <= anRingPathM,N <= 2  

 

The maximum overall duration of ringing in a given cluster is then maxM,N( anRingPathM,N * dRing[µs] ). 

B.4.5 Definition of microtick, macrotick, and bit time 

The parameter pdMicrotick is usually not a direct configuration parameter of an implementation, instead being 
derived from the sample clock rate and the selected value for pSamplesPerMicrotick. It is introduced here 
because it is used to derive various parameter constraints. 

The node-specific microtick length (pdMicrotick) is application dependent and may be different for each node. 
The bit length (gdBit) shall be identical for all nodes of the cluster. Both parameters are defined in multiples of 
the sample clock period. 

Definition of equation (16) 

pdMicrotick[µs] = pSamplesPerMicrotick * gdSampleClockPeriod[µs]  

 

Definition of equation (17) 

gdBit[µs] = cSamplesPerBit * gdSampleClockPeriod[µs]  

 

Due to clock tolerances the duration of a bit may vary from the ideal bit timing. The maximum and minimum 
possible bit duration depends on the clock tolerance and can be calculated as follows: 

Definition of equation (18) 

adBitMax[µs] = gdBit[µs] / (1 - gClockDeviationMax)  

 

Definition of equation (19) 

adBitMin[µs] = gdBit[µs] / (1 + gClockDeviationMax)  

 

http://dx.doi.org/10.3403/30253320U
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Table B.15 defines the calculations for adBitMax and adBitMin. 

Table B.15 — Calculations for adBitMax and adBitMin 

Bit Rate 
Mbit / s 

2,5 5 10 

gdBit[µs] 0,4 0,2 0,1 

adBitMax[µs] 0,4006 0,2003 0,10015 

adBitMin[µs] 0,3994 0,1997 0,09985 

 

Table B.16 defines the possible microtick lengths depending on pSamplesPerMicrotick and gdSampleClock-
Period. An implementation shall support all of the combinations shown in this table. 

Table B.16 — pdMicrotick depending on pSamplesPerMicrotick and gdSampleClockPeriod 

Bit Rate 
Mbit / s 

2,5 5 10 

gdSampleClockPeriod[µs] 0,050 0,025 0,0125 

pSamplesPerMicrotick 1 2 1 2 1 

pdMicrotick[µs] 0,050 0,050 0,025 0,025 0,0125 

 

Table B.17 shows representative values of the nominal macrotick length gdMacrotick that can be achieved 
with various microtick durations while keeping both aMicroPerMacroNom and gdMacrotick within their 
allowable ranges. The actual macrotick duration used in a system need not be selected from those listed in 
the table, and need not even use integral values for aMicroPerMacroNom, but aMicroPerMacroNom shall be 
in the range of 40 to 240 microticks per macrotick, gdMacrotick shall be in the range of 1 to 6 microseconds, 
and Constraint (7) shall be fulfiled. 

Table B.17 — Examples of gdMacrotick as a function of aMicroPerMacroNom and pdMicrotick 

aMicroPerMacroNom 
pdMicrotick[µs] 

0,0125  0,025  0,050  

40 - 1 2 

60 - 1,5 3 

80 1 2 4 

120 1,5 3 6 

240 3 6 - 

 

The desired nominal macrotick length gdMacrotick in µs can be chosen to be less than, greater than, or equal 
to the assumed precision. In all cases the macrotick length shall fulfil the following constraint: 

Definition of constraint (6) 

cdMinMTNom[µs] <= gdMacrotick[µs] <= cdMaxMTNom[µs]  

 

Depending on the desired macrotick length the following additional constraint shall be met. 
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Definition of constraint (7) 

gdMacrotick[µs] >= cMicroPerMacroNomMin[µT] * pdMicrotick[µs / µT]  

 

A parameter describing the nominal number of microticks in a macrotick is given by 

Definition of equation (20) 

aMicroPerMacroNom[µT / MT] = gdMacrotick[µs / MT] / pdMicrotick[µs / µT]   

 

For gdMacrotick there is an additional constraint because of the startup procedure and pMicroInitialOffset: 

Definition of constraint (8) 

gdMacrotick[µs] <= ((aFrameLengthStatic[gdBit] - cdFES[gdBit]) * gdBit[µs / gdBit] - 

 gdSampleClockPeriod[µs] + adPropagationDelayMin[µs]) * 

 ((1 - gClockDeviationMax) / (1 + gClockDeviationMax)) 

 

Constraint (8) is necessary to ensure that events occur in the order required by the mechanism described in 
Figure 162, in particular, that at least one macrotick length shall pass between the primary time reference 
point and the valid odd startup frame on A signal in order for the continue integration on A signal to properly 
start the macrotick generation.  

NOTE the fulfilment of this constraint is automatic because of the maximum macrotick length allowed by the protocol 
and the allowed values of minimum frame length, bit duration, and the other parameters in the constraint. 

B.4.6 adInitializationErrorMax 

The maximum initialisation error that shall be tolerated by an integrating node depends primarily on the 
assumed precision and the propagation delay.  

Consider the following assumptions. 

 The clocks of two nodes may have an offset of up to the assumed precision.  

 An external offset correction might need to be applied. 

 The received frames might be received with the maximum propagation delay of which only the minimal 
possible propagation delay is compensated by the local delay compensation. 

Definition of constraint (9) 

adInitializationErrorMax[µs] >= aAssumedPrecision[µs] + gExternOffsetCorrection[µs] + 

 adPropagationDelayMax[µs] - adPropagationDelayMin[µs] 
 

 

In general, adInitializationErrorMax should be chosen using the equality constraint. Under certain exceptional 
circumstances, however, this choice of parameter could result in a slight delay of startup. The system 
designer may choose to reduce this probability by selecting a somewhat larger value for 
adInitializationErrorMax, and thus the previous constraint is expressed as an inequality. Note that increasing 
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the value of adInitializationErrorMax may have a significant impact on the required action point offset, and 
therefore the required static slot size. 

Table B.18 defines the calculations for adinitializationerrormax. 

Table B.18 — Calculations for adInitializationErrorMax 

Bit Rate 
Mbit / s 

2,5 5 10 

adMicrotickMax[µs] 0,050 0,050 0,025 0,025 0,0125 

aAssumedPrecisionMin[μs] = aBestCasePrecisionMin[μs] 0,701 0,701 0,351 0,351 0,175 

gExternOffsetCorrectionMin[µs] 0 

adPropagationDelayMax[µs] - adPropagationDelayMin[µs] 0 

adInitializationErrorMaxMin[µs] 0,701 0,701 0,351 0,351 0,175 

aAssumedPrecisionMax[µs] = aWorstCasePrecisionMax[µs] 12,364 12,160 8,680 8,582 6,842 

gExternOffsetCorrectionMax[µs] 0,35 

adPropagationDelayMinMin[µs] 0,349 0,175 0,087 

adPropagationDelayMaxMax[µs] 3,051 2,775 2,638 

adInitializationErrorMaxMax[µs] 15,416 15,110 11,630 11,483 9,743 

 

B.4.7 pdAcceptedStartupRange 

Consider the assumption that during integration a clock synchronisation error greater than the assumed 
precision may occur and be acceptable.  

Definition of constraint (10) 

pdAcceptedStartupRange[µT] >= ceil( (aAssumedPrecision[µs] + adInitializationErrorMax[µs]) / 

 (pdMicrotick[µs / µT] / (1 + gClockDeviationMax)) ) 
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Table B.19 defines the calculations for pdAcceptedStartupRange. 

Table B.19 — Calculations for pdAcceptedStartupRange 

Bit Rate 
Mbit / s 

2,5 5 10 

adMicrotickMax[µs] 0,050 0,050 0,025 0,025 0,0125 

aAssumedPrecisionMin[µs] = aBestCasePrecisionMin[µs] 0,701 0,701 0,351 0,351 0,175 

adInitializationErrorMaxMin[µs] 0,701 0,701 0,351 0,351 0,175 

pdMicrotickMax[µs] 0,050 0,050 0,025 0,025 0,0125 

pdAcceptedStartupRangeMin[µT] 29 29 29 29 29 

aAssumedPrecisionMax[µs] = aWorstCasePrecisionMax[µs] 12,364 12,160 8,680 8,582 6,842 

adInitializationErrorMaxMax[µs] 15,416 15,110 11,630 11,483 9,743 

pdMicrotickMin[µs] 0,050 0,025 0,0125 

pdAcceptedStartupRangeMax[µT] 557 1 093 814 1 608 1 329 

 

The lower bound of pdAcceptedStartupRange is given by the calculation in a TT-D cluster and the upper 
bound by the calculation in a TT-E cluster (see B.7.14, Table B.49). As a result, the parameter 
pdAcceptedStartupRange shall be configurable over a range of 29 to 2 743 µT. 

B.4.8 pClusterDriftDamping 

Consider the following assumptions. 

 The drift damping factor gClusterDriftDamping is defined in multiples of the longest microtick 
adMicrotickMax within the cluster. 

 gClusterDriftDamping[µT] = n * 1 µT with n = 0, 1, 2, ..., 5. 

 The maximum microtick of a cluster adMicrotickMax is a multiple m of each node’s local microtick 
pdMicrotick. 

 adMicrotickMax = m * pdMicrotick with m = 1, 2 (see pSamplesPerMicrotick). 

 The local drift damping pClusterDriftDamping is calculated by  

Definition of constraint (11) 

pClusterDriftDamping[µT] <= gClusterDriftDamping[µT] * (adMicrotickMax[µs / µT] /  

 pdMicrotick[µs / µT])  
 

 

Constraint (11) should be treated as a recommendation. In practice it is expected that the drift damping factor 
is chosen such that  

pClusterDriftDamping ≈ gClusterDriftDamping 

The upper limit of pClusterDriftDamping is given by adMicrotickMax / pdMicrotick = 2. Therefore, 
pClusterDriftDampingMax = 2 * 5 µT = 10 µT, and thus the parameter pClusterDriftDamping shall be 
configurable over a range of 0 to 10 µT. 
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B.4.9 gdActionPointOffset 

Consider the following assumptions. 

 The action point offset should be greater than the assumed precision. 

 A minimum propagation delay of the network as seen by the local node is given by 
adPropagationDelayMin[µs]. 

Definition of constraint (12) 

gdActionPointOffset[MT] >= ceil( (aAssumedPrecision[µs] - adPropagationDelayMin[µs]) /  

 (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) ) 
 

 

In order to prevent the possibility of the creation of cliques186) during startup an additional safety margin shall 
be added. In this case Constraint (13) replaces Constraint (12). 

Definition of constraint (13) 

gdActionPointOffset[MT] >= ceil( (2 * aAssumedPrecision[µs] - adPropagationDelayMin[µs] + 

 2 * adInitializationErrorMax[µs]) / (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) ) 
 

 

Table B.20 defines the calculations for gdActionPointOffset. 

Table B.20 — Calculations for gdActionPointOffset 

Bit Rate 
Mbit / s 

2,5 5 10 

adMicrotickMax[µs] 0,050 0,050 0,025 0,025 0,0125 

aAssumedPrecisionMax[µs] = aWorstCasePrecisionMax[µs] 12,364 12,160 8,680 8,582 6,842 

adPropagationDelayMinMin[µs] 0,349 0,175 0,087 

adInitializationErrorMaxMax[µs] 15,416 15,110 11,630 11,483 9,743 

gdMacrotickMin[µs] 2 2 1 1 1 

gdActionPointOffsetMax[MT] (Constraint (12)) 7 7 9 9 7 

gdActionPointOffsetMax[MT] (Constraint (13)) 28 28 41 41 34 

 

In order to determine the configuration range of gdActionPointOffset an additional margin of safety is taken 
into account. As a result, the parameter gdActionPointOffset shall be configurable over a range of 1 to 63 MT. 
This also allows a static slot design with additional safety margin, i.e. the action point of the static slots 
includes a safety margin beyond the achievable precision of the cluster. 

                                                      

186) Clique formation may be possible if more than two coldstart nodes are configured in the cluster under specific error 
scenarios. 
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B.4.10 gdMinislotActionPointOffset 

Consider the assumption that the minislot action point gdMinislotActionPointOffset is greater than or equal to 
the assumed precision aAssumedPrecision reduced by the minimum propagation delay 
adPropagationDelayMin of the network. 

Definition of constraint (14) 

gdMinislotActionPointOffset[MT] >= ceil( (aAssumedPrecision[µs] - adPropagationDelayMin[µs]) /  

 (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) )  
 

 

gdMinislotActionPointOffset shall be configurable in a range of 1 to 31 MT. 

gdMinislotActionPointOffset can be independently configured from gdActionPointOffset. This is useful if the 
static segment design includes an additional safety margin that is not required in the dynamic segment. The 
independent choice of gdMinislotActionPointOffset allows increased throughput in the dynamic segment. 

B.4.11 gdSymbolWindowActionPointOffset 

Consider the following assumptions. 

 The symbol window action point gdSymbolWindowActionPointOffset is greater than or equal to the 
assumed precision aAssumedPrecision reduced by the minimum propagation delay adPropaga-
tionDelayMin of the network. 

 The symbol window action point gdSymbolWindowActionPointOffset is greater than or equal to the action 
point of the preceding segment. 

 At least gdWakeupRxIdle bit times without activity on the bus shall take place before the start of a 
WUDOP transmission. 

Definition of constraint (15) 

adSymbolWindowGuardInterval[MT] >= ceil( (aAssumedPrecision[µs] -  

 adPropagationDelayMin[µs]) / (gdMacrotick[µs / MT] / ( 1 + gClockDeviationMax)) ) 
 

 

For the purposes of the calculation of parameter ranges it is assumed that adSymbolWindowGuardInterval 
takes on values within a range of 1 to 31 MT. 

The following constraint shall be observed when MTS symbols may be transmitted within the symbol window. 

Definition of constraint (16) 

gdSymbolWindowActionPointOffset[MT] = max( adSymbolWindowGuardInterval[MT]; 

 if( gNumberOfMinislots = 0; gdActionPointOffset[MT]; gdMinislotActionPointOffset[MT] ) ) 
 

 

The following constraint shall be observed when WUDOP symbols may be transmitted within the symbol 
window. 



BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

298 © ISO 2013 – All rights reserved 
 

Definition of constraint (17) 

gdSymbolWindowActionPointOffset[MT] = max( ceil( (gdWakeupRxIdle[gdBit] *  

 adBitMax[µs / gdBit] - adPropagationDelayMin[µs] + adMicrotickMaxDistError[µs]) / 

 (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) ); adSymbolWindowGuardInterval;  

 if( gNumberOfMinislots = 0; gdActionPointOffset[MT]; gdMinislotActionPointOffset[MT] ) )  

 

 

Systems that transmit both MTSs and WUDOPs shall observe both Constraint (16) and (17). 

gdSymbolWindowActionPointOffset shall be configurable within a range of 1 to 63 MT. 

gdSymbolWindowActionPointOffset can be configured to a value different than gdActionPointOffset and 
gdMinislotActionPointOffset. This is useful if the static segment design includes an additional safety margin 
that is not required in the symbol window. If a dynamic segment is present, adSymbolWindowGuardInterval 
should be chosen equal to gdMinislotActionPointOffset. 

B.4.12 gdMinislot 

The minislot consists of two parts: 

 the part before the minislot action point; 

 the part after the minislot action point. 

Constraint (14) defines the part before the minislot action point. 

For the part after the minislot action point the following two assumptions need to be considered. 

 The start of a dynamic frame transmission shall be recognized by all nodes within the same minislot. 

 The start of the idle phase as signalled by the potential idle start signal after the transition from the DTS 
low phase to the DTS high bit shall be recognized by all nodes within the same minislot. 

To consider the first assumption, the part after the minislot action point shall be greater than or equal to the 
sum of 

 the assumed precision aAssumedPrecision, 

 the maximum propagation delay adPropagationDelayMax of the network, and 

 the physical layer effects that lead to a length change of the transmitted TSS (as characterized by the 
parameters dFrameTSSLengthChange and dFrameTSSEMIInfluence). 

See Figure 46 for additional details. 

Definition of constraint (18) 

gdMinislot[MT] >= gdMinislotActionPointOffset[MT] + ceil( (adPropagationDelayMax[µs] + 

 aAssumedPrecision[µs] - minM,N( dFrameTSSLengthChangeM,N[µs] +  

 dFrameTSSEMIInfluenceM,N[µs] ) ) / (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) ) 
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To consider the second assumption, the part after the minislot action point shall be greater than or equal to 
the sum of 

 the assumed precision aAssumedPrecision, 

 the maximum propagation delay adPropagationDelayMax of the network, and 

 the overall effect of ringing if present. 

Definition of constraint (19) 

gdMinislot[MT] >= gdMinislotActionPointOffset[MT] + ceil( (adPropagationDelayMax[µs] + 

 aAssumedPrecision[µs] + adMaxIdleDetectionDelayAfterHIGH[µs]) /  

 (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) ) 

 

 

With the assumptions for gdMinislotActionPointOffset given in B.4.10, and allowing for a margin of safety, the 
parameter gdMinislot shall be configurable over a range of 2 to 63 MT. 

In addition to the previous constraints, it is possible that for certain system configurations the parameter 
gdMinislot has an additional constraint related to the parameter gdIgnoreAfterTx. Refer to B.4.38 for additional 
details. 

B.4.13 gdStaticSlot 

Consider the following assumptions. 

 A frame consists of at least gdTSSTransmitter, cdFSS, 80 gdBit of header and trailer (with 
gPayloadLengthStatic = 0), and cdFES. 

 Each two-byte payload data word adds a duration equal to 2 * (8 gdBit + cdBSS[gdBit]) = 20 gdBit. 

The length of a frame is given by: 

Definition of equation (21) 

aFrameLength[gdBit] = gdTSSTransmitter[gdBit] + cdFSS[gdBit] + 80 gdBit + 

 aPayloadLength[two-byte word] * 20 gdBit / two-byte word + cdFES[gdBit] 

 

 

Substituting the length of a static frame for aPayloadLength results in:  

Definition of equation (22) 

aFrameLengthStatic = aFrameLength with aPayloadLength = gPayloadLengthStatic  
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In addition to the frame length, the following effects shall also be considered. 

 The length of a static slot, expressed as a number of macroticks, depends on the maximum clock 
deviation (gClockDeviationMax) and the minimum duration of a macrotick. 

 The effects of system precision may be taken into account by including gdActionPointOffset before and 
after frame transmission. 

 An idle detection time of cChannelIdleDelimiter shall be considered. For the purposes of this constraint, 
the idle detection time shall be reduced by the duration of the high bit of the FES as this appears to the 
receiver as part of the idle detection. 

 The maximum and minimum propagation delays of the cluster shall also be taken into account. 

 The effects of ringing shall be taken into account by adding a parameter that will be zero if no ringing 
occurs. 

Using Equation (21) and (22) the minimum static slot length for systems can be calculated by Constraint (20): 

Definition of constraint (20) 

gdStaticSlot[MT] >= 2 * gdActionPointOffset[MT] +  

 ceil( ((aFrameLengthStatic[gdBit] - 0.5 * cdFES[gdBit] +  

 cChannelIdleDelimiter[gdBit]) * adBitMax[µs / gdBit] + adPropagationDelayMin[µs] + 

 adPropagationDelayMax[µs] + adMaxIdleDetectionDelayAfterHIGH[µs]) /  

 (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) ) 

 

 

Constraint (20) is valid for all systems. If, however, gdActionPointOffset is computed using Constraint (12) as 
an equality constraint (as opposed to using Constraint (12) as a "greater than or equal to" constraint, or some 
other constraint such as Constraint (13)), the following constraint, which might result in a smaller required 
static slot size, should be used instead of Constraint (20): 

Definition of constraint (21) 

gdStaticSlot[MT] >= gdActionPointOffset[MT] + 

 ceil( ((aFrameLengthStatic[gdBit] - 0.5 * cdFES[gdBit] +  

 cChannelIdleDelimiter[gdBit]) * adBitMax[µs / gdBit] + adPropagationDelayMax[µs] + 

 aAssumedPrecision[µs] + adMaxIdleDetectionDelayAfterHIGH[µs]) /  

 (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) ) 
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Table B.21 defines the calculations for gdStaticSlot. 

Table B.21 — Calculations for gdStaticSlot 

Bit Rate 
Mbit / s 

2,5 5 10 

gdActionPointOffsetMin[MT] 1 

aFrameLengthStaticMin[gdBit] 84 84 84 

adBitMax[µs] 0,4006 0,2003 0,10015 

adPropagationDelayMaxMin[µs] 0,401 0,200 0,100 

aAssumedPrecisonMin[µs]a 0,701 0,351 0,351b   

adMaxIdleDetectionDelayAfterHIGHMin[µs] 0 

gdMacrotickMax[µs] 6 

gdStaticSlotMin[MT]c   8 5 3 

gdActionPointOffsetMax[MT] 63 

aFrameLengthStaticMax[gdBit] 2 628d   2 631 2 638 

adBitMax[µs] 0,4006 0,2003 0,10015 

adPropagationDelayMaxMax[µs] 3,051 2,775 2,638 

adPropagationDelayMinMax[µs] 2,999 2,750 2,625 

adMaxIdleDetectionDelayAfterHIGHMax[µs] 2,0756 1,8753 1,77515 

gdMacrotickMin[µs] 2 1 

gdStaticSlotMax[MT]e   660 664 399 

a aAssumedPrecisionMin is equal to aBestCasePrecision, which is a function of bit rate as it limits the allowable choices for 
adMicrotickMax. See B.4.3.5 for details. 

b This is the value of aBestCasePrecision consistent with adMicrotickMax that allows the use of maximum duration microticks, as this 
minimizes the value of gdStaticSlot. 

c Calculated using Constraint (21). 

d The calculations in the table are based on the transmission of the longest possible static frame, i.e., a static frame with a payload of 
cPayloadLengthMax two-byte words. Note that there are physical layer constraints that may prevent a frame of this length from being 
sent. See B.4.41 for details. 

e Calculated using Constraint (20). 

 

As a result, the parameter gdStaticSlot shall be configurable over a range of 3 to 664 MT. 

In addition to the previous constraints, it is possible that for certain system configurations the parameter 
gdStaticSlot has an additional constraint related to the parameter gdIgnoreAfterTx. Refer to B.4.38 for 
additional details. 
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B.4.14 gdSymbolWindow 

Consider the following assumptions. 

 The length of an MTS symbol is defined by cdCAS187). 

 An MTS symbol is sent with a leading transmission start sequence. The symbol window takes this into 
account by using gdTSSTransmitter + cdCAS. 

 The influence of the precision is taken into account by gdSymbolWindowActionPointOffset. 

 After completion of the transmission of the symbol an idle detection time of cChannelIdleDelimiter is 
required. Idle detection can be delayed by ringing. 

 The end of the symbol reception, as seen by the receiver, depends not only on the propagation delay 
inside the network but will be further delayed due to idle reaction times inside bus drivers (dBDTxai, 
dBDRxai) and active stars (dStarSymbolEndLengthChange) and the effects of EMI as given by 
dSymbolEMIInfluenceM,N. 

 At least gdActionPointOffset macroticks shall pass between the end of the symbol transmission (including 
the following idle detection time of cChannelIdleDelimiter bits) and the beginning of the static segment. 

 The maximum time required to transmit the symbol is increased depending on the clock deviation 
(adBitMax). 

 The duration of a macrotick may also be decreased depending on the clock deviation 
(gClockDeviationMax). 

 The reception of the actively transmitted (i.e., HIGH and LOW) phases of the WUDOP shall be 
completed, at the latest, by the end of the symbol window. 

 The detection of the final high phase required by the wakeup decoding process (i.e., the phase that might 
be caused by the inactivity on the bus following the end of the WUDOP transmission) shall be completed, 
at the latest, by the end of the NIT. 

The following constraint shall be observed when MTS symbols may be transmitted within the symbol window. 

Definition of constraint (22) 

gdSymbolWindow[MT] = gdSymbolWindowActionPointOffset[MT] +  

 adSymbolWindowGuardInterval[MT] + 

 ceil( (adPropagationDelayMin[µs] + adPropagationDelayMax[µs] + 

 (gdTSSTransmitter[gdBit] + cdCAS[gdBit] + cChannelIdleDelimiter[gdBit]) * 

 adBitMax[µs / gdBit] + (maxM,N( anRingPathM,N ) * dRing[µs]) +  

 maxM,N( dSymbolEMIInfluenceM,N[µs] + dBDTxai[µs] + dBDRxai[µs] +  

   nStarPathM,N * dStarSymbolEndLengthChange[µs] ) +  

 adMicrotickMaxDistError[µs]) / (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) +  

 

                                                      

187) The collision avoidance symbol, CAS, is the same as the media access test symbol, MTS. 
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 max( 0; gdActionPointOffset[MT] - gdNIT[MT] - adSymbolWindowGuardInterval[MT] + 

 (aOffsetCorrectionMax[µs] - adPropagationDelayMin[µs] +  

 adMicrotickMaxDistError[µs]) / (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) ) ) 

 

The following constraint shall be observed when WUDOP symbols may be transmitted within the symbol 
window. 

Definition of constraint (23) 

gdSymbolWindow[MT] = gdSymbolWindowActionPointOffset[MT] +  

 adSymbolWindowGuardInterval[MT] + 

 ceil( (adPropagationDelayMin[µs] + adPropagationDelayMax[µs] + 

 (5 * gdWakeupTxActive[gdBit] + cChannelIdleDelimiter[gdBit]) * adBitMax[µs / gdBit] + 

 adMaxIdleDetectionDelayAfterHIGH[µs] + adMicrotickMaxDistError[µs]) / 

 (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) + 

 max( 0; gdActionPointOffset[MT] - adSymbolWindowGuardInterval[MT] - gdNIT[MT] + 

   (aOffsetCorrectionMax[µs] - adPropagationDelayMin[µs] + 

 adMicrotickMaxDistError[µs]) / (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)); 

 ((gdWakeupRxIdle[gdBit] - cChannelIdleDelimiter[gdBit]) * adBitMax[µs / gdBit] + 

   aOffsetCorrectionMax[µs] + adMicrotickMaxDistError[µs]) /  

   (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) - gdNIT[MT] ) ) 

 

 

Systems that transmit both MTSs and WUDOPs shall observe both Constraint (22) and (23). 

For the purposes of determining the configurable range of this parameter, it can be realized that the 
transmission time of a WUDOP is much larger than the transmission time of an MTS. As a result, the 
maximum range of the parameter will be determined by Constraint (23) only. 
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Table B.22 defines the calculations for gdSymbolWindow. 

Table B.22 — Calculations for gdSymbolWindow 

Bit Rate 
Mbit / s 

2,5 5 10 

gdSymbolWindowActionPointOffsetMax[MT] 63 

adSymbolWindowGuardIntervalMax[MT] 31 

gdActionPointOffsetMax[MT] 63 

gdWakeupTxActive[gdBit] 15 30 60 

gdWakeupRxIdle[gdBit] 59 

gdNITMin[MT] 2 

aOffsetCorrectionMax[µs] a  0,9955 0,49775 0,49775 

adBitMax[µs] 0,4006 0,2003 0,10015 

adMaxIdleDetectionDelayAfterHIGHMax[µs] 2,0756 1,8753 1,77515 

adPropagationDelayMinMax[µs] 2,999 2,750 2,625 

adPropagationDelayMaxMax[µs] 3,051 2,775 2,638 

gdMacrotickMin[µs] 2 1 

gdSymbolWindowMin[MT] 0b 

gdSymbolWindowMax[MT] 145 162 161 

a It is the maximum possible value if gdNIT is a minimum. 

b If no symbol window is used at all gdSymbolWindow would be configured to 0 MT. 

 

As a result, the parameter gdSymbolWindow shall be configurable over a range of 0 to 162 MT. 

In addition to the previous constraints, it is possible that for certain system configurations the parameter 
gdSymbolWindow has an additional constraint related to the parameter gdIgnoreAfterTx. Refer to B.4.38 for 
additional details. 

NOTE ISO 17458-4 allows the possibility of using an active star device to play the role of a BD in a FlexRay system 
(i.e., from the physical layer perspective the transmission can originate and / or terminate in the active star). For reasons 
of clarity, the constraints in this subclause do not comprehend this (i.e., the constraints assume the transmission originates 
or terminates in a bus driver). For systems that utilize the active stars as transceivers it is necessary to modify the 
constraints to make appropriate use of active star-related parameters instead of BD-related parameters (for example, to 
use dStarRxai instead of dBDRxai). 

B.4.15 gMacroPerCycle 

The number of macroticks per cycle is based on the cycle duration and the macrotick length. 

Definition of constraint (24) 

gdMacrotick[µs] = gdCycle[µs] / gMacroPerCycle  

with gdCycle[µs] <= cdCycleMax[µs] and gdMacrotick[µs] >= cdMinMTNom[µs].  

gMacroPerCycle[MT] shall be an integer value. 

Table B.23 defines the calculations of the maximum for gMacroPerCycle. 

http://dx.doi.org/10.3403/30253320U
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Table B.23 — Calculations of the maximum for gMacroPerCycle 

Bit Rate 
Mbit / s 

2,5 5 10 

gdCycleMax[µs] = cdCycleMax 16 000 

gdMacrotickMin[µs] 2 1 

gMacroPerCycleMax[MT] 8 000 16 000 8 000 

 

The cycle length in macroticks shall also be equivalent to the sum of the lengths of the segments that make up 
the cycle. 

Definition of constraint (25) 

gMacroPerCycle[MT] = gdStaticSlot[MT] * gNumberOfStaticSlots + adActionPointDifference[MT] + 

 gdMinislot[MT] * gNumberOfMinislots + gdSymbolWindow[MT] + gdNIT[MT] 
 

 

adActionPointDifference[MT] is introduced in B.4.18 and calculated in Equation (25). 

Table B.24 defines the calculations of the minimum for gMacroPerCycle. 

Table B.24 — Calculations of the minimum for gMacroPerCycle 

Bit Rate 
Mbit / s 

2,5 5 10 

gdStaticSlotMin[MT] 8 5 3 

gNumberOfStaticSlotsMin 2 

adActionPointDifferenceMin[MT] 0 

gdMinislotMin[MT] 2 

gNumberOfMinislotsMin[Minislot] 0 

gdSymbolWindowMin[MT] 0 

gdNITMin[MT] 2 

gMacroPerCycleMin[MT] 18 12 8 

 

As a result, the parameter gMacroPerCycle shall be configurable over a range of 8 to 16 000 MT. 

B.4.16 pMicroPerCycle 

The cycle length in microticks is calculated using the following equations: 

Definition of constraint (26) 

pMicroPerCycle[µT] = round( gdCycle[µs] / pdMicrotick[µs / µT] )  

pMicroPerCycle is always a positive integer number. 
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In order to define a minimum parameter range that an implementation shall support, the minimum number of 
microticks in a cycle is determined under the following assumptions: 

 the minimum cycle consists of two static slots plus the NIT; 

 the minimum static slot can be calculated using Constraint (21); 

 the maximum microtick length is used. 

With these assumptions a lower bound can be calculated by using following equations: 

Definition of equation (23) 

pMicroPerCycleMin[µT] = round( (2 * gdStaticSlot[MT] + gdNIT[MT]) *  

 (gdMacrotick[µs / MT] / pdMicrotick[µs / µT]) ) 

 

with gdStaticSlot[MT] equal to Constraint (21):  

gdStaticSlot[MT] = gdActionPointOffset[MT] +  

 ceil( ( (aFrameLengthStatic[gdBit] - 0.5 * cdFES[gdBit] +  

 cChannelIdleDelimiter[gdBit]) * adBitMax[µs / gdBit] + adPropagationDelayMax[µs] +  

 aAssumedPrecision[µs] + adMaxIdleDetectionDelayAfterHIGH[µs]) /  

 (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) ) 

 

 

Table B.25 defines the calculations for pMicroPerCycle. 

Table B.25 — Calculations of the minimum for pMicroPerCycle 

Bit Rate 
Mbit / s 

2,5 5 10 

gdActionPointOffsetMin[MT] 1 

gdNITMin[MT] 2 

gdMacrotick[µs] 2,05a   2 1 

aFrameLengthStaticMin[gdBit] 84 

aAssumedPrecisionMin[µs] = aBestCasePrecisionMin @  
pdMicrotickMax[µs] 

0,701 0,351 

adBitMax[µs] 0,4006 0,2003 0,10015 

gdStaticSlotMin[MT] 20 11 11 

adPropagationDelayMaxMin[µs] 0,401 0,200 0,100 

adMaxIdleDetectionDelayAfterHIGHMin[µs] 0 

pdMicrotickMax[µs] 0,05 0,025 

pMicroPerCycleMin[µT] 1 722 960 960 

a gdMacrotick is chosen in a way that pMicroPerCycle results in a minimum cycle length. 
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Table B.26 defines the calculations of the maximum for pMicroPerCycle 

Table B.26 Calculations of the maximum for pMicroPerCycle 

Bit Rate 
Mbit / s 

2,5 5 10 

adMicrotick[µs] 0,050 0,050 0,025 0,025 0,0125 

gdCycleMax[µs] = cdCycleMax 16 000 

pMicroPerCycleMax[µT] 320 000 320 000 640 000 640 000 1 280 000 

 

As a result, the parameter pMicroPerCycle shall be configurable over a range of 960 to 1 280 000 µT. 

B.4.17 gdDynamicSlotIdlePhase 

Consider the following assumptions. 

 The duration of gdDynamicSlotIdlePhase[Minislot] shall be greater than or equal to the idle detection 
time, which can be delayed by ringing.  

 The idle detection time shall be calculated based on the uncorrected bit time and therefore equals 
cChannelIdleDelimiter * adBitMax. 

 The macroticks may also be shortened by the clock deviation. 

Definition of constraint (27) 

gdDynamicSlotIdlePhase[Minislot] >= ceil( ( ceil( (cChannelIdleDelimiter * adBitMax[µs] +  

 adMaxIdleDetectionDelayAfterHIGH[µs] + aAssumedPrecision[µs] +  

 adPropagationDelayMax[µs]) / 

 (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) ) - (gdMinislot[MT] -  

 gdMinislotActionPointOffset[MT]) ) / gdMinislot[MT / Minislot] ) 

 

 

The minimum value for gdDynamicSlotIdlePhase would occur for large values of gdMinislot combined with 
small values of gdMinislotActionPointOffset. In these cases Constraint (27) will evaluate to zero. 

The maximum required value for gdDynamicSlotIdlePhase cannot easily be determined from Constraint (27) 
by simply using the maximum or minimum values of the input parameters. The worst case situation would 
arise when some nodes in the system detect the last potential idle start event just before the end of its local 
minislot. In this case, gdDynamicSlotIdlePhase would need to be large enough to ensure that the CHIRP is 
detected during the dynamic slot idle phase, and thus 

Definition of equation (24) 

gdDynamicSlotIdlePhaseMax[Minislot] = ceil( (cChannelIdleDelimiter * adBitMax[µs] + 

 adMicrotickMaxDistError[µs]) /  

 (gdMacrotick[µs / MT] * (gdMinislot[MT / Minislot] / (1 + gClockDeviationMax))) ) 
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Table B.27 defines the calculations for gdDynamicSlotIdlePhase. 

Table B.27 — Calculations for gdDynamicSlotIdlePhase 

Bit Rate 
Mbit / s 

2,5 5 10 

adMicrotickMax[µs] 0,050 0,050 0,025 0,025 0,0125 

adBitMax[µs] 0,4006 0,2003 0,10015 

gdMacrotickMin[µs] 2 2 1 1 1 

gdMinislotMin[MT] 2 2 2 2 2 

gdDynamicSlotIdlePhaseMin[Minislot] 0 0 0 0 0 

gdDynamicSlotIdlePhaseMax[Minislot] 2 1 2 1 1 

 

As a result, the parameter gdDynamicSlotIdlePhase shall be configurable over a range of 0 to 2 minislots. 

B.4.18 gNumberOfMinislots 

Consider the following: 

Definition of equation (25) 

adActionPointDifference[MT] = if( or( gdActionPointOffset <= gdMinislotActionPointOffset; 

 gNumberOfMinislots = 0); 0; gdActionPointOffset - gdMinislotActionPointOffset ) 

 

 

Definition of constraint (28) 

gNumberOfMinislots[Minislot] = (gMacroPerCycle[MT] - gdNIT[MT] - adActionPointDifference[MT] -  

 gNumberOfStaticSlots * gdStaticSlot[MT] - gdSymbolWindow[MT]) / gdMinislot[MT / Minislot] 
 

 

gNumberOfMinislots is always an integer. To fulfil Constraint (28) the parameters on the right side of the 
equation shall be chosen so that gNumberOfMinislots results in an integer188).  

Table B.28 defines the calculations for gNumberOfMinislots. 

                                                      

188) This can be accomplished by e.g. increasing gdNIT or decreasing gMacroPerCycle. 
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Table B.28 — Calculations for gNumberOfMinislots 

Bit Rate 
Mbit / s 

2,5 5 10 

gMacroPerCycleMax[MT] 8 000 16 000 

gdNITMin[MT] 2 

adActionPointDifferenceMin[MT] 0 

gNumberOfStaticSlotsMin 2 

gdStaticSlotMin[MT] with  

gdMacrotick = 2 µs 

21 - - 

gdStaticSlotMin[MT] with  

gdMacrotick = 1 µs 

- 21 11 

gdSymbolWindowMin[MT] 0 

gdMinislotMin[MT] 2 

gNumberOfMinislotsMax[Minislot] 3 978 7 978 7 988 

 

If no dynamic segment is used, gNumberOfMinislots is set to zero. 

As a result, the parameter gNumberOfMinislots shall be configurable over a range of 0 to 7 988 minislots. 

To estimate the number of frames which could be transmitted in the dynamic segment the following equation 
may be useful: 

Definition of equation (26) 

aMinislotPerDynamicFrame[Minislot] = 1 Minislot +  

 ceil( ((aFrameLengthDynamic[gdBit] + adDTSLowMin[gdBit]) * adBitMax[µs / gdBit] +  

 adMicrotickMaxDistError[µs]) / ((gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) *  

 gdMinislot[MT / Minislot]) ) + gdDynamicSlotIdlePhase[Minislot]  

 

with  

Definition of equation (27) 

adDTSLowMin = 1 gdBit  

 

B.4.19 pRateCorrectionOut 

Consider the following assumptions. 

 The rate correction mechanism shall compensate the accumulated error in microticks of one complete 
cycle. 

 The error of one cycle arises from worst-case clock deviations and is limited to twice the maximum 
deviation of the clock frequency gClockDeviationMax. 
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Depending on, for example, the implementation of the external rate/offset correction, the value of the 
pExternRateCorrection parameter might influence the choice of this parameter value as well189). Detailed 
analysis of effects due to external clock correction terms might influence the parameter range as well. In all 
cases, however, the following constraint shall be fulfilled: 

Definition of constraint (29) 

pRateCorrectionOut[µT] = ceil( pMicroPerCycle[µT] * 2 * gClockDeviationMax *  

 (1 + gClockDeviationMax) ) 
 

 

The Constraint (29) does not include the effects of some influences on the determination of the rate correction 
terms that, for some systems, might result in a clock correction value a few microticks larger or smaller than 
the ideal value. Examples of such effects include quantization and inaccuracies in the measurement of the 
time reference point due to EMI or glitches. These effects are to some extent compensated by the cluster drift 
damping mechanism, which tends to reduce their impact. 

Table B.29 defines the calculations of the minimum for pRateCorrectionOut. 

Table B.29 — Calculations of the minimum for pRateCorrectionOut 

Bit Rate 
Mbit / s 

2,5 5 10 

pMicroPerCycleMin[µT] 1 722 960 960 

pRateCorrectionOutMin[µT] 6 3 3 

 

Table B.30 defines the calculations of the maximum for pRateCorrectionOut. 

Table B.30 — Calculations of the maximum for pRateCorrectionOut 

pdMicrotick 
µs 0,050 0,025 0,0125 

pMicroPerCycleMax[µT] 320 000 640 000 1 280 000 

pRateCorrectionOutMax[µT] 962 1 923 3 846 

 

As a result pRateCorrectionOut shall be configurable over a range of 3 to 3 846 µT. 

B.4.20 Offset Correction  

B.4.20.1 aOffsetCorrectionMax 

The parameter aOffsetCorrectionMax represents the maximum amount of offset correction that would be 
required in a properly working system. aOffsetCorrectionMax also includes the amount of offset correction 
based on an external offset correction. 

                                                      

189) The system designer must ensure that the cluster will never be operated at an aggregate rate (i.e., the internal rate 
corrected by the external rate) that exceeds the value of the clock deviation used in the system design. 
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Consider the following assumptions. 

 The clocks of two nodes may have an offset of up to the assumed precision. 

 The external offset correction might need to be applied. 

 The received frames might be received with the maximum propagation delay of which only the minimal 
possible propagation delay is compensated by the local delay compensation. 

These assumptions are essentially identical to the assumptions on adInitializationErrorMax (see B.4.6), and 
as a result the following constraint shall be fulfilled: 

Definition of constraint (30) 

aOffsetCorrectionMax[µs] >= adInitializationErrorMax[µs]   

 

Constraint (30) provides only a lower bound on the value of aOffsetCorrectionMax. In order to compute the 
configuration ranges of parameters dependent on aOffsetCorrectionMax it is also necessary to have an 
assumed upper bound. This can be computed by making a structural argument based on the maximum 
measured offset values possible given the parameters that determine the characteristics of the static slot (i.e., 
gdStaticSlot and gdActionPointOffset). 

As the offset correction term can be either negative or positive, it is necessary to distinguish between the 
maximum negative and maximum positive value from which the maximum absolute value is taken. Therefore 
two auxiliary variables are introduced: aNegativeOffsetCorrectionMax and aPositiveOffsetCorrectionMax. To 
determine the maximum offset correction value only the absolute value of the negative offset correction is 
considered, which is reflected in the equation below. Therefore the equation for 
aNegativeOffsetCorrectionMax is formulated such that is results in a positive value. 

Consider the following assumptions for deriving the maximum possible negative offset correction. 

 The secondary time reference point of the incoming frame is synchronous with the slot boundary190). 

 The maximum possible delay compensation and decoding correction is applied. 

 The maximum possible external offset correction is considered. 

Definition of equation (28) 

aNegativeOffsetCorrectionMax[µs] = gdActionPointOffset[MT] * (gdMacrotick[µs / MT] / 

 (1 - gClockDeviationMax)) + maxN( adMicrotickDistErrorN[µs] +  

 ( max( pDelayCompensation[A]N[µT] ; pDelayCompensation[B]N[µT] ) + 

 pDecodingCorrectionN[µT]) * (pdMicrotickN[µs / µT] / (1 - gClockDeviationMax)) ) +  

 gExternOffsetCorrection[µs] 

 

 

                                                      

190) This is actually impossible as such a frame would be discarded by the FSP. 
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Consider the following assumptions for deriving the maximum possible positive offset correction. 

 The frame decoded signal of the incoming sync frame arrives synchronous with the slot boundary191). 

 There are exactly 80 plus 20 times gPayloadLengthStatic bits between the secondary time reference 
point and the frame decoded signal. 

 The received frame is transmitted with the minimum allowed bit length. 

 The received frame is subjected to minimum delay compensation and decoding correction. 

 

Definition of equation (29) 

aPositiveOffsetCorrectionMax[µs] = (gdStaticSlot[MT] - gdActionPointOffset[MT]) *  

 (gdMacrotick[µs / MT] / (1 - gClockDeviationMax)) - 

 (8 + 2 * gPayloadLengthStatic) * 10[gdBit] * adBitMin[µs / gdBit] - 

 minN( -adMicrotickDistErrorN[µs] + ( min( pDelayCompensation[A]N[µT] ;  

 pDelayCompensation[B]N[µT] ) + pDecodingCorrectionN[µT]) *  

 (pdMicrotickN[µs / µT] / (1 + gClockDeviationMax)) ) + gExternOffsetCorrection[µs] 

 

 

Using these auxiliary variables, it is possible to derive a maximal absolute value for offset correction: 

Definition of equation (30) 

aOffsetCorrectionMax[µs] <= max( aNegativeOffsetCorrectionMax[µs] ;  

         aPositiveOffsetCorrectionMax[µs] ) 

 

 

                                                      

191) This causes a boundary violation, but the frame is still used for clock synchronisation. 
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Table B.31 defines the calculations for aOffsetCorrectionMax. 

Table B.31 — Calculations for aOffsetCorrectionMax 

Bit Rate 
Mbit / s 

2,5 5 10 

adMicrotickMax[µs] 0,050 0,050 0,025 0,025 0,0125 

adInitializationErrorMaxMin[µs] 0,701 0,701 0,351 0,351 0,175 

aOffsetCorrectionMaxMin[µs] 0,701 0,701 0,351 0,351 0,175 

gdMacrotickMax[µs] 6 6 6 6 3 

gdActionPointOffsetMax[MT] 63 

gdStaticSlotMax[MT]a   304 216 172 217 

gPayloadLengthStaticMax[two-byte word]b   127 c   

adBitMin[µs] 0,3994 0,1997 0,09985 

pDelayCompensation[Ch]Min[µT] 7 4 7 4 7 

pDelayCompensation[Ch]Max[µT] 61 55 111 105 211 

pDecodingCorrectionMin[µT] 24 12 24 12 24 

pDecodingCorrectionMax[µT] 56 40 80 68 136 

pdMicrotick[µs] 0,050 0,050 0,025 0,025 0,0125 

gExternOffsetCorrectionMax[µs] 0,35 

aNegativeOffsetCorrectionMaxMax[µs] 384,827 383,725 383,725 383,274 193,990 

aPositiveOffsetCorrectionMaxMax[µs] 400,597 395,766 395,766 393,351 201,063 

aOffsetCorrectionMaxMax[µs] 400,597 395,766 395,766 393,351 201,063 

a This value was derived just as in Table B.21, but with a value of 6, respectively 3, for gdMacrotick. 

b The largest frame size is assumed as this results in the largest possible discrepancy between nominal and actual frame length. 

c For 2,5 Mbit / s the calculations in this table are conservative, as payload length is restricted by the maximum transmission duration 
adTxMax. See B.4.41 for details. 

 

B.4.20.2 pOffsetCorrectionOut 

Since the check for the offset correction is applied before the external offset correction is included, the effects 
of the external offset correction that are included in the definition of aOffsetCorrectionMax shall be removed 
when calculating pOffsetCorrectionOut. 

Definition of constraint (31) 

pOffsetCorrectionOut[µT] = ceil( (aOffsetCorrectionMax[µs] - gExternOffsetCorrection[µs]) /  

 (pdMicrotick[µs / µT] / (1 + gClockDeviationMax)) ) 
 

 

Table B.32 defines the calculations for pOffsetCorrectionOut. 
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Table B.32 — Calculations for pOffsetCorrectionOut 

Bit Rate 
Mbit / s 

2,5 5 10 

pdMicrotick[µs] 0,050 0,050 0,025 0,025 0,0125 

aOffsetCorrectionMaxMin[µs] 0,701 0,701 0,351 0,351 0,175 

aOffsetCorrectionMaxMax[µs] 400,597 395,766 395,766 393,351 193,990 

gExternOffsetCorrectionMin[µs] 0 

gExternOffsetCorrectionMax[µs] 0,35 

pOffsetCorrectionOutMin[µT] 15 15 15 15 15 

pOffsetCorrectionOutMax[µT] 8 017 7 921 15 841 15 744 16 082 

 

As a result, the parameter pOffsetCorrectionOut shall be configurable over a range of 15 to 16 082 µT. 

B.4.21 pOffsetCorrectionStart 

Consider the following assumptions. 

 The offset correction phase starts at pOffsetCorrectionStart. 

 The offset correction phase ends at the end of the cycle. 

Thus it holds that 

Definition of constraint (32) 

pOffsetCorrectionStart[MT] = gMacroPerCycle[MT] - adOffsetCorrection[MT]  

 

with adOffsetCorrection the length of the offset correction phase, which is constrained in Equation (33) in the 
next subclause. This parameter should be set to the same value for all nodes in a cluster192). 

B.4.22 gdNIT 

Consider the following assumptions. 

a) The NIT consists of offset calculation phase and offset correction phase.  

b) The duration of offset calculation may vary from implementation to implementation, and may vary 
depending on the number of received sync frames. The offset calculation shall be completed before the 
start of the offset correction phase. The upper limit for the duration of the offset calculation is defined in 
12.6.2. The offset correction calculation shall be completed no later than cdMaxOffsetCalculation after the 
end of the static segment or 1 MT after the start of the NIT, whichever occurs later. 

c) The earliest start of the offset correction phase is 1 MT after the start of the NIT. 

d) The duration of offset correction phase is at least 1 MT. 

                                                      

192) For TT-E systems it may be beneficial to allow different offset correction starts for the coldstart and non-sync nodes 
(see B.7.10), and as a result this is a p-parameter rather than a g-parameter. 
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e) The maximum possible value for offset correction is aOffsetCorrectionMax. The offset correction phase 
shall be long enough (i.e., contain enough macroticks) to correct this amount of offset while still keeping 
the length of shortened macroticks greater than or equal to cMicroPerMacroMin microticks. 

f) The offset correction phase and the offset calculation phase can be overlaid with parts of the rate cal-
culation phase. 

g) The duration of rate calculation may vary from implementation to implementation, and may vary 
depending on the number of received sync frames. The rate calculation shall be completed before the 
end of the NIT. The upper limit for the duration of the rate calculation is defined in 12.6.3. The rate 
correction calculation shall be completed no later than cdMaxRateCalculation after the end of the static 
segment or 2 MT after the start of the NIT, whichever occurs later. This can induce the need for a 
prolonged NIT. 

Due to item a), f) and g), the NIT length gdNIT is either the remaining time required to calculate the offset 
correction and then execute it, or the remaining time required to ensure that rate calculation finishes before 
the cycle ends, whichever takes longer. Thus gdNIT can be constrained by 

Definition of constraint (33) 

gdNIT[MT] >= max( adRemRateCalculation[MT]; adRemOffsetCalculation[MT] +  

 adOffsetCorrection [MT] ) 
 

 

Due to item b) the remaining length of the offset calculation phase during the NIT adRemOffsetCalculation can 
be defined by 

Definition of equation (31) 

adRemOffsetCalculation[MT] <= max( 1; ceil( (cdMaxOffsetCalculation[µT] *  

 adMicrotickMax[µs / µT] / (1 - gClockDeviationMax) + adMicrotickMaxDistError[µs] -  

 (adActionPointDifference[MT] + 

 gdMinislot[MT] * gNumberOfMinislots + gdSymbolWindow[MT]) * (gdMacrotick[µs] / 

 (1 + gClockDeviationMax)) ) / (gdMacrotick[µs] / (1 + gClockDeviationMax)) ) ) 

 

 

Definition of equation (32) 

adRemOffsetCalculation[MT] >= 1  

 

With item e) adOffsetCorrection, the length of the offset correction phase, can be constrained by 

Definition of equation (33) 

adOffsetCorrection[MT] >= ceil( (aOffsetCorrectionMax[µs] + adMicrotickMaxDistError[µs]) / 

 (gdMacrotick[µs / MT] / (1 + gClockDeviationMax) - adMicrotickMax[µs / µT] *  

 cMicroPerMacroMin[µT / MT] / (1 - gClockDeviationMax)) ) 
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Finally assumption g) helps to define adRemRateCalculation, the time required to complete the remaining rate 
calculation after the beginning of the NIT. The rate calculation has to be ready early enough that it will finish 
before the cycle start even if a maximum negative offset correction of aOffsetCorrectionMax is applied, 
effectively adding aOffsetCorrectionMax to the required calculation time. It is therefore constrained by 

Definition of equation (34) 

adRemRateCalculation[MT] <= max( 1; ceil( (cdMaxRateCalculation[µT] * adMicrotickMax[µs / µT] 

 / (1 - gClockDeviationMax) + adMicrotickMaxDistError[µs] -  

 (adActionPointDifference[MT] + gdMinislot[MT] *  

 gNumberOfMinislots + gdSymbolWindow[MT]) * gdMacrotick[µs] / 

 (1 + gClockDeviationMax) + aOffsetCorrectionMax[µs] ) /  

 (gdMacrotick[µs] / (1 + gClockDeviationMax)) ) ) 

 

 

Normally there is a period of inactivity following the end of transmission in a static slot and the start of the next 
static slot. If the cycle contains a dynamic segment, however, the period following the end of transmission of 
the dynamic segment and the beginning of the first static slot consists only of the period after the dynamic 
transmission ends until the end of the dynamic segment, the duration of a symbol window (if any), and the 
duration of the NIT (which can be shortened by a negative offset correction). If it is desired that all static slots 
should have a certain minimum margin between the end of the previous transmission and the beginning of the 
static slot it may be necessary to use a larger network idle time than would normally be required. For example, 
if Constraint (20) (which assumes the "space" at the end of a static slot is approximately equal to 
gdActionPointOffset) is used, the following equation would ensure that there is sufficient space between the 
end of a dynamic transmission and the beginning of the first static slot:  

Definition of equation (35) 

gdNIT[MT] >= gdActionPointOffset[MT] - gdSymbolWindow[MT] - (gdMinislot[MT] -  

 gdMinislotActionPointOffset[MT] + 

 gdDynamicSlotIdlePhase[Minislot] * gdMinislot[MT / Minislot]) +  

 ceil( (aOffsetCorrectionMax[µs] + adMicrotickMaxDistError[µs]) /  

 (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) ) 

 

 

This equation would only apply for cycles that actually contain a dynamic segment. Obviously, if a different 
amount of "space" is reserved at the end of a static slot (for example, if gdStaticSlot is set using Constraint 
(21) instead of Constraint (20), or even a larger margin than implied by Constraint (20)) Equation (35) could be 
modified to provide a larger or smaller margin193). If the cycle does not contain a dynamic segment there is no 
need for an additional equation limiting the minimum size of the NIT. 

                                                      

193) If the symbol window is used for transmission of MTS's or WUDOP's Constraint (22) and (23) will ensure the same 
property and an equation similar to Equation (35) is not necessary. 
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The configurable minimum for gdNIT can be found by making the assumption that the NIT consists of only 1 
MT for offset calculation and only 1 MT for offset correction. The configurable maximum for gdNIT can be 
found by making the assumption that the cycle consist of the largest possible number of macroticks and the 
NIT is the duration of the cycle minus the duration of two of the shortest static slots possible using the smallest 
possible nominal macrotick duration. 

As a result, the parameter gdNIT shall be configurable over a range of 2 MT to 15 978 MT. 

B.4.23 pExternRateCorrection 

Consider the assumption that the absolute value of the external rate correction value shouldn't be greater than 
the maximum acceptable rate correction value pRateCorrectionOut. 

Definition of constraint (34) 

pExternRateCorrection[µT] <= pRateCorrectionOut[µT]  

 

The application of external rate or offset correction is controlled by the hosts, and should be synchronized 
such that all nodes apply the same value at the same time in the same direction. In order to achieve this 
synchronisation between the hosts is necessary.  

gExternRateCorrectionMax[µs] is the maximum external rate correction value applied in a cluster. 
gExternRateCorrection has to be chosen in a way that for every microtick duration used in the cluster the 
resulting pExternRateCorrection values are integer numbers194).  
 

Definition of constraint (35) 

pExternRateCorrection[µT] = gExternRateCorrection[µs] / pdMicrotick[µs / µT]  

 

Table B.33 defines the calculations for pExternRateCorrection. 

Table B.33 — Calculations for pExternRateCorrection 

Bit Rate 
Mbit / s 

2,5 5 10 

adMicrotickMax[µs] 0,050 0,050 0,025 0,025 0,0125 

gExternRateCorrectionMin[µs] 0 

gExternRateCorrectionMax[µs] 0,35 

pdMicrotickMin[µs] 0,050 0,025 0,025 0,0125 0,0125 

pExternRateCorrectionMin[µT] 0 

pExternRateCorrectionMax[µT] 7 14 14 28 28 

 

The range of pExternRateCorrection shall be configurable over a range of 0 to 28 µT195). 

                                                      

194) The ability to actually apply an external rate correction is affected by the cluster drift damping. The cluster drift 
damping could even be set to zero for systems where an external rate correction serves to prevent large deviations 
of the operating rate of the cluster. 

195) A small value for pExternRateCorrection (much smaller than pRateCorrectionOut) has the advantage that a node 
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B.4.24 pExternOffsetCorrection 

Consider the assumption that the absolute value of the external offset correction value shouldn't be greater 
than the maximum acceptable offset correction value pOffsetCorrectionOut. 

gExternOffsetCorrectionMax[µs] is the maximum external offset correction value applied in a cluster. 
gExternOffsetCorrection has to be chosen in a way that for every microtick duration used in the cluster the 
resulting pExternOffsetCorrection values are integers.  

Definition of constraint (36) 

pExternOffsetCorrection[µT] = gExternOffsetCorrection[µs] / pdMicrotick[µs / µT]  

 

Table B.34 defines the calculations for pExternOffsetCorrection. 

Table B.34 — Calculations for pExternOffsetCorrection 

Bit Rate 
Mbit / s 

2,5 5 10 

adMicrotickMax[µs] 0,050 0,050 0,025 0,025 0,0125 

gExternOffsetCorrectionMin[µs] 0 

gExternOffsetCorrectionMax[µs] 0,35 

pdMicrotickMin[µs] 0,050 0,025 0,025 0,0125 0,0125 

pExternOffsetCorrectionMin[µT] 0 

pExternOffsetCorrectionMax[µT] 7 14 14 28 28 

 

The range of pExternOffsetCorrection shall be configurable over a range of 0 to 28 µT196). 

B.4.25 pdListenTimeout 

To configure the parameter pdListenTimeout the following constraint shall be taken into account: 

Definition of constraint (37) 

pdListenTimeout[µT] = 2 * (pMicroPerCycle[µT] + pRateCorrectionOut[µT])  

 

Table B.35 defines the calculations of the maximum for pdListenTimeout. 

                                                                                                                                                                                  

which does not apply the external rate correction due to a fault stays synchronized with the other nodes in the cluster. 
196) A small value for pExternOffsetCorrection (much smaller than pOffsetCorrectionOut) has the advantage that a node 

which does not apply the external offset correction due to a fault stays synchronized with the other nodes in the 
cluster. 
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Table B.35 — Calculations of the maximum for pdListenTimeout 

pdMicrotick 
µs 0,050 0,025 0,0125 

pMicroPerCycleMax[µT] 320 000 640 000 1 280 000 

pRateCorrectionOutMax[µT] 962 1 923 3 846 

pdListenTimeoutMax[µT] 641 924 1 283 846 2 567 692 

 

Table B.36 defines the calculations of the minimum for pdListenTimeout. 

Table B.36 — Calculations of the minimum for pdListenTimeout 

Bit Rate 
Mbit / s 

2,5 5 10 

pMicroPerCycleMin[µT] 1 722 960 960 

pRateCorrectionOutMin[µT] 6 3 3 

pdListenTimeoutMin[µT] 3 456 1 926 1 926 

 

As a result, the parameter pdListenTimeout shall be configurable over a range of 1 926 to 2 567 692 µT.  

B.4.26 pDecodingCorrection 

Consider assumption that the time difference between the secondary time reference point and the primary 
time reference point is the summation of pDecodingCorrection and pDelayCompensation (see Figure 47). 

Definition of constraint (38) 

pDecodingCorrection[µT] = round( ((gdTSSTransmitter[gdBit] + cdFSS[gdBit] + 0.5 *  

 cdBSS[gdBit]) * cSamplesPerBit[samples / gdBit]) / pSamplesPerMicrotick[samples / µT] ) 
 

 

Table B.37 defines the calculations for pDecodingCorrection. 

Table B.37 — Calculations for pDecodingCorrection 

Bit Rate 
Mbit / s 

2,5 5 10 

pdMicrotick[µs] 0,050 0,050 0,025 0,025 0,0125 

gdTSSTransmitterMin[gdBit] 1 

gdTSSTransmitterMax[gdBit] 5 8 15 

pSamplesPerMicrotick 1 2 1 2 1 

pDecodingCorrectionMin[µT] 24 12 24 12 24 

pDecodingCorrectionMax[µT] 56 40 80 68 136 

 

As a result, the parameter pDecodingCorrection shall be configurable between 12 and 136 µT. 



BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

320 © ISO 2013 – All rights reserved 
 

B.4.27 pDelayCompensation 

Consider the assumption that for the minimum propagation delay the general internal delay needs to be 
replaced by the specific one of the device in question. 

Therefore the following constraints shall be taken into account: 

Definition of constraint  (39) 

pDelayCompensation[Ch][µT] >= ceil( (adPropagationDelayMin[Ch][µs] +  

 (adInternalRxDelay[samples] - minN( adInternalRxDelayN[samples] ) ) *  

 gdSampleClockPeriod[µs / samples]) / pdMicrotick[µs / µT] ) 

 

 

Definition of constraint  (40) 

pDelayCompensation[Ch][µT] <= floor( adPropagationDelayMax[Ch][µs] / pdMicrotick[µs / µT] )  

 

In the absence of information on the specific distributions of the propagation delays in the cluster, it is 
recommended to set this parameter to a value corresponding to the lower value of Constraint (39). In case 
that not all communication controllers use the same microtick length, care should be taken that all 
communication controllers use effectively the same value in real time (for example, by choosing a slightly 
larger value that is evenly divisible by all occurring microtick lengths in the cluster). 

Using detailed knowledge about the topology of the cluster for the configuration of pDelayCompensation, an 
improvement in both precision and NIT length is possible; the details are however beyond the scope of this 
specification197).  

The values and constraints given in this appendix for precision and NIT assume an identical value in real time 
for all nodes of the cluster, i.e., the product of a node's configuration of pDelayCompensation and the node's 
microtick duration is the same for all nodes in the cluster. 

Table B.38 defines the calculations for pDelayCompensation[Ch]. 

                                                      

197) A starting point is given in clause 7 of [11] - if the exact propagation delays of all relevant sync frames are known it is 
possible to more accurately correct for the effects of the propagation delays. For example, by configuring the value of 
pDelayCompensation of a specific node to the smallest propagation delay affecting any sync frame that node 
receives, the precision formula is improved by replacing the absolute difference of largest and smallest propagation 
delay by one that maximizes over the local differences. A further optimization would attempt to evenly spread the 
measured offset term around zero, so the systematic offset drift is reduced and the NIT can be configured more 
efficiently. 
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Table B.38 — Calculations for pDelayCompensation[Ch] 

Bit Rate 
Mbit / s 

2,5 5 10 

pdMicrotick[µs] 0,050 0,050 0,025 0,025 0,0125 

adInternalRxDelay[samples] - minN(adInternalRxDelayN[samples]) 0 

gdSampleClockPeriod[µs] 0,050 0,025 0,0125 

adPropagationDelayMin[Ch]Min[µs] 0,349 0,175 0,087 

pDelayCompensation[Ch]Min[µT] 7 4 7 4 7 

adPropagationDelayMax[Ch]Max[µs] 3,051 2,775 2,638 

pDelayCompensation[Ch]Max[µT] 61 55 111 105 211 

 

As a result, the parameter pDelayCompensation[Ch] shall be configurable between 4 and 211 µT. 

B.4.28 pMacroInitialOffset 

Consider the assumption that pMacroInitialOffset[Ch] has to be in the range of  

gdActionPointOffset < pMacroInitialOffset[Ch] < gdStaticSlot. 

Definition of constraint  (41) 

pMacroInitialOffset[Ch][MT] = gdActionPointOffset[MT] + ceil( (pDecodingCorrection[µT] +  

 pDelayCompensation[Ch][µT]) / aMicroPerMacroNom[µT / MT] ) 
 

 

Table B.39 defines the calculations for pMacroInitialOffset[Ch]. 

Table B.39 — Calculations for pMacroInitialOffset[Ch] 

Bit Rate 
Mbit / s 

2,5 5 10 

pdMicrotick[µs] 0,050 0,050 0,025 0,025 0,0125 

gdActionPointOffsetMin[MT] 1 1 1 

gdActionPointOffsetMax[MT] 63 63 63 

pDecodingCorrectionMin
[µT] 24 12 24 12 24 

pDecodingCorrectionMax[µT] 56 40 80 68 136 

pDelayCompensation[Ch]Min[µT] 7 4 7 4 7 

pDelayCompensation[Ch]Max[µT] 61 55 111 105 211 

aMicroPerMacroNomMin[µT] 40 40 40 40 80 

aMicroPerMacroNomMax[µT] 120 120 240 240 240 

pMacroInitialOffset[Ch]Min[MT] 2 2 2 2 2 

pMacroInitialOffset[Ch]Max[MT] 66 66 68 68 68 

 

As a result, the parameter pMacroInitialOffset[Ch] shall be configurable between 2 and 68 MT. 
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B.4.29 pMicroInitialOffset 

Consider the following assumptions. 

 The CSS process sets up a macrotick timing grid that is aligned to the primary TRP of the received frame 
used to start the macrotick generation process. The primary TRP is never actually determined, but it is 
assumed to occur before the detected secondary TRP as shown in Figure B.1.  

 Macrotick generation needs to be started at a point that represents an integral number of nominal 
macroticks from the assumed primary TRP. As a result, pMicroInitialOffset[Ch] is the number of 
microticks between the secondary TRP and the start of the subsequent macrotick on a macrotick grid 
aligned with the assumed primary TRP (see Figure B.1). 

Figure B.1 depicts the Illustration of pMicroInitialOffset[Ch]. 

pDecodingCorrection

action point

pDelayCompensation[Ch]

secondary TRPprimary TRP

pMicroInitialOffset[Ch]

macroticks

receiver zVotedVal

 

Figure B.1 — Illustration of pMicroInitialOffset[Ch] 

 

Definition of constraint  (42) 

pMicroInitialOffset[Ch][µT] = floor( ceil( (pDecodingCorrection[µT] +  

 pDelayCompensation[Ch][µT]) / aMicroPerMacroNom[µT / MT] ) * 

 aMicroPerMacroNom[µT / MT] ) -  

 (pDecodingCorrection[µT] + pDelayCompensation[Ch][µT]) 

 

Since aMicroPerMacroNom shall be in the range 

cMicroPerMacroNomMin <= aMicroPerMacroNom <= cMicroPerMacroNomMax 

the results of Constraint (42) will lie in the range from 0 to cMicroPerMacroNomMax - 1. As a result, the 
parameter pMicroInitialOffset[Ch] shall be configurable over a range of 0 to 239 µT. 

Because of the mechanisms defined in the clock synchronisation startup process the following constraint shall 
also be fulfilled: 
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Definition of constraint  (43)198) 

pMicroInitialOffset[Ch][µT] < floor( (((5 + 2 * gPayloadLengthStatic + 3) * 10[gdBit] - 
cdBSS[gdBit]  

 + 0,5 * cdFES[gdBit]) * adBitMin[µs / gdBit]) /  

 (pdMicrotick[µs / µT] / (1 - gClockDeviationMax)) ) 

 

B.4.30 pLatestTx 

pLatestTx defines the last allowed starting point of a frame transmission in the dynamic segment. This 
parameter may be used by the system designer to ensure that if a node begins to transmit a frame in the 
dynamic segment that it will be allowed to complete the transmission (i.e., if transmission is allowed to start, 
there is enough time remaining in the dynamic segment to allow the transmission to complete). Obviously, the 
time required to complete the transmission is dependent on the size of the frame. Substituting the desired 
dynamic frame length aPayloadLengthDynamic for aPayloadLength in Equation (21) results in 

Definition of equation (36)199) 

aFrameLengthDynamic = aFrameLength with aPayloadLength = pPayloadLengthDynMax  

 

Using this, it is possible to develop an equation for a configuration of pLatestTx that would ensure that, once 
started, a transmission of a frame with a payload length less than or equal to aPayloadLengthDynamic will be 
able to be completed before the end of the dynamic segment. 

Consider the following assumptions. 

 After each frame the dynamic slot idle phase shall be taken into account. 

 The influence of the clock deviation (gClockDeviationMax) on the length of a macrotick shall be taken into 
account.  

With the definition of aFrameLengthDynamic in Equation (36) and adDTSLowMin in Equation (27), the 
constraint on pLatestTx is 

Definition of constraint  (44) 

pLatestTx[Minislot] <= floor( gNumberOfMinislots[Minislot] - ( ((aFrameLengthDynamic[gdBit] + 

 adDTSLowMin[gdBit]) * adBitMax[µs / gdBit] + adMicrotickDistError[µs]) /  

 ((gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) * gdMinislot[MT / Minislot]) ) -  

 gdDynamicSlotIdlePhase[Minislot] ) 

 

 

Constraint (44) defines, as a function of aPayloadLengthDynamic, the value that shall be configured into 
pLatestTx to ensure that transmissions that begin will be allowed to complete.  

                                                      

198) Constraint (43) is necessary to ensure that events occur in the correct order in the clock synchronisation startup 
process. For systems that follow the constraints in this appendix, this constraint will always be fulfilled and does not 
conflict with Constraint (42). 

199) This parameter may be different for each node. It is the length of the longest possible frame sent in the dynamic 
segment by the node under consideration. 
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A system designer can achieve various node behaviours through the choice of the value for pLatestTx. Some 
possibilities include: 

 the node is not allowed to transmit in the dynamic segment. This could be achieved by setting pLatestTx 
to zero; 

 the node is only allowed to transmit if all its possible frames could be completely transmitted. This could 
be achieved by setting pLatestTx to the value given by calculating Constraint (44) with 
aPayloadLengthDynamic set to the payload length of longest possible dynamic frame sent by the node; 

 the node is only allowed to transmit if frames of a defined length could be completely transmitted. This 
length might be shorter than the longest possible frame sent by the node in the dynamic segment200). 
This could be achieved by setting pLatestTx to the value given by calculating Constraint (44) with 

aPayloadLengthDynamic set to the desired payload length; 

 the node is only allowed to begin transmissions in the first portion of the dynamic segment. This could be 
achieved by setting pLatestTx to a value greater than zero, but still near the beginning of the dynamic 
segment; 

 tThe node is allowed to start a transmission at any time in the dynamic segment even if the frame may 
not be completely transmitted (i.e., the pLatestTx mechanism is effectively circumvented). This could be 
achieved by setting pLatestTx to gNumberOfMinislots. 

The value of pLatestTx shall be configurable over a range of 0 to gNumberOfMinislotsMax (see B.4.18), and 
thus shall be configurable over a range of 0 to 7 988 minislots. 

B.4.31 gdTSSTransmitter 

Consider the following assumptions. 

 The first low phase of a frame (TSS), as seen by the receiver, may be changed at the beginning by an 
interval of up to dFrameTSSLengthChangeM,N + dFrameTSSEMIInfluenceM,N as the frame passes through 
the network. The amount of change depends on the particular bus drivers and active stars that are 
involved, and on the channel topology layout. The parameter gdTSSTransmitter shall be chosen to be 
greater than the expected worst case truncation of a frame. 

 Receiving nodes shall receive at least one complete bit of the TSS phase. 

 The nominal bit rates of different nodes in the cluster may differ by the maximum allowable clock 
deviation. The transmitted TSS duration shall account for the case where the transmitter sends bits that 
are as short as allowed and the receiver expects bits that are as long as allowed. 

Definition of constraint  (45)201) 

gdTSSTransmitter[gdBit] >= ceil( (adBitMax[µs] - minM,N( dFrameTSSLengthChangeM,N[µs] +  

 dFrameTSSEMIInfluenceM,N[µs] ) ) / adBitMin[µs / gdBit] ) 
 

 

                                                      

200) Such a configuration might be useful if, for example, a system designer knows that a node may send long frames, 
but only at the beginning of the dynamic segment. 

201) A description of the dFrameTSSLengthChangeM,N and dFrameTSSEMIInfluenceM,N parameters may be found in 
ISO 17458-4. The maximum values of these parameters for systems with 0, 1, and 2 active stars may be found in 
ISO 17458-4. The configuration constraint is expressed in terms of the actual values of the TSS truncation present in 
the system under consideration. This may be less than the maximum values expressed in the ISO 17458-4. 

http://dx.doi.org/10.3403/30253320U
http://dx.doi.org/10.3403/30253320U
http://dx.doi.org/10.3403/30253320U
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Since every CAS or MTS symbol is prepended by a TSS, the resulting bit stream will be lengthened or 
shortened by an interval of up to dSymbolLengthChangeM,N + dSymbolEMIInfluenceM,N as the low phase 
passes through the network. The amount of length change depends on the active stars that are involved and 
on the channel topology layout. 

In order to avoid shortening below the acceptance level for symbol reception the following Constraint shall 
also be fulfilled: 

Definition of constraint  (46) 

gdTSSTransmitter[gdBit] >= ceil( (cdCASRxLowMin[gdBit] * adBitMax[µs / gdBit] - 

 minM,N( dSymbolLengthChangeM,N[µs] + dSymbolEMIInfluenceM,N[µs] ) ) /  

 adBitMin[µs / gdBit] - cdCAS[gdBit] ) 

 

 

Table B.40 defines the calculations for gdTSSTransmitter. 

Table B.40 — Calculations for gdTSSTransmitter 

Bit Rate 
Mbit / s 

2,5 5 10 

adBitMax[µs] 0,4006 0,2003 0,10015 

adBitMin[µs] 0,3994 0,1997 0,09985 

dFrameTSSLengthChangeM,N
Min[µs]a  -1,3 

dFrameTSSEMIInfluenceM,N
Min[µs]a  -0,075 

dSymbolLengthChangeM,N
Min[µs]a  -0,925 

dSymbolEMIInfluenceM,N
Min[µs]a  -0,3 

gdTSSTransmitterMax[gdBit] 5 8 15 

a for a network with two active stars 

 

By definition, the transmitted TSS shall always consist of at least one bit. The calculation of the maximum 
number of bits required is shown in Table B.40. As a result, the parameter gdTSSTransmitter shall be 
configurable between 1 and 15 gdBit. 

B.4.32 gdCASRxLowMax 

Consider the assumption that a CAS symbol shall be accepted even if it overlaps with another CAS symbol. 

The situations that can cause CAS overlaps during startup are quite complicated, and depend heavily on 
several characteristics of the system in question, including system topology, macrotick duration, propagation 
delays, ringing, symbol length change, etc. Further, the worst case situations themselves are also 
complicated, as some involve a combination of events that may be considered unlikely by some system 
designers (for example, the expiration of the startup noise timer sufficiently close to the completion of the 
reception of a CAS from another node), and vary from system to system. As a result of this complexity, 
presenting a single configuration constraint for all the possible combinations is beyond the scope of this 
specification.  

In order to provide some guidance, the following conservative equations are presented. 
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Equation (37) gives an upper bound for situations in which there are no CAS collisions (i.e., where only a 
single node can act as a leading coldstarter). 

Definition of equation (37) 

gdCASRxLowMax[gdBit] = ceil( ((gdTSSTransmitter[gdBit] + cdCAS[gdBit]) * adBitMax[µs / gdBit] + 

 maxM,N( dSymbolLengthChangeM,N[µs] + dSymbolEMIInfluenceM,N[µs] + 

 anRingPathM,N * dRing[µs] ) ) / adBitMin[µs / gdBit] ) 

 

Equation (38) gives an upper bound for situations in which there is an overlap of the CAS's of two coldstart 
nodes, assuming that each CAS experiences the maximum lengthening possible in the system 

Definition of equation (38) 

gdCASRxLowMax[gdBit] = ceil( ( 2 * ( (gdTSSTransmitter[gdBit] + cdCAS[gdBit] ) *  

 adBitMax[µs / gdBit] + maxM,N( dSymbolLengthChangeM,N[µs] +  

 dSymbolEMIInfluenceM,N[µs] + anRingPathM,N * dRing[µs] ) ) +  

 adBitMin[µs] ) / adBitMin[µs / gdBit] ) 

 

 

Normally the minimum value for gdCASRxLowMax is limited by the minimum acceptance value 
cdCASRxLowMin which would imply a minimum value of 29 for gdCASRxLowMax. There are certain use 
cases, however, where the system designer might wish to eliminate the effects caused by a reception of a 
CAS during the startup procedure. This can be accomplished by configuring the value of gdCASRxLowMax to 
be less than cdCASRxLowMin202). In order to allow such configurations, the value of gdCASRxLowMax shall 
be able to be configured to be less than cdCASRxLowMin. 

In order to determine the maximum configurable value of gdCASRxLowMax a margin beyond the maximum 
value of Equation (38) is taken into account. As a result, the parameter gdCASRxLowMax shall be 
configurable over a range of 28 to 254 gdBit. 

B.4.33 gdWakeupTxIdle 

The following constraint shall be met: 

Definition of constraint (47) 

gdWakeupTxIdle[gdBit] = ceil( cdWakeupTxIdle[µs] / gdBit[µs / gdBit] )  

 

Table B.41 defines the calculations for gdWakeupTxIdle. 

                                                      

202) As the same detection is used for both CAS's and MTS's, such a system would also not be able to detect the 
reception of MTS's. 
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Table B.41 — Calculations for gdWakeupTxIdle 

Bit Rate 
Mbit / s 

2,5 5 10 

gdBit[µs] 0,4 0,2 0,1 

gdWakeupTxIdle[gdBit] 45 90 180 

 

As a result, the parameter gdWakeupTxIdle shall be configurable between 45 and 180 gdBit. 

B.4.34 gdWakeupTxActive 

The following constraint shall be met: 

Definition of constraint 

gdWakeupTxActive[gdBit] = ceil( cdWakeupTxActive[µs] / gdBit[µs / gdBit] ) (48) 

 

Table B.42 defines the calculations for gdWakeupTxActive. 

Table B.42 — Calculations for gdWakeupTxActive 

Bit Rate 
Mbit / s 

2,5 5 10 

gdBit[µs] 0,4 0,2 0,1 

gdWakeupTxActive[gdBit] 15 30 60 

 

As a result, the parameter gdWakeupTxActive shall be configurable between 15 and 60 gdBit. 

B.4.35 gdWakeupRxIdle 

There are in principle two ways to configure the recognition of the idle or high phase that occurs between two 
low phases inside a WUS or WUDOP: 

 based on the length of the generated idle or high phase, a possible superposition of wakeup symbols and 
the maximum length change inside the network; 

 based on the acceptance criterion of the bus driver. 

The following equation is based on the acceptance criterion of the bus driver (dWUIdleDetect), under the 
assumption that the intended purpose behind the equation is to ensure that if a CC detects activity on the bus 
as a wakeup that the local bus driver would have been guaranteed to have detected the same activity as a 
wakeup. 

Definition of equation (39) 

gdWakeupRxIdle[gdBit] = ceil( dWUIdleDetect
Max[µs] / adBitMin[µs / gdBit] )  

 

NOTE This equation does not consider certain minor effects that could further shorten or lengthen the received idle 
or high phase. This is acceptable, since the acceptance criterion (dWUIdleDetect) of the bus driver contains a substantial 
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margin over the length of the idle or high phase generated by a FlexRay device that is transmitting WUP's or WUDOP's, 
even considering the effects of overlapping WUS's. 

Because there are, however, multiple ways to configure this parameter, the required configuration range is not 
derivable directly from Equation (39). To allow different choices, the parameter gdWakeupRxIdle shall be 
configurable between 8 and 59 gdBit. 

B.4.36 gdWakeupRxLow 

There are in principle two ways to configure the recognition of the low phase of a received wakeup symbol: 

 based on the length of the transmitted low phase and the maximum shortening inside the network; 

 based on the acceptance criterion of the bus driver. 

The following equation is based on the acceptance criterion of the bus driver (dWU0Detect), under the 
assumption that the intended purpose behind the equation is to ensure that if a CC detects activity on the bus 
as a wakeup that the local bus driver would have been guaranteed to have detected the same activity as a 
wakeup. 

Definition of equation (40) 

gdWakeupRxLow[gdBit] = ceil( dWU0Detect
Max[µs] / adBitMin[µs / gdBit] )  

 

NOTE This equation does not consider certain minor effects that could further shorten or lengthen the received low 
phase. This is acceptable, since the acceptance criterion (dWU0Detect) of the bus driver contains a substantial margin over 
the length of the low phase generated by a FlexRay device that is transmitting WUP's or WUDOP's. 

Because there are, however, multiple ways to configure this parameter, the required configuration range is not 
derivable directly from Equation (40). To allow different choices, the parameter gdWakeupRxLow shall be 
configurable between 8 and 59 gdBit. 

B.4.37 gdWakeupRxWindow 

There are in principle two ways to configure the maximum window in which the phases necessary for wakeup 
detection shall occur: 

 based on the maximum length of a pair of generated WUS's; 

 based on the acceptance criterion of the bus driver. 

The following equation is based on the acceptance criterion of the bus driver (dWUTimeout), under the 
assumption that the intended purpose behind the equation is to ensure that if a CC detects activity on the bus 
as a wakeup that the local bus driver would have been guaranteed to have detected the same activity as a 
wakeup. 

Definition of equation (41) 

gdWakeupRxWindow[gdBit] = floor( dWUTimeout
Min[µs] / adBitMax[µs / gdBit] )  

 

NOTE This equation does not consider certain effects that could further shorten or lengthen the various components 
required to detect a wakeup. This is acceptable, since the acceptance criterion (dWUTimeout) of the bus driver contains a 
substantial margin over the length of the relevant components generated by a FlexRay device that is transmitting WUP's 
or WUDOP's. 
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Because there are multiple ways to configure this parameter, the required configuration range is not derivable 
directly from Equation (41). To allow different choices, the parameter gdWakeupRxWindow shall be 
configurable between 76 and 485 gdBit. 

B.4.38 gdIgnoreAfterTx 

After the transmission of a WUS low phase a FlexRay CC normally switches immediately to reception in order 
to detect wakeup collisions. Due to digital and analogue delays inside the CC and due to various delays 
inherent in the physical layer (e.g., TxEN - RxD loopback duration), the WUPDEC process will most likely 
observe some low bits that are the consequence of its own transmission instead of the transmission of 
another node. This effect is increased if there are also echoes or ringing on the physical layer of the 
transmitting node. A similar situation occurs after a frame transmission, delaying the detection of idle for the 
transmitter of a frame. 

The parameter gdIgnoreAfterTx defines a phase in bit times after the transmission in which the bit strobing 
process of a transmitting node ignores the RxD input and instead assumes that the communication channel is 
idle.  

The following constraint defines a value of gdIgnoreAfterTx that ensures that no bits would be strobed as low 
as a consequence of a transmission. This constraint is not strictly necessary, as a system may still operate 
properly even if one or more bits are strobed as low following the transmission. As a consequence, the 
following constraint should be considered to be optional - if this constraint is not met the system designer shall 
ensure that the number of bits that could be strobed as low would be acceptable for their particular system. 

Definition of constraint  (49) 

gdIgnoreAfterTx[gdBit] >= ceil( maxM( ( (dCCTxEN01[µs] + adNodeTxRxaiM[µs] + dCCRxD01[µs] 

 + dRxUncertainty[µs]) / (gdSampleClockPeriod[µs / samples] / 

 (1 + gClockDeviationMax)) + adInternalRxDelayM[samples] + 

 cVotingDelay[samples] - (cStrobeOffset[samples] - 1 samples) ) ) /  

 cSamplesPerBit[samples / gdBit] ) 

 

with  

adNodeTxRxaiM = dBDTxRxai  if node M is connected to the bus via a bus driver and  

adNodeTxRxaiM = dStarTxRxai if node M is connected to the bus via an active  
star-communication controller interface. 

 

 

Table B.43 provides example calculations for gdIgnoreAfterTx under the assumption that the maximum 
echo / ring duration dRxUncertainty is no more than 0,250 µs. 
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Table B.43 — Calculations for gdIgnoreAfterTx 

Bit Rate 
Mbit / s 

2,5 5 10 

gdSampleClockPeriod[µs] 0,05 0,025 0,0125 

dCCTxEN01Max[µs] 0,025 

max( dBDTxRxai[µs]; dStarTxRxai[µs] ) 0,325 

dCCRxD01Max[µs] 0,01 

dRxUncertaintyMax[µs] 0,25 

maxN( adInternalRxDelayNMax[samples] ) 4 

gdIgnoreAfterTx[gdBit] 2 4 7 

 

Certain applications may experience ring / echo durations larger than 0,250 µs, requiring somewhat larger 
values for gdIgnoreAfterTx. In addition, some applications may never want the BITSTRB process to go into 
BLIND mode. As a result, the parameter gdIgnoreAfterTx shall be configurable over a range of 0 to 15 gdBit. 

In addition to the previous constraint, in some systems it is possible that the selected value of gdIgnoreAfterTx 
might force a change to the constraints used for static slot size, minislot size, and symbol window size. This is 
due to the fact that following a transmission in a slot, minislot, or in the symbol window it is necessary that a 
node is actually able to receive communication activity that starts in the next slot, minislot, or segment 
(whichever is appropriate). In order to receive activity that is present it is necessary that the BITSTRB process 
is not currently operating in the BLIND mode, which is essentially equivalent to ensuring that the 
gdIgnoreAfterTx period is complete before the current slot, minislot, or symbol window ends. This creates the 
following additional constraints: 

For the static slot size: 

Definition of constraint  (50) 

gdStaticSlot[MT] >= gdActionPointOffset[MT] + ceil( (aFrameLengthStatic[gdBit] +  

 gdIgnoreAfterTx[gdBit] + 1 [gdBit]) * adBitMax[µs / gdBit] / 

 (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) ) 

 

 

For the minislot size: 

Definition of constraint  (51) 

gdMinislot[MT / minislot] >= ceil( (gdMinislotActionPointOffset[MT] + 

 ceil( (1 [gdBit] + gdIgnoreAfterTx[gdBit] + 1 [gdBit]) * adBitMax[µs / gdBit] / 

 (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) ) ) / 

 (1 [minislot] + gdDynamicSlotIdlePhase[minislot]) ) 
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For a symbol window in which an MTS may be transmitted: 

Definition of constraint  (52) 

gdSymbolWindow[MT] >= gdSymbolWindowActionPointOffset[MT] +  

 ceil( (gdTSSTransmitter[gdBit] + cdCAS[gdBit] + gdIgnoreAfterTx[gdBit] + 1 [gdBit]) *  

 adBitMax[µs / gdBit] / (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) )  

 

 

For a symbol window in which a WUDOP may be transmitted: 

Definition of constraint  (53) 

gdSymbolWindow[MT] >= gdSymbolWindowActionPointOffset[MT] +  

 ceil( (5 * gdWakeupTxActive[gdBit] + 1 [gdBit] + gdIgnoreAfterTx[gdBit] + 1 [gdBit]) *  

 adBitMax[µs / gdBit] / (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) )  

 

 

These constraints are always applicable, for the majority of practical systems these constraints will not be 
relevant as other constraints (in particular, those in B.4.12, B.4.13, and B.4.14) will require larger sizes. It is 
possible, however, that systems with low propagation delay and very good precision might be affected by 
Constraints (50) – (53). 

There is another potential situation that might result in a slightly different requirement on gdIgnoreAfterTx. 
During a wakeup process it is possible that two nodes begin their wakeup transmission at approximately the 
same point in time, and thus reach the end of the active low portion of the WUP at approximately the same 
time. The end of activity from each of the transmitters would propagate down the physical layer with a 
propagation delay characteristic of the physical layer. If both nodes are connected to the same linear bus (or 
to the same branch of an active star) it is possible in some circumstances for each node transmitting a 
wakeup to detect the activity of the other node, potentially causing both nodes to abort their wakeup trans-
mission. This can only happen in systems where the propagation delay attributed to the physical layer is large 
compared to real time corresponding to cdWakeupMaxCollision, and where both nodes are connected to the 
same linear bus, or the same branch of an active star.  

One possible mechanism to avoid this possibility would be to use a value for gdIgnoreAfterTx that is large 
enough to prevent a node from detecting the activity of another node that ends the active low phase of a WUP 
at the same instant as the local node. This could be done using a value for gdIgnoreAfterTx determined in a 
manner similar to Constraint (49) but also including the effects of the propagation delay associated with the 
physical layer between wakeup nodes that are connected to the same linear bus, or the same branch of an 
active star. 

B.4.39 pKeySlotID 

Nodes that do not have a key slot shall set the value of pKeySlotID to zero.  

Nodes that do have a key slot shall configure pKeySlotID to a slot ID that lies within the static segment, and 
thus shall satisfy the following constraint: 

Definition of constraint  (54) 

1 <= pKeySlotID <= gNumberOfStaticSlots  
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In addition, nodes for which pKeySlotUsedForSync is set to true shall have a key slot, and thus the value of 
pKeySlotID for such nodes shall satisfy Constraint (54). 

The value of gNumberOfStaticSlotsMax is cStaticSlotIDMax, and as a result the parameter pKeySlotID shall be 
configurable over a range of 0 to cStaticSlotIDMax. 

B.4.40 adTxMax 

The electrical physical layer restricts the duration of any transmissions by a CC (see ISO 17458-4): 

 The TxEN activation of a BD connected to a CC shall not exceed a duration of dBDTxActiveMax. 

 Activity on an incoming branch of an active star shall not exceed a duration of dBranchRxActiveMax. This 
activity can be prolonged by ringing. 

The parameter adTxMax defines the maximum transmission duration of a CC, i.e., the maximum allowable 
duration of TxEN activation of a CC for a specific system: 

Definition of equation (42) 

adTxMax[µs] = maxM,N( if( nStarPathM,N > 0; min( dBDTxActiveMax[µs];  

 dBranchRxActiveMax[µs] - dBDTxDM[µs] -  

 if( anRingPathM,N > 0; dRing[µs]; 0 ) - (nStarPathM,N - 1) * 

 max( (dStarFES1LengthChange[µs] + dStarTSSLengthChange[µs]); 0 ) ); 

 dBDTxActiveMax[µs] ) ) 

 

 

B.4.41 gPayloadLengthStatic 

Consider the assumption that the duration of a static frame transmission shall not exceed the maximum 
transmission duration of a CC. 

Therefore the following constraint shall be met: 

Definition of constraint  (55) 

adTxStat[µs] <= adTxMax[µs]  

with adTxStat being the upper bound for the static frame transmission duration, calculated by 

Definition of equation (43) 

adTxStat[µs] = aFrameLengthStatic[gdBit] * adBitMax[µs / gdBit]  

 

with the definition of aFrameLengthStatic as given in Equation (22) in B.4.13. 

http://dx.doi.org/10.3403/30253320U
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Based on Constraint (55) and Equation (43), the following constraint shall be met: 

Definition of constraint  (56) 

gPayloadLengthStatic[two-byte word] <= floor( (adTxMax[µs] / adBitMax[µs / gdBit] -  

 gdTSSTransmitter[gdBit] - cdFSS[gdBit] - 80 [gdBit] - cdFES[gdBit] ) /  

 20 [gdBit / two-byte word] ) 

 

 

NOTE This constraint is automatically satisfied for systems operating at 5 or 10 Mbit / s. 

By definition, gPayloadLengthStatic is configurable between 0 and cPayloadLengthMax two-byte words. 

B.4.42 pPayloadLengthDynMax 

Consider the assumption that the duration of a dynamic frame transmission shall not exceed the maximum 
transmission duration of a CC.  

Therefore the following constraint shall be met: 

Definition of constraint  (57) 

adTxDyn[µs] <= adTxMax[µs]  

 

with adTxDyn being the longest possible duration of a dynamic frame transmission203), calculated by 

Definition of equation (44) 

adTxDyn[µs] = ceil( ((aFrameLength[gdBit] + adDTSLowMin[gdBit]) * adBitMax[µs / gdBit] +  

 adMicrotickDistError[µs]) / ((gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) *  

 gdMinislot[MT / Minislot]) ) * ((gdMacrotick[µs / MT] / (1 - gClockDeviationMax)) *  

 gdMinislot[MT / Minislot]) + adBitMax[µs] + adMicrotickDistError[µs] 

 

 

with the definition of aFrameLength as given in Equation (21) in B.4.13.  

NOTE This constraint is automatically satisfied for systems operating at 10 Mbit / s. 

Constraint (57) applies to all dynamic frames, including frames with the longest payload of 
pPayloadLengthDynMax. As a result, this constraint indirectly places a constraint on the value of 
pPayloadLengthDynMax. A constraint for pPayloadLengthDynMax can't be derived directly from Constraint 
(57) due to the ceil-function in Equation (44). As a consequence, Constraint (57) has to be checked for any 
intended value of pPayloadLengthDynMax. 

The equation below can be used to calculate a value for pPayloadLengthDynMax that is guaranteed to work 
for a given system, although it is possible that larger values for pPayloadLengthDynMax would also be 
acceptable (i.e., would satisfy Constraint (57)). 

                                                      

203) This calculation represents an upper bound, but no transmission will actually reach this duration. 
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Definition of equation (45) 

pPayloadLengthDynMax[two-byte word] <= floor( (((((adTxMax[µs] - adBitMax[µs] - 

 adMicrotickDistError[µs]) /  

 (gdMacrotick[µs / MT] / (1 - gClockDeviationMax))) - gdMinislot[MT]) * 

 (gdMacrotick[µs / MT] / (1 + gClockDeviationMax)) - adMicrotickDistError[µs]) /  

 adBitMax[µs / gdBit] - adDTSLowMin[gdBit] - gdTSSTransmitter[gdBit] - cdFSS[gdBit] -  

 80 [gdBit] - cdFES[gdBit]) / 20 [gdBit / two-byte word] ) 

 

 

B.4.43 gCycleCountMax 

Consider the assumption that the clock synchronisation algorithm and startup process requires that cycle 
counter values alternate between even and odd values. This includes the behaviour of the cycle counter when 
it is updated following the cycle with vCycleCounter equal to gCycleCountMax. Since the cycle counter is 
reset to zero (an even value), the last cycle before the reset to zero shall have an odd cycle counter value. 

As a result, the following constraint shall be fulfilled: 

Definition of constraint  (58) 

gCycleCountMax shall be an odd integer.  

 

B.5 Configuration of cluster synchronisation method and node synchronisation role 

The node synchronisation role and, indirectly, the cluster synchronisation method is determined by several 
configuration parameters listed in Table B.44 . Please note that the behaviour of non-sync nodes is identical 
for all cluster synchronisation methods. 

Table B.44 — Relationship of configuration parameters that determine the role of a FlexRay node 

Synchronisation 
role 

Synchronisation method pKeySlot 
UsedForStartup 

pKeySlot 
UsedForSync 

pTwoKey 
SlotMode 

pExternal 
Sync 

coldstart node TT-D cluster true true false false 

coldstart node TT-L cluster true true true false 

coldstart node TT-E cluster true true true true 

sync node TT-D cluster false true false false 

non-sync node TT-D, TT-L or TT-E cluster false false false false 

 

Any combination not depicted in this table is illegal; thus the behaviour of a node for any such combination is 
undefined. 

If the optional parameter pExternalSync is not implemented, the node behaves as if it were set to false. 
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The parameter pFallBackInternal is only evaluated by a coldstart node in a TT-E cluster, i.e., a time gateway 
sink node. This parameter determines the behaviour of the node in case that the synchronisation to the time 
gateway source is lost or erroneous. If the parameter is set to true, the node will switch to its local clock and 
continue to operate in NORMAL_ACTIVE. If the parameter is set to false, the node will switch to POC:halt. 

The parameter pFallbackInternal shall be set to false if there is more than one coldstart node in a TT-E 
cluster. 

B.6 Calculation of configuration parameters for nodes in a TT-L cluster 

B.6.1 General 

This subclause describes the configuration parameters that are only available for nodes operating in a TT-L 
cluster or that are calculated differently compared to operation in a TT-D cluster. For parameters not 
contained in this subclause please refer to B.4. 

B.6.2 gClusterDriftDamping 

Consider the assumption that the timing of a TT-L cluster is fully determined by the timing of the single TT-L 
coldstart node. As there is no feedback from the non-sync nodes of the TT-L cluster to the TT-L coldstart 
node, measurement errors cannot accumulate in the rate correction term. Thus it is unnecessary to 
compensate for this effect with the cluster drift damping term. 

Definition of constraint  (59) 

gClusterDriftDamping[µT] = 0 µT  

 

B.6.3 TT-L cluster precision 

A TT-L cluster contains only a single sync node and is therefore not capable of withstanding Byzantine faults. 
As a consequence, only a best-case precision can be given: 

Definition of equation (46) 

aBestCasePrecision[µs] = 13 µT * adMicrotickMax[µs / µT] / (1 - gClockDeviationMax) + 

 adMicrotickMaxDistError[µs] + adPropagationDelayMax[µs] - adPropagationDelayMin[µs] 

 

 

It should not be assumed that the precision of a cluster cannot exceed the term given in Equation (46) in the 
presence of faults; it is just not possible to characterize the cluster behaviour analytically. 

It is further possible to compensate the propagation delay of the sync frames rather precisely by configuring 
the parameter pDelayCompensation in each node based on the actual propagation delay between the single 
coldstart node and the node in question; this would replace the propagation delay difference terms in Equation 
(46) with the maximum over all nodes of the difference between the configured delay compensation term and 
the actual propagation delay between the sync node and the node in question. Such a configuration should 
only be done if the system designer has a good understanding of the actual propagation delays.  

With the new definition of aBestCasePrecision given in Equation (46) Constraint (5) remains valid.  

In order for the values of the parameters that depend on the assumed precision to remain within their defined 
parameter ranges the value chosen for aAssumedPrecision in a TT-L cluster should lie within the range of 
allowable values of aAssumedPrecision for TT-D clusters as given in B.4.3.6. 
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B.6.4 pSecondKeySlotID 

Nodes that do not have a second key slot (pTwoKeySlotMode = false) shall set the value of 
pSecondKeySlotID to zero. 

Nodes that do have a second key slot (pTwoKeySlotMode = true) shall configure pSecondKeySlotID to a slot 
ID that lies within the static segment, and thus shall satisfy the following constraint 

Definition of constraint  (60) 

1 <= pSecondKeySlotID <= gNumberOfStaticSlots  

 

Further, the second key slot shall be different from the first key slot, thus 

Definition of constraint  (61) 

pKeySlotID != pSecondKeySlotID  

 

B.6.5 gdActionPointOffset 

Due to having only a single coldstart node, Constraint (13) is superfluous and shall not be applied to TT-L 
clusters. Constraint (12) remains valid. 

B.7 Calculation of configuration parameters for nodes in a TT-E cluster 

B.7.1 General 

This subclause describes the configuration parameters that are only applicable for nodes operating in a TT-E 
cluster or parameters that are calculated differently than for nodes operating in a TT-D cluster. Parameters not 
specifically mentioned in this subclause are configured in the same manner as for nodes operating in a TT-D 
cluster, i.e., are configured in the same manner as described in B.4. 

For some of the formulas of this subclause, the value of parameters of the time source cluster is needed. Thus 
it becomes necessary to distinguish between parameters of the time sink cluster and the time source cluster. 
To that effect, parameters of the time sink cluster stay unmarked, but parameters of the time source cluster 
are marked with a "source" suffix as in adPropagationDelayMaxsource. 

Further, some constraints affect only the coldstart nodes of a TT-E cluster. For such constraints, the config-
uration parameters are annotated with a "GWsink" suffix as in pdMicrotickGWsink. Correspondingly configuration 
parameters of the time gateway source nodes are similarly marked, e.g., as pdMicrotickGWsource. 

B.7.2 gClusterDriftDamping 

Consider the assumption that the timing of a FlexRay cluster using the TT-E synchronisation method is fully 
determined by the timing of the time source cluster. As there is no feedback from the time sink cluster to the 
time source cluster, the measurement errors of the nodes of the time sink clusters cannot accumulate in the 
rate correction term. Thus it is unnecessary to compensate for this effect with the cluster drift damping term. 

Definition of constraint  (62) 

gClusterDriftDamping[µT] = 0 µT  
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B.7.3 TT-E cluster precision 

B.7.3.1 Mixed topology error 

The precision of a TT-E cluster is not only dependent on the configuration and topology of the cluster in 
question, i.e., the time sink cluster, but also depends on the parameters and topology of the time source 
cluster. 

In the following, the TT-E cluster precision values are given for an example system where the time source 
cluster is a TT-D cluster operating with worst-case precision and an example where the time source cluster is 
a TT-L cluster operating with best case precision. To determine the TT-E cluster precision for different 
configurations (see [11]). 

The following term quantifies the effect of the difference in propagation delay between the time source and 
time sink clusters on the precision of the time sink cluster. In this term the index M runs over all the time 
gateway nodes of the time source cluster and the index N runs over all nodes of the time sink cluster. 

Definition of equation (47) 

aMixedTopologyError[µs] = maxM,N (  

 adPropagationDelayMaxsource[µs] - adPropagationDelayMin[µs] - 

 pDelayCompensationM
source[µT] * pdMicrotickM

source[µs / µT] /  

 (1 + gClockDeviationMaxsource) +  

 pDelayCompensationN[µT] * pdMicrotickN[µs / µT] / (1 - gClockDeviationMax) ; 

 adPropagationDelayMax[µs] - adPropagationDelayMinsource[µs] - 

 pDelayCompensationN[µT] * pdMicrotickN[µs / µT] / (1 + gClockDeviationMax) +  

 pDelayCompensationM
source[µT] * pdMicrotickM

source[µs / µT] /  

 (1 - gClockDeviationMaxsource) ) 
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Table B.45 defines the calculations of aMixedTopologyError. 

Table B.45 — Calculations of aMixedTopologyError 

Bit Rate 
Mbit / s 

2,5 5 10 

pdMicrotick[µs] 0,050 0,050 0,025 0,025 0,0125 

pdMicroticksource[µs] 0,050 0,050 0,050 0,025 0,025 

adPropagationDelayMaxsourceMax[µs] 3,051 2,775 2,638 

adPropagationDelayMinMin[µs] 0,349 0,175 0,087 

pDelayCompensationM
sourceMin[µT] 7 4 4 4 4 

pDelayCompensationN
Max[µT] 61 55 111 105 211 

adPropagationDelayMaxMax[µs] 3,051 2,775 2,638 

adPropagationDelayMinsourceMin[µs] 0,349 0,175 0,087 

pDelayCompensationN
Min[µT] 7 4 7 4 7 

pDelayCompensationM
sourceMax[µT] 61 55 55 105 105 

aMixedTopologyErrorMax[µs] 5,407 5,154 5,179 5,080 5,093 

 

NOTE Table B.45 does not show all possible combinations of microtick durations in the time source and time sink 
clusters. The values shown in the table are those combinations that maximize the calculation of precision shown in 
Table B.46 . 

The following two subclauses supply bounds on the precision of the TT-E cluster for different types of time 
source clusters. 

B.7.3.2 TT-E cluster precision for a TT-D worst-case precision time source cluster 

The precision of a TT-E cluster with a TT-D or TT-L time source cluster subject to a worst-case precision can 
be calculated as: 

Definition of equation (48) 

aSinkPrecisionTT-D_source[µs] = (50 µT + 28 * gClusterDriftDampingsource[µT]) *  

 adMicrotickMaxsource[µs / µT] / (1 - gClockDeviationMaxsource) +  

 (13 µT + 3 * gClusterDriftDampingsource[µT]) *  

 adMicrotickMax [µs / µT] / (1 - gClockDeviationMax) + 

 adMicrotickMaxDistError[µs] + aMixedTopologyError[µs] +  

 2 * (adPropagationDelayMaxsource[µs] - adPropagationDelayMinsource[µs]) 
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Table B.46 defines the calculation of maximum precision in a sink cluster. 

Table B.46 — Calculation of maximum precision in a sink cluster 

Bit Rate 
Mbit / s 

2,5 5 10 

adMicrotickMax[µs] 0,050 0,050 0,025 0,025 0,0125 

adMicrotickMaxsource[µs] 0,050 0,050 0,050 0,025 0,025 

gClusterDriftDampingsourceMax[µT] 5 

aMixedTopologyErrorMax[µs] 5,407 5,154 5,179 5,080 5,093 

adPropagationDelayMaxsourceMax[µs] 3,051 2,775 2,638 

adPropagationDelayMinsourceMin[µs] 0,349 0,175 0,087 

aSinkPrecisionTT-D_sourceMax[µs] 21,777 21,320 20,619 15,665 15,315 

 

B.7.3.3 TT-E cluster precision for a TT-L time source cluster 

The precision for TT-E cluster with TT-L time source cluster subject to a best-case precision can be calculated 
as: 

Definition of equation (49) 

aSinkPrecisionTT-L_source[µs] =  

 19 µT * adMicrotickMaxsource[µs / µT] / (1 - gClockDeviationMaxsource) +  

 13 µT * adMicrotickMax[µs / µT] / (1 - gClockDeviationMax) + 

 adMicrotickMaxDistError[µs] + aMixedTopologyError[µs] +  

 (adPropagationDelayMaxsource[µs] - adPropagationDelayMinsource[µs]) 

 

 

Table B.47 defines the calculation of the minimum precision in a sink cluster. 

Table B.47 — Calculation of the minimum precision in a sink cluster 

Bit Rate 
Mbit / s 

2,5 5 10 

adMicrotickMax[µs] 0,050 0,050 0,025 0,025 0,0125 

adMicrotickMaxsource[µs] 0,050 0,025 0,025 0,0125 0,0125 

aMixedTopologyErrorMin[µs] 0 

min( adPropagationDelayMaxsource[µs] -  
adPropagationDelayMinsource[µs] ) 

0 

aSinkPrecisionTT-L_sourceMin[µs] 1,652 1,177 0,826 0,588 0,413 
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B.7.3.4 TT-E assumed precision 

As a consequence of the different way of calculating the lower bound, Constraint (5) is replaced by 

Definition of constraint  (63) 

aAssumedPrecision[µs] >= aSinkPrecision[µs]  

 

It is recommended that the assumed precision for the TT-E cluster be set to the value for aSinkPrecision for 
the appropriate source cluster type (i.e., according to B.7.3.2 if the time source cluster is a TT-D cluster, and 
according to B.7.3.3 if the source cluster is a TT-L cluster). [11] gives more detail about the relationship 
between the time source cluster and time sink cluster that can be used to improve the precision estimate but 
goes beyond the scope and intent of the specification. 

The calculations for aSinkPrecision make the assumption that if external clock correction is used in the time 
source cluster (i.e., gExternOffsetCorrection or gExternRateCorrection are non-zero for the time source 
cluster) that corresponding external correction terms are also applied in the non-sync nodes in the time sink 
cluster, and that the application of those external corrections take place at the same time as in the time source 
cluster. 

Parameter ranges in this specification are calculated assuming that the maximum value of aAssumedPre-
cision is calculated using the worst case value for the assumed precision of a TT-D source cluster (see 
B.4.3.6) and then applying Constraint (63) as an equality constraint. The configurable range of most 
parameters allows some amount of margin beyond this assumption. If a system designer of a TT-E cluster 
desires to use a value of aAssumedPrecision larger than the value of aSinkPrecision the resultant parameters 
shall be carefully checked to ensure that they are still within the allowed parameter ranges. 

B.7.4 pSecondKeySlotID 

The configuration of pSecondKeySlotID for nodes operating in TT-E clusters is identical to the configuration of 
pSecondKeySlotID for nodes operating in TT-L clusters. Please refer to B.6.4 and Constraint (60) and 
Constraint (61) for the configuration of this parameter. 

B.7.5 Host-controlled external clock correction 

In most cases the timing of a TT-E cluster is fully determined by the timing of the time source cluster and thus 
it is usually not necessary to make use of host-controlled external clock correction in a TT-E cluster. If, 
however, the time source cluster makes use of host-controlled external clock correction it may also be 
desirable for the time sink cluster to make a corresponding host-controlled external clock correction. If such a 
correction is used it should have the same value as the correction in the time source cluster, and should be 
applied in the same cycle as the correction in the time source cluster. 

Definition of constraint  (64) 

gExternOffsetCorrection[µs] = gExternOffsetCorrectionsource[µs]  

 

Definition of constraint  (65) 

gExternRateCorrection[µs] = gExternRateCorrectionsource[µs]  

 

Although the non-sync nodes in the time sink cluster need to apply host-controlled external clock corrections 
in the indicated circumstances, the coldstart nodes for the TT-E cluster (i.e., the time gateway sink) should not 
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perform any host-controlled external clock correction, as the clock correction from the time gateway source is 
imported into the time gateway sink by the CSP process (see Figure 172). As a result, the local external 
correction terms for the time gateway sink should be set to zero: 

Definition of constraint  (66) 

pExternOffsetCorrectionGWsink[µT] = 0 µT  

 

Definition of constraint  (67) 

pExternRateCorrectionGWsink[µT] = 0 µT  

 

B.7.6 gdActionPointOffset 

Due to being tightly coupled to the time source cluster, Constraint (13) is superfluous and shall not be applied 
to TT-E clusters. Constraint (12) remains valid. 

B.7.7 gMacroPerCycle 

The constraints of B.4.15 remain valid. In addition the following constraint shall be observed. 

Definition of constraint  (68) 

gMacroPerCycle[MT] = gMacroPerCyclesource[MT]  

 

This constraint puts implicit constraints on the configuration of the schedule of the time sink cluster. 

B.7.8 gdMacrotick 

The constraints of B.4.5 remain valid. In addition the following constraint shall be observed. 

Definition of constraint  (69) 

gdMacrotick[µs] = gdMacroticksource[µs]  

 

B.7.9 aOffsetCorrectionMax 

Constraint (30) as well as Equation (28) and (29) remain valid for TT-E systems. In order to compute an upper 
bound on the possible range of offset corrections the following equation should be used instead of Equation 
(30): 

Definition of equation (50) 

aOffsetCorrectionMax[µs] <= max(  

 aNegativeOffsetCorrectionMax[µs] ; aPositiveOffsetCorrectionMax[µs] ;  

 aNegativeOffsetCorrectionMaxsource[µs] ; aPositiveOffsetCorrectionMaxsource[µs] ) 
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B.7.10 pOffsetCorrectionStart 

The constraints and formulas of B.4.21 remain valid. Constraint (32) remains valid for non-sync nodes; for the 
time gateway sink node, it is replaced by 

Definition of constraint  (70) 

pOffsetCorrectionStartGWsink = pOffsetCorrectionStartGWsource  

 

B.7.11 gdNIT 

Consider the assumption that the offset correction has to be applied within the NIT. To ensure this the 
following constraint has to be fulfilled. 

Definition of constraint  (71) 

gdNIT[MT] >= max( adRemRateCalculation[MT]; adRemOffsetCalculation[MT] +  

 adOffsetCorrection[MT]; adRemOffsetCalculation[MT] + adOffsetCorrectionsource[MT] ) 
 

 

B.7.12 pdMicrotick 

Consider the assumption that the time gateway source node transfers its rate and offset correction values to 
the time gateway sink node. As the unit of these correction values is [µT], the time gateway sink node needs 
to use the same microtick length as the time gateway source node to correctly interpret the values. 

The constraints of B.4.5 remain valid. In addition the following constraint shall be observed. 

Definition of constraint  (72) 

pdMicrotickGWsink[µs] = pdMicrotickGWsource[µs]  

 

In addition to the above, in system topologies that have more than one time gateway there is a required 
relationship between the microtick durations of all of the time gateway sinks of a particular TT-E cluster. In 
particular, since the cycle offset between the time source and time sink cluster for each time gateway is 
defined as a number of microticks (cdTSrcCycleOffset, a protocol constant), and it is necessary that all time 
gateways in the same TT-E cluster use the same cycle offset, there is therefore a requirement that all time 
gateways in a TT-E cluster have identical microtick durations. 

Definition of constraint  (73) 

∀(i,j): pdMicrotickGWsink_i[µs] = pdMicrotickGWsink_j[µs]  

 

B.7.13 adInitializationErrorMax 

For the calculation of adInitializationErrorMax the Constraint (9) in B.4.6 is valid. Due to the different precision 
in a TT-E cluster the ranges for adInitializationErrorMax are different as calculated in Table B.18. 
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Table B.48 defines the calculations for adInitializationErrorMax. 

Table B.48 — Calculations for adInitializationErrorMax 

Bit Rate 
Mbit / s 

2,5 5 10 

adMicrotickMax[µs] 0,050 0,050 0,025 0,025 0,0125 

aAssumedPrecisionMin[µs] = aSinkPrecisionTT-L_sourceMin[µs] 1,652 1,177 0,826 0,588 0,413 

gExternOffsetCorrectionMin[µs] 0 

adPropagationDelayMax[µs] - adPropagationDelayMin[µs] 0 

adInitializationErrorMaxMin[µs] 1,652 1,177 0,826 0,588 0,413 

aAssumedPrecisionMax[µs] = aSinkPrecisionTT-D_sourceMax[µs] 21,777 21,320 20,619 15,665 15,315 

gExternOffsetCorrectionMax[µs] 0,35 

adPropagationDelayMinMin[µs] 0,349 0,175 0,087 

adPropagationDelayMaxMax[µs] 3,051 2,775 2,638 

adInitializationErrorMaxMax[µs] 24,829 24,270 23,569 18,566 18,216 

 

B.7.14 pdAcceptedStartupRange 

For the calculation of pdAcceptedStartupRange Constraint (10) in B.4.7 is valid. Due to the differences in the 
range of the precision the range of the pdAcceptedStartupRange parameter for a TT-E cluster is somewhat 
different than the range calculated in Table B.49. 

Table B.49 — Calculations for pdAcceptedStartupRange 

Bit Rate 
Mbit / s 

2,5 5 10 

adMicrotickMax[µs] 0,050 0,050 0,025 0,025 0,0125 

aAssumedPrecisionMin[µs] = aSinkPrecisionTT-L_sourceMin[µs] 1,652 1,177 0,826 0,588 0,413 

adInitializationErrorMaxMin[µs] 1,652 1,177 0,826 0,588 0,413 

pdMicrotickMax[µs] 0,050 0,050 0,025 0,025 0,0125 

pdAcceptedStartupRangeMin[µT] 67 48 67 48 67 

aAssumedPrecisionMax[µs] = aSinkPrecisionTT-D_sourceMax[µs] 21,777 21,320 20,619 15,665 15,315 

adInitializationErrorMaxMax[µs] 24,829 24,270 23,569 18,566 18,216 

pdMicrotickMin[µs] 0,050 0,025 0,025 0,0125 0,0125 

pdAcceptedStartupRangeMax[µT] 934 1 827 1 771 2 743 2 687 

 

The lower bound of pdAcceptedStartupRange is given by the calculation in a TT-D cluster (see B.4.7, 
Table B.19) and the upper bound by the calculation in a TT-E cluster (see Table B.49). As a result, the 
parameter pdAcceptedStartupRange shall be configurable over a range of 29 to 2 743 µT.  

B.7.15 gCycleCountMax 

Consider the assumption that gCycleCountMax in the time sink cluster should be identically configured like 
gCycleCountMax in the time source cluster. 
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Definition of constraint  (74) 

gCycleCountMax = gCycleCountMaxsource  

 



BS ISO 17458-2:2013
ISO 17458-2:2013(E) 

© ISO 2013 – All rights reserved 345 
 

Annex C 
(normative) 

 
Wakeup application notes 

C.1 Scope 

This appendix contains some application notes related to the coordination of the host microcontroller, the 
FlexRay communication controller, and the bus drivers during the wakeup process as well as describing some 
techniques that can be used to perform wakeup during operation. This appendix is not intended to be 
complete, but merely to provide some example strategies that touch on some of the issues that will be faced 
by a system designer with respect to wakeup coordination. 

Note the control and indication behaviour of the bus driver is fairly complex. For example, certain indications 
are only available in certain BD operating modes. The descriptions in this appendix are at a high level, i.e., 
they merely indicate what needs to be done without explicitly indicating the detailed BD commands, modes, 
indications, etc. necessary to do it. Refer to ISO 17458-4 for additional details. 

C.2 Wakeup initiation by the host 

C.2.1 Preconditions 

A host that wants to initiate a wakeup of the cluster should first check its bus driver(s) to see if they have 
received wakeup patterns. If the bus driver of a channel did not receive a wakeup pattern, and if there is no 
startup or communication in progress, the host shall try to wake this channel204). 

The host should not wake channels whose bus drivers have received a wakeup pattern unless additional 
information indicates that startup is not possible without an additional wakeup of those channels205). 

A single-channel node in a dual-channel cluster can trigger a cluster wakeup by waking its attached channel. 
This wakes up all nodes attached to this channel, including the coldstart nodes, which are always dual-
channel. Any coldstart node that deems a system startup necessary will then wake the remaining channel 
before initiating communication startup. 

C.2.2 Single-channel nodes 

This subclause describes the wakeup behaviour of single-channel nodes in single- or dual-channel clusters. 
The bus driver is assumed to be in the BD_Sleep or BD_Standby mode. The host is assumed to have 
determined that a cluster wakeup should be triggered. 

a) The host first configures the communication controller. 

b) The host checks whether a wakeup pattern was received by the bus driver. 

c) The host puts the bus driver into the BD_Normal mode. 

                                                      

204) The host shall distinguish between a local wakeup event and a remote wakeup received via the channel. This 
information is accessible at the bus driver. 

205) This is done to speed up the wakeup process and to limit the amount of traffic on the channels, which reduces the 
number of collisions during this phase. 

http://dx.doi.org/10.3403/30253320U
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d) If a wakeup pattern was received by the bus driver, the node should enter the startup (step 8) instead of 
performing a wakeup. If no wakeup pattern was received by the bus driver, the node may perform a 
wakeup of the attached channel (which will eventually wake both channels of a dual-channel cluster). 

e) The host configures pWakeupChannel to the attached channel. 

f) The host commands the communication controller to begin the wakeup procedure. 

g) After its wakeup attempt is complete the communication controller returns the result of the wakeup 
attempt. 

h) The host commands the communication controller to commence startup and, possibly after a delay (see 
C.5), to leave the coldstart inhibit mode. 

C.2.3 Dual-channel nodes 

C.2.3.1 General behaviour 

This subclause describes the wakeup behaviour of dual-channel nodes in dual-channel clusters. 

Figure C.1 depicts an example of a wakeup in a fault-tolerant way using two channels. 
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Figure C.1 — Example of a wakeup in a fault-tolerant way using two channels206) 

A communication controller is not allowed to send a wakeup pattern on both channels at the same time. If it is 
necessary to wake both channels, the host can only wake them one at a time. 

To avoid certain types of failures, a single communication controller should not wake up both channels. 
Instead, a different controller should wake up each channel. 

To accomplish this, a communication controller that has received a local wakeup event proceeds normally and 
only wakes a single channel, e.g., channel A (see Figure C-1). The completion of the wakeup causes the node 
to enter the POC:ready state, and also causes the node to automatically enter the coldstart inhibit mode. 

                                                      

206) There is no requirement that a wakeup node shall be a coldstart node, or that a coldstart node shall be a wakeup 
node. In this example the wakeup nodes are also coldstart nodes, but this is not required. 
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Following this, the host does not wake the other channel but rather enters startup. The host should keep the 
node in the coldstart inhibit mode until it detects a wakeup pattern on channel B. Once a wakeup is detected, 
the host should issue the ALLOW_COLDSTART command, allowing the node to actively coldstart the cluster.  

Two example wakeup strategies are now given as examples to demonstrate how cluster wakeup can be 
accomplished. These strategies are not concerned with the details of error recovery and therefore do not 
show error handling mechanisms for several error situations that could occur. 

C.2.3.2 Wakeup pattern reception by the bus driver 

The bus drivers are assumed to be in the BD_Sleep or BD_Standby mode. The host is assumed to have 
determined that a cluster wakeup should be triggered. 

a) The host first configures the communication controller. It assumes both channels to be asleep. 

b) The host checks which of the bus drivers has received a wakeup pattern. 

c) The host puts all bus drivers that have received a wakeup pattern into BD_Normal mode (these channels 
can be assumed to be awake). 

d) If both channels are awake, the host can proceed to startup (step j)).  
If both channels are asleep, the host shall wake up one of them.  
If one channel is asleep and one channel is awake, a non-coldstart host may wake up the channel that is 
asleep, but a coldstart host shall wake up the channel that is asleep. 

e) The host configures pWakeupChannel to the channel to be awakened. 

f) The host puts the bus driver of pWakeupChannel into BD_Normal mode. 

g) The host commands the communication controller to begin the wakeup procedure. 

h) The communication controller returns the result of the wakeup attempt. 

i) If the result of the wakeup attempt is TRANSMITTED, the host assumes pWakeupChannel to be awake 
and proceeds to startup (step j)).   
If the result of the wakeup attempt is RECEIVED_HEADER or COLLISION_HEADER, the host can 
assume that both channels are awake. It puts any remaining sleeping bus driver into BD_Normal mode 
and proceeds to startup (step j)).   
If the result of the wakeup attempt is RECEIVED_WUP or COLLISION_WUP, the host assumes 
pWakeupChannel to be awake (return to step d)).  
If the result of the wakeup attempt is COLLISION_UNKNOWN, an application-specific recovery strategy 
has to be employed, which is not covered by this document. 

j) The host commands the communication controller to begin the startup procedure. 

k) If all channels are awake, the host may immediately command the communication controller to leave the 
coldstart inhibit mode by issuing an ALLOW_COLDSTART command. Otherwise, the host should leave 
the CC in coldstart inhibit mode and wait until the bus driver of the still sleeping channel signals the 
reception of a wakeup pattern. This bus driver shall then be put into the BD_Normal mode. As soon as all 
attached channels are awake, the host may command the communication controller to leave the coldstart 
inhibit mode. 

This method has the disadvantage that the channel that is not pWakeupChannel cannot be listened to during 
the POC:wakeup listen state. If the bus driver of pWakeupChannel channel is subject to an incoming link 
failure, ongoing communication might be disturbed. Wakeup pattern reception by the communication controller 
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C.2.3.3 Wakeup pattern reception by the communication controller 

The wakeup pattern receiver of the communication controller is active as long as the CODEC is in READY or 
NORMAL mode. During this time the reception of a wakeup pattern will be signalled to the FSP and from there 
to the CHI.The bus drivers are assumed to be in the BD_Sleep or BD_Standby modes. The host is assumed 
to have determined that a cluster wakeup should be triggered. 

a) The host first configures the communication controller. It assumes both channels to be asleep. 

b) The host checks which of the bus drivers has received a wakeup pattern. 

c) The host puts both bus drivers into BD_Normal mode. 

d) If both channels are awake, the host can proceed to startup (step j)).  
If both channels are asleep, the host shall awake one of them.  
If one channel is asleep and one channel is awake, a non-coldstart host may wake up the channel that is 
asleep, but a coldstart host shall wake up the channel that is asleep. 

e) The host configures pWakeupChannel to the channel that to be awakened. 

f) The host commands the communication controller to begin the wakeup procedure. 

g) The communication controller returns the result of the wakeup attempt. 

h) If the result of the wakeup attempt is TRANSMITTED, the host assumes pWakeupChannel to be awake 
and proceeds to startup (step j)).  
If the result of the wakeup attempt is RECEIVED_HEADER or COLLISION_HEADER, the host assumes 
all attached channels to be awake and proceeds to startup (step j)).  
If the result of the wakeup attempt is RECEIVED_WUP or COLLISION_WUP, the host assumes 
pWakeupChannel to be awake (return to step d)).  
If the result of the wakeup attempt is COLLISION_UNKNOWN, an application-specific recovery strategy 
has to be employed, which is not covered here. 

i) The host commands the communication controller to begin the startup procedure. 

j) If all channels are awake, the host may immediately command the communication controller to leave the 
coldstart inhibit mode by issuing an ALLOW_COLDSTART command. Otherwise, the host should leave 
the CC in the coldstart inhibit mode and wait until the wakeup pattern detector of the communication 
controller detects a wakeup pattern on the channel that is assumed to be asleep (this could already have 
occurred during one of the former steps). Once a wakeup pattern is detected the channel is assumed to 
be awake. As soon as all attached channels are awake, the host may command the communication 
controller to leave the coldstart inhibit mode. 

C.3 Host reactions to status flags signalled by the communication controller 

C.3.1 Frame header reception without decoding error 

When a frame header without decoding error is received by the communication controller on either available 
channel while in the POC:wakeup listen (or POC:wakeup detect) state the communication controller aborts 
the wakeup, even if channel pWakeupChannel is still silent. 

The host shall not command the communication controller to initiate additional wakeup attempts, since this 
could disturb ongoing communication. Instead, it shall command the communication controller to enter the 
startup to integrate into the apparently established cluster communication. 
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C.3.2 Wakeup pattern reception 

The communication controller has received a wakeup pattern on channel pWakeupChannel while in the 
POC:wakeup listen (or POC:wakeup detect) state. This indicates that another node is already waking up this 
channel. To prevent collisions of wakeup patterns on channel pWakeupChannel, the communication controller 
aborts the wakeup. 

If another channel is available that is not already awake, the host shall determine whether the communication 
controller is to wake up this channel. If all available channels are awake, the host shall command the 
communication controller to enter startup. 

C.3.3 Wakeup pattern transmission 

The communication controller has transmitted the complete wakeup pattern on channel pWakeupChannel. 
The node can now proceed to startup. 

C.3.4 Termination due to unsuccessful wakeup pattern transmission 

The communication controller was not able to transmit a complete wakeup pattern because its attempt to 
transmit it resulted in at least cdWakeupMaxCollision occurrences of continuous logical LOW during the idle 
phase of a wakeup pattern. Possible reasons for this are heavy EMI disturbances on the bus or an internal 
error207). 

Since no complete wakeup pattern has been transmitted, it cannot be assumed that all nodes have received a 
wakeup pattern. The host may use the retransmission procedure described in C.4.  

C.4 Retransmission of wakeup patterns 

Some events or conditions may prevent a cluster from waking up even though a wakeup attempt has been 
made (possibly even without the transmitting communication controller being able to immediately detect this 
failure208). The host detects such an error when the cluster does not start up successfully after the wakeup. 

The host may then initiate a retransmission of the wakeup pattern. The procedure described in 11.2.2 shall be 
used to transmit a wakeup pattern on channel pWakeupChannel. 

Note that this might disturb ongoing communication of other nodes if the node initiating the wakeup procedure 
is subject to an incoming link failure or a fault in the communication controller. The host shall ensure that such 
a failure condition will not lead to a permanent disturbance on the bus. 

C.5 Transition to startup 

It cannot be assumed that all nodes and stars need the same amount of time to become completely awake 
and to be configured. 

Since at least two nodes are necessary to start up the cluster communication, it is advisable to delay any 
potential startup attempt of the node having initiated the wakeup by the minimal amount of time it takes 
another coldstart node to become awake, to be configured, and to enter startup209). Otherwise, the wakeup-
initiating coldstart node may fail in its startup attempt with an error condition that is not distinguishable from a 
defective outgoing link (the communication controller reports no communication partners; see C.4).  

                                                      

207) The collision of a wakeup pattern transmitted by this node with another wakeup pattern generated by a fault-free 
node will generally not result in this exit condition. Such a collision can be recognized after entering the POC:wakeup 
detect state and would be signalled by setting the variable vPOC!WakeupStatus to COLLISION_WUP. 

208) E.g. an erroneous star that needs significantly more time to start up and to be able to forward messages. 
209) This parameter depends heavily on implementation details of the components used and the ECU structure. 
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The coldstart inhibit mode can be used to effectively deal with this situation. A communication controller in this 
mode will only participate in the startup attempts made by other nodes but not initiate one itself.The coldstart 
inhibit mode is set automatically prior to entry to the POC:ready state; the host should not cause the CC to exit 
this mode (by issuing an ALLOW_COLDSTART command) before the above mentioned minimal time for 
another node to become ready for the communication startup. However, the host shall issue the 
ALLOW_COLDSTART command as soon as all coldstart nodes are awake in the fault-free case210). See 
11.3.4 for further details of this mode. 

C.6 Wakeup during operation 

C.6.1 Background and wakeup methods  

This subclause describes wakeup during operation methods that a communication controller can use during 
the operation of a cluster to trigger the wakeup of other nodes with BD’s in the sleep or standby mode when 
those BD’s support the optional remote wakeup event detection capability described in ISO 17458-4. 

During the operation of a FlexRay network it is possible that some nodes do not take part in the normal 
FlexRay wakeup procedure (e.g. when they power up too late) or have for some reason gone to standby or 
sleep after they already were part of an ongoing communication (e. g. because of the reset of a node). 

The normal wakeup procedure described in 11.2 would require a node attempting to wake up other nodes be 
removed from the normal communication, disrupting the transmission and reception capability of that node. In 
addition, such a wakeup attempt would be unsuccessful because the ongoing communication in the cluster 
would cause the abortion of the wakeup procedure before wakeup patterns would be sent. In such cases it is 
necessary that the nodes already in operation be capable of causing other nodes to wake up without requiring 
the entire cluster to be shutdown and without disrupting their own communications.  

The protocol offers two methods to provide a remote wakeup during normal operation capability: 

 frame-based transmission of a sequence of bus activity; 

 pattern-based transmission of a pattern. 

The first method is completely transparent to the protocol operation and is therefore outlined in this subclause. 
The second method is explicitly supported by the mechanisms defined for the FlexRay protocol. 

C.6.2 Frame-based wakeup during operation 

ISO 17458-4 defines the payload of a FlexRay frame that, when transmitted at a data rate of 10 Mbit / s, is 
guaranteed to cause a BD in the sleep or standby mode to detect a remote wakeup event. A node can cause 
a wakeup during normal operation by transmitting a frame with this special payload. This can be done in either 
the static or the dynamic segment, but in the static segment the entire payload shall fit within the payload 
length of static frames defined by gPayloadLengthStatic. A node whose BD is in the standby or sleep mode 
that receives such a frame will signal the reception of a remote wakeup event to the host, and then operation 
can proceed as defined in the other sections of this subclause. 

Note that the frame payload defined in ISO 17458-4 is only guaranteed to cause a wakeup for systems 
operating at 10 Mbit / s. At bit rates of 5 and 2,5 Mbit / s the alternating data pattern of the BSS can interfere 
with the remote wakeup detection process in the BD's and prevent detection of wakeup attempts based on 
frame payloads.  

During normal operation, the reception of a frame-based wakeup would not be detected by the protocol's 
wakeup pattern decoding process and thus will not be signalled to the host. The reception of a frame and its 

                                                      

210) If these times are not known at system design time, it is advised to exit the coldstart inhibit mode late rather than 
early. 

http://dx.doi.org/10.3403/30253320U
http://dx.doi.org/10.3403/30253320U
http://dx.doi.org/10.3403/30253320U
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payload will, however, be signalled to the host by the normal reception mechanisms, and this allows some 
possibility to verify that other nodes are transmitting frame-based wakeups as expected. 

C.6.3 Pattern-based wakeup during operation 

The FlexRay protocol supports the transmission of a dedicated wakeup during operation pattern (WUDOP) 
within the symbol window. The WUDOP is described in 7.2.1.3.4 and will cause the detection of a remote 
wakeup by BD's regardless of the bit rate of the cluster (i.e., unlike frame-based methods, the pattern-based 
mechanism will work in systems using bit rates of 5 and 2,5 Mbit / s). 

The host has control over the transmission of the WUDOP by means of the mechanisms defined in 13.3.1.2.2. 
The WUDOP is not collision resilient - the system designer shall ensure that no more than one node transmits 
a WUDOP in any given instance of the symbol window. 

A node whose BD is in the standby or sleep mode that receives a WUDOP will signal the reception of a 
remote wakeup event to the host, and then operation can proceed as defined in the other sections of this 
subclause. 

During normal operation, the reception of a WUDOP in the symbol window or NIT would be detected by the 
protocol's wakeup pattern decoding process and signalled to the host (see 13.3.1.3.3). This allows a node in 
operation to verify that other nodes are transmitting WUDOPs as expected. 
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