
BRITISH STANDARD
 BS ISO
17356-4:2005
Road vehicles — Open
interface for embedded
automotive
applications —

Part 4: OSEK/VDX Communication
(COM)
ICS 43.040.15
���������	�
��	�����

BS ISO 17356-4:2005
This British Standard was
published under the authority
of the Standards Policy and
Strategy Committee
on 12 January 2006

© BSI 12 January 2006
ISBN 0 580 46883 6
National foreword

This British Standard reproduces verbatim ISO 17356-4:2005 and implements
it as the UK national standard.

The UK participation in its preparation was entrusted to Technical Committee
AUE/16, Electrical and electronic equipment, which has the responsibility to:

— aid enquirers to understand the text;

— present to the responsible international/European committee any
enquiries on the interpretation, or proposals for change, and keep
UK interests informed;

— monitor related international and European developments and
promulgate them in the UK.

A list of organizations represented on this committee can be obtained on
request to its secretary.

Cross-references

The British Standards which implement international publications referred to
in this document may be found in the BSI Catalogue under the section entitled
“International Standards Correspondence Index”, or by using the “Search”
facility of the BSI Electronic Catalogue or of British Standards Online.

This publication does not purport to include all the necessary provisions of a
contract. Users are responsible for its correct application.

Compliance with a British Standard does not of itself confer immunity
from legal obligations.
Summary of pages

This document comprises a front cover, an inside front cover, the ISO title page,
pages ii to vii, a blank page, pages 1 to 55 and a back cover.

The BSI copyright notice displayed in this document indicates when the
document was last issued.
Amendments issued since publication

Amd. No. Date Comments
标准分享网 www.bzfxw.com 免费下载

ii

标准分享网 www.bzfxw.com 免费下载

www.bzfxw.com

www.bzfxw.com

标准分享网 www.bzfxw.com 免费下载

www.bzfxw.com

 v

Introduction

This part of ISO 17356 specifies a uniform communication environment for automotive control unit application
software. It increases the portability of application software modules by defining common software
communication interfaces and behaviour for internal communication [communication within an electronic
control unit (ECU)] and external communication (communication between networked vehicle nodes), which is
independent of the communication protocol used.

This part of ISO 17356 describes the behaviour within one ECU. It assumes that the communication
environment described in this part of ISO 17356 is used together with an operating system that conforms to
ISO 17356-3. For information on how to run the communication environment described in this part of
ISO 17356 on operating systems that do not conform to ISO 17356-3, refer to Annex A.

Requirements

The following main requirements are fulfilled by this part of ISO 17356:

General communication functionality

This part of ISO 17356 offers services to transfer data between tasks and/or interrupt service routines.
Different tasks may reside in one and the same ECU (internal communication) or in different ECUs (external
communication). Access to ISO 17356-4 services is only possible via the specified Application Program
Interface (API).

Portability, reusability and interoperability of application software

It is the aim of this part of ISO 17356 to support the portability, reusability and interoperability of application
software. The API hides the differences between internal and external communication as well as different
communication protocols, bus systems and networks.

Scalability

This part of ISO 17356 ensures that an ISO 17356-4 implementation can run on many hardware platforms.
The implementation requires only a minimum of hardware resources, therefore different levels of functionality
(conformance classes) are provided.

Support for ISO 17356-5 (Network Management-NM):

Services to support Indirect NM are provided. Direct NM has no requirements of this part of ISO 17356.

Communication concept

Figure 1 shows the conceptual model of this part of ISO 17356 and its positioning within the architecture
defined by ISO 17356. This model is presented for better understanding, but does not imply a particular
implementation of this part of ISO 17356.

BS ISO 17356-4:2005

www.bzfxw.com

标准分享网 www.bzfxw.com 免费下载

www.bzfxw.com

 vii

Structure of this document

In the following text, the specification chapters are described briefly. Clauses 1 to 5 are normative, the
appendices are descriptive.

Clause 1: Scope
This clause describes the motivation and requirements for this part of ISO 17356, the conceptual model used
and the structure of the document.

Clause 2: Normative references

Clause 3: Interaction Layer

This clause describes the functionality of the IL of the ISO 17356-4 model and defines its API.

Clause 4: Minimum requirements of lower communication layers

This clause lists the requirements imposed by this part of ISO 17356 on the lower communication layers
(Network Layer and Data Link Layer) to support all features of the IL.

Clause 5: Conformance Classes

This clause specifies the Communication Conformance Classes, which allow the adaptation of the feature
content of ISO 17356-4 implementations to the target system’s requirements.

Annex A: Use of this part of ISO 17356 (Com) with an OS not conforming to ISO 17356-3

Annex A gives hints on how to run this part of ISO 17356 on operating systems that do not conform to
ISO 17356-3.

Annex B: Application notes

Annex B provides information on how to meet specific application requirements with the given ISO 17356-4
model.

Annex C: Callouts

Annex C supplies application examples for callouts.

BS ISO 17356-4:2005

www.bzfxw.com

blank
标准分享网 www.bzfxw.com 免费下载

www.bzfxw.com

 1

Road vehicles — Open interface for embedded automotive
applications —

Part 4:
OSEK/VDX Communication (COM)

1 Scope

This part of ISO 17356-4 (COM) specifies a uniform communication environment for automatic control unit
application software.

It increases the portability of application software modules by defining common software communication
interfaces and behaviours for internal communication (communication within an ECU) and external
communication (communication between networked vehicle nodes), which is independent of the used
communication protocol.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO 17356-2, Road vehicles — Open interface for embedded automotive applications — Part 2 OSEK/VDX
specifications for binding OS, COM and NM

ISO 17356-3, Road vehicles — Open interface for embedded automotive applications — Part 3 OSEK/VDX
Operating System (OS)

ISO 17356-5, Road vehicles — Open interface for embedded automotive applications — Part 5 OSEK/VDX
Network Management (NM)

ISO 17356-6, Road vehicles — Open interface for embedded automotive applications — Part 6 OSEK/VDX
Implementation Language (OIL)

3 Interaction Layer

3.1 Overview

3.1.1 Presentation

The communication in this part of ISO 17356 is based on messages1). A message contains application-
specific data. Messages and message properties are configured statically via OIL (ISO 17356-6). The content
and usage of messages is not relevant to this part of ISO 17356. Messages with a length of zero (see zero-
length messages, Annex B) are allowed.

1) Messages are often called signals. Thus, COM offers a signal-based interface.

BS ISO 17356-4:2005

www.bzfxw.com

标准分享网 www.bzfxw.com 免费下载

www.bzfxw.com

 3

3.1.2 Communication concept

Senders and receivers of messages are either tasks or interrupt service routines (ISRs) in an OS. Messages
are sent to sending message objects and received from receiving message objects.

Message objects are identified using message identifiers. Message identifiers are assigned to message
objects at system generation.

This part of ISO 17356 supports communication from “m” senders to “n” receivers (m:n communication). Zero
or more senders can send messages to the same sending message object. Sending message objects are
configured to store messages in zero or more receiving message objects for internal communication and in
zero or one I-PDUs for external communication.

One or more sending message objects can be configured to store messages in the same I-PDU for external
communication.

An I-PDU can be received by zero or more CPUs. In each CPU which receives the I-PDU, each message
contained in the I-PDU is stored in zero or more receiving message objects. Zero or more receivers can
receive messages from a receiving message object (see Annex B for additional information).

A receiving message object receives messages from either exactly one sending message object (internal
communication) or exactly one I-PDU, or it receives no messages at all.

A receiving message object can be defined as either queued or unqueued. While a message received by a
message object with the property “queued” (queued message) can only be read once (the read operation
removes the oldest message from the queue), a message received from a message object with the property
“unqueued” (unqueued message) can be read more than once; it returns the last received value each time it is
read.

The queue size for message objects with the property “queued” is specified per message object and shall not
be zero. If the queue of a receiving message object is full and a new message arrives, this message is lost.

This part of ISO 17356 is not responsible for allocating memory for the application messages, but it allows
independent access to message objects for each sender and receiver. In the case of unqueued messages, an
arbitrary number of receivers may receive the message. In the case of queued messages, only one receiver
may receive the message. The IL guarantees that the data in the application’s message copies are consistent
by the following means: the IL deals with messages automatically, and application message data is only read
or written during a send or receive service call.

An external message can have one of two transfer properties:

⎯ Triggered Transfer Property: the message in the assigned I-PDU is updated and a request for the I-PDU’s
transmission is made.

⎯ Pending Transfer Property: the message in the I-PDU is updated without a transmission request.

Internal messages do not have a transfer property. They are immediately routed to the receiver side.

There are three transmission modes for I-PDUs:

⎯ Direct Transmission Mode: the transmission is explicitly initiated by sending a message with Triggered
Transfer Property.

⎯ Periodic Transmission Mode: the I-PDU is transmitted repeatedly with a pre-set period.

⎯ Mixed Transmission Mode: the I-PDU is transmitted using a combination of both the Direct and the
Periodic Transmission Modes.

BS ISO 17356-4:2005

www.bzfxw.com

4

This part of ISO 17356 supports only static message addressing. A statically addressed message has zero or
more receivers defined at system generation time, each of which receives the message whenever it is sent. A
message has either a static length or its length may vary up to some statically defined maximum. Messages
with a maximum length are called dynamic-length messages.

This part of ISO 17356 provides a mechanism for monitoring the transmission and reception timing of
messages, called Deadline Monitoring. Deadline Monitoring verifies on the sender side that the underlying
layer confirms transmission requests within a defined time period and on the receiver side that periodic
messages are received within a defined time period. The monitoring is performed based on I-PDUs.

The IL provides a fixed set of filter algorithms. On the sender side, a filter algorithm may be used which,
depending on the message contents, discards the message. In this case, no external transmission is
performed and the I-PDU is not updated. There is no filtering on the sender side for internal transmission. On
the receiver side, a filter mechanism may be used per receiver in both internal and external transmission. For
more details on filtering see 3.2.3 and 3.3.6.

3.1.3 Configuration

The configuration of messages and of their senders and receivers shall be defined at system generation time.
Messages cannot be added or deleted at run-time, nor can the packing of messages to I-PDUs be changed.
This applies to all configuration elements and their attributes unless otherwise stated.

Examples for configurable items include:

⎯ Configuration of the transfer properties of messages and the transmission modes of I-PDUs,

⎯ Packing of the messages to I-PDUs, and

⎯ Usage of a queue by a receiver and the size of this queue.

The configuration of single CPUs is described in ISO-17356-6.

3.2 Message reception

3.2.1 General

This subclause states the services and functionality requirements of the message reception entity of the IL.

3.2.2 Message reception overview

The first few steps described in this section are applicable for external communication only.

Reception of a message starts with an indication of the delivery of its containing PDU from the underlying
layer. If this indication does not yield an error, the reception was successful. In this case, an I-PDU Callout is
called (if configured) and this PDU is copied into the I-PDU.

In the case of unsuccessful PDU reception error indication takes place and no data is delivered to the IL. Error
indication can lead to Message Reception Error notification (Notification Class 3, described in 3.6.2).

After copying the data into the I-PDU further processing is performed separately for each contained message.
If the I-PDU contains zero-length messages, these are processed last.

The Reception Deadline Monitoring takes place as described in Clause 3.5.1. Deadline Monitoring can invoke
Message Reception Error notification (Notification Class 3, described in 3.6.2) when the message reception
deadline is missed because the I-PDU that contains the message is not received in time.

The message data is then unpacked from the I-PDU and, if configured, a Network-order Message Callout is
called for the message. Message byte order conversion is performed to convert from network representation

BS ISO 17356-4:2005

标准分享网 www.bzfxw.com 免费下载

www.bzfxw.com

 5

to the representation on the local CPU and, if configured, a CPU-order Message Callout is called for the
message.

The following steps are applicable for both internal and external communication.

The filtering is applied to the message content. If the message is not filtered out, then the message data is
copied into the receiver message object.

After filtering, Message Reception notification (Notification Class 1, described in 3.6.2) is invoked as
appropriate. Notification is performed per message object.

Message data are copied from message object to application messages when the application calls the
ReceiveMessage or ReceiveDynamicMessage API services.

3.2.3 Reception filtering

Filtering provides a means to discard the received message when certain conditions, set by message filter,
are not met for the message value. The message filter is a configurable function that filters messages out
according to specific algorithms. For each message, a different filtering condition can be defined through a
dedicated algorithm.

Filtering is only used for messages that can be interpreted as C language unsigned integer types (characters,
unsigned integers and enumeration).

For zero-length messages and dynamic-length messages, no filtering takes place.

While receiving messages, only the message values allowed by the filter algorithms pass to the application. If
a value has been filtered out, the current instance of the message in the IL represents the last message value
that passed through the filter.

Message filtering is performed per message object.

The following attributes are used by the set of filter algorithms (see Table 1):

⎯ new_value: current value of the message;

⎯ old_value: last value of the message (initialized with the initial value of the message, updated with
new_value if the new message value is not filtered out);

⎯ mask, x, min, max, period, offset: constant values; and

⎯ occurrence: a count of the number of occurrences of this message.

If the message filter algorithm is F_Always for any particular message, no filter algorithm is included in the
runtime system for the particular message.

BS ISO 17356-4:2005

www.bzfxw.com

6

Table 1 — Message filter algorithms

Algorithm reference Algorithm Description

F_Always True No filtering is performed so that the
message always passes.

F_Never False The filter removes all messages.

F_MaskedNewEqualsX (new_value&mask) == x Pass messages whose masked value is
equal to a specific value.

F_MaskedNewDiffersX (new_value&mask) != x Pass messages whose masked value is not
equal to a specific value.

F_NewIsEqual new_value == old_value Pass messages which have not changed.

F_NewIsDifferent new_value != old_value Pass messages which have changed.

F_MaskedNewEqualsMaskedOld (new_value&mask) ==
(old_value&mask)

Pass messages where the masked value
has not changed.

F_ MaskedNewDiffersMaskedOld (new_value&mask) !=
(old_value&mask)

Pass messages where the masked value
has changed.

F_NewIsWithin min <= new_value <= max Pass a message if its value is within a
predefined boundary.

F_NewIsOutside (min > new_value) ||
(new_value > max)

Pass a message if its value is outside a
predefined boundary.

F_NewIsGreater new_value > old_value Pass a message if its value has increased.

F_NewIsLessOrEqual new_value <= old_value Pass a message if its value has not
increased.

F_NewIsLess new_value < old_value Pass a message if its value has decreased.

F_NewIsGreaterOrEqual new_value >= old_value Pass a message if its value has not
decreased.

F_OneEveryN occurrence % period == offset Pass a message once every N message
occurrences.

Start: occurrence = 0.

Each time the message is received or
transmitted, occurrence is incremented by 1
after filtering.

Length of occurrence is 8 bit (minimum).

3.2.4 Copying message data into message objects data area

Message data that are not filtered out are copied into the message object’s data. One message may be
delivered to one message object or more than one message object. In the latter case, the message objects
may be a combination of any number of queued or/and unqueued messages.

Zero-length messages do not contain data. However, the notification mechanisms work in the same way as
for non zero-length messages.

3.2.5 Copying data to application messages

The message object’s data are copied to the application message by the API services ReceiveMessage or
ReceiveDynamicMessage. The application provides the application message reference to the service.

This transfer of information between IL and application occurs for internal, external and internal-external
communication.

For zero-length messages, no data is copied.

BS ISO 17356-4:2005

标准分享网 www.bzfxw.com 免费下载

www.bzfxw.com

 7

3.2.6 Unqueued and queued messages

3.2.6.1 Queued message

A queued message behaves like a FIFO (first-in first-out) queue. When the queue is empty, the IL does not
provide any message data to the application. When the queue is not empty and the application receives the
message, then the IL provides the application with the oldest message data and removes this message data
from the queue.

If new message data arrives and the queue is not full, this new message is stored in the queue. If new
message data arrives and the queue is full, this message is lost and the next ReceiveMessage call on this
message object returns the information that a message has been lost.

NOTE For m:n communication, a separate queue is supported for each receiver and messages from these queues
are consumed independently.

3.2.6.2 Unqueued message

Unqueued messages do not use the FIFO mechanism. The application does not consume the message
during reception of message data – instead, a message may be read multiple times by an application once the
IL has received it.

If no message has been received since the start of the IL, then the application receives the message value set
at initialization.

Unqueued messages are overwritten by newly arrived messages.

3.3 Message transmission

3.3.1 Message transmission overview

Sending a message requires the transfer of the application message to the I-PDU (external communication)
and/or the receiving message object(s) (internal communication).

A message that is transferred can be stored in zero or more message objects for internal receivers and in zero
or one I-PDU for external communication.

The application message is transferred upon calling a specific API service (SendMessage,
SendDynamicMessage or SendZeroMessage).

When the API service is called for internal communication, the message is directly handed to the receiving
part of the IL (see 3.2) for further processing.

The following description is for external communication only.

For external communication, filtering on the sending side is performed. If the message is discarded, no further
action takes place. No filtering takes place on zero-length messages or dynamic-length messages.

Thereafter, if configured, the CPU-order Message Callout is called, byte order conversion is performed, the
Network-order Message Callout is called and the message is stored in the I-PDU.

The transfer of information between the application and IL may use any of the applicable transfer properties of
messages: Triggered or Pending.

Transmission of messages via the underlying layers takes place based on I-PDUs. Transmission of I-PDUs
may use any of the applicable transmission modes of I-PDUs: Direct, Periodic or Mixed.

BS ISO 17356-4:2005

www.bzfxw.com

8

More than one message may be stored in an I-PDU. However, only the last message in an I-PDU may be a
dynamic-length message. Static-length messages may overlap each other, but it is not allowed for any
message to overlap a dynamic-length message. Two messages are defined as overlapping if they have at
least one I-PDU bit in common.

The moment when transmission is initiated, the I-PDU Callout is called.

The user can be notified if the I-PDU is transferred successfully (by confirmation from the underlying layer not
containing an error) or not (by confirmation from the underlying layer containing an error, or by a time-out).

3.3.2 Transfer of internal messages

Internal messages do not have transfer properties because the transfer is always executed in the same way.
The IL routes internal messages directly to the receiving part of the IL (see 3.2) for further processing. The
application is responsible for requesting each transfer of an internal message using the SendMessage or
SendZeroMessage API service.

No data transfer takes place for zero-length messages.

3.3.3 Transfer properties for external communication

3.3.3.1 Basics

This part of ISO 17356 supports two different transfer properties for the transfer of external messages from
the application to the I-PDU: Triggered and Pending.

The application is responsible for requesting each transfer of a message to the IL, using the SendMessage,
SendDynamicMessage or SendZeroMessage API services. Depending on filtering (for SendMessage only),
the message can be discarded. If the message is not discarded, the IL stores it in the corresponding I-PDU.

No data transfer takes place for zero-length messages.

Zero-length messages can only have Triggered Transfer Property.

Even if no transmission has taken place since the last call to SendMessage or SendDynamicMessage, the
I-PDU is updated.

3.3.3.2 Triggered Transfer Property

The Triggered Transfer Property causes immediate transmission of the I-PDU, except if Periodic Transmission
Mode is defined for the I-PDU.

3.3.3.3 Pending Transfer Property

The Pending Transfer Property does not cause transmission of the I-PDU.

3.3.4 Transmission modes

3.3.4.1 General

This part of ISO 17356 supports three different transmission modes for the transmission of I-PDUs via the
underlying layers: Direct, Periodic and Mixed.

BS ISO 17356-4:2005

标准分享网 www.bzfxw.com 免费下载

www.bzfxw.com

www.bzfxw.com

标准分享网 www.bzfxw.com 免费下载

www.bzfxw.com

www.bzfxw.com

标准分享网 www.bzfxw.com 免费下载

www.bzfxw.com

www.bzfxw.com

标准分享网 www.bzfxw.com 免费下载

www.bzfxw.com

www.bzfxw.com

标准分享网 www.bzfxw.com 免费下载

www.bzfxw.com

www.bzfxw.com

标准分享网 www.bzfxw.com 免费下载

www.bzfxw.com

www.bzfxw.com

标准分享网 www.bzfxw.com 免费下载

22

3) Notification Class 3: Message Reception Error — The configured notification mechanism is invoked
immediately after a message reception error has been detected either by the deadline monitoring
mechanism or via an error code provided by the indication service of the underlying layer.

4) Notification Class 4: Message Transmission Error — The configured notification mechanism is
invoked immediately after a message transmission error has been detected either by the deadline
monitoring mechanism or via an error code provided by the confirmation service of the underlying
layer.

3.6.3 Notification mechanisms

The following notification mechanisms are provided 1):

1) Callback routine — The IL calls a callback routine provided by the application.

2) Flag — The IL sets a flag that can be checked by the application by means of the ReadFlag API
service (ReadFlag returns COM_TRUE if the flag is set, otherwise it returns COM_FALSE).
Resetting the flag is performed by the application by means of the ResetFlag API service.
Additionally, calls to ReceiveMessage and ReceiveDynamicMessage reset flags defined for
Notification Classes 1 and 3 and calls to SendMessage, SendDynamicMessage and
SendZeroMessage reset flags defined for Notification Classes 2 and 4.

3) Task — The IL activates an application task.

4) Event — The IL sets an event for an application task.

Only one type of notification mechanism can be defined for a given sender or receiver message object and a
given notification class. All notification mechanisms are available for all notification classes.

Except for StartCOM and StopCOM, the use of all ISO 17356-4 API functions is allowed in callback routines.
The user shall take care of problems which can arise because of nesting of callbacks (stack size etc.).

3.6.4 Interface for callback routines

Within the application, a callback routine is defined according to the following template:

COMCallback(CallbackRoutineName)
{
}

No parameters are passed to a callback routine and they do not have a return value.

A callback routine runs either on interrupt level or on task level. Thus, the restrictions in ISO 17356-3
concerning usage of system functions for interrupt service routines as well as for tasks apply.

3.7 Communication system management

3.7.1 Initialization/Shutdown

The start-up of a distributed system depends heavily on the communication protocol used and can only be
specified with detailed knowledge of this protocol. Therefore, the description of the communication protocol
specific API is not defined within this part of ISO 17356. It is assumed that all underlying layers are correctly
started and the necessary communication protocols are running.

1) An additional notification mechanism is supported for indirect NM (see 3.9.2).

BS ISO 17356-4:2005

标准分享网 www.bzfxw.com 免费下载

 23

This part of ISO 17356 provides the following services to start up and shut down communication:

⎯ StartCOM: This service initializes internal ISO 17356-4 data areas, calls message initialization routines
and starts the ISO 17356-4 module.

⎯ StopCOM: This service is used to terminate a session of COM and release resources where applicable.

⎯ StartPeriodic and StopPeriodic: These services start or stop the periodic transmission of all messages
using the Periodic or the Mixed Transmission Mode. It is sometimes useful to suspend periodic activity
without necessarily closing down the whole of COM.

NOTE 1 StartCOM does not automatically enable periodic transmission.

NOTE 2 StopCOM terminates periodic transmission.

⎯ InitMessage: This service allows the application to initialize messages with arbitrary values.

Once the kernel has started, an application calls StartCOM. This service is intended to allocate and initialize
system resources used by the ISO 17356-4 module. If configured in ISO 17356-6, StartCOM calls a user-
supplied function StartCOMExtension.

For queued messages StartCOM initializes the number of received messages to 0.

Unqueued messages can be initialized in three ways: no initial value specified in the ISO 17356-6 file, initial
value specified in the ISO 17356-6 file and explicitly via the InitMessage call.

If a message has no initial value specified in the ISO 17356-6 file then StartCOM initializes it to the value 0.

If a message has an initial value specified in the ISO 17356-6 file, then the message is initialized to that value.
However, note that ISO 17356-6 only allows the specification of a limited range of unsigned integer
initialization values. This means that ISO 17356-6 can only be used to initialize messages that correspond to
unsigned integer types within ISO 17356-6’s range of values.

Messages defined to be initialized with no initial value, or with values specified in the ISO 17356-6 file, shall
be initialized by StartCOM before StartCOM calls StartCOMExtension.

⎯ InitMessage can be used to initialize any message with any legal value. Therefore, InitMessage can also
be used to initialize messages that are too large or complex for their initial value to be specified in
ISO 17356-6.

⎯ InitMessage can be called at any point in the application’s execution after StartCOM has been called and
before StopCOM is called but is typically used in StartCOMExtension.

⎯ InitMessage can be used to re-initialize any message after it has been initialized to 0 or a value specified
in the ISO 17356-6 file.

For all three ways of initializing a message, the following operations take place:

⎯ For external transmit messages, the message field in the I-PDU and old_value are set to the value
specified.

⎯ For internal transmit messages, no initialization takes place.

⎯ For receive messages, the message object for an unqueued message is set to the value specified. If a
filter algorithm using old_value (see Table 1) is specified for either unqueued or queued messages,
old_value is set to the value specified.

In the case of dynamic-length messages, the InitMessage call initializes the entire message and the length
field is initialized to the message’s maximum length.

BS ISO 17356-4:2005

24

For queued messages, InitMessage sets the number of received messages to 0.

StartCOM supports the possibility of starting communication in different configurations. To do this, a
parameter is transferred in the call to StartCOM.

StartPeriodic and StopPeriodic shall be used to control the periodic transmission of I-PDUs with the Periodic
or the Mixed Transmission Mode.

StopCOM is designed in such a way that an application can terminate communication in order to release its
resources. This part of ISO 17356 can be restarted with the StartCOM service afterwards, thus the data are
reset to the initial values. StopCOM does not prevent message corruption; unread messages are inaccessible
to the application and are therefore lost.

Before StartCOM is called for the first time, and after StopCOM has been successfully completed, the
behaviour of all ISO 17356-4 calls other than StartCOM is undefined by this part of ISO 17356. However, the
vendor shall define the behaviour of all ISO 17356-4 calls under these circumstances.

3.7.2 Error handling

3.7.2.1 General remarks

An error service is provided to handle temporarily and permanently occurring errors within ISO 17356-4. Its
basic framework is predefined and shall be completed by the user. This gives the user a choice of efficient
centralized or decentralized error handling.

Two different kinds of errors are distinguished:

⎯ Application errors: The IL could not execute the requested service correctly, but assumes the correctness
of its internal data. In this case, centralized error treatment is called. Additionally the IL returns the error
by the status information for decentralized error treatment. It is up to the user to decide what to do
depending on which error has occurred.

⎯ Fatal errors: The IL can no longer assume correctness of its internal data. In this case, the IL calls the
centralized system shutdown.

All these error services are invoked with a parameter that specifies the error.

This part of ISO 17356 offers two levels of error checking:

⎯ Extended error checking: Extended error checking is provided to support the testing of incompletely
debugged applications during the development phase. It allows enhanced plausibility checks, but requires
more execution time and more memory space than standard error checking. The range of status codes
returned by ISO 17356-4 API services on Extended error checking level is called Extended Status.

⎯ Standard error checking: Standard error checking is used in a fully debugged application system during
the production phase. The range of status codes returned by ISO 17356-4 API services on Standard error
checking level is called Standard Status.

The return values of the API services have precedence over the output parameters. If an API service returns
an error, the values of the output parameters are undefined.

BS ISO 17356-4:2005

标准分享网 www.bzfxw.com 免费下载

 25

3.7.2.2 Error hook routine

The ISO 17356-4 error hook routine (COMErrorHook) is called if an ISO 17356-4 service rerturns a
StatusType value not equal to E_OK. The hook routine COMErrorHook is not called if an ISO 17356-4 service
is called from the COMErrorHook itself (i.e. a recursive call to the ISO 17356-4 error hook never occurs). Any
errors caused by a ISO 17356-4 service called from within COMErrorHook can only be detected by evaluating
the service’s return value.

This hook routine is:

⎯ called by the IL, in a context depending on the implementation;

⎯ not interruptible by category 2 interrupt service routines (see ISO 17356-3);

⎯ part of the IL;

⎯ implemented by the user with user-defined functionality;

⎯ standardized in interface, but not standardized in functionality and therefore usually not portable;

⎯ only allowed to use the API functions GetMessageStatus and COMErrorGetServiceId and the parameter
access macros COMError_Name1_Name2; and

⎯ mandatory, but configurable via ISO 17356-6.

3.7.2.3 Error management

To allow for effective error management in COMErrorHook, the user can access additional information.

The macro COMErrorGetServiceId provides an identifier indicating the service that gave rise to the error. The
service identifier is of type COMServiceIdType. Possible values are COMServiceId_xxxx, where xxxx is the
name of the service. Implementation of COMErrorGetServiceId is mandatory. If the service that caused
COMErrorHook to be called has parameters, then these can be accessed using the following access macro
name building scheme. The macro names consist of a fixed prefix and two components
COMError_Name1_Name2 where:

⎯ COMError: is the fixed prefix;

⎯ Name1: is the name of the service; and

⎯ Name2: is the name of the parameter.

For example, the macros to access the parameters of SendMessage are:

⎯ COMError_SendMessage_Message(); and

⎯ COMError_SendMessage_DataRef().

The macro to access the first parameter of a service is mandatory if the parameter is the message identifier of
a message. For optimization purposes, the macro access can be switched off within ISO 17356-6.

BS ISO 17356-4:2005

标准分享网 www.bzfxw.com 免费下载

标准分享网 www.bzfxw.com 免费下载

 29

3.9.2 Interface to Indirect NM

3.9.2.1 Basics

The following services are provided by Indirect NM as callback functions for this part of ISO 17356 to inform
Indirect NM of deadline monitoring results. They provide a fifth notification mechanism, NMCallback. This
notification mechanism is identical to the COMCallback mechanism described in 3.6.3 except that the
interface complies to the definition of I_MessageTransfer.ind and I_MessageTimeOut.ind, that is:

⎯ NMCallback routines have no return value; and

⎯ NMCallback routines pass a 16-bit unsigned integer value as parameter.

Both the name of the NMCallback routine and the value of the parameter passed to it are statically defined in
ISO 17356-6.

To allow for proper configuration, implementations of Indirect NM shall describe implementation-specific
naming conventions (what are the C language names for I_MessageTransfer.ind and I_MessageTimeOut.ind)
and parameter conventions (how do parameter values map to monitored I-PDUs).

3.9.2.2 I-PDU transfer indication

Service name: I_MessageTransfer

Service primitive: I_MessageTransfer.ind (<MonitoredIPDU>)

Parameter (in):

MonitoredIPDU 16-bit unsigned integer value identifying the I-PDU to be monitored

Parameter (out): None

Description: This part of ISO 17356 informs Indirect NM via the service primitive
I_MessageTransfer.ind that a monitored I-PDU has been received from a remote
node or that a monitored I-PDU has been transmitted by the local node.

3.9.2.3 I-PDU time-out indication

Service name: I_MessageTimeOut

Service primitive: I_MessageTimeOut.ind (<MonitoredIPDU>)

Parameter (in):

MonitoredIPDU 16-bit unsigned integer value identifying the I-PDU to be monitored

Parameter (out): None

Description: This part of ISO 17356 informs Indirect NM via the service primitive
I_MessageTimeOut.ind that a time-out has occurred for a monitored I-PDU
received from a remote node or for a monitored I-PDU transmitted by the local
node.

BS ISO 17356-4:2005

30

3.9.3 Application Program Interface (API)

3.9.3.1 Service parameter types

This subclause describes the types of API service in/out parameters.

3.9.3.1.1 StatusType

Description:

This part of ISO 17356 defines communication-specific status codes. The following naming conventions shall
apply:

The names of all status codes which are applicable throughout the whole of ISO 17356 (universal status
codes) shall start with E_. There is only one universal status code: E_OK.

The names of all status codes which are defined by this part of ISO 17356 (communication-specific status
codes) shall start with E_COM_, e.g. E_COM_NOMSG.

The following table lists the universal status codes used by this part of ISO 17356 and the communication-
specific status codes defined by this part of ISO 17356:

Table 2 — Status codes used and/or defined by this part of ISO 17356

Status code Description

E_OK Service call has succeeded.

E_COM_ID Given message or mode identifier is out of range or invalid.

E_COM_LENGTH Given data length is out of range.

E_COM_LIMIT Overflow of message queue.

E_COM_NOMSG Message queue is empty.

The system designer can add implementation-specific status codes for this part of ISO 17356. The names of
all implementation-specific status codes shall start with E_COM_SYS_, e.g. E_COM_SYS_DISCONNECTED.

An implementation-specific status code may either yield an error which is encountered by the ISO 17356-4
service when calling an ISO 17356 service such as, e.g. ActivateTask, or a specific error of the ISO 17356-4
service itself. In the former case, it is recommended that the implementation-specific status code returned is
that of the respective ISO 17356 service. Otherwise, the implementation-specific status code shall be a status
code in the system-reserved number space of this part of ISO 17356 (see ISO 17356-2).

All implementation-specific status codes shall be described in the vendor-specific documentation of an
implementation.

Refer to ISO 17356-2 for more information on the StatusType parameter.

3.9.3.1.2 MessageIdentifier

Type: Scalar

Range: Application-specific, depends on the range of message identifiers

Description: ISO 17356-4 message object identifier

BS ISO 17356-4:2005

标准分享网 www.bzfxw.com 免费下载

 31

3.9.3.1.3 ApplicationDataRef

Type: Reference to a data field in the application

Range: Implementation-specific

Description: Pointer to the data field of an application message

3.9.3.1.4 COMLengthType

Type: Scalar

Range: Depends on the communication protocol used

Description: Data length

3.9.3.1.5 LengthRef

Type: Reference to scalar

Range: Depends on the communication protocol used

Description: Pointer to a data field containing length information

3.9.3.1.6 FlagValue

Type: Enumeration

Range: COM_FALSE, COM_TRUE

Description: Current state of a message flag

3.9.3.1.7 COMApplicationModeType

Type: Scalar

Range: Application-specific, depends on the number of ISO 17356-4 application modes

Description: Identifier for selected ISO 17356-4 application mode

3.9.3.1.8 COMShutdownModeType

Type: Scalar

Range: COM_SHUTDOWN_IMMEDIATE

Description: Identifier for selected ISO 17356-4 shutdown mode

3.9.3.1.9 CalloutReturnType

Type: Enumeration

Range: COM_FALSE, COM_TRUE

Description: Indicates at the exit of a callout whether the IL shall continue or abandon further processing of the
current message or I-PDU

BS ISO 17356-4:2005

32

3.9.3.1.10 COMServiceIdType

Type: Enumeration

Range: COMServiceId_xx with xx being the name of an ISO 17356-4 service

Description: Unique identifier of an ISO 17356-4 service. Example: COMServiceId_SendMessage

3.9.3.2 Start-up services

3.9.3.2.1 StartCOM

Service name: StartCOM

Syntax: StatusType StartCOM (COMApplicationModeType <Mode>)

Parameter (in):

Mode: ISO 17356-4 application mode

Parameter (out): None

Description: The service StartCOM starts and initializes the ISO 17356-4 implementation in the
requested application mode.

If StartCOM fails, initialization of the ISO 17356-4 implementation aborts and StartCOM
returns a status code as specified below.

StartCOM shall be called from within a task if an operating system that conforms to
ISO 17356-3 is used.

Before returning, the service StartCOM calls the application function StartCOMExtension.

Caveats: The hardware and low-level resources used by this part of ISO 17356 shall be initialized
before StartCOM is called, otherwise undefined behaviour results.

StartCOM does not enable periodic transmission of messages. If needed, StartPeriodic can
be called from StartCOMExtension. StartCOM does not stop periodic transmission when
StartCOMExtension returns.

StartCOM returns the status code returned by StartCOMExtension if this is different from
E_OK.

Status:

Standard:

⎯ This service returns E_OK if the initialization completed successfully.

⎯ This service returns an implementation-specific status code if the initialization was not
completed successfully.

Extended:

In addition to the standard status codes defined above, the following status code is supported:

⎯ This service returns E_COM_ID if the parameter <Mode> is out of range.

BS ISO 17356-4:2005

标准分享网 www.bzfxw.com 免费下载

 33

3.9.3.2.2 StopCOM

Service name: StopCOM

Syntax: StatusType StopCOM (COMShutdownModeType <Mode>)

Parameter (in):

Mode: COM_SHUTDOWN_IMMEDIATE

The shutdown occurs immediately without waiting for pending operations to complete.

Parameter (out): None

Description: The service StopCOM causes all ISO 17356-4 activity to cease immediately. All resources
used by this part of ISO 17356 are returned or left in an inactive state. Data loss is possible.

StopCOM stops all periodic transmission of messages.

When StopCOM completes successfully, the system is left in a state in which StartCOM can
be called to re-initialize COM.

Status:

Standard:

⎯ This service returns E_OK if COM was shut down successfully.

⎯ This service returns an implementation-specific status code if the shutdown was not
completed successfully.

Extended:

In addition to the standard status codes defined above, the following status code is supported:

⎯ This service returns E_COM_ID if the parameter <Mode> is out of range.

3.9.3.2.3 GetCOMApplicationMode

Service name: GetCOMApplicationMode

Syntax: COMApplicationModeType GetCOMApplicationMode (void)

Parameter (in): None

Parameter (out): None

Description: The service GetCOMApplicationMode returns the current ISO 17356-4 application mode. It
may be used to write mode-dependent application code.

Particularities: If GetCOMApplicationMode is called before StartCOM is called, an implementation-specific
code shall be returned (the ISO 17356-4 application mode is undefined).

Return value: Current ISO 17356-4 application mode.

BS ISO 17356-4:2005

34

3.9.3.2.4 InitMessage

Service name: InitMessage

Syntax: StatusType InitMessage (

MessageIdentifier <Message>,

ApplicationDataRef <DataRef>

)

Parameter (in):

Message: Message identifier (C identifier)

DataRef: Reference to the application’s message initialization data

Parameter (out): none

Description: The service InitMessage initializes the message object identified by <Message> with the
application data referenced by the <DataRef> parameter.

Particularities: This function may be called in StartCOMExtension in order to change the default
initialization.

For dynamic-length messages, the length of the message is initialized to its maximum.

If InitMessage initializes a transmission message object directly in the I-PDU, additionally
byte order conversion is performed and both the CPU-order and the Network-order
Message Callouts are called.

Status:

Standard:

⎯ This service returns E_OK if the initialization of the message object completed successfully.

⎯ This service returns an implementation-specific status code if the initialization did not
complete successfully.

Extended:

In addition to the standard status code defined above, the following status code is supported:

⎯ This service returns E_COM_ID if the parameter <Message> is out of range or refers to a
zero-length message or to an internal transmit message.

3.9.3.2.5 StartPeriodic

Service name: StartPeriodic

Syntax: StatusType StartPeriodic (void)

Parameter (in): None

Parameter (out): None

BS ISO 17356-4:2005

标准分享网 www.bzfxw.com 免费下载

 35

Description: The service StartPeriodic starts periodic transmission of all messages using either the
Periodic or the Mixed Transmission Modes, unless periodic transmission is already started
for these messages.

Particularities: Each call to StartPeriodic re-initializes and re-starts periodic transmission completely, i.e.
taking into account defined time offsets.

Status:

Standard and Extended:

⎯ This service returns E_OK if periodic transmission was started successfully.

⎯ This service returns an implementation-specific status code if starting of periodic
transmission was not completed successfully.

3.9.3.2.6 StopPeriodic

Service name: StopPeriodic

Syntax: StatusType StopPeriodic (void)

Parameter (in): None

Parameter (out): None

Description: The service StopPeriodic stops periodic transmission of all messages using either the
Periodic or the Mixed Transmission Modes, unless periodic transmission is already stopped
for these messages.

When StopPeriodic has completed successfully, the system is left in a state in which
StartPeriodic can be called to restart periodic transmission of all messages using either the
Periodic or the Mixed Transmission Modes.

Status:

Standard and Extended:

⎯ This service returns E_OK if periodic transmission was stopped successfully.

⎯ This service returns an implementation-specific status code if stopping periodic transmission
was not completed successfully.

3.9.3.3 Notification mechanism support services

3.9.3.3.1 ReadFlag

Service name: ReadFlag

Syntax: FlagValue ReadFlag_<Flag>()

Parameter (in): None

Parameter (out): None

Description: This service returns COM_TRUE if <Flag> is set, otherwise it returns COM_FALSE.

BS ISO 17356-4:2005

36

Particularities: The flag is identified by the name <Flag>; this name is part of the service name as shown in
the syntax description.1) The ISO 17356-4 implementation has to provide one ReadFlag
service for each flag.

Return value:

FlagValue Value of the flag

3.9.3.3.2 ResetFlag

Service name: ResetFlag

Syntax: void ResetFlag_<Flag>()

Parameter (in): None

Parameter (out): None

Description: This service resets <Flag>.

Particularities: The flag is identified by the name <Flag>; this name is part of the service name as shown in
the syntax description.2) The ISO 17356-4 implementation has to provide one ResetFlag
service for each flag.

Status: None

3.9.3.4 Communication services

3.9.3.4.1 SendMessage

Service name: SendMessage

Syntax: StatusType SendMessage (

MessageIdentifier <Message>,

ApplicationDataRef <DataRef>

)

Parameter (in):

Message: Message identifier (C identifier)

DataRef: Reference to the application’s message data to be transmitted

Parameter (out): None

Description: The service SendMessage updates the message object identified by <Message> with the
application message referenced by the <DataRef> parameter.

1) For a given flag ABC, the name of the macro to read the flag is ReadFlag_ABC().

2) For a given flag ABC, the name of the macro to reset the flag is ResetFlag_ABC().

BS ISO 17356-4:2005

标准分享网 www.bzfxw.com 免费下载

 37

External communication:
If <Message> has the Triggered Transfer Property, the update is followed by immediate
transmission of the I-PDU associated with the message, except when the message is
packed into an I-PDU with Periodic Transmission Mode; in this case, no transmission is
initiated by the call to this service.

If <Message> has the Pending Transfer Property, no transmission is caused by the update.

The service SendMessage resets all flags (Notification Classes 2 and 4) associated with
<Message>.

Internal communication:
The message <Message> is routed to the receiving part of the IL.

Status:

Standard:

⎯ This service returns E_OK if the service operation completed successfully.

Extended:

In addition to the standard status code defined above, the following status code is supported:

⎯ This service returns E_COM_ID if the parameter <Message> is out of range or if it refers to
a message that is received or to a dynamic-length or zero-length message.

3.9.3.4.2 ReceiveMessage

Service name: ReceiveMessage

Syntax: StatusType ReceiveMessage (

MessageIdentifier <Message>,

ApplicationDataRef <DataRef>

)

Parameter (in):

Message: Message identifier (C identifier)

Parameter (out):

DataRef: Reference to the application’s message area in which to store the received data

Description: The service ReceiveMessage updates the application message referenced by <DataRef>
with the data in the message object identified by <Message>. It resets all flags (Notification
Classes 1 and 3) associated with <Message>.

Status:

Standard:

⎯ This service returns E_OK if data in the queued or unqueued message identified by
<Message> are available and returned to the application successfully.

BS ISO 17356-4:2005

38

⎯ This service returns E_COM_NOMSG if the queued message identified by <Message> is
empty.

⎯ This service returns E_COM_LIMIT if an overflow of the message queue identified by
<Message> occurred since the last call to ReceiveMessage for <Message>. E_COM_LIMIT
indicates that at least one message has been discarded since the message queue filled.
Nevertheless, the service is performed and a message is returned. The service
ReceiveMessage clears the overflow condition for <Message>.

Extended:

In addition to the standard status codes defined above, the following status code is supported:

⎯ This service returns E_COM_ID if the parameter <Message> is out of range or if it refers to
message that is sent or to a dynamic-length or zero-length message.

3.9.3.4.3 SendDynamicMessage

Service name: SendDynamicMessage

Syntax: StatusType SendDynamicMessage (

MessageIdentifier <Message>,

ApplicationDataRef <DataRef>,

LengthRef <LengthRef>

)

Parameter (in):

Message: Message identifier (C identifier)

DataRef: Reference to the application's message data to be transmitted

LengthRef: Reference to a value containing the length of the data in the message

Parameter (out): None

Description: The service SendDynamicMessage updates the message object identified by <Message>
with the application data referenced by the <DataRef> parameter.

If <Message> has the Triggered Transfer Property, the update is followed by immediate
transmission of the I-PDU associated with the message, except when the message is
packed into an I-PDU with Periodic Transmission Mode; in this case, no transmission takes
place.

If <Message> has the Pending Transfer Property, no transmission is caused by the update.

The service SendDynamicMessage resets all flags (Notification Classes 2 and 4)
associated with <Message>.

Particularities: This service can be used with unqueued messages only. This service is provided for
external communication only.

BS ISO 17356-4:2005

标准分享网 www.bzfxw.com 免费下载

 39

Status:

Standard:

⎯ This service returns E_OK if the service operation completed successfully.

Extended:

In addition to the standard status code defined above, the following status codes are supported:

⎯ This service returns E_COM_ID if the parameter <Message> is out of range or if it refers to
a received message, a static-length message or a zero-length message.

⎯ This service returns E_COM_LENGTH if the value to which <LengthRef> points is not within
the range 0 to the maximum length defined for <Message>.

3.9.3.4.4 ReceiveDynamicMessage

Service name: ReceiveDynamicMessage

Syntax: StatusType ReceiveDynamicMessage (

MessageIdentifier <Message>,

ApplicationDataRef <DataRef>,

LengthRef <LengthRef>

)

Parameter (in):

Message: Message identifier (C identifier)

Parameter (out):

DataRef: Reference to the application’s message area in which to store the received data.

LengthRef: Reference to an application variable in which to store the message length.

Description: The service ReceiveDynamicMessage updates the application message referenced by
<DataRef> with the data in the message object identified by <Message>. It resets all flags
(Notification Classes 1 and 3) associated with <Message>.

The length of the received message data is placed in the variable referenced by
<LengthRef>.

Particularities: This service can be used with unqueued messages only. This service is provided for
external communication only.

Status:

Standard:

⎯ This service returns E_OK if data in the unqueued message identified by <Message> is
returned to the application successfully.

BS ISO 17356-4:2005

40

Extended:

In addition to the standard status code defined above, the following status code is supported:

⎯ This service returns E_COM_ID if the parameter <Message> is out of range or if it refers to
a message that is sent, a queued message, a static-length message or a zero-length
message.

3.9.3.4.5 SendZeroMessage

Service name: SendZeroMessage

Syntax: StatusType SendZeroMessage (

MessageIdentifier <Message>

)

Parameter (in):

Message: Message identifier of the zero-length message (C identifier)

Parameter (out): None

Description:

External communication:

The service SendZeroMessage causes immediate transmission of the I-PDU associated
with the zero-length message <Message> except when this message is associated with an
I-PDU with Periodic Transmission Mode; in this case, no transmission is initiated by the call
to this service.

The service SendZeroMessage resets all flags (Notification Classes 2 and 4) associated
with <Message>.

Internal communication:

The message <Message> is routed to the receiving part of the IL for notification.

Status:

Standard:

⎯ This service returns E_OK if the service operation completed successfully.

Extended:

In addition to the standard status code defined above, the following status code is supported:

⎯ This service returns E_COM_ID if the parameter <Message> is out of range or if it refers to
a non-zero-length message.

BS ISO 17356-4:2005

标准分享网 www.bzfxw.com 免费下载

 41

3.9.3.4.6 GetMessageStatus

Service name: GetMessageStatus

Syntax: StatusType GetMessageStatus (

MessageIdentifier <Message>

)

Parameter (in):

Message: Message identifier (C identifier)

Parameter (out): None

Description: The service GetMessageStatus returns the current status of the message object
<Message>.

Status:

Standard:

⎯ This service returns E_COM_NOMSG if the message queue identified by <Message> is
empty.

⎯ This service returns E_COM_LIMIT if an overflow of the message queue identified by
<Message> occurred since the last call to ReceiveMessage for <Message>.

⎯ This service returns E_OK if none of the conditions specified above is applicable or fulfilled
and no error indication is present.

Extended:

In addition to the standard status codes defined above, the following status code is supported:

⎯ This service returns E_COM_ID if the parameter <Message> is out of range or if it does not
refer to a queued message.

3.9.3.4.7 COMErrorGetServiceId

Service name: COMErrorGetServiceId

Syntax: COMServiceIdType COMErrorGetServiceId (void)

Parameter (in): None

Parameter (out): None

Description: The service COMErrorGetServiceId (which may be implemented as a macro) returns the
identifier of the ISO 17356-4 service where the error occurred.

Caveats: The service COMErrorGetServiceId shall only be called from COMErrorHook, otherwise the
return value is undefined.

Return value: Service Identifier

BS ISO 17356-4:2005

42

3.9.3.4.8 COMError_Name1_Name2 macros

COMError_Name1_Name2 is the pattern for the names of macros which are used to access (from within the
function COMErrorHook) parameters of the ISO 17356-4 service which called COMErrorHook.

The parts of the macro names are defined as follows:

⎯ COMError: is a fixed prefix.

⎯ Name1: is the name of the service, e.g. SendMessage.

⎯ Name2: is the name of the parameter, e.g. DataRef.

3.9.4 Routines provided by the application

3.9.4.1 StartCOMExtension

Service name: StartCOMExtension

Syntax: StatusType StartCOMExtension (void)

Parameter (in): None

Parameter (out): None

Description: The routine StartCOMExtension is provided by the application and is called by the
ISO 17356-4 implementation at the end of the StartCOM routine. It can be used to extend
the start-up routine with initialization functions (e.g. InitMessage) or additional start-up
functions (e.g. StartPeriodic).

Status:

Standard and Extended:

⎯ This service returns E_OK if it completed successfully.

⎯ This service returns an implementation-specific status code to indicate that an error
occurred during its execution.

3.9.4.2 Callouts

Service name: COMCallout(CalloutRoutineName)

Syntax: COMCallout (CalloutRoutineName)

Parameter (in): None

Parameter (out): None

Description: The routine CalloutRoutineName is provided by the application and is called by the
ISO 17356-4 implementation. It can be used to extend the ISO 17356-4 functionality with
application-related functions (e.g. gatewaying).

The return value indicates whether the IL shall continue (COM_TRUE) or abandon
(COM_FALSE) further processing of this message or I-PDU after the callout returns.

Return value: The routine CalloutRoutineName shall return a return value of the type CalloutReturnType.
The return value contains information regarding whether or not to continue processing.

BS ISO 17356-4:2005

标准分享网 www.bzfxw.com 免费下载

 43

3.9.4.3 COMErrorHook

Service name: COMErrorHook

Syntax: void COMErrorHook (

StatusType <Error>

)

Parameter (in):

Error: Identifier of the occurred error

Parameter (out): None

Description: The service COMErrorHook is provided by the application and is called by COM at the end
of a COM service which returns a status code not equal to E_OK.

Status: None

4 Minimum requirements of lower communication layers

This Clause describes the requirements of the lower communication layers that are used together with this
part of ISO 17356. The lower layers could be the Network Layer or the Data Link Layer. The lower layers shall
be capable of transmitting and receiving both fixed and dynamic-length I-PDUs as determined by the
Interaction Layer. Therefore, the following three services are required:

⎯ A Request service to pass control information and an I-PDU to the underlying layer and cause the I-PDU
to be transmitted as soon as possible: The length of the I-PDU is mandatory control information for
dynamic-length I-PDUs.

⎯ A Confirmation service to confirm that a transmission of an I-PDU has been carried out: Status
information shall be passed from the underlying layer to this part of ISO 17356. Depending on the
outcome of the transmission, this status is either success or failure; in the case of a failure, the type of
failure could be specified. The Confirmation service allows asynchronous behaviour between this part of
ISO 17356 and the lower layer to be achieved.

⎯ An Indication service to receive an I-PDU and pass status information from the underlying layer network
to this part of ISO 17356: The length of the received I-PDU is mandatory status information for dynamic-
length I-PDUs. Depending on the outcome of the reception, status also indicates either success or failure;
in the case of a failure, the type of failure could be specified.

Additionally, the underlying layer shall be capable of broadcast transmission. If this is not the case, addressing
more than one receiver on the same bus is not possible.

For the Controller Area Network (CAN) protocol, the Network Layer that is specified in ISO 15765-2 fulfils the
above minimum requirements.

BS ISO 17356-4:2005

标准分享网 www.bzfxw.com 免费下载

 45

Table 3 — Definition of conformance classes

Features

C
C

C
A

C
C

C
B

C
C

C
0

C
C

C
1

Unqueued messages √ √ √ √

Notification Class 1 √ a √ √ √

Queued messages √ √

Message status information √ √

External communication √ √

Triggered Transfer Property √ √

Notification Class 2 √ √

Byte order conversion √ √

Direct Transmission Mode √ √

Filtering √

Pending Transfer Property √

Zero-length messages √

Dynamic-length messages √

Periodic Transmission Mode √

Mixed Transmission Mode √

Minimum delay time √

Deadline Monitoring √

Notification Class 3 √

Notification Class 4 √

Callouts √
a Flag notification mechanism is not supported in CCCA.

BS ISO 17356-4:2005

46

Annex A
(informative)

Use of ISO 17356-4 (COM) with an OS not conforming to ISO 17356-3

This part of ISO 17356 can be implemented so that it works with operating systems other than the one
described in ISO 17356-3. Such an implementation is simplified by the fact that only a limited amount of
entities of ISO 17356-3 are used within this part of ISO 17356. To use this part of ISO 17356 with another
operating system, the following facilities shall be offered by that operating system:

⎯ tasks (basic and extended);

⎯ events; and

⎯ interrupt service routines (ISR) category 2.

Systems which can map these facilities such that they comply with their respective definition in ISO 17356-3
can fully support an ISO 17356-4 implementation.

BS ISO 17356-4:2005

标准分享网 www.bzfxw.com 免费下载

 47

Annex B
(informative)

Application notes

B.1 Zero-length messages

The main purpose of zero-length messages is to provide a signalling mechanism that is independent of the
location of the sender and the receivers (locally inside one ECU or across the network) and to trigger a send
request for an I-PDU containing messages configured as having the Pending Transfer Property.

When a zero-length message arrives, notification takes place. In the case of external transmission, notification
is invoked upon the arrival of the containing I-PDU.

If an I-PDU is configured with the Direct Transmission Mode, a message configured with the triggered
property is needed to request a transmission of the I-PDU. The triggered message can be a zero-length
message.

Note that when an I-PDU contains more than one message with the Triggered Transfer Property, the receiver
is not able to tell which message caused the I-PDU’s transmission.

B.2 Use of callbacks

A callback is one of the notification mechanisms that can be invoked in response to an event in the IL. A
callback with the name “cb1” would be declared in the application source as follows:

COMCallback(cb1)

{
…
}

When the declared event in the IL occurs, the IL calls the callback. This means that the context in which the
callback is called (such as task priority if the IL is part of a task, or interrupt priority if the IL is part of an ISR) is
determined by the implementation.

Because a callback is called as part of the IL, when the appropriate event occurs it gives the fastest response
time to the arrival of a new message. However, because it runs as part of the IL, a callback can prevent the IL
from being re-entered depending upon the implementation. Therefore, it can be necessary to ensure that the
callback exits rapidly in order to prevent message loss.

B.3 m:n communication

The senders and receivers of a message are configured at system generation time.

On the receiver side, a message can have any number of receivers (even zero) in each ECU. The application
is allowed to access any message object with multiple tasks or ISRs. The application has to ensure
consistency, while reading from a queued message object with multiple tasks or ISRs.

On the sender side, a message can have any number of senders (even zero) but only in one ECU. A
message can only be stored in up to one message object. For external communication, only one message
object can be contained within one I-PDU. Therefore, multiple senders have to reside upon the same ECU.

BS ISO 17356-4:2005

48

A message can also be configured to have zero senders and zero receivers. This allows message space to be
reserved in an I-PDU for future use.

Receivers cannot be configured for zero-length messages. However, a notification can still be generated. If
the notification is a flag, then ResetFlag shall be used to reset the flag as the read API calls cannot be used
on zero-length messages.

This part of ISO 17356 is written from the viewpoint of the application. It describes how tasks or ISRs acting
as senders can route data to tasks or ISRs acting as receivers, and it describes the functionality behind the
API functions used. With respect to the application, this part of ISO 17356 supports n:m communication.

When seen from inside, the IL is only concerned with message objects and not with senders or receivers.
Message data is managed in sending message objects, and the data is sent either directly (internal
communication) or via an underlying layer (external communication) to possibly more than one receiving
message object. For the API and functionality of the IL, it is not relevant which tasks or ISRs access a
message object. If the description of this part of ISO 17356 only focused on the point of view of message
objects, the IL would be described to support 1:m communication. By including in ISO 17356-6 information
about which tasks or ISRs access which message objects, more efficient implementations can be realized.

B.4 I-PDU transmission

The IL is responsible for requesting the transmission of an I-PDU by the underlying layer. For I-PDUs with
Direct or Mixed Transmission Modes, a minimum delay time can be configured per I-PDU. The IL shall
postpone further transmissions of a specific I-PDU if the minimum delay time of this I-PDU has not expired.
The minimum delay time starts on confirmation of an I-PDU by the underlying layer. If no postponed request
exists, an I-PDU transmission is requested by the schedule when using the Periodic or Mixed Transmission
Modes.

Transmission of a direct or mixed I-PDU is also requested when a contained message with Triggered Transfer
Property is sent.

Note that an I-PDU that is configured with the Direct Transmission Mode and that contains no messages with
the Triggered Transfer Property is never transmitted.

B.5 I-PDU transmission modes

The Direct Transmission Mode is appropriate when the message’s application data is to be sent quickly
whenever an update occurs.

Periodically transmitted I-PDUs produce a bus load that is easy to model. When direct and mixed I-PDUs are
taken into account, bus loading is more difficult to model. However, as the IL can limit the maximum rate at
which direct and mixed I-PDUs can be transmitted, worst-case bus load calculations are still possible.

The reception of a periodically transmitted I-PDU does not imply that a task or ISR that sends messages using
that I-PDU is still functioning correctly. Such detection might be performed by the task or ISR sending a
message whose contents are changed each time the message is sent.

The Mixed Transmission Mode can be used to transmit important changes quickly outside the periodic time
schedule.

BS ISO 17356-4:2005

标准分享网 www.bzfxw.com 免费下载

标准分享网 www.bzfxw.com 免费下载

 51

B.8 I-PDU transmission criteria

When considering external transmission, a message contained in an I-PDU can have an affect upon when the
I-PDU is transmitted by the underlying layers as shown in the table below.

Table B.1 — I-PDU transmission criteria

 I-PDU transmission mode

 Periodic Mixed Direct

Tr
ig

ge
re

d The I-PDU is transmitted
with its declared period
and also in response to a
contained triggered
message being sent.

The I-PDU is transmitted
in response to this
message being sent.

M
es

sa
ge

 T
ra

ns
fe

r P
ro

pe
rt

y

P
en

di
ng

The I-PDU is
transmitted only
with its declared
period.

The I-PDU is transmitted
with its declared period,
i.e. the I-PDU is not
transmitted in response to
this message being sent.

The I-PDU is not
transmitted in response to
this message being sent.

This table shows how a single message contained in an I-PDU affects the I-PDU’s transmission. If there is
more than one message in the I-PDU, then this table applies for each message in turn. For example, if an
I-PDU is direct and contains a triggered message and a pending message, the I-PDU is only transmitted when
the triggered message is sent.

In the case of internal messages, the data is placed in the receiver’s message object as part of the send call.
Therefore, internal communication can be regarded as synchronous.

B.9 Transfer modes for periodic transmissions

For messages that are assigned to I-PDUs which are configured to have the Periodic Transmission Mode, the
configuration of the message’s transfer property has no effect; the I-PDU is only transmitted at the points in
time defined by its period. However, although the transfer mode is irrelevant in this special case, it is still
advisable to assign the Pending Transfer Property to messages that are to be transmitted periodically.

One reason for this is that the application programmer usually defines the transfer property, but the
transmission mode is usually defined by the person responsible for the overall network. Often, an I-PDU might
have the Periodic Transmission Mode when the network design is started, but might later be reconfigured to
have the Mixed Transmission Mode, e.g. by reassigning some other message to this I-PDU. If this happens,
then the transfer property is again relevant and it should have been set to the correct value initially so as not
to cause worry about correct transfer property at this later point in time.

B.10 Variable I-PDU Transmission Periods

Periodic I-PDUs have their periods fixed at system generation time. However, in certain circumstances, it is
necessary to be able to give them different periods, after mode changes, for example. Although this part of
ISO 17356 does not directly support variable period I-PDUs, they can be implemented using direct I-PDUs
containing a triggered message.

The messages in the I-PDU that contain data would all be marked as pending and would be filled in by the
application as appropriate. Transmission would be achieved by the application sending the triggered message.
This might be sent by a task activated from an alarm specified in ISO 17356-3. By changing the alarm’s period
at run-time, the period of the I-PDU can also be changed. More complex schemes (for example, the task
might implement a state machine) can result in arbitrarily complex I-PDU transmission patterns.

BS ISO 17356-4:2005

52

B.11 Interface to Indirect NM

The IL needs to call Indirect NM in order to indicate that a message has been transferred or that a message
timeout has occurred (see 3.9.2). This is achieved by defining an NMCallback for a message in a monitored
I-PDU. The message can be one that already exists in that I-PDU or a zero-length message used explicitly to
cause an NMCallback.

Each implementation of Indirect NM might define different names for its I_MessageTransfer.ind and
I_MessageTimeOut.ind routines. Therefore, the names used are configured as an NMCallback attribute of a
message in the ISO 17356-6 file. Additionally, Indirect NM also needs to know which message caused the
NMCallback. For this purpose, the NMCallback parameter called MonitoredIPDU uniquely identifies the
message that caused the NMCallback. As a message can only appear in one I-PDU, and an I-PDU can only
appear on one bus, this parameter is sufficient to identify the I-PDU and bus that caused the NMCallback.
Therefore, the NMCallback indicates the condition of an I-PDU.

The values passed in the MonitoredIPDU parameter are defined per message in the ISO 17356-6 file.
Therefore, a unique value can be chosen for each message.

B.12 Use of Overlapping Messages

This part of ISO 17356 allows messages in an I-PDU to overlap each other. One message may completely
overlap another message or group of messages so that all of them are totally contained within the overlapping
message. Alternatively, one message may only partially overlap another so that both have I-PDU bits in
common and bits that are not in common.

Although overlapping messages have some uses, it is expected that they are unusual. Therefore,
implementations should be designed to make the common case (non-overlapping messages) to be the most
efficient.

Rules for message initialization apply equally to overlapping and non-overlapping messages. However,
message initialization does not specify the order in which messages are initialized. Therefore, when
initialization takes place as a result of initial values specified in the ISO 17356-6 file, the resulting message
values in overlapping messages can differ between implementations. However, if InitMessage is used,
message initialization can be written so that only relevant overlapping fields are set up, thereby improving
portability.

When a system is configured, with or without overlapping messages, all the messages have the appropriate
internal data structures generated, even though, e.g. in a particular ISO 17356-4 Application Mode, a
message is not used. This is because message usage can depend upon information other than the
ISO 17356-4 Application Mode. No special action is taken in the generation of this part of ISO 17356's internal
data structures based upon whether or not messages overlap.

The rest of this section describes two possible uses for overlapping messages.

Overlapping messages can be useful when a group of signals need to be gatewayed from one network to
another. If we assume that the message group occupies space in the I-PDU that has no messages not
belonging to the group in it, then a single overlapping message can be used that encompasses all of the
messages in the group. This means that the entire message group can be read from one I-PDU and written to
another I-PDU simply by reading the single overlapping message. (This is similar to the way that structures
work in C.)

A further use of overlapping messages is to allow the format of an I-PDU to be changed in response to, for
example, the ISO 17356-4 Application Mode, or some tag field within the I-PDU. (This use is similar to unions
in C.) In this case, any byte order conversion, filtering, copying to message objects and notification still take
place for all the messages they are declared for, even if, in a certain mode, a message becomes irrelevant.
This is because this part of ISO 17356 cannot selectively enable or disable messages based upon the
ISO 17356-4 Application Mode. This implies that, under certain circumstances notifications are generated that
are irrelevant. The application code shall be written so that it detects and correctly deals with these situations.

BS ISO 17356-4:2005

标准分享网 www.bzfxw.com 免费下载

 53

For example, a system has two messages, A and B, that have notifications that activate tasks TA and TB
respectively when the message arrives. The messages are packed into the I-PDU so that they overlap. It is
also assumed that message A is only relevant in ISO 17356-4 Application Mode X and message B is only
relevant in ISO 17356-4 Application Mode Y.

When the system is initialized, the StartCOMExtension shall read the ISO 17356-4 Application Mode in order
to decide whether to initialize message A or B.

When the system is running in ISO 17356-4 Application Mode X, reception of data in message A causes task
TA to be activated. However, as these are in the same I-PDU task, TB is also activated.

As this is ISO 17356-4 Application Mode X rather than Y, TB’s activation is undesirable but unavoidable.
Therefore, the application shall be written in such a way that this problem is overcome. This can be achieved
by the application code that receives the notification checking, whether or not the notification is acceptable in
the current ISO 17356-4 Application Mode, and exiting if it is not. An outline of how this might be achieved is
shown in the following code example.

TASK(TB) {
if(GetCOMApplicationMode() != Y) {

(void)TerminateTask();

} else {

/* we only get here if we are in the correct COM

 * application mode for this task

 */

…

}

}

Although this makes the task more complex, this only occurs in specific instances of overlapping message use
rather than in the core of the IL.

BS ISO 17356-4:2005

54

Annex C
(informative)

Callouts

This annex describes some suggested uses for callouts.

Callouts provide a general mechanism to customize and enhance the behaviour of the IL. Callouts are
configured statically, are invoked in response to the passage of a message or I-PDU and cannot be changed
at run-time. The prototype for a callout allows it to return a value. This value is treated as a Boolean that can
either prevent or allow further processing of the message or I-PDU.

Three uses of callouts are now described: custom filtering, gatewaying and replication. Each of these uses
can apply equally well to I-PDUs or messages.

Declaration:

A callout is declared in the application code as follows:

COMCallout(co1)

{
…

}

This declares a callout called “co1”. As callouts have no parameters, it is best to have a callout for each
separate use. This means that the callout implicitly knows which I-PDU or message it is dealing with.

Custom filtering:

The CPU-order message callouts can be used to implement custom filtering. When the callout is invoked, the
message can be checked against some arbitrary criterion and the callout’s return value used to indicate
whether or not the message passes the filter. Depending upon the callout's return value, the IL either discards
the message or continues processing it.

For example, a custom filter might be implemented as follows:

COMCallout(filter1) {

if(test criterion) {

return COM_TRUE;

} else {

return COM_FALSE:

}

}

so that the message is either discarded or passed based upon the test criterion.

BS ISO 17356-4:2005

标准分享网 www.bzfxw.com 免费下载

 55

Gatewaying:

In gatewaying, a message or I-PDU is received by the IL and then sent elsewhere, possibly to a different
I-PDU on the same bus, or to an I-PDU on a different bus. When the callout is invoked, it copies the message
or I-PDU to another I-PDU and then optionally initiates transfer of that I-PDU to the underlying layers, thereby
causing its transmission on the bus. The return code from the callout can be used to indicate whether or not
the message or I-PDU shall also be received by the controlling ECU.

Replication:

An ECU can interface to more than one bus. Therefore, it can be necessary to have the same I-PDU
transmitted identically on more than one bus. This can be achieved with an I-PDU callout as it can place the
contents of the outgoing I-PDU in some other I-PDU (destined for the same or another bus) and initiate its
transmission if appropriate.

BS ISO 17356-4:2005

BS ISO
17356-4:2005
BSI

389 Chiswick High Road

London

W4 4AL
BSI — British Standards Institution
BSI is the independent national body responsible for preparing
British Standards. It presents the UK view on standards in Europe and at the
international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of
British Standards should make sure that they possess the latest amendments or
editions.

It is the constant aim of BSI to improve the quality of our products and services.
We would be grateful if anyone finding an inaccuracy or ambiguity while using
this British Standard would inform the Secretary of the technical committee
responsible, the identity of which can be found on the inside front cover.
Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400.

BSI offers members an individual updating service called PLUS which ensures
that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be
addressed to Customer Services. Tel: +44 (0)20 8996 9001.
Fax: +44 (0)20 8996 7001. Email: orders@bsi-global.com. Standards are also
available from the BSI website at http://www.bsi-global.com.

In response to orders for international standards, it is BSI policy to supply the
BSI implementation of those that have been published as British Standards,
unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and
international standards through its Library and its Technical Help to Exporters
Service. Various BSI electronic information services are also available which give
details on all its products and services. Contact the Information Centre.
Tel: +44 (0)20 8996 7111. Fax: +44 (0)20 8996 7048. Email: info@bsi-global.com.

Subscribing members of BSI are kept up to date with standards developments
and receive substantial discounts on the purchase price of standards. For details
of these and other benefits contact Membership Administration.
Tel: +44 (0)20 8996 7002. Fax: +44 (0)20 8996 7001.
Email: membership@bsi-global.com.

Information regarding online access to British Standards via British Standards
Online can be found at http://www.bsi-global.com/bsonline.

Further information about BSI is available on the BSI website at
http://www.bsi-global.com.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the
UK, of the publications of the international standardization bodies. Except as
permitted under the Copyright, Designs and Patents Act 1988 no extract may be
reproduced, stored in a retrieval system or transmitted in any form or by any
means – electronic, photocopying, recording or otherwise – without prior written
permission from BSI.

This does not preclude the free use, in the course of implementing the standard,
of necessary details such as symbols, and size, type or grade designations. If these
details are to be used for any other purpose than implementation then the prior
written permission of BSI must be obtained.

Details and advice can be obtained from the Copyright & Licensing Manager.
Tel: +44 (0)20 8996 7070. Fax: +44 (0)20 8996 7553.
Email: copyright@bsi-global.com.
标准分享网 www.bzfxw.com 免费下载

