BS ISO 17296-2:2015 ## **BSI Standards Publication** # Additive manufacturing — General principles Part 2: Overview of process categories and feedstock BS ISO 17296-2:2015 #### National foreword This British Standard is the UK implementation of ISO 17296-2:2015. The UK participation in its preparation was entrusted to Technical Committee AMT/8, Additive manufacturing. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2015. Published by BSI Standards Limited 2015 ISBN 978 0 580 82362 6 ICS 25.040.20 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 28 February 2015. Amendments/corrigenda issued since publication Date Text affected ## INTERNATIONAL STANDARD ISO 17296-2 First edition 2015-01-15 ## Additive manufacturing — General principles — Part 2: ## Overview of process categories and feedstock Fabrication additive — Principes généraux — Partie 2: Vue d'ensemble des catégories de procédés et des matières premières BS ISO 17296-2:2015 **ISO 17296-2:2015(E)** #### COPYRIGHT PROTECTED DOCUMENT © ISO 2015 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland | Contents | | | Page | |----------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------| | Fore | word | | iv | | Intr | oductio | on | v | | 1 | Scop | oe | 1 | | 2 | Normative references | | 1 | | 3 | Terms and definitions | | 1 | | 4 | Part 4.1 4.2 | types and their classification General Classification of parts | | | 5 | Proc | cess chains | 2 | | 6 | Process categories 6.1 General | | 2 | | | 6.2 | Existing process categories 6.2.1 Vat photopolymerization 6.2.2 Material jetting 6.2.3 Binder jetting 6.2.4 Powder bed fusion 6.2.5 Material extrusion 6.2.6 Directed energy deposition 6.2.7 Sheet lamination | | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 261, *Additive manufacturing*. ISO 17296 consists of the following parts, under the general title *Additive manufacturing — General principles*: - Part 1: Terminology¹⁾ - Part 2: Overview of process categories, part types and feedstock - Part 3: Main characteristics and corresponding test methods - Part 4: Overview of data processing ¹⁾ To be published. #### Introduction Additive manufacturing is a versatile technology that can be used throughout the product development process. The additive manufacturing processes can be used to manufacture prototypes, tool and fully functional end-use parts. In addition to engineering, the application areas of this interdisciplinary technology now include fields ranging from e.g. architecture and medicine, to archaeology and cartography, as well as arts, toys, education, entertainment. During its somewhat turbulent development, different terms and definitions have emerged which are frequently ambiguous and confusing. Moreover, there are various different processes available on the market and it is not always clear what opportunities and limitations they offer in terms of application. This part of ISO 17296 aims to offer a description of the general working principles for the different process categories and the processing of feedstock material into the desired product geometry. This will enhance the understanding of the process and improve the communication between the customer and suppliers of products and services. The principles and process categories described in this part of ISO 17296 refer to commercially available technology that has proven practically useful and viable on the market for several years. ### Additive manufacturing — General principles — #### Part 2: ### Overview of process categories and feedstock #### 1 Scope This part of ISO 17296 describes the process fundamentals of Additive Manufacturing (AM). It also gives an overview of existing process categories, which are not and cannot be exhaustive due to the development of new technologies. This part of ISO 17296 explains how different process categories make use of different types of materials to shape a product's geometry. It also describes which type of material is used in different process categories. Specification of feedstock material and requirements for the parts produced by combinations of different processes and feedstock material will be given in subsequent separate standards and are therefore not covered by this part of ISO 17296. This part of ISO 17296 describes the overreaching principles of these subsequent standards. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 17296-1, Additive manufacturing — General principles — Part 1: Terminology²⁾ #### 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO 17296-1 apply. #### 4 Part types and their classification #### 4.1 General Parts produced by additive manufacturing can be used as both prototypes and production parts (the term "prototype" is described in ISO 17296-1). Production parts are used for different applications at the end of the product development (cycle) and reflect all requirements of the desired product. For both prototypes and production parts, different processes and materials can be used depending on the type of the part, application and industry, and cost and delivery time requirements. It is the responsibility of the developer to design the parts and to decide on their specification. Close consultation with the component manufacturer is advisable, depending on the customer's expertise. #### 4.2 Classification of parts Parts shall further be divided into different classes, from the most rigorous class regarding quality and traceability (class 1) to the least rigorous class regarding quality and traceability. The details of these classes will be defined in specific further standards related to the feedstock, process and application. ²⁾ To be published. #### 5 Process chains The process chain involved in additive manufacturing technologies is characterized by direct fabrication of parts based on 3D CAD data. Intermediate stages, such as tool manufacturing, are unnecessary. There are basically two different categories: - single-step processes: parts are fabricated in a single operation where the basic geometric shape and basic material properties of the intended product are achieved simultaneously, - multi-step processes: parts are fabricated in two or more operations where the first typically provides the basic geometric shape and the following consolidates the part to the intended basic material properties. NOTE Dependent on the final application, all processes can require one or more additional post-processing operations to reach all the intended properties in the final product. The technologies involved are well-known and well documented non-additive processes and therefore it is unnecessary to describe them in further detail at this stage. #### 6 Process categories #### 6.1 General There are multiple processes developed for additive manufacturing. These are grouped into seven basic categories based on fundamental parts of the machines' functionality. In subsequent standards, detailed information and requirements for specific feedstock-process combinations (for example PA12 powder via powder bed fusion) will be given, such as: - Information on fundamental properties of the feedstock, - Requirements on feedstock (pre-conditioning), - Informative process description, - For each specific feedstock/process combination the relevant properties of parts (such as gas permeability, tensile strength etc.), including requirements of minimal values and information on feasible ranges of values, - Required quantification methods, - Information on typical applications. #### 6.2 Existing process categories #### 6.2.1 Vat photopolymerization The definition of Vat photopolymerization according to ISO 17296-1: additive manufacturing process in which liquid photopolymer in a vat is selectively cured by light-activated polymerization. See <u>Figure 1</u>. ### a) Vat photopolymerization by laser light source ## b) Vat photopolymerization by controlled area light source #### Key - 1 energy light source - 2 tilted mirror with focus - 3 build platform and elevator - 4 support structure - 5 product - 6 vat filled with liquid photocurable resin - 7 transparent plates - 8 photo mask - 9 recoating and surface levelling mechanism Figure 1 — Schematic diagram of two alternative principles for vat photopolymerization **Feedstock**: liquid or paste: photoreactive resin with or without filler. **Binding mechanism**: chemical reaction bonding. **Source of activation**: typically UV radiation from lasers or lamps. **Secondary processing**: cleaning, support material removal, post-curing by further UV exposure. #### 6.2.2 Material jetting The definition of material jetting according to ISO 17296-1: additive manufacturing process in which droplets of build material are selectively deposited. See Figure 2. #### Key - feedstock delivery system for build and support material (optional dependent on the specific process) - 2 dispensing apparatus (radiation light or thermal source) - 3 droplets of build material - 4 support structure - 5 build platform and elevator - 6 product Figure 2 — Schematic diagram of material jetting **Feedstock**: liquid photopolymer or melted wax, with or without filler. **Binding mechanism**: chemical reaction bonding or adhesion by solidification of melted material. **Source of activation**: radiation light source for chemical reaction bonding. **Secondary processing**: support material removal, post-curing by further radiation light exposure. #### 6.2.3 Binder jetting The definition of binder jetting according to ISO 17296-1: additive manufacturing process in which a liquid bonding agent is selectively deposited to join powder materials. See <u>Figure 3</u>. #### Kev - 1 powder feeding system - 2 powder material distributed in a powder bed - 3 liquid bonding agent - 4 dispensing apparatus including connection to bonding agent feed system - 5 powder spreading device - 6 build platform and elevator - 7 product Figure 3 — Schematic diagram of binder jetting **Feedstock**: powders, powder blends or particulate materials, and a liquid adhesive/bonding agent. **Binding mechanism**: chemical and/or thermal reaction bonding. **Source of activation**: depending on the bonding agent: chemical reaction. **Secondary processing**: removal of loose powder, impregnation or infiltration of suitable liquid material depending on the powder material and intended application. NOTE Waxes, epoxies and other adhesives have been used for polymer materials, while metals and ceramics commonly are consolidated by sintering and infiltration with a melted material. #### 6.2.4 Powder bed fusion The definition of powder bed fusion according to ISO 17296-1: additive manufacturing process in which thermal energy selectively fuses regions of a powder bed. See Figure 4. 7 8 9 5 11 10 #### a) Laser based powder bed fusion b) Electron beam powder bed fusion #### Key - 1 powder feeding system (in some cases powder container like 7) - 2 powder material distributed in a powder bed - 3 laser - 4 tilted mirror with focus - 5 powder spreading device - 6 build platform - 7 feedstock container - 8 electron beam gun - 9 focused electron beam - 10 support structure - 11 product NOTE Support structure and a build substrate is normally required for the processing of metallic feedstock, whereas it is usually not necessary for polymer feedstock. Figure 4 — Schematic diagram of two types of powder bed fusion **Feedstock**: various powders: thermoplastic polymers, typically pure metals or metal alloys, structural or industrial ceramics. Any of the powder materials could be used with, or without, fillers and binders depending on the specific process. Binding mechanism: thermal reaction bonding. **Source of activation**: thermal energy, typically transferred from laser, electron beam, and/or infrared lamps. **Secondary processing**: removal of loose powder and, if applicable, support material, and various operations to improve surface finish, dimensional accuracy and material properties; for example micro blasting, finishing milling, grinding, polishing and heat treatments. #### 6.2.5 Material extrusion The definition of material extrusion according to ISO 17296-1: additive manufacturing process in which material is selectively dispensed through a nozzle or orifice. See Figure 5. #### Key - 1 support structure - 2 build platform and elevator - 3 heated nozzle - 4 feedstock supply - 5 product Figure 5 — Schematic diagram of material extrusion **Feedstock**: Filament or paste, typically thermoplastics and structural ceramics. **Binding mechanism**: thermal or chemical reaction bonding. **Source of activation:** heat, ultrasound or a chemical reaction between components. **Secondary processing**: removal of support structure. #### 6.2.6 Directed energy deposition The definition of directed energy deposition according to ISO 17296-1: additive manufacturing process in which focused thermal energy is used to fuse materials by melting as they are being deposited. See <u>Figure 6</u>. #### Key - 1 powder hopper - directed energy beam, for example: laser, electron beam or plasma arc - 3 product - 4 substrate - 5 wire (filament) coil - 6 build table - NOTE 1 Multiple axis capability (typically 3-6 axis) is achieved by movement of nozzle and build table. NOTE 2 Alternative material feeding systems, for example: powder fed in through the energy beam, powder fed in to the energy focal point,, of filament (wire) fed in to the energy focal point. Figure 6 — Schematic diagram of directed energy deposition **Feedstock**: powder or wire, typically metal, for certain applications ceramic particles can be added to the base material. **Binding mechanism**: thermal reaction bonding: melting and solidification. **Source of activation**: laser, electron beam or plasma transferred arc. **Secondary processing**: improving the surface finish, for example: machining, micro blasting, laser remelting, grinding or polishing and improving material properties (e.g. heat treatments). #### 6.2.7 **Sheet lamination** The definition of sheet lamination according to ISO 17296-1: additive manufacturing process in which sheets of material are bonded to form an object. See Figure 7. #### a) Sheet lamination of continuous roll #### b) Sheet lamination of discontinuous sheets #### Key - cutting device 1 - 2 excess material roll - 3 laminator roll - build platform and elevator - product - 6 raw material roll - excess material stack - raw material stack Figure 7 — Schematic diagram of sheet lamination Feedstock: sheet material: typically paper, metal foil, polymers or composite sheets predominately formed of metal or ceramic powder material held together by a binder. **Binding mechanism**: thermal reaction, or chemical reaction bonding, ultrasound. Source of activation: Source activation: localized or large scale heating, chemical reaction and ultrasonic transducers. **Secondary processing**: removal of waste material, and optionally sintering, infiltration, heat treatment, sanding or machining to improve surface finish. ## British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### Knowledge Centre Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com