BS ISO 16842:2014 ## **BSI Standards Publication** Metallic materials — Sheet and strip — Biaxial tensile testing method using a cruciform test piece BS ISO 16842:2014 BRITISH STANDARD #### National foreword This British Standard is the UK implementation of ISO 16842:2014. The UK participation in its preparation was entrusted to Technical Committee ISE/101/2, Ductility testing. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2014. Published by BSI Standards Limited 2014 ISBN 978 0 580 75438 8 ICS 77.040.10 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 October 2014. Amendments issued since publication Date Text affected **INTERNATIONAL STANDARD** BS ISO 16842:2014 **ISO** 16842 > First edition 2014-10-01 ## **Metallic materials** — Sheet and strip — Biaxial tensile testing method using a cruciform test piece Matériaux métalliques — Tôles et bandes — Méthode d'essai de traction biaxiale sur éprouvette cruciforme BS ISO 16842:2014 **ISO 16842:2014(E)** ## COPYRIGHT PROTECTED DOCUMENT © ISO 2014 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland | Contents | | | |----------|--|------------------------| | Fore | reword | iv | | Intr | roduction | v | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | 1 | | 4 | Principle | 2 | | 5 | Test piece | | | | 5.1 Shape and dimensions | 2 | | 6 | Testing method | | | | 6.1 Testing machine | | | | 6.2 Measurement method of force and strain6.3 Installation of the test piece to a biaxial tensile testing machine | | | | 6.4 Testing methods | | | 7 | Determination of biaxial stress-strain curves | 7 | | | 7.1 General | | | | 7.2 Determination of the original cross-sectional area of the test pie | ce7 | | | 7.3 Determination of true stress | | | | 7.5 Determination of true plastic strain | | | 8 | Test report | 10 | | | 8.1 Information in the report | | | | 8.2 Additional note | | | Ann | nex A (informative) Method for measuring a yield surface | 12 | | Ann | nex B (informative) Factors affecting the maximum equivalent plastic st
gauge area of the test piece | rain applicable to the | | Ann | nex C (informative) Biaxial tensile testing machine | | | Ribl | 22 | | ## **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 164, *Mechanical testing of metals*, Subcommittee 2, *Ductility testing*. ## Introduction This International Standard specifies the testing method for measuring the biaxial stress-strain curves of sheet metals subject to biaxial tension at an arbitrary stress ratio using a cruciform test piece made of flat sheet metals. The International Standard applies to the shape and strain measurement position for the cruciform test piece. The biaxial tensile testing machine is described in <u>Annex C</u>, only in terms of the typical example of the machine and the requirements that the machine should comply with. The cruciform test piece recommended in this International Standard has the following features: - a) the gauge area of the test piece ensures superior homogeneity of stress, enabling measurement of biaxial stress with satisfactory accuracy; - b) capability of measuring the elasto-plastic deformation behaviour of sheet metals at arbitrary stress or strain rate ratios; - c) free from the out-of-plane deformation as is encountered in the hydrostatic bulge testing method; - d) easy to fabricate from a flat metal sheet by laser cutting, water jet cutting, or other alternative manufacturing methods. # Metallic materials — Sheet and strip — Biaxial tensile testing method using a cruciform test piece ## 1 Scope This International Standard specifies the method for measuring the stress-strain curves of sheet metals subject to biaxial tension using a cruciform test piece fabricated from a sheet metal sample. The applicable thickness of the sheet shall be 0,1 mm or more and 0,08 times or less of the arm width of the cruciform test piece (see <u>Figure 1</u>). The test temperature shall range from 10 °C to 35 °C. The amount of plastic strain applicable to the gauge area of the cruciform test piece depends on the force ratio, slit width of the arms, work hardening exponent (*n*-value) (see <u>Annex B</u>), and anisotropy of a test material. ## 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 10275, Metallic materials — Sheet and strip — Determination of tensile strain hardening exponent ISO 80000-1, Quantities and units — Part 1: General ## 3 Terms and definitions For the purpose of this document, the following terms and definitions apply. ## 3.1 ## cruciform test piece test piece which is recommended in the biaxial tensile test and whose geometry is specified in this International Standard (see <u>Figure 1</u>) #### 3.2 #### gauge area square area which is located in the middle of the cruciform test piece and is enclosed by the four arms of the cruciform test piece (see <u>Figure 1</u>) ## 3.3 #### arm generic name for all areas other than the gauge area in the cruciform test piece. The arms play a role of transmitting tensile forces in two orthogonal directions to the gauge area of the cruciform test piece (see Figure 1) #### 3.4 ## biaxial tensile testing machine testing machine for applying biaxial tensile forces to a cruciform test piece in the orthogonal directions parallel to the arms of the test piece (see <u>Annex C</u>) #### 3.5 #### vield surface a group of stress determined in a stress space, at which a metal starts plastic deformation when probing from the elastic region into the plastic range [1] (see Annex A) #### 3.6 ## yield function mathematical function used to generate the conditional equation (yield criterion) which the stress components should comply with when the material subject to the stress is in the plastic deformation state (see <u>Annex A</u>) #### 3.7 ## contour of plastic work graphic figure derived by subjecting the material to plastic deformation along various linear stress paths and plotting the stress points in stress space at the instance when the plastic work consumed per unit volume along each stress path becomes identical; and the plotted stress points are approximated into either a smooth curve or curved surface (see <u>Annex A</u>) ## 4 Principle Measurement is made at room temperature, on the yield stress and the stress-strain curves of sheet metals under biaxial tensile stresses by measuring simultaneously and continuously the biaxial tensile forces and strain components applied to the gauge area of a cruciform test piece while applying biaxial tensile forces in the orthogonal directions parallel to the arms of the test piece. The test piece is made of a flat sheet metal and has a uniform thickness. The measured biaxial stress-strain curves are used to determine contours of plastic work of the sheet samples (see Annex A). According to the finite element analyses of the cruciform test piece as recommended in Clause 5 and the strain measurement position as specified in Clause 6.2.4, the stress calculation error is estimated to be less than 2,0 %.[2][3] ## 5 Test piece ## 5.1 Shape and dimensions Figure 1 shows the shape and dimensions of the cruciform test piece recommended in this International Standard. The test piece shall be as described below. - a) In principle, the thickness of a test piece, a, shall be the same as that of the as-received sheet sample, without any work done in the thickness direction. See 5.1 b) for an exception to the rule. - b) The arm width, B, should be 30 mm or more, except that it can be determined according to the agreement between parties involved in transaction. It shall satisfy $a \le 0.08B$ and should be accurate to within ± 0.1 mm for all four arms. The sheet thickness can be reduced to satisfy $a \le 0.08B$ according to the agreement between parties involved in transaction. - c) Seven slits per one arm shall be made. Specifically, one slit shall be made on the centerline (x-axis or y-axis) of the test piece with a positional accuracy of \pm 0,1 mm, and three slits shall be made at an interval of B/8 with an positional accuracy of \pm 0,1 mm on each side of the centerline. All slits shall have the same length, L, and should be accurate to within \pm 0,1 mm. The relationship of $B \le L \le 2B$ should be established. The opposing slit ends shall be made at an equal distance, $B_{Sx}/2$ and $B_{Sy}/2$, from the centerline with a positional accuracy of $B/2 \pm 0.1$ mm. - d) The slit width, w_S , should be made as small as possible (see Figure B.2), preferably less than 0,3 mm. - e) The grip length, C, is considered to be enough if it can secure the test piece to the grips of the biaxial tensile testing machine and can transmit the necessary tensile force to the test piece. The standard grip length would be $B/2 \le C \le B$, but can be determined arbitrarily according to the agreement between parties involved in transaction. - f) An alternative test piece geometry can be used. In the use of the alternative cruciform test pieces, the evidence of the stress measurement accuracy has to be clarified between the contractual partners. ## 5.2 Preparation of the test pieces - a) The permitted variations in thickness and the permitted variations from a flat surface of the sheet metal sample from which the cruciform test pieces are taken shall be in accordance with relevant product standards or national standards. - b) The standard sampling direction of the test piece shall be such that the directions of arms are parallel to the rolling (x) and transverse (y) directions of the sheet sample, respectively. The test piece sampling direction can be determined according to the agreement between parties involved in transaction. - c) For the fabrication of the test piece (including making of slits), any method, e.g. laser cutting, water jet cutting, or other alternative manufacturing methods, demonstrated to work satisfactorily can be used if agreed upon by the parties. - d) Unless otherwise specified and except for the sampling work, unnecessary deformation or heating to the test piece shall be avoided. #### Key - 1 gauge area - 2 arm - 3 grip - 4 slit - a thickness of a test piece - B arm width - B_{Sx} distance between opposing slit ends in the x direction - B_{Sy} distance between opposing slit ends in the *y* direction - C grip length - L slit length - *R* corner radius at the junctions of arms to the gauge area - ws slit width Figure 1 — Standard shape and dimensions of the recommended cruciform test piece [2][3] ## 6 Testing method ## 6.1 Testing machine The specifications required for the biaxial tensile testing machine (hereinafter referred to as testing machine) are as follows (for examples of typical testing machines, see Annex C). - a) It shall have sufficient functions and durability to hold four grips of a cruciform test piece (hereinafter referred to as test piece) in one single plane with a tolerance of ± 0.1 mm during testing. - b) Two opposing grips shall move along a single straight line (hereinafter referred to as x-axis and y-axis), and the x- and y-axes shall intersect at an angle of $90^{\circ} \pm 0.1^{\circ}$ (The plane that contains the x- and y-axes is referred to as the reference plane, while the intersection of x- and y-axes as the centre of testing machine). - c) It shall have a function for adjusting the two opposing grips to the position at an equal distance from the centre of the testing machine with a tolerance of \pm 0,1 mm before the installation of a test piece to the grips. - d) It shall have a function for enabling the installation of a test piece to the grips while aligning the centre of the test piece to the centre of the testing machine. - e) It shall have a function for enabling equal displacement of two opposing grips or the maintenance of the centre of the test piece always on the centre of the testing machine with a tolerance of ± 0.1 mm during biaxial tensile test (for example, the testing machines shown in Figures C.1 and C.2 use a link mechanism to ensure equivalent displacement of two opposing grips). - f) It shall have a capability of servo-controlled biaxial tensile testing to perform a test with a constant nominal stress ratio (constant force ratio) and/or a test with a constant true stress ratio, and/or a test with a constant strain-rate ratio, according to the purpose of the test (see Annex C.2). For a link type biaxial tensile testing machine, it shall ensure equal displacement of two opposing grips (see Annex C.3). - g) Modern control electronics allow independent and combined control of each actuator it is called modal control (see Annex C.4). - h) It shall have a function for measuring and storing the values of the tensile forces (two channels for the *x* and *y*-axes) and strain components (two channels for the *x* and *y*-axes) during biaxial tensile test with the specified accuracy and time interval agreed by the parties concerned. ## 6.2 Measurement method of force and strain #### 6.2.1 General This subclause specifies the method for measuring the tensile forces (F_x, F_y) and nominal strain components (e_x, e_y) applied to the x and y directions of a cruciform test piece. ## 6.2.2 Measurement method of force For measurement of (F_x, F_y) , load cells shall be used in the x and y directions. The force-measuring system of the testing machine shall be calibrated in accordance with ISO 7500-1, class 1, or better. #### 6.2.3 Measurement method of strain For measurement of (e_x, e_y) , strain gauges or other methods, e.g. an optical measurement system, shall be used. Measure e_x and e_y to the nearest 0,000 1 or better. ## **6.2.4** Strain measurement positions Figure 2 shows the position(s) of a strain gauge (or strain gauges) for measuring (e_x, e_y) . (e_x, e_y) shall be measured at a position, with a distance of $(0.35 \pm 0.05)B$ from the centre of test piece, on the centerline parallel to the maximum tensile force. The strain measurement position can also be determined according to the agreement between parties involved in transaction. NOTE According to the finite element analyses of the cruciform test piece as recommended in <u>Clause 5</u> and the strain measurement position as specified in <u>Figure 2</u>, the stress calculation error is estimated to be less than 2,0%.[2][3] ## a) A case of measuring $e_{\rm X}$ and $e_{\rm y}$, using a biaxial foil strain gauge b) A case of measuring $e_{\rm X}$ and $e_{\rm y}$, using two pieces of uniaxial strain gauge ## Key - B arm width - $e_{\rm x}$ nominal strain in the x direction - $e_{\rm y}$ nominal strain in the y direction - $F_{\rm X}$ tensile force in the *x* direction - $F_{\rm V}$ tensile force in the y direction Figure 2 — Strain measurement position[2][3] ## 6.3 Installation of the test piece to a biaxial tensile testing machine The test piece shall be fixed by four grips of a biaxial tensile testing machine. Care shall be taken to ensure alignment of the centre of test piece with that of the testing machine. ## 6.4 Testing methods While keeping the force ratio, true stress ratio, strain-rate ratio, or the grip displacement-rate ratio constant, biaxial tensile forces shall be applied to the test piece. (F_x, F_y) and (e_x, e_y) shall be measured with constant time intervals and the data shall be recorded on appropriate equipment. The test ends when achieving the desired strain or stress level, or should be ended when fracture or localized necking occurred in the arm or gauge area. The recommended strain-rate is $0.1 \, \text{s}^{-1}$ to $0.0001 \, \text{s}^{-1}$. NOTE A similar testing method has been used for abrupt strain path changes (see Annex A.3). ## 7 Determination of biaxial stress-strain curves #### 7.1 General Using the measured values of (F_x, F_y) and (e_x, e_y) , the stress-strain curves in the x and y directions of the cruciform test piece shall be determined. These curves are used to determine contours of plastic work for the test material (see Annex A.2). ## 7.2 Determination of the original cross-sectional area of the test piece Calculate the original cross-sectional areas of the gauge area perpendicular to the x- and y-axes, A_{Sx} and A_{Sy} , from Formulae (1) and (2): $$A_{\rm Sx} = a \times B_{\rm Sy} \tag{1}$$ $$A_{Sy} = a \times B_{Sx} \tag{2}$$ where *a* is the sheet thickness, expressed in mm; B_{Sx} is the distance between opposing slit ends on the x axis, expressed in mm; B_{Sy} is the distance between opposing slit ends on the y axis, expressed in mm. Measure a to the nearest 0,01 mm or better using a micrometer with sufficient resolution. B_{Sx} and B_{Sy} shall be determined to the nearest 0,1 mm or better using a measuring device with sufficient resolution. The calculated values of A_{Sx} and A_{Sy} shall be rounded to 0,1 mm² according to ISO 80000-1. #### 7.3 Determination of true stress Calculate the true stress components in the *x* and *y* directions, σ_x and σ_y , from Formulae (3) and (4): $$\sigma_{X} = \frac{F_{X}}{A_{SX}} (1 + e_{X}) \tag{3}$$ $$\sigma_{y} = \frac{F_{y}}{A_{Sy}} (1 + e_{y}) \tag{4}$$ where A_{Sx} is the original cross-sectional areas of the gauge area perpendicular to the *x*-axes, expressed in mm²; A_{Sy} is the original cross-sectional areas of the gauge area perpendicular to the *y*-axes, expressed in mm²; e_x is the nominal strain in the x direction measured by the method, as described in <u>6.2</u>; $e_{\rm v}$ is the nominal strain in the y direction measured by the method, as described in <u>6.2</u>; $F_{\rm X}$ is the tensile force in the *x* direction, expressed in N; $F_{\rm V}$ is the tensile force in the y direction, expressed in N. #### 7.4 Determination of true strain Calculate the true strain components in the *x* and *y* directions, ε_x and ε_y , from Formulae (5) and (6): $$\varepsilon_{\rm X} = \ln(1 + e_{\rm X}) \tag{5}$$ $$\varepsilon_{y} = \ln(1 + e_{y}) \tag{6}$$ where e_x is the nominal strain in the x direction measured by the method, as described in 6.2; $e_{\rm V}$ is the nominal strain in the y direction measured by the method, as described in 6.2. ε_x and ε_y shall be calculated to the digit of 10^{-5} from Formulae (5) and (6), and the result shall be rounded to the digit of 10^{-4} according to ISO 80000-1. Examples of the measured biaxial true stress-true strain curves for a cold rolled ultralow carbon steel sheet are shown in Figure 3. ## 7.5 Determination of true plastic strain Calculate the true plastic strain components in the x and y directions, ε_x^p and ε_y^p , from Formulae (7) and (8): $$\varepsilon_{x}^{p} = \varepsilon_{x} - \frac{\sigma_{x}}{C_{x}} \tag{7}$$ $$\varepsilon_{y}^{p} = \varepsilon_{y} - \frac{\sigma_{y}}{C_{y}} \tag{8}$$ where - $C_{\rm X}$ is the slope of the elastic part of the $\sigma_{\rm X}$ $\varepsilon_{\rm X}$ curve measured in the biaxial tensile test, expressed in MPa; - C_y is the slope of the elastic part of the σ_y ε_y curve measured in the biaxial tensile test, expressed in MPa; - $\varepsilon_{\rm x}$ is the true strain in the *x* direction; - $\varepsilon_{\rm V}$ is the true strain in the *y* direction; - $\sigma_{\rm X}$ is the true stress in the *x* direction, expressed in MPa; - $\sigma_{\rm V}$ is the true stress in the *y* direction, expressed in MPa. ε_x^p and ε_y^p shall be calculated to the digit of 10^{-5} from Formulae (7) and (8), and the result shall be rounded to the digit of 10^{-4} according to ISO 80000-1. **a) A case of** F_{X} : F_{y} = 1:1 **b)** A case of F_{X} : $F_{V} = 2:1$ #### Key - $C_{\rm X}$ slope of the elastic part of the $\sigma_{\rm X}$ $\varepsilon_{\rm X}$ curve measured in the biaxial tensile test, in MPa - $C_{ m V}$ slope of the elastic part of the $\sigma_{ m V}$ $\epsilon_{ m V}$ curve measured in the biaxial tensile test, in MPa - $F_{\rm x}$ tensile force in the x direction, in N - F_{y} tensile force in the y direction, in N - $\varepsilon_{\rm X}$ true strain in the x direction - $\varepsilon_{\rm v}$ true strain in the *y* direction - $\sigma_{\rm X}$ true stress in the *x* direction, in MPa - $\sigma_{\rm v}$ true stress in the y direction, in MPa NOTE The uniaxial tensile true stress-true strain curve in the rolling direction (RD) of the same material is also shown for comparison. Figure 3 — Examples of true stress-true strain curves measured in the biaxial tensile test of cold rolled ultralow carbon steel sheet Examples of measured true stress-true plastic strain curves corresponding to Figure 3 are shown in Figure 4. **a) A** case of $F_X: F_V = 1:1$ **b)** A case of F_x : $F_y = 2:1$ #### Key $F_{\rm X}$ tensile force in the *x* direction, in N F_y tensile force in the y direction, in N $\varepsilon_{\rm x}^{\rm p}$ true plastic strain in the x direction $\varepsilon_{\rm V}^{\rm \, p}$ true plastic strain in the y direction $\sigma_{\rm X}$ true stress in the *x* direction, in MPa $\sigma_{\rm V}$ true stress in the y direction, in MPa NOTE The uniaxial tensile true stress-true plastic strain curve in the rolling direction (RD) of the same material is also shown for comparison. Figure 4 — Examples of true stress-true plastic strain curves measured in the biaxial tensile test of cold rolled ultralow carbon steel sheet ## 8 Test report ## 8.1 Information in the report The test report shall contain at least the following information unless otherwise agreed by the parties concerned: - a) identification of the test piece; - b) specified material, if known; - c) thickness of the original sheet sample and the test piece; - d) dimensions of the test piece: arm width, B; grip length, C; slit length, L; corner radius at the junctions of arms to the gauge area, R; slit width, w_S (see Figure 1); - e) location and direction of sampling of the test pieces, if known, and the fabrication method of the test pieces; - f) strain measurement method; - g) test temperature; - h) testing machine; - i) loading conditions (force ratio, true stress ratio, strain-rate ratio, or grip displacement ratio for the link type biaxial tensile testing mechanism shown in Figure C.2, strain-rate, etc.); - j) test results: data specified according to the agreement between the parties involved in transaction (force-time diagram, strain-time diagram, contour of plastic work, stress path in stress space, strain path in strain space, etc.). ## 8.2 Additional note It is recommended that the record of the following items is added in the test report: - a) sample mill sheet; - b) photo of overall appearance of the test piece after test. ## Annex A (informative) ## Method for measuring a yield surface ## A.1 General This annex specifies methods for measuring a yield surface of a sheet metal. A yield surface is effective when the plastic deformation characteristics of sheet metals are to be evaluated quantitatively and when an optimum yield function is to be identified for the metals under biaxial stress. The determination of an appropriate yield function based on the biaxial tensile tests is useful to improve the predictive accuracy of FEA for sheet metal forming processes. [4][5][6][7] ## A.2 Method for measuring contours of plastic work Figure A.1 shows a method for measuring a contour of plastic work for sheet metals. A uniaxial tensile test in the rolling direction of the material is conducted first, and the uniaxial true stress, σ_0 , and plastic work, W_0 , dissipated per unit volume are determined for a predetermined value of the uniaxial true plastic strain, ε_0^p . In this case, W_0 is determined as an area below the measured true stress-true plastic strain curve. Then, the biaxial tensile tests with the force ratios, F_x : F_y , or the true stress ratio, σ_x : σ_y , held at specific proportions and the uniaxial tensile test in the transverse direction are also carried out. Finally, groups of true stress points, $(\sigma_0, 0)$, (σ_x, σ_y) , and $(0, \sigma_{90})$, for which the same amount of plastic work as W_0 is required, are plotted in the principal stress space to form a contour of plastic work associated with ε_0^p . When ε_0^p is sufficiently small, the associated work contour can be practically viewed as an initial yield surface for the material. ## Key - $W_{\rm X}$ plastic work per unit volume dissipated by the tensile force in the *x* direction - $W_{\rm V}$ plastic work per unit volume dissipated by the tensile force in the y direction - W_0 plastic work per unit volume dissipated in the uniaxial tensile test to a strain of ε_0^p in the x direction - $\varepsilon_0^{\,\mathrm{p}}$ uniaxial true plastic strain reached in the uniaxial tensile test in the x direction - σ_X true stress in the *x* direction - σ_v true stress in the *y* direction - σ_0 tensile true stress reached in the uniaxial tensile test in the *x* direction and associated with W_0 - σ_{90} tensile true stress reached in the uniaxial tensile test in the y direction and associated with W_0 Figure A.1 — A schematic diagram for the determination of a contour of plastic work Figure A.2 shows examples of contours of plastic work measured for different sheet metals using cruciform test pieces as shown in Figure 1. The force ratio, F_x : F_y , was set to 1:0, 4:1, 2:1, 4:3, 1:1, 3:4, 1:2, 1:4, and 0:1. For the force ratios of 1:0 and 0:1, a standard uniaxial tensile test piece was used. Figure A.2 — Examples of contours of plastic work measured using cruciform test pieces σ_{v} true stress in the y direction, in MPa # A.3 Use of abrupt strain path change for detecting a yield vertex and subsequent yield surface Conventionally, a yield surface is determined by probing in many different stress directions from the elastic region into the plastic range. In considering the possibility that a corner exists on the subsequent yield surface at the point of loading, as predicted by crystal plasticity, Reference [1] has argued that any such corner will be erased by the unloading needed to probe the yield surface. Reference [8] proposed a new method for determining the shape of the subsequent yield surface in the vicinity of a current loading point. They prescribe a proportional strain path until the loading point of interest has been reached, and prescribe an abrupt strain path that will cause the stress point to move quickly along the yield surface. This determination can be done without any unloading, which would be required if the subsequent yield surface was to be determined by probing from the elastic region. This method is therefore capable of detecting a yield vertex formed at the point of loading. Reference [9] applied the abrupt strain path change method to a cruciform test piece, and successfully measured a yield vertex and non-normality behaviour of the plastic strain-rate. Figure A.3 shows the observed stress paths for an aluminium alloy and an IF steel, using the cruciform test piece shown in Figure 1, in a closed-loop, servo-controlled biaxial tensile testing machine. In the first step of straining, equibiaxial stretching, $D_{11} = D_{22} > 0$, was prescribed. At a nominal strain, $e_{11} = e_{22} = 0.01$, the prescribed strain-rates were abruptly changed to $D_{11} = -D_{22} > 0$, or alternatively, $D_{22} = -D_{11} > 0$. It is apparent that the stress paths for the abrupt strain path change with $D_{22} = -D_{11}$ cannot be non-yielding stress paths in the elastic region. It is therefore inferred, that a yield surface vertex exists at the point of loading in the figure. Similar tests were performed for a metastable austenitic stainless cast steel, [10] although the geometry of the test piece used is different from that shown in Figure 1. ## (a) cold rolled ultralow carbon steel sheet (b) 6 000-series aluminium alloy sheet ## Key σ_{11} true stress in the *x* direction, in MPa σ_{22} true stress in the *y* direction, in MPa D_{11} stretching in the *x* direction D_{22} stretching in the *y* direction *D*^P plastic strain-rate Δεp accumulated equivalent (von Mises) plastic strain measured from the strain path change point NOTE The curve marked with \cdot is a work contour measured for the as-received material subjected to linear stress paths. Figure A.3 — Subsequent yield surfaces observed with abrupt strain path changes following equibiaxial tension[9] ## **Annex B** (informative) # Factors affecting the maximum equivalent plastic strain applicable to the gauge area of the test piece #### **B.1** General For the cruciform test piece covered by this International Standard, the arms are subjected to uniaxial tension, so that the test is over at a time when the nominal stress of the arm reaches the material tensile strength. Accordingly, the maximum equivalent plastic strain, ε_{\max}^p , applicable to the gauge area can be estimated using the Considère condition for maximum load in a strip in tension. [11] ε_{\max}^p depends mainly on the force ratio, F_x : F_y , the work hardening exponent, n (n-value, see ISO 10275), of the test material, the slit width of the cruciform test piece, w_S , and the anisotropy of the test material. This annex shows the effects of the work hardening exponent and the slit width on ε_{\max}^p . ## B.2 Effect of work hardening exponent (*n*-value) Figure B.1 shows the effect of n-value on ε_{\max}^p when the slit width of the cruciform test piece is 1 % of the arm width and the number of slits is seven. For materials having larger n-value, ε_{\max}^p becomes larger. This is because the material with larger n-value has the higher stress increase-rate along with increase in the arm's plastic deformation, which in turn causes increase in the stress acting on the gauge area. Note here that the values of ε_{\max}^p in Figure B.1 should be viewed only for reference, because these are numerical analysis solutions based on the simple mechanics of plasticity, the maximum load condition for the arm, [11] by assuming the isotropy of the material. #### Key $F_{\rm X}$ tensile force in the x direction, in N $F_{\rm V}$ tensile force in the y direction, in N w_S slit width, in mm B arm width, in mm *n* work hardening exponent (*n*-value) $\varepsilon_{\max}^{\, p}$ maximum equivalent plastic strain applicable to the gauge area Figure B.1 — Effects of n-value on the maximum equivalent plastic strain applicable to the gauge area of a cruciform test piece. Material model: Von Mises yield criterion ## **B.3** Effect of slit width Figure B.2 shows the effects of the slit width on ε_{\max}^p when the force ratios, F_x : F_y , are 2:1 and 1:1 and the number of slits is seven. As the effective sectional area of the arm decreases with increasing w_S , the force transmitted to the gauge area decreases, resulting in the decrease of ε_{\max}^p . Note that the results shown in Figure B.2 should be viewed only for reference, because they are numerical analysis solutions based on the simple mechanics of plasticity, the maximum load condition for the arm, [11] by assuming the isotropy of the material. #### Key $F_{\rm x}$ tensile force in the x direction, in N F_{y} tensile force in the y direction, in N w_S slit width, in mm B arm width, in mm *n* work hardening exponent (*n*-value) $arepsilon_{ ext{max}}^{ ext{p}}$ maximum equivalent plastic strain applicable to the gauge area Figure B.2 — Effects of the slit width on the maximum equivalent plastic strain applicable to the gauge area of a cruciform test piece. Material model: Von Mises yield criterion [2] # **Annex C** (informative) ## Biaxial tensile testing machine ## C.1 General This annex shows examples of the testing machine applicable to the biaxial tensile testing method. ## **C.2** Servo controlled biaxial tensile testing machine Figure C.1 shows the structural example of a servo-controlled biaxial tensile testing machine. [12][13] The main body consists of the frame, four actuators (hydraulic cylinder or servo motor) arranged in two orthogonal directions, grip connected to each actuator, and one load cell installed in each axis. Opposing hydraulic cylinders are connected to common hydraulic lines so that they are subjected to the same hydraulic pressure. The hydraulic pressure of each pair of opposing hydraulic cylinders is servo-controlled independently. Displacements of opposing hydraulic cylinders are equalized using the pantograph-type link mechanism proposed by Reference [14], so that the centre of the cruciform test piece is always kept at the centre of the testing machine during biaxial tensile tests. A load cell is included in each loading direction. This testing machine can control the stress ratio [12][13] or strain-rate ratio [9] by means of the servo actuators. ## Key - 1 actuator - 2 centre of the testing machine - 3 grip - 4 load cell - 5 link mechanism - 6 loading axis - 7 frame Figure C.1 — Example of servo-controlled biaxial tensile testing machine [12][13] ## C.3 Link type biaxial tensile testing machine ## C.3.1 Link type biaxial tensile testing mechanism with adjustable displacement ratio Figure C.2 shows the link type biaxial tensile testing mechanism.^[15] A user can easily apply biaxial tensile forces to a cruciform test piece by simply installing the mechanism into an existing uniaxial tensile testing machine and applying a uniaxial compressive force "C" to the top of the machine. It is capable of keeping the displacement-rate ratio between the orthogonal grips constant. ## Key C compressive force Figure C.2 — Link type biaxial tensile testing machine [15] ## C.3.2 Link type biaxial tensile testing machine with adjustable force ratio Figure C.3 shows a high-force biaxial testing machine with a centralized application of force through a lifting gear and adjustable force ratio. [16] The adjustment of the tensile force in each direction is carried out with variable angles. The tensile force is measured with load cells in each direction. With the link type testing machine, it is possible to set different force ratios without expensive control. Figure C.3 — Link type biaxial tensile testing machine [16] ## C.4 Biaxial testing machine with electro-mechanically driven spindle drives Figure C.4 shows the structural example of a servo-controlled biaxial tensile testing machine with a vertical frame (horizontal frame is also possible). [17][18] There are four orthogonally arranged electromechanically driven spindle drives. Each of the four actuators is individually controlled. Each actuator includes sensors for position, force, and strain. Position stability of the test piece centre is video-optically controlled. Because of independent and combined control of each actuator, any variety of stress ratio and strain ratio can be applied. #### Key - 1 electromechanical actuator - 2 load cell - 3 grips - 4 load frame Figure C.4 — Biaxial tensile testing machine with electro-mechanically driven spindle drives and vertical frame $^{[17][18]}$ ## **Bibliography** - [1] HECKER S.S. Experimental studies of yield phenomena in biaxially loaded metals. In: *Constitutive Equations in Viscoplasticity: Computational and Engineering Aspects*, (STRICKLIN J.A., & SACZALSKI K.H. eds.). ASME, New York, 1976, pp. 1–33. - [2] HANABUSA Y., TAKIZAWA H., KUWABARA T. Numerical verification of a biaxial tensile test method using a cruciform specimen. *J. Mater. Process. Technol.* 2013, **213** pp. 961–970 - [3] HANABUSA Y., TAKIZAWA H., KUWABARA T. Evaluation of accuracy of stress measurements determined in biaxial stress tests with cruciform specimen using numerical method. *Steel Research Int.* 2010, **81** pp. 1376–1379 - [4] YOON J.W., BARLAT F., DICK R.E., KARABIN M.E. Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. *Int. J. Plast.* 2006, **22** pp. 174–193 - [5] KUWABARA T. Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations, *Int. J. Plast.* 2007, **23** pp. 385-419 - [6] KUWABARA T., HASHIMOTO K., IIZUKA E., YOON J.W. Effect of anisotropic yield functions on the accuracy of hole expansion simulations. *J. Mater. Process. Technol.* 2011, **211** pp. 475–481 - [7] YANAGA D., KUWABARA T., UEMA N., ASANO M. Material modeling of 6000 series aluminum alloy sheets with different density cube textures and effect on the accuracy of finite element simulation. *Int. J. Solids Struct.* 2012, **49** pp. 3488–3495 - [8] KURODA M., & TVERGAARD V. Use of abrupt strain path change for determining subsequent yield surface: illustrations of basic idea. *Acta Mater.* 1999, **47** pp. 3879–3890 - [9] Kuwabara T., Kuroda M., Tvergaard V., Nomura K. Use of abrupt strain path change for determining subsequent yield surface: experimental study with metal sheets. *Acta Mater.* 2000, **48** pp. 2071–2079 - [10] KULAWINSKIA D., NAGELA K., HENKELA S., HÜBNERB P., FISCHERC H., KUNAC M. et al. Characterization of stress-strain behavior of a cast TRIP steel under different biaxial planar load ratios. *Eng. Fract. Mech.* 2011, **78** pp. 1684–1695 - [11] MARCINIAK Z., DUNCAN J.L., Hu S.J. Mechanics of Sheet Metal Forming, (2002), 63, Butterworth-Heinemann, Oxford - [12] Kuwabara T., Ikeda S., Kuroda T. Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension. *J. Mater. Process. Technol.* 1998, **80/81** pp. 517–523 - [13] KUWABARA T., VAN BAEL A., IIZUKA E. Measurement and analysis of yield locus and work hardening characteristics of steel sheets with different r-values. *Acta Mater.* 2002, **50** pp. 3717–3729 - [14] Shiratori E., & Ikegami K. Experimental study of the subsequent yield surface by using cross-shaped specimens. *J. Mech. Phys. Solids.* 1968, **16** pp. 373–394 - [15] NAGAYASU T., TAKAHASHI S., KUWABARA T. Development of compact biaxial tensile testing machine using conventional compression testing machine and evaluation of the test results, Proc. IDDRG 2010, (2010), pp.593-602 - [16] MERKLEIN M., & BIASUTTI M. Development of a biaxial tensile machine for characterization of sheet metals. *J. Mater. Process. Technol.* 2013, **213** pp. 939–946 - [17] NOWACK H., HANSCHMANN D., OTT W., TRAUTMANN K.H., MALDFELD E. Crack Initiation Life Behavior under Biaxial Loading Conditions. *ASTM Spec. Tech. Publ.* 1997, **1280** pp. 159–183 # BS ISO 16842:2014 **ISO 16842:2014(E)** [18] LOHR R.D. System Design for Multiaxial High-Strain Fatigue Testing in ASTM Spec. Tech. Publ. 2000, 1387 pp. 355–368 # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. ## **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. ## **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### Revisions Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com