BS ISO 16620-2:2015

BSI Standards Publication

Plastics — Biobased content

Part 2: Determination of biobased carbon content

... making excellence a habit."

National foreword

This British Standard is the UK implementation of ISO 16620-2:2015.

The UK participation in its preparation was entrusted to Technical Committee PRI/21, Testing of plastics.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2015. Published by BSI Standards Limited 2015

ISBN 978 0 580 84622 9

ICS 83.080.01

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 April 2015.

Amendments issued since publication

Date Text affected

INTERNATIONAL STANDARD

BS ISO 16620-2:2015 **ISO 16620-2**

> First edition 2015-04-01

Plastics — Biobased content —

Part 2: **Determination of biobased carbon content**

Plastiques — Teneur biosourcée — Partie 2: Détermination de la teneur en carbone biosourcé

Reference number ISO 16620-2:2015(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2015

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see [www.iso.org/directives\)](http://www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: [Foreword - Supplementary information](http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm)

The committee responsible for this document is ISO/TC 61, *Plastics*, Subcommittee SC 5, *Physicalchemical properties*.

ISO 16620 consists of the following parts, under the general title *Plastics — Biobased content*:

- *Part 1: General principles*
- *Part 2: Determination of biobased carbon content*
- *Part 3: Determination of biobased synthetic polymer content*

The following parts are under preparation:

- *Part 4: Determination of the biobased mass content*
- *Part 5: Declaration of biobased carbon content, biobased synthetic polymer content and biobased mass content*

Introduction

Increased use of biomass resources for manufacturing plastic products is effective in reducing global warming and the depletion of fossil resources.

Current plastic products are composed of biobased synthetic polymers, fossil-based synthetic polymers, natural polymers, and additives that can include biobased materials.

Biobased plastics refer to plastics that contain materials, wholly or partly of biogenic origin.

In this series of International Standards, the biobased content of biobased plastics refers to the amount of the biobased carbon content, the amount of the biobased synthetic polymer content, or the amount of the biobased mass content only.

BS ISO 16620-2:2015

Plastics — Biobased content —

Part 2: **Determination of biobased carbon content**

WARNING — The use of this part of ISO 16620 might involve hazardous materials, operations, and equipment. This part of ISO 16620 does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this International Standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

1 Scope

This part of ISO16620 specifies a calculation method for the determination of the biobased carbon content in monomers, polymers, and plastic materials and products, based on the 14C content measurement.

This part of ISO 16620 is applicable to plastic products and plastic materials, polymer resins, monomers, or additives, which are made from biobased or fossil-based constituents.

Knowing the biobased content of plastic products is useful when evaluating their environmental impact.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 16620-1, *Plastics — Biobased content — Part 1: General principles*

3 Terms, definitions, symbols, and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 16620-1 and the following apply.

3.1.1 percent modern carbon

pMC

normalized and standardized value for the amount of the 14C isotope in a sample, calculated relative to the standardized and normalized 14C isotope amount of oxalic acid standard reference material, SRM 4990c1)

Note 1 to entry: In 2009, the value of 100 % biobased carbon was set at 105 pMC.

[SOURCE: ISO 13833:2013, 3.5]

¹⁾ SRM 4990c is the trade name of a product supplied by the US National Institute of Standards and Technology. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by ISO of the product named. Equivalent products can be used if they can be shown to lead to the same results.

3.1.2

radiocarbon

radioactive isotope of the element carbon, 14C, having 8 neutrons, 6 protons, and 6 electrons

Note 1 to entry: Of the total carbon on Earth, 1×10^{-10} % (mass fraction) is ¹⁴C. It decays exponentially with a half-life of 5 730 years and, as such, it is not measurable in fossil materials derived from petroleum, coal, natural gas, or any other source older than about 50 000 years.

[SOURCE: ISO 13833:2013, 3.7]

3.2 Symbols

For the purposes of this document, the symbols given in ISO 16620-1 and the following apply.

- 14C carbon isotope with an atomic mass of 14
- *m* mass of a sample expressed in grams
- *pMC(s)* measured value, expressed in pMC, according to AMS method, of the sample
- *REF* reference value, expressed in pMC, of 100 % biobased carbon depending on the origin of organic carbon
- *x* TC total carbon content, expressed as a percentage of the mass of the sample
- *x* TOC total organic carbon content, expressed as a percentage of the mass of the sample
- *x*_B biobased carbon content by mass, expressed as a percentage of the mass of the sample
- x_B^{TC} biobased carbon content by total carbon content, expressed as a percentage of the total carbon content
- x_B^{TOC} biobased carbon content by total organic carbon content, expressed as a percentage of the total organic carbon content

3.3 Abbreviated terms

- AMS accelerator mass spectroscopy
- BI beta-ionization
- Bq Bequerel (disintegrations per second)
- cpm counts per minute
- dpm disintegrations per minute
- GM Geiger-Müller
- LLD lower limit of detection
- LSC liquid scintillation-counter or liquid scintillation-counting
- MOP 3-methoxy 1-propyl amine
- pMC percentage of modern carbon
- TC total carbon

TOC total organic carbon

4 Principle

The $14C$ present in chemicals originates from recent atmospheric $CO₂$. Due to its radioactive decay, it is almost absent from fossil products older than 20 000 years to 30 000 years. Thus, the 14C content might be considered as a tracer of chemicals recently synthesized from atmospheric $CO₂$ and particularly of recently produced bio-products.

The determination of the biomass content is based on the measurement of 14C in polymers which allows the calculation of the biobased carbon fraction.

A large experience in 14C determination and reference samples are available from dating of archaeological objects, on which the three methods described in this part of ISO 16620 are based:

- Method A: Liquid scintillation-counter method (LSC);
- Method B: Beta-ionization (BI);
- Method C: Accelerator mass spectrometry (AMS).

NOTE The advantages and disadvantages of these test methods are given in [Table](#page-10-1) 1.

Method	Technical level	Additional requests Duration needed Relative standard Instrumental	for measurement deviation		costs
Method A (LSC)	Simple	Normal laboratory	4 h to 12 h	2 % to 10 %	Low
Method B (BI)	Complex	— Low background laboratory — Gas purification device	8 h to 24 h	\vert 0,2 % to 5 %	Low
Method C (AMS)	Very com- plex	— Large installation - Graphite conver- sion device	10 min to 30 min	0,2 % to 2 %	High

Table 1 — Advantages and disadvantages of the methods

For the 14C LSC measurement, a low level counter should be used. The statistical scattering of the radioactive decay sets a limit, both for Method A and B. Thereby, both methods need a purified carbon dioxide, otherwise, oxides of nitrogen from the combustion in the calorific bomb will result in counting losses by quenching and adulteration of the cocktail in case of LSC measurement.

5 Sampling

If there is a standard sampling procedure for the material or product to be evaluated that is widely accepted by the different parties, such a procedure can be used and the details of sampling recorded.

For any sampling procedure, the samples shall be representative of the material or product and the quantity or mass of sample shall be accurately established.

6 Determination of the 14C content

6.1 General

A general sample preparation and three test methods for the determination of the 14C content are described in this International Standard. With this modular approach, it will be possible for normally equipped laboratories to prepare samples for the 14C content and determine the 14C content with own

equipment or to outsource the determination of the 14C content to laboratories that are specialized in this technique.

For the collection from the sample of the 14C content, generally accepted methods for the conversion of the carbon present in the sample to $CO₂$ are described.

For the measurement of the 14C content, methods are selected that are already generally accepted as methods for the determination of the age of objects.

6.2 Principle

The amount of biobased carbon in the biobased polymer is proportional to this ¹⁴C content.

Complete combustion (see [Annex](#page-16-1) A) is carried out in a way to comply with the requirements of the subsequent measurement of the 14C content and shall provide the quantitative recovery of all carbon present in the sample as $CO₂$ in order to yield valid results. This measurement shall be carried out according to one of the three following methods:

- Liquid scintillation-counter method (LSC) (Method A): indirect determination of the isotope abundance of 14C through its emission of beta-particles (interaction with scintillation molecules), specified in [Annex](#page-19-1) B;
- Beta-ionization (BI) (Method B): indirect determination of the isotope abundance of 14C through its emission of beta-particles (Geiger-Müller type detector), specified in **[Annex](#page-22-1) C**;
- Accelerator mass spectrometry (AMS) (Method C): direct determination of the isotope abundance of 14C, specified in [Annex](#page-25-1) D.

6.3 Procedure for the conversion of the carbon present in the sample to a suitable sample for 14C determination

The conversion of the carbon present in the sample to a suitable sample for the determination of the 14C content shall be carried out according to the [Annex](#page-16-1) A.

6.4 Measurement techniques

The ¹⁴C content of the sample shall be determined using one of the methods as described in **[Annex](#page-19-1) B**, [Annex](#page-22-1) C, or [Annex](#page-25-1) D.

When collected samples are sent to specialized laboratories, the samples shall be stored in a way that no $CO₂$ from air can enter the absorption solution. A check on the in leak of $CO₂$ from air shall be performed by preparing laboratory blank's during the sampling stage.

For the determination of the 0 % biomass content, the combustion of a coal standard (e.g. BCR 181) can be used.

For the 100 % biomass content, the N.I.S.T. oxalic acid standard reference material (SRM 4990c) can be used. Mixing this reference material with a known amount of fossil combustion aid improves its combustion behaviour, as oxalic acid is difficult to combust due to its low calorific value. For routine checks, a wood standard reference material calibrated against the oxalic acid is sufficient.

7 Determination of the total carbon content and total organic carbon content

The total carbon content and organic carbon content shall be determined according to suitable methods.

Test methods as described in ISO 10694, ISO 8245, EN 13137, ISO 17247, ISO 15350, ISO 609, ASTM D5291-02, or ASTM E1019 can be used, as applicable.

8 Calculation of the biobased carbon content

8.1 General

The calculation of the biobased carbon content includes the following steps:

- a) the determination of the total carbon content of the sample, *^x* TC , determined by one of the test methods specified in [Clause](#page-11-1) 7, expressed as a percentage of the total mass or the determination of the total organic carbon content of the sample, x^{TOC} , determined by one of the test methods specified in [Clause](#page-11-1) 7, expressed as a percentage of the total mass;
- b) the calculation of the biobased carbon content by mass, x_B , using the ¹⁴C content value, determined by calculation from one of the test methods specified in [Clause](#page-10-2) 6, and applying the correction factors detailed in [8.2;](#page-12-1)
- c) the calculation of the biobased carbon content as a fraction of the total carbon content, x_B^{TC} (see $8.3.2$) or a fraction of the total organic carbon content, $x_{\rm B}^{\rm TOC}$ (see $8.3.3$).

8.2 Correction factors

Before the above-ground hydrogen bomb testing (started around 1955 and terminated in 1962), the atmospheric 14C level had been constant to within a few percent for the past millennium. Hence, a sample grown during this time has a well-defined "modern" activity and the fossil contribution could be determined in a straightforward way. However, 14C created during the weapons testing increased the atmospheric 14C level to up to 200 pMC in 1962, with a decline to 105 pMC in 2010. The 14C activity of a sample grown since year 1962 is elevated according to the average 14C level over the growing interval. In addition, the large emission of fossil C during the last decades contributes to the decrease of the atmospheric ¹⁴C/¹²C ratio.

In ASTM D6866–12, the 100 % biobased C value of 105 pMC (for year 2010) is used. This value shall be the base of calculations. Other values are only acceptable if they are based on experimental evidence. From the 105 pMC value, the correction factor of 0,95 (1/1,05) is derived. It is considered that such correction factor is now stable during a period of a few years.

For the calculation of the biobased carbon content, a 14C content of 100/0,95 pMC or 13,56/0,95 dpm per gram C is considered as a 100 % biobased carbon content for biomass that is grown in year 2010.

NOTE This correction value of 0,95 is in accordance with the value that is given in ASTM D6866–12.

The fraction of biomass content by mass shall be calculated using the biomass carbon in the biopolymer as for other organic carbon materials. [Table](#page-12-2) 2 lists typical values for such common materials.

Materiala	X ^{TC} $\%$	REF pMC
Wood (coniferous and deciduous)	48	114
Bark	52	111
Paper	47	114
Fresh biomass (from year 2010)	48	105
Silk	49	107
Wool	51	107
These values are given on "dry basis". a		

Table 2 — Typical values for biomass fractions

8.3 Calculation method

8.3.1 Calculation of the biobased carbon content by mass, x_B

8.3.1.1 14C content determined by Method A (LSC) or Method B (BI)

Calculate the biobased carbon content by mass, x_B , expressed as a percentage, using Formula (1):

$$
x_{\rm B} = \frac{14 \, C_{\rm activity}}{13,56 \times \frac{REF}{100} \times m} \times 100
$$
 (1)

where

- ¹⁴*C*activity is the 14C activity, expressed in dpm, of the sample obtained by calculation when using Method A or Method B (see [Annex](#page-19-1) B or [Annex](#page-22-1) C);
- *REF* is the reference value, expressed in pMC, of 100 % biobased carbon of the biomass from which the sample is constituted;
- *m* is the mass, expressed in grams, of the sample.

8.3.1.2 14C content determined by Method C (AMS)

Calculate the biobased carbon content by mass, x_B , expressed as a percentage, using Formula (2):

$$
x_{\rm B} = x^{\rm TC} \frac{pMC(s)}{\frac{REF}{100}} = x^{\rm TC} \frac{pMC(s)}{REF}
$$
 (2)

where

- x^{TC} is the total carbon content obtained by elemental analysis, expressed as a percentage, of the total mass, of the sample;
- *pMC(s)* is the measured value, expressed in pMC, of the sample;
- *REF* is the reference value, expressed in pMC, of 100 % biobased carbon of the biomass from which the sample is constituted.

8.3.2 Calculation of the biobased carbon content, $\chi_{\text{B}}^{\text{TC}}$, as a fraction of TC

Calculate the biobased carbon content as a fraction of the total carbon content, x_{B}^{TC} , expressed as a percentage, using Formula (3):

$$
x_B^{TC} = \frac{x_B}{x^{TC}} \times 100
$$
 (3)

where

- *x*B is the biobased carbon content by mass, expressed as a percentage;
- *x*^{TC} is the total carbon content, expressed as a percentage, of the sample.

8.3.3 Calculation of the biobased carbon content, x_B^{TOC} , as a fraction of TOC

Calculate the biobased carbon content as a fraction of the total organic carbon content, $x_{\rm B}^{\rm TOC}$, expressed as a percentage, using Formula (4):

$$
x_B^{\text{TOC}} = \frac{x_B}{x^{\text{TOC}}} \times 100\tag{4}
$$

where

x^B is the biobased carbon content by mass, expressed as a percentage;

 x^{TOC} is the total organic carbon content, expressed as a percentage, of the sample.

8.3.4 Examples

EXAMPLE 1 Calculation of biobased carbon content as a fraction of TC

Pure biobased polymer material

Sample made from PLA material: $xTC = 50.0 \%$; $x_B = 50 \%$

$$
x_B^{TC} = \frac{50,0}{50,0} \times 100 = 100\%
$$

EXAMPLE 2 Calculation of biobased carbon content as a fraction of TOC

Mixed biobased polymer material

Sample made from PE material containing a mixture of fossil PE and PE produced from biogenic synthesis gas:

 $x^{\text{TOC}} = 86.0 \%$; $x_{\text{B}} = 24.0 \%$

$$
x_B^{TOC} = \frac{24,0}{86,0} \times 100 = 27,9\%
$$

9 Test report

The test report shall include at least the following information:

- a) a reference to this part of ISO 16620, i.e. ISO 16620-2;
- b) all information necessary for complete identification of the biobased polymer material or product tested, including the origin of the biomass from which the material or product is constituted;
- c) identification of the laboratory performing the test;
- d) sample preparation;
- e) storage conditions;
- f) test method used for the determination of the 14C content (Method A, B, or C, see [Annex](#page-19-1) B, [Annex](#page-22-1) C, or [Annex](#page-25-1) D);
- g) test methods used for the determination of the TC content and TOC content (see [Clause](#page-11-1) 7);
- h) results of the test including the basis on which they are expressed and application of the isotope correction, including a precision statement;

BS ISO 16620-2:2015 **ISO 16620-2:2015(E)**

- i) method for the conversion of the carbon (see $\mathbf{A}.\mathbf{4}$);
- j) $14C$ activity, expressed in dpm, of the sample or $14C$ value, expressed in pMC;
- k) total carbon content, *^x* TC , expressed as a percentage, of the sample;
- l) total organic carbon content, *^x* TOC , expressed as a percentage, of the sample;
- m) biobased carbon content by mass, x_B , expressed as a percentage, of the sample;
- n) biobased carbon content by total carbon content, $\rm\,x_S^{TC}$, expressed as a percentage, of the sample;
- o) biobased carbon content by total organic carbon content, $x_B^{\rm TOC}$, expressed as a percentage, of the sample;
- p) any additional information, including details of any deviations from the test methods and any operations not specified in this International Standard which could have had an influence on the results;
- q) date of receipt of laboratory sample and dates of the test (beginning and end).

Annex A

(normative)

Procedure for the conversion of the carbon present in the sample to a suitable sample for 14C determination

A.1 General

The $14C$ content of a biobased polymer is determined on $CO₂$ produced by the sample combustion. For the conversion of the sample to $CO₂$ used for the determination of the ¹⁴C content, the following three methods are allowed:

- combustion in a calorimetric bomb $(A.3)$;
- combustion in a tube furnace $(\underline{A.4})$;
- combustion in a laboratory scale combustion apparatus $(A.5)$ $(A.5)$.

A fourth method, based on the dissolution of the biobased polymer and a direct measurement, can be used only when it is technically achievable.

In case of combustion, it depends on the method to be used for the determination of 14C content how the formed CO2 is collected and prepared for the measurement.

When Method C is used, the following are the three options:

- a) direct collection of the formed $CO₂$ in a gas bag;
- b) absorption of $CO₂$ in a 4 mol/l NaOH solution;
- c) absorption in a solid absorber, developed for that purpose, usually NaOH or KOH fixed on a silica carrier (e.g. Carbotrap \mathbb{R}^{2}).

As Method C requires only a few milligrams of carbon containing matter, sample material containing CO2 amounts of a few milligrams can be used.

In case of Method B, a direct collection of $CO₂$ in a gas bag, lecture bottle, or NaOH solution is allowed as well, provided the total amount of carbon present in the sample is at least 2 g.

In case of Method A, the following three options are possible after combustion:

- a) direct adsorption of the formed $CO₂$ in a carbamate solution (a suitable $CO₂$ absorption solution containing an amine, e.g. 1 mol/l 3-methoxypropylamine in ethanolamine, or Carbo-Sorb $E(\mathbb{R}^3)$;
- b) adsorption of the CO_2 in a 2 mol/l NaOH solution and transfer of CO_2 in NaOH to a carbamate solution;
- c) direct conversion of $CO₂$ to benzene.

In some cases, the total carbonate content in the sampling solution has to be determined. For the direct sampling in carbamate solutions, the carbonate content can be determined by weighing the sample solution before and after sampling. For sampling in NaOH or KOH solutions, the carbonate content can

²⁾ Carbotrap is an example of a suitable product available commercially. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by ISO of this product.

³⁾ Carbo-Sorb E is an example of a suitable product available commercially. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by ISO of this product.

be determined by standard methods using e.g. titrimetry. Guidance for such determination can be found in e.g. ISO 9963 and ASTM D513-11e1.

A.2 Reagents and materials

A.2.1 Carbamate solution.

A.2.2 Scintillation medium.

A.2.3 Glass bottles (standard glass sample bottles with plastic screw caps that are resistant to 4 mol/l NaOH).

A.2.4 4 mol/l NaOH, absorption liquid.

For the preparation of a carbonate-free absorption liquid, preparation using freshly opened NaOH pellet containers is sufficient. Dissolve the NaOH pellets in a small amount of water (the heat produced during the dissolution process will enhance the dissolution process). Small amounts of precipitation are an indication of the presence of Na₂CO₃. By decanting the clear phase, the almost carbonate-free solution is diluted to the desired volume. As the dissolution of NaOH is an exothermic process, extra care shall be taken as boiling of the concentrated solution during dilution can occur.

A.3 Combustion of the sample in a calorimetric bomb

A.3.1 Procedure

For the combustion of the sample in a calorimetric bomb, any suitable test method such as ISO 1716, ISO 1928, or EN 15400 can be used.

After the complete combustion in the oxygen bomb, the combustion gases are collected in a gas bag.

When Method A is used, the $CO₂$ shall be collected in a cooled mixture of carbamate solution and a suitable scintillation liquid.

When Method B or Method C is used, the $CO₂$ shall be collected in a 4 mol/l NaOH solution or on a suitable scintillation solid absorber.

For Method C, alternatively ca. 2 ml of the $CO₂$ gas can be taken from the bag using a glass syringe and the gas can be transferred to the AMS target preparations system. As the bomb volume is released to atmospheric pressure, there will be a residual amount left over in the bomb that is directly related to the pressure in the bomb after the combustion.

NOTE With a residual pressure of 2,5 MPa, 4 % of the combustion gas will be left after release to atmospheric pressure.

To overcome this artefact:

- a) perform the calibration and the analysis taking account of this residual amount by using the pressure correction factor;
- b) use the vacuum pump to remove the residue;
- c) flush the bomb with argon and collect the $CO₂$ in the rinsing gases as well.

A.3.2 Adsorption of the gas sample

The gas sample bag is connected to a small pump with a connection line into a 20 ml glass vial, filled with a mixture of 10 ml of the carbamate sorption liquid and 10 ml of the scintillation medium, placed in an ice bath, to remove the heat of the exothermic carbamate formation reaction. The pumping speed is low, typically 50 ml⋅min−1 to 60 ml⋅min−1. The transfer of the gas from the bag takes about 2 h to 3 h. After the sample has been collected, it is ready to be counted on a liquid scintillation counter. Blank samples should also be counted at the same time to allow that small day-to-day variations in the background can be accounted for.

Measurements should be done as soon as possible after collection, at the latest within one week after sampling. There are strong indications that the NO_x formed during the combustion reacts with the absorption mixture resulting in yet unexplained errors after a few days of storage. If the one week limit cannot be realized, collection of the $CO₂$ in a 4 mol/l NaOH solution is a good alternative.

A.4 Combustion of the sample in a tube furnace or a combustion apparatus

The tube furnace or the combustion apparatus shall be able to combust the biobased polymer with a complete conversion of the carbon present to CO₂. For the determination of the ¹⁴C content by Method A, the CO2 shall be collected using a suitable impinger filled with a cooled mixture of carbamate and a suitable scintillation liquid, a scintillation medium already containing a CO₂ absorber, or a 4 mol/l NaOH solution (see [A.3.2](#page-17-1), second paragraph). For the determination of the ¹⁴C content by Method C or Method B, the CO₂ shall be collected using a suitable impinger filled with a 4 mol/l NaOH solution. As a result of the absorption of the $CO₂$ a large volume reduction of the gas volume will be observed after trapping. Therefore, the gas pump is to be positioned in front of the impinger and the gas pump used shall be gas tight.

As an alternative, the $CO₂$ can be trapped by means of a cryogenic trap. In that case, the cryogenic trap shall consist of a water trap (dry ice in ethanol or acetone) followed by a cryogenic trap. Care shall be taken to avoid formation of liquid oxygen, which can be achieved by heating the trap slightly above the boiling point of oxygen, using liquid argon or performing the separation at diminished pressure. As an alternative, when Method C is being used, $CO₂$ can be collected by mixing homogenized biopolymer with cupric oxide (CuO) in a sealed evacuated quartz or Vycor glass tube. Water vapour (up to 3 Pa) can be added to the tube prior to introduction of the $CO₂$ to help remove sulfur compounds. The tube is heated to 900 °C for 3 h to 5 h. The $CO₂$ is collected by breaking the tube using a tube-cracker connected to an evacuated glass collection line.

A.5 Dissolution and LSC direct measurement on the polymer

In some cases, direct measurement on the biopolymer with the LSC technique is possible. This option is only allowed if equivalence with the methods with conversion to $CO₂$ can be demonstrated. This will, in general, be the case if no quenching is observed or if correction for quenching is performed using standard addition technique using the same, 14C labelled, biobased polymer with known 14C activity.

The dissolution method might not be appropriate to some biopolymers, for instance when fillers are present.

Annex B

(normative)

Method A — Determination by liquid scintillation-counter method (LSC)

B.1 General

This annex describes the method for the determination of the 14C content by LSC in carbonate solutions or carbamate solutions obtained from the combustion of biobased polymer samples in a calorimetric bomb, a tube furnace, or a laboratory scale combustion device, as described in [Annex](#page-16-1) A.

B.2 Principle

LSC determines the isotope abundance of 14C indirectly through its emission of beta-particles due to the radioactive decay of the 14C isotope. The beta-particles are observed through their interaction with scintillation molecules. The $CO₂$ formed by the combustion of a biobased polymer is trapped in a carbamate solution. This solution is mixed with the organic solution containing the scintillation molecules and the 14C activity of this mixture is measured in a proportional (liquid) scintillation counter.

B.3 Reagents and materials

- **B.3.1 Oxalic acid primary standard,** e.g. SRM 4990c.
- **B.3.2 HCl solution,** 5 mol/l.
- **B.3.3 Scintillation liquid.**
- **B.3.4 Carbamate solution.**
- **B.3.5 14C labelled spike solutions** for standard addition purposes.
- **B.3.6 Coal standard,** e.g. BCR 181.

B.4 Apparatus

The extremely low natural levels of radiocarbon-14 (¹⁴C) in the earth's atmosphere (about 10⁻¹² % volume fraction) require extra precautions for accurate measurement of 14C. Care should be taken to eliminate the influence of cosmic and environmental background radiation, other radioisotopes being present, electronic noise and instability, and other factors. These background factors limit the accuracy, precision, and range of the radiocarbon dating method as finite ages can only be calculated where sample activity is at least 3 standard deviations above background activity. Any liquid scintillation counter used shall meet these specifications.

B.5 Procedure

B.5.1 General

An absorption flask is loaded with a known volume of $CO₂$ absorbent, e.g. with a suitable $CO₂$ absorption solution containing an amine, e.g. One mol/l 3-methoxypropylamine in ethanolamine, or Carbo-Sorb E. The absorbing capacity of a suitable $CO₂$ absorption solution containing an amine, e.g. 1 mol/l 3-methoxypropyl in ethanolamine, or Carbo-Sorb E of about 4,8·10−3 mol/ml shall be taken into account; no more than 80 % of this capacity shall be used.

The flask shall be cooled in ice during the absorption process. The sample gas is acquired from a flue gas duct or from a gas bag. In either case, the sample has to be dried and the C_2 concentration of the dried sample has to be known (either by a flue gas monitor or by ultimate analysis of the solid sample that was used to generate the CO2). If acquired directly from a flue gas duct, the sample volume has to be measured with a gas meter and corrected for the volume of $CO₂$ absorbed by the MOP (3-methoxypropylamine, the active component in Carbo-Sorb E). After absorption of the $CO₂$, the absorbent is transferred to the measuring vial. An equal volume of the scintillation medium is added and the mixture is homogenized.

When using an oxidizer, the combustion gas might be absorbed in a scintillation medium already containing a CO₂ absorber which can be measured in the LSC without further handling.

Then the vial containing the mixture is placed in the LSC and measured. Typical counting times are 6 h to 24 h.

The activity of a sample is compared with the activity of a reference material. The number of ^{14}C registrations (β counts of ¹⁴C decay) in radiometric detectors (LSC) is related to the number of registrations of the reference sample under the same conditions.

Standard addition techniques shall be used to check for the occurrence of chemical or optical quenching for each sampling or sample type. For that purpose, 14C labelled components shall be used.

B.5.2 Blank correction

Measurement shall be performed together with a measurement of the "blank" sample, which is a scintillation vial filled with counting liquid that is counted for the same period of time as the actual sample. The result obtained is the background level for the whole system (apparatus and reagent) given in cpm or dpm. After this, the actual sample is counted, which also gives a counting result in cpm or dpm.

The statistical error of counting background and standard is a result of the decay counting (Poisson) process; hence the precision of the result depends on the number of counts observed, where the relative error is inversely proportional to the square-root of the number of counts. The total error is then the combination of the analytical errors and the errors of the standard and background determination.

The detection limit of a counter is an important parameter, as it, for a great part, determines the sensitivity of the total analytical procedure. The sensitivity is normally expressed as "lower limit of detection" (LLD). This is the smallest amount of radioactivity that statistically differs from the

BS ISO 16620-2:2015 **ISO 16620-2:2015(E)**

background. The LLD can be calculated by means of Formula (B.1) from the counting time of the sample and the background counting rate, assuming the same counting times for background and sample:

$$
E\left(R_{\text{n,LLD}}\right) = \left(k_{1-\alpha} - k_{1-\beta}\right) \cdot \sqrt{E\left(R_0\right) \cdot \left(\frac{1}{t_0} + \frac{1}{t_b}\right)}\tag{B.1}
$$

where

 $E(R_{\text{n.LLD}})$ is the lower limit of detection (LLD);

 $k_{1-\alpha}$, $k_{1-\beta}$ constitutes the coverage factor (typical value: 1,645);

 $E(R_0)$ is the counting rate of blank $(0,316 \ 7 \text{ cps})$;

 t_0 is the counting time of blank (16 000 s);

t^b is the counting time of sample (16 000 s).

The number of disintegrations per second is given by Formula (B.2):

$$
dps = \frac{cps}{\eta} \tag{B.2}
$$

where

η is the counting efficiency of the apparatus (0 < *η* < 1) (0,8).

B.6 Calculation of the results

The background count rate of the counter is subtracted from the sample count rate to give the net count rate. The 14C activity (dpm) is obtained by normalizing the net count rate to the count rate of the reference standard (oxalic acid SRM 4990c).

Annex C

(normative)

Method B — 14C determination by beta-ionization

C.1 General

This annex describes the procedure for the determination of the 14C content by BI in basic carbonate solutions obtained from the combustion of biobased polymer samples in a calorimetric bomb, a tube furnace, or a laboratory scale combustion device, as described in [Annex](#page-16-1) A.

C.2 Principle

The BI method determines the isotope abundance of 14C indirectly. This method uses the emission of beta-particles by 14C due to the radioactive decay of the 14C isotope, like LSC. It detects beta-particles by means of discharging current pulses between high-voltage electrodes in a proportional gas counter. Those pulses are initiated by the beta-particles. The detection principle resembles the way a Geiger-Mueller (GM) counter works, the difference being details of the electron avalanche in the counter. To use this method, the sample has to be in the form of $CO₂$ or converted to $CO₂$. The carbonate, as obtained from the combustion of a biobased polymer, is converted to $CO₂$ by acidifying the NaOH solution with HCl. The CO₂ is purified to be suitable as a counting gas in a gas proportional counter, e.g. by removal of electron-negative impurities, such as oxygen, $SO₂$ or water vapour, through activated charcoal and radon. The purity of the gas is critical (e.g. O_2 levels need to be kept well below a few microlitres per litre).

The sample is counted for several days in a low-level counting system to reach the number of counts desired for statistical precision.

The $CO₂$ is held under pressure in the central tube (typically at 0,2 MPa to 0,3 MPa) and a high voltage is introduced between the central wire and the counter wall. An ionizing event, such as a β - particle produced by a 14C decay, creates an ionization trail and an avalanche of electrons. This avalanche is measured as an electrical pulse. Any impurities in the gas will quench the multiplication of electrons, leading to some decay events being undetected.

C.3 Reagents and materials

- **C.3.1 HCl solution,** 5 mol/l.
- **C.3.2 NaOH solution,** 4 mol/l.
- **C.3.3 Dry ice**.
- **C.3.4 Organic solvent,** acetone or ethanol.
- **C.3.5 Liquid nitrogen**.
- **C.3.6 Oxalic acid primary standard,** e.g. SRM 4990c.
- **C.3.7 Activated charcoal**.

C.3.8 Coal standard, e.g. BCR 181.

C.4 Apparatus

C.4.1 System for the conversion of carbonate trapped in a 4 mol/l NaOH solution to CO2.

C.4.2 CO² purification system, e.g. using activated charcoal.

C.4.3 System to obtain a fixed amount of sample, e.g. by adjusting the CO₂ pressure in a fixed volume and known gas temperature.

C.4.4 System to prepare standard and background samples.

C.4.5 Low-level counting system using a gas proportional counter.

The instruments used for the BI measurements are homemade high tech devices developed at several radiocarbon institutes. No commercial systems are available at the time of writing this International Standard. For radiocarbon to be detectable, minimize background counts. Gas (in this case, purified CO2 derived from the combustion gases) is loaded and counted in a copper counting tube (ultra-pure copper) and the desired low background is obtained applying heavy shielding with old lead and anticoincidence filtering of cosmic radiation. Usually, BI devices are located below ground level in cellars in order to obtain extra protection against cosmic radiation. Typical counting times are several days for low-level measurements.

C.5 Procedure

- **C.5.1** Transfer the carbonate solution to extraction bottle.
- **C.5.2** Attach the HCl solution dosing device.
- **C.5.3** Evacuate the bottle and dosing device (degassing, removal of dissolved N_2 and O_2 from air).
- **C.5.4** Add HCl solution to the carbonate solution.
- **C.5.5** Remove water vapour using a trap filled with acetone and dry ice.
- **C.5.6** Collect the formed CO₂ in a stainless steel trap that is submersed in liquid nitrogen.
- **C.5.7** Purify the $CO₂$, e.g. using activated carbon at 0° C.
- **C.5.8** Take a small sample for 13C determination at this stage (optional).

C.5.9 Calculate the CO₂ volume by measuring the temperature and pressure and the known volume of the trapping system.

- **C.5.10** Transfer the CO_2 to the proportional counter (amounts up to 4 g of CO_2).
- **C.5.11** Count for several days until precision, as desired, is obtained.
- **C.5.12** Calculate the modern carbon value using the sample count rate and the blank count rate.

C.5.13 The statistical error of counting the sample, background, and standard is a result of the decay counting, following the statistical Poisson distribution. Hence, the precision of the result depends on the number of counts observed, where the relative error is inversely proportional to the square-root of the number of counts.

C.5.14 The total error is then the combination of the analytical errors and the errors of the standard and background determination. The latter errors usually are small compared to the sampling errors. With counting times of a few days, a typical overall (absolute) precision of 0,3 % to 0,4 % can be obtained. The estimated precision shall be reported in addition to the value declared.

C.5.15 When using activated charcoal for the purification of CO₂, the active carbon cartridge should be preheated for approximately 1 h in order to remove traces of radon (build up of decay product of Uranium traces present in the activated charcoal). For other cleaning techniques, a waiting time of 2 days is sufficient to avoid any radon contribution.

C.6 Calculation of the results

From the sample count rate, the count rate of the NaOH blank solution is subtracted resulting in the net count rate. The 14C activity (pMC) is obtained by normalizing the net count rate to the count rate of the reference standard (Oxalic acid SRM 4990c or materials that are traceable to this reference standard).

If correction for isotopic fractionation has to be performed, then the $^{13}C/^{12}C$ isotopic ratio has to be determined as well. Isotopic fraction during the preparation of the sample can occur if only a part of the CO₂ from the combusted sample is treated.

It should always be mentioned if the $13C/12C$ isotopic ratio correction was applied to the reported results.

Annex D

(normative)

Method C — 14C determination by accelerator mass spectrometry

D.1 General

This annex describes the procedure for the determination of the ¹⁴C by accelerator mass spectrometry (AMS) in the carbonate solutions obtained from the combustion of biobased polymer samples in a calorimetric bomb, a tube furnace, or a laboratory scale combustion device as described in [Annex](#page-16-1) A.

D.2 Principle

The AMS method determines the presence of 14C directly. The atoms in the sample are converted into a beam of ions. The formed ions are accelerated in an electric field, deflected in a magnetic field, and detected in ion detectors resulting in the determination of the relative isotope abundances of these ions.

AMS uses a high potential electrostatic field, which serves not only to accelerate them but also to specifically form only $Cⁿ⁺$ ions ($n = 1, 4$) that are allowed into the spectrometer, excluding all other ionic species. This greatly enhances sensitivity without compromising selectivity. As the 14C is determined from graphite (carbon) sample targets, all the carbon in the samples has to be converted into graphite before analysing.

With AMS, the modern fraction in the carbon present in the sample is determined. The total carbon content is not determined with this technique and shall be determined separately.

D.3 Reagents and materials

- **D.3.1 Oxalic acid primary standard**, e.g. SRM 4990c.
- **D.3.2 Coal standard,** e.g. BCR 181.
- **D.3.3 Iron or cobalt catalyst**.
- **D.3.4 Hydrogen**.
- **D.3.5 HCl solution,** 5 mol/l.
- **D.3.6 Dry ice**.
- **D.3.7 Organic solvent,** acetone or ethanol.
- **D.3.8 Liquid nitrogen**.

D.4 Apparatus

- **D.4.1 Sample preparation equipment**.
- **D.4.2 Liquid nitrogen freezing station**.

D.4.3 Accelerator mass spectrometer.

D.5 Procedure

- **D.5.1** Transfer the carbonate solution to the extraction bottle.
- **D.5.2** Attach the HCl solution dosing device.
- **D.5.3** Evacuate the bottle and dosing device (degassing, removal of dissolved N_2 and O_2 from air).
- **D.5.4** Add HCl to the carbonate solution.
- **D.5.5** Remove water vapour by using a trap filled with acetone and dry ice.
- **D.5.6** Collect the formed $CO₂$ in a trap that is submersed in liquid N₂.

D.5.7 Take a small sample for ¹³C determination at this stage.

D.5.8 Transfer the CO₂ to the graphitizing rig system.

Gaseous sample can be either introduced in the system released from a quartz tube or after they have been trapped in liquid nitrogen followed by subsequent heating. Then convert the gas to graphite using an iron or cobalt catalyst according to Formulae (D.1) and (D.2):

$$
CO_2 + H_2 \rightleftarrows H_2O + CO \tag{D.1}
$$

$$
CO + H_2 \rightleftarrows H_2O + C \tag{D.2}
$$

D.5.9 Remove the water produced by this reaction to ensure a complete reduction to graphite to avoid fractionation.

D.5.10 Press the graphite into a target and mount it on a wheel before it is loaded into the AMS. In the ion source, a high current beam of cesium ions $(Cs⁺)$ is focused on the target. This liberates negatively charged target atoms, producing a 36 keV beam of C- ions. Keep the targets 10 mm away from each other to avoid cross-contamination and move them during sputtering to avoid cratering, which causes fractionation. The negative ion beam is then focused by a lens into a recombinator. Here, a series of magnets remove noncarbon ions from the beam and separate the three carbon isotopes (12C, 13C, and 14C). The chopper wheel then physically blocks most of the $12C$, allowing a much reduced beam of carbon ions to be recombined for simultaneous injection into the accelerator.

D.5.11 In the tandem accelerator, the C- ions are accelerated to the terminal (at +2,5 MeV) then changed to C3+ ions by collision with Ar atoms in the gas stripper. These positive ions are accelerated to 10 MeV. A charge state of 3+ is chosen because the mass/charge ratio of $14C3+$ is truly unique, allowing its accurate separation in the high-energy mass spectrometer.

D.5.12 Measure the ¹²C and ¹³C in the Faraday cups (typical currents 250 nA).

D.5.13 Purify the 14C3+ ions by an electrostatic deflector and a 90° magnet. Measure them in an isobutenefilled ionization chamber, isolated from the accelerator vacuum by a thin metal foil. Typically, a sample is counted for one hour.

D.6 Calculation of the results

The isotopic ratios of $14C/12C$ and $13C/12C$ are determined relative to the appropriate primary reference material. All percent modern carbon (pMC) values obtained from the radiocarbon analyses measurements shall be corrected for isotopic fractionation using stable isotope data (13C/12C ratios) obtained on CO₂ derived from combustion of the sample. Do not determine $13C/12C$ ratios on the raw product material itself since that approach can lead to erroneous results in some cases.

Bibliography

- [1] ASTM D513-11e1, *Standard Test Methods for Total and Dissolved Carbon Dioxide in Water*
- [2] ASTM D5291-10, *Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants*
- [3] ASTM D6866-12, *Standard Test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis*
- [4] ASTM E1019-11, *Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques*
- [5] CEN/TS 16137, *Plastics Determination of bio-based carbon content*
- [6] EN 13137, *Characterization of waste Determination of total organic carbon (TOC) in waste, sludges and sediments*
- [7] EN 15400, *Solid recovered fuels Determination of calorific value*
- [8] EN 15440, *Solid recovered fuels Method for the determination of biomass content*
- [9] CEN/TS 16640: 2014, *Bio-based products Determination of the bio-based carbon content of products using the radiocarbon method*
- [10] ISO 609, *Solid mineral fuels Determination of carbon and hydrogen High temperature combustion method*
- [11] ISO 1716, *Reaction to fire tests for products Determination of the gross heat of combustion (calorific value)*
- [12] ISO 1928, *Solid mineral fuels Determination of gross calorific value by the bomb calorimetric method and calculation of net calorific value*
- [13] ISO 8245, *Water quality Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC)*
- [14] ISO 9963, *Water quality Determination of alkalinity*
- [15] ISO 10694, *Soil quality Determination of organic and total carbon after dry combustion (elementary analysis)*
- [16] ISO 13833:2013, *Stationary source emissions Determination of the ratio of biomass (biogenic) and fossil-derived carbon dioxide — Radiocarbon sampling and determination*
- [17] ISO 15350, *Steel and iron Determination of total carbon and sulfur content Infrared absorption method after combustion in an induction furnace (routine method)*
- [18] ISO 17247, *Coal Ultimate analysis*
- [19] BAYLISS A., MCCORMAC G., VAN DER PLICHT H. An illustrated guide to measuring radiocarbon from archeological samples. Physics education 39-(2), pp. 1 8
- [20] Funabashi M., Ninomiya F., Kunioka M., Ohara K. Biomass Carbon Ratio of Biomass Chemicals Measured by Accelerator Mass Spectrometry. Bull. Chem. Soc. Japan, 82(12), 1538 1547(2009). Open access; [http://www.jstage.jst.go.jp/article](http://www.jstage.jst.go.jp/article/bcsj/82/12/1538/_pdf)/bcsj/82/12/1538/_pdf
- [21] Gupta S.K., & Polach H. A., Radiocarbon Dating Practices at A.N.U., HandBook, Radiocarbon Laboratory, Research School of Pacific Studies, ANU, Canberra, 1985
- [22] Kromer B., & Münnich K.O. . In: Radiocarbon after four decades, (Taylor R.E., Long A., Kra R.S. eds.). Springer, New York, pp. 184–97.
- [23] L'Annunziata M.F. Handbook of Radioactivity Analysis. Academic press, Oxford, 2003
- [24] Levin I., & Kromer B. The tropospheric $14CO₂$ level in mid-latitudes of the northern hemisphere (1959–2003). Radiocarbon. 2004, **46** pp. 1261–1272
- [25] Lewis C.W., KLOUDA G.A., ELLENSON W.D. Radiocarbon measurement of the biogenic contribution to summertime PM-2.5 ambient aerosol in Nashville, TN. Atmos. Environ. 2004, **38** pp. 6053– 6061
- [26] Onishi T., Ninomiya F., Kunioka M., Funabashi M., Ohara K. Biomass Carbon Ratio of Polymer Composites Included Biomass or Petroleum Origin Resources. Polym. Degrad. Stabil. 2010, **95** (8) pp. 1276–1283
- [27] Szidat S., Jenk T.M., Synal H.A., Kalberer M. Wacker.L., Hajdas I, Kasper-Giebl A., Baltensperger U., Contributions of fossil fuel, biomass burning, and biogenic emissions to carbonaceous aerosols in Zürich as traced by 14C. J. Geophys. Res. 2006, **111**D07206. DOI:
- [28] Tauw, Feasibility Study of three determination methods for the determination of the biomass content in solid recovered fuels (Haalbaarheidsonderzoek naar drie bepalingsmethoden voor het aandeel biomassa in secundaire brandstoffen), R002 3959813EAD D01-D, 2002
- [29] van der Plicht J., Wijma S., Aerts A.T., Pertuisot M.H., Meijer H.A.J. Status report: The Groningen AMS facility, Nucl. Instr. and Meth. in Phys. Res. B. 2000, **172** pp. 58–65
- [30] Biomass database Phyllis, [http://www.ecn.](http://www.ecn.nl/phyllis/)nl/phyllis/

BS ISO 16620-2:2015

BS ISO 16620-2:2015 **ISO 16620-2:2015(E)**

ICS 83.080.01 Price based on 22 pages

© ISO 2015 – All rights reserved

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at [bsigroup.com/standards](www.bsigroup.com/standards) or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at [bsigroup.com/shop](www.bsigroup.com/shop), where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to [bsigroup.com/subscriptions](www.bsigroup.com/subscriptions).

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit [bsigroup.com/shop](www.bsigroup.com/shop).

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

Revisions

Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services Tel: +44 845 086 9001 **Email (orders):** orders@bsigroup.com **Email (enquiries):** cservices@bsigroup.com

Subscriptions Tel: +44 845 086 9001 **Email:** subscriptions@bsigroup.com

Knowledge Centre Tel: +44 20 8996 7004 **Email:** knowledgecentre@bsigroup.com

Copyright & Licensing Tel: +44 20 8996 7070 **Email:** copyright@bsigroup.com

... making excellence a habit."