BS ISO 15829:2013

BSI Standards Publication

Road vehicles — Side impact test procedures for the evaluation of occupant interactions with side airbags by pole impact simulation

BS ISO 15829:2013 BRITISH STANDARD

National foreword

This British Standard is the UK implementation of ISO 15829:2013. It supersedes BS ISO 15829:2004 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee AUE/15, Safety related to vehicles.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2013. Published by BSI Standards Limited 2013

ISBN 978 0 580 57586 0

ICS 43.020

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 June 2013.

Amendments issued since publication

Date Text affected

INTERNATIONAL STANDARD

BS ISO 15829:2013 **ISO** 15829

> Second edition 2013-06-15

Road vehicles — Side impact test procedures for the evaluation of occupant interactions with side airbags by pole impact simulation

Véhicules routiers — Modes opératoires d'essai de choc latéral pour l'évaluation des interactions des occupants avec les sacs gonflables latéraux par simulation d'une collision contre un poteau

BS ISO 15829:2013 **ISO 15829:2013(E)**

COPYRIGHT PROTECTED DOCUMENT

© ISO 2013

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents				
Fore	reword	iv		
Intr	roduction	v		
1	Scope	1		
2	Normative references	1		
3	Terms and definitions	1		
4	Test facility and equipment 4.1 Impact test site 4.2 Pole	2		
5	Test configurations 5.1 Angle of impact 5.2 Locus of the impact on the test vehicle 5.3 Impact velocity	2 		
6	Preparation of the test vehicle 6.1 Mass of the test vehicle 6.2 Condition of the test vehicle	5		
7	Test devices	6		
8	Instrumentation 8.1 General 8.2 Vehicle instrumentation 8.3 High speed photography			
9	Impact response measurements			
Rihl	oliography	10		

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 15829 was prepared by Technical Committee ISO/TC 22, *Road vehicles*, Subcommittee SC 10, *Impact test procedures*.

This second edition cancels and replaces the first edition (ISO 15829:2004), which has been technically revised.

Introduction

Side airbags/curtains (SAB) are deployable devices intended to help reduce the risk of injury to the head or the chest or the pelvis of vehicle occupants in side impact collisions. Side impact accident data indicate that the vehicle side is most likely to contact a passenger car, a truck or a fixed object, such as a pole or a tree. Accident data also indicate that serious to fatal injury in side impact is most likely to occur to the head and chest regions.

Road vehicles — Side impact test procedures for the evaluation of occupant interactions with side airbags by pole impact simulation

1 Scope

This International Standard specifies dynamic side impact test procedures with poles for evaluating the effects of the interaction between side airbags and occupants of road vehicles.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1176:1990, Road vehicles — Masses — Vocabulary and codes

ISO 6487, Road vehicles — Measurement techniques in impact tests — Instrumentation

ISO 8721, Road vehicles — Measurement techniques in impact tests — Optical instrumentation

ISO/TR 27957, Road vehicles — Temperature measurement in anthropomorphic test devices — Definition of the temperature sensor locations

ISO 15830-4¹⁾, Road vehicles — Design and performance specifications for the WorldSID 50th percentile male side impact dummy — Part 4: User's manual

ISO 17949, Impact test procedures for road vehicles — Seating and positioning procedures for anthropomorphic test devices — Procedure for the WorldSID 50th percentile male side-impact dummy in front outboard seating positions

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

side airbag

SAB

airbag designed primarily to help reduce occupant injury potential where the significant collision force vector is lateral

3.1.1

head airbag

curtain airbag

airbag that deploys between the occupants' head and the vehicle side structure or an external object that could contact the head

3.1.2

chest airbag

thorax airbag

airbag that deploys between the occupant's upper torso and the vehicle side structure

¹⁾ To be published.

BS ISO 15829:2013 **ISO 15829:2013(E)**

3.1.3

pelvic airbag

airbag that deploys between an occupant's pelvis/thigh area and the vehicle side structure

3.1.4

combination airbag

airbag that deploys to help protect two or more body areas of an occupant

EXAMPLE Head and chest combination airbag.

3.2

rigid pole

vertically-oriented, cylindrical, rigid structure, extending beyond the anticipated lower and upper boundary of the deformed test vehicle, in the region of impact

4 Test facility and equipment

4.1 Impact test site

The impact test track shall be a horizontal, smooth and hard surface, which is of sufficient length and area to allow for a monotonic acceleration of the test vehicle to the specified impact speed and to permit post impact deceleration and displacement of the test vehicle without secondary impacts.

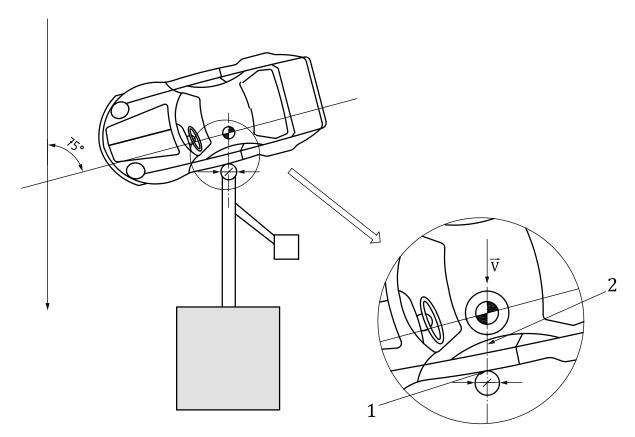
4.2 Pole

The pole shall be 254 mm ± 3 mm in diameter. The supporting structure of the pole shall not interfere with the test vehicle during the collision and shall be designed to reduce the risk of a secondary impact

5 Test configurations

5.1 Angle of impact

- a) Oblique tests shall be performed with an impact angle of $75^{\circ} \pm 3^{\circ}$.
- b) Perpendicular tests shall be performed with an impact angle of 90 ° ± 3 °.

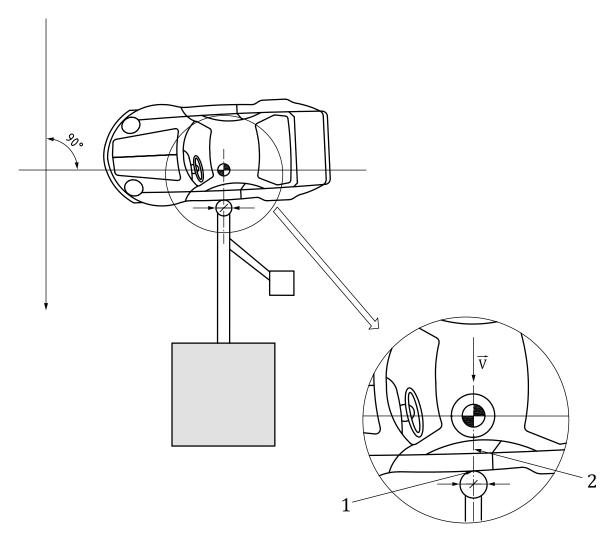

5.2 Locus of the impact on the test vehicle

The test vehicle may be impacted from either side.

The vehicle should be positioned so that the CG of the head is aligned with the centre of the pole, along the direction of impact (75° or 90° from the longitudinal axis of the vehicle).

5.2.1 Impact reference line for oblique test

A vertical impact reference line shall be established on the test vehicle at the intersection of a vertical plane drawn through the dummy head CG of the front outboard designated dummy. The plane should be oriented at 75° with respect to the front, longitudinal axis of the vehicle (front outboard designated seating position) and the exterior door surface (See Figure 1).


Key

- 1 First contact with vehicle
- 2 Alignment of CG with pole
- NOTE 1 The impact reference line is established after the dummy is in its final position.
- NOTE 2 The vertical impact reference line should be aligned with the centreline of the rigid pole.
- NOTE 3 The maximum offset optimal value is set to \pm 10 mm.
- NOTE 4 The offset value should be kept within \pm 25 mm for the test to be considered acceptable. However if the offset value is over \pm 10 mm, some care should be taken in the interpretation of the results.

Figure 1 — Test configuration for 75° angle impact

5.2.2 Impact Reference Line for perpendicular test

A vertical impact reference line shall be established on the test vehicle at the intersection of the vertical transverse plane through the dummy head CG (front outboard designated seating position) and the exterior door surface (See Figure 2).

Key

- 1 First contact with vehicle
- 2 Alignment of CG with pole
- NOTE 1 The impact reference line is established after the dummy is in its final position.
- NOTE 2 The vertical impact reference line should be aligned with the centreline of the rigid pole.
- NOTE 3 The maximum offset optimal value is set to \pm 10 mm.
- NOTE 4 The offset value should be kept within \pm 25 mm for the test to be considered acceptable. However if the offset value is over \pm 10 mm, some care should be taken in the interpretation of the results.

Figure 2 — Test configuration for 90° angle impact

5.3 Impact velocity

The final velocity shall be measured after release and within the 1500 mm from the point of contact.

For perpendicular impacts the impact velocity shall be $29 \text{ km/h} \pm 0.5 \text{ km/h}$

For 75 degree oblique impacts the impact velocity shall be $32 \text{ km/h} \pm 0.5 \text{ km/h}$

6 Preparation of the test vehicle

6.1 Mass of the test vehicle

$$m_t = m_k + m_l + m_d$$

where

 m_k is the complete vehicle kerb mass or unloaded vehicle weight (ISO-M06), as defined in ISO 1176:1990, 4.6, in kilograms;

m_l is the rated cargo and luggage mass in kilograms;

the cargo mass is the maximum admissible weight minus the maximum standard occupant mass, or 136 kg, whichever is less (see 6.1.1);

 m_d is the mass of the selected side impact test dummy as defined in the user manual of the dummy.

The vehicle shall be ballasted to achieve the test mass to within \pm 10 kg. The ballast shall be located and secured to the vehicle so that it does not alter the structural characteristics of the parts of the vehicle expected to deform during the test.

Given that the mass distribution in the vehicle can influence the vehicle response, it is recommended that the wheel mass be documented.

6.1.1 Methods for calculating cargo mass (m_l) depending on the information available

The value (ml) of the cargo mass shall be between 0 and 136 kg.

Method A

$$m_1 = max\{ min [m_p - (68 \times C_{DS}); 136kg], 0 \}$$

where

 $m_p\,$ is the vehicle capacity weight or maximum design pay mass (ISO-M09) as defined in ISO 1176:1990, 4.9, in kilograms;

C_{DS} is the designated seating capacity of the test vehicle.

Method B: Published cargo mass

Method C: Published vehicle capacity weight (combined weight of cargo and occupants or maximum design pay mass)

$$B = () C_{DS} X 68 kg: ____ kg$$

$$A(_kg) - B(_kg) = Cargo mass(___kg)$$

Method D: Published GVWR:

$$A = GVWR =$$
____kg

$$B = () C_{DS} X 68 kg = ___ kg$$

BS ISO 15829:2013 **ISO 15829:2013(E)**

C = Unloaded vehicle mass (kerb weight) = _____ kg

A (____kg) - B (____kg) - C (____kg) = Cargo mass (___kg)

6.2 Condition of the test vehicle

6.2.1 General conditions

The test vehicle doors shall be fully closed and latched. Window(s) adjacent to the test dummy shall be open, with the opening mechanism in the full down position. Window slot can be covered with tape to prevent glass spray.

If the test vehicle has a sunroof it must be in the closed position. Apply an adhesive film to protect the interior from glass splatter. The roof liner shall be in the closed position for additional protection.

Similarly, removable roof panels shall be in place and latched. Apply an adhesive film to protect the interior from glass splatter.

Unless specified in the seating procedure, the steering wheel shall be adjusted to the mid-mid position.

The parking brake shall be disengaged. The transmission shall be in neutral.

If the test vehicle has a convertible top, the convertible structure shall be in the "up" position for the test.

Frontal airbags may be deactivated and appropriate resistors inserted if deployment is thought to cause interference with camera views.

Should interior panels be removed during vehicle preparation caution should be exercised when replacing such panels to ensure the design performance is not affected. For example: airbag deployment, dummy interaction with panel(s).

6.2.2 Seat and dummy positioning

As per dummy seating procedure specified in ISO 17949.

7 Test devices

Side impact dummies shall be the WorldSID 50th percentile male dummy as specified in ISO 15830-4.

The test dummy temperature should be within a temperature range and at a relative humidity specified by the dummy's manufacturer.

8 Instrumentation

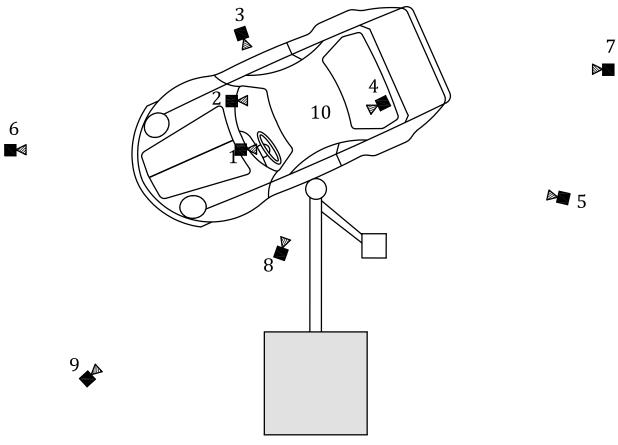
8.1 General

All measurements shall be recorded and filtered according to ISO 6487, ISO 8721, ISO/TR 27957. These measurements should be continuous functions of time, so that other quantities referred to in the references may be derived.

8.2 Vehicle instrumentation

The necessary instrumentation is as follows:

 a tri-axial accelerometer at the centre of gravity of the vehicle or as close as possible on the vehicle sructure, — a tri-axial accelerometer at the base of the non-struck side B-pillar, and optionally at the base of the struck side B-pillar.


Airbag deployment time shall be recorded.

8.3 High speed photography

The airbag deployment and dummy interactions are monitored by high speed cameras operating at a minimum speed of one thousand (1 000) frames per second.

Minimum recommended camera resolution is 1024 X 1024.

The recommended camera locations are shown in Figure 3.

Key

- 1 Driver frontal view to capture head and shoulder interaction with side structure
- 2 Oblique frontal view (3/4 view) of driver for kinematics
- 3 Passenger side view of driver for kinematics
- 4 Rear B-pillar view to capture curtain interaction with B-pillar trim
- 5 Rear external view of pole interaction with vehicle body and pole
- 6 Front view of vehicle
- 7 Rear view of vehicle
- 8 Oblique view of pole
- 9 Extended view of pole and vehicle
- 10 Plan view (overhead view)

Figure 3 — Camera views

9 Impact response measurements

The dummy measurements shall be according to Table 1.

NOTE Mandatory measurements are those needed to calculate a criterion or associated to an injury mechanism. Other measurements are optional and can be used to analyse the dummy dynamics and kinematics.

Table 1 — Dummy measurements

Segment	Measures	Mandatory measure- ments ^a	Criteria	Optional measure- ments
Head	CG linear acceleration			$a_{\rm x}, a_{\rm y}, a_{\rm z}$
	Rotational acceleration			$\alpha_{x}, \alpha_{y}, \alpha_{z}$
	Rotational velocity			ω_x , ω_y , ω_z
Neck	OC joint (upper neck) loads			F_{x}, F_{y}, F_{z} M_{x}, M_{y}, M_{z}
	C7/T1 (lower neck) loads			$F_{\rm x}$, $F_{\rm y}$, $F_{\rm z}$ $M_{\rm x}$, $M_{\rm y}$, $M_{\rm z}$
Shoulder	Shoulder force	$F_{\mathbf{y}}$	Force	$a_{\rm x}, a_{\rm y}, a_{\rm z}$
	Shoulder rib linear acceleration			D_{y}
	Shoulder rib displacement			
Thorax				
	Upper, middle, lower thorax rib deflection	D_1, D_2, D_3	Maximum deflection	
Spine	T1 linear acceleration			$a_{\mathrm{x}}, a_{\mathrm{y}}, a_{\mathrm{z}}$
	T4 linear acceleration			$a_{\mathrm{x}}, a_{\mathrm{y}}, a_{\mathrm{z}}$
	T12 linear acceleration			$a_{\mathrm{x}}, a_{\mathrm{y}}, a_{\mathrm{z}}$
	Spine box rotational acceleration			α_X , α_Z
Abdomen				
	Upper abdominal rib deflection	D4, D5	Maximum deflection	
Lumbar spine	Lower lumbar spine loads			F_{x} , F_{y} , F_{z}
				$M_{\rm X}, M_{\rm y}, M_{\rm Z}$
Pelvis	Pubic symphysis loads	Fy	F _{pubis}	$a_{\mathrm{x}}, a_{\mathrm{y}}, a_{\mathrm{z}}$
	CG linear accelerations			
	Sacroiliac loads			$F_{\rm x}$, $F_{\rm y}$, $F_{\rm z}$ $M_{\rm x}$, $M_{\rm y}$, $M_{\rm z}$
Upper Leg	Femur neck forces			$F_{\rm x}$, $F_{\rm y}$, $F_{\rm z}$
	Mid femur loads			$F_{\rm x}$, $F_{\rm y}$, $F_{\rm z}$ $M_{\rm x}$, $M_{\rm y}$, $M_{\rm z}$
	Outboard knee force			F_{y}
	Inboard knee force			$F_{ m y}$
	Knee angular displacement			Фу

^a Mandatory measurements are those needed to calculate a criterion associated to injury risk curves as proposed in ISO/TR 12350.

Table 1 (continued)

Segment	Measures	Mandatory measure- ments ^a	Criteria	Optional measure- ments
Lower Leg	Upper tibia loads			$F_{\rm x}, F_{\rm y}, F_{\rm z}$ $M_{\rm x}, M_{\rm y}, M_{\rm z}$
	Lower tibia loads			$F_{\rm x}, F_{\rm y}, F_{\rm z}$ $M_{\rm x}, M_{\rm y}, M_{\rm z}$
	Ankle angular displacement			$\phi_{x_{\prime}} \phi_{y_{\prime}} \phi_{z}$

^a Mandatory measurements are those needed to calculate a criterion associated to injury risk curves as proposed in ISO/TR 12350.

Bibliography

- [1] ISO 3784, Road vehicles Measurement of impact velocity in collision tests
- [2] ISO 6549²), Road vehicles Procedure for H and R-point determination
- [3] SAE J211-1, Instrumentation for impact test Part 1 : Electronic instrumentation
- [4] SAE J211-2, Instrumentation for impact test Part 2 : Photographic instrumentation

²⁾ Withdrawn.

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

Revisions

Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services

Tel: +44 845 086 9001

Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions

Tel: +44 845 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

Email: knowledgecentre@bsigroup.com

Copyright & Licensing

Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

