BS ISO 15633:2015 ### **BSI Standards Publication** Iron ores — Determination of nickel — Flame atomic absorption spectrometric method BS ISO 15633:2015 BRITISH STANDARD #### National foreword This British Standard is the UK implementation of ISO 15633:2015. It supersedes BS ISO 15633:2009 which is withdrawn. The UK participation in its preparation was entrusted to Technical Committee ISE/58, Iron ores. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2015. Published by BSI Standards Limited 2015 ISBN 978 0 580 88342 2 ICS 73.060.10 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 June 2015. Amendments issued since publication Date Text affected ## INTERNATIONAL STANDARD ISO 15633:2015 ISO 15633 Second edition 2015-07-01 # Iron ores — Determination of nickel — Flame atomic absorption spectrometric method Minerais de fer — Dosage du nickel — Méthode par spectrométrie d'absorption atomique dans la flamme BS ISO 15633:2015 **ISO 15633:2015(E)** #### COPYRIGHT PROTECTED DOCUMENT © ISO 2015 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland | Con | Contents Pa | | | | | |--------|----------------------------|---|----------|--|--| | Forev | ord | | iv | | | | Intro | ductio | n | v | | | | 1 | Scon | e | 1 | | | | 2 | Normative references | | | | | | | | | | | | | 3 | Principle | | | | | | 4 | Reagents | | | | | | 5 | Appa | aratus | 2 | | | | 6 | Sam j
6.1
6.2 | pling and samples
Laboratory sample
Preparation of predried test samples | 3 | | | | 8 | 7.1
7.2
7.3
7.4 | Number of determinations Test portion Blank test and check test Determination 7.4.1 Decomposition of the test portion 7.4.2 Removal of iron 7.4.3 Treatment of the residue 7.4.4 Preparation of the calibration solutions 7.4.5 Adjustment of the atomic absorption spectrometer 7.4.6 Atomic absorption measurements Pession of results Calculation of sulfur content General treatment of results 8.2.1 Repeatability and permissible tolerance 8.2.2 Determination of analytical result 8.2.3 Between-laboratories precision 8.2.4 Check for trueness 8.2.5 Calculation of final result | | | | | | 8.3 | Oxide factor | | | | | 9 | Test report | | | | | | Anne | | ormative) Flowsheet of the procedure for the acceptance of analytical values for samples | 10 | | | | Anne | x B (in | formative) Derivation of repeatability and permissible tolerance equations | 11 | | | | Anne | c (in | formative) Precision data obtained by international analytical trial | 12 | | | | Diblic | - | • | 12 | | | #### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary Information The committee responsible for this document is ISO/TC 102, Iron or e and direct reduced iron, Subcommittee SC 02, Chemical analysis. This second edition cancels and replaces the first edition (ISO 15633:2009), which has been technically revised. #### Introduction The objective of a proposed revision of ISO 9685:1991 was to extend the lower limit for a flame atomic absorption spectrometric method determination of both chromium and nickel in iron ores down to 0,001 %. However, due to bias, the method for nickel could not be approved for referee purposes. The 22^{nd} meeting of ISO/TC 102/SC 2 decided to progress this International Standard as a non-referee method. ## Iron ores — Determination of nickel — Flame atomic absorption spectrometric method WARNING — This International Standard may involve hazardous materials, operations, and equipment. This International Standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this International Standard to establish appropriate health and safety practices and determine the applicability of regulatory limitations prior to use. #### 1 Scope This International Standard specifies a flame atomic absorption spectrometric method for the determination of the nickel mass fraction of iron ores. This method is applicable to mass fractions of nickel between 0,001 % and 0,1 % in natural iron ores, iron ore concentrates, and agglomerates including sinter products. This method is not appropriate for referee purposes. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 648, Laboratory glassware — Single-volume pipettes ISO 1042, Laboratory glassware — One-mark volumetric flasks ISO 3082, *Iron ores* — *Sampling and sample preparation procedures* ISO 3696, Water for analytical laboratory use — Specification and test methods ISO 7764, Iron ores — Preparation of predried test samples for chemical analysis ISO 80000-1:2009, Quantities and units — Part 1: General #### 3 Principle The test portion of iron ore is decomposed by treatment with hydrochloric and nitric acids. The major portion of iron in the filtrate is removed by extraction with 4-methylpentan-2-one. The insoluble residue is ignited and silicon dioxide is removed by evaporation with hydrofluoric and sulfuric acids. The residue is fused with a mixture of sodium carbonate and sodium tetraborate, and then dissolved with hydrochloric acid and combined with the main solution. The solution is aspirated into the flame of an atomic absorption spectrometer using an air-acetylene burner. The absorbance values obtained are compared with those obtained from the calibration solutions. #### 4 Reagents During the analysis, use only reagents of recognized analytical grade and only water that conforms to grade 2 of ISO 3696. ## BS ISO 15633:2015 **ISO 15633:2015(E)** - **4.1 Sodium carbonate** (Na₂CO₃), anhydrous powder. - **4.2 Sodium tetraborate** (Na₂B₄O₇), anhydrous powder. - **4.3 Lithium tetraborate** (Li₂B₄O₇), anhydrous powder. - **4.4 Hydrochloric acid**, ρ = 1,16 g/ml to 1,19 g/ml. - **4.5 Hydrochloric acid**, ρ = 1,16 g/ml to 1,19 g/ml, diluted 2 + 1. - **4.6 Hydrochloric acid**, ρ = 1,16 g/ml to 1,19 g/ml, diluted 1 + 1. - **4.7 Hydrochloric acid**, ρ = 1,16 g/ml to 1,19 g/ml, diluted 2 + 100. - **4.8 Nitric acid,** $\rho = 1.4$ g/ml. - **4.9** Nitric acid, $\rho = 1.4$ g/ml, diluted 1 + 1. - **4.10** Hydrofluoric acid, $\rho = 1.13$ g/ml, 40 % (mass fraction) or $\rho = 1.19$ g/ml, 48 % (mass fraction). - **4.11** Sulfuric acid, $\rho = 1.84 \text{ g/ml}$. - **4.12 Sulfuric acid**, ρ = 1,84 g/ml, diluted 1 + 1. - **4.13 4-Methylpentan-2-one**, (methyl isobutyl ketone, MIBK). - **4.14** Nickel standard solution A, 100 μg Ni/ml. Dissolve 0,100 0 g of nickel metal [purity >99,9 % (mass fraction)] (see Note of 4.15) in 30 ml of nitric acid (4.9). After cooling, transfer quantitatively to a 1 000 ml one-mark volumetric flask, dilute to volume with water, and mix. **4.15** Nickel standard solution B, 10 μg Ni/ml. Transfer 100,0 ml of nickel standard solution A (4.14) to a 1 000 ml one-mark volumetric flask. Dilute to volume with water and mix. NOTE The purity of the metals stated on the certificates does not generally take into account the presence of absorbed gases such as oxygen, carbon monoxide, etc. #### 5 Apparatus Ordinary laboratory apparatus including one-mark pipettes and one-mark volumetric flasks complying with the specifications of ISO 648 and ISO 1042, and the following. - **5.1 Platinum crucible**, of minimum capacity 25 ml. - 5.2 Muffle furnace. - **5.3 Atomic absorption spectrometer**, equipped with an air-acetylene burner. WARNING — Follow the manufacturer's instructions for igniting and extinguishing the airacetylene flame to avoid possible explosion hazards. Wear tinted safety glasses whenever the burner is in operation. The atomic absorption spectrometer used in this method shall meet the following criteria below. - a) Minimum sensitivity: the absorbance of the most concentrated calibration solution (see 7.4.4) is at least 0,3. - b) *Graph linearity*: the slope of the calibration graph covering the top 20 % of the concentration range (expressed as a change in absorbance) is not less than 0,7 of the value of the slope for the bottom 20 % of the concentration range determined in the same way. - c) *Minimum stability*: the standard deviation of the absorbance of the most concentrated calibration solution and that of the zero calibration solution each being calculated from a sufficient number of repetitive measurements are less than 1,5 % and 0,5 %, respectively of the mean value of the absorbance of the most concentrated solution. The use of a strip-chart recorder and/or digital readout device is recommended to evaluate criteria a), b), and c) and for all subsequent measurements. NOTE Instrument parameters vary with each instrument. The following parameters were successfully used in several laboratories and they can be used as guidelines. An air-acetylene flame was used. | hollow-cathode lamp, mA | 10 | |----------------------------|-------| | wavelength, nm | 232,0 | | air flow rate, l/min | 10 | | acetylene flow rate, l/min | 2,5 | In systems where the values shown above for gas flow rates do not apply, the ratio of the gas flow rates can still be a useful guideline. #### 6 Sampling and samples #### 6.1 Laboratory sample For analysis, use a laboratory sample of –100 μ m particle size which has been taken and prepared in accordance with ISO 3082. In the case of ores having significant contents of combined water or oxidizable compounds, use a particle size of <160 μ m. NOTE A guideline on significant contents of combined water and oxidizable compounds is incorporated in ISO 7764. Ensure that the sample has not been pulverized in a nickel/chromium pot. #### 6.2 Preparation of predried test samples Thoroughly mix the laboratory sample and, taking multiple increments, extract a test sample in such a manner that it is representative of the entire contents of the container. Dry the test sample at $105\,^{\circ}\text{C} \pm 2\,^{\circ}\text{C}$ as specified in ISO 7764. This is the predried test sample. #### 7 Procedure #### 7.1 Number of determinations Carry out the analysis at least in duplicate in accordance with <u>Annex A</u> independently on one predried test sample. NOTE The expression "independently" means that the second and any subsequent result is not affected by the previous result(s). For this particular analytical method, this condition implies that the repetition of the procedure is carried out either by the same operator at a different time or by a different operator including in either case, appropriate recalibration. #### 7.2 Test portion Taking several increments, weigh, to the nearest $0,000\ 2$ g, approximately 1 g of the predried test sample in accordance with 6.2. The test portion should be taken and weighed quickly, in order to avoid reabsorption of moisture. #### 7.3 Blank test and check test In each run, one blank test and one analysis of a certified reference material of the same type of ore shall be carried out in parallel with the analysis of the ore sample(s) under the same conditions. A predried test sample of the certified reference material shall be prepared as specified in <u>6.2</u>. The certified reference material should be of the same type as the sample to be analysed and the properties of the two materials should be sufficiently similar to ensure that in either case, no significant changes in the analytical procedure become necessary. Where a certified reference material is not available, a reference material can be used (see 8.2.4). Where the analysis is carried out on several samples at the same time, the blank value may be represented by one test provided that the procedure is the same and the reagents used are from the same reagent bottles. Where the analysis is carried out on several samples of the same type of ore at the same time, the analytical value of one certified reference material can be used. #### 7.4 Determination #### 7.4.1 Decomposition of the test portion Transfer the test portion (7.2) to a 250 ml tall-form beaker. Moisten with a few millilitres of water. Add 25 ml of hydrochloric acid (4.4), cover with a watch-glass, and heat for about 1 h on a hotplate adjusted to give a temperature of 100 °C in a test beaker containing a similar volume and depth of sulfuric acid (4.11). If the amount of insoluble reside is high, continue heating on a higher temperature zone of the hotplate without boiling the solution. After heating, the volume of the solution should have decreased to about 10 ml. Add 5 ml of nitric acid (4.8) and 0,2 ml of sulfuric acid (4.12), digest for about 15 min, and evaporate the solution almost to dryness. If the test sample contains significant barium content, the addition of sulfuric acid (4.12) should be omitted. Be sure to cover with a watch-glass in order to prevent sublimation of chlorides. During evaporation, shift the glass slightly. Add 20 ml of hydrochloric acid (4.6) and heat to dissolve the salts. Cool, wash the watch-glass and the walls of the beaker, and filter the solution through a close-texture filter paper containing filter pulp (0.3 g to 0.4 g dry mass) into a 200 ml beaker. Carefully remove all adhering particles with a rubber- tipped glass rod or piece of moistened filter paper and transfer to the filter washing the paper with warm hydrochloric acid (4.7) until it is visibly free from iron, and again, wash the paper with three or four portions of warm water. Reserve the filtrate and washings in the 200 ml beaker as the main solution. Transfer the filter paper and residue to a platinum crucible (5.1). #### 7.4.2 Removal of iron Heat the main solution and evaporate almost to dryness. Dissolve the salts in 15 ml of hydrochloric acid (4.5) and transfer to a 200 ml separating funnel. Rinse the beaker with 20 ml of hydrochloric acid (4.5) and transfer the washings to the funnel. Add 50 ml of 4-methylpentan-2-one (4.13) to the funnel and shake it for 1 min. Allow the two layers to separate and drain the lower aqueous layer into the original 200 ml beaker. Wash the organic layer by adding 10 ml of hydrochloric acid (4.5) to the funnel and shaking it for 30 s. Allow the two layers to separate and drain the lower aqueous layer into the 200 ml beaker to combine with the first aqueous layer. Discard the organic layer. Heat the solution gently and expel almost all of the 4-methylpentan-2-one in the solution. Then, add 5 ml of nitric acid (4.8) and evaporate to dryness. Dissolve the salts in 20 ml of hydrochloric acid (4.6). #### 7.4.3 Treatment of the residue Dry and burn off the filter paper in the platinum crucible (5.1) at a low temperature ($500\,^{\circ}$ C to $800\,^{\circ}$ C) and ignite the residue. Cool, moisten with one to two drops of water and add three drops of sulfuric acid (4.11) and 5 ml of hydrofluoric acid (4.10). Evaporate slowly to expel silicon dioxide and continue heating to remove the sulfuric acid. Ignite at $800\,^{\circ}$ C for several minutes and then cool. Add 1,2 g of a mixture of 0,8 g of sodium carbonate (4.1) and 0,4 g of sodium tetraborate (4.2) to the residue and mix. Heat gently for several minutes, then heat at 1 000 °C for 15 min in a muffle furnace (5.2) or over a pressurized air burner for a time sufficient to produce a clear melt. Lithium tetraborate (4.3) can be used instead of sodium tetraborate (4.2). In this case, sodium tetraborate should be replaced with lithium tetraborate in the calibration solutions (7.4.4) and the flame-setting solutions (7.4.5). Allow the crucible to cool, add 10 ml of hydrochloric acid (4.6) and heat gently to dissolve the melt. Combine this solution with the main solution from 7.4.2, heat to remove carbon dioxide, and cool. For samples containing a mass fraction of more than or equal to 0,01 % nickel, transfer to a 100 ml one-mark volumetric flask quantitatively, dilute to volume with water, and mix (this is the test solution). For samples containing a mass fraction of less than 0,01 % nickel, transfer to a 50 ml one-mark volumetric flask quantitatively, dilute to volume with water, and mix (this is the test solution). #### 7.4.4 Preparation of the calibration solutions Introduce into a series of six 200 ml beakers, 30 ml of hydrochloric acid (4.6), 0,2 ml of sulfuric acid (4.12) and a mixture of 0,8 g of sodium carbonate (4.1), and 0,4 g of sodium tetraborate (4.2). Heat to remove carbon dioxide and cool. Using pipettes or burettes, add 0 ml, 1,0 ml, 3,0 ml, 5,0 ml, 7,0 ml, and 10,0 ml of nickel standard solution A (4.14) for samples containing 0,01 % nickel to 0,1 % nickel or nickel standard solution B (4.15) for samples containing 0,001 % nickel to 0,01 % nickel. Transfer to six 100 ml one-mark volumetric flasks for samples containing 0,01 % nickel to 0,1 % nickel or 50 ml one-mark volumetric flasks for samples containing 0,001 % nickel to 0,01 % nickel, respectively. Dilute to volume with water and mix. These calibration solutions cover the nickel concentration ranges 0 μ g/ml to 10 μ g/ml in the case of standard solution B. #### 7.4.5 Adjustment of the atomic absorption spectrometer Optimize the response of the instrument as specified in <u>5.3</u>. Set the wavelength at 232,0 nm to obtain minimum absorbance and adjust the readout to zero absorbance. Light the air-acetylene flame. After 10 min of preheating the burner, aspirate water, and, if necessary, readjust the readout to zero absorbance. Aspirate the calibration solution of highest nickel content (<u>7.4.4</u>) and adjust the fuel flow and burner position to obtain maximum absorbance. Check that the conditions for zero absorbance have been maintained and evaluate the criteria in 5.3. Repeat the aspiration of water and the calibration solution of highest nickel content to establish that the absorbance reading is not drifting. Set the reading for water to zero absorbance. #### 7.4.6 Atomic absorption measurements Aspirate the calibration solutions (7.4.4) and the test solution (7.4.3) in order of increasing absorption, starting with the zero calibration solution (7.4.4) and the blank test solution. When a stable response has been obtained for each solution, record the readings. Aspirate water between each calibration and test solution. Correct the absorbance values obtained for the calibration solutions by subtracting the absorbance of the zero calibration solution and prepare a calibration graph by plotting the net absorbance values against micrograms of nickel per millilitre. If the graph is substantially linear, subtract the absorbance obtained for the blank test from the absorbance obtained for the test solution and, using the graph, convert the net absorbance to micrograms of nickel per millilitre. If any curvature obtained approaches the limit specified in 5.3 b), replot the graph using uncorrected values for all solutions and establish the concentration of the zero calibration solution from the intercept of the graph on the negative side of the concentration axis. Add this value to the nominal concentration values of the calibration solutions and replot the graph to pass through the origin. Determine from the graph the concentration of nickel, in micrograms per millilitre, in the blank test and test solutions respectively, and correct the concentration of the test solution with the concentration of the blank test. #### 8 Expression of results #### 8.1 Calculation of sulfur content The mass fraction of nickel, w_{Ni} , expressed as a percentage by mass is calculated to five decimal places using the following formulae. a) For <0,01 % (mass fraction) of nickel content: $$w_{\text{Ni}} \% = \frac{\rho_{\text{Ni}} \times 50}{m \times 10^6} \times 100 = \frac{\rho_{\text{Ni}} \times 0,005}{m} \tag{1}$$ b) For ≥ 0.01 % (mass fraction) of nickel content: $$w_{\text{Ni}} \% = \frac{\rho_{\text{Ni}} \times 100}{m \times 10^6} \times 100 = \frac{\rho_{\text{Ni}} \times 0.01}{m}$$ (2) where w_{Ni} is the mass fraction (%) of nickel in the test portion; $\rho_{\rm Ni}$ is the concentration, in micrograms per millilitre, of nickel in the final test solution; *m* is the mass, in grams, of the test portion. #### 8.2 General treatment of results #### 8.2.1 Repeatability and permissible tolerance The precision of this analytical method is expressed by the following regression formulae. NOTE Additional information is given in <u>Annex B</u> and <u>Annex C</u>. $$R_{\rm d} = 0.0043 X^{0.3051} \tag{3}$$ $$P = 0.0215 \, X^{0.4977} \tag{4}$$ $$\sigma_{\rm d} = 0.0015 \, X^{0.3051} \tag{5}$$ $$\sigma_{\rm L} = 0,0076 \, X^{0,5242} \tag{6}$$ where - *X* is concentration of nickel in the sample, expressed as mass fraction (%), and is calculated as follows: - for the within-laboratory, Formula (3) and Formula (5): The arithmetic mean of the duplicate values; - for the between-laboratories, Formula (4) and Formula (6): The arithmetic mean of the final results (8.2.5) of the two laboratories; - $R_{\rm d}$ independent duplicate limit; - *P* is the permissible tolerance between laboratories; - σ_d is the independent duplicate standard deviation; - σ_L is the between-laboratories standard deviation. #### 8.2.2 Determination of analytical result Having computed the independent duplicate results according to Formula (1) or Formula (2), compare them with the independent duplicate limit, R_d , using the procedure given in Annex A, Figure A.1, and obtain the final laboratory result μ (see 8.2.5). #### 8.2.3 Between-laboratories precision Between-laboratories precision is used to determine the agreement between the final results reported by two laboratories. The assumption is that both laboratories followed the procedure described in <u>8.2.2</u>. ## BS ISO 15633:2015 **ISO 15633:2015(E)** Compute the following quantity: $$\mu_{1,2} = \frac{\mu_1 + \mu_2}{2} \tag{7}$$ where μ_1 is final result reported by laboratory 1; μ_2 is the final result reported by laboratory 2; $\mu_{1,2}$ is the mean of final results. Substitute $\mu_{1,2}$ for *X* in Formula (4) and calculate *P*. If $|\mu_1 - \mu_2| \le P$, the results are in agreement. #### 8.2.4 Check for trueness The trueness of the analytical method shall be checked by applying it to a certified reference material (CRM) or a reference material (RM). The procedure is the same as that described above. After confirmation of the precision, the final laboratory result is compared with the reference or certified value, A_c . There are two possibilities. - a) $|\mu_c A_c| \le C$ in which case, the difference between the reported result and the reference/certified value is statistically insignificant. - b) $|\mu_c A_c| > C$ in which case, the difference between the reported result and the reference/certified value is statistically significant. where μ_{c} is the final result for the certified reference material; $A_{\rm c}$ is the reference/certified value for the CRM/RM; *C* is a value dependent on the type of CRM/RM used. Certified reference materials used for this purpose should be prepared and certified in accordance with ISO Guide 35. C should be calculated as follows: $$C = 2\sqrt{\sigma_{\rm L}^2 + \frac{\sigma_{\rm d}^2}{n} + \frac{s_{\rm c}^2}{N_{\rm c}}} \tag{8}$$ where s_c is the standard deviation of laboratory means (each value for calculating the standard deviation is the average value in each certifying laboratory) of the CRM/RM; $N_{\rm c}$ is the number of certifying laboratories; *n* is the number of replicate determinations carried out on the CRM/RM. For CRMs certified by only one laboratory, *C* should be calculated as follows: $$C = 2\sqrt{2\sigma_{\rm L}^2 + \frac{\sigma_{\rm d}^2}{n}}\tag{9}$$ A CRM certified by only one laboratory should be avoided unless it is known to have an unbiased certified value. #### 8.2.5 Calculation of final result The final result is the arithmetic mean of the acceptable analytical values for the test sample, or as otherwise determined by the operations specified in <u>Annex A</u> calculated to five decimal places and rounded off to the third decimal place according to Rule A in ISO 80000-1:2009, B.3 as follows. - a) Where the figure in the fourth decimal place is less than five, it is discarded and the figure in the third decimal place is kept unchanged. - b) Where the figure in the fourth decimal place is five and there is a figure other than 0 in the fifth decimal place or where the figure in the fourth decimal place is greater than five, the figure in the third decimal place is increased by one. - c) Where the figure in the fourth decimal place is five and the figure 0 is in the fifth decimal place, the five is discarded and the figure in the third decimal place is kept unchanged if it is 0, 2, 4, 6, or 8 and is increased by one if it is 1, 3, 5, 7, or 9. #### 8.3 Oxide factor The mass fraction of nickel oxide is calculated using Formula (10). $$W_{\text{NiO}}(\%) = 1,2725 W_{\text{Ni}}(\%)$$ (10) #### 9 Test report The test report shall include the following information: - a) name and address of the testing laboratory; - b) date of issue of the test report; - f) a reference to this International Standard, i.e. ISO 15633; - g) details necessary for the identification of the sample; - h) result of the analysis; - i) reference number of the result; - j) any characteristics noticed during the determination and any operations not specified in this International Standard which may have had an influence on the result, either for the test sample or for the certified reference material(s). ### Annex A (normative) ## Flowsheet of the procedure for the acceptance of analytical values for test samples NOTE R_d is as defined in 8.2.1. Figure A.1 — Procedure for acceptance of analytical values ## **Annex B** (informative) ### Derivation of repeatability and permissible tolerance equations The regression formulae in <u>8.2.1</u> were derived from the results of international analytical trials carried out in 1999/2000 on seven iron ore samples involving six laboratories in four countries. Graphical treatment of the precision data are given in Annex C. The test samples used are listed in Table B.1. Table B.1 — Sulfur contents of test samples | Sample | Nickel content % (mass fraction) | |------------|----------------------------------| | ASCRM 007 | 0,001 | | JSS 812-3 | 0,002 2 | | ECRM 680-1 | 0,0068 | | JSS 851-4 | 0,008 1 | | ECRM 681-1 | 0,015 9 | | JSS 852-2 | 0,044 6 | | MW-1 | 0,081 | NOTE 1 A report of the international trials and a statistical analysis of the results (Document ISO/TC 02/SC 2 1420 E, October 2001) are available from the Secretariat of ISO/TC 102/SC 2. NOTE 2 The statistical analysis was performed in accordance with the principles embodied in ISO 5725-2. ## **Annex C** (informative) ### Precision data obtained by international analytical trial Figure C.1 is a graphical presentation of the Formulae in 8.2.1. #### Key - X mass fraction of nickel, % - Y precision, % - 1 *P* - $2 R_{\rm d}$ - 3 $\sigma_{\rm L}$ - $4 \sigma_d$ Figure C.1 — Least-squares fit of precision against X for sulfur ### **Bibliography** - [1] ISO 5725-2, Accuracy (trueness and precision) of measurement methods and results Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method - [2] ISO Guide 35, Reference materials General and statistical principles for certification ## British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### Knowledge Centre Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com