BS ISO 13755:2012 ## **BSI Standards Publication** # Ships and marine technology — Ship's mooring and towing fittings — Steel rollers BS ISO 13755:2012 BRITISH STANDARD #### National foreword This British Standard is the UK implementation of ISO 13755:2012. The UK participation in its preparation was entrusted to Technical Committee SME/32/-/4, Ships and marine technology - Outfitting and deck machinery. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2012. Published by BSI Standards Limited 2012 ISBN 978 0 580 69751 7 ICS 47.020.50 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 November 2012. Amendments issued since publication Date Text affected # INTERNATIONAL STANDARD BS ISO 13755:2012 ISO 13755 First edition 2012-07-01 # Ships and marine technology — Ship's mooring and towing fittings — Steel rollers Navires et technologie maritime — Corps-morts et ferrures de remorquage de navires — Rouleaux en acier BS ISO 13755:2012 ISO 13755:2012(E) #### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2012 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland | Cor | ntents | Page | |-----------------|--|------| | | eword | | | Intro | oduction | v | | 1 | Scope | 1 | | 2 | Normative references | | | 3 | Terms and definitions | 1 | | 4
4.1
4.2 | ClassificationTypeNominal sizes | | | 5 | Dimensions | | | 6 | Materials | 2 | | 7 | Construction | | | 8 | Manufacturing and inspection | 2 | | 9 | Marking | | | Anne | nex A (informative) Basis for strength assessment of steel rollers | 16 | | Bibli | liography | 18 | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 13755 was prepared by Technical Committee ISO/TC 8, Ships and marine technology, Subcommittee SC 4, Outfitting and deck machinery. ### Introduction The steel roller is a type of ship's mooring fitting installed on board to lead the mooring rope from the ship's inboard to outboard as shipside roller fairleads and to change the direction of ropes as pedestal fairleads. # Ships and marine technology — Ship's mooring and towing fittings — Steel rollers #### 1 Scope This International Standard specifies the design, size and technical requirements for steel rollers installed to lead the mooring rope of a ship. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 13767, Ships and marine technology — Ship's mooring and towing fittings — Shipside roller fairleads ISO 13776, Ships and marine technology — Ship's mooring and towing fittings — Pedestal fairleads IMO Circular MSC/Circ.1175, Guidance on shipboard towing and mooring equipment #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### safe working load #### SWL maximum load in kN on the rope that should normally be applied in service conditions #### 4 Classification #### **4.1 Type** Depending on the construction, steel rollers shall be classified as the following three types: - type A: made of steel casting without upper dust cover; - type B: made of steel casting with upper dust cover; - type C: made of steel plate with dust cover. #### 4.2 Nominal sizes The nominal sizes, $D_{\rm n}$, of steel rollers are denoted by reference to the outside diameter of the roller in millimetres from a basic series of preferred numbers. The nominal sizes are: 150, 200, 250, 300, 350, 400, 450 and 500. #### 5 Dimensions Steel rollers have dimensions and particulars in accordance with Tables 1, 2, 3 and 4, and Figures 1, 2, 3, 4, 5, 6, 7 and 8. #### 6 Materials The materials of the following components shall be used for manufacturing the steel rollers: - Roller: steel casting having a yield point of not less than 205 N/mm² or steel plates having a yield point of not less than 235 N/mm². - Axle: weldable steel casting having a yield point of not less than 350 N/mm² or equivalent. - Bush: brass, bronze or equivalent. #### 7 Construction - 7.1 The rollers of the steel rollers (Type C) shall be constructed from steel tubes or formed from plate. - **7.2** The foundation of the steel rollers shall be determined by the manufacturer in accordance with ISO 13767 and ISO 13776. The foundation and welding connections shall be guaranteed reliable transmission of the maximum loading of the steel rollers to hull construction without any plastic deformation or cracks. #### 8 Manufacturing and inspection - **8.1** All surfaces of the steel rollers, including welding, shall be free from any visible flaws or imperfections. - **8.2** All surfaces in contact with the ropes shall be free from surface roughness or irregularities likely to cause damage to the ropes by abrasion. - **8.3** The steel rollers shall be coated externally with an anti-corrosion protective finish. - **8.4** All rotating parts are to be provided with greasing. #### 9 Marking - **9.1** The safe working load (SWL) for the intended use for the steel rollers shall be noted in the towing and mooring plan available on board for the guidance of the shipmaster as specified in MSC/Circ.1175. - **9.2** The actual SWL on board shall be determined by considering the foundation and under deck reinforcement, and it shall be marked on the towing and mooring plan. The actual SWL shall not be over the SWL indicated in this International Standard. - **9.3** The steel rollers shall be clearly marked on their seat or foundation with their SWL by weld bead or equivalent. The SWL shall be expressed in tonnes (letter 't') and be placed so that it is not obscured during operation of the fitting. EXAMPLE SWL XXX t #### Key - 1 roller - 2 axle - 3 bush - 4 dust cover to apply on type B only - 5 N-M6 bolt - a Drain hole. Figure 1 — Assembly of steel rollers for nominal sizes 150, 200 and 250 (type A and type B) #### Key - 1 roller - 2 axle - 3 bush - 4 dust cover to apply on type B only - 5 N-M6 bolt - a Drain hole. Figure 2 — Assembly of steel rollers for nominal sizes 300 and above (type A and type B) Dimensions in millimetres #### Key - 1 roller - 2 dust cover to apply on type B only Figure 3 — Detail of steel rollers for nominal sizes 150, 200 and 250 (type A and type B) #### Key - 1 roller - 2 dust cover to apply on type B only Figure 4 — Detail of steel rollers for nominal sizes 300 and above (type A and type B) Table 1 — Dimensions and SWL of steel rollers for type A and type B Dimensions in millimetres | Nominal size D_{n} | D_1 | - | D ₂
+2/0 | D ₃
+2/0 | D_4 | D ₅
H7 | R ₁ | R ₂ | R ₃ | R ₄ | Н | H ₁ | H ₂ | Н3 | Н4 | e | | | |----------------------|-------|----------------|------------------------|------------------------|-------|-----------------------|----------------|----------------|----------------|----------------|---------------------|----------------|----------------|------|-----------|-------------------------------------|-------|------| | 150 | 150 |) | 230 | 216 | 110 | 90 | 30 | 52 | 15 | 11 | 137 | 25 | 84 | 44,7 | 43,38 | 37,7 | | | | 200 | 200 |) | 300 | 280 | 145 | 115 | 40 | 66 | 20 | 13 | 157 | 30 | 99 | 59,2 | 35,46 | 46,3 | | | | 250 | 250 |) | 370 | 340 | 165 | 135 | 50 | 80 | 25 | 15 | 177 | 32 | 105 | 73,5 | 28,33 | 55,0 | | | | 300 | 300 |) | 430 | 400 | 190 | 150 | 55 | 87 | 30 | 16 | 197 | 33 | 125 | 82,6 | 32,62 | 60,8 | | | | 350 | 350 |) | 490 | 460 | 210 | 167 | 55 | 89 | 30 | 17 | 217 | 33 | 140 | 83,7 | 49,06 | 63,7 | | | | 400 | 400 |) | 560 | 520 | 225 | 177 | 63 | 99 | 30 | 18 | 237 | 43 | 150 | 91,8 | 52,0 | 72,2 | | | | 450 | 450 |) | 620 | 590 | 245 | 190 | 63 | 101 | 30 | 19 | 257 | 43 | 162 | 92,5 | 67,07 | 74,8 | | | | 500 | 500 |) | 680 | 680 | 680 | 660 | 260 | 205 | 63 | 103 | 30 | 20 | 277 | 43 | 180 | 93,0 | 82,94 | 77,6 | | Nominal
size | h | h ₁ | h ₂ | Set
screw | T | <i>T</i> ₁ | N | Weld
leg le | - | 6 |)= 90° ^ε | SW | | = 0° | wei | ulated
ght ^c
/set) | | | | D_{n} | n | | | S | | | | z | 1 | (kN |) | (t) | (kN) | (t) | Type
A | Type
B | | | | 150 | 5 | 35 | 25 | M6 | 22 | - | 6 | 8 | 3 | 265 | 5 | 27 | 186 | 19 | 23 | 24 | | | | 200 | 5 | 38 | 35 | M6 | 26 | - | 6 | 1 | 0 | 441 | | 45 | 314 | 32 | 42 | 43 | | | | 250 | 6 | 40 | 35 | M8 | 30 | - | 6 | 1 | 1 | 579 |) | 59 | 412 | 42 | 77 | 80 | | | $[\]theta$ is the relative angle of ropes on the steel roller (refer to Annex A). The SWLs shown in this table are for reference only. These are based on the loadings as mentioned in Annex A. The "SWL" may be adjusted depending on the actual loading conditions, and the actual marking shall be as agreed between the user and the manufacturer. The SWL is the maximum applicable rope tension based on 90° ($\theta = 90^{\circ}$) and 180° ($\theta = 9^{\circ}$) deflection of rope direction by steel roller. c The calculated weight is for reference only. Table 1 (continued) | Nominal size | - | | D ₂
+2/0 | D ₃
+2/0 | D4 | D ₅ R ₁ R ₂ R | | R ₃ | R4 | Н | H ₁ | Н2 | Н3 | Н4 | е | | |--------------|---|----------------------|------------------------|------------------------|-----|--|-------|----------------|-----|-----|----------------|-----|-------|-----|-----|-----| | 300 | 7 | 45 | 40 | M8 | 32 | 29 | 8 | 1 | 12 | | | 74 | 510 | 52 | 109 | 112 | | 350 | 7 | 50 | 45 | M8 | 34 | 29 | 8 | 1 | 15 | | 0 1 | 106 | 736 | 75 | 154 | 160 | | 400 | 7 | 53 | 49 | M8 | 36 | 30 | 12 | 1 | 17 | | 1 246 127 | | 883 | 90 | 207 | 215 | | 450 | 7 | 57 | 53 | M8 | 38 | 32 | 12 | 2 | 20 | | 9 163 | | 1 128 | 115 | 275 | 286 | | 500 | 7 | 65 60 M8 40 34 12 23 | | 1 94 | 2 ′ | 198 | 1 373 | 140 | 360 | 374 | | | | | | | ^a θ is the relative angle of ropes on the steel roller (refer to Annex A). The SWLs shown in this table are for reference only. These are based on the loadings as mentioned in Annex A. The "SWL" may be adjusted depending on the actual loading conditions, and the actual marking shall be as agreed between the user and the manufacturer. The calculated weight is for reference only. The SWL is the maximum applicable rope tension based on 90° ($\theta = 90^{\circ}$) and 180° ($\theta = 0^{\circ}$) deflection of rope direction by steel roller. a Thread for grease nipple. Figure 5 — Detail of axle and bush for steel rollers (type A and type B) b Grease way. Table 2 — Dimensions of axle and bush for steel rollers (type A and type B) | Nomi- | | | | | | Axle | | | | | | Bush | | | | | | | | | |------------------------|----------------------|----------------|----------------|-----|----------------|----------------|-----|----|----------------|-----|-------|----------------------|----------------------|----------------|-------|----------------|----------------|----|--|--| | nal
size
D_{n} | d ₁
f6 | d ₂ | d ₃ | Н | h ₁ | h ₂ | h3 | h4 | h ₅ | b | m x d | D ₄
H7 | D ₅
m6 | D ₆ | Н | h ₅ | h ₆ | S | | | | 150 | 71 | 105 | 71 | 115 | 22 | 93 | | 25 | 7 | 50 | M10 | 71 | 90 | 105 | 92,5 | 8 | 84,5 | MC | | | | 200 | 93 | 135 | 93 | 135 | 27 | 108 | 100 | 27 | 7 | 55 | × 20 | 93 | 115 | 135 | 107,5 | 8 | 99,5 | M6 | | | | 250 | 113 | 155 | 113 | 144 | | 114 | | 28 | 9 | 65 | M16 | 113 | 135 | 155 | 113,5 | 8 | 105,5 | | | | | 300 | 128 | 175 | 128 | 166 | 30 | 136 | 405 | 30 | 12 | 75 | × 30 | 128 | 150 | 175 | 135,5 | 10 | 125,5 | | | | | 350 | 145 | 190 | 145 | 181 |] | 151 | 125 | 35 | 13 | 85 | M20 | 145 | 167 | 190 | 150,5 | 10 | 140,5 | | | | | 400 | 154 | 200 | 154 | 201 | | 161 | | 37 | 14 | 90 | × 40 | 154 | 177 | 200 | 160,5 | 10 | 150,5 | M8 | | | | 450 | 167 | 220 | 167 | 213 | 40 | 173 | 150 | 40 | 15 | 105 | M24 | 167 | 190 | 220 | 172,5 | 10 | 162,5 | | | | | 500 | 178 | 235 | 178 | 232 |] | 191 | | 45 | 16 | 110 | × 50 | 178 | 205 | 235 | 190,5 | 10 | 180,5 | | | | #### Key - 1 roller - 2 axle - 3 upper bush - 4 lower bush - 5 N-M6 bolt Figure 6 — Assembly of steel rollers for type C Figure 7 — Detail of steel rollers for type C Table 3 — Dimensions and SWL of steel rollers for type C | Nominal size | D ₁ | D ₂
+2/0 | D ₃
+2/0 | D4 | D ₅
H7 | D ₆ | D_7 | D ₈
H7 | D ₉ | R ₁ | R ₂ | R ₃ | R ₄ | Н | H ₁ | |-----------------------------------|----------------|------------------------|------------------------|------|----------------------|----------------|-------|----------------------|----------------|----------------|----------------|----------------|----------------|-------|----------------| | 150 | 150 | 230 | 220 | 121 | 95 | 110 | 121 | 69 | 140 | 40 | 17 | 20 | 214 | 150 | 16 | | 200 | 200 | 300 | 280 | 162 | 118 | 140 | 144 | 86 | 190 | 50 | 21 | 25 | 279 | 185 | 21 | | 250 | 250 | 370 | 340 | 186 | 136 | 160 | 162 | 97 | 250 | 60 | 25 | 30 | 327 | 220 | 25 | | 300 | 300 | 430 | 400 | 209 | 149 | 180 | 175 | 114 | 300 | 65 | 28 | 32 | 446 | 240 | 30 | | 350 | 350 | 490 | 455 | 236 | 172 | 195 | 198 | 130 | 350 | 70 | 30 | 35 | 537 | 260 | 35 | | 400 | 400 | 560 | 520 | 254 | 184 | 207 | 215 | 145 | 400 | 80 | 40 | 40 | 680 | 280 | 40 | | 450 | 450 | 620 | 580 | 269 | 199 | 225 | 230 | 160 | 450 | 85 | 45 | 42 | 797 | 292 | 45 | | 500 | 500 | 680 | 640 | 293 | 217 | 240 | 254 | 178 | 500 | 90 | 50 | 45 | 885 | 305 | 50 | | Nominal
size
D _n | Н2 | Нз | h4 | Н5 | (H ₆) | e | h | h ₁ | h ₂ | h3 | p | Set
screw | T | T_1 | N | | 150 | 115 | 56,6 | 44,92 | 18,0 | 22,4 | 47,9 | 5 | 35 | 45 | 35 | 7 | M6 | 10 | 10 | 6 | | 200 | 140 | 70,7 | 56,27 | 22,8 | 27,3 | 59,9 | 5 | 45 | 55 | 40 | 8 | M6 | 10 | 10 | 6 | | 250 | 170 | 84,9 | 67,89 | 26,4 | 35,7 | 72,0 | 6 | 55 | 65 | 50 | 9 | M8 | 10 | 10 | 6 | | 300 | 187 | 91,6 | 74,25 | 26,3 | 38,8 | 78,1 | 7 | 62 | 70 | 55 | 10 | M8 | 12 | 12 | 8 | | 350 | 203 | 99,0 | 82,6 | 23,8 | 46,3 | 84,6 | 7 | 68 | 75 | 60 | 11 | M8 | 16 | 16 | 8 | | 400 | 220 | 113,1 | 71,3 | 29,0 | 50,0 | 92,6 | 7 | 75 | 80 | 65 | 11 | M8 | 19 | 19 | 12 | | 450 | 238 | 119,9 | 67,31 | 33,8 | 52,3 | 96,9 | 7 | 87 | 81 | 70 | 11 | M8 | 19 | 19 | 12 | | 500 | 251 | 127,3 | 63,7 | 36,9 | 58,0 | 101,2 | 7 | 87 | 89 | 75 | 12 | M8 | 21 | 21 | 12 | Table 3 (continued) Dimensions in millimetres | Nominal | Maldin o la | | | SW | Calculated weight ^c | | | |---------|-------------|-----------------------|---------------|-----|--------------------------------|-----|----------| | size | Welding le | eg lengtn | $\theta = 90$ | 0∘a | $\theta = 0$ |)° | (kg/set) | | D_{n} | <i>z</i> 1 | <i>z</i> ₂ | (kN) | (t) | (kN) | (t) | Type C | | 150 | 8 | 7 | 265 | 27 | 186 | 19 | 21 | | 200 | 10 | 8 | 441 | 45 | 314 | 32 | 37 | | 250 | 11 | 8 | 579 | 59 | 412 | 42 | 56 | | 300 | 12 | 10 | 726 | 74 | 510 | 52 | 86 | | 350 | 15 | 10 | 1 040 | 106 | 736 | 75 | 127 | | 400 | 17 | 12 | 1 246 | 127 | 883 | 90 | 174 | | 450 | 20 | 12 | 1 599 | 163 | 1 128 | 115 | 215 | | 500 | 23 | 14 | 1 942 | 198 | 1 373 | 140 | 253 | $[\]theta$ is the relative angle of ropes on the steel roller (refer to Annex A). $The \ ``SWL" \ may be adjusted depending on the actual loading conditions, and the actual marking shall be as agreed between the user and the manufacturer.$ The SWL is the maximum applicable rope tension based on 90° ($\theta = 90^{\circ}$) and 180° ($\theta = 0^{\circ}$) deflection of rope direction by steel roller. The SWLs shown in this table are for reference only. These are based on the loadings as mentioned in Annex A. ^c The calculated weight is for reference only. a) Upper bush a 4-set screw. a Grease way. a $m \times s$ set screw. Figure 8 — Detail of axle and bush for type C Table 4 — Dimensions of axle and bush for type C | Nominal | | | | | | | | A | xle | | | | | | | | | |------------------------|-----------------------------|----------------|----------------|--------------------------|--------------------------|----------------|----------------|-----|----------------|----------------|----------------|----------------|----------------|--------------|-----|----------------|------------| | size
D _n | d ₁
f6 | d ₂ | d ₃ | <i>d</i> ₄ f6 | Н | h ₁ | h ₂ | h3 | h4 | h ₅ | h ₆ | h ₇ | h ₈ | h9 | L | R ₆ | <i>m</i> 1 | | 150 | 81 | 105 | 81 | 55 | 138 | 21 | 117 | 100 | 37 | 41 | 39 | 30 | 17 | 14 | 268 | 5 | M39 | | 200 | 102 | 135 | 102 | 70 | 168 | 26 | 142 | 100 | 47 | 51 | 44 | 39 | 19 | 15 | 307 | 7 | M52 | | 250 | 119 | 155 | 119 | 80 | 203 | 31 | 172 | 100 | 57 | 58 | 57 | 42 | 21 | 19 | 345 | 8 | M56 | | 300 | 130 | 175 | 130 | 95 | 226 | 37 | 189 | 125 | 64 | 63 | 62 | 47 | 23 | 20 | 398 | 8 | M64 | | 350 | 152 | 190 | 152 | 110 | 247 | 42 | 205 | 125 | 70 | 67 | 68 | 50 | 25 | 22 | 422 | 9 | M68 | | 400 | 164 | 200 | 164 | 125 | 270 | 47 | 223 | 150 | 78 | 74 | 71 | 56 | 28 | 25 | 476 | 10 | M76 | | 450 | 179 | 220 | 179 | 140 | 293 | 52 | 241 | 150 | 91 | 74 | 76 | 56 | 30 | 28 | 499 | 10 | M76 | | 500 | 195 | 235 | 195 | 156 | 311 | 57 | 254 | 150 | 91 | 82 | 81 | 58 | 30 | 28 | 519 | 11 | M80 | | Nominal | | | | | | | Bus | sh | | | | | | | | | | | size
D _n | <i>D</i> ₄
H7 | . • • | | - | <i>D</i> ₇ m6 | D8 | h ₁ | | h ₂ | t | | R_1 | | m X s | 5 | | | | 150 | 55 | 69 | 8 | 1 | 95 | 108 | 35 | 5 | 35 | 7 | | 6 | | M6x2 | 10 | | | | 200 | 70 | 86 | 10 | 2 | 118 | 138 | 40 |) | 45 | 8 | | 8 | | IVIOX2 | .0 | | | | 250 | 80 | 97 | 11 | 9 | 136 | 158 | 50 |) | 55 | 9 | | 9 | | | | | | | 300 | 95 | 114 | 13 | 0 | 149 | 178 | 55 | 5 | 62 | 10 | | 9 | | | | | | | 350 | 110 130 152 | | 2 | 172 | 193 | 193 60 | | 68 | 11 | | 10 | | Mayaa | | | | | | 400 | 125 | 145 | 16 | 4 | 184 | 205 | 65 | 5 | 75 | 11 | | 11 | | - M8x20
- | | | | | 450 | 140 | 160 | 17 | 9 | 199 | 223 | 70 |) | 87 | 11 | | 11 | | | | | | | 500 | 156 | 178 | 19 | 5 | 217 | 238 | 75 | 5 | 87 | 12 | | 12 | | | | | | ### Annex A (informative) #### Basis for strength assessment of steel rollers #### A.1 General The strength of the steel rollers was evaluated by simple beam theory calculation and determined based on the following design criteria. #### A.2 Loading The steel rollers are to be designed to withstand the following load cases. #### Key - P mooring force and towing force at the conical part of the throat - a Conical part of throat. NOTE The loads were considered with a rope deflected 180° through the steel roller as shown in this figure. Figure A.1 — Loading on steel roller #### A.3 Load and stress criteria Under the SWL, the following stress criteria were adopted: - The bending stress is limited to 85 % of the yield stress of the material. - The shear stress is limited to 60 % of the yield stress of the material. — The combined stress is limited to 100 % of the yield stress of the material. #### A.4 Wear-down allowances and corrosion additions The wear-down margin and corrosion margin were already included in the safety factor. ### **Bibliography** - [1] IACS UR A2, Shipboard fittings and supporting hull structures associated with towing and mooring on conventional vessels - [2] ISO 2408, Steel wire ropes for general purposes Minimum requirements - [3] ISO 4990, Steel castings General technical delivery requirements ICS 47.020.50 Price based on 18 pages # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### Knowledge Centre Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com