BS ISO 13547-2:2014

BSI Standards Publication

Copper, lead, zinc and nickel sulfide concentrates — Determination of arsenic

Part 2: Acid digestion and inductively coupled plasma atomic emission spectrometric method

National foreword

This British Standard is the UK implementation of ISO 13547-2:2014.

The UK participation in its preparation was entrusted to Technical Committee NFE/36, Copper lead and zinc ores and concentrates.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2014. Published by BSI Standards Limited 2014

ISBN 978 0 580 80907 1

ICS 73.060.99

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 November 2014.

Amendments issued since publication

Date

Text affected

BS ISO 13547-2:2014

INTERNATIONAL STANDARD

ISO 13547-2

First edition 2014-11-15

Copper, lead, zinc and nickel sulfide concentrates — Determination of arsenic —

Part 2:

Acid digestion and inductively coupled plasma atomic emission spectrometric method

Concentrés sulfurés de cuivre, de plomb et de zinc — Dosage de l'arsenic —

Partie 2: Méthode par digestion acide et plasma induit par haute fréquence

COPYRIGHT PROTECTED DOCUMENT

© ISO 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents			Page			
Fore	rewordiv					
1	Scop	ne	1			
2	Normative references Principle Reagents					
3						
4						
5 6	Apparatus					
		pling and sample preparation				
	6.1	Laboratory sample				
	6.2 6.3	Test sampleTest portion				
		•				
7	Procedure					
	7.1	Number of determinations				
	7.2	Blank test				
	7.3	Dissolution of the test portion Removal of lead sulfate				
	7.4 7.5	Dissolution of the insoluble residue				
	7.5 7.6	Preparation of test solutions				
	7.7	Preparation of calibration solutions				
	7.8	Preparation of arsenic calibration curve				
	7.9	Determination of arsenic content in test solutions				
8	Expr	ression of results	7			
9	Precision					
	9.1	Expression of precision				
	9.2	Method for obtaining the final result	8			
	9.3	Between-laboratories precision				
	9.4	Check of trueness	9			
10	Test	Test report				
Anne		ormative) Procedure for the preparation and determination of the mass of a pre-d				
	test	portion	11			
Ann	-	ormative) Flowsheet of the procedure for the acceptance of analytical values for				
	tect	camnlec	12			

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

ISO 13547 consists of the following parts, under the general title *Copper, lead, zinc and nickel sulfide concentrates* — *Determination of arsenic*:

- Part 1: Iron hydroxide concentration and inductively coupled plasma atomic emission spectrometric
- Part 2: Acid digestion and inductively coupled plasma atomic emission spectrometric method

Copper, lead, zinc and nickel sulfide concentrates — Determination of arsenic —

Part 2:

Acid digestion and inductively coupled plasma atomic emission spectrometric method

WARNING — This International Standard may involve hazardous materials, operations, and equipment. It is the responsibility of the user of this International Standard to establish appropriate health and safety practices and determine the applicability of regulatory limitations prior to use.

1 Scope

This International Standard specifies an acid digestion and inductively coupled plasma atomic emission spectrometric (ICP-AES) method for the determination of the mass fraction of arsenic in copper, lead, zinc, and nickel sulfide concentrates as follows:

- a) for copper sulfide concentrates, the method is applicable to the determination of mass fractions of arsenic from 0,05 % to 2,0 %;
- b) for lead sulfide concentrates, the method is applicable to the determination of mass fractions of arsenic from 0.05 % to 1.0 %;
- c) for zinc sulfide concentrates, the method is applicable to the determination of mass fractions of arsenic from 0.05 % to 0.6 %;
- d) for nickel sulfide concentrates, the method is applicable to the determination of mass fraction of arsenic from 0.05 % to 1.0 %.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 648, Laboratory glassware — Single-volume pipettes

ISO 1042, Laboratory glassware — One-mark volumetric flasks

ISO 4787, Laboratory glassware — Volumetric instruments — Methods for testing of capacity and for use

ISO 8466-2, Water quality — Calibration and evaluation of analytical methods and estimation of performance characteristics — Part 2: Calibration strategy for non-linear second-order calibration functions

ISO 9599, Copper, lead and zinc sulfide concentrates — Determination of hygroscopic moisture in the analysis sample — Gravimetric method

ISO 12743:2006, Copper, lead, zinc and nickel concentrates — Sampling procedures for determination of metal and moisture content

BS ISO 13547-2:2014 ISO 13547-2:2014(E)

3 Principle

The test portion is decomposed in nitric and sulphuric acids and arsenic is determined by comparison against matrix-matched standards using ICP-AES.

4 Reagents

During the analysis, use only reagents of recognized analytical grade and distilled water or water of equivalent purity.

- **4.1 Sodium hydroxide (NaOH)**, AR grade.
- **4.2 Arsenic trioxide (As₂O₃)**, AR grade.
- **4.3** Iron(III) chloride hexahydrate (FeCl₃•6H₂O), AR grade (<0,000 05 % Arsenic).
- **4.4 Copper metal** (≥99,99 %).
- **4.5 Zinc metal** (≥99,99 %).
- **4.6** Lead metal (≥99,99 %).
- **4.7** Nickel metal (≥99,99 %).
- **4.8** Ammonium acetate, AR grade.
- **4.9** Nitric acid (ρ_{20} 1,42 g/ml).
- **4.10 Nitric acid**, dilute (1 + 1).

Slowly add 50 ml of nitric acid (4.9) to 50 ml of water while stirring.

- **4.11** Hydrochloric acid (ρ_{20} 1,16 g/ml).
- **4.12** Hydrochloric acid, dilute (1 + 1).

Slowly add 50 ml of hydrochloric acid (4.11) to 50 ml of water while stirring.

- **4.13** Sulphuric acid (ρ_{20} 1,84 g/ml).
- **4.14 Sulphuric acid**, dilute (1 + 1).

Slowly add 50 ml of sulphuric acid (4.12) to 50 ml of water while stirring.

The addition of sulphuric acid to water generates heat and shall be performed with adequate precautions.

4.15 Sulphuric acid, dilute (1 + 50).

Slowly and with stirring, add 20 ml of sulphuric acid (4.12) to 1 000 ml of water.

4.16 Hydrofluoric acid (ρ_{20} 1,13 g/ml).

4.17 Sodium hydroxide solution (20 % w/v).

Weigh 20,0 g of sodium hydroxide (4.1) in a polytetrafluoroethylene beaker (5.5). Add 50 ml of water and allow the solid to dissolve. Dilute the solution to 100 ml and store in a labelled polyethylene container.

4.18 Saturated solution of potassium chlorate in nitric acid.

Superfluous potassium chlorate is added into the nitric acid and then the deposited solution is allowed to form the saturated solution.

4.19 Ammonium acetate (25 % w/v).

Dissolve 25,0 g of ammonium acetate (4.8) into 100 ml water.

4.20 Arsenic standard, 1 ml contains 1 mg of As.

Weigh 1 320,3 g of arsenic trioxide (4.2) into a 400 ml beaker and add 5 ml of sodium hydroxide solution (4.17). Warm slightly to dissolve. When dissolution is complete, cool and add 40 ml of nitric acid (4.9). Transfer to a 1 000 ml volumetric flask containing 60 ml of nitric acid (4.9). Fill up nearly to the mark with water, mix, and equilibrate at room temperature, then fill up exactly to the mark and mix again. Store in a labelled container.

Alternatively, purchase a suitable high quality prepared standard.

Before use, compare this International Standard against a traceable National Standard to ensure suitability for use.

4.21 Arsenic standard, 1 ml contains 0,2 mg of As.

Pipette 40 ml of arsenic standard (4.20) into a 200 ml volumetric flask containing 2 ml hydrochloric acid (4.11). Fill up nearly to the mark with water, mix, and equilibrate at room temperature, then fill up exactly to the mark and mix again. Store in a labelled glass container.

4.22 Copper matrix/interference standard (25,0 mg/ml).

Dissolve 2,5 g of copper metal (4.4) with 50 ml of warm dilute nitric acid (4.10). Evaporate to approximately 25 ml in order to remove nitrogen oxides. Transfer to a 100 ml volumetric flask, add 5 ml concentrated hydrochloric acid, then fill up with water nearly to the mark. Mix and cool to room temperature, then fill up exactly to the mark and mix again.

4.23 Zinc matrix/interference standard (32,5 mg/ml).

Dissolve 3,25 g of zinc metal (4.5) with 50 ml of warm dilute hydrochloric acid (1+1). Transfer to a 100 ml volumetric flask, fill up with water nearly to the mark, mix, and cool to room temperature, then fill up exactly to the mark and mix again.

4.24 Iron matrix/interference standard (10 mg/ml).

Dissolve 48,4 g iron (III) chloride hexahydrate (4.3) in 200 ml of water. Add 10 ml of hydrochloric acid (4.11) and make up to 1 000 ml with water and mix.

4.25 Lead matrix/interference standard (37,5 mg/ml).

Dissolve 3,75 g of lead metal (4.6) by adding 40 ml of water and 20 ml of nitric acid (4.9) and heat to dissolve. Transfer to a 100 ml volumetric flask, fill up with water nearly to the mark, mix, and cool to room temperature, then fill up exactly to the mark and mix again.

4.26 Nickel matrix/interference standard (10 mg/ml).

Dissolve 1,0 g of nickel metal (4.7) in 50 ml of dilute nitric acid (4.10) and heat until all nitrogen oxides are expelled. The volume will be about 25 ml. Transfer to a 100 ml volumetric flask. Add 25 ml of hydrochloric acid (4.11) and fill up with water nearly to the mark, mix, and cool to room temperature, then fill up exactly to the mark and mix again.

5 Apparatus

All laboratory glassware and equipment shall be shown to be free of arsenic contamination.

- **5.1 Balance**, sensitive to ± 0.1 mg.
- **5.2 Normal laboratory glassware**, complying with ISO 648 and ISO 1042 and used in accordance with ISO 4787.
- 5.3 Inductively coupled plasma atomic emission spectrometer (ICP-AES).

The emission wavelength should be set to 193,696 nm or 197,197 nm.

- **5.4 Insolubles filter paper**, Whatman®¹⁾ No. 40 or equivalent.
- **5.5 Polytetrafluoroethylene beaker**, 200 ml capacity.

6 Sampling and sample preparation

6.1 Laboratory sample

Laboratory samples shall be taken and prepared in accordance with the procedures described in ISO 12743.

As arsenic can evaporate from samples at elevated temperatures, consideration should be given to preparing a separate chemical analysis sample as described in ISO 12743:2006, 16.2.

6.2 Test sample

Prepare an air-equilibrated test sample and a hygroscopic moisture test sample in accordance with ISO 9599.

NOTE A test sample is not required if pre-dried test portions are to be used (see Annex A).

6.3 Test portion

Taking multiple increments, extract approximately 0,5 g from the test sample and weigh to the nearest 0,1 mg. At the same time, as the test portions are being weighed for analysis, weigh test portions for the determination of hygroscopic moisture in accordance with ISO 9599.

Alternatively, the method specified in <u>Annex A</u> may be used to prepare pre-dried test portions directly from the laboratory sample.

Obtain an approximate concentration for the copper, lead, zinc, and iron in the sample as required in step <u>7.7</u>.

¹⁾ This information is given for the convenience of users of this International Standard and does not constitute an endorsement by ISO.

7 Procedure

7.1 Number of determinations

Carry out the determinations, at least in duplicate, as far as possible under repeatability conditions on each test sample.

NOTE Repeatability conditions exist where mutually independent test results are obtained with the same method on identical test material, in the same laboratory, by the same operator using the same equipment within short intervals of time.

7.2 Blank test

Carry out a blank test in parallel with the analysis using the same quantities of all reagents, but omitting the sample. The purpose of the blank test is to check for contamination of the apparatus used in the test and the purity of the reagents.

7.3 Dissolution of the test portion

Quantitatively, transfer the test portion into a 300 ml narrow-necked conical beaker. Moisten with 5 ml of water.

Add cautiously 15 ml of the saturated solution of potassium chlorate in nitric acid (4.18) and place the conical beaker on the hotplate and heat gently until all nitrogen oxides are expelled. Add 15 ml of dilute sulphuric acid (4.14) and heat the solution until strong white fumes have evolved, then cool.

If the residue appears dark (indicating the presence of carbon), slowly add a small amount of nitric acid (4.9) to the hot solution until the solution becomes colourless, then heat until strong white fumes have evolved.

Add 50 ml of water and bring to boil, then allow to cool at room temperature.

Filter the solution through an insoluble filter paper (5.4) in a 250 ml conical beaker. Wash the 300 ml conical beaker used to digest the sample and filter paper thoroughly with sulphuric acid (4.15) and collect the washing solutions in the same 250 ml conical beaker.

If acid insoluble material is present, then treat this residue as the procedure in 7.5, otherwise proceed to step 7.6.

In the case of lead concentrates, proceed to step 7.4.

7.4 Removal of lead sulfate

Quantitatively, transfer the precipitate into a 250 ml conical beaker with small amount of deionised water. Add 15 ml of ammonium acetate (4.19) and place the conical beaker on the hotplate and heat until dissolution of the PbSO₄.

Cool the solution to room temperature and filter through an insoluble filter paper (5.4), then wash the insoluble residue with sulphuric acid (4.15). Reject the filtrate and washing solution. If acid insoluble material is present, then treat this residue as the procedure in 7.5, otherwise proceed to step 7.6.

7.5 Dissolution of the insoluble residue

Quantitatively, transfer the acid insoluble residue into a 200 ml polytetrafluoroethylene beaker (5.5) with a small quantity of deionised water. Add 5 ml of nitric acid (4.9), 5 ml of dilute sulphuric acid (4.14), and 3 ml to 5 ml of hydrofluoric acid (4.16). Heat the solution until the evolution of white sulphuric acid fumes to remove silicon dioxide. Allow to cool, then dissolve the soluble salts with 10 ml of deionised water and 10 ml of nitric acid (4.9). Proceed to step 7.6.

7.6 Preparation of test solutions

Quantitatively, transfer the solution from step $\overline{7.5}$ and the filtrate from step $\overline{7.4}$ into a 200 ml volumetric flask and dilute to approximately 150 ml with deionised water. Allow this solution to cool in room temperature then dilute to 200 ml of water and mix well.

7.7 Preparation of calibration solutions

Using arsenic standard (4.21), prepare a series of calibration standards as per <u>Table 1</u>. Transfer the appropriate volumes of arsenic standard (4.21) using pipettes into 100 ml volumetric flasks containing the following:

- a) 20 ml dilute sulphuric acid (4.14);
- b) 10 ml nitric acid (4.9);
- c) sufficient iron matrix/interference standard (4.3) to match the iron content of the samples;

If the iron content of the sample requires more than 30 ml of iron chloride solution to be added, change the concentration of the iron chloride solution (4.3) to ensure that the volume of iron chloride solution (4.3) does not exceed 30 ml.

d) sufficient matrix/interference standard to match the major element in the concentrate being measured. For copper sulfide concentrates, use copper matrix/interference standard (4.22). For zinc sulfide concentrates, use zinc matrix/interference standard (4.23). For lead sulfide concentrates, use lead matrix/interference standard (4.25). For nickel sulfide concentrates, use nickel matrix/interference standard (4.26).

Fill up nearly to the mark with water, mix, and equilibrate at room temperature then fill up exactly to the mark and mix again.

Volume of arsenic standard ml	Arsenic mass μg	$\begin{array}{c} \textbf{Concentration of arsenic} \\ \mu g/ml \end{array}$
0	0	0
0,5	100	1,0
1	200	2,0
2	400	4,0
5	1 000	10,0
10	2 000	20,0
20	4 000	40,0
30	6 000	60,0
35	7 000	70,0

Table 1 — Calibrating solutions

7.8 Preparation of arsenic calibration curve

Set up the ICP-AES (5.3) according to the guidelines set out in 5.3. Adjust the instrument read-out scale to zero. Aspirate each calibration solution as prepared in step 7.7 through the ICP-AES and record the emission intensities. Manually or electronically plot a graph of the average emission intensities versus the mass of arsenic (in μ g) and repeat errant standards if necessary.

Use ISO 8466-2 as a guide to determine the acceptability of the calibration curve.

7.9 Determination of arsenic content in test solutions

Immediately, after calibrating the ICP-AES (5.3), determine the arsenic content in the test solutions from step 7.7. Adjust the instrument read-out scale to zero. Aspirate the first duplicate of each sample through the ICP-AES and record the emission intensities checking the zero regularly.

Check the calibration of the instrument, then aspirate the second duplicate of each sample in the reverse order through the ICP-AES and record the emission intensities checking the zero regularly.

Determine the mass of arsenic in each test sample (F_{As} , in µg) from the curve determined in 7.9.

If more than 10 μ g of arsenic is found for the blank test, then this shall be investigated and the results for the samples shall not be reported.

8 Expression of results

The mass fraction of arsenic in the test portion (w_{As}) , expressed as a percentage, is given by the following formula:

$$w_{\rm As} = \frac{F_{\rm As} - F_{\rm As \, blank}}{M \times 10^6} \times 100 \, K \tag{1}$$

where

 F_{As} is the mass of arsenic found in test sample aliquot, in μg ;

 $F_{\text{As blank}}$ is the mass of arsenic found in the blank test, in μg ;

M is the mass of the test portion, in g.

K is the hygroscopic moisture conversion factor, calculated using the following formula:

$$K = 100 / (100 - H) \tag{2}$$

where

H is the hygroscopic moisture content of the sample, expressed as a percentage, determined using ISO 9599.

NOTE If pre-dried test samples are used, H = 0.

9 Precision

9.1 Expression of precision

The precision of this analytical method is expressed by the following formulae.

a) For copper sulfide concentrates:

$$s_{\rm r} = 0.0091\overline{X} + 0.0019 \tag{3}$$

$$s_{\rm L} = 0.0866\overline{X} - 0.0073\tag{4}$$

b) For lead sulfide concentrates:

$$s_{\rm r} = 0.008\overline{X} + 0.002 \tag{5}$$

BS ISO 13547-2:2014 **ISO 13547-2:2014(E)**

$$s_{\rm L} = 0.020\overline{X} + 0.002 \tag{6}$$

c) For zinc sulfide concentrates:

$$s_{\rm r} = 0.006\overline{X} + 0.002\tag{7}$$

$$s_{\rm L} = 0.028\overline{X} + 0.002 \tag{8}$$

d) For nickel sulfide concentrates:

$$s_{\rm r} = 0.0107\overline{X} + 0.0017 \tag{9}$$

$$s_{\rm L} = 0.0584\overline{X} + 0.0009 \tag{10}$$

where

- $\overline{\chi}$ is the mean mass fraction of arsenic in the sample, expressed as a percentage;
- s_r is the within-laboratory standard deviation, expressed as a percentage by mass of arsenic;
- s_L is the between-laboratories standard deviation, expressed as a percentage by mass of arsenic.

9.2 Method for obtaining the final result

Calculate the following quantities from the duplicate results x_1 and x_2 (%) and process according to the flowchart in Annex B.

a) Mean of duplicate results:

$$\overline{X} = \frac{x_1 + x_2}{2} \tag{11}$$

Within laboratory standard deviation [s_r , using Formula (3) for copper sulfide concentrates, Formula (5) for lead sulfide concentrates, Formula (7) for zinc sulfide concentrates, or Formula (9) for nickel sulfide concentrates].

b) Repeatability limit:

$$R = 2.8 \, s_r \tag{12}$$

9.3 Between-laboratories precision

The between-laboratories precision is used to determine the agreement between the results reported by two (or more) laboratories. The assumption is that all laboratories followed the same procedure.

Calculate the following quantities:

a) Mean of final results:

$$\mu_{12} = \frac{\mu_1 + \mu_2}{2} \tag{13}$$

Between-laboratories standard deviation (s_L) by substituting μ_{12} for \overline{X} in using Formula (4) for copper sulfide concentrates, Formula (6) for lead sulfide concentrates, Formula (8) for zinc sulfide concentrates, and Formula (10) for nickel sulfide concentrates.

Within-laboratory standard deviation (s_r) by substituting μ_{12} for \overline{X} in using Formula (3) for copper sulfide concentrates, Formula (5) for lead sulfide concentrates, Formula (7) for zinc sulfide concentrates, and Formula (9) for nickel sulfide concentrates.

b) Permissible tolerance:

$$P = 2.8 \times \sqrt{s_{\rm L}^2 + \frac{s_{\rm r}^2}{2}} \tag{14}$$

c) Range

$$E = \left| \mu_1 - \mu_2 \right| \tag{15}$$

where

 μ_1 is the final result reported by laboratory 1, expressed as a percentage by mass of arsenic;

 μ_2 is the final result reported by laboratory 2, expressed as a percentage by mass of arsenic.

If *E* is $\leq P$, the final results are in agreement.

9.4 Check of trueness

9.4.1 General

The trueness of the analytical method can be checked by applying it to a certified reference material (CRM). When the precision has been confirmed, the final laboratory result can be compared with the certified value, A_c . There are two possibilities as follows:

a)
$$\left|\mu_{c}-A_{c}\right| \leq C$$
 (16)

If this condition exists, the difference between the reported result and the certified value is statistically insignificant.

b)
$$|\mu - A_c| > C$$
 (17)

If this condition exists, the difference between the reported result and the certified value is statistically significant.

BS ISO 13547-2:2014 **ISO 13547-2:2014(E)**

where

- μ_{c} is the final result, expressed as a percentage by mass of arsenic of the certified reference material;
- A_{c} is the certified value, expressed as a percentage by mass of arsenic of the certified reference material;
- *C* is a quantity, expressed as a percentage by mass of arsenic depending on the type of certified reference material used as defined in 9.4.2.

9.4.2 Type of certified reference material (CRM) or reference material (RM)

9.4.2.1 General

The reference materials used for this purpose should be prepared and certified in accordance with ISO Guide 35:2006.

9.4.2.2 Reference material certified/characterized by inter-laboratory test programme

The quantity C (see 9.4.1), expressed as a percentage by mass of arsenic, is given by the following formula:

$$C = 2 \times \sqrt{s_{\rm L}^2 + \frac{s_{\rm r}^2}{n} + s^2(A_{\rm c})}$$
 (18)

where

 $s^2(A_c)$ is the variance of the certified value;

n is the number of replicate determinations.

9.4.2.3 Reference material certified/characterized by one laboratory

The quantity C (see 9.4.1), expressed as a percentage by mass of arsenic, is given by the following formula:

$$C = \sqrt{2 s_{\rm L}^2 + \frac{s_{\rm r}^2}{n}} \tag{19}$$

It is recommended that this type of certified reference material should be avoided, unless the particular CRM is known to have an unbiased certified value.

10 Test report

The test report shall contain the following information:

- a) a reference to this International Standard (i.e. ISO 13547-2);
- b) identification of the sample;
- c) mass fraction of arsenic in the sample, expressed as a percentage;
- d) date on which the test was carried out;
- e) any occurrences noticed during the determination which may have had an influence on the results.

Annex A

(normative)

Procedure for the preparation and determination of the mass of a pre-dried test portion

A.1 General

This annex specifies a method for the preparation and determination of the mass of a pre-dried test portion in the analysis of copper, lead, zinc, and nickel sulfide concentrates. The method is applicable to sulfide concentrates not susceptible to oxidation and with hygroscopic moisture contents ranging from 0.05 % to 2 %.

A.2 Principle

The test portion to be used for analysis is dried in air in an oven maintained at $105^{\circ}\text{C} \pm 5^{\circ}\text{C}$. The dried test portion is then weighed and used for the analysis. No correction for moisture is required.

A.3 Reagents

A.3.1 Desiccant, such as self-indicating silica gel or anhydrous magnesium perchlorate.

WARNING — Care needs to be taken whenever disposing of exhausted magnesium perchlorate and all other laboratory chemicals. Environmental regulations often apply. Users should seek specialist's advice to determine an appropriate, effective, health-conscious, safety-conscious, and environmentally sound means of disposal.

A.4 Apparatus

Ordinary laboratory equipment and the following.

- **A.4.1 Analytical balance**, sensitive to 0,1 mg.
- **A.4.2 Weighing vessels**, of glass or silica or corrosion resistant metal with externally fitting airtight covers. For small test portions (of mass less than 3 g), the mass of the vessel should be as small as possible (i.e. less than 20 g).
- **A.4.3 Laboratory oven**, capable of maintaining a temperature of $105^{\circ}\text{C} \pm 5^{\circ}\text{C}$.

A.5 Procedure

A.5.1 Preparation of the weighing vessel

Dry the weighing vessel and its cover (A.4.2) by heating in a laboratory oven (A.4.3) at $105^{\circ}\text{C} \pm 5^{\circ}\text{C}$ for 1 h. Transfer the vessel and its cover to a desiccator containing suitable fresh desiccant (A.3.1) and allow to cool to ambient temperature.

A.5.2 Test portion

Tare the dried weighing vessel and vessel cover (A.5.1). Immediately, add the mass of laboratory sample specified for analysis. An accurate total mass of the test portion and weighing vessel is not required at this point.

A.5.3 Determination of the test portion dry mass

Transfer the uncovered weighing vessel, the test portion, and the vessel cover to the laboratory oven $(\underline{A.4.3})$ and dry at $105^{\circ}\text{C} \pm 5^{\circ}\text{C}$ for 2 h. After the 2 h period, remove the weighing vessel and dry test portion from the oven, replace the vessel cover, and allow cooling to ambient temperature in the desiccator. When cool, remove the weighing vessel containing the dry test portion and the vessel cover from the desiccator and weigh to the nearest 0,1 mg (m_{1a}) after slightly lifting the cover and quickly replacing it.

Transfer the test portion into the appropriate analytical apparatus and immediately reweigh the empty weighing vessel and vessel cover. Record the mass to the nearest 0.1 mg (m_2) .

For new concentrates of unknown characteristics, it is advisable to repeat the drying for another 2 h at $105^{\circ}\text{C} \pm 5^{\circ}\text{C}$ and to reweigh the weighing vessel and test portion plus the vessel cover to the nearest 0,1 mg (m_{1b}). The test portion can be considered stable if the difference between m_{1a} and m_{1b} is within $\pm 0,5$ mg. If this condition is not achieved, the drying and weighing steps should be repeated.

A.6 Calculation of the test portion dry mass

The dry mass of the test portion (m_3) is calculated from the formula:

$$m_3 = m_{1a} - m_2 \tag{A.1}$$

where

 m_{1a} is the mass of the dried test portion plus weighing vessel and its vessel cover, in grams;

 m_2 is the mass of the empty weighing vessel plus its cover, in grams.

The mass of the dry test portion is the mass to be used to calculate the element concentration in the laboratory sample on a dry basis. No correction for hygroscopic moisture is required.

Annex B (normative)

Flowsheet of the procedure for the acceptance of analytical values for test samples

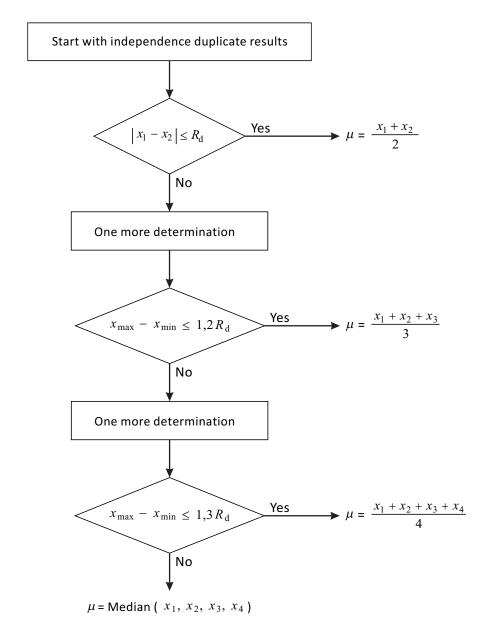


Figure B.1 — Flowsheet of the procedure for the acceptance of analytical values for test samples

Where R is given in 9.2.

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

Revisions

Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services

Tel: +44 845 086 9001

Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions

Tel: +44 845 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

Email: knowledgecentre@bsigroup.com

Copyright & Licensing

Tel: +44 20 8996 7070

Email: copyright@bsigroup.com

