BS ISO 13520:2015 ### **BSI Standards Publication** # Determination of ferrite content in austenitic stainless steel castings BS ISO 13520:2015 BRITISH STANDARD #### National foreword This British Standard is the UK implementation of ISO 13520:2015. The UK participation in its preparation was entrusted to Technical Committee ISE/111, Steel Castings and Forgings. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2015. Published by BSI Standards Limited 2015 ISBN 978 0 580 76500 1 ICS 77.140.80 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 October 2015. Amendments/corrigenda issued since publication Date Text affected # INTERNATIONAL STANDARD ISO 13520:2015 ISO 13520 Second edition 2015-10-01 # **Determination of ferrite content in austenitic stainless steel castings** Détermination du taux de ferrite des pièces moulées en acier inoxydable austénitique BS ISO 13520:2015 **ISO 13520:2015(E)** #### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2015, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Coi | ntents | Page | | | | | |------|---|--------------|--|--|--|--| | Fore | eword | iv | | | | | | 1 | Scope | 1 | | | | | | 2 | Normative references | 1 | | | | | | 3 | Terms and definitions | | | | | | | 4 | Significance effects of ferrite content | 1 | | | | | | 5 | Methods of determination of ferrite content 5.1 Chemical composition method 5.2 Magnetic response method 5.3 Metallographic examination | 2
2 | | | | | | 6 | Ordering information | | | | | | | 7 | General caution | 2 | | | | | | 8 | Estimation of ferrite | | | | | | | 9 | Acceptance standards | 3 | | | | | | 10 | Certification | 3 | | | | | | Ann | ex A (normative) Determination of ferrite content by magnetic or metallogra | aphic means4 | | | | | | Anna | ex B (informative) Notes to Schoefer diagram | 5 | | | | | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 017, TC Steel, Subcommittee SC 11, SC Steel castings. This second edition cancels and replaces the first edition (ISO 13520:2002), which has been technically revised. # Determination of ferrite content in austenitic stainless steel castings #### 1 Scope Procedures are covered for estimating ferrite content in certain grades of austenitic iron-chromiumnickel alloy castings that have compositions balanced to create the formation of ferrite as a second phase in amounts controlled within specified limits. Methods are described for estimating ferrite content by chemical, magnetic and metallographic means. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 4990, Steel castings — General technical delivery requirements ISO 9042, Steels — Manual point counting method for statistically estimating the volume fraction of a constituent with a point grid ASTM A799, Standard Practice for Steel Castings, Stainless, Instrument Calibration, for Estimating Ferrite Content BNIF 345, Evaluation de la teneur en ferrite dans les aciers inoxydables moulés austénitiques #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### 3.1 #### ferrite ferromagnetic, body-centred cubic microstructural constituent of variable chemical composition in iron-chromium-nickel alloys Note 1 to entry: Ferrite includes both delta and alpha species. #### 3.2 #### ferrite content proportion of total volume of an iron-chromium-nickel alloy present as the ferrite phase #### 3.3 #### ferrite percentage ferrite content expressed as a volume percent #### 4 Significance effects of ferrite content The tensile and impact properties, the weldability, and the corrosion resistance of iron-chromium-nickel alloy castings may be influenced beneficially or detrimentally by the ratio of the amount of ferrite to the amount of austenite in the microstructure. The ferrite content may be limited by purchase order requirements or by the design construction codes governing the equipment in which castings will be used. The quantity of ferrite in the structure is fundamentally a function of the chemical composition of the alloy and its thermal history. Because of segregation, the chemical composition and, therefore, the ferrite content, may differ from point to point on a casting. Determination of the ferrite content by ### BS ISO 13520:2015 **ISO 13520:2015(E)** any of the procedures described in <u>Clause 5</u> is subject to varying degrees of imprecision which shall be recognized in setting realistic limits on the range of ferrite content specified. Sources of error are described in <u>5.1</u> to <u>5.3</u>. #### 5 Methods of determination of ferrite content #### 5.1 Chemical composition method Deviations from the actual content of each element present in an alloy because of chemical analysis variance, although possibly minor in each case, can result in substantial difference in the ratio of total ferrite-promoting to total austenite-promoting elements. Therefore the precision of the ferrite content estimated from chemical composition depends on the accuracy of the chemical analysis procedure. The estimation of ferrite percent by means of the chemical composition offers the most useful and most common method of ferrite control during melting of the metal. #### 5.2 Magnetic response method Phases other than ferrite and austenite may be formed at certain temperatures and persist at room temperature. Contamination from other ferromagnetic materials may also occur. These may so alter the magnetic response of the alloy that the indicated ferrite content is quite different from that of the same chemical composition that has undergone different thermal treatment. Also, because the magnets or probes of the various measuring instruments are small, different degrees of surface roughness or surface curvature will vary the magnetic linkage with the material being measured. #### 5.3 Metallographic examination Metallographic point count estimates of ferrite percentage may vary with the etching technique used for the identification of the ferrite phase and with the number of grid points chosen for examination, see A.2. For most accurate local estimate of ferrite percent, a quantitative metallographic method shall be used. #### 6 Ordering information Orders for material to this practice shall include the following as required. - a) Applicable ISO product specification or other document covering product requirements. - b) Alloy grade. - c) Required ferrite range, in volume percent, of the casting after final heat treatment. - d) Supplementary requirements, if any, desired. - e) The method to be used for the determination of the ferrite content and the location of measurements; whether on test blocks or on the castings shall be agreed between the customer and manufacturer. - f) If measurements are to be carried out on the castings, the location of the measurements shall be agreed between the purchaser and the manufacturer. In the absence of specification by the purchaser, the location may be chosen by the manufacturer. #### 7 General caution **7.1** In specifying ferrite content as required in 6 c) the purchaser shall not set limits that are in conflict with material specification requirements. **7.2** When setting ferrite content limits the purchaser shall ensure that the limits are compatible with the measurement method being used. #### 8 Estimation of ferrite **8.1** The ferrite content of the base metal of the casting can be estimated from the chemical composition in accordance with the Schoefer diagram (see <u>Figure B.1</u>). For further information, see <u>Annex B</u>. If agreed at the time of ordering, the estimation can be carried out using an equivalent diagram as described in BNIF $345^{1)}$ which allows ferrite evaluation (from 0% to 30%) in austenitic steel castings. - **8.1.1** The chemical analysis of the heat from which the castings are poured shall include the following elements whether or not required by the chemical requirements of the product specification: carbon, manganese, silicon, chromium, nickel, molybdenum, niobium, and nitrogen. - **8.1.2** The ferrite content of the casting shall be estimated from the central line of the diagram at the composition ratio of "chromium equivalent" (Cr_e) to "nickel equivalent" (Ni_e) determined from the following Formula (1): $$\frac{Cr_{e}}{Ni_{e}} = \frac{\left[\text{Cr}(\%) + 1.5\,\text{Si}(\%) + 1.4\,\text{Mo}(\%) + \text{Nb}(\%) - 4.99\right]}{\left[\text{Ni}(\%) + 30\,\text{C}(\%) + 0.5\,\text{Mn}(\%) + 26\,(\text{N}\% - 0.02\%) + 2.77\right]}$$ (1) - **8.1.3** When a product analysis is made by the purchaser, it shall include the elements listed in 8.1.1. If a comparison is made of ferrite estimated from a product analysis performed by the purchaser, with that estimated from the heat analysis (see 8.1.1), reference shall be made to check analyses in ISO 4990. - **8.2** Estimation of ferrite content in heat or product may be made by the magnetic response (see $\underline{A.1}$) or metallographic (see $\underline{A.2}$) methods on test blocks or castings respectively, if agreed by the purchaser and manufacturer. #### 9 Acceptance standards Conformance with the required ferrite range specified in 6 c) as indicated by the estimation procedure of 8.1 shall be the basis for acceptance of material supplied under this practice unless other methods of estimation are ordered as supplementary requirements, in which case the supplementary requirement shall be the basis of acceptance. #### 10 Certification - **10.1** The manufacturer's certification shall be furnished to the purchaser stating that the material was sampled and tested in accordance with the specification (including year date) and was found to meet the requirements. - 10.2 The inspection document shall contain the results of the chemical analyses required by 8.1.1 and the indicated ferrite content range required. The estimates of ferrite content calculated in accordance with 8.1.2, and/or from magnetic measurements ($\underline{A.1}$) and/or from point counts ($\underline{A.2}$), if ordered by the purchaser, shall also be reported. - **10.3** The inspection document shall be signed by an authorized agent of the manufacturer. ¹⁾ Published by Editions Techniques des Industries de la Fonderie, 44 avenue de la Division Leclerc, 92310 Sèvres. France. #### Annex A (normative) ### Determination of ferrite content by magnetic or metallographic means #### A.1 Estimation of ferrite content by measurement of magnetic response #### A.1.1 General The ferrite content of the heat from which the castings are produced shall be estimated from measurements made by primary or secondary instruments, which have been properly calibrated for ferrite in castings (see ASTM A799 or BNIF 345). All measurements shall be made on material after the solution heat treatment required by the applicable product specification, or, if any subsequent solution heat treatment is employed, then after the final solution heat treatment. - **A.1.1.1** Measurements shall be made on the unstrained ends of tensile test specimens from the same heat as the castings represented. Measurements may be made either before or after performance of the tensile test. If a tensile test is not required by the applicable product specification, measurements may be made on a specimen cut from a test block as described in ISO 4990. - **A.1.1.2** Alternatively when specified, measurements shall be made on the base metal of the castings, in locations (not on weld deposits) designated on the design drawing or as otherwise agreed in writing between the purchaser and the manufacturer. #### A.1.2 Surface condition - **A.1.2.1** The instrument magnet or probe and the surface to be measured shall be cleaned and dried prior to testing in order to remove any scale, grease, lint, or dirt that could affect the accuracy of the measurement. - **A.1.2.2** Measurements shall be made more than 5 mm from the edge of a surface. When measurements are made on a curved surface the radius of curvature shall be greater than 10 mm. #### A.1.3 Acceptance criteria - **A.1.3.1** The average of the ferrite contents estimated from measurements in each designated location shall be within the limits stated in the order, and not more than 20 % of the individual measurements shall indicate ferrite contents less than or in excess of these limits. - **A.1.3.2** Should the requirements of <u>A.1.3.1</u> not be met, an estimation of ferrite content may be made by the metallographic method described in <u>A.2</u> and shall take precedence over the magnetic method. #### A.2 Estimation of ferrite content by metallographic examination - **A.2.1** The locations of specimens to be examined shall be agreed between the purchaser and manufacturer. - **A.2.2** Unless otherwise agreed the volume fraction of ferrite shall be estimated from the specimens by using the point count method described in ISO 9042. ## **Annex B** (informative) #### Notes to Schoefer diagram Key - X Volume percent ferrite - Y Cr_e/Ni_e composition ratio Figure B.1 — Schoefer diagram for estimating the average ferrite content in austenitic iron-chromium-nickel alloy castings a) Figure B.1 is applicable to alloys containing elements in the following ranges: | Element | Weight % | |-----------------|--------------| | Carbon (C) | 0,20 max | | Manganese (Mn) | 2,00 max | | Silicon (Si) | 2,00 max | | Chromium (Cr) | 17,0 to 28,0 | | Nickel (Ni) | 4,0 to 13,0 | | Molybdenum (Mo) | 4,0 max | | Niobium (Nb) | 1,00 max | | Nitrogen (N) | 0,20 max | - b) The Cr_e/Ni_e composition ratio necessary to produce castings within a specified ferrite content range may be read from the diagram at the intersection of the central line with the desired ferrite percentage, or may be obtained from <u>Table B.1</u>; e.g. for a ferrite content of 12 % the composition ratio should be 1,234. - c) The estimated average ferrite content of castings may be read from the diagram at the intersection of the central line with the composition ratio calculated from the chemical composition of the heat from which they were poured. Because of errors in chemical analyses, the calculated ratio may differ from the actual composition ratio and as a result, the ferrite content may be higher or lower than indicated by the central line. The possible extent of this difference is shown by the broken lines. If the composition ratio is 1,234, the indicated ferrite content is 12 % with a probable range from 8 % to 17 %. Similar information is available in <u>Table B.2</u>. If additional estimates of ferrite content are made by magnetic or metallographic methods, they can be expected to differ from the diagram value. - d) The ferrite content ranges are related to the upper and lower bounds of the composition ratio that are determined from the ratios 1,04 $Cr_e/0.96$ Ni_e and 0,96 $Cr_e/1.04$ Ni_e . These correspond approximately to ± 1 sigma deviations in all the ferrite-promoting elements and ± 1 sigma deviations in all the austenite-promoting elements. - e) Values of composition ratio (CR) for a given ferrite content (F), or vice versa, may be determined mathematically from the equation of the central line: $$CR = 0.9 + 3,888\ 3 \times 10^{-2}\ F - 5,581\ 75 \times 10^{-4}\ F^2 + 4,228\ 61 \times 10^{-6}\ F^3$$ $$F = -68,7680 + 157,9094(CR) - 133,1715(CR)^2 + 47,1849(CR)^3$$ Table B.1 — Composition ratio (CR) required for a desired ferrite content | Volume %
ferrite | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 0 | 0,900 | 0,933 | 0,966 | 0,997 | 1,027 | 1,056 | 1,084 | 1,111 | 1,138 | 1,163 | | 10 | 1,187 | 1,211 | 1,234 | 1,256 | 1,277 | 1,297 | 1,317 | 1,336 | 1,354 | 1,371 | | 20 | 1,388 | 1,405 | 1,420 | 1,436 | 1,450 | 1,464 | 1,478 | 1,491 | 1,504 | 1,516 | | 30 | 1,528 | 1,540 | 1,551 | 1,562 | 1,573 | 1,584 | 1,594 | 1,604 | 1,614 | 1,623 | | 40 | 1,633 | 1,643 | 1,652 | 1,661 | 1,671 | 1,680 | 1,689 | 1,699 | 1,708 | 1,718 | | 50 | 1,728 | 1,737 | 1,747 | 1,758 | 1,768 | 1,779 | 1,790 | 1,801 | 1,813 | 1,825 | | 60 | 1,837 | 1,850 | 1,863 | 1,877 | 1,891 | 1,906 | 1,921 | 1,937 | 1,953 | 1,970 | | 70 | 1,988 | | | | | | | | | | EXAMPLE For a ferrite content of 12 % the *CR* (1,234) is located at the intersection of row 10 and column 2. Table B.2 — Volume percent ferrite indicated by composition ratio (CR) | Composition ration | on | 0,00 | 0,01 | 0,02 | 0,03 | 0,04 | 0,05 | 0,06 | 0,07 | 0,08 | 0,09 | |--------------------|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | U | 0,0 | 0,0 | 0,0 | 0,0 | 0,5 | 0,5 | 1,0 | 1,5 | 1,5 | 2,0 | | 0,80 | | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | | | L | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | | | U | 2,5 | 2,5 | 3,0 | 3,5 | 3,5 | 4,0 | 4,5 | 5,0 | 5,0 | 5,5 | | 0,90 | | 0,0 | 0,5 | 0,5 | 1,0 | 1,0 | 1,5 | 2,0 | 2,0 | 2,5 | 3,0 | | | L | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,0 | 0,5 | | | U | 6,0 | 6,5 | 7,0 | 7,0 | 7,5 | 8,0 | 8,5 | 9,0 | 9,5 | 9,5 | | 1,00 | | 3,0 | 3,5 | 4,0 | 4,0 | 4,5 | 5,0 | 5,0 | 5,5 | 6,0 | 6,0 | | | L | 0,5 | 1,0 | 1,0 | 1,5 | 2,0 | 2,0 | 2,5 | 2,5 | 3,0 | 3,0 | | | U | 10,0 | 10,5 | 11,0 | 11,5 | 12,0 | 12,5 | 13,0 | 13,5 | 14,0 | 14,5 | | 1,10 | | 6,5 | 7,0 | 7,5 | 7,5 | 8,0 | 8,5 | 9,0 | 9,5 | 9,5 | 10,0 | | | L | 3,5 | 4,0 | 4.0 | 4,5 | 5,0 | 5,0 | 5,5 | 6,0 | 6,0 | 6,5 | | | U | 15,0 | 15,5 | 16,5 | 17,0 | 17,5 | 18,0 | 18,5 | 19,5 | 20,0 | 20,5 | | 1,20 | | 10,5 | 11,0 | 11,5 | 12,0 | 12,5 | 12,5 | 13,0 | 13,5 | 14,0 | 14,5 | | | L | 7,0 | 7,0 | 7,5 | 8,0 | 8,5 | 8,5 | 9,0 | 9,5 | 10,0 | 10,0 | | | U | 21,0 | 22,0 | 22,5 | 23,5 | 24,0 | 25,0 | 25,5 | 26,5 | 27,5 | 28,0 | | 1,30 | | 15,0 | 15,5 | 16,0 | 16,5 | 17,0 | 18,0 | 18,5 | 19,0 | 19,5 | 20,0 | | | L | 10,5 | 11,0 | 16,5 | 11,5 | 12,0 | 12,5 | 13,0 | 13,5 | 14,0 | 14,5 | | | U | 29,0 | 30,0 | 31,0 | 32,0 | 33,0 | 34,0 | 35,0 | 36,0 | 37,0 | 38,0 | | 1,40 | | 20,5 | 21,5 | 22,0 | 22,5 | 23,5 | 24,0 | 24,5 | 25,0 | 26,0 | 27,0 | | | L | 15,0 | 15,0 | 15,5 | 16,0 | 16,5 | 17,0 | 17,5 | 18,0 | 18,5 | 19,0 | | | U | 39,0 | 40,5 | 41,5 | 42,5 | 43,5 | 45,0 | 46,0 | 47,0 | 48,5 | 49,5 | | 1,50 | | 27,5 | 28,5 | 29,5 | 30,0 | 31,0 | 32,0 | 33,0 | 33,5 | 34,5 | 35,5 | | | L | 20,0 | 20,5 | 21,0 | 21,5 | 22,0 | 22,5 | 23,5 | 24,0 | 24,5 | 25,0 | | | U | 50,5 | 51,5 | 52,5 | 54,0 | 55,0 | 56,0 | 56,5 | 57,5 | 58,5 | 59,5 | | 1,60 | | 36,5 | 37,5 | 38,5 | 39,5 | 40,5 | 42,0 | 43,0 | 44,0 | 45,0 | 46,0 | | | L | 26,0 | 26,5 | 27,5 | 28,0 | 29,0 | 29,5 | 30,5 | 31,0 | 32,0 | 33,0 | | | U | 60,5 | 61,0 | 62,0 | 63,0 | 63,5 | 64,5 | 65,0 | 66,0 | 66,0 | 67,0 | | 1,70 | | 47,0 | 48,0 | 49,0 | 50,0 | 51,5 | 52,0 | 53,0 | 54,0 | 55,0 | 56,0 | | | L | 33,5 | 34,5 | 35,5 | 36,5 | 37,0 | 38,0 | 39,0 | 40,0 | 41,0 | 42,0 | | | U | 67,82 | 68,47 | 69,10 | 69,72 | 70,32 | >70 | | | | | | 1,80 | | 56,89 | 57,76 | 58,60 | 59,42 | 60,22 | 61,00 | 61,76 | 62,50 | 63,22 | 63,93 | | | L | 43,02 | 44,01 | 45,00 | 45,99 | 46,97 | 47,94 | 48,91 | 49,86 | 50,80 | 51,72 | | | U | >70 | | | | | | | | | | | 1,90 | | 64,61 | 65,28 | 65,94 | 66,58 | 67,21 | 67,82 | 68,42 | 69,00 | 69,58 | 70,14 | | | L | 52,63 | 53,52 | 54,39 | 55,24 | 56,08 | 56,89 | 57,69 | 58,47 | 59,23 | 59,97 | For a given composition ratio the ferrite content estimate is to be found at the intersection of the appropriate line and column. The figures immediately above and below on the lines U and L indicate the probable upper and lower bounds of the ferrite range that may be expected. Table B.2 (continued) | Composition ratio ^a | | 0,00 | 0,01 | 0,02 | 0,03 | 0,04 | 0,05 | 0,06 | 0,07 | 0,08 | 0,09 | |--------------------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | U | >70 | | | | | | | | | | | 2,00 | | >70 | | | | | | | | | | | | L | 60,70 | 61,41 | 62,10 | 62,78 | 63,44 | 64,09 | 64,72 | 65,34 | 65,94 | 66,53 | | | U | >70 | | | | | | | | | | | 2,10 | | >70 | | | | | | | | | | | | L | 67,11 | 67,68 | 68,23 | 68,78 | 69,31 | 69,84 | >70 | | | | For a given composition ratio the ferrite content estimate is to be found at the intersection of the appropriate line and column. The figures immediately above and below on the lines U and L indicate the probable upper and lower bounds of the ferrite range that may be expected. EXAMPLE For a CR of 1,23, the ferrite content is located at the intersection of line 1,20 and column 0,03, i.e. 12,0. The probable expected upper limit, U, is 17,0 and the probably expected lower limit, U, 8,0. ### British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### Knowledge Centre Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com