BS ISO 13084:2011

BSI Standards Publication

Surface chemical analysis

— Secondary-ion mass
spectrometry — Calibration
of the mass scale for a
time-of-flight secondary-ion
mass spectrometer

BS ISO 13084:2011 BRITISH STANDARD

National foreword

This British Standard is the UK implementation of ISO 13084:2011.

The UK participation in its preparation was entrusted to Technical Committee CII/60, Surface chemical analysis.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© BSI 2011

ISBN 978 0 580 66882 1

ICS 71.040.40

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 May 2011.

Amendments issued since publication

Date Text affected

INTERNATIONAL STANDARD

ISO 13084:2011 ISO 13084

First edition 2011-05-15

Surface chemical analysis — Secondaryion mass spectrometry — Calibration of the mass scale for a time-of-flight secondary-ion mass spectrometer

Analyse chimique des surfaces — Spectrométrie de masse des ions secondaires — Étalonnage de l'échelle de masse pour un spectromètre de masse des ions secondaires à temps de vol

BS ISO 13084:2011 ISO 13084:2011(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 13084 was prepared by Technical Committee ISO/TC 201, *Surface chemical analysis*, Subcommittee SC 6, *Secondary ion mass spectrometry*.

Introduction

Secondary-ion mass spectrometry (SIMS) is a powerful technique for the analysis of organic and molecular surfaces. Over the last decade, instrumentation has improved significantly so that modern instruments now have very high repeatability and constancy (Reference [2] in the Bibliography). An increasing requirement is for the identification of the chemical composition of complex molecules from accurate measurements of the mass of the secondary ions. The relative mass accuracy to do this and to distinguish between molecules that contain different chemical constituents, but are of the same nominal mass (rounded to the nearest integer mass), is thus an important parameter. A relative mass accuracy of better than 10 ppm is required to distinguish between C_2H_4 (28,031 30 u) and Si (27,976 92 u) in a parent ion with total mass up to 1 000 u, and between CH_2 (14,015 65 u) and N (14,003 07 u) in parent ions with total mass up to 300 u. However, in a recent interlaboratory study (Reference [3] in the Bibliography), the average fractional mass accuracy was found to be 150 ppm. This is significantly worse than is required for unambiguous identification of ions. A detailed study (Reference [4] in the Bibliography) shows that the key factors degrading the accuracy include the large kinetic energy distribution of secondary ions, non-optimized instrument parameters and extrapolation of the mass scale calibration.

This International Standard describes a simple method, using locally sourced material, to optimize the instrumental parameters, as well as a procedure to ensure that accurate calibration of the mass scale is achieved within a selectable uncertainty.

Surface chemical analysis — Secondary-ion mass spectrometry — Calibration of the mass scale for a time-of-flight secondary-ion mass spectrometer

1 Scope

This International Standard specifies a method to optimize the mass calibration accuracy in time-of-flight SIMS instruments used for general analytical purposes. It is only applicable to time-of-flight instruments but is not restricted to any particular instrument design. Guidance is provided for some of the instrumental parameters that can be optimized using this procedure and the types of generic peaks suitable to calibrate the mass scale for optimum mass accuracy.

2 Symbols and abbreviated terms

2.1 Symbols

 $\begin{array}{ll} m & \text{mass of interest} \\ m_1 & \text{calibration mass 1} \\ m_2 & \text{calibration mass 2} \\ \Delta M & \text{mass accuracy (u)} \\ M_P & \text{measured peak mass (u)} \\ M_T & \text{true mass (u)} \\ U(m) & \text{mass uncertainty for a mass } m \text{, arising from calibration} \end{array}$

 U_1 uncertainty in the accurate mass measurement of m_1 uncertainty in the accurate mass measurement of m_2 average uncertainty in an accurate mass measurement

 V_{R} reflector or acceptance voltage (V)

W relative mass accuracyx number of carbon atomsy number of hydrogen atoms

 $\sigma(\Delta M)$ standard deviation of the mass accuracy for a number of peaks

 $\sigma_{\rm M}$ average of the standard deviations of ΔM for each of the four ${\rm C}_x{\rm H}_y^+$ cascades with 4, 6, 7 and 8 carbon atoms

2.2 Abbreviated terms

MEMS micro-electromechanical system

PC polycarbonate
ppm parts per million
r/min revolutions per minute

SIMS secondary-ion mass spectrometry

THF tetrahydrofuran
ToF time of flight

3 Outline of method

Here, the method is outlined so that the detailed procedure, given in Clause 4, may be understood in context. Firstly, to optimize a time-of-flight mass spectrometer using this procedure, obtain a thin film of PC on a conducting substrate (silicon). The optimization procedure is achieved by carrying out the procedures in 4.3 to 4.5 iteratively; it uses 19 specific C_xH_y peaks in the polycarbonate (PC) positive-ion mass spectrum. In 4.6, a general calibration procedure is given which provides the rules by which calibrations for inorganics and organics may be incorporated. This leads to a new generic set of ions for mass calibration that can improve the mass accuracy from some often used calibrations by a factor of 5. The effects of extrapolation beyond the calibration range are discussed and a recommended procedure is given to ensure that accurate mass is achieved, within a selectable uncertainty, for large molecules. Therefore, the procedure has two parts, optimization and calibration. Subclauses 4.1 to 4.5 are only required as part of the regular maintenance of the instrument as defined by the testing laboratory. Subclause 4.6 is required for all calibrations of the mass scale. This is summarized in the flowchart in Figure 1.

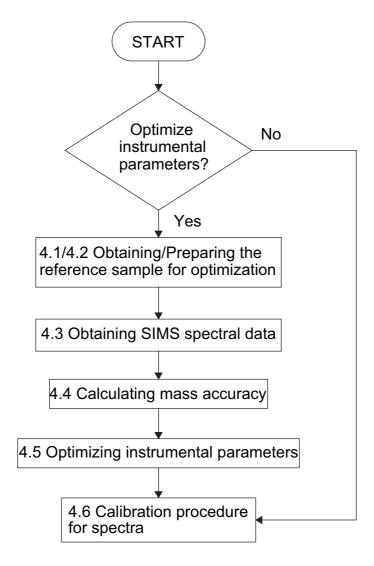


Figure 1 — Flowchart of sequence of operations of the method

4 Method for improving mass accuracy

4.1 Obtaining the reference sample for optimization

A sample of thin (10 to 100 nm) PC on a flat conducting substrate (e.g. silicon wafer) shall either be obtained or prepared, as described at 4.2.

4.2 Preparation of polycarbonate sample

- **4.2.1** Instructions for the preparation of a PC reference sample are provided. This method can give sample-to-sample repeatability in ToF SIMS spectra of better than 1,9 % [2]. To prepare such a sample for static SIMS analysis requires a clean working environment. To reduce surface contamination, clean glassware, tweezers and powderless gloves shall be used. The equipment required is a 1 ml glass pipette, a 100 ml glass-stoppered measuring flask and a device for spin casting. If a device for spin casting is not available, droplet deposition of the PC solution may be used. However, this will give poor repeatability, which will need to be carefully taken into account during spectral analysis.
- **4.2.2** Using poly(bisphenol A carbonate), abbreviated to PC, weigh out 100 mg on a clean piece of aluminium foil. Introduce the PC into the 100 ml, glass-stoppered measuring flask, add tetrahydrofuran (THF) of analytical reagent quality, to the 100 ml level line. Shake the flask to mix the PC and allow time to dissolve it completely. This produces a 1 mg/ml solution of PC in THF. The aluminium foil shall be freshly unrolled and the shiny surface used. Ensure that the THF is anhydrous. Otherwise, streaks will appear from water when spin coating as described in 4.2.3. The shelf life of freshly prepared stock solution shall be no more than one month owing to water take-up.
- NOTE 1 It does not matter if the PC contains low levels of additives such as Irgafos.
- NOTE 2 It does not matter if the final PC/THF solution concentration varies by ± 20 %.
- **4.2.3** Use a conveniently sized (1 cm by 1 cm) piece of silicon, or another flat or polished conducting substrate, and clean it overnight by soaking in propan-2-ol (isopropyl alcohol). Ultrasonically clean the substrate in fresh propan-2-ol and dry. If an ultrasonic bath is not available, just rinse the sample in fresh propan-2-ol. Mount the substrate on the spin casting device. Pipette approximately 0,2 ml of the PC solution onto the substrate and spin cast at 4 000 r/min for 25 s. Samples may be prepared by depositing the PC solution using a 5 ml pipette onto the silicon surface then air drying under ambient conditions. However, this method will result in an uneven PC film, so care shall be taken when comparing spectra, as peak intensities will vary.
- NOTE 1 It is not essential what substrate is used, as long as it is conducting. Silicon has been found to give good-quality films.
- NOTE 2 Using this procedure, the film thickness will be approximately 10 nm. The absolute thickness is not critical.

4.3 Obtaining the SIMS spectral data

- **4.3.1** Insert the PC sample inside the chamber of the SIMS instrument.
- **4.3.2** Operate the instrument in accordance with the manufacturer's or local documented instructions. The instrument shall have fully cooled following any bakeout. Ensure that the operation is within the manufacturer's recommended ranges for the ion-beam current, counting rates and any other parameter specified by the manufacturer. Check that the detector multiplier settings are correctly adjusted.
- **4.3.3** Select the normal analytical settings and acquisition time. For ToF instruments, select a repetition rate that gives a maximum mass of at least 800 u. If the total counts in the $C_9H_{11}O$ peak are less than 10 000, increase the acquisition time to ensure that this peak contains more than 10 000 counts. This may not be possible if the signal is too weak and it is not possible to achieve 10 000 counts within a reasonable time. To ensure that the maximum ion fluence $(1\times10^{16}~\text{ions/m}^2)$ is not exceeded, an enlarged raster area may be required. The acquisition time finally chosen will be a compromise between the data quality and the duration

of the work. Record the parameters set. Ensure that the detector is not saturated using the manufacturer's or local documented instructions. This may be achieved by reducing the number of primary ions per pulse.

NOTE For details of acquiring high-quality SIMS spectra with good repeatability and constancy, refer to ISO 23830^[1].

4.4 Calculating mass accuracy

4.4.1 Instrument manufacturers' software may provide the calculation of the peak position automatically; it is often sufficient to use this to obtain a value of $M_{\rm O}$. A more accurate and reliable method for measurement of the mass of the peak in the spectra, $M_{\rm O}$, can be used. An asymmetric Gaussian function, $G_{\rm A}$, can be used to fit to the signal intensity versus the mass position, $M_{\rm P}$, and the fitting used to calculate the peak position, $M_{\rm O}$. Where $M_{\rm O}$ is the peak centre, $M_{\rm P}$ is the peak mass and $G_{\rm O}$ is a scaling term, $G_{\rm A}$, the fit to signal intensity, is given by

$$G_{A} = G_{o} \exp \left(\frac{-(M_{P} - M_{o})^{2}}{2[\sigma - \alpha(M_{P} - M_{o})]^{2}} \right)$$
 (1)

and

$$\sigma = \frac{\text{FWHM}(\alpha = 0)}{2\sqrt{2\ln 2}} \tag{2}$$

where

FWHM(α = 0) is the full width at half-maximum of the base Gaussian width for α = 0. The term α gives the asymmetry, and for α = 0 the function is pure Gaussian.

For each peak, fit Equation (1). Only use those intensities above 50 % of the maximum intensity to avoid interference from neighbouring peaks. You should calibrate using the peak position method you intend to use for accurate mass identification in your work.

NOTE An asymmetric Gaussian function gives a good fit to a wide range of peak shapes, whereas the mean value can lead to significant errors for asymmetric peaks. Typically, the asymmetric Gaussian function is an excellent description of the peak down to 15 % of the maximum intensity, although the fitting, here, only covers to 50 %.

4.4.2 The mass accuracy, ΔM , is defined as the difference between the measured peak mass, $M_{\rm P}$, and the true mass, $M_{\rm T}$

$$\Delta M = M_{P} - M_{T} \tag{3}$$

and the relative mass accuracy, W, is given by

$$W = \frac{\Delta M}{M_{T}} \tag{4}$$

In the text that follows, W will be given in parts per million.

4.4.3 Figure 2 shows ΔM for a range of hydrocarbon peaks of polycarbonate in an unoptimized instrument. ΔM varies widely along the mass range for ions with different fragmentation. This illustrates an instrument with modest mass scale accuracy.

In Figure 2 the peaks marked with an arrow are used to calibrate the spectra. The circumscribed symbols denote the mass peaks used to measure $\sigma_{\rm M}$. Here the asymmetric Gaussian function is used.

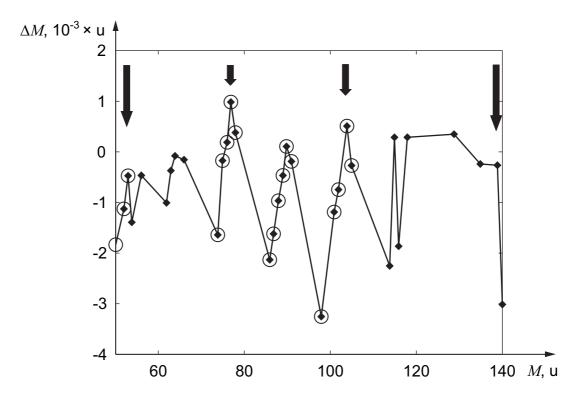


Figure 2 — Mass accuracy, ΔM , for hydrocarbon peaks from PC positive-ion spectra with a reflector voltage, $V_{\rm R}$ = 60 V

To provide a statistical measure of the divergence of ΔM from 0, select the peaks for the four well-defined $C_xH_y^+$ cascades with x=4, 6, 7 and 8, respectively, identified in Figure 2 by the circumscribed data points and detailed in Table 1.

Table 1 — Peaks identified in Figure 1 used to calculate $\sigma_{\rm M}$

x value	lon	True mass, u
4	C ₄ H ₂	50,015 65
4	C ₄ H ₄	52,031 30
4	C ₄ H ₅	53,039 13
6	C ₆ H ₂	74,015 65
6	C ₆ H ₃	75,023 48
6	C ₆ H ₄	76,031 30
6	C ₆ H ₅	77,039 13
6	C ₆ H ₆	78,046 95
7	C ₇ H ₂	86,015 65
7	C ₇ H ₃	87,023 48
7	C ₇ H ₄	88,031 30

x value	lon	True mass, u
7	C ₇ H ₅	89,039 13
7	C ₇ H ₆	90,046 95
7	C ₇ H ₇	91,054 78
8	C ₈ H ₂	98,015 65
8	C ₈ H ₅	101,039 10
8	C ₈ H ₆	102,047 00
8	C ₈ H ₈	104,062 60
8	C ₈ H ₉	105,070 40

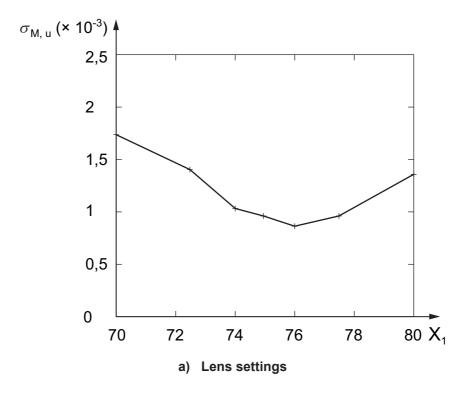
Table 1 (continued)

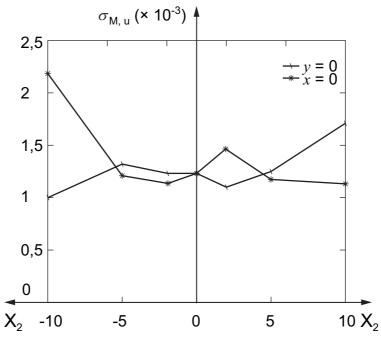
Measure ΔM for each peak using Equation (3) and calculate the four standard deviations for $\sigma_{C_xH_y}(\Delta M)$, x=4,6,7 and 8. The formula to calculate $\sigma_{C_xH_y}(\Delta M)$ is exampled for x=6 in Equation (5).

$$\sigma_{C_6H_y}(\Delta M) = \sqrt{\frac{\sum_{y=2}^{6} \left(\Delta M_{C_6H_y} - \overline{\Delta M_{C_6H_y}}\right)^2}{4}}$$
 (5)

Finally, calculate, σ_{M} , the average of the standard deviations of ΔM for each of the four $C_x H_y^+$ cascades defined in Table 1 using:

$$\sigma_{M} = \frac{1}{4} \left[\sigma_{C_{4}H_{y}}(\Delta M) + \sigma_{C_{6}H_{y}}(\Delta M) + \sigma_{C_{7}H_{y}}(\Delta M) + \sigma_{C_{8}H_{y}}(\Delta M) \right]$$
 (6)


where for x = 4, 6, 7 and 8, $\sigma_{C_xH_y}(\Delta M)$ is the standard deviation for the $C_xH_y^+$ cascade.


NOTE Some care might be needed to take into account the lifetime of molecules and the changes this has on the mass accuracy. For the molecules used here, and shown in Table 1, there is no noticeable effect of the lifetimes of the molecules on the mass accuracy.

4.5 Optimizing instrumental parameters

The measure $\sigma_{\rm M}$ is now used to optimize the instrument operating parameters. For improved mass accuracy, the value of $\sigma_{\rm M}$ needs to be minimized. This is illustrated with examples here, for a reflection instrument, for optimization of the lens settings and optimization of the analyser deflector X and Y plates, as shown in Figure 3. It is simple to locate the optimum lens setting from the minimum of the curve in Figure 3 a) giving a lens setting of 76 %. Similarly, it is clear that the optimum setting for the analyser deflector plates has a broad minimum, rising steeply at large deflections, centred approximately around a setting of 0 for both X and Y deflectors. It is therefore important that a suitable procedure is used to align the ion optical axis and the ion-beam raster area. This method may be used to optimize other parameters, such as energy slit values, contrast diaphragms, pass energy and extraction potential. Optimize these by conducting, iteratively, the procedures in 4.3 to 4.5 for a range of analyser settings, to obtain graphs similar to those in Figure 3. These can be used to decide which analyser settings will minimize $\sigma_{\rm M}$ and hence give an optimum mass accuracy. Use guidance from the instrument operator's manual or the instrument manufacturers, to choose suitable variations in analyser settings.

NOTE The optimization procedure aims to reduce the scatter seen in Figure 2. The scatter is characterized by the $\sigma_{\rm M}$ value; a reduction of $\sigma_{\rm M}$ is a reduction in that scatter. An example of the possible improvement in scatter is shown in Figure 3 as a reduction in $\sigma_{\rm M}$. The overall improvement will depend on the instrumental parameters that can be changed.

b) Analyser deflector X and Y settings

Key

 $\rm X_1$ lens setting, in %

X₂ analyser deflector X and Y settings

Figure 3 — Change in $\sigma_{\rm M}$ for different lens settings and analyser deflector X and Y settings

4.6 Calibration procedure

- **4.6.1** The mass calibration in ToF SIMS spectra is conducted in the spectrum itself, rather than the instrument being calibrated. In the measured spectrum, only peaks that you are confident in correctly identifying, shall be used as calibration peaks.
- NOTE Incorrectly identified peaks will lead to inaccuracies in the mass scale calibration; however, ensuring correct identification of peaks will negate this.
- **4.6.2** For samples exhibiting a roughness or edge height of over 1 µm, the mass resolution and mass scale calibration accuracy will be degraded. If the topography is structured (for example a MEMS device) rather than random (abraded surface), the mass calibration should be restricted to zones of similar sample height.
- **4.6.3** The true mass of the calibrant peaks shall be calculated using the identified molecular formula and a standard look-up table of atomic masses. Isotopic mass values, rather than average mass values, shall be used. In mass spectrometry, the ion is measured and therefore the mass of the electron $(5,49 \times 10^{-4} \text{ u})$ times the number of ionization charges should be subtracted or added for positive and negative ions respectively, for the relevant level of accuracy.
- NOTE For the example C_4H_5O : from a periodic table of isotope masses the commonest carbon (C) isotope is 12 and it has a mass of 12,000 000 u; similarly the mass of H = 1,007825 u and the mass of O = 15,994 915 u. Therefore the true mass of the molecule $C_4H_5O = 4 \times 12$ u + 5 × 1,007 825 u + 15,994 915 u = 69,034 040 u.
- **4.6.4** It is common practice to use hydrogen as the first mass in the calibration. This is very useful as it is easy to identify without a calibrated mass scale and may be used to establish a first calibration. However, for accurate calibration of the mass scale, hydrogen is not recommended.
- NOTE The uncertainty of the mass measurement of hydrogen is significantly greater than average. Part of the reason for this arises since the trajectory of hydrogen is affected more strongly by stray magnetic fields than heavier ions (often observed as a displacement of the ion image), thus adding to the uncertainty in the measured transit time and hence the deduced mass value.
- **4.6.5** For molecular analysis of minimally degraded fragments, use peaks for similarly minimally degraded entities as calibration peaks. That is: calibrate using ions that have low degradation or fragmentation from the original parent structure. Do not include atomic ions in the mass calibration. Avoid metastable ions.
- NOTE 1 Minimally degraded ions can be identified using G-SIMS (Reference [5] in the Bibliography).
- NOTE 2 Atomic ions have large kinetic energies, which lead to large values of ΔM compared with organic ions. This biases the calibration. This arises since most mass spectrometers do not have full energy compensation.
- NOTE 3 Metastable ions can be identified by their broad peak shape.
- **4.6.6** Calibrate using a first mass m_1 within, or as close as possible to, the mass range 12 to 30 u and a second mass m_2 with as high a mass as is conveniently available. For identification of large molecules of mass m, include a mass $m_2 \ge 0.55 m$ in the calibration ions. Some care may be needed to take into account the lifetime of molecules and the changes this has on the mass accuracy. The use of molecules with large peak widths that may indicate short lifetimes should be avoided.
- NOTE The requirement to use widely separated masses in the calibration, with $m_2 \ge 0.55 m$, is explained in Annex A.
- **4.6.7** Add several further intermediate calibration masses; five calibrant ions are sufficient.
- NOTE Using several measures generally improves the quality of the calibration.

Annex A (informative)

Calibration uncertainty

A.1 In the simplest case, the combined uncertainty, U(m), for a calibration using two peaks at masses m_1 and m_2 , is given by [6].

$$U(m) = \left[\left(\frac{m_2 - m}{m_2 - m_1} \right)^2 U_1^2 + \left(\frac{m - m_1}{m_2 - m_1} \right)^2 U_2^2 \right]^{1/2}$$
(A.1)

where the uncertainties U_1 and U_2 are the uncertainties in the accurate mass measurement of m_1 and m_2 respectively.

For practical purposes, $U_1 = U_2 = U_0$ over most of the mass range of importance here. When m is equal to m_1 or m_2 , this function gives $U(m) = U_0$ as expected from least-squares fitting and, when m is half way between m_1 and m_2 , then $U(m) = U_0 / \sqrt{2}$.

A.2 Figure A.1 shows the relative uncertainty U/U_0 using Equation (A.1) for five separate calibrations with $m_1=10$ and m_2 ranging from 100 to 2 000 u. It is clear that the calibration uncertainty rises rapidly outside the calibration mass interval and, for a typical calibration interval with $m_1=10$ u and $m_2=00$ u, $U/U_0=20$ at m=1 000 u. For $U_0=3\times 10^{-3}$ u, this guarantees a relative mass accuracy, W, of 60 ppm. With $m_1=10$ u and $m_2=500$ u, it is found that $U/U_0=2,3$ at m=1 000 u, leading to an order of magnitude reduction in the relative mass accuracy, W, to 7 ppm.

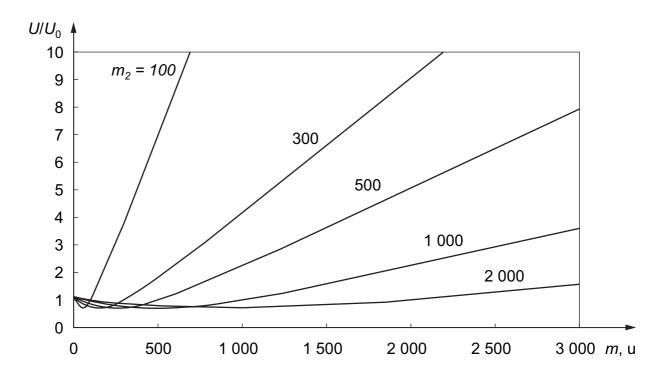


Figure A.1 — Relative uncertainties, U/U_0 , using two calibration mass peaks illustrating the effect of extrapolation as a function of the given mass peak, m, up to 3 500 u with m_1 = 10 and with separate curves for m_2 set at 100, 300, 500, 1 000 and 2 000 u

Bibliography

- [1] ISO 23830, Surface chemical analysis Secondary-ion mass spectrometry Repeatability and constancy of the relative-intensity scale in static secondary-ion mass spectrometry
- [2] GILMORE, I S., SEAH, M P., GREEN, F M., Static TOF-SIMS A VAMAS Interlaboratory Study. Part I. Repeatability and Reproducibility of Spectra, *Surface and Interface Analysis*, 2005, **37**, pp. 651-672
- [3] GILMORE, I S., SEAH, M P., GREEN, F M., Static TOF-SIMS A VAMAS Interlaboratory Study. Part II. Accuracy of the mass scale and G-SIMS compatibility, *Surface and Interface Analysis*, 2007, **39**, pp. 817-825
- [4] GREEN, F.M., GILMORE, I.S., and SEAH, M.P., ToF-SIMS: Accurate Mass Scale Calibration, *Journal of the American Society of Mass Spectrometry*, 2006, **17**, pp. 514-523
- [5] GILMORE, I S and SEAH, M P., Static SIMS: Towards unfragmented mass spectra The G-SIMS procedure, *Applied Surface Science*, 2000, **161**, pp. 465-480
- [6] SEAH, M.P., GILMORE, I.S., SPENCER, S.J., XPS: Binding Energy Calibration of Electron Spectrometers 4 Assessment of Effects for Different X-ray Sources, Analyser Resolutions, Angles of Emission and of the Overall Uncertainties, *Surface and Interface Analysis*, 1998, **26**, pp. 617-641

Price based on 10 pages

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

Revisions

Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services

Tel: +44 845 086 9001

Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions

Tel: +44 845 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

Email: knowledgecentre@bsigroup.com

Copyright & Licensing

Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

