Methods of evaluation of the battery life of a battery-powered watch ICS 39.040.10 ## National foreword This British Standard is the UK implementation of ISO 12819:2009. It supersedes BS ISO 12819:1999 which is withdrawn. The UK participation in its preparation was entrusted to Technical Committee STI/53, Specifications and test methods for jewellery and horology. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 May 2009 © BSI 2009 ISBN 978 0 580 61921 2 #### Amendments/corrigenda issued since publication | Date | Comments | |------|----------| | | | | | | | | | | | | # INTERNATIONAL STANDARD BS ISO 12819:2009 ISO 12819 Second edition 2009-03-15 # Methods of evaluation of the battery life of a battery-powered watch Méthodes d'évaluation de l'autonomie de fonctionnement d'une montre à pile #### PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. #### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2009 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland # **Contents** Page | Forewo | ordi | ٧ | | |-------------------|---|--------|--| | 1 | Scope | 1 | | | 2 | Normative references | 1 | | | 3 | Terms and definitions | 1 | | | 4
4.1 | General Parameters | | | | 4.2
4.3
4.4 | Types of battery life Operating mode Environmental conditions | 2
2 | | | 5
5.1 | Current consumption of a watch | 2 | | | 5.2
5.3
5.4 | Capacity of the battery (C) | 3 | | | 6
6.1
6.2 | Calculation of battery life Practical battery life (AP): method I Theoretical battery life (AT) | 4 | | | 7 | Labelling | 4 | | | Annex | Annex A (normative) Self-discharge currents | | | | Annex | B (normative) Practical battery life, AP | 6 | | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 12819 was prepared by Technical Committee ISO/TC 114, Horology. This second edition cancels and replaces the first edition (ISO 12819:1999) and Technical Corrigendum ISO 12819:1999/Cor.1:1999, which have been technically revised. # Methods of evaluation of the battery life of a battery-powered watch #### 1 Scope This International Standard specifies two methods for determining the battery life of a battery-powered watch and specifies the labelling to be used by the manufacturers or the distributors to inform the users. According to the available information, either the theoretical battery life or the practical battery life must be calculated using the equations given in this International Standard. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 6426-2, Horological vocabulary — Part 2: Technical and commercial definitions IEC 60086-3, Primary batteries — Part 3: Watch batteries #### 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO 6426-2 and the following apply. #### 3.1 #### battery life operating duration of a battery-powered watch, as determined by the characteristics of the battery and the movement NOTE The battery life starts when the battery is inserted and starts powering the movement of the watch and lasts until the point when the voltage falls below the level required for operation and the watch stops. #### 3.2 #### practical battery life AP calculation of the battery life, taking in account the self-discharge current of the battery during storage and operation #### 3.3 #### theoretical battery life AT calculation of the battery life assuming an ideal battery with no self-discharge of current #### 4 General #### 4.1 Parameters The following parameters influence the calculation: - the type of battery used; - the type of movement used; - the operating and environmental conditions. #### 4.2 Types of battery life This International Standard considers two types of battery life, the practical battery life and the theoretical battery life. #### 4.3 Operating mode The operating mode may be normal or economic. Some watches have a device that permits the reduction of the power consumption during storage. The operating modes shall be described on the documents supplied with the watch. #### 4.4 Environmental conditions The values below are valid for normal environmental conditions as follows: - a temperature of (28 ± 2) °C; - a relative humidity of (50 \pm 10) %. #### 5 Current consumption of a watch #### 5.1 Mean current consumed (I_m) The mean current, $I_{\rm m}$, is the average of currents consumed by the oscillator and the display of time of day function(s) excluding all additional functions. The mean current is expressed in microamperes (μ A). For a movement with an analogical display, the consumption shall be measured over a large number of pulses of the motor. For a movement with a digital display, the consumption shall be measured when a mean number of digits is operating. #### 5.2 Capacity of the battery (C) The capacity of the battery used to determine the battery life of a watch shall conform to the value specified by the manufacturer of batteries and controlled by the watch manufacturer, in accordance with IEC 60086-3. The capacity, C, is expressed in milliampere hours (mAh). #### 5.3 Self-discharge currents (I_{as}, I_{ad}) #### 5.3.1 Self-discharge current in storage (I_{as}) When a battery is stored, it sustains an annual loss which affects capacity. Loss of capacity depends on the type of battery and the storage temperature and humidity. It is equivalent to the mean self-discharge current in storage, I_{as} , expressed in microamperes according to Equation (1): $$I_{as} = \frac{\Delta C_s}{8.76} \tag{1}$$ NOTE The value 8,76 is the ratio between the number of hours in the year (8 760) and the conversion rate from milliamperes to microamperes (1 000). The value ΔC_s is usually supplied by the battery manufacturer. In the case of lack of information, the values given in Annex A shall be used. ΔC_s is expressed in milliampere hours (mAh). #### 5.3.2 Self-discharge current in use (I_{ad}) When the same battery discharges, the average self-discharge current, I_{ad} , expressed in microamperes, may be different. It is determined by Equation (2): $$I_{\mathsf{ad}} = K \cdot I_{\mathsf{as}} \tag{2}$$ NOTE The value *K* depends on the type and size of the battery as well as the operating conditions (e.g. temperature). The value K is usually supplied by the battery manufacturer. In the case of lack of information, the values given in Annex A shall be used. #### 5.4 Current consumption of additional functions (I_f) The mean current, I_f , consumed over a day by an additional function is calculated by Equation (3): $$I_{\mathsf{f}} = \frac{i_{\mathsf{f}} \cdot t}{86400} \tag{3}$$ where I_f is the mean current expressed in microamperes (μA); i_f is the additional current consumption due to the function, expressed in microamperes (μ A); *t* is the time of use of the function in one day, expressed in seconds (s). The usual values of t for additional functions used for the determination of I_f are those, expressed in seconds, that are usually mentioned in the user's instructions for each product. In the absence of these values, in most cases the values given in Table A.1 are conventionally selected. NOTE The values are approximate and may change over a wide range from one user to another. They are of interest only for comparison between products. #### 6 Calculation of battery life #### **6.1** Practical battery life (AP): method I The practical battery life, AP, expressed in years, is determined by Equation (4), based on a linear decrease of the battery capacity: $$AP = \frac{C - (n \cdot \Delta C_s)}{8,76(I_m + I_{ad} + \sum I_f)}$$ (4) where n is the storage duration of the battery, expressed in years, from its manufacture until it is placed in the watch. For comparison between products, the watch manufacturer shall use, at his own discretion, the values n = 1 or n = 0.5. For the battery life indication, the watch manufacturer shall take into consideration the intrinsic battery life, of which indicative values are given in B.3. Another method of calculation for the practical battery life (method II) is described in B.4. #### 6.2 Theoretical battery life (AT) The theoretical battery life, AT, expressed in years, is determined by Equation (5): $$AT = \frac{C}{8.76(I_{\rm m} + \sum I_{\rm f})}$$ (5) #### 7 Labelling The indication of the practical, AP, or of the theoretical, AT, battery life of a watch shall be expressed in years and, if necessary, this value shall be rounded to the half year immediately below the calculated value. However, if this value is below 2 years, it shall be expressed in months. The following wording shall be used in the documents supplied with the watch: "The practical (or theoretical) battery life of this watch, determined in accordance with the method specified in ISO 12819, with a (producer, capacity) battery, reference, is ... years (or months)." # Annex A (normative) ## **Self-discharge currents** #### A.1 General The following numerical values for calculating factors ΔC_s and K (see 5.3) shall be used when information is not supplied by the battery manufacturer. #### **A.2** Values for ΔC_s $\Delta C_s = 0.05C$ for silver oxide batteries; $\Delta C_s = 0.02C$ for lithium batteries; where *C* is the nominal capacity of the battery. The factors 0,05 and 0,02 express the agreed yearly loss of capacity according to the type of battery. #### A.3 Values for K K = 1 for an unworn watch or one that is stored at a temperature < 23 °C; K = 2 for a worn watch, i.e. one that is subjected to temperatures between 28 °C and 30 °C. #### A.4 Daily use of the additional functions; agreed values Table A.1 — Agreed values | Function | Daily use t | |---|-------------| | A) Display lighting | 20 | | B) Alarm strike | 20 | | C) Hour strike | 12 | | D) Timer strike | 20 | | E) Function strike | 12 | | F) Chronograph | 3 600 | | G) Calculator | 1 800 | | H) Electronic hand-setting (alarm or time zone) | 20 | # Annex B (normative) ### Practical battery life (AP) #### B.1 Intrinsic lifetime of a battery Battery technology is constantly being developed. The current reference values are as follows: - a) silver oxide batteries: - of height \leq 2,15 mm: 3 years; - of height > 2,15 mm: 4 years; - b) lithium batteries: 5 years to 10 years. NOTE The use of higher intrinsic lifetime values is made at the discretion of the watch manufacturer. #### B.2 Statistical determination of the practical battery life (AP) For the determination of the practical battery life, AP, its statistical distribution should be considered. When the mean value of battery life is over "a" year, and the minimum battery life is higher than "0.9a", then the practical battery life to consider is "a" year. $AP_{\text{mean}} \geqslant a$: mean of battery life $AP_{\text{min}} \geqslant 0.9a$: minimum battery life The practical battery life is distributed according to a normal distribution, and the minimum battery life, AP_{min} , is $AP_{99.7}$ where $AP_{99.7}$ means practical battery life in which 99,7% of watches will work. #### Key - X practical battery life - Y frequency - a AP_{\min} . - $^{\rm b}$ $AP_{\rm mean}$. Figure B.1 — Determination of practical battery life, AP, and distribution — Relation between a and $AP_{\rm mean}$ #### **B.3** Practical battery life (AP) Method I #### Key - X time - Y capacity - ^a Storage. - b Self-discharge. - $^{\rm c} \quad {\it C}_{\rm available}.$ - d C_{used} . - e Consumption and distribution. - f Capacity of the battery and distribution. - ${\rm g} \quad AP_{\rm mean}.$ Figure B.2 — Relation between practical battery life, AP, and capacity, C, of the battery #### ISO 12819:2009(E) When the self-discharge is constant, the decrease of the battery's capacity is also constant. Considering this assumption, Equation (B.1) is used: $$AP = \frac{C - (n \cdot \Delta C_s)}{8,76(I_m + I_{ad} + \sum I_f)}$$ (B.1) where $I_{\rm m}$ is the mean current consumed by the movement; I_{ad} is the self-discharge current in use; *I*_f is the current consumption of additional functions. #### **B.4** Practical battery life (AP) Method II When the self-discharge is proportional (by fixed rate) to the remaining capacity, Equations (B.2) and (B.3) should be considered for the determination of the practical battery life, AP: $$AP = \frac{1}{\beta} \ln \left[\frac{\beta (C - 0.5 \cdot \Delta C_s)}{8.76 (I_m + \sum I_f)} + 1 \right]$$ (B.2) $$\beta = -\frac{\ln(1 - \alpha)}{n'} \tag{B.3}$$ where n' is the time, expressed in years; β is the proportional factor of self-discharge; α is the mean rate of self-discharge over n' years. Equation (B.2) for the determination of the practical battery life, AP, is prepared by the following process. The ratio between capacity reduction and time (dc/dt) is expressed as addition of "self-discharge that is proportionate to the remaining capacity, C" and "consumption current $I(I_m + \sum I_f)$ ". Therefore, when β is the ratio for self-discharge, $$\frac{\mathrm{d}c}{\mathrm{d}t} = -(\beta C + I) \tag{B.4}$$ When transformed $$dt = \frac{-1}{\beta C + I} dc$$ and integrated $$t = -\frac{1}{\beta} \ln(\beta C + I) + C'$$ When t = 0, put C_0 for C, then: $$C' = \frac{1}{\beta} \ln \left(\beta C_0 + I \right)$$ therefore $$t = -\frac{1}{\beta} \ln(\beta C + I) + \frac{1}{\beta} \ln(\beta C_0 + I)$$ $$t = \frac{1}{\beta} \ln \left(\frac{\beta C_0 + I}{\beta C + I} \right)$$ When C = 0, t is expressed as below: $$t = \frac{1}{\beta} \ln \left(\frac{\beta C_0}{I} + 1 \right)$$ To define the practical battery life, AP: $$C_0 = \frac{C - 0.5 \cdot \Delta C_s}{8.76}$$: capacity of the battery after 0,5 year storage. NOTE The value 8,76 is the ratio between the number of hours in the year (8 760) and the conversion rate from milliamperes to microamperes (1 000). $$I = \left(I_{\mathsf{m}} + \sum I_{\mathsf{f}}\right)$$: mean current of movement, I_{m} , + current consumption of additional functions, I_{f} then Equation (B.2) becomes $$AP = \frac{1}{\beta} \ln \left[\frac{\beta \left(C - 0.5 \cdot \Delta C_{S} \right)}{8.76 \left(I_{m} + \sum I_{f} \right)} + 1 \right]$$ Thus, β is the proportional factor of self-discharge, $$\beta = -\frac{\ln(1 - \alpha)}{n'} \tag{B.3}$$ where α is the mean value of self-discharge in n' years. Equation (B.3) is then as given below: in the equation $$\frac{dc}{dt} = -(\beta C + I)$$, put consumption current $I = 0$, (B.4) then $$\frac{\mathrm{d}c}{\mathrm{d}t} = -\beta C$$ and integrate to $C = C_0 \cdot e^{-\beta \cdot t}$ #### BS ISO 12819:2009 #### ISO 12819:2009(E) Replace C by C_t after t years, $$\frac{C_{\mathsf{t}}}{C_{\mathsf{0}}} = e^{-\beta \cdot t}$$ transform: $$\beta = -\frac{\ln(C_{\mathsf{t}}/C_{\mathsf{0}})}{t}$$ put: $$\frac{C_{\mathsf{t}}}{C_{\mathsf{0}}} = 1 - \alpha \; , \; t = n'$$ then $$\beta = -\frac{\ln(1 - \alpha)}{n'}$$ (B.3) # **BSI - British Standards Institution** BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter. #### Revisions British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions. It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400. BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards. #### **Buying standards** Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: +44 (0)20 8996 9001. Fax: +44 (0)20 8996 7001 Email: orders@bsigroup.com You may also buy directly using a debit/credit card from the BSI Shop on the Website http://www.bsigroup.com/shop In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested. #### Information on standards BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact Information Centre. Tel: +44 (0)20 8996 7111 Fax: +44 (0)20 8996 7048 Email: info@bsigroup.com Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: +44 (0)20 8996 7002 Fax: +44 (0)20 8996 7001 Email: membership@bsigroup.com Information regarding online access to British Standards via British Standards Online can be found at http://www.bsigroup.com/BSOL Further information about BSI is available on the BSI website at http://www.bsigroup.com #### Copyright Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained. Details and advice can be obtained from the Copyright and Licensing Manager. Tel: ± 44 (0)20 8996 7070 Email: copyright@bsigroup.com BSI Group Headquarters 389 Chiswick High Road, London, W4 4AL, UK Tel +44 (0)20 8996 9001 Fax +44 (0)20 8996 7001 www.bsigroup.com/ standards