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Foreword 

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies 
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO 
technical committees. Each member body interested in a subject for which a technical committee has been 
established has the right to be represented on that committee. International organizations, governmental and 
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the 
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of technical committees is to prepare International Standards. Draft International Standards 
adopted by the technical committees are circulated to the member bodies for voting. Publication as an 
International Standard requires approval by at least 75 % of the member bodies casting a vote. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO shall not be held responsible for identifying any or all such patent rights. 

ISO 11929 was prepared by Technical Committee ISO/TC 85, Nuclear energy, Subcommittee SC 2, Radiation 
protection. 

This first edition of ISO 11929 cancels and replaces ISO 11929-1:2000, ISO 11929-2:2000, ISO 11929-3:2000, 
ISO 11929-4:2001, ISO 11929-5:2005, ISO 11929-6:2005, ISO 11929-7:2005 and ISO 11929-8:2005, which 
have been technically revised, specifically with reference to the type of statistical treatment of the data. 
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Introduction 

The limits to be provided according to this International Standard by means of statistical tests and specified 
probabilities allow detection possibilities to be assessed for a measurand and for the physical effect quantified 
by this measurand as follows: 

⎯ the “decision threshold” gives a decision on whether or not the physical effect quantified by the 
measurand is present; 

⎯ the “detection limit” indicates the smallest true value of the measurand which can still be detected with the 
applied measurement procedure; this gives a decision on whether or not the measurement procedure 
satisfies the requirements and is therefore suitable for the intended measurement purpose; 

⎯ the “limits of the confidence interval” enclose, in the case of the physical effect recognized as present, a 
confidence interval containing the true value of the measurand with a specified probability. 

Hereinafter, the limits mentioned are jointly called “characteristic limits”. 

Since measurement uncertainty plays an important part in this International Standard, the evaluation of 
measurements and the treatment of measurement uncertainties are carried out by means of the general 
procedures according to ISO/IEC Guide 98-3; see also References [1, 2]. This enables the strict separation of 
the evaluation of the measurements, on the one hand (Clause 5), and the provision and calculation of the 
characteristic limits, on the other hand (Clause 6). This International Standard is based on Bayesian statistics 
according to References [6 to 19], such that uncertain quantities and influences, which do not behave 
randomly in measurements repeated several times or in counting measurements, can also be taken into 
account. 

Equations are provided for the calculation of the characteristic limits of an ionizing radiation measurand via the 
“standard measurement uncertainty” of the measurand (hereinafter “standard uncertainty”). The standard 
uncertainties of the measurement, as well as those of sample treatment, calibration of the measuring system 
and other influences are taken into account. However, the latter standard uncertainties are assumed to be 
known from previous investigations. 
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Determination of the characteristic limits (decision threshold, 
detection limit and limits of the confidence interval) for 
measurements of ionizing radiation — Fundamentals and 
application 

1 Scope 

This International Standard specifies a procedure, in the field of ionizing radiation metrology, for the 
calculation of the “decision threshold”, the “detection limit” and the “limits of the confidence interval” for a non-
negative ionizing radiation measurand, when counting measurements with preselection of time or counts are 
carried out, and the measurand results from a gross count rate and a background count rate as well as from 
further quantities on the basis of a model of the evaluation. In particular, the measurand can be the net count 
rate as the difference of the gross count rate and the background count rate, or the net activity of a sample. It 
can also be influenced by calibration of the measuring system, by sample treatment and by other factors. 

This International Standard also applies, in the same way to: 

⎯ counting measurements on moving objects (see B.2); 

⎯ measurements with linear-scale analogue count rate measuring instruments (hereinafter called 
ratemeters, see B.3); 

⎯ repeated counting measurements with random influences (see B.4); 

⎯ counting measurements on filters during accumulation of radioactive material (see B.5); 

⎯ counting spectrometric multi-channel measurements, if particular lines in the spectrum are to be 
considered and no adjustment calculations, for instance, an unfolding, have to be carried out (see C.2 to 
C.4); 

⎯ counting spectrometric multi-channel measurements if evaluated by unfolding methods (see C.5), in 
particular, alpha- and gamma-spectrometric measurements (see C.5.5 and C.5.6, respectively). 

This International Standard also applies analogously to other measurements of any kind if the same model of 
the evaluation is involved. In this sense, it is also applicable to measurements with albedo dosimeters [18]. 
Further practical examples can be found in other International Standards, for example ISO 18589[21], 
ISO 9696[22], ISO 9697[23], ISO 9698[24], ISO 9699[25], ISO 10703[26], ISO 7503[27] and ISO 28218[28]. 

2 Normative references 

The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies. 

ISO 31-0, Quantities and units — Part 0: General principles 

ISO 31-9, Quantities and units — Part 9: Atomic and nuclear physics 
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ISO/IEC Guide 98-3:2008, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in 
measurement (GUM:1995) 

ISO/IEC Guide 99:2007, International vocabulary of metrology — Basic and general concepts and associated 
terms (VIM) 

ISO 3534-1, Statistics — Vocabulary and symbols — Part 1: General statistical terms and terms used in 
probability 

3 Terms and definitions 

For the purposes of this document, the terms and definitions given in ISO 31-0, ISO 31-9, ISO/IEC Guide 98-3, 
ISO/IEC Guide 99 and ISO 3534-1 and the following apply. 

3.1 
measurement procedure 
set of operations, described specifically, used in the performance of particular measurements according to a 
given method 

[ISO/IEC Guide 99:2007, 2.6] 

3.2 
measurand 
particular quantity subject to measurement 

[ISO/IEC Guide 99:2007, 2.3] 

NOTE In this International Standard, a measurand is non-negative and quantifies a nuclear radiation effect. The 
effect is not present if the true value of the measurand is zero. An example of a measurand is the intensity of an energy 
line in a spectrum above the background in a spectrometric measurement. 

3.3 
result of a measurement 
value attributed to a measurand, obtained by measurement 

[ISO/IEC Guide 99:2007, 2.9] 

3.4 
uncertainty of measurement 
uncertainty 
non-negative parameter, which characterizes the dispersion of the values which could reasonably be 
attributed to the measurand 

[ISO/IEC Guide 99:2007, 2.26] 

See also ISO/IEC Guide 98-3. 

NOTE The uncertainty of a measurement derived according to ISO/IEC Guide 98-3 comprises, in general, many 
components. Some of these components can be evaluated from the statistical distribution of the results of series of 
measurements and can be characterized by experimental standard deviations. The other components, which can also be 
characterized by standard deviations, are evaluated from assumed or known probability distributions based on experience 
and other information. 

3.5 
model of evaluation 
set of mathematical relationships between all measured and other quantities involved in the evaluation of 
measurements 

NOTE The model of evaluation does not need to be an explicit function; it can also be an algorithm realized by a 
computer code. 
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3.6 
decision threshold 
value of the estimator of the measurand, which when exceeded by the result of an actual measurement using 
a given measurement procedure of a measurand quantifying a physical effect, one decides that the physical 
effect is present 

NOTE 1 The decision threshold is defined such that in cases where the measurement result, y, exceeds the decision 
threshold, ,y*  the probability that the true value of the measurand is zero is less or equal to a chosen probability, α. 

NOTE 2 If the result, y, is below the decision threshold, ,y*  the result cannot be attributed to the physical effect; 
nevertheless it cannot be concluded that it is absent. 

3.7 
detection limit 
smallest true value of the measurand which ensures a specified probability of being detectable by the 
measurement procedure 

NOTE With the decision threshold according to 3.6, the detection limit is the smallest true value of the measurand for 
which the probability of wrongly deciding that the true value of the measurand is zero is equal to a specified value, β, when, 
in fact, the true value of the measurand is not zero. 

3.8 
limits of the confidence interval 
values which define a confidence interval containing the true value of the measurand with a specified 
probability 

NOTE A confidence interval is sometimes known as a credible interval or a Bayesian interval. It is characterized in 
this International Standard by a specified probability (1 )γ− . 

3.9 
best estimate of the true value of the measurand 
expectation value of the probability distribution of the true value of the measurand, given the experimental 
result and all prior information on the measurand 

NOTE The best estimate, among all possible estimates of the measurand on the basis of given information, which is 
associated with the minimum uncertainty. 

3.10 
guideline value 
value which corresponds to scientific, legal or other requirements and which is intended to be assessed by the 
measurement procedure 

NOTE 1 The guideline value can be given, for example, as an activity, a specific activity or an activity concentration, a 
surface activity or a dose rate. 

NOTE 2 The comparison of the detection limit with a guideline value allows a decision on whether or not the 
measurement procedure satisfies the requirements set forth by the guideline value and is therefore suitable for the 
intended measurement purpose. The measurement procedure satisfies the requirement if the detection limit is smaller 
than the guideline value. 

3.11 
background effect 
measurement effect caused by radiation other than that caused by the object of the measurement itself 

EXAMPLE Natural radiation sources. 

3.12 
net effect 
contribution of the possible radiation of a measurement object (for instance, of a radiation source or radiation 
field) to the measurement effect 
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3.13 
gross effect 
measurement effect caused by the background effect and the net effect 

3.14 
shielding factor 
factor describing the reduction of the background count rate by the effect of shielding caused by the 
measurement object 

3.15 
relaxation time constant 
duration in which the output signal of a linear-scale ratemeter decreases to 1/e times the starting value after 
stopping the sequence of the input pulses 

3.16 
background 
〈spectrometric measurements〉 number of events of no interest in the region of a specific line in the spectrum 

NOTE The events can be due to the background effect by the environmental radiation and also to the sample itself 
(for instance, from other lines). 

4 Quantities and symbols 

The symbols for auxiliary quantities and the symbols only used in the annexes are not listed. Physical 
quantities are denoted by upper-case letters but shall be carefully distinguished from their values, denoted by 
the corresponding lower-case letters. In addition, the special quantities and symbols for unfolding in 
spectrometric measurements given in C.5.1 and for Bayesian statistics given in F.2.1 are used. 

m number of input quantities 

iX  input quantity ( 1, ..., )i m=  

ix  estimate of the input quantity iX  

( )iu x  standard uncertainty of the input quantity iX  associated with the estimate ix  

1 1( )h x  standard uncertainty 1( )u x  as a function of the estimate 1x  

ix∆  width of the region of the possible values of the input quantity iX  

rel( )u w  relative standard uncertainty of a quantity kY  associated with the estimate w 

G model function 

Y random variable as an estimator of the measurand; also used as the symbol for the non-negative 
measurand itself, which quantifies the physical effect of interest 

y  true value of the measurand; if the physical effect of interest is not present, then 0;y =  otherwise, 
0y >  

y determined value of the estimator Y, estimate of the measurand, primary measurement result of the 
measurand 

jy  values y from different measurements ( 0,1, 2, ...)j =  

( )u y  standard uncertainty of the measurand associated with the primary measurement result y 
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( )u y  standard uncertainty of the estimator Y as a function of the true value y  of the measurand 

ŷ  best estimate of the measurand 

ˆ( )u y  standard uncertainty of the measurand associated with the best estimate ŷ  

y*  decision threshold of the measurand 

#y  detection limit of the measurand 

iy  approximations of the detection limit #y  

ry  guideline value of the measurand  

y , y  lower and upper limit of the confidence interval, respectively, of the measurand 

iρ  count rate as an input quantity iX  

nρ  count rate of the net effect (net count rate) 

gρ  count rate of the gross effect (gross count rate) 

0ρ  count rate of the background effect (background count rate) 

in  number of counted pulses obtained from the measurement of the count rate iρ  

gn , 0n  number of counted pulses of the gross effect and of the background effect, respectively 

it  measurement duration of the measurement of the count rate iρ  

gt , 0t  measurement duration of the measurement of the gross effect and of the background effect, 
respectively 

ir  estimate of the count rate iρ  

gr , 0r  estimate of the gross count rate and of the background count rate, respectively 

gτ , 0τ  relaxation time constant of a ratemeter used for the measurement of the gross effect and of the 
background effect, respectively 

α, β probability of the error of the first and second kind, respectively 

1 γ−  probability for the confidence interval of the measurand 

pk , qk  quantiles of the standardized normal distribution for the probabilities p and q, respectively (for 
instance 1p α= − , 1 β−  or 1 2γ− ) 

( )tΦ  distribution function of the standardized normal distribution; ( )pk pΦ =  applies 

5 Fundamentals 

5.1 General aspects concerning the measurand 

A non-negative measurand shall be assigned to the physical effect to be investigated according to a given 
measurement task. The measurand shall quantify the effect. It assumes the true value 0y =  if the effect is not 
present in a particular case. 
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Then, a random variable Y, an estimator, shall be assigned to the measurand. The symbol Y is also used in 
this clause for the measurand itself. A value y of the estimator Y, determined from measurements, is an 
estimate of the measurand. It shall be calculated as the primary measurement result together with the primary 
standard uncertainty ( )u y , of the measurand associated with y. These two values form the primary complete 
measurement result for the measurand and are obtained in accordance with ISO/IEC Guide 98-3 (see also 
References [1, 2]) by evaluation of the measurement data and other information by means of a model (of the 
evaluation), which mathematically connects all the quantities involved (see 5.2). In general, the fact that the 
measurand is non-negative is not explicitly taken into account in the evaluation. Therefore, y may be negative, 
especially when the measurand nearly assumes the true value 0y = . The primary measurement result, y, 
differs from the best estimate, ŷ , of the measurand calculated in 6.5. With ŷ , the knowledge that the 
measurand is non-negative is taken into account. The standard uncertainty, ˆ( )u y , associated with ŷ  is 
smaller than ( )u y . 

5.2 Model 

5.2.1 General model 

In many cases, the measurand, Y, is a function of several input quantities, iX , in the form of Equation (1): 

1( , ..., )mY G X X=  (1) 

Equation (1) is the model of the evaluation. Substituting given estimates, ix , of the input quantities, iX , in the 
model function, G, Equation (1) yields the primary measurement result y of the measurand as: 

1( , ..., )my G x x=  (2) 

The standard uncertainty, ( )u y , of the measurand associated with the primary measurement result, y, is 
calculated according to Equation (3), if the input quantities, iX , are independently measured and standard 
uncertainties, ( )iu x , associated with the estimates, ix , are given, from the relation: 

2
2 2

1
( ) ( )

m

i
ii

Gu y u x
X=

⎛ ⎞∂= ⎜ ⎟∂⎝ ⎠
∑  (3)  

In Equation (3), the estimates, ix , shall be substituted for the input quantities, iX , in the partial derivatives of 
G. The determination of the estimates, ix , and the associated standard uncertainties, ( )iu x , and also the 
numerical or experimental determination of the partial derivatives are in accordance with ISO/IEC Guide 98-3 
or References [1, 2]. For a count rate, i iX ρ= , with the given counting result, in , recorded during the 
measurement of duration, it , the specifications i i i ix r n t= =  and 2 2( )i i i i iu x n t r t= =  apply (see also F.1). 
If the input quantities are not independently measured and for more complicated measurement evaluations 
such as unfolding, see C.5.2. 

In 5.2.2, the input quantity, 1X , for instance the gross count rate, is taken as that quantity whose value, 1x , is 
not given when a true value, y , of the measurand, Y, is specified within the framework of the calculation of the 
decision threshold and the detection limit. Analogously, the input quantity, 2X , is assigned in a suitable way 
to the background effect. The data of the other input quantities are taken as given from independent previous 
investigations. 

5.2.2 Model in ionizing radiation measurements 

In this International Standard, the measurand, Y, with its true value, y , relates to a sample of radioactive 
material and is determined from counting the gross effect and the background effect with preselection of time 
or counts. In particular, Y can be the net count rate, nρ , or the net activity, A, of the sample. The symbols 
belonging to the counting of the gross effect and of the background effect are marked in the following by the 
subscripts g and 0, respectively. 
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In this International Standard, the model is specified as follows: 

6 8
1 1 2 3 4 1 2 3 4

5 7
( , ..., ) ( ) ( )m

X X
Y G X X X X X X X X X X W

X X
⋅ ⋅ ⋅

= = − − ⋅ = − − ⋅
⋅ ⋅ ⋅

 (4) 

with  

6 8

5 7

X X
W

X X
⋅ ⋅ ⋅

=
⋅ ⋅ ⋅

 (5) 

1 gX ρ=  is the gross count rate and 2 0X ρ=  is the background count rate. The other input quantities, iX , 
are calibration, correction or influence quantities, or conversion factors, for instance the emission or response 
probability or, in particular, 3X  is a shielding factor and 4X  an additional background correction quantity. If 
some of the input quantities are not involved, 1ix =  ( 3; 4)i i= > , 4 0x =  and ( ) 0iu x =  shall be set for them. 
For the count rates, 1 g g gx r n t= =  and 2 2

1 g g g g( )u x n t r t= =  as well as 2 0 0 0x r n t= =  and 
2 2

2 0 0 0 0( )u x n t r t= =  apply. 

By substituting the estimates, ix , in Equation (4), the primary estimate, y, of the measurand, Y, gives the 
result: 

g 0
1 1 2 3 4 g 0 3 4 3 4

g 0
( , ..., ) ( ) ( )m

n n
y G x x x x x x w r r x x w x x w

t t

⎛ ⎞
⎜ ⎟= = − − ⋅ = − − ⋅ = − − ⋅
⎜ ⎟
⎝ ⎠

 (6) 

with 

6 8

5 7

x x
w

x x
⋅ ⋅ ⋅

=
⋅ ⋅ ⋅

 (7) 

With the partial derivatives: 

1

G W
X

∂ =
∂

; 3
2

G X W
X
∂ = −

∂
; 2

3

G X W
X
∂ = −

∂
; 

4

G W
X
∂ = −

∂
; ( 5)

i i

G Y i
X X

∂ = ±
∂

W  (8) 

and by substituting the estimates ix , w and y, Equation (3) yields the standard uncertainty ( )u y  of the 
measurand associated with y: 

2 2 2 2 2 2 2 2 2
1 3 2 2 3 4 rel

2 2 2 2 2 2 2
g g 3 0 0 0 3 4 rel

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

u y w u x x u x x u x u x y u w

w r t x r t r u x u x y u w

⎡ ⎤= ⋅ + + + +⎣ ⎦

⎡ ⎤= ⋅ + + + +⎣ ⎦

 (9) 

where 

2
2
rel 2

5

( )
( )

m
i

ii

u x
u w

x=
=∑  (10) 

is the sum of the squared relative standard uncertainties of the quantities 5X  to mX . For 5m < , the values 

1w =  and 2
rel( ) 0u w =  apply. 

The estimate ix  and the standard uncertainty ( )iu x  of iX  ( 3, ..., )i m=  are taken as known from previous 
investigations or as values of experience according to other information. In the previous investigations, ix  can 
be determined as an arithmetic mean value and 2( )iu x  as an empirical variance (see B.4.1). If necessary, 
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2( )iu x  can also be calculated as the variance of a rectangular distribution over the region of the possible 
values of iX  with the width ix∆ . This yields 2 2( ) ( ) 12.i iu x x= ∆  

For the application of the procedure to particular measurements, including spectrometric measurements, see 
Annexes B and C. 

5.3 Calculation of the standard uncertainty as a function of the measurand 

5.3.1 General aspects 

For the provision and numerical calculation of the decision threshold in 6.2 and of the detection limit in 6.3, the 
standard uncertainty of the measurand is needed as a function ( )u y  of the true value 0y W  of the measurand. 
This function shall be determined in a way similar to ( )u y  within the framework of the evaluation of the 
measurements by application of ISO/IEC Guide 98-3; see also References [1, 2]. In most cases, ( )u y  shall be 
formed as a positive square root of a variance function 2( )u y  calculated first. This function shall be defined, 
unique and continuous for all 0y W  and shall not assume negative values. 

In most cases, ( )u y  can be explicitly specified, provided that 1( )u x  is given as a function 1 1( )h x  of 1x . In such 
cases, y shall be formally replaced by y  and Equation (2) shall be solved for 1x . With a specified y , the 
value 1x  can also be calculated numerically from Equation (2); for instance, by means of an iteration 
procedure, which results in 1x  as a function of y  and 2x , ..., mx . This function shall replace 1x  in 
Equation (3) and in 1 1 1( ) ( )u x h x= , which finally yields ( )u y  instead of ( )u y . In the case of the model 
according to Equation (6) and 5.3.2, one shall proceed in this way. Otherwise, 5.3.3 shall be applied, where 

( )u y  follows as an approximation by interpolation from the data jy  and ( )ju y  of several measurements. 

5.3.2 Explicit calculation 

When, in the case of the model according to Equation (6), the standard uncertainty, 1( )u x , of the gross count 

rate 1 g,X ρ=  is given as a function 1 1( )h x  of the estimate, 1 g,x r=  either 1 1 1 g( )h x x t=  or 

1 1 1 g( )h x x n=  applies if the measurement duration, gt  (time preselection), or, respectively, the number, gn , 

of recorded pulses (preselection of counts) is specified. 

The value y shall be formally replaced by y . This allows the elimination of 1x  in the general case and, in 
particular, of gn  with time preselection and of gt  with preselection of counts in Equation (9) by means of 
Equation (6). These values are not available when y  is specified. This yields in the general case according to 
Equation (6) 

1 2 3 4x y w x x x= + +  (11) 

By substituting 1x  according to Equation (11) in the given function 1 1( )h x , i.e. with 
2 2

1 1 2 3 4( ) ( )u x h y w x x x= + + , the following results from Equation (9): 

2 2 2 2 2 2 2 2 2
1 2 3 4 3 2 2 3 4 rel( ) ( ) ( ) ( ) ( ) ( )u y w h y w x x x x u x x u x u x y u w⎡ ⎤= ⋅ + + + + + +⎣ ⎦  (12) 

With time preselection and because of 1 g gx n t=  and 2 0x r= , 

g g 0 3 4( )n t y w r x x= ⋅ + +  (13) 
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is obtained from Equation (11). Then, with 2 2
1 1 1 g g g( )h x x t n t= =  and by substituting gn  according to 

Equation (13) and with 2
2 0 0( )u x r t= , Equation (12) leads to 

2 2 2 2 2 2 2
0 3 4 g 3 0 0 0 3 4 rel( ) ( ) ( ) ( ) ( )u y w y w r x x t x r t r u x u x y u w⎡ ⎤= ⋅ + + + + + +⎣ ⎦  (14) 

With preselection of counts, 

g
g

0 3 4

n
t

y w r x x
=

+ +
 (15) 

is analogously obtained. Then, with 2 2
1 1 1 g g g( )h x x t n t= =  and by substituting gt  according to Equation (15) 

and with 2 2
2 0 0( )u x r n= , Equation (12) leads to 

2 2 2 2 2 2 2 2 2
0 3 4 g 3 0 0 0 3 4 rel( ) ( / ) ( ) ( ) ( )u y w y w r x x n x r n r u x u x y u w⎡ ⎤= ⋅ + + + + + +⎣ ⎦  (16) 

Equation (22) has a solution, which is the detection limit, #y , if, with time preselection, the following condition 
is satisfied: 

1 rel( ) 1k u wβ− <  (17) 

or with preselection of counts, the following condition is satisfied: 

rel
2

1
g

1 ( ) 1k u w
nβ− ⋅ + <  (18) 

Otherwise, it can happen that a detection limit does not exist because of too great an uncertainty of the 
quantities 5X  to mX , summarily expressed by rel( )u w . The condition according to Equation (17) also applies 
in the case of Equation (12) if 1 1( )h x  increases for growing 1x  more slowly than 1x , i.e. if 1 1 1( ) 0h x x →  for 

1x → ∞ . 

5.3.3 Approximations 

It is often sufficient to use the following approximations for the function ( )u y , in particular, if the standard 
uncertainty, 1( )u x , is not known as a function 1 1( )h x . A prerequisite is that measurement result, jy , and 
associated standard uncertainties, ( )ju y , calculated according to 5.1 and 5.2 from previous measurements of 
the same kind, are already available ( 0,1,2, ...)j = . The measurements shall be carried out on different 
samples with differing activities, but in other respects as far as possible under similar conditions. One of the 
measurements can be a background effect measurement or a blank measurement with 0y =  and, for 
instance, 0j = . Then, 0 0y =  shall be set and 0(0) ( )u u y= . The measurement currently carried out can be 
taken as a further measurement with 1j = . 

The function ( )u y  often shows a rather slow increase. Therefore, the approximation 1( ) ( )u y u y=  is sufficient 
in some of these cases, especially if the primary measurement result, 1y , of the measurand is not much 
larger than the associated standard uncertainty 1( )u y . 

If only 0(0) ( )u u y= , 1 0y >  and 1( )u y  are known, the following linear interpolation often suffices: 

2 2 2
1 1 1( ) (0)(1 ) ( )u y u y y u y y y= − +  (19) 
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If the results 0y , 1y  and 2y  as well as the associated standard uncertainties 0( )u y , 1( )u y , and 2( )u y  from 
three measurements are available, the following bilinear interpolation can be used: 

2 2 2 20 2 0 11 2
0 1 2

0 1 0 2 1 0 1 2 2 0 2 1

( )( ) ( )( )( )( )
( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( )
y y y y y y y yy y y y

u y u y u y u y
y y y y y y y y y y y y

− − − −− −
= ⋅ + ⋅ + ⋅

− − − − − −
 (20) 

If results from many similar measurements are given, the parabolic shape of the function 2( )u y  can also be 
determined by an adjustment calculation. 

6 Characteristic limits and assessments 

6.1 Specifications 

The probability, α, of the error of the first kind, the probability, β, of the error of the second kind and the 
probability, 1 γ− , for the confidence interval shall be specified. The choice depends on the application. A 
frequently cited choice is α β=  and the value 0,05 for α and β. Then, 1 1 1,65k kα β− −= = . If the value of 0,05 
is chosen for γ, then 1 2 1,96k γ− =  (see Annex E). 

If it is to be assessed whether or not a measurement procedure for the measurand satisfies the requirements 
to be fulfilled for scientific, legal or other reasons (see 6.6), a guideline value, ry , as a value of the measurand, 
for instance, an activity, shall also be specified. 

6.2 Decision threshold 

The decision threshold, y* , of the non-negative measurand according to 5.1, quantifying the physical effect 
of interest, is the value of the estimator, Y, which allows the conclusion that the physical effect is present, if the 
primary measurement result, y, exceeds the decision threshold, y* . If the result, y, is below the decision 
threshold, y* , the result cannot be attributed to the physical effect, nevertheless it cannot be concluded that it 
is absent. If the physical effect is really absent, the probability of taking the wrong decision, that the effect is 
present, is equal to the specified probability, α (error of the first kind; see 6.1 and 6.5). 

A determined primary measurement result, y, for the non-negative measurand is only significant for the true 
value of the measurand to differ from zero ( 0y > ), if it is larger than the decision threshold 

1 (0)y* k uα−=  (21) 

6.3 Detection limit 

The detection limit, #y , is the smallest true value of the measurand, for which, by applying the decision rule 
according to 6.2, the probability of the wrong assumption that the physical effect is absent (error of the second 
kind) does not exceed the specified probability, β (see 6.1). 

In order to find out whether a measurement procedure is suitable for the measurement purpose, the detection 
limit, #y , is compared with the specified guideline value, ry , of the measurand (see 6.1 and 6.6). The 
detection limit, #y , is the smallest true value of the measurand which can be detected with the measurement 
procedure used. It is high enough compared to the decision threshold, y* , that the probability of the error of 
the second kind does not exceed β. The detection limit, #y , is obtained as the smallest solution of 
Equation (22): 

# #
1 ( )y y* k u yβ−= +  (22) 

where #y y*W  always applies. 
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Equation (22) is an implicit equation; its right-hand side also depends on #y . The detection limit can be 
calculated by solving Equation (22) for #y  or, more simply, by iteration (see Figure 1). Thus, an improved 
approximation 1iy +  is obtained by repeatedly substituting an approximation iy  for #y  on the right-hand side 
of Equation (22). This leads to Equation (23): 

1 1 ( )i iy y* k u yβ+ −= +  (23) 

As a starting approximation, for instance, 0 2y y*=  can be chosen. The iteration converges in most cases, 
but not if Equation (22) does not have a solution, #y . In the latter case or if #y y*<  results, a detection limit 
cannot be established for this measurement procedure (see 5.3.2 and 6.6). In this situation enlarging β can 
result in a solution to Equation (22). 

After the calculation of 1y  or, for instance, with a suitable choice of e.g. 1 3y y*= , it is more advantageous for 
1i W  to apply the regula falsi, which in general converges more rapidly. For this purpose, Equation (23) shall 

be replaced by 

1
1

1

( ) ( ) ( )

1 ( ) ( ) ( )
i j j i i j

i
i j i j

y* k y u y y u y y y
y

k u y u y y y
β

β

−
+

−

⎡ ⎤+ ⋅ − −⎣ ⎦=
⎡ ⎤− ⋅ − −⎣ ⎦

 (24) 

with j i< . Therefore, 0j =  should be set or j be fixed after several iteration steps (see Figure 1). 

 
Key 
1 straight line y y=  

2 curve 1 ( )y y* k u yβ−= +  

y  true value of the measurand 
y estimate of the measurand 

For the other symbols, see text. 

Figure 1 — Calculation of the detection limit by iteration 
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With the iteration according to Equations (23) or (24) and beginning with a starting approximation, 0y , for 
instance, 0 2y y*=  as shown, the sequences of the improved approximations iy  ( 1, 2, ...)j =  converge to 
the detection limit #y , which is the abscissa of the intersection point of the straight line (key item 1 in 
Figure 1) and curve (key item 2 in Figure 1). y*  is the decision threshold. With the alternative application of 
the regula falsi according to Equation (24), the sequence, iy , is generated by means of secants of curve 2, for 
instance, through points A and B. The shown hyperbolic shape of the curve (key item 2 in Figure 1) is typical 
of many applications, for instance, those with Equations (14) or (16). The detection limit does not exist if the 
curve does not intersect the straight line (key item 1 in Figure 1) at any abscissa y y*W . 

Any iteration shall be stopped if a specified accuracy of ν digits is attained, i.e. if the first digits, ν, of the 
successive approximations no longer change. But, if too high an accuracy is demanded, then, even with an 
iteration converging in principle, the successive approximations in general permanently fluctuate around and 
close to the exact solution but never attain it. A smaller ν shall then be chosen. 

With the approximation ( ) ( )u y u y=  (see 5.3.3), #
1 1( ) ( )y k k u yα β− −= +  applies. 

The linear interpolation according to Equation (19) leads to the approximation: 

# 2 2 2 2
1 1( ) (0)y a a k k uβ α− −= + + −  (25) 

with 

( ){ }2 2 2
1 1 1 1

1(0) ( ( ) (0)
2

a k u k y u y uα β− −
⎡ ⎤= + −⎣ ⎦  (26) 

If α β= , # 2y a=  follows. 

If α β=  is chosen and 2( )u y  is obtained or approximated by a second-order polynomial 
2 2

0 1 2( )u y c c y c y= + +  as in Equations (14), (16) and (20), then with 1 1k k kα β− −= =  

0y* k c=  (27) 

and 

2
# 1

2
2

2
1
y* k c

y
k c

+
=

−
 (28) 

6.4 Limits of the confidence interval 

The limits of the confidence interval are provided for a physical effect, recognized as present according to 6.2, 
in such a way that the confidence interval contains the true value of the measurand with the specified 
probability 1 γ−  (see 6.1). The limits of the confidence interval take into account the fact that the measurand 
is non-negative. 

With a primary measurement result, y, of the measurand and the standard uncertainty, ( )u y , associated with y 
(see 5.2), the lower limit of the confidence interval, y , and the upper limit of the confidence interval, y , are 
provided by: 

( )py y k u y= −  with (1 2)p ω γ= ⋅ −  (29) 

( )qy y k u y= +  with 1 2q ω γ= −  (30) 
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where 

/ ( ) 21 exp( )d / ( )
22

y u y
v v y u y

π
ω

−∞

= − = Φ ⎡ ⎤⎣ ⎦∫  (31) 

For the distribution function, ( )tΦ , of the standardized normal distribution and for its inversion, pk t=  for 

( )t pΦ = , see Table E.1. For methods for its calculation, see Annex E or, for instance, Reference [29]. 

In general, the limits of the confidence interval are located neither symmetrical to y, nor to the best estimate, 
ŷ  (see 6.5 and Figure 2), but the probabilities of the measurand being smaller than y  or larger than y  
both equal 2γ . The relations 0 y y< <  apply. 

1ω =  may be set if 4 ( )y u yW . In this case, the following approximations symmetrical to y apply: 

1 / 2 ( )y y k u yγ−= −  and 1 / 2 ( )y y k u yγ−= +  (32) 

6.5 Assessment of a measurement result 

The determined primary measurement result, y, of the measurand shall be compared with the decision 
threshold, y* . If y y*> , the physical effect quantified by the measurand is recognized as present. Otherwise, 
it is decided that the effect is absent. 

If y y*W  and with ω according to Equation (31), the best estimate ŷ  of the measurand is given by (see 5.1 
and Figure 2): 

{ }2 2( )exp 2 ( )
ˆ

2

u y y u y
y y

ω π

⎡ ⎤− ⎣ ⎦= +
 

 (33) 

The standard uncertainty associated with ŷ  reads 

2ˆ ˆ ˆ( ) ( ) ( )u y u y y y y= − −  (34) 

NOTE 1 If the best estimate, ˆ,y  and its standard uncertainty, ˆ( ),u y  are calculated, the recording of the primary 
measurement result, y, and its standard uncertainty, ( ),u y  may be omitted. 

NOTE 2 If the decision rule defined by the decision threshold is not used and if ,y y*<  the best estimate, ˆ,y  and its 
standard uncertainty, ˆ( ),u y  can also be calculated. 

The relations ˆy y< , ˆ0 y<  and ˆy y y< <  as well as ˆ( ) ( )u y u y<  and ˆ ˆ( )u y y<  apply; moreover, for 
4 ( )y u yW , the approximations 

ˆ ˆ ;  ( ) ( )y y u y u y= =  (35) 

hold true. 
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Key 
( )y u y  quotient of the primary measurement result of the measurand and the standard uncertainty of the measurand 

associated with the best estimate 

For the curves, see the text. 

Figure 2 — Best estimate and limits of the confidence interval 

The best estimate, ŷ , of the measurand, the associated standard uncertainty, ˆ( )u y , the lower limit, y , and 
the upper limit, y , of the confidence interval are given as functions of the primary measurement result, y. All 
these values are scaled with the standard uncertainty, ( )u y , and 0,05γ =  is chosen. The ascending straight 
lines and the horizontal straight line with ordinate 1 are asymptotes. 

6.6 Assessment of a measurement procedure 

The decision on whether or not a measurement procedure to be applied sufficiently satisfies the requirements 
regarding the detection of the physical effect quantified by the measurand is made by comparing the detection 
limit, #y , with the specified guideline value, ry . If #

ry y>  or if Equation (22) has no solution, #y , the 
measurement procedure is not suitable for the intended measurement purpose with respect to the 
requirements. 

To improve the situation in the case of #
ry y> , it can often be sufficient to choose longer measurement 

durations or to preselect more counts of the measurement procedure. This reduces the detection limit. 
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7 Documentation 

The content of the test report depends on the specific application as well as on demands of the customer or 
regulator. Independently of this, information shall be retained in order to justify the data of the test report and 
to guarantee traceability. This applies in particular to: 

a) a reference to this International Standard, i.e. ISO 11929:2009; 

b) the physical effect of interest, measurand and model of the evaluation; 

c) the probabilities α and β of the errors of the first and second kind, respectively, and, if necessary, the 
guideline value, r ;y  

d) the primary measurement result, y, and the standard uncertainty, ( )u y , associated with y; 

e) the decision threshold, ;y*  

f) detection limit #;y  

g) if necessary, a statement as to whether or not the measurement procedure is suitable for the intended 
measurement purpose; 

h) a statement as to whether or not the physical effect is recognized as being present; 

NOTE If the physical effect is not recognized as being present, i.e. if y y*< , it is occasionally demanded by the 
regulator to document #y<  instead of the measured result, y. Such documentation can be meaningful since it allows, 
by comparison with the guideline value, to demonstrate that the measurement procedure is suitable for the intended 
measurement purpose. 

i) in addition, if the physical effect is recognized as being present, the lower limit of the confidence interval, 
y , and the upper limit of the confidence interval, y , with the probability, 1 γ− , for the confidence 
interval, best estimate, ŷ , of the measurand, and standard uncertainty, ˆ( )u y  associated with ŷ . 
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Annex A 
(informative) 

 
Overview of the general procedure 

A.1 Introduction of the model 

Introduction of the non-negative measurand, Y, and of its representation as a function of the input quantities, 
iX  (model; 1X  is the gross effect; see 5.1 and 5.2.1): 

1( , ..., )mY G X X=  (A.1) 

A.2 Preparation of the input data and specifications 

Determination of the estimates, ix , of the input quantities, ,iX  with the associated standard uncertainties, 
( )iu x , in conformity with ISO/IEC Guide 98-3 (see References [1, 2]), from measurements and previous 

investigations. For a count rate, i iX ρ= , with the counting result, in , obtained from a measurement of 
duration, it , introduce i i ix n t=  and 2 2( )i i iu x n t=  (see 5.2.1). In particular, 1 1 1 1 1( ) ( )u x h x x t= =  applies 
for the gross effect, 1X  (see 5.3.1 and A.4). 

Specifications: probabilities α, β and γ, and the guideline value, ry  (see 6.1). 

A.3 Calculation of the primary measurement result, y, with the associated standard 
uncertainty, u(y) 

1( , ..., )my G x x=  (A.2) 

2
2 2

1
( ) ( )

m

i
ii

Gu y u x
X=

⎛ ⎞∂= ⎜ ⎟∂⎝ ⎠
∑  (A.3) 

for presupposed uncorrelated input quantities, iX  (see 5.2.1 and A.2). Otherwise, see the references in A.2. 
The estimates, 1x , ..., mx , shall be substituted in iG X∂ ∂ . 

A.4 Calculation of the standard uncertainty, ( )u y  

If 1( )u x  is known as a function 1 1( )h x , y  is replaced by y  and Equation (A.2) is solved for 1x . With y  
specified, 1x  can also be numerically calculated from Equation (A.2), for instance by means of an iteration 
procedure. This results in 1x  as a function of y  and 2x , ..., mx . The function replaces 1x  in Equation (A.3) 
and in 1 1( )h x . This yields ( )u y  instead of ( )u y  (see 5.3.2). Otherwise, ( )u y  follows as an approximation by 
interpolating the data y  and ( )u y  from several measurements (see 5.3.3).  
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A.5 Calculation of the decision threshold, y*  

1 (0)y* k uα−=  (A.4) 

See 6.2. Assessment: an effect of the measurand, Y, is recognized as present if y y*>  (see 6.5). If not, A.7 
and A.8 are omitted. 

A.6 Calculation of the detection limit, #y  

The detection limit, #y , is the smallest solution of Equation (A.5): 

# #
1 ( )y y* k u yβ−= +  (A.5) 

It can be calculated by iteration with the starting approximation # 2y y*=  (see 6.3). Assessment: the 
measurement procedure is not suitable for the measurement purpose if #

ry y>  or if #y  does not exist (see 
6.6). 

A.7 Calculation of the limits of the confidence interval, y  and y  

( )py y k u y= −  with (1 / 2)p ω γ= ⋅ − ; ( )qy y k u y= +  with 1 / 2q ω γ= −  (A.6) 

where ( )ω y u y= Φ ⎡ ⎤⎣ ⎦  (see 6.4; for the calculation of ω, pk  and qk , see Annex E). 

A.8 Calculation of the best estimate, ŷ,  of the measurand with the associated 
standard uncertainty, ( ˆ)u y  

{ }2 2( )exp 2 ( )
ˆ

2

u y y u y
y y

ω π

⎡ ⎤− ⎣ ⎦= + ; 2ˆ ˆ ˆ( ) ( ) ( )u y u y y y y= − −  (A.7) 

See 6.5.  

A.9 Preparation of the documentation 

The report of the results is according to Clause 7. 
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Annex B 
(normative) 

 
Various applications 

B.1 General aspects 

The procedure described in the main part of this International Standard is so general that it allows a large 
variety of applications to similar measurements. Some important cases are discussed in the following clauses. 
They do not differ in their models from those in the main part, but merely in the interpretation of the input 
quantities, 1X  and 2X , and in setting up the corresponding estimates, 1x  and 2x , and standard uncertainties, 

1( )u x  and 2( )u x . 

With each of the following applications dealt with in Annexes B and C, the respective main task consists of 
determining the primary measurement result, y, of the measurand and the associated standard uncertainty, 

( )u y , according to 5.2 or A.3 as well as the standard uncertainty, ( )u y , as a function of the measurand 
according to 5.3 or A.4. Subsequently, with all applications, the decision threshold, y* , the detection limit, 

#y , the limits, y  and y , of the confidence interval, as well as the best estimate, ŷ , of the measurand with 
the associated standard uncertainty, ˆ( )u y , shall be calculated in the same way according to Clause 6 or A.5 
to A.8. This is no longer pointed out in the following clauses. Numerical examples of the applications are 
discussed in Annex D. 

B.2 Counting measurements on moving objects 

Let a counting measurement be carried out by moving the measurement object along a specified 
measurement distance on a straight line passing a radiation detector (or vice versa). Data obtained from the 
measurement during this travel are, on the one hand, the counted numbers, gn  or 0n , of the recorded pulses 
and, on the other hand, the measurement durations, gt  or 0t , respectively. In general, the measurement 
durations can be determined with negligible measurement uncertainties compared to all other measurement 
uncertainties that shall be taken into account. Therefore, they can be taken as constants and the 
measurement as a measurement with time preselection. 

The reduction of the background count rate by the shielding effect of the measurement object can be taken 
into account by means of the shielding factor, f, by setting 3X f=  and 4 0X =  in Equation (4). f can be 
obtained experimentally from previous measurements as an arithmetic mean value and the standard 
uncertainty, ( )u f , associated with f, as the empirical standard deviation of the arithmetic mean value. They 
can alternatively be obtained as the expectation value and the standard deviation, ( ) 12u f f= ∆ , 
respectively, from a rectangular distribution with the width f∆  over the region of the possible values of f. 

In the simplest case where the model shall be specified in the form of 1 2 3 g 0Y X X X fρ ρ= − = −  and where 
the measurement durations, gt  and 0t , are preselected and the estimates, 1 g g gx n t r= =  and 

2 0 0 0x n t r= = , with the associated squared standard uncertainties, 2
1 g g( )u x r t=  and 2

2 0 0( )u x r t= , are 
applied, the results read 

g 0
g 0

g 0

n n
y f r r f

t t
= − = − ; g 2 2 20

0
g 0

( ) ( )
r r

u y f r u f
t t

= + +  (B.1) 
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Replacing y by y  and eliminating g 0r y r f= + , because of 2 2
1 1 1 1 g g g( ) ( )u x h x x t r t= = = , yields 

2 2 20 0
0

g 0
( ) ( )

y r f r
u y f r u f

t t
+

= + +  (B.2) 

B.3 Measurements with ratemeters 

A ratemeter records the rate of pulses arriving at the input of the meter. Here, a ratemeter is understood as a 
linear, analogously working count rate measuring instrument where the output signal increases sharply (with a 
negligible rise time constant) upon the arrival of an input pulse and then decreases exponentially with a 
relaxation time constant, τ, until the next input pulse arrives. The signal increase shall be the same for all 
pulses and the relaxation time constant shall be independent of the count rate. A digitally working count rate 
measuring instrument simulating the one just described is also taken as a ratemeter having to be considered 
here. 

Each particular measurement using a ratemeter shall be carried out in the stationary state of the ratemeter. 
This requires at least a sufficiently large fixed time span between the start of measurement and reading the 
ratemeter indication. This applies to each sample and to each background effect measurement. According to 
Reference [30], fixed time spans of 3τ or 7τ correspond to deviations of the indication by 5 % or 0,1 % of the 
magnitude of the difference between the indication at the start of measurement and that at the end of the time 
span. If further uncertain influences have to be taken into account, a time span of 7τ should be chosen, if 
possible. 

The expectation values, gρ  and 0ρ , of the output signals of the ratemeter in the cases of measuring the 
gross and background effects, respectively, are taken as the input quantities, 1X  and 2X , for the calculation 
of the characteristic limits: 1 gX ρ=  and 2 0X ρ= . With the values gr  and 0r  of the output signals determined 
at the respective moments of measurement, the following approaches result for the values of the input 
quantities and the associated standard uncertainties: 

1 g 2 0 ;   x r x r= =  (B.3) 

g2 2 0
1 2

g 0
( )  ;   ( )

2 2
r r

u x u x
τ τ

= =  (B.4) 

In Equation (B.4), approximations with a maximum relative deviation of 5 % for g g 0,65r τ⋅ W  and of 1 % for 
g g 1,32r τ⋅ W  are specified according to Reference [30]. The same applies to 0 0r τ⋅ . The relaxation time 

constants, gτ  and 0τ , shall be adjusted to fulfil requirements regarding the maximum relative deviations. 

The ratemeter measurement is equivalent to a counting measurement with time preselection according to 
5.3.2 and with the measurement durations, g g2t τ=  and 0 02t τ= . The quotients g gn t  and 0 0n t  of the 
counting measurement shall be replaced here by the measured count rate values, gr  and 0r , respectively, of 
the ratemeter measurement. This applies, in particular, to Equation (13). See also the numerical example in 
D.2.2. The standard uncertainties of the relaxation time constants do not appear in the equations and are 
therefore not needed. 

In the simplest case where the model shall be specified in the form of 1 2 g 0Y X X ρ ρ= − = − , Equations (B.3) 
and (B.4) lead to 

g 0
g 0

g 0
 ;   ( )

2 2
r r

y r r u y
τ τ

= − = +  (B.5) 
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Replacing y by y  and eliminating g 0r y r= + , because of 2 2
1 1 1 1 g g g( ) ( ) (2 ) (2 )u x h x x rτ τ= = = , yields 

0 0

g 0
( )

2 2
y r r

u y
τ τ
+

= +  (B.6) 

B.4 Repeated counting measurements with random influences 

B.4.1 General aspects 

Random influences due to, for instance, sample treatment and instruments cause measurement deviations, 
which can be different from sample to sample. In such cases, the counting results, ,in  of the counting 
measurements on several samples of a radioactive material to be examined, on several blanks of a 
radioactively labelled blank material, and on several reference samples of a standard reference material are 
therefore respectively averaged to obtain suitable estimates, 1x  and 2x , of the input quantities, 1X  and 2,X  
and the associated standard uncertainties, 1( )u x  and 2( )u x , respectively. Accordingly, 1X  shall be 
considered as the mean gross count rate and 2X  as the mean background count rate. Therefore, the 
measurand, Y, with the sought-after true value, y , shall also be taken as an averaged quantity, for instance 
as the mean net count rate or mean activity of the samples. In this annex, all symbols belonging to the 
countings on the samples, blanks and reference samples are marked by the subscripts g, 0 and r, respectively. 
In each case, arithmetic averaging over m countings of the same kind carried out with the same preselected 
measurement duration, t (time preselection), is denoted by an overline. For m counting results, in  
( 1, ...,  ;  1)i m m= > , which are obtained in such a way and shall be averaged, the mean value, ,n  and the 
empirical variance, 2s , of the values, in , are given by 

2 2

1 1

1 1 ;   ( )
1

m m

i i
i i

n n s n n
m m= =

= = −
−∑ ∑  (B.7) 

The procedures in B.4.2 and B.4.3 are approximations for sufficiently large counting results 1in >>  and 
2n s<< , which allow the random influences to be recognized in addition to those of the Poisson statistics [see 

Equation (B.12)]. 

A numerical example of a measurement with random influences is described in D.3. 

B.4.2 Procedure with unknown influences 

In the case of unknown influences, the following expressions are valid for the mean gross count rate, 1X , and 
the mean background count rate, 2X : 

1 g g 2 0 0 ;   x n t x n t= =  (B.8) 

2 2 2 2 2 2
1 g g g 2 0 0 0( ) ( )  ;   ( ) ( )u x s m t u x s m t= =  (B.9) 

With the approaches according to Equations (B.8) and (B.9), Equations (6) and (9) yield 

g 0
3 4

g 0

n n
y x x w

t t

⎛ ⎞
⎜ ⎟= − − ⋅
⎜ ⎟
⎝ ⎠

 (B.10) 

2 2 2 2 2 2 2 2 2 2 2
g g g 3 0 0 0 0 0 3 4 rel( ) ( ) ( ) ( ) ( ) ( ) ( )u y w s m t x s m t n t u x u x y u w⎡ ⎤= ⋅ + + ⋅ + +⎣ ⎦  (B.11) 
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2
1( )u x  is not given as a function 2

1 1( )h x  of 1x . Therefore, 2( )u y  shall be determined as an approximation 
according to 5.3.3, for instance, according to Equation (19), where the current result, y, can be used as 1y . 
For this purpose and for the calculation of 2(0)u , i.e. for 0y = , the missing 2 2

g gs t  shall be replaced by 
2 2
0 0s t , since both these values are then variance estimates of the same distribution of count rate values, 

independent of gt , 0t , gm  and 0m . 

B.4.3 Procedure with known influences 

Another procedure, appropriate when small random influences are present, is based on the approach 

2 2 2s n nϑ= +  (B.12) 

The first term, ,n  of Equation (B.12) corresponds to the numbers in  of pulses according to the Poisson law in 
the absence of random influences. These influences are described by the second term, 2 2nϑ , assuming an 
empirical relative standard deviation, ϑ, valid for all samples and countings and caused by these influences. 
This influence parameter, ϑ, can be calculated from the data of counting measurements of the reference 
samples by combining Equation (B.12) with Equation (B.7): 

2 2 2
r r r( )s n nϑ = −  (B.13) 

Instead of the data from counting measurements of the reference samples, those for other samples can be 
used which were previously examined, not explicitly for reference purposes but under conditions similar to 
those of the reference samples. 

If 2 0ϑ <  results, the approach and the data are not compatible. The number, rm , of the reference samples 
should then be enlarged or 0ϑ =  be set. Moreover, 0,2ϑ <  should be obtained. Otherwise, one can proceed 
according to B.4.2. 

Instead of Equation (B.9), the expressions 

2 2 2 2 2 2 2 2
1 g g g g 2 0 0 0 0( ) ( ) ( )  ;   ( ) ( ) ( )u x n n m t u x n n m tϑ ϑ= + = +  (B.14) 

now apply with Equation (B.12). The cases g 1m =  and 0 1m =  are permitted here. Therefore, with 1 g g/x n t=  
and Equation (B.14), 2

1( )u x  is given as a function of 1x  by: 

2 2 2 2
1 1 1 1 g 1 g( ) ( ) ( )u x h x x t x mϑ= = +  (B.15) 

Equations (B.8) and (B.10) remain valid for 3 1x =  with 3( ) 0u x =  and 4 0x =  with 4( ) 0u x = . Furthermore, 
according to Equation (9), it follows that: 

2 2 2 2 2
1 2 rel( ) ( ) ( ) ( )u y w u x u x y u w⎡ ⎤= ⋅ + +⎣ ⎦  (B.16) 

2
1( )u x  and 2

2( )u x  according to Equation (B.14) shall be inserted. 

In order to calculate ( )u y , the result, y, is replaced by y  and Equation (B.10) is solved for 1 g gx n t= . This 
yields 1 0 0x y w n t= + . The estimate, 1x , determined in this way in the current case, shall be substituted in 
Equation (B.15) and 2

1( )u x  obtained therefrom in Equation (B.16). This finally leads to ( )u y  (see also 5.3): 

2 2 2 2 22
2 2 20 0 0 0 0

rel 2 2
g g 0 g g 0 g g 0 0 0

2 1( ) ( )
n n n n nywu y y u w w

m m t t m t t m t m t

ϑ ϑ ϑϑ ⎛ ⎞⎛ ⎞⎡ ⎤ +⎜ ⎟⎜ ⎟= + + + + + +⎢ ⎥
⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠

 (B.17) 
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The condition according to Equation (17) shall be replaced here by the condition 

2
2

1 rel
g

( ) 1k u w
mβ
ϑ

− ⋅ + <  (B.18) 

B.5 Counting measurements on filters during accumulation of radioactive material 

B.5.1 General aspects 

For monitoring flowing fluid media (gas or liquid, for instance vent air or room air in nuclear installations or 
water), a counting measurement can be continuously carried out on a filter during the accumulation of 
radioactive material from the medium. The measurement consists of a temporal sequence of consecutive 
measurement intervals of the same duration, t. The half-lives of the nuclides accumulated on the filter are 
assumed to be long compared to the total duration of all measurement intervals, the data of which are used in 
the following calculation of the characteristic limits. In addition, the background effect is assumed to remain 
constant during the whole measurement. There are two measurands, Y, of interest: 

a) the activity concentration, ,V jA  (activity divided by the total volume of the sample, see ISO 31-9), of the 
radioactive nuclides entrained by the medium, accumulated on the filter and measured during the 
measurement interval, j, of duration, t [case a), see B.5.2]; 

b) the change, ,V jA∆ , in the activity concentration according to case a), compared with the mean activity 
concentration, ,V jA , from m preceding measurement intervals [case b), see B.5.3]. 

It is sufficient for cases a) and b) to introduce the respective models according to 5.2 that describe the 
measurands, ,V jY A=  and ,V jY A= ∆ , as functions of the input quantities, iX , and to specify the estimates, 

ix , with the associated standard uncertainties, ( )iu x , of the input quantities, iX . Everything else then follows 
according to 5.2.2, 5.3.2 and Clause 6 and analogously to B.2 and B.3. A numerical example is described in 
D.4. 

The activity is divided by the sample volume, i.e. by the volume, V, of the medium flowing through the filter 
during the measurement of duration, t. This volume, V, with the associated standard uncertainty, ( )u V , as well 
as a calibration factor, ε, which shall be considered with the associated standard uncertainty, ( )u ε , are 
assumed to be known from previous investigations. The efficiency of the filter is assumed to be contained in ε. 
The standard uncertainty, ( )u t , of the measurement duration, t, is neglected since t can be measured far more 
exactly than all the other quantities involved and can thus be taken as a constant. 

B.5.2 Activity concentration as the measurand 

In case a), ,V jY A=  is the measurand of the measurement interval, j. The input quantities, iX , are specified 
as follows: 1 jX ρ= , 2 1jX ρ −= , 5X ε=  and 7X V= , where jρ  is the gross count rate in the measurement 
interval j. There are no further input quantities, they are set constant equalling 0 for 4X  and 1 otherwise with 
zero uncertainties. The model according to Equation (4) now reads  

11 2
,

5 7

j j
V j

X X
Y A

X X V
ρ ρ

ε
−−−

= = =  (B.19) 

Because of the background effect assumed to be constant, its contributions cancel out in the difference. 
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Similar to 5.2.2, the estimates, 1x  and 2x , with the associated standard uncertainties, 1( )u x  and 2( )u x , of the 
input quantities, 1X  and 2X , respectively, are specified as follows, with jn  being the number of events 
recorded in the measurement interval j: 

2
1 1 ;   ( )j j jx r n t u x r t= = =  (B.20) 

2
2 1 1 2 1 ;   ( )j j jx r n t u x r t− − −= = =  (B.21) 

Obviously, 1( )u x  is thus known as a function 1 1( )h x  of 1x , which is needed for the decision threshold and the 
detection limit, since: 

1 1 1 1( ) ( )ju x r t h x x t= = =  (B.22) 

With the preceding approaches and 1 ( )w Vε=  with 2 2 2 2 2
rel( ) ( ) ( )u w u u V Vε ε= + , the following is obtained 

according to 5.2.2 and 5.3.2: 

11 2

5 7

j jr rx x
y

x x Vε
−−−

= =  (B.23) 

2 2 2 2 2
1 2 rel

2 21 2
1 2 2

( ) ( ) ( ) ( )

1 ( ) ( )( )  j j
j j

u y w u x u x y u w

r r u u Vr r
V t V

ε
ε ε

−
−

⎡ ⎤= ⋅ + +⎣ ⎦

⎡ ⎤+
= + − +⎢ ⎥

⎢ ⎥⎣ ⎦

 (B.24) 

Replacing y with y  yields with Equations (B.24) and (12) 

1 2 1j jx r y w x y V rε −= = + = +  (B.25) 

2 2 2 2 2
1 2 2 rel

2 2 2
22 2

2 2 2

2 21 2
2 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

2 ( ) ( )  
( )

j

u y w h y w x u x y u w

y V x t u x u u V
y

V V

y V r u u Vy
V t V

ε ε
ε ε

ε ε
ε ε

−

⎡ ⎤= ⋅ + + +⎣ ⎦

⎡ ⎤+ +
= + ⋅ +⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤+
= + ⋅ +⎢ ⎥

⎢ ⎥⎣ ⎦

 (B.26) 

B.5.3 Change in the activity concentration as the measurand 

Case b) only differs from case a) discussed in B.5.2 by a different definition of 2X . The model reads: 

1 2
, , ,

5 7

1 1 1 1
1

1 1 1 1 1( ) (1 )

V j V j V j

m

j j j k j k j j j m
k

X X
Y A A A

X X

V m V m m
ρ ρ ρ ρ ρ ρ ρ

ε ε− − − − − − −
=

−
= ∆ = − =

⎡ ⎤ ⎡ ⎤⎢ ⎥= − − − = − + +⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
∑  

 (B.27) 
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Instead of 2 1jX ρ −= , now 

2 1 1
1 11 j j mX
m m

ρ ρ− − −
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 (B.28) 

is valid with 1 jX ρ= . Hence it follows 

2
1 12

2 1 1 2 2
1 1 11  ;   ( ) 1 j j m

j j m
r r

x r r u x
m m m t m t

− − −
− − −

⎛ ⎞ ⎛ ⎞= + − = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (B.29) 

The values 2x  and 2
2( )u x , calculated according to Equation (B.29), shall be substituted in Equations (B.23) 

to (B.26) to obtain y, ( )u y  and ( )u y . 

The model according to Equation (B.27) applies to the test for an increase in the activity concentration. If a 
decrease is to be examined, ,V, j V jY A A= −  shall be specified as the measurand, i.e. 1X  and 2X  shall be 
interchanged so that the measurand becomes non-negative as demanded. 
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Annex C 
(normative) 

 
Applications to counting spectrometric measurements 

C.1 General aspects 

This International Standard can also be applied to counting spectrometric measurements when a particular 
line in a measured multi-channel spectrum should be considered and no adjustment calculations, for instance, 
an unfolding, have to be carried out. The net intensity of the line is first determined according to C.1 to C.3 by 
separating the background. Then, if another measurand, for instance, an activity, shall be calculated, proceed 
according to 5.2 and 5.3 (see C.4). The background in spectrometric measurements is understood as the 
number of events of no interest in the region of a regarded line in the spectrum. The events can be due both 
to the background effect by the environmental radiation and also to the sample itself (for instance, from other 
lines). 

Independent, Poisson-distributed random variables, iN  ( 1, ...,i m=  as well as gi = ), are assigned to 
selected channels of a measured multi-channel spectrum with the contents, in , of the channels (or channel 
regions), and the expectation values of the iN  are taken as input quantities, iX  (see F.1). If necessary, the 
channels of a channel region of the spectrum can be combined to form a single channel. In this annex, iϑ  is 
the lower and iϑ′  is the upper limit of channel i; ϑ is, for instance, the energy or time or another continuous 
scaling variable assigned to the channel number. The channel widths, ,i i it ϑ ϑ′= −  correspond to t according 
to F.1. Thus, i i iX tρ=  with the mean spectral density, iρ , in channel i, and i ix n=  is an estimate of iX  with 
the standard uncertainty, ( )i iu x n= , associated with ix . For gi = , the quantities, gn  and g g gX tρ= , 
represent the combined channels of a line of interest in the spectrum. The measurand, Y , with the true value, 
y , is the net intensity of the line, i.e. the expectation value of the net content of channel, gi =  (region B, see 
C.2). (For the appropriate determination of channel regions, see C.3.) 

At first, the background of the line of interest shall be determined, which also includes the contributions of the 
tails of disturbing lines. A suitable function, 1( ; , ..., )mH a aϑ , representing the spectral density of the line 
background with the parameters ka , is introduced so that: 

1( ; , ..., )d  ;   ( 1, ..., )
i

i

i mn H a a i m
ϑ

ϑ

ϑ ϑ
′

= =∫  (C.1) 

from which the ka  shall be calculated as functions of the in .The background contribution to the line is 
therefore: 

g

g

0 1( ; , ..., )dmz H a a
ϑ

ϑ

ϑ ϑ
′

= ∫  (C.2) 

The random variable, 0Z , associated with the background contribution, 0z , implicitly is a function of the input 
quantities, iX , because 0z  is calculated from the i ix n= . The model approach for the measurand, Y, reads: 

g 1 g 0( , , ..., )mY G X X X X Z= = −  (C.3) 
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and leads to: 

2
2 2 2 0

g 0 g 0 0
1 1

 ;   ( ) ( ) ;   ( )
m m

k
i

k ii k

z a
y n z u y n u z u z n

a n= =

⎛ ⎞∂ ∂
⎜ ⎟= − = + =
⎜ ⎟∂ ∂⎝ ⎠

∑ ∑  (C.4) 

The bracketed sum equals 0 iz n∂ ∂ . For the calculation of the function 2( )u y , the net content, y , of channel 
g is first specified. Then, y in Equation (C.4) is replaced with y . This allows gn  to be eliminated, which is not 
available if y  is specified. This results in g 0n y z= +  and: 

2 2
0 0( ) ( )u y y z u z= + +  (C.5) 

The characteristic limits according to Clause 6 then follow from Equations (C.4) and (C.5). 

If the approach, linear in the ka : 

1
( ) ( )

m

k k
k

H aϑ ψ ϑ
=

=∑  (C.6) 

is applied with given functions ( )kψ ϑ , Equation (C.1) represents a system of linear equations for the ka . Thus, 
the ka  depend linearly on the in  and the partial derivatives in Equation (C.4) do not depend on the in . From 
this,  

2 2
0

1
( )

m

i i
i

u z b n
=

=∑  (C.7) 

with quantities, ib , not depending on the in . Equation (C.7) also follows when the background contribution, 
0z , to the line is calculated linearly from the channel contents, in , with suitably specified coefficients, ib : 

0
1

m

i i
i

z b n
=

=∑  (C.8) 

C.2 Application according to the background shape 

If events of a single line with a known location in the spectrum are to be detected, the following cases of the 
background shape as a function of ϑ and the associated approaches shall be distinguished. 

a) Constant background: approach 1( )H aϑ =  (constant, 1m = ). 

b) Linear background, which can often be assumed with gamma radiation: approach 1 2( )H a aϑ ϑ= +  
(straight line, 2m = ). 

c) Weakly curved background with disturbing neighbouring lines: approach 2 3
1 2 3 4( )H a a a aϑ ϑ ϑ ϑ= + + +  

(cubic parabola, 4m = ). 

d) Strongly curved background, which can be present with strongly overlapping lines, for instance with alpha 
radiation: approach according to Equation (C.6). 

In cases a), b) and c), the scaling variable, ϑ, is required to be linearly assigned to the channel number. 
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In cases a) and b), it is suitable for the background determination to introduce three adjacent channel regions, 
1A , B and 2A , in the following way. 

Region B comprises all the channels belonging to the line and has the total content, gn , and the width, gt . If 
the line shape can be assumed as a Gaussian curve with the full width, h, at half-maximum, region B shall be 
placed as symmetrically as possible over the line. If fluctuations of the channel assignment cannot be 
excluded or the background does not dominate, for instance, with pronounced lines, the following should be 
chosen: 

g 2,5t h≈  (C.9) 

In case of a dominant background, the most favourable width: 

g 1,2t h≈  (C.10) 

shall be specified for region B. This region then covers approximately the portion 0,84f =  of the line area 
(see also C.4). In general, 2 ( 2ln2) 1f v= Φ − , if gt vh=  with a chosen factor v. 

In principle, the full width h at half-maximum shall be determined from the resolution of the measuring system 
or under the same measurement conditions by means of a reference sample emitting the line to be 
investigated strongly enough, or from neighbouring lines with comparable shapes and widths. Region B shall 
comprise an integer number of channels, so that gt  is rounded up accordingly. 

Regions 1A  and 2A , bordering region B below and above, shall be specified with the same widths, 1 2t t t= = , 
in case b) only. The total width, 0 1 2 2t t t t= + = , shall be chosen as large as possible, but at most so large 
that the background shape over all regions can still be taken as approximately constant [case a)] or linear 
[case b)]. 1n  and 2n  are the total contents of all channels of regions 1A  and 2A , respectively. Moreover, 

0 1 2n n n= + . 

Hence it follows for cases a) and b): 

2 2
0 0 0 0 0 0 0 g 0 ;   ( )  ;   z c n u z c n c t t= = =  (C.11) 

2( )u y  follows from Equation (C.5). 

Instead, in case c), five adjacent channel regions, 1A , 2A , B, 3A  and 4A  shall be introduced in the way 
described above with the same widths, t, of the regions iA  (see Figure C.1). With the sum 

0 1 2 3 4n n n n n= + + + , i.e. the total content of all channels of regions iA , with their total width 0 4t t= , and 
with the auxiliary quantity 0 1 2 3 4n n n n n′ = − − + , the following is then valid: 

2 2 2
0 0 0 1 0 0 0 1 0 0 1 0

2
0 g 0 1 0 0 0 0

 ;   ( ) ( ) 2  ;

 ;   (4 3 4 8 3) (1 2 )

z c n c n u z c c n c c n

c t t c c c c c

′ ′= − = + −

= = ⋅ + + +
 (C.12) 

and 2( )u y  follows from Equation (C.5). Two numerical examples of case c) are discussed in D.5. 

In case d), m adjacent regions, iA , shall be introduced in the same way, with approximately half of them 
arranged below and above region B. The regions iA  need not have the same widths. The power functions, 

1kϑ − , shall be chosen to some extent as above as the functions ( )kψ ϑ . For the same purpose, the functional 
shapes of the disturbing neighbouring lines that have to be considered should also be chosen as far as 
possible and known. One shall proceed according to C.1 and 2( )u y  again follows from Equation (C.5). 
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After the calculation of 2( )u y  in all cases according to Equation (C.5), the characteristic limits result with 
Equation (C.4) and according to Clause 6. 

 

Key 
ϑ energy, time, etc. 
v counted content of each of the channels 

For the curves, see the text. 

Figure C.1 — Arrangement of the channel regions for the determination of the background of a line 

 

Figure C.1 shows the arrangement scheme of the adjacent channel regions, ( 1, 2, 3, 4)iA i = , in the multi-
channel spectrum for the determination of a weakly curved background of a line in region B [case c)]. The 
regions iA  have the contents, in , and the same width, t, region B has the content, gn , and the width, 

g 2,5t h= , with the full width, h, at half-maximum. The abscissa, ϑ, for instance, energy or time, is assigned to 
the channel number and gϑ  is its value in the middle of region B. The ordinate, v, denotes the counted content 
of each of the channels. With a constant or linear background, only two regions iA′  arranged in the order 1A′ , 
B , 2A′  are needed [cases a) and b)]. The straight line b and the cubic parabola c represent the background 
shape of the line in the spectrum. They are determined according to C.3 for cases b) and c), respectively. For 
case b), regions 1A  and 2A  have been combined to form 1A′  with the width, 2t , and, likewise, regions 3A  
and 4A  to form 2A′ . The straight line b does not fulfil the chi-square condition (see D.5). Lines d: unfolded 
spectrum of the regions iA  and B and related background according to C.5 (see also D.5.3). In the example 
shown, the background lines b and d nearly coincide in region B. 
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C.3 Obtaining the regions for determining the background 

The regions iA  for background determination can be obtained by performing a test on whether or not the 
function ( )H ϑ  can represent the background shape. For this purpose and with the total number, M m> , of all 
channels of regions iA , with the counted content, jv , of channel ( 1, ..., )jv j M=  of these regions, with the 
value jϑ  of the scaling variable, ϑ, assigned to the middle of the channel, j, and with the channel width, jϑ∆ , 
the test quantity 

2
12

1

( ; , ..., )

1

M j m j j

jj

H a a v

v

ϑ ϑ

=

⎡ ⎤∆ −⎣ ⎦χ =
+∑  (C.13) 

is calculated. Then it is ascertained whether or not 

2
1 / 2 2( )M m k M mδ−χ − + −u  (C.14) 

The error probability, 0,05δ = , is recommended. Depending on whether the chi-square condition according to 
Equation (C.14) for the compatibility of the function ( )H ϑ  with the measured background shape in the regions 

iA  of the spectrum is fulfilled or not, the regions iA  and thus M shall be enlarged or reduced, respectively, 
and the test shall be repeated until maximum regions still compatible with the condition are found. 

If functional values, ( )H ϑ , are negative in the regions iA  and B, the procedure is not applicable in the way 
described here. For the denominator 1jv +  in Equation (C.13), see under Equation (F.1). 

In cases a) to c), the function ( )H ϑ  can be explicitly specified: 

case a) 0

0
( )

n
H

t
ϑ =  (C.15) 

case b) 2 1 g0

0 0 g 0

4( )( )
( )

(2 )
n nn

H
t t t t

ϑ ϑ
ϑ

− −
= +

+
 (C.16) 

case c) 2 3
1 2 g 3 g 4 g( ) ( ) ( ) ( )H a a a aϑ ϑ ϑ ϑ ϑ ϑ ϑ= + − + − + −  (C.17) 

where gϑ  is the value of ϑ assigned to the middle of region B and, moreover, 
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− + − − +′
= =

+ + + +

 (C.18) 

As a numerical example, Figure C.1 shows a section of a multi-channel spectrum, recorded using a NaI 
detector, with the background shapes calculated according to cases b) and c). For more details, see D.5.2. 

C.4 Extending applications 

From the net line intensity obtained according to Equations (C.1) and (C.2) and in combination or comparison 
with further quantities (for instance calibration, correction or influence quantities or conversion factors such as 
sample mass, emission or response probability), another measurand of interest often has to be calculated. 
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This can be, for instance, an activity (concentration) or the quotient of the net line intensity and the net 
intensity of a reference line in the same spectrum or the net intensity of the same line in a reference spectrum. 
In such cases, after the calculations according to Equations (C.1) and (C.2) have been carried out, proceed in 
essence according to 5.2 and 5.3 as follows.  

In 5.2 and 5.3, the measurand, Y, of interest and the input quantities, iX , appear. They shall be specified 
according to the following equations, where on the left-hand side one of the aforementioned quantities and on 
the right-hand side the respective quantity according to Equation (C.1) are found. 

If Y is an activity (concentration) or an analogous quantity, 1 gX X=  and 2 0X Z=  and 3 1X =  are set. 
Moreover, 5 1x =  or 0,84 and 5( ) 0u x = , if Equations (C.9) and (C.10), respectively, are used. Further input 
quantities, iX , are specified as conversion factors. 

If 1 2Y Y Y=  is the quotient of the net line intensity 1Y , determined according to Equations (C.1) and (C.2), 
and the likewise determined net intensity, 2Y , of a reference line in the same or a different spectrum, 1 1X Y=  
and 2 0X =  and 5 2X Y=  are specified. 

To correct a spectrometric superposition of the line of interest by a disturbing line, L, with the same energy, 
but from a different nuclide, one shall proceed in a way similar to the preceding paragraph. Then 1 1X Y=  is 
the net intensity sum of both lines and 2 2X Y=  is the net intensity of a line of the disturbing nuclide that 
serves as a reference. With the presumption that the spectrum of this nuclide can be separately measured 
free from the line of interest, for instance, on a blank, two cases shall be distinguished. In the first case, the 
disturbing line, L, itself serves as a reference. Then 3 1 2x t t=  and 3( ) 0u x =  for 3X  shall be specified, 
where 1t  and 2t  are the measurement durations of the spectra. In the second case, another line, L′ , of the 
disturbing nuclide in the spectrum to be examined serves as a reference. Then the net intensities, i and i′ , of 
the lines, L and L′ , respectively, and the associated standard uncertainties, ( )u i  and ( )u i′ , shall be 
determined from the separately measured spectrum, and the following shall be specified: 

2 2
2 2

3 3 3 2 2
( ) ( ) ;   ( )i u i u ix u x x

i i i

⎡ ⎤′= = ⋅ +⎢ ⎥
′ ′⎢ ⎥⎣ ⎦

 (C.19) 

C.5 Unfolding in spectrometric measurements 

C.5.1 Special quantities and symbols used in this Clause 

i channel number of a channel in a multi-channel spectrum obtained by a spectrometric nuclear 
radiation measurement ( 1, ..., )i m=  

ϑ continuous parameter (for example energy or time) related to the different channels in a multi-
channel spectrum 

iϑ  value of ϑ connected with channel  ( 1, ..., )i i m=  

t duration of measurement 

m number of channels in the spectrum 

iN  Poisson-distributed random variable of events counted in channel, i, during the measuring time, t 
( 1, ..., )i m=  

in  number of events counted in a channel, i, during the measuring time, t ( 1, ..., )i m= , estimate of iN  
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iX  random variable of the rate of events counted in channel i during the measuring time, t, input 
quantity of the evaluation, i iX N t=  ( 1, ..., )i m=  

X column matrix of the iX  

ix  rate of events counted in channel, i, during the measuring time, t, i ix n t=  ( 1, ..., )i m= , estimate of 
iX  

x column matrix of the ix  

( , )i ju x x  covariance associated with ix  and jx  

kY  output quantity (parameter) derived from the multi-channel spectrum by unfolding methods 
( 1, ..., )k n=  

Y column matrix of the kY  

ky  estimate of the output quantity kY  ( 1, ..., )k n=  

( )ku y  standard uncertainty associated with ky  

y  column matrix y after replacement of 1y  with y  

z column matrix of values iz  fitted to the values ix  

( )iH ϑ  functional relationship representing the spectral density at iϑ  of a multi-channel spectrum 

( )kψ ϑ  function describing the shape of an individual spectral line or of a background contribution 
( 1, ..., )k n=  

n number of output quantities 

ip  estimate of an input quantity which is not subject to fit 

p column matrix of the ip  

w column matrix of input estimates; T
1 1 2( , ..., , , , ...)mx x p p=w  (transposed row matrix) 

A response matrix of the spectrometer 

ikA  elements of the response matrix A 

xU  uncertainty matrix of X 

yU  uncertainty matrix of Y 

kG  function of the input quantities iX  ( 1, ..., )i m=  

G column matrix of the kG  

diag indicator for a diagonal matrix 
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C.5.2 Model of unfolding and general uncertainty treatment 

For the unfolding of spectrometric measurements, the model of the evaluation shall be written more general 
than in 5.2.1, allowing for more than a single measurand and for correlated quantities. In this case, the model 
is given by a set of n functional relationships: 

1( , ..., ) ; ( 1, ..., )k k mY G X X k n= =  (C.20) 

Estimates yk of the n measurands Yk are obtained from Equation (C.20) by inserting estimates xi for the m 
input quantities Xi (i = 1, ..., m): 

1( , ..., ) ; ( 1, ..., )k k my G x x k n= =  (C.21) 

The standard uncertainties, u(xi), and covariances, u(xi,xj), associated with the xi are the elements of the 
symmetric uncertainty matrix xU  and meet the relations u(xi,xi) = u2(xi) and u(xi,xj) = u(xj,xi). If they are given, 
the analogous standard uncertainties u(yk) and covariances u(yk,yl) associated with the yk follow from: 

1
( , ) ( , ) ; ( , 1, ..., )

m
k l

k l i j
i ji, j

G G
u y y u x x k l n

x x=

∂ ∂
= ⋅ ⋅ =

∂ ∂∑  (C.22) 

One obtains ( ) ( , )k k ku uy y y=  and u(yk,yl) = u(yl,yk) (k ≠ l). For convenience, the partial derivatives k iG X∂ ∂  

with all the input quantities Xi substituted by their estimates xi are briefly denoted by k iG x∂ ∂  in Equation 
(C.22) and in the following. 

The model functions Gk need not be explicitly available as arithmetical expressions. They can also be given as 
an algorithm, for instance, in form of a computer code. In such cases, or when more complicated model 
functions are involved, the partial derivatives possibly cannot be explicitly derived but can numerically be 
approximated sufficiently exactly using half of the standard uncertainty u(xi) as an increment of xi: 

{ }1 1
1 , ..., ( )/2, ..., , ..., ( )/2, ...,
( )

k
k i i m k i i m

i i

G
G  x x + u x x G x x u x x

x u x
∂

= − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂
 (C.23) 

NOTE Equations (C.21) to (C.23) apply for model functions Gk which can be taken as sufficiently linear in the 
uncertainty ranges between xi−u(xi) and xi+u(xi). Otherwise, more refined procedures can be applied as described in 
ISO/IEC Guide 98-3:2008, 5.1.2 Note (see also References [1, Annex C]; [2, Annex E]; [6]; [7]; 16]). 

In spectrum unfolding, it is convenient to use matrix notation. Therefore, those quantities, values and functions 
being denoted by the same symbol are in the following combined to form a column matrix, written as a 
transposed row matrix and denoted by the same symbol, but in bold face. Examples are x = (x1, ..., xm)T and y 
= (y1, ..., yn)T and G(x) = (G1, ..., Gn)T. In addition, the uncertainty matrices Ux = [u(xi,xj)] and Uy = [u(yk,yl)] and 
also the sensitivity matrix ( )k iG x= ∂ ∂xG  are introduced. Equations (C.21) and (C.22) then quickly read: 

T( ) ;= =y x x xy G x U G U G  (C.24) 

C.5.3 Spectrum unfolding in nuclear spectrometric measurement 

The evaluation of a nuclear spectrometric measurement usually is an (in general, non-linear) unfolding of a 
measured multi-channel spectrum. It can also comprise the unfolding of several measured spectra and 
consideration of other data. Such an evaluation is commonly called spectrum unfolding. 

The input quantities, Xi, of the spectrum unfolding are all quantities from which measured data or other data 
are used in the unfolding and which have uncertainties associated with them. These are all those quantities, Xi, 
for which a measured or estimated value, xi, is available and which shall be fitted in the unfolding procedure. 
One of those quantities, Xi, is to be assigned to each individual channel, i, of a multi-channel spectrum, where 
ni events are counted during a measuring time, t. Likewise, an input quantity, Xi, shall be assigned to each 
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parameter to be determined for which an estimate is given before the evaluation. Examples are spectrum 
parameters such as the widths of spectral lines or parameters of the sensitivity matrix of the spectrometer.  

For a count rate Xi = ρi with the given counting result, ni, recorded during the measuring time, t, and if 
independent Poisson statistics can be assumed for the individual channels, the specifications xi = ri = ni/t and 
u2(xi) = ni/t2 = xi/t apply as in 5.2.1 (see F.1, in particular, if ni = 0). In addition, the covariances can be set at 
zero, i.e. u(xi,xj) = 0 (i ≠ j). It is possible for the measuring times associated with the individual channels to not 
necessarily be identical. The components of uncertainty of measurement comprise uncertainty matrices 
Ux = [u(xi,xj)] and Uy = [u(yk,yl)]. Ux is diagonal with the diagonal elements 2 2( ) /i iu x n t= , i.e. diag( / )ix t=xU . 

Further, there are input quantities for which estimates pi are available, but which are not subject to fit. These 
include, for instance, base points, calibration parameters, correction and influence quantities or other 
parameters which were already previously mentioned. The values ϑi connected with channel i of the 
parameter ϑ related to the different channels in a multi-channel spectrum are such quantities. 

In principle, all quantities for which an estimate is given should be fitted. Frequently, however, this is not 
technically feasible or some quantities were determined from other experiments, such that it is not meaningful 
to fit them too. Such quantities which are known sufficiently exactly so that their uncertainties are negligible 
are not treated as input quantities but as constants. If only the Poisson statistics of the channel counts of a 
multi-channel spectrum should be considered, only these quantities are input quantities. In this case, all other 
quantities are constants. 

The output quantities, Yk, of the spectrum unfolding are the parameters of the unfolding which shall be 
determined. The measurand, for which decision threshold, detection limit and the limits of a confidence 
interval shall be determined, is one of them. The number of these parameters should be as small as possible. 
The output quantities can also be spectrum parameters such as net areas of spectral lines or the number of 
background counts under a spectral line or in a particular channel or unknown parameters of the sensitivity 
matrix. 

For convenience, the estimates x and p are combined to form the column matrix w = (x1, ..., xm,p1,p2, ...)T. 

For the unfolding, one needs the estimates, x and p, of the input quantities and their associated uncertainty 
matrix, Uw(x,p). This uncertainty matrix has been calculated as a covariance matrix based on ISO/IEC Guide 
98-3 (see References [1, 2]). The uncertainty matrix, Uw(x,p), is needed in form of its functional dependence 
on x since x shall be adjusted if decision threshold and detection limit are calculated while p stays constant. 
The uncertainty matrices Ux and Up associated with x and p are partial matrices of Uw. The rank of Ux shall 
not be smaller than the number n of model equations. If the data for x and p originate from different 
independent experiments, there is no correlation between x and p and the matrix elements of Uw related to 
pairs xi and pk vanish. 

A more detailed description of spectrum unfolding in nuclear spectrometric measurements is given in 
References [17, 31, 32]. 

The model of the unfolding consists of n relationships between input and output quantities. These 
relationships can formally and most generally be written as a column matrix H(y,p) of model functions Hk 
which depend on all these quantities. 

x = H(y,p) (C.25) 

If an output quantity, Yi, is likewise an input quantity, Xi, for which an estimate, xi, is given, the equation xi = yi 
shall be added to the model functions. If output quantities, such as activity, particle fluence or equivalent dose, 
depend on other output quantities, the respective functional dependencies shall also be added to the model 
functions. The model functions shall not be explicitly available as mathematical expressions. They can also be 
an algorithm, for instance in form of a computer code of the evaluation. 

For the unfolding of a measured multi-channel spectrum, one fits functions H(Y) according to Equation (C.25) 
to the estimates x of the m input quantities X; for instance to the measured values /i ix n t=  of the spectral 
density calculated from the channel counts ni. 
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The calculation of the estimates y of the output quantities, Y, of the uncertainty matrix, Uy, associated with y 
and of the fitted values z (best estimate), of the input quantities, X, from the given measured and estimated 
values of all input quantities, w, with their associated uncertainty matrix, Uw, is in general a non-linear fitting 
procedure the solution of which is described in C.5.4. 

In the special case of a spectrum unfolding which is linear in the parameters Y, the spectral density H(ϑi) is 
represented by the column matrix X = [H(ϑi)]. The ϑ i are assumingly exact base points, for instance the 
energies or times assigned to the individual channels. The spectral density is approximated by a system of 
functions ψk(ϑ): 

1
  ( ) ( ) ; ( 1 , ..., )

n

i i k i k
k=

X H Y i mϑ ψ ϑ= = ⋅ =∑  or =X AY  (C.26) 

The constant response matrix A consists of the elements Aik = ψk(ϑi). The functions ψk(ϑi) describe the 
shapes of the individual spectral lines and of the background contributions. (For explicit examples of ψk(ϑi) 
when evaluating alpha- and gamma-spectra, see C.5.5 and C.5.6.) The output quantities, Yk, to be determined 
are for instance the net peak areas of the spectral lines. 

C.5.4 Procedure for spectrum unfolding 

A spectrum unfolding means in essence fitting new values, z, of the input quantities, X, to the given estimates, 
x where z = H(y,p) depends on the measurand estimates, y, to be determined and on fixed given estimates, p, 
of further input quantities which are not subject to fit. The generalized least-squares method is highly 
recommended for use as a spectrum unfolding procedure since it can easily be combined with the uncertainty 
treatment and allows for a compact and transparent description as follows.  

The measurand estimates, y, are determined by minimizing the quantity 

2 T 1  ( ) ( )( ) min−χ = − − =xx z U x x z  (C.27) 

with the constraint z = H(y,p) and the uncertainty matrix, Ux(x), given as a function of x for finally obtaining the 
characteristic limits. The results of this minimizing procedure are the functions: 

( , ) ( )= =y G x p G w  (C.28) 

( , ) ( ), ( )= = =⎡ ⎤⎣ ⎦z H y p H G w p F w  (C.29) 

and, similar to Equation (C.24) where w now plays the part of x, the due uncertainty matrices: 

T T;= =y w w w z w w wU G U G U F U F  (C.30) 

Here, x and p are combined to form the column matrix, w. The uncertainty matrices, Ux and Up, are likewise 
combined to form the uncertainty matrix, Uw. The sensitivity matrices, Fw and Gw, denote the matrices of the 
partial derivatives of the functions F(w) and G(w), respectively. All the matrices on the right-hand side of 
Equation (C.30) are functions of w.  

The results of the fit and the given data x conform if the standardized chi-square 2
sχ  meets, with m > n and 

with the obtained minimum 2
min,χ  the chi-square condition: 

2
min2

s 1 / 2

( )
  

2( )

m n
k

m n δ−

χ − −
χ =

−
u  (C.31) 

The error probability δ = 0,05 is recommended. 
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The standard uncertainty function, ( )u y , of the true value, y , of the measurand, Y, in question for which the 
characteristic limits are to be determined, say, Y = Y1, can be obtained in the following way. The estimate, y1, 
is first replaced with y  yielding T

2( , , ..., )ny y y=y , which is now used instead of y. This leads to ( , )=z H y p , 
replacing the column matrix x. Thus, the column matrix w  follows as the combination of z  and p and, 
moreover, wU  follows as the combination of ( )xU z  and pU . The matrices w  and wU  are used in Equation 
(C.30) instead of w and wU  to calculate yU . Finally, the square root of the (1,1)-element of this uncertainty 
matrix is the needed function ( )u y . 

In many cases, the function H(y,p) to be adapted to the given estimates x is linear in y, i.e., z = H(y,p) = Ay 
where the matrix A does not depend on p and can represent the spectrometer response. Then x and w are 
identical and the minimizing procedure of the least-squares method can easily be carried out and results in  

1T 1 T 1( ) ; ( )
−− −⎡ ⎤= = ⎣ ⎦y x y xy U A U x x U A U x A  (C.32) 

T;= =z yz Ay U AU A  (C.33) 

12 T 1 T 1
min ( )( ) ; ( )

−− −⎡ ⎤χ = − = ⎣ ⎦x y xx U x x z U A U Ay A  (C.34) 

C.5.5 Application to alpha-spectrometry 

In many cases of alpha-spectrometry, an alpha-spectrum measured by a semiconductor detector or a grid 
ionisation chamber can be considered to be a superposition of individual spectral lines, usually without a 
background contribution. In this case, a linear model of the type x = A(p)y can be used. The following 
functional representation can be used for the shape of a spectral line j (see References [33-37]): 

2

22

( ' ) ( ' )( ) exp d '
22

j
j

j- j

R E E EL E = E
σσ

∞

∞

⎡ ⎤−⎢ ⎥−
⎢ ⎥π ⎣ ⎦

∫  

3

0, 0, , , 0, , 0,
1

( ) ( ) ( ) exp ( )/    for ( )j j j k j k j j k j j
k=

R E = E E + / E E E Eα δ α τ τ⎡ ⎤⋅ − ⋅ −⎣ ⎦∑ u  (C.35) 

0,( ) 0   for ( )j jR E = E E>  

0, 1, 2, 3, 1j j j j+ + + =α α α α  

E is the energy of the alpha-particles. All other quantities are given parameters of the spectral line. These 
parameters of all spectral lines, as well as the parameters of the energy calibration which connects the 
channel number i and the energy E are input quantity estimates, p, or are considered to be known constants. 
The elements of the response matrix are ( ),ij j iA L E=  with Ei being the energy associated with channel i. 

The spectral line at alpha-energy E0,j is physically characterized by the first term of Rj(E), the delta function, in 
Equation (C.35). The three following terms describe the energy loss of the alpha-particles on their path to 
detection. The folding integral in the first line of Equation (C.35) considers the resolution, σ, of the 
spectrometer which usually depends on E. 

The parameters yj to be determined are the peak areas. They form the column matrix y of the output quantities. 
One of them is the quantity Y in question. For the spectrum one hence receives the functional expression 

( )i j i ij
x L E y= ⋅∑  or, written as a matrix, x = A(p)y. 
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If some of the parameters p, for instance the location of the spectral lines or parameters of the peak shape, 
are not known, but are likewise to be determined by the unfolding, these unknown quantities are to be added 
to the output quantities y. Then, A depends also on y and one obtains the case of a non-linear model 
according to Equation (C.25) with x = H(y,p) = A(y,p)y. 

The functions Lj(E) are the response functions of the spectrometer which can, for instance, be a 
semiconductor detector or a grid ionisation chamber in alpha-spectrometry, but also a semiconductor detector 
in gamma-spectrometry or a Bonner sphere in neutron spectrometry. Mathematically, they can be nearly 
arbitrarily chosen and therefore they can be set up as required for phenomenological or physical reasons. 
They can also be measured functions or calculated ones which reflect the underlying physical processes. 
They can be known as analytical expressions as well as numerical. With these response functions, it is not 
only possible to describe shapes of spectral lines. Also, the background under spectral lines can be modelled 
by superposition of such functions in any arbitrary way. For its application to gamma-spectrometric 
measurements, see C.5.6. 

C.5.6 Application to gamma-spectrometry 

In gamma-spectrometry, background contributions generally shall not be neglected. In spite of that a linear 
model of the type x = A(p)y can be set up using the general procedure in C.1. The following functional 
representation can be used to describe the superposition of contributions from spectral lines and background 
in a part of the spectrum under investigation: 

2 22
1 0( ) exp ( /(2 ) / 2)L E E E σ σ⎡ ⎤= − − π⎣ ⎦  

2 0( ) arctan ( ) /L E E E a= − −⎡ ⎤⎣ ⎦  (C.36) 

3
0( ) ( ) ;   ( 3,4,5,6)j

jL E = E E j =−−  

The first function in Equation (C.36) describes the shape of a spectral line by a Gaussian function with a 
spectrometer resolution, σ. In actual cases, more complicated line shapes may be used, introducing, for 
instance, low-energy exponential tailings, which increases the number of parameters of the peak shape. The 
second line of Equation (C.36) represents a “step function” under a spectral line which shall be explained as a 
consequence of incomplete charge collection. a is a parameter characterizing the steepness of the step 
function and shall be known beforehand. The residual functions in the third line of Equation (C.36) are used to 
model phenomenologically the background by a third order polynomial. Instead of the energy E, the channel 
number i can also be used in the set-up of the model according to Equation (C.36). 

E is the energy deposited in the detector. All other quantities are parameters of the spectral line or of the 
background step function. These parameters, σ and a, of all spectral lines, as well as of the energy calibration 
which connects the channel number i and the energy E, are input quantities p or are considered to be known 
constants. The elements of the response matrix are Aij = Lj(Ei), with Ei being the energy associated with 
channel i. 

The parameters yj to be determined are the peak areas and the background contributions. They form the 
column matrix y of the measurand estimates. One of the peak areas is the quantity Y in question. For the 
spectrum, one hence receives the functional expression ( )i j i ij

x L E y= ⋅∑  or, in matrix notation, x = A(p)y. 

In contrast to alpha-spectrometry, in gamma-spectrometry frequently some of the parameters p are not known 
exactly, for instance, the location of the spectral lines or parameters of the peak or background shape. 
Starting from estimates, they are likewise to be determined by the unfolding. Consequently, these unknown 
quantities are to be added to the output quantities, y. Then, A depends also on y and one obtains the case, 
which is usual in complex gamma-spectrometry, of a non-linear model according to Equation (C.25) with x = 
H(y,p) = A(y,p)y. 

A numerical example of unfolding a gamma spectrum is discussed in D.5.3. 
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Annex D 
(informative) 

 
Application examples 

D.1 General aspects 

This annex gives numerical examples of the applications discussed in Annexes B and C. The respective 
equations used for the calculations are referred to. In all examples, y, u(y) and ( )u y  are first determined and 
then the characteristic limits, as well as the best estimate of the measurand with the associated standard 
uncertainty, are calculated according to the equations given in Clause 6 or A.5 to A.8 and by applying 
Annex E. 

The data in Tables D.1 to D.4 are often given with more digits than are meaningful, so that the calculations 
can also be reconsidered and verified with higher accuracy, in particular for testing computer programs under 
development. Some intermediate values, which shall be calculated in a more complicated way, are also given 
for test purposes.  

The examples are not intended to standardize measurement procedures in the respective applications and 
can only serve as explanations for the application of this International Standard. 

D.2 Example 1: Measurement of an alpha-activity concentration 

D.2.1 Counting measurement 

This generic example deals with the examination of an alpha-activity in a liquid material by means of a direct 
deposition on a planchet and a subsequent counting measurement of the alpha-particles. The measurand, Y, 
is the alpha-activity concentration cA (activity divided by volume). For this task, the characteristic limits, the 
best estimate and the associated standard uncertainty shall be calculated. The model of the evaluation in this 
case reads according to Equation (4): 

g 01 2

5 7 9
A

r rX X
Y c

X X X V fε
−−

= = =
⋅ ⋅

 (D.1) 

X1 = rg is the gross count rate and X2 = r0 is the background count rate; X5 = V is the volume from which the 
activity has been deposited on the planchet; X7 = ε is the detection efficiency and X9 = f is the self-absorption 
factor of the alpha-particles in the deposited material.  

After the counting measurements of the gross effect and of the background effect are carried out with the 
respective measurement durations tg and t0, the respective numbers ng and n0 of the recorded events are 
available. These numbers are used according to 5.2.2 to specify the estimate x1 = rg = ng/tg with 
u2(x1) = ng/tg2 = rg/tg for the gross count rate X1 and x2 = r0 = n0/t0 with u2(x2) = n0/t02 = r0/t0 for the 
background count rate X2. These specifications apply to measurements with time preselection. 

The detection efficiency, ε = 0,3, is determined using a calibration source with a certified relative standard 
uncertainty of 5 %. On the assumption that the statistical contribution to the measurement uncertainty of the 
detection efficiency is negligible, u(ε) = 0,015 results. 

It is known from previous experiments that the self-absorption factor, f, of the alpha-particles in different, not 
further specified deposited materials is randomly distributed between 0,4 and 0,8. This yields the mean 
estimate f = 0,6 and the associated standard uncertainty, ( ) 12u f f= ∆ , by specifying a rectangular 
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distribution over the region of the possible values of f with the width ∆ f = 0,40 (see 5.2.2, second-to-last 
paragraph). The self-absorption factor, f, has a rather large relative standard uncertainty, u(f)/ f = 0,19, and the 
measurand depends reciprocally on it. Therefore, an influence of non-linearity should be expected (see C.5.2 
Note). 

The relative standard uncertainty of the sampled volume, V = 0,5 l, is given as 1 % from experience, leading to 
u(V) = 0,005 l. 

For the input data, specifications, some intermediate values and results, see Table D.1. The results are 
calculated according to 5.2.2, 5.3.2 and Clause 6. In particular, Equations (6), (9) and (14) are used for y, u(y) 
and ( )u y , respectively, where x3 = 1, u(x3) = 0, x4 = 0 and u(x4) = 0 are set because X3 and X4 are not 
involved in the model. Some standard uncertainties are not given in Table D.1 since they are not explicitly 
needed for the equations. 

D.2.2 Measurement using a ratemeter 

The measurement of the count rate can also be carried out using a ratemeter (see B.3). In contrast to D.2.1, 
u2(x1) = rg/(2τg) and u2(x2) = r0/(2τ0) here apply. For an easy comparison in Table D.1, the input data of the 
ratemeter measurement are fictitiously chosen such that the primary measurement result, y, is almost 
unchanged when compared with that of the counting measurement. The relaxation time constants strongly 
influence the decision threshold and the detection limit. Their values τg = τ0 = 60 s are chosen too small and 
therefore make the measurement procedure unsuitable for the measurement purpose since #

ry y> . The 
choice τg = τ0 = 120 s would better suit. 

Table D.1 — Input data, intermediate values and results of example 1 

Input data and specifications 

Quantity Symbol Value Standard 
uncertainty 

Counting measurement, gross effect: 

Number of recorded events ng 2 591  

Measurement duration tg 360 s neglected 

Counting measurement, background effect: 

Number of recorded events n0 41 782  

Measurement duration t0 7 200 s neglected 

Ratemeter measurement, gross effect: 

Count rate rg 7,2 s–1  

Relaxation time constant τg 60 s not needed 

Ratemeter measurement, background effect: 

Count rate r0 5,8 s–1  

Relaxation time constant τ0 60 s not needed 

Volume V with u(V) 0,5 l 0,005 l 

Detection efficiency ε with u(ε) 0,3 0,015 

Self-absorption factor f with u(f) 0,6 0,4 12  

Probabilities α, β, γ 0,05 – 

Guideline value yr 10 Bq l–1 – 
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Table D.1 (continued) 

Input data and specifications 

Quantity Symbol Value Standard 
uncertainty 

Intermediate values 
Quantity and calculation Value a Value b 

w = 1/(Vε f) according to Equation (7) 11,11 l–1 

urel
2(w) = u2(V)/V2 + u2(ε)/ε2 + u2(f)/ f 2 according to Equation (10) 0,039 6 

ω = Φ[y/u(y)] according to Equation (E.1) 0,999 9 0,999 4 

p = ω·(1–γ /2) 0,975 0 0,974 4 

q = 1–ωγ /2 0,975 0 0,975 0 

kp according to Equation (E.2) 1,959 8 1,950 0 

kq according to Equation (E.2) 1,960 0 1,960 2 

Results Measurand Y  cA
a cA

b 

Quantity Symbol Value in Bq l–1 

Primary measurement result y 15,490 7 15,555 6 

Standard uncertainty associated with y u(y) 3,475 5 4,792 3 

Decision threshold y*  2,377 7 5,683 8 

Measurement effect present? y y*>  ?  yes  yes 

Detection limit #y  5,420 2 13,013 7 

Measurement procedure suitable? #y  u yr ?  yes  no 

Lower limit of the confidence interval y  8,679 1 6,209 3 

Upper limit of the confidence interval y  22,302 6 24,949 3 

Best estimate of the measurand ŷ  15,490 7 15,565 4 

Standard uncertainty associated with ŷ  ˆ( )u y  3,475 5 4,776 2 
a Counting measurement with time preselection. 
b Ratemeter measurement. 

 

D.3 Example 2: Measurement of the specific activity of a radionuclide after chemical 
separation 

D.3.1 Unknown influence of sample treatment 

A sample of solid material containing a radionuclide is examined by chemical separation of this nuclide and 
subsequent counting measurement of its radiation. The measurand, Y, is the specific activity, aM (activity of 
the sample divided by the total mass of the sample, see ISO 31-9) for which the characteristic limits, the best 
estimate, and the associated standard uncertainty are calculated. The measurement is randomly influenced 
by sample treatment because of the chemical separation. Therefore, one shall proceed according to B.4. To 
determine and reduce the influence, several samples of the same kind of material, blanks and also, if 
necessary, reference samples are separately tested. The results for the respective samples are then 
averaged and analysed regarding the measurement uncertainty. 

The model of the evaluation reads in this case according to Equation (4): 

g 01 2

5 7 9
M

r rX X
Y A

X X X M κ ε
−−

= = =  (D.2) 
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1 gX r=  is the mean gross count rate of the samples and 2 0X r=  is the mean background count rate of the 
blanks, X5 = M is the sample mass assumed here for simplicity to be identical for all samples, blanks and 
reference samples, X7 = κ is the detection efficiency of the detector used for the counting measurement of the 
beta radiation in the current measurement geometry, and X9 = ε is the chemical yield of chemical separation. 
There is no formal difference between Equations (D.2) and (D.1), but they shall be distinguished because of 
the different interpretations of the quantities Xi and, in essence, due to the count rates being averaged or not. 

After the counting measurements of the gross effect on mg samples to be tested and of the background effect 
on m0 blanks are carried out with the preselected measurement durations tg and t0, respectively, the numbers 

gn  and 0n  of the recorded events averaged according to Equation (B.7) are available. This first yields the 
estimates 1 g g/x n t=  and 2 0 0/x n t=  of the respective mean count rates 1X  and 2X  according to Equation 
(B.8). Moreover, the empirical variances, sg

2 and s0
2, of the counting results shall be formed according to 

Equation (B.7). These yield according to Equation (B.9) the squares of the standard uncertainties 
u2(x1) = sg

2/(mg tg2) and u2(x2) = s0
2/(m0t02) associated with the estimates of the count rates. With these results, 

the estimate, y of the measurand Y = AM, and the associated standard uncertainty, u(y), shall be calculated 
according to 5.2.2 and, in particular, according to Equations (6) and (9), respectively. x3 = 1 with u(x3) = 0 and 
x4 = 0 with u(x4) = 0 shall be set since X3 and X4 are not involved in the model. Finally, the limits of the 
confidence interval, the best estimate ŷ  and the associated standard uncertainty ˆ( )u y  can be calculated 
according to 6.4 and 6.5, in this example as approximations according to Equations (32) and (35) because of y 
W 4u(y). 

The next step concerns the function 2( )u y . The standard uncertainty, u(x1), is not available as a function 
h1(x1). But the interpolation according to Equation (19) can instead be used. However, 2(0)u  is needed for 
this and obtained as follows: setting y = y  = 0 in Equation (9) first yields 2 2 2 2

1 2(0) ( ) ( )u w u x u x⎡ ⎤= ⋅ +⎣ ⎦ . 
Moreover, for y  = 0 according to 5.3.2 and B.4.2, the quotient sg

2/tg2 shall be replaced by s0
2/t02. This leads 

with Equation (B.9) to u2(x1) = s0
2/(mg t02) and finally to: 

2 2 2 2
0 0 g 0(0) ( ) (1 1 )u w s t m m= ⋅ ⋅ +  (D.3) 

The decision threshold then follows from Equation (21) and the detection limit with the interpolation according 
to Equation (19) from Equations (22) or (26). 

For the input data, specifications, some intermediate values and results, see Table D.2 (the values given in 
parentheses as well as the results in the last column belong to D.3.2). The guideline value is taken from a 
directive on monitoring environmental radioactivity. 

D.3.2 Known influence of sample treatment 

The random influence of sample treatment is sometimes already known from previous measurements, namely 
from measurements on reference samples or on other samples. The latter should be similar to the current 
samples and be measured under similar conditions, in order that they can be taken as reference samples 
although they need not be examined specifically for reference purposes.  

One can also proceed in this case according to the equations in B.4.3. For the data of the calculation example, 
see Table D.2. To enable a comparison, the same input data as in D.3.1 are used here; moreover, the 
counting results of the reference samples are given in brackets. In contrast to D.3.1, the variance u2(x1) 
according to Equation (B.15) is known as a function 2

1 1( )h x . For obtaining 2( )u y , the estimate y in Equation 
(B.16) is first replaced by y  and then u2(x1) and u2(x2) by the expressions according to Equations (B.15) and 
(B.14), respectively. This leads, with x1 = y /w + x2 and ϑ2 according to Equation (B.13), to: 

2 2 2 2 2 2 2 2
1 g 1 g 2 0 2 0 rel( ) ( ) ( ) ( )u y w x t x m x t x m y u wϑ ϑ⎡ ⎤= ⋅ + + + +⎣ ⎦  (D.4) 
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The results for D.3.1 and D.3.2 shown in Table D.2 agree in essence, as shall be expected. For the influence 
parameter ϑ, the value 0,137 7 < 0,2 is acceptable according to B.4.3 results. The decision threshold and the 
detection limit are in the case of D.3.2 slightly smaller than those of D.3.1. 

Table D.2 — Input data, intermediate values and results of example 2 

Input data and specifications 

Quantity Symbol Value 
(in parentheses for D.3.2) 

Number of samples, blanks and reference samples mg, m0, mr 5, 5, (20) 

Number of recorded events:   

 samples (gross effect) ng, i 1 832, 2 259, 2 138, 2 320, 1 649 

 blanks (background effect) n0,i 966, 676, 911, 856, 676 

 reference samples  nr,i (74 349, 67 939, 88 449, 83 321, 66 657, 
64 094, 74 348, 93 576, 56 402, 66 785, 
78 194, 69 221, 63 965, 70 503, 74 220, 
97 422, 74 476, 71 784, 68 235, 74 989) 

 Standard 
uncertainty 

Measurement durations (general) tg, t0, tr 30 000 s neglected 

Sample mass (general) M with u(M) 0,100 kg 0,001 kg 

Detection efficiency κ with u(κ) 0,51 0,02  

Chemical yield of 90Sr separation ε with u(ε) 0,57 0,04  

Probabilities α, β, γ 0,05 –  

Guideline value yr 0,5 Bq kg–1 – 

Intermediate values 

Quantity and calculation Symbol  Value 
(in parentheses for D.3.2)  

Mean values g 0 r, , n n n  2 039,6; 817,00; (73 946,5) 

 and empirical standard deviations according to 
Equation (B.7) 

sg, s0, sr  288,14; 134,46; (10 185,0) 

Influence parameter 
 according to Equation (B.13) 

1/ 22 2
r r r( ) /s n nϑ ⎡ ⎤= −⎣ ⎦  (0,137 7) 

Results Measurand Y AM (D.3.1)  AM (D.3.2)  

Quantity Symbol Value in Bq kg–1 

Primary measurement result y 1,401 9 1,401 9 

Standard uncertainty associated with y u(y) 0,198 7 0,194 2 

Decision threshold y*  0,160 4 0,138 4 

Measurement effect present? y y*>  ?  yes  yes 

Detection limit #y   0,378 6 0,305 3 

Measurement procedure suitable? #y  u yr ?  yes  yes 

Lower limit of the confidence interval y  1,012 4 1,021 3 

Upper limit of the confidence interval y  1,791 4 1,782 5 

Best estimate of the measurand ŷ  1,401 9 1,401 9 

Standard uncertainty associated with ŷ  ˆ( )u y  0,198 7 0,194 2 
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D.4 Example 3: Measurement of the activity concentration and of its increase during 
accumulation on a filter 

A radiochemical laboratory is working exclusively with 131I. Due to legal requirements, the activity 
concentration of the exhaust air shall not exceed the value of 20 Bq m–3. For monitoring compliance with this 
condition, part of the exhaust air is passed through a filter. The activity of the filter is continuously measured at 
measurement intervals of duration t with a counting measuring instrument. This implies a case according to 
B.5. The measurand, Y, of interest is, on the one hand, the activity concentration, ,V jA , of the exhaust air 
during the measurement interval, j, (see B.5.2) and, on the other hand, also the increase, ,V jA∆ , of the activity 
concentration, ,V jA , in comparison with the mean activity concentration, ,V jA , of m preceding measurement 
intervals (see B.5.3). For each of these cases, the respective characteristic limits, the best estimate and the 
associated standard uncertainty are to be calculated.  

The model for the activity concentration, ,V jA , is given in Equation (B.19), the model for the increase, ,V jA∆ , 
of the activity concentration in Equation (B.27). They do not differ formally, but merely in the interpretations 
and approaches of X2 according to B.5.2 and B.5.3, respectively. 

For the input data, specifications, some intermediate values and results, see Table D.3. The numbers nj from 
26 measurement intervals from j = 0 to 25 are available. The measurement interval j = 25 is to be examined. 
Therefore, m = 24 is set, and only the numbers nj, for j = 25, 24 and j = 0 are needed, but not explicitly the 
associated standard uncertainties, ( )j ju n n= . For the approaches of the values x1 and u2(x1) for X1 as well 
as x2 and u2(x2) for X2, see B.5. The guideline value yr = 2 Bq m–3 is specified for ,V jA , such that activity 
concentrations of at least 10 % of the value required by law can still be recognized. For ,V jA∆ , the guideline 
value yr = 0,2 Bq m–3 is chosen, in order that technical measures can be initiated in time for reducing the 
activity concentration below 10 % of the value required by law. The results are calculated by means of the 
mentioned models according to Annex A and B.5, especially by application of Equations (B.19) to (B.29). For 
Y = AV, 25 in B.5.2, the approximations according to Equations (32) and (35) are used because of y W 4u(y). 
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Table D.3 — Input data, intermediate values and results of example 3 

Input data and specifications 

Quantity Symbol Value Standard 
uncertainty 

Number of recorded events in the nj = n25 15 438   

 measurement intervals 25, 24 and 0 nj–1 = n24 14 356  

 (j = 25) n0 2 124  

Duration of a measurement interval t 3 600 s neglected 

Volume V with u(V) 3,00 m3 0,01 m3 

Calibration factor ε with u(ε) 0,37 0,02 

Probabilities α, β, γ 0,05 – 

Guideline values for ,V jA  and ,V jA∆   yr 2,0 and 0,2 Bq m–3 – 

Intermediate values  

Quantity and calculation  Value Standard 
uncertainty 

3,987 8 Bq  0,033 3 Bq 
x2 with u(x2) according to Equation (B.21) for B.5.2

(B.29) for B.5.3
⎧
⎨
⎩

 
4,129 4 Bq 0,034 7 Bq 

Results Measurand Y AV,25 (B.5.2) ∆AV,25 (B.5.3) 

Quantity Symbol Value in Bq m–3 

Primary measurement result y 0,270 8  0,143 2  

Standard uncertainty associated with y u(y) 0,045 6 0,044 8  

Decision threshold y*  0,069 7 0,071 8 

Measurement effect present? y y*>  ?  yes  yes  

Detection limit #y   0,141 3 0,145 5  

Measurement procedure suitable? #y  u yr ?  yes  yes  

Lower limit of the confidence interval y  0,181 4 0,056 0  

Upper limit of the confidence interval y  0,360 2 0,231 0 

Best estimate of the measurand ŷ  0,270 8 0,143 3  

Standard uncertainty associated with ŷ  ˆ( )u y  0,045 6 0,044 6 

 

D.5 Examples 4, 5 and 6: Measurement of the specific activity via the intensity of a 
line on a weakly curved background in a gamma spectrum 

D.5.1 Example 4: Measurement using a germanium detector 

In the gamma spectrum of a sample recorded by means of a Ge detector, there is a line assigned to the 
nuclide to be examined and located at channel 927 on a dominant, weakly curved background. The 
measurand, Y, is the specific activity, AM, of the sample (activity divided by the total mass of the sample, see 
ISO 31-9) and shall be calculated from the net intensity (net area) of the line. For this measurand, the 
characteristic limits, the best estimate and the associated standard uncertainty shall be determined. 

Case c) of C.2 is present. As known from energy calibration, the energetic width of a channel amounts to 
0,499 5 keV, and the energetic full width at half-maximum of the line is 2,0 keV. This corresponds to a full 
width at half-maximum of h = 4,00 channels. According to Equation (C.10), tg ≈ 1,2 h = 4,8 is set as the width 
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of region B. The region of channels 925 to 929 with the width tg = 5 and located symmetrically to channel 927 
is therefore specified as region B (see Figure C.1). This region thus covers in this case approximately the 
portion f = 86 % of the line area [see below Equation (C.10)].  

For each of the four regions Ai bordering region B on both sides for the determination of the weakly curved 
background, the width t = 13 is chosen according to C.3. The total width thus amounts to t0 = 52. This width 
cannot be enlarged since there is another possible line at channel 958 with the same full width at half-
maximum and therefore located in channels 956 to 960. Thus, at most the 26 channels 930 to 955 remain for 
the regions A3 and A4.  

For the input data, specifications, some intermediate values and results, see Table D.4. The results are 
calculated on the basis of the following model according to Annex A and C.2. Especially, Equations (C.3), 
(C.4), (C.5), (C.10) and (C.12) are used. The model reads: 

g 01 2

5 7 9 11 13
M

X ZX X
Y A

X X X X X T f M iε
−−

= = =  (D.5) 

X1 = Xg is the estimator of the gross effect in region B, X2 = Z0 is the estimator of the background effect, i.e. of 
the background contribution to the line in region B, and X5 = T is the measurement duration. The correction 
factor X7 = f takes into account that region B does not completely cover the line in case of a dominant 
background. For f, see above and Equation (C.10). The standard uncertainty of f is neglected because f, if 
necessary, can be calculated exactly to an arbitrary number of digits. Moreover, X9 = M is the sample mass, 
X11 = ε is the detection efficiency of the detector measured with f = 1, and X13 = i is the photon emission 
probability of the gamma line. The values of M and ε and the associated standard uncertainties u(M) and u(ε) 
were determined in previous investigations. The value of i and the associated standard uncertainty, u(i), are 
taken from a tabular compilation of decay data of radioactive nuclides. The guideline value, yr, is specified by 
a directive on monitoring of environmental radioactivity.  

For X1, the values x1 = ng and u2(x1) = ng are set (see C.1 and F.1). It should be noted here that X1 = Xg does 
not estimate a count rate, but instead the parameter of a Poisson distribution. Therefore, the measurement 
duration T appears in the denominator of Equation (D.5). For the values z0 and u2(z0) for X2 = Z0, see Equation 
(C.12).  

D.5.2 Example 5: Measurement using a sodium iodide detector 

Figure C.1 shows a section of a gamma spectrum recorded using a NaI detector. There is a line of interest 
located with its centre, gϑ , at channel 500 on a non-dominant, weakly curved background. The measurand, Y, 
is the net intensity, I (net area), of the line. For this measurand, the characteristic limits, the best estimate and 
the associated standard uncertainty shall also be determined. 

Again, case c) of C.2 is present. The full width at half-maximum of the line amounts to 8ln2 32,45h σ= =  
channels as a result of example 6 in D.5.3. Thus, tg ≈ 2,5 h ≈ 81 shall be set as the width of region B 
according to Equation (C.9). Therefore, the region of channels 461 to 539 with the width tg = 79 and located 
symmetrically to channel 500 is specified as region B (see Figure C.1). This region thus covers in this case 
almost f = 100 % of the line area. 

For each of the four regions Ai bordering region B on both sides for the determination of the weakly curved 
background, the width t = 21 is chosen according to C.3. The total width thus amounts to t0 = 4t = 84. This 
width cannot be enlarged because of the increasing background below channel 419 and above channel 581 
caused by neighbouring lines as shown in Figure C.1. 

For the multi-channel spectrum data and other input data, specifications, some intermediate values and 
results, see Tables D.4 and D.5. The results are calculated on the basis of the following model as in 
example 4. The model here has a simpler form and reads  

1 2 g 0Y I X X X Z= = − = −  (D.6) 

so that w = 1 and urel(w) = 0. For the input quantities X1 = Xg and X2 = Z0, see also example 4. A guideline 
value is not specified. Because y W 4u(y) in the present case, the approximations according to Equations (32) 
and (35) are used. 
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As shown in Figure C.1, both a straight line with m = 2 [case b)] and a cubic parabola with m = 4 [case c)] are 
adjusted to the spectrum background in the regions Ai according to C.3. In the case of the straight line, the 
regions A1 and A2 are combined, as well as the regions A3 and A4. With M = t0 = 84 and δ = 0,05 and 
according to Equation (C.14), the standardized chi-square 2 2

s 2( ) 2,71M m M mχ = χ − + − = >  

1 / 2 1,96k δ− =  follows for the straight line, while for the parabola the standardized chi-square 
2
s 1 / 20,41 1,96k δ−χ = < =  is obtained. The straight line therefore cannot be accepted because the chi-square 

condition is not fulfilled. 

Table D.4 — Input data, intermediate values and results of examples 4, 5 and 6 

Input data and specifications of example 4 
Quantity Symbol Value Channels 

Energetic channel width 0,499 5 keV  

Energetic full width at half-maximum of the line 2,0 keV  

Number of recorded events in    

 region A1 n1 3 470 899 to 911 

 region A2 n2 3 373 912 to 924 

 region B ng 1 440 925 to 929 

 region A3 n3 3 343 930 to 942 

 region A4 n4 3 208 943 to 955 

Width of region Ai t 13   

Width of region B tg 5   

   Standard uncertainty 

Measurement duration T 21 600 s neglected 

Correction factor f 0,858 5 neglected 

Sample mass M with u(M) 1,000 kg 0,001 kg 

Detection efficiency ε with u(ε) 0,060 0,004 

Photon emission probability i with u(i) 0,98 0,02 

Probabilities α, β, γ 0,05 – 

Guideline value yr 0,5 Bq kg–1 –  

Input data and specifications of examples 5 and 6 
Quantity Symbol Value Channels, comments 

Full width at half-maximum of the line h 32,45 result of example 6 

Number of recorded events in    

 region A1 n1 17 326 419 to 439 

 region A2 
⎫
⎬
⎭

 A1 for straight line 
n2 17 291 440 to 460 

 region B  ng 84 221 461 to 539 

 region A3 n3 12 069 540 to 560 

 region A4 
⎫
⎬
⎭

 A2 for straight line 
n4 11 434 561 to 581 

Width of region Ai t 21  

Width of region B  tg 79  

Probabilities α, β, γ, δ 0,05  

Guideline value yr –  not specified 
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Table D.4 (continued) 

Intermediate values  Example 4 Example 5  

Quantity and calculation  Value Value  

n0 = n1 + n2 + n3 + n4 13 394 58 120  

n0′ = n1 – n2 – n3 + n4 –38 –600  

Total width t0 = 4t of the regions Ai 52 84  

Background contribution z0 with standard 1 293,2 56 120  

 uncertainty u(z0) according to Equation (C.12) 19,7 631  

Intermediate values of example 6     

Quantity and calculation Symbol Value Standard uncertainty 

Standard deviation of the line 
 by minimizing 2

sχ  
σ 13,78 not determined 

Unfolding parameters yk with y1 = y 29 550,3 369,7  

 standard uncertainties u(yk) y2 –35,44 15,36  

 according to Equations y3 694,7 5,25  

 (C.32) to (C.34) and (C.36) y4 –4,035 0,576  

 y5 –1,71×10–3 1,45×10–3  

 y6 2,60×10–4 5,80×10–5  

Results  Example 4 Example 5 Example 6 

Measurand Y AM I I 

Quantity Symbol value in Bq kg–1 unit 1 unit 1 

Primary measurement result y  0,134 6  28 100 29 550 

Standard uncertainty associated with y u(y) 0,040 3 695 370 

Decision threshold y*  0,061 9 1 109 488 

Measurement effect present? y y*>   ?  yes  yes  yes 

Detection limit #y  0,127 9 2 220 980 

Measurement procedure suitable? #y  u yr ?  yes  –  – 

Lower limit of the confidence interval y  0,055 8 26 739 28 826 

Upper limit of the confidence interval y  0,213 7 29 462 30 275 

Best estimate of the measurand ŷ  0,134 7 28 100 29 550 

Standard uncertainty associated with ŷ  ˆ( )u y  0,040 2 695 370 

Standardized chi-square 2
sχ  – 0,41 (parabola) 

2,71 (straight line) 0,78 

Chi-square condition fulfilled? 2
s 1 / 2k δ−χ u  – yes (parabola) 

no (straight line)  yes 
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Table D.5 — Multi-channel spectrum data of examples 5 and 6 

A1 A2 B B B A3 A4 

i xi i xi i xi i xi i xi i xi i xi 

419 872 440 817 461 850 487 1 219 513 1 250 540 584 561 570 

420 867 441 817 462 807 488 1 301 514 1 164 541 604 562 543 

421 830 442 792 463 817 489 1 401 515 1 146 542 579 563 519 

422 865 443 804 464 797 490 1 399 516 1 119 543 548 564 495 

423 822 444 788 465 795 491 1 346 517 1 078 544 559 565 564 

424 787 445 815 466 811 492 1 452 518 1 049 545 588 566 554 

425 812 446 854 467 827 493 1 426 519 1 010 546 617 567 566 

426 799 447 817 468 784 494 1 430 520 956 547 576 568 543 

427 860 448 875 469 829 495 1 550 521 920 548 607 569 533 

428 832 449 857 470 872 496 1 503 522 901 549 580 570 540 

429 807 450 773 471 855 497 1 486 523 880 550 585 571 572 

430 823 451 828 472 868 498 1 561 524 823 551 599 572 546 

431 838 452 850 473 895 499 1 501 525 782 552 598 573 549 

432 833 453 812 474 965 500 1 611 526 745 553 606 574 553 

433 795 454 818 475 888 501 1 471 527 703 554 555 575 528 

434 806 455 872 476 915 502 1 608 528 742 555 572 576 585 

435 815 456 804 477 887 503 1 551 529 690 556 566 577 560 

436 793 457 865 478 1 002 504 1 545 530 721 557 545 578 518 

437 837 458 820 479 1 008 505 1 403 531 684 558 501 579 567 

438 807 459 792 480 1 064 506 1 486 532 683 559 529 580 509 

439 826 460 821 481 1 033 507 1 464 533 678 560 571 581 520 

    482 1 110 508 1 365 534 680     

    483 1 131 509 1 371 535 609     

    484 1 160 510 1 341 536 575     

    485 1 264 511 1 305 537 614     

    486 1 194 512 1 292 538 624     

        539 579     

i Channel number 

xi Counts recorded in channel i 

Ak Channel regions for the background determination 

B Channel regions of the line 

 

D.5.3 Example 6: Unfolding a gamma spectrum 

The multi-channel gamma spectrum evaluated in example 5 and shown in Figure C.1 is also linearly unfolded 
according to Equations (C.32) to (C.34) and (C.36) with the same input data listed in Tables D.4 and D.5. This 
makes feasible a direct comparison of applying the two methods. The results are also shown in Table D.4 and 
Figure C.1. 
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The n = 6 fitting functions given in Equation (C.36) are used to form the spectrometer response matrix A. The 
channel number i is taken as E, the energy scale. The standard deviation, σ, of the line in question and the 
parameter, a, of the arctan step function are not given. Therefore, a is first identified with σ, then a primary 
value of σ estimated by eye is varied in repeated linear unfoldings until the standardized chi-square 2

sχ  
becomes a minimum. The value of σ obtained in this way is also used in example 5 for the full width at half-
maximum 8ln2h σ= . 

The estimates, xi, of the input quantities, Xi, are the counts recorded in the m = 163 individual channels 419 to 
581 of the multi-channel spectrum (see Table D.5). They form the column matrix x = (x1, ..., xm)T. Moreover, 
u2(xi) = xi and u(xi,xj) = 0 (i ≠ j) by assuming Poisson statistics and uncorrelated counting in different channels. 
This yields the diagonal uncertainty matrix, Ux(x) = diag(x). The n = 6 measurand estimates yk to be calculated 
are values of the coefficients Yk of the fitting functions according to Equation (C.36) and form the column 
matrix y = (y1, ..., y6)T. The measurand, Y, of interest is the net line intensity Y1 as in example 5. Thus, y = y1. 
The model matrix equation of the unfolding is x = Ay. The measurands, Yk, turn out to be correlated, but only 
the standard uncertainties u(yk) associated with the results, yk, are listed in Table D.4; the associated 
correlation coefficients are dispensed with.  

The two measurand results y = y' and y = y'' of examples 5 and 6 differ considerably. Whether or not the 
difference is actually significant can be answered as follows: the difference z = y' – y'' of two independently 
determined estimates, y' and y'', of the same measurand is an estimate of the quantity Z with the true value 0. 
This value 0 should then be contained in the confidence interval between the limits 1 / 2 ( )z k u zγ−± ⋅  with 

2 2( ) ( ') ( '')u z u y u y= + . This leads to the condition 1 2 ( )z u z k γ−u . Accordingly, with γ = 0,05 the two 
results obtained by the two distinct methods of example 5 and 6 cannot be taken as significantly different 
since  ( ) 1,84 1,96z u z = <  proves true. 

The standard uncertainties, u(y), and the characteristic limits of examples 5 and 6 also differ considerably. 
This can be due to the fact that in example 6 the full spectrum information is taken into account whereas in 
example 5 only counts summed up over the spectrum regions are used. However, the unfolded background in 
region B of the spectrum nearly coincides with the (not accepted) straight-line approximation of example 5 
(see Figure C.1). The reason for that can be the fact that the arctan step function barely plays a part. 
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Annex E 
(informative) 

 
Distribution function of the standardized normal distribution 

The distribution function of the standardized normal distribution is defined by Equation (E.1): 

2 2 2 1

0

1 1 1( ) exp d exp
2 2 2 1 3 (2 1)2 2

t j

j

v t tt v
j

∞ +

=−∞

⎛ ⎞ ⎛ ⎞
Φ = − = + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⋅ ⋅ ⋅ ⋅ +π π⎝ ⎠ ⎝ ⎠

∑∫  (E.1) 

and its quantile kp for the probability p by Φ(kp) = p (see Reference [29]). The second expression in 
Equation (E.1) can serve for the numerical calculation of Φ(t). The series in Equation (E.1) converges for 
every t. Values of Φ(t) are presented in Table E.1. The relations Φ(–t) = 1 – Φ(t) and k1–p = −kp apply. 

The quantile kp of the standardized normal distribution can be calculated numerically as follows using the 
Newton iteration procedure: with an approximation t for kp, an improved approximation t′  results from 
Equation (E.2): 

22 exp( 2) ( )t t t p tπ′ = + − Φ⎡ ⎤⎣ ⎦  (E.2) 

The value t = 0 can be chosen as a starting approximation. 
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Table E.1 — Distribution function Φ(t) of the standardized normal distribution 

t Φ(t) t Φ(t) t Φ(t) t Φ(t) t Φ(t) 

0,00 0,500 0 0,60 0,725 8 1,20 0,884 9 1,80 0,964 1 2,40 0,991 8 

0,02 0,508 0 0,62 0,732 4 1,22 0,888 8 1,82 0,965 6 2,42 0,992 2 

0,04 0,516 0 0,64 0,738 9 1,24 0,892 5 1,84 0,967 1 2,44 0,992 7 

0,06 0,523 9 0,66 0,745 4 1,26 0,896 1 1,86 0,968 6 2,46 0,993 0 

0,08 0,531 9 0,68 0,751 8 1,28 0,899 7 1,88 0,970 0 2,48 0,993 4 

0,10 0,539 8 0,70 0,758 0 1,30 0,903 2 1,90 0,971 3 2,50 0,993 8 

0,12 0,547 8 0,72 0,764 2 1,32 0,906 6 1,92 0,972 6 2,52 0,994 1 

0,14 0,555 7 0,74 0,770 4 1,34 0,909 9 1,94 0,973 8 2,54 0,994 5 

0,16 0,563 6 0,76 0,776 4 1,36 0,913 1 1,96 0,975 0 2,56 0,994 8 

0,18 0,571 4 0,78 0,782 3 1,38 0,916 2 1,98 0,976 2 2,58 0,995 1 

0,20 0,579 3 0,80 0,788 1 1,40 0,919 2 2,00 0,977 2 2,60 0,995 3 

0,22 0,587 1 0,82 0,793 9 1,42 0,922 2 2,02 0,978 3 2,62 0,995 6 

0,24 0,594 8 0,84 0,799 6 1,44 0,925 1 2,04 0,979 3 2,64 0,995 9 

0,26 0,602 6 0,86 0,805 1 1,46 0,927 8 2,06 0,980 3 2,66 0,996 1 

0,28 0,610 3 0,88 0,810 6 1,48 0,930 6 2,08 0,981 2 2,68 0,996 3 

0,30 0,617 9 0,90 0,815 9 1,50 0,933 2 2,10 0,982 1 2,70 0,996 5 

0,32 0,625 5 0,92 0,821 2 1,52 0,935 7 2,12 0,983 0 2,72 0,996 7 

0,34 0,633 1 0,94 0,826 4 1,54 0,938 2 2,14 0,983 8 2,74 0,996 9 

0,36 0,640 6 0,96 0,831 5 1,56 0,940 6 2,16 0,984 6 2,76 0,997 1 

0,38 0,648 0 0,98 0,836 5 1,58 0,943 0 2,18 0,985 4 2,78 0,997 3 

0,40 0,655 4 1,00 0,841 3 1,60 0,945 2 2,20 0,986 1 2,80 0,997 4 

0,42 0,662 8 1,02 0,846 1 1,62 0,947 4 2,22 0,986 8 2,90 0,998 1 

0,44 0,670 0 1,04 0,850 8 1,64 0,949 5 2,24 0,987 4 3,00 0,998 6 

0,46 0,677 2 1,06 0,855 4 1,66 0,951 5 2,26 0,988 1 3,10 0,999 0 

0,48 0,684 4 1,08 0,859 9 1,68 0,953 5 2,28 0,988 7 3,20 0,999 3 

0,50 0,691 5 1,10 0,864 3 1,70 0,955 4 2,30 0,989 3 3,30 0,999 5 

0,52 0,698 5 1,12 0,868 6 1,72 0,957 3 2,32 0,989 8 3,40 0,999 7 

0,54 0,705 4 1,14 0,872 9 1,74 0,959 1 2,34 0,990 4 3,50 0,999 8 

0,56 0,712 3 1,16 0,877 0 1,76 0,961 0 2,36 0,990 9 3,60 0,999 8 

0,58 0,719 0 1,18 0,881 0 1,78 0,962 5 2,38 0,991 3 3,80 0,999 9 

        W 4,00 1,000 0 

NOTE kp = t is the quantile for the probability p = Φ(t). The relations Φ(−t) = 1−Φ(t) and k1−p = −kp apply. 
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Annex F 
(informative) 

 
Explanatory notes 

F.1 General aspects of counting measurements 

A measurement of ionizing radiation consists in general, at least partially, in counting electronic pulses 
induced by ionizing radiation events. Such a measurement comprises several individual countings, but can 
also comprise sequences of individual countings. Examples are the countings on samples of radioactive 
material or on blanks, countings for the determination of the background effect or the countings in the 
individual channels of a multi-channel spectrum or in a temporal sequence in the same measurement situation. 
With each of the countings, either the measurement duration (time preselection) or the counting result 
(preselection of counts) can be fixed. On the basis of Bayesian statistics, all countings are treated in the same 
way as follows (see Reference [17]). 

The pulse number, N, of each of the countings is taken as a separate random variable. n is the counting result 
and t is the counting duration (measurement duration). N has the expectation value r t⋅ , where r  is the count 
rate or, with spectrum measurements, the spectral density. In the latter case, t is the channel width with 
respect to the assigned quantity, for instance, the particle energy. Either r  or r t⋅  is the measurand. It is 
assumed that dead-time and mean-life effects, pile-up of the pulses, and instrumental instabilities can be 
neglected during counting and that all the counted pulses are induced by different ionizing radiation events 
which are physically independent. The pulse number, N, follows a Poisson distribution and the pulse numbers 
of all the countings are independent of each another. 

Irrespective of whether n pulses are recorded in a measurement of a preselected duration (or of a fixed 
channel width), t (time preselection), or whether the measurement duration, t, needed for the counting of a 
preselected pulse number, n, is measured (preselection of counts), r t⋅  follows a gamma distribution (see 
References [38,39]), where r  is taken as a random variable. Then the best estimate, r, of the count rate (or 
spectral density) and the standard uncertainty, u(r), associated with r follow from: 

2 2E( )  ;   ( ) Var( )r r n t u r r n t r t= = = = =  (F.1) 

The case n = 0 results in u(r) = 0. This disappearing uncertainty of r  means that 0r =  is exactly valid. But 
u(r) = 0 is an unrealistic result because, with a finite measurement duration, one can never be sure that 
exactly 0r =  if no pulse happens to be recorded. This case can also lead to a zero denominator when the 
least-squares method according to ISO/IEC Guide 98-3 (see References [1, 2]) is applied and a division by 
u2(r) shall be made. This shortcoming, e.g. in low-level measurements, can be avoided by replacing all of the 
counting results n by n + 1 or, with a multi-channel spectrum, by a suitable combination of channels. Here, the 
measurement duration (or channel width) is assumed to be chosen from experience such that at least a few 
pulses can be expected if 0r > . 

F.2 Bayesian statistics in measurement 

F.2.1 Special quantities and symbols used in this Clause 

( )f y y  probability distribution; i.e. the conditional distribution of estimates, y, given the true value, y , of the 
measurand, Y 

( )f y y  probability distribution of the true value, y , of the measurand, Y, given the measured estimate, y 
(Bayesian statistics) 
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0( )f y y  likelihood; it is the probability distribution that the measurand, Y, has the true value, y , if only the 
measured value, y, and the associated uncertainty, u(y), are given 

( )f y  model prior; it represents all the information about the measurand available before the experiment is 
performed 

F.2.2 Probability distributions 

Based on Bayesian statistics (see Reference [8]) and the Bayesian theory of measurement uncertainty (see 
References [6, 7, 16, 17]), characteristic limits such as the decision threshold, detection limit and limits of a 
confidence interval can be calculated taking into account all sources of uncertainty. This approach consists of 
the complete evaluation of a measurement according to ISO/IEC Guide 98-3 and the succeeding 
determination of the characteristic limits by using the standard uncertainty obtained from the evaluation. 
Bayesian statistics allows a consistent foundation of ISO/IEC Guide 98-3 for both type A and type B 
uncertainties. This is in contrast to conventional (frequentistic) statistics in which type B uncertainties cannot 
be accounted for. 

The basic difference between conventional and Bayesian statistics lies in the different use of the term 
probability. Considering measurements, conventional statistics describes the probability distribution, ( )f y y , 
i.e. the conditional distribution of estimates, y, given the true value, y , of the measurand, Y. Since the true 
value of a measurand is principally unknown, it is the basic task of an experiment to make statements about it. 
Bayesian statistics allows the calculation of the probability distribution, ( )f y y , of the true value, y , of the 
measurand, Y, given the measured estimate, y. The measurement uncertainty and the characteristic limits are 
based on the distributions, ( )f y y  and ( )f y y . These implicitly depend on further conditions and information 
such as the model, measurement data and associated uncertainties. 

In order to establish ( )f y y , one uses an approach which separates the information about the measurand 
obtained from the actual experiment from other information available about the measurand by 

0( ) ( ) ( )f y y C f y y f y= ⋅ ⋅  (F.2) 

0( )f y y , called the likelihood, is the probability distribution that the measurand, Y, has the true value, y , if 
only the measured value, y, and the associated uncertainty, u(y), are given. It only accounts for the measured 
values and neglects any other information about the measurand. ( )f y , called the model prior, represents all 
the information about the measurand available before the experiment is performed. Therefore, it does not 
depend on y. C is a normalization constant.  

If, for instance, an activity of a radiation source or a concentration of an element is the measurand, there 
exists the meaningful information that the measurand is non-negative ( 0)y W  before the measurement is 
carried out. This yields for ( )f y : 

const ( 0)( ) 0 ( 0)
yf y y

⎧= ⎨ <⎩
W  (F.3) 

Note that the actual result, y, of a measurement, for instance a net count rate, can be negative. But the 
experimentalist knows a priori without performing an experiment that the true value, y , is non-negative. All 
non-negative values of the measurand have the same a priori probability, if there is no other information 
available about the true value before the measurement has been performed.  

Since the likelihood, 0( )f y y , in essence considers the experimental information, the expectation, 

0E ( )y y y= , and the variance, 2
0Var ( ) ( )y y u y= , should hold true for the probability distribution, 0( )f y y . 
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According to References [6, 16], the probability distribution, ( )f y y , can be determined by applying the 
principle of maximum (information) entropy S (see Reference [17]): 

0 0( ) ( ) ln ( ) d maxS f y y f y f y y y⎡ ⎤= − ⋅ ⋅ =⎣ ⎦∫  (F.4) 

Equation (F.4) can be solved with the constraints 0E ( )y y y=  and 2
0Var ( ) ( )y y u y=  obtained with the 

likelihood, 0( )f y y , by the method of Lagrangian multiplicators and one obtains the result: 

{ }2 2( ) ( ) exp ( ) 2 ( )f y y C f y y y u y⎡ ⎤= ⋅ ⋅ − − ⋅⎣ ⎦  (F.5) 

Accordingly, the distribution ( )f y y  is a product of the model prior and a Gaussian N[y,u(y)], i.e. a truncated 
Gaussian (Figure F.1). Note that the Gaussian in Equation (F.5) is not an approximation as in conventional 
statistics or a distribution of measured values from repeated or counting measurements. It is instead the 
explicit result of maximizing the information entropy and expresses the state of knowledge about the 
measurand, Y. 

 

Key 
y  true value of the measurand, Y 

( )f y y  probability distribution of the true value, y , of the measurand, Y, given the measured estimate, y 

For the curves, see the text. 

Figure F.1 — Illustration of the probability distribution given in Equation (F.5) for a non-negative 
measurand Y 
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After ( )f y y  is obtained, the Bayes theorem also allows the calculation of the probability distribution, ( )f y y , 
of an estimate, y, given the true value, y , of the measurand, Y: 

( ) ( ) ( ) ( )f y y f y f y y f y⋅ = ⋅  (F.6) 

The distribution, f(y), is uniform for all possible measurement results, y, before the measurement is carried out 
and ( )f y  is uniform for all 0y W  according to Equation (F.3). Thus, ( )f y y  is obtained from Equations (F.5) 
and (F.6) by approximating the now not available u(y) by a function ( ).u y  

{ }2 2( ) exp ( ) 2 ( ) ( 0)f y y C y y u y y⎡ ⎤= ⋅ − − ⋅⎣ ⎦ W  (F.7) 

The probability distribution, ( )f y y , is a Gaussian for a given true value, y , of the measurand, Y, with the 
standard uncertainty, ( )u y . Note, that the true value, y , is now a parameter in Equation (F.7) and that the 
variance, 2( )u y , of the probability distribution, ( )f y y , is expressed by the variance, 2( )u y , of the probability 
distribution, ( )f y y : 

2 2( ) ( )u y u y=  (F.8) 

F.2.3 Calculation of the standard uncertainty as a function of the true value of the 
measurand 

For the provision and numerical calculation of the decision threshold and detection limit, the standard 
uncertainty of the measurand is needed as a function ( )u y  of the true value, y  W 0 of the measurand. This 
function shall be determined in a way similar to u(y) within the framework of the evaluation of the 
measurements by application of ISO/IEC Guide 98-3:2008 (see References [1, 2]). In most cases, ( )u y  shall 
be formed as a positive square root of a variance function, 2( )u y , calculated first with ( )f y y : 

2( ) Var( )u y y y=  (F.9) 

This function shall be defined, unique and continuous for all y  W 0 and shall not assume negative values. In 
some cases, ( )u y  can be explicitly specified, provided that u(x1) is given as a function h1(x1) of x1. In such 
cases, y shall be replaced by y  and Equation (2) shall be solved for the estimate x1 of the input quantity, X1, 
which in the following is always taken as the gross effect quantity. With a specified y , the value x1 can also 
be calculated numerically from Equation (2), for instance, by means of an iteration procedure, which results in 
x1 as a function of y  and x2, ..., xm. This function shall replace x1 in Equation (3) and in u(x1) = h1(x1), which 
finally yields ( )u y  instead of u(y). In most cases of the models dealt with in this International Standard, one 
shall proceed in this way. Otherwise, ( )u y  can be obtained as an approximation by interpolation from the data, 
yj and u(yj), of several measurements; see Equation (19) and Figure (F.2). 
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Key 
y  true value of the measurand, Y 

2( )u y  variance of the probability distribution ( )f y y  

For the other symbols, see text. 

Figure F.2 — Illustration of the function 2( )u y  and the interpolation formula of Equation (19) 

 

F.2.4 Decision threshold and detection limit 

Without a detailed mathematical foundation of Bayesian characteristic limits, which can be found elsewhere 
(see Reference [17]), the characteristic limits can now be defined for a non-negative measurand, Y, which is, 
for instance, a concentration of an element or an activity of a radionuclide in a sample. The true value, y , is 
zero if the element or the radionuclide is not present. 

For the determination of the decision threshold and the detection limit, the standard uncertainty, ( )u y , as a 
function of the true value, y , of the measurand shall be calculated if possible. Otherwise, approximate 
solutions as described in 5.3.3 and 6.3 are to be used. 

Then, the decision threshold y*  (Figure F.3) is a characteristic limit, which when exceeded by a result, y, of a 
measurement, one decides that the element or radionuclide is present in the sample. If y y*u , a true value 
of zero is sufficiently probable and one decides that the element or radionuclide is not found in this sample. If 
the decision rule 

( 0) ( 0) d
y*

P y y* y f y y y α
∞

> = = = =∫  (F.10) 

is observed, a wrong decision is made with the probability α. 

The decision threshold is given by: 

1 (0)y* k uα−= ⋅  (F.11) 
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with k1–α being the (1–α)-quantile of the standardized normal distribution. (0)u  is the uncertainty of the 
measurand if its true value, ,y  equals zero. 

The detection limit, #,y  (Figure F.3) is the smallest true value of the measurand detectable with the 
measuring method. It is defined by  

# #( ) ( ) d
y*

P y y* y y f y y y y β
−∞

< = = = =∫  (F.12) 

 

Key 
y primary measurement result of the measurand, Y 

( )f y y  probability distribution (conditional distribution of estimates, y, given the true value, y , of the measurand, Y) 

For the other symbols and the curves, see text. 

Figure F.3 — Decision threshold y*  and detection limit #y  

 

The detection limit, #y , is sufficiently larger than the decision threshold, y* , so that the probability of y < y*  
with the consequence to wrongly decide that the physical effect is not present, equals the probability β. The 
detection limit is given by: 

# #
1 ( )y y* k u yβ−= + ⋅  (F.13) 

with k1–β being the (1–β)-quantile of the standardized normal distribution. 
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F.2.5 Limits of the confidence interval and best estimate 

The confidence interval (Figure F.4) includes for a result, y, of a measurement which exceeds the decision 
threshold, ,y*  the true value of the measurand with a probability 1–γ. It is enclosed by the lower and upper 
limit of the confidence interval, respectively y  and y , derived as (1 2)γ− -quantiles of the probability 
distribution, ( )f y y , of the true value given the experimental result and the prior knowledge that the 
measurand is non-negative. They are calculated via the conditions: 

0

( ) ( ) / 2
y

P y y y f y y dy γ< = =∫  (F.14) 

( ) ( ) / 2
y

P y y y f y y dy γ
∞

> = =∫  (F.15) 

This leads to the explicit equations: 

( )py y k u y= −  with (1 2)p ω γ= ⋅ −  (F.16) 

( )qy y k u y= +  with 1 2q ω γ= −  (F.17) 

The parameter ω is given by 

/ ( ) 21 exp d / ( )
22

y u y
v v y u yω

−∞

⎛ ⎞
= − = Φ⎜ ⎟ ⎡ ⎤⎣ ⎦⎜ ⎟π ⎝ ⎠

∫  (F.18) 

If a non-zero effect is observed, i.e. y > y* , the best estimate, ŷ , of the measurand (Figure F.4) can be 
calculated as the expectation of the probability distribution, ( )f y y , and the standard deviation of y  is the 
standard uncertainty, ˆ( )u y , associated with the best estimate, ŷ , of the measurand, Y: 

2 ˆ( ) Var( )u y y y=  (F.19) 

Using ω from Equation (F.18), the best estimate ŷ  is calculated (see Reference [38]) by 

{ }2 2( ) exp 2 ( )
ˆ E( )

2

u y y u y
y y y y

ω

⎡ ⎤⋅ − ⋅⎣ ⎦= = +
π

 (F.20) 

with the associated standard uncertainty, ˆ( )u y  

2ˆ ˆ ˆ( ) ( ) ( )u y u y y y y= − − ⋅  (F.21) 

The following relationships ŷ y>  and ˆ 0y > , as well as ˆ( )u y  < u(y) are valid. For y >> u(y) the approximations 
ŷ  = y and ˆ( )u y  = u(y) are valid. 



BS ISO 11929:2010
ISO 11929:2010(E) 

58 © ISO 2010 – All rights reserved
 

 

Key 
y  true value of the measurand, Y 

( )f y y  probability distribution of the true value, y , of the measurand, Y, given the measured estimate, y 

For the other symbols and curves, see the text. 

Figure F.4 — Definition of the limits of the confidence interval and best estimate 

 

The limits of the confidence interval are derived as (1 2)γ− -quantiles of the probability distribution, ( )f y y , of 
the true value given the experimental result and the a priori knowledge that the measurand is non-negative. 
The best estimate is the expectation value of this probability distribution, ( )f y y . 

F.2.6 Assessment of an analytical technique 

Having performed a measurement and an evaluation of the measurement according to ISO/IEC Guide 98-3 
(see References [1, 2]), the performance of the analytical technique can be assessed in the following way: 

A measured result shall be compared with the decision threshold calculated by means of Equation (F.11). If a 
result of the measurement, y, is larger than the decision threshold, y* , one decides that a non-zero effect 
quantified by the measurand is observed and that the element or activity is present in the sample.  

To check whether a measurement procedure is suitable for measuring the measurand, the calculated 
detection limit shall be compared with a specified guideline value, e.g. according to specified requirements on 
the sensitivity of the measurement procedure for scientific, legal or other reasons. The detection limit shall be 
calculated by means of Equation (F.13). If the detection limit thus determined is smaller than the guideline 
value, the procedure is suitable for the measurement, otherwise it is not. 
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