BS ISO 11257:2015 # **BSI Standards Publication** Iron ores for shaft directreduction feedstocks — Determination of the lowtemperature reductiondisintegration index and degree of metallization BS ISO 11257:2015 BRITISH STANDARD #### National foreword This British Standard is the UK implementation of ISO 11257:2015. It supersedes BS ISO 11257:2007 which is withdrawn. The UK participation in its preparation was entrusted to Technical Committee ISE/58, Iron ores. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2015. Published by BSI Standards Limited 2015 ISBN 978 0 580 79287 8 ICS 73.060.10 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 August 2015. Amendments issued since publication Date Text affected # INTERNATIONAL STANDARD ISO 11257:2015 ISO 11257 Third edition 2015-08-15 # Iron ores for shaft direct-reduction feedstocks — Determination of the low-temperature reduction-disintegration index and degree of metallization Minerais de fer pour charges utilisées dans les procédés par réduction directe — Détermination de l'indice de désintégration par réduction à basse température et du degré de métallisation BS ISO 11257:2015 **ISO 11257:2015(E)** # **COPYRIGHT PROTECTED DOCUMENT** © ISO 2015, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Con | Contents | | | |--------|----------------------------------------------------------------------------|----------|--| | Forev | word | iv | | | Intro | oduction | v | | | 1 | Scope | 1 | | | 2 | Normative references | | | | 3 | Terms and definitions | | | | 4 | Principle | | | | 5 | Sampling, sample preparation, and preparation of test portions | | | | 3 | 5.1 Sampling and sample preparation | | | | | 5.2 Preparation of test portion | | | | 6 | Apparatus | | | | U | 6.1 General | | | | 7 | Test conditions | 3 | | | • | 7.1 General | | | | | 7.2 Reducing gas | | | | | 7.2.1 Composition | | | | | 7.2.2 Purity | | | | | 7.2.3 Flow rate | | | | | 7.3 Heating and cooling gas | | | | | 7.4 Temperature of the test portion | 3 | | | 8 | Procedure | 4 | | | | 8.1 Number of determinations for the test | | | | | 8.2 Reduction | | | | | 8.3 Sieving | | | | | 8.4 Chemical analysis | 4 | | | 9 | Expression of results | | | | | 9.1 Calculation of the reduction-disintegration index (RDI _{DR}) | | | | | 9.2 Calculation of the degree of metallization (<i>M</i>) | | | | | 9.3 Repeatability and acceptance of test results | 5 | | | 10 | Test report | | | | 11 | Verification | | | | Anne | ex A (normative) Flowsheet of the procedure for the acceptance of test | results8 | | | Biblio | ography | 9 | | # **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT), see the following URL: Foreword — Supplementary information The committee responsible for this document is ISO/TC 102, *Iron ore and direct reduced iron*, Subcommittee SC 3, *Physical testing*. This third edition cancels and replaces the second edition (ISO 11257:2007), of which it constitutes a minor revision to contemplate the care needed during hand sieving, to introduce the mechanical sieving and to exclude the reference to ISO 4701. # Introduction This International Standard concerns one of a number of physical test methods that have been developed to measure various physical parameters and to evaluate the behaviour of iron ores, including reducibility, disintegration, crushing strength, apparent density, etc. This method was developed to provide a uniform procedure, validated by collaborative testing, to facilitate comparisons of tests made in different laboratories. The results of this test have to be considered in conjunction with other tests used to evaluate the quality of iron ores as feedstocks for direct reduction processes. This International Standard can be used to provide test results as part of a production quality control system, as a basis of a contract, or as part of a research project. # Iron ores for shaft direct-reduction feedstocks — Determination of the low-temperature reduction-disintegration index and degree of metallization CAUTION — This International Standard can involve hazardous operations and equipment. International Standard does not purport to address all of the safety issues associated with its use. It is the responsibility of the user of this International Standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to its use. # 1 Scope This International Standard specifies a method to provide a relative measure for evaluating the degree of size degradation and degree of metallization of iron ores, when reduced under conditions resembling those prevailing in shaft direct-reduction processes. This International Standard is applicable to lump ores and hot-bonded pellets. # 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 2597-1, Iron ores — Determination of total iron content — Part 1: Titrimetric method after tin(II) chloride reduction ISO 2597-2, Iron ores — Determination of total iron content – Part 2: Titrimetric methods after titanium(III) chloride reduction ISO 3082, Iron ores — Sampling and sample preparation procedures ISO 3310-1, Test sieves — Technical requirements and testing — Part 1: Test sieves of metal wire cloth ISO 3310-2, Test sieves — Technical requirements and testing — Part 2: Test sieves of perforated metal plate ISO 5416, Direct reduced iron — Determination of metallic iron — Bromine-methanol titrimetric method ISO 11323, Iron ore and direct reduced iron — Vocabulary # 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO 11323 apply. # 4 Principle The test portion is isothermally reduced in a rotating tube bed, at 760 $^{\circ}$ C, using a reducing gas consisting of H₂, CO, CO₂, and CH₄, for 300 min. The reduced product is sieved with a sieve having square openings of 3,15 mm. Then, it is analysed for total iron and metallic iron. The reduction-disintegration index is calculated as the mass percentage of material less than 3,15 mm. The degree of metallization is calculated from the chemical analysis results. # 5 Sampling, sample preparation, and preparation of test portions # 5.1 Sampling and sample preparation Sampling of a lot and preparation of a test sample shall be in accordance with ISO 3082. The size ranges for pellets shall be 50 % - 16,0 mm + 12,5 mm and 50 % - 12,5 mm + 10,0 mm. The size ranges for lump ores shall be 50% - 20.0 mm + 16.0 mm and 50% - 16.0 mm + 10.0 mm. A test sample of at least 2,0 kg, on a dry basis, of the sized material shall be obtained. Oven-dry the test sample to constant mass at 105 $^{\circ}$ C \pm 5 $^{\circ}$ C and cool it to room temperature before preparation of the test portions. NOTE Constant mass is achieved when the difference in mass between two subsequent measurements becomes less than 0,05 % of the initial mass of the test sample. # 5.2 Preparation of test portion Collect each test portion by taking ore particles at random. NOTE Manual methods of division recommended in ISO 3082, such as riffling, can be applied to obtain the test portions. At least four test portions, each of approximately 500 g (± the mass of 1 particle), shall be prepared from the test sample. Weigh the test portions to the nearest 1 g and register the mass of each test portion on its recipient label. # 6 Apparatus # 6.1 General The test apparatus shall comprise the following: - a) ordinary laboratory equipment, such as an oven, hand tools, time-control device, and safety equipment; - b) reduction tube assembly; - c) furnace, with a system to rotate the reduction tube; - d) system to supply the gases and regulate the flow rates; - e) test sieves; - f) weighing device. Figure 1 shows an example of the test apparatus. **6.2 Reduction tube**, without lifters, made of non-scaling, heat-resistant metal to withstand temperatures higher than 760 °C and resistant to deformation. The internal diameter shall be $130 \text{ mm} \pm 1 \text{ mm}$ and its internal length shall be 200 mm. A dust collector shall be connected to the tube to trap any fine particles carried in the gas stream out of the tube during the test. **6.3 Furnace**, having a heating capacity and temperature control able to reach the test temperature within 90 min and to maintain the entire test portion, as well as the gas entering the bed, at 760 °C \pm 5 °C. - **6.4** Rotation equipment, capable of rotation the reduction tube at a constant rate of $10 \text{ r/min} \pm 1 \text{ r/min}$. - **6.5 Gas-supply system**, capable of supplying the gases and regulating gas flow rates. - **6.6 Test sieves**, conforming to ISO 3310-1 or ISO 3310-2 and having mesh apertures of the following nominal sizes: 10,0 mm and 3,15 mm. - **6.7 Weighing device**, capable of weighing the test sample and test portions to an accuracy of 0,1 g. # 7 Test conditions # 7.1 General Volumes and flow rates of gases used are as measured at a reference temperature of 0 $^{\circ}$ C and at a reference atmospheric pressure of 101,325 kPa (1,013 25 bar). # 7.2 Reducing gas # 7.2.1 Composition The reducing gas shall consist of the following: ``` CO 36.0 \% \pm 1.0 \% (volume fraction) ``` CO_2 5,0 % ± 1,0 % (volume fraction) H_2 55,0 % ± 1,0 % (volume fraction) CH_4 4,0 % ± 1,0 % (volume fraction) # **7.2.2** Purity Impurities in the reducing gas shall not exceed the following: O₂ 0,1 % (volume fraction) H₂O 0,2 % (volume fraction) # 7.2.3 Flow rate The flow rate of the reducing gas, during the entire reducing period, shall be maintained at $13 \text{ L/min} \pm 0.5 \text{ L/min}$. # 7.3 Heating and cooling gas Nitrogen (N_2) shall be used as the heating and cooling gas. Impurities shall not exceed 0,1 % (volume fraction). The flow rate of N_2 shall be maintained at 10 L/min until the test portion reaches 760 °C and at 13 L/min during temperature-equilibration period. During cooling, it shall be maintained at 10 L/min. # 7.4 Temperature of the test portion The temperature of the entire test portion shall be maintained at 760 °C \pm 5 °C during the entire reducing period and, as such, the reducing gas shall be preheated before entering the test portion. # 8 Procedure # 8.1 Number of determinations for the test Carry out the test as many times as required by the procedure in Annex A. # 8.2 Reduction Take, at random, one of the test portions prepared in 5.2 and place it in the reduction tube (6.2). Insert the reduction tube into the furnace (6.3). Close the reduction tube, connect the thermocouple, ensuring that its tip is in the middle of the reduction tube, and connect the gas supply system. By means of the rotation equipment (6.4), commence rotation of the reduction tube at $10 \text{ r/min} \pm 1 \text{ r/min}$. Pass a flow of N_2 through the test portion at a rate of at least 10 L/min and immediately commence heating. The heating rate shall be such that the test portion reaches 760 °C within 90 min. When the temperature approaches 760 °C, increase the flow rate of N_2 to 13 L/min and continue heating at 760 °C ± 5 °C for 30 min. DANGER — Carbon monoxide, hydrogen, and reducing gas, which contains carbon monoxide and hydrogen, are toxic and explosive, and therefore hazardous. Testing shall be carried out in a well ventilated area or under a hood. Precautions should be taken for the safety of the operator, in accordance with the safety codes of each country. Introduce the reducing gas at a flow rate of 13 L/min \pm 0,5 L/min to replace the N₂. After 300 min of reduction, stop the flow of the reducing gas, stop the rotation of the reduction tube and cool the reduced test portion to room temperature under N₂ at a flow rate of 10 L/min. # 8.3 Sieving Remove all the material carefully from the reduction tube, scraping, if necessary, to remove any material adhering to the tube wall. Remove from the reduced material any free carbon deposited during reduction (a magnet can be used). Determine the mass of the reduced material (m_0) and hand sieve it with care on 10,0 mm and 3,15 mm sieves (6.6). Determine and record the mass of each fraction retained on 10,0 mm (m_1) and 3,15 mm (m_2) sieves to the nearest 0,1 g. The dry weight of dust trapped in the dust collector, and material lost during sieving, shall be considered to be part of the -3,15 mm fraction. NOTE Equivalent mechanical sieving can be used provided that preliminary test programme is carried out according to ISO 3086, having as reference the hand sieving method. Sieving results are influenced by the sieve shaker characteristics. Therefore in cases in which two or more laboratories need to compare their results for commercial or research purposes, they should adjust the sieving conditions until they obtain identical results for the same test sample. # 8.4 Chemical analysis Pulverise the entire reduced material and determine its total iron content (w_t) in accordance with ISO 2597-1 or ISO 2597-2, and its metallic iron content (w_0) in accordance with ISO 5416. NOTE If desired, the mass percentage of combined carbon in the reduced test portion can be determined by applying ISO 9686. # 9 Expression of results # 9.1 Calculation of the reduction-disintegration index (RDI_{DR}) The reduction-disintegration index, RDI_{DR} , expressed as a mass percentage of material less than 3,15 mm, is calculated from Formula (1): $$RDI_{DR} = \frac{m_0 - (m_1 + m_2)}{m_0} \times 100$$ (1) where m_0 is the mass, in grams, of the reduced test portion before sieving, including the dust trapped in the dust collector: m_1 is the mass, in grams, of the fraction of the reduced test portion retained on the 10 mm sieve. m_2 is the mass, in grams, of the fraction of the reduced test portion retained on the 3,15 mm sieve. Record the result to one decimal place. # 9.2 Calculation of the degree of metallization (*M*) The degree of metallization, *M*, expressed as a percentage by mass, is calculated from Formula (2): $$M = \frac{w_0}{w_t} \times 100 \tag{2}$$ where w_0 is the metallic iron content, expressed as a percentage by mass, of the reduced test portion; w_t is the total iron content, expressed as a percentage by mass, of the reduced test portion. Record the result to one decimal place. # 9.3 Repeatability and acceptance of test results Follow the procedure in <u>Annex A</u> for each index, by using the repeatability value given in <u>Table 1</u>. The results shall be reported to one decimal place. Table 1 — Repeatability (r) | Index | r | |------------------------------------------------------------------------------------------------------------------------|-------------------------------| | | % | | RDI _{DR} | 0,86 + 0,20 RDI _{DR} | | М | 7,22 - 0,06 <i>M</i> | | NOTE \overline{RDI}_{DR} and \overline{M} are the mean values of the results of RDI_{DR} and M , respectively. | | # 10 Test report The test report shall include the following information: - a) a reference to this International Standard, i.e. ISO 11257:2015; - b) all details necessary for the identification of the sample; - c) the name and address of the test laboratory; - d) the date of the test; - e) the date of the test report; - f) the signature of the person responsible for the test; - g) the details of any operation and any test conditions not specified in this International Standard or regarded as optional, as well as any incident which could have had an influence on the results; - h) the reduction-disintegration index, RDI_{DR}, and degree of metallization, *M*; - the sieving conditions, e.g. the method of sieving and the sieving time. # 11 Verification Regular checking of the apparatus is essential to ensure test result reliability. The frequency of checking is a matter for each laboratory to determine. The conditions of the following items shall be checked: - sieves; - weighing device; - reduction tube; - tube-rotation equipment; - temperature control and measurement devices; - gas flow meters; - purity of gases; - time-control device. It is recommended that the internal reference material be prepared and used periodically to check test repeatability. Appropriate records of verification activities shall be maintained. # Key # Reduction tube - 1 reduction tube - 2 gas inlet - 3 dust collector - 4 gas outlet - 5 thermocouple for measuring the reduction temperature - 6 test portion # **Furnace** - 7 electrically heated furnace - 8 thermocouple for temperature regulation of furnace - 9 rotation equipment (electric motor) - 10 tube-support wheels # Gas supply system - 11 gas cylinders - 12 gas flow meters - 13 mixing vessel Figure 1 — Example of test apparatus (schematic diagram) # **Annex A** (normative) # Flowsheet of the procedure for the acceptance of test results Start with independent duplicate results $X = \text{median}(X_1, X_2, X_3, X_4)$ r: see Table 1 # **Bibliography** [1] ISO 9686, Direct reduced iron — Determination of carbon and/or sulfur — High-frequency combustion method with infrared measurement # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. ### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. # **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. # **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. # **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK ## **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. # Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com # Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### Knowledge Centre Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com