## **BS ISO 11235:2016**



BSI Standards Publication

# **Rubber compounding ingredients — Sulfenamide accelerators — Test methods**



... making excellence a habit."

#### **National foreword**

This British Standard is the UK implementation of ISO 11235:2016. It supersedes [BS ISO 11235:1999](http://dx.doi.org/10.3403/01826492) which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee PRI/50, Raw materials (including latex) for use in the rubber industry.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2016. Published by BSI Standards Limited 2016

ISBN 978 0 580 89098 7

ICS 83.040.20

#### **Compliance with a British Standard cannot confer immunity from legal obligations.**

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 January 2016.

#### **Amendments/corrigenda issued since publication**

Date Text affected

# INTERNATIONAL STANDARD

BS ISO 11235:2016 **[ISO](http://dx.doi.org/10.3403/01826492U) [11235](http://dx.doi.org/10.3403/01826492U)**

> Second edition 2016-01-15

## **Rubber compounding ingredients — Sulfenamide accelerators — Test methods**

*Ingrédients de mélange du caoutchouc — Accélérateurs de type sulfénamide — Méthodes d'essai*



Reference number ISO 11235:2016(E)



#### © ISO 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

## **Contents**



#### BS ISO 11235:2016 ISO 11235:2016(E)



### <span id="page-6-0"></span>**Foreword**

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see [www.iso.org/directives](http://www.iso.org/directives)).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see [www.iso.org/patents](http://www.iso.org/patents)).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT), see the following URL: [Foreword — Supplementary information](http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm?=).

The committee responsible for this document is ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 3, *Raw materials (including latex) for use in the rubber industry*.

This second edition cancels and replaces the first edition (ISO [11235:1999\)](http://dx.doi.org/10.3403/01826492), which have been technically revised:

- the method to determine purity by high performance liquid chromatography (HPLC) is stated as the preferred method in the scope and in the new [5.2.1.3;](#page-13-1)
- the normative references in [Clause](#page-8-1) 2 and in the text have been updated;
- precision data in 4.2.12 have been moved in an informative  $\Delta$  [Annex](#page-30-1) B and a Bibliography has been added.

BS ISO 11235:2016

## <span id="page-8-0"></span>**Rubber compounding ingredients — Sulfenamide accelerators — Test methods**

**WARNING — Persons using this International Standard should be familiar with normal laboratory practice. This International Standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions.**

#### **1 Scope**

This International Standard specifies the methods to be used for the evaluation of sulfenamide accelerators:

- MBTS*:* benzothiazyl disulphide;
- CBS: *N*-cyclohexylbenzothiazole-2-sulfenamide;
- TBBS: *N*-*tert*-butylbenzothiazole-2-sulfenamide;
- DIBS: *N*,*N*'-diisopropylbenzothiazole-2-sulfenamide;
- DCBS: *N*,*N*'-dicyclohexylbenzothiazole-2-sulfenamide;
- MBS: *N*-oxydiethylenebenzothiazole-2-sulfenamide.

NOTE Although MBTS is not a sulfenamide, it is the primary decomposition product of these accelerators and quantitatively determined by the method specified in [5.2.](#page-13-2)

The analytical methods are applicable for most commercial sulfenamide accelerators:

- sulfenamides of primary amines (type I);
- sulfenamides of unhindered secondary amines (type II);
- sulfenamides of hindered secondary amines (type III).

The method [\(5.2](#page-13-2)) to determine purity by high performance liquid chromatography (HPLC) is the preferred method.

#### <span id="page-8-1"></span>**2 Normative references**

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO [385,](http://dx.doi.org/10.3403/03263800U) *Laboratory glassware — Burettes*

ISO [648](http://dx.doi.org/10.3403/30163411U), *Laboratory glassware — Single-volume pipettes*

ISO 1772, *Laboratory crucibles in porcelain and silica*

ISO [3819,](http://dx.doi.org/10.3403/30270810U) *Laboratory glassware — Beakers*

ISO [4788](http://dx.doi.org/10.3403/03282506U), *Laboratory glassware — Graduated measuring cylinders*

ISO [4793](http://dx.doi.org/10.3403/00107582U), *Laboratory sintered (fritted) filters — Porosity grading, classification and designation*

ISO [6556,](http://dx.doi.org/10.3403/00096578U) *Laboratory glassware — Filter flasks*

<span id="page-9-0"></span>ISO [15528](http://dx.doi.org/10.3403/02148533U), *Paints, varnishes and raw materials for paints and varnishes — Sampling*

### **3 Terms and definitions**

For the purposes of this document, the following terms and definitions apply.

#### **3.1**

#### **external standard calculation**

<high performance liquid chromatography> method of calculating the analyte content by measuring the area of the analyte peak, multiplying it by a response factor, and dividing it by the sample concentration

Note 1 to entry: All components are assumed to be resolved from the component of interest.

#### **3.2**

#### **lot sample**

sample from production representative of a standard production unit, normally referred to as "the sample"

#### **3.3**

#### **test portion**

actual material, representative of the lot sample, used for a particular determination

#### **4 Determination of physical and chemical properties**

#### **4.1 Sampling**

The sampling of the product shall be performed in accordance with ISO [15528.](http://dx.doi.org/10.3403/02148533U)

To ensure homogeneity, thoroughly blend at least 250 g of the lot sample before removing the test portion.

#### **4.2 Test methods**



#### **Table 1 — List of the test methods**

#### **4.3 Limit of acceptance**

The difference between the results of duplicate determinations shall not exceed the repeatability of the test, if it is defined. Otherwise, it is necessary to repeat the test. When the repeatability is not defined, the results of both determinations shall be reported.

#### <span id="page-10-11"></span><span id="page-10-0"></span>**5 Test methods for purity**

#### <span id="page-10-1"></span>**5.1 Method to determine purity by reduction with MBT and titration**

#### **5.1.1 Scope**

The following method is suitable for determining the purity and free amine in sulfenamides commonly used in the rubber industry and is applicable to CBS, DCBS, MBS and TBBS.

#### **5.1.2 Principle**

After neutralization of the free amine, the sulfenamide is reduced by means of a solution of mercaptobenzothiazole (MBT). An excess of hydrochloric acid is added and the unreacted hydrochloric acid is then titrated with sodium hydroxide using one of the two following methods:

- method A: potentiometric titration;
- method B: titration using an indicator.

#### **5.1.3 Reagents**

During the analysis, use only reagents of recognized analytical grade and only distilled water or water of equivalent purity.

#### **5.1.3.1 Basic reagents for methods A and B**

- <span id="page-10-4"></span>**5.1.3.1.1 Mercaptobenzothiazole (MBT)**, min. assay 99,0 %.
- <span id="page-10-2"></span>**5.1.3.1.2 Absolute ethanol**.
- <span id="page-10-5"></span>**5.1.3.1.3 Toluene**.
- <span id="page-10-7"></span>**5.1.3.1.4 Hydrochloric acid**, standard volumetric solution, *c*(HCl) = 0,1 mol/dm3.
- <span id="page-10-9"></span>**5.1.3.1.5 Hydrochloric acid**, standard volumetric solution, *c*(HCl) = 0,5 mol/dm3.
- <span id="page-10-3"></span>**5.1.3.1.6 Sodium hydroxide**, standard volumetric solution, *c*(NaOH) = 0,1 mol/dm3, carbonate free.
- <span id="page-10-10"></span>**5.1.3.1.7 Sodium hydroxide**, standard volumetric solution, *c*(NaOH) = 0,5 mol/dm3, carbonate free.

#### <span id="page-10-6"></span>**5.1.3.1.8 Bromophenol blue**, 10 g/dm3 solution.

Dissolve 1 g of bromophenol blue with a small volume of ethanol  $(5.1.3.1.2)$  $(5.1.3.1.2)$  $(5.1.3.1.2)$ . Transfer to a 100 cm<sup>3</sup> volumetric flask and neutralize with the sodium hydroxide solution ([5.1.3.1.6](#page-10-3)) to a green colour. Dilute to the mark with ethanol ([5.1.3.1.2\)](#page-10-2).

#### **5.1.3.2 Prepared reagent for method A**

#### <span id="page-10-8"></span>**5.1.3.2.1 Mercaptobenzothiazole**, 40 g/dm3 solution, freshly prepared.

Weigh a suitable quantity of MBT  $(5.1.3.1.1)$  $(5.1.3.1.1)$  $(5.1.3.1.1)$  to the nearest 0,1 g and dissolve in absolute ethanol [\(5.1.3.1.2](#page-10-2)). If the MBT does not dissolve completely, heat the solution to a temperature no higher than  $(55 \pm 2)$  °C (not exceeding 57 °C) to ensure complete dissolution. Cool to room temperature and dilute to the mark of a suitable volumetric flask with absolute ethanol.

#### <span id="page-11-0"></span>**5.1.3.3 Prepared reagent for method B**

<span id="page-11-1"></span>**5.1.3.3.1 Ethanol** [\(5.1.3.1.2\)](#page-10-2)/**toluene** [\(5.1.3.1.3\)](#page-10-5) solution, 5:3 (V:V)

<span id="page-11-5"></span>**5.1.3.3.2 Mercaptobenzothiazole**, 40 g/dm3 solution, freshly prepared.

Weigh a suitable quantity of MBT  $(5.1.3.1.1)$  $(5.1.3.1.1)$  $(5.1.3.1.1)$  to the nearest 0,1 g and dissolve in the ethanol/toluene solution ([5.1.3.3.1](#page-11-1)). If the MBT does not dissolve completely, heat the solution to a temperature no higher than (55 ± 2) °C (not exceeding 57 °C) to ensure complete dissolution. Cool to room temperature and dilute to the mark of a suitable volumetric flask with the ethanol/toluene solution ([5.1.3.3.1](#page-11-1)).

#### **5.1.4 Apparatus**

**5.1.4.1 Mortar and pestle** or other appropriate **grinding device.**

**5.1.4.2 Pipette,** 25 cm3 capacity, in accordance with the specifications given in ISO [648](http://dx.doi.org/10.3403/30163411U).

**5.1.4.3 Burette,** 25 cm3 capacity, graduated in 0,05 cm3, in accordance with the general specifications given in ISO [385.](http://dx.doi.org/10.3403/03263800U)

<span id="page-11-2"></span>**5.1.4.4 Beaker,** 250 cm3 capacity, in accordance with the specifications given in ISO [3819](http://dx.doi.org/10.3403/30270810U).

- <span id="page-11-3"></span>**5.1.4.5 Temperature-controlled bath,** capable of being maintained at  $(55 \pm 2)$  °C.
- <span id="page-11-4"></span>**5.1.4.6 Stop-watch**.
- **5.1.4.7 Magnetic stirrer**.
- **5.1.4.8 pH-meter,** with a resolution of 0,1 unit or better.
- **5.1.4.9 Analytical balance,** accurate to within ± 0,1 mg.
- **5.1.5 Procedure**

#### **5.1.5.1 Method A**

**5.1.5.1.1** Grind a sample and weigh a test portion of approximately 2 g of the blended powder to the nearest 0,1 mg. For TBBS, weigh approximately 1,6 g of the test sample. Transfer it to the beaker ([5.1.4.4\)](#page-11-2).

**5.1.5.1.2** Add 50 cm<sup>3</sup> of ethanol [\(5.1.3.1.2\)](#page-10-2) and stir until dissolved. If needed, heat the solution to a temperature no higher than 55 °C. A slight turbidity may remain.

**5.1.5.1.3** Cool to room temperature. Add 3 drops of indicator [\(5.1.3.1.8\)](#page-10-6) and titrate the free amine with 0,1 mol/dm<sup>3</sup> hydrochloric acid  $(5.1.3.1.4)$  $(5.1.3.1.4)$  $(5.1.3.1.4)$  to the blue-green-colour end point  $(V_1)$ .

**5.1.5.1.4** Add 50 cm<sup>3</sup> of the MBT solution ([5.1.3.2.1](#page-10-8)) and immediately pipette 25 cm<sup>3</sup> of 0,5 mol/dm<sup>3</sup> hydrochloric acid ([5.1.3.1.5](#page-10-9)), exactly measured.

**5.1.5.1.5** Stir the solution in a temperature-controlled bath  $(5.1.4.5)$  $(5.1.4.5)$  maintained at  $(55 \pm 2)$  °C for exactly 5 min, timed with the stop-watch ([5.1.4.6\)](#page-11-4).

<span id="page-12-0"></span>**5.1.5.1.6** Titrate potentiometrically the unreacted hydrochloric acid with the 0,5 mol/dm3 sodium hydroxide ([5.1.3.1.7](#page-10-10)). With continued stirring, add the sodium hydroxide stepwise in increments of 1 cm3, and record the resultant equilibrium potential (mV) after each addition. Approaching the end point, add titrant in increments of  $0,1 \text{ cm}^3$ , recording the potential (mV) 20 s after each addition until the end point has been passed.

The end point of the titration is the point of inflection of the titration curve, plotted automatically or manually as the measured potential (mV) against the volume in cubic centimetres of sodium hydroxide solution. At this point, the first derivative curve reaches a maximum while the second derivative curve is zero (falling from a positive to a negative value). The end point shall be calculated from the second derivative on the assumption that the change from a positive to a negative value bears a linear relationship with the addition of sodium hydroxide in the  $0.1 \text{ cm}^3$  interval  $(V_3)$  passing through the inflection point.

#### **5.1.5.2 Method B**

**5.1.5.2.1** Grind a test sample and weigh approximately 2 g of the blended powder to the nearest 0,1 mg. For TBBS, weigh approximately 1,6 g of the test sample. Transfer it to the beaker ([5.1.4.4](#page-11-2)).

**5.1.5.2.2** Add 50 cm3 of the ethanol/toluene solution [\(5.1.3.3.1\)](#page-11-1) and stir until dissolved. If needed, heat the solution to a temperature no higher than 55 °C. A slight turbidity may remain.

**5.1.5.2.3** Cool to room temperature. Add 3 drops of indicator [\(5.1.3.1.8\)](#page-10-6) and titrate the free amine with 0,1 mol/dm3 hydrochloric acid ([5.1.3.1.4](#page-10-7)) to the blue-green-colour end point (*V*1).

**5.1.5.2.4** Add 50 cm<sup>3</sup> of the MBT solution ([5.1.3.3.2](#page-11-5)) and immediately pipette 25 cm<sup>3</sup> of 0,5 mol/dm<sup>3</sup> hydrochloric acid  $(5.1.3.1.5)$  $(5.1.3.1.5)$  $(5.1.3.1.5)$ , exactly measured.

**5.1.5.2.5** Stir the solution in a temperature-controlled bath ([5.1.4.5\)](#page-11-3) maintained at (55  $\pm$  2) °C for exactly 5 min, timed by the stop-watch  $(5.1.4.6)$  $(5.1.4.6)$ .

**5.1.5.2.6** Add 3 drops of bromophenol blue indicator ([5.1.3.1.8](#page-10-6)) and titrate the unreacted hydrochloric acid with 0.5 mol/dm<sup>3</sup> sodium hydroxide  $(5.1.3.1.7)$  $(5.1.3.1.7)$  to the green-blue-colour end point. Then continue, drop by drop, to a blue colour  $(V_3)$ .

#### **5.1.6 Expression of results (methods A and B)**

#### <span id="page-12-1"></span>**5.1.6.1 Free amine**

Calculate the free amine content, *F* expressed as a percentage by mass to the nearest 0,1 % (m/m), by the following equation:

$$
F = \frac{V_1 - c_1}{10 \times m} \times M_1 \tag{1}
$$

where

- $V_1$  is the volume, in cubic centimetres, of hydrochloric acid ([5.1.3.1.4\)](#page-10-7) used for the titration;
- $c_1$  is the concentration, in moles per cubic decimetre, of the hydrochloric acid  $(5.1.3.1.4)$  $(5.1.3.1.4)$  $(5.1.3.1.4)$ ;
- *m* is the mass, in grams, of the test portion;
- *M*<sub>1</sub> is the molecular mass of the corresponding amine (see [Table](#page-13-3) 2).

<span id="page-13-3"></span>**Table 2**

<span id="page-13-0"></span>

| <b>Sulfenamide</b> | Molecular mass of the corresponding<br>amine |
|--------------------|----------------------------------------------|
| <b>CBS</b>         | 99,18                                        |
| <b>DCBS</b>        | 181,32                                       |
| <b>MBS</b>         | 87,12                                        |
| <b>TBBS</b>        | 73.14                                        |

#### <span id="page-13-5"></span>**5.1.6.2 Purity**

Calculate the purity of the sulfenamide, *P* expressed as a percentage by mass to the nearest 0,1 % (m/m), by the following equation:

$$
P = \frac{\left(25 \times c_2\right) - \left(V_3 - c_3\right)}{10 \times m} \times M_2 \tag{2}
$$

where

 $c_2$  is the concentration, in moles per cubic decimetre, of the hydrochloric acid  $(5.1.3.1.5)$  $(5.1.3.1.5)$ ;

 $c_3$  is the concentration, in moles per cubic decimetre, of the sodium hydroxide ( $5.1.3.1.7$ );

 $V_3$  is the volume, in cubic centimetres, of the sodium hydroxide  $(5.1.3.1.7)$  $(5.1.3.1.7)$  $(5.1.3.1.7)$ ;

*m* is the mass, in grams, of the test portion;

*M*<sub>2</sub> is the molecular mass of the sulfenamide (see [Table](#page-13-4) 3).

<span id="page-13-4"></span>



#### <span id="page-13-2"></span>**5.2 Method to determine purity by high performance liquid chromatography (HPLC)**

#### **5.2.1 Scope**

**5.2.1.1** The following test method is suitable for determining the purity of commercially available benzothiazole sulfenamide accelerators, when present in the range from 80 % to 100 %. Determination is carried out by high performance liquid chromatography using ultraviolet detection with the use of an external standard. It is applicable to MBTS, MBS, CBS, TBBS, DIBS, and DCBS.

**5.2.1.2** In order to carry out this test method correctly, it is necessary to have expertise in high performance liquid chromatography (HPLC).

<span id="page-13-1"></span>**5.2.1.3** Method to determine purity by high performance liquid chromatography (HPLC) is the preferred method.

#### <span id="page-14-0"></span>**5.2.2 Principle**

A test portion is dissolved in acetonitrile and a filled-loop volume is analysed by isocratic HPLC using a temperature-controlled C18 reversed-phase column and an ultraviolet (UV) detector. Peak areas are determined using a chromatographic integrator or laboratory data system with the quantity of analyte being determined by external calibration.

#### **5.2.3 Significance and use**

**5.2.3.1** This test method is designed to determine the purity of industrially produced and used benzothiazole sulfenamides.

**5.2.3.2** Since the results of this test method are based on an integrated peak area, it is assumed that all analytes of interest are resolved from interfering peaks.

#### **5.2.4 Interferences**

Components co-eluting with the analyte of interest will cause erroneous results; thus it is required that the column used have a theoretical plate number of at least 10 000.

#### **5.2.5 Reagents and materials**

- <span id="page-14-3"></span>**5.2.5.1 Acetic acid**, glacial.
- <span id="page-14-1"></span>**5.2.5.2 Acetonitrile**, HPLC grade.
- <span id="page-14-4"></span>**5.2.5.3 Methanol**, HPLC grade.
- <span id="page-14-2"></span>**5.2.5.4 Water**, HPLC grade.
- **5.2.6 Apparatus**
- **5.2.6.1 Liquid chromatograph**, consisting of the following:

#### **5.2.6.1.1 Precision chromatographic pump**.

**5.2.6.1.2 UV detector**, of variable wavelength.

**5.2.6.1.3 Column temperature-controller**, capable of maintaining the temperature at  $(35 \pm 1)$  °C, for example a column oven or water jacket.

**5.2.6.1.4 Filled-loop injector**, with a nominal volume of 10 mm3 (10 µl) or less.

**5.2.6.2 HPLC column**, consisting of C18 (ODS) reversed-phase material with spherical, totally porous monomolecular 5 µm particles capable of providing 40 000 theoretical plates per metre (a minimum of 10 000 plates is required for this analysis).

**5.2.6.3 Integrator/data system**, capable of determining absolute quantities of analyte of interest by means of integration of detector output versus time.

**5.2.6.4 Analytical balance**, accurate to within ± 0,1 mg.

#### <span id="page-15-0"></span>**5.2.7 Calibration and standardization**

A primary standard of known purity is used to determine the response factor for each analyte.

#### **5.2.8 Procedure**

#### **5.2.8.1 Chromatographic conditions**

**5.2.8.1.1** Determine the mobile phase composition and the flow rate by adjusting the chromatographic parameters for the particular column chosen. The mobile phase consists of an approximate mixture of HPLC grade acetonitrile  $(5.2.5.2)$  $(5.2.5.2)$  and HPLC grade or equivalent water  $(5.2.5.4)$  $(5.2.5.4)$ , both containing 0,001 mol of glacial acetic acid  $(5.2.5.1)$  $(5.2.5.1)$  per cubic decimetre or less depending on the particular column chosen. [HPLC grade methanol  $(5.2.5.3)$  $(5.2.5.3)$  $(5.2.5.3)$  may be added to the acetonitrile/water eluent to achieve the necessary separation for DIBS and MBTS.]

**5.2.8.1.2** For the analysis of the sulfenamides, adjust the flow rate and mobile phase composition to provide a capacity factor, *k'*, between 4 and 6 for the analyte of interest, and a minimum resolution, *R*s, of 2 between the MBTS impurity and the analyte of interest.

Different liquid chromatography columns may exhibit different elution characteristics. Suggested chromatographic starting parameters for analysis are indicated in [Table](#page-15-1) 4.

<span id="page-15-1"></span>**Table 4**



**5.2.8.1.3** The capacity factor,  $k'$ , is defined as the retention time of the analyte,  $t_A$ , minus the retention

time of an unretained solute (solvent peak),  $t_0$ , divided by  $t_0$ :  $t_{\mu} - t$ 

$$
k' = \frac{t_A - t_0}{t_0} \tag{3}
$$

**5.2.8.1.4** The resolution,  $R_s$ , is a function of the capacity factor, selectivity, and the theoretical plates of the column:

$$
R_s = 2 \times \frac{t_2 - t_1}{b_2 + b_1} \tag{4}
$$

where

- $t_1, t_2$  are the retention times of the analytes;
- $b_1, b_2$  are the peak widths at 10 % of the peak height.

#### <span id="page-16-0"></span>**5.2.8.2 Detector**

Monitor the absorbance of all components at 275 nm. Set the detector sensitivity to one absorbance unit full scale (AUFS).

#### **5.2.8.3 Integrator/data system**

Adjust the integrator settings to give a full-scale response to one absorbance unit (AU).

#### **5.2.8.4 Preparation of standards**

The standard reference materials are purified, if necessary, by multiple recrystallization of the sulfenamides. Dissolve 100 g of the sulfenamide in 200 cm<sup>3</sup> of analytical reagent (AR) grade toluene with slight warming (50 °C). Add 2 g of activated carbon and stir for 30 min. Filter the hot solution by gravity and cool in an ice/acetone bath. Vacuum filter the crystals. Repeat this crystallization. Dissolve the analyte crystals from the second toluene crystallization in hot (50 °C) methanol, cool in an ice/acetone bath, and vacuum filter. Repeat the alcohol recrystallization and dry in a vacuum oven at 50 °C overnight. Repeat the procedure until the desired purity is obtained. Estimate the purity of the standard by gradient HPLC analysis of the impurities and differential thermal analysis (DTA).

Weigh at least 20 mg to the nearest 0,1 mg of the sulfenamide standard reference material in a 100 cm<sup>3</sup> volumetric flask and dilute to volume with acetonitrile. Adjust the standard concentration if necessary by serial dilution with acetonitrile to give a maximum absorbance (peak height) between 0,4 AU and 0,8 AU (the linear range of the chromatographic system). Analyse the standard within 4 h of being diluted. Evaluate the purity of the standard by HPLC analysis of the impurities every 90 days. Store the standard at 5 °C or lower.

#### **5.2.9 Sample analysis**

Weigh at least a 20 mg test portion of the well-blended lot sample, to the nearest 0,1 mg, into a 100 cm<sup>3</sup> volumetric flask. Dissolve this test portion in acetonitrile (an ultrasonic bath is recommended) and dilute to volume with acetonitrile. Adjust the concentration, if necessary, by serial dilution with acetonitrile to give a maximum absorbance within 10 % of the standard absorbance. Filter the solution with a chemically resistant filter with a nominal pore size less than or equal to 0,5 µm. Analyse the solution within 4 h of being diluted. Obtain a chromatogram of the standard and measure the area.

#### **5.2.10 Expression of results**

#### **5.2.10.1 Response factor**

Calculate the response factor for the standard by dividing the concentration of the standard by the measured area count and multiplying this by the purity of the standard:

$$
RF = \frac{c}{a} \times p \tag{5}
$$

where

*RF* is the response factor, expressed in %;

- *c* is the concentration of the standard;
- *a* is the measured area count;
- *p* is the purity.

Throughout the calculation the units of concentration shall be consistent (i.e.  $mg/cm^3$ ).

#### <span id="page-17-0"></span>**5.2.10.2 Product purity**

To determine the purity of the product, multiply the response factor by the measured area count of the analyte and divide by the sample concentration:

$$
p = RF \times \frac{a}{c_s} \tag{6}
$$

where

- *p* is the purity, expressed in %;
- *RF* is the response factor;
- *a* is the measured area count;
- $c_s$  is the sample concentration.

Express the percentage purity of the sulfenamide to the nearest 0,1 % (m/m).

#### **5.3 Precision**

See [Annex](#page-30-1) B.

#### <span id="page-17-1"></span>**6 Test method for insoluble material**

#### **6.1 Scope**

This test method is suitable for determining the quantity of materials in sulfenamides which are insoluble in suitable organic solvents.

#### **6.2 Principle**

A test portion of sulfenamide is dissolved in a prescribed solvent, stirred, and filtered through a crucible. The insoluble content is calculated from the quantity of residue.

#### **6.3 Significance and use**

**6.3.1** Sulfenamides can degrade in chemical purity and functional performance, usually characterized by a drop in assay, a release of free amine, and an increase in insolubles.

**6.3.2** Insolubles are a means of determining the benzothiazyl disulfide (MBTS) content of the sulfenamide; MBTS is a primary degradation product of sulfenamides. Amine salts of mercaptobenzothiazole (MBT) may also be insoluble. However, certain soluble species may also be generated during sulfenamide degradation. Consequently, insolubles are not an absolute measure of purity and can actually decrease with sulfenamide degradation.

**6.3.3** This test method may be used as an indication of degradation, for quality control and research and development work.

#### **6.4 Reagents**

Reagent grade chemicals shall be used in all tests. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

<span id="page-18-4"></span><span id="page-18-0"></span>**6.4.1 Methanol**, analytical reagent used for testing samples of

- *N*-cyclohexylbenzothiazole-2-sulfenamide (CBS),
- *N*,*N*'-diisopropylbenzothiazole-2-sulfenamide (DIBS),
- *N*-oxydiethylenebenzothiazole-2-sulfenamide (MBS),
- *N*-tert-butylbenzothiazole-2-sulfenamide (TBBS).

<span id="page-18-5"></span>**6.4.2 Cyclohexane**, analytical reagent used for testing samples of *N*,*N*'-dicyclohexylbenzothiazole-2 sulfenamide (DCBS).

#### **6.5 Apparatus**

<span id="page-18-2"></span>**6.5.1 Conical flask**, 300 cm3 capacity.

<span id="page-18-7"></span>**6.5.2 Sintered glass crucible**, G4 porosity or equivalent, in accordance with specifications given in ISO [4793.](http://dx.doi.org/10.3403/00107582U)

<span id="page-18-3"></span>**6.5.3 Graduated measuring cylinder**, 250 cm3 capacity, in accordance with specifications given in ISO [4788.](http://dx.doi.org/10.3403/03282506U)

- **6.5.4 Magnetic stirrer**.
- <span id="page-18-6"></span>**6.5.5 Watch glass**.
- **6.5.6 Suction flask**, 500 cm3 capacity, in accordance with specifications given in ISO [6556](http://dx.doi.org/10.3403/00096578U).
- <span id="page-18-8"></span>**6.5.7 Forced-air convection oven**, capable of maintaining the temperature at  $(70 \pm 2)$  °C.
- **6.5.8 Analytical balance**, accurate to within ± 0,1 mg.

#### **6.5.9 Wash bottle**.

<span id="page-18-1"></span>**6.5.10 Sieve**, mesh size 0,6 mm (30 mesh US) or equivalent.

#### **6.6 Procedure**

**6.6.1** If necessary, grind approximately 10 g of the well-mixed lot sample so that the material passes through a  $0.6$  mm  $(30$  mesh) sieve  $(6.5.10)$  $(6.5.10)$ .

**6.6.2** Transfer a 5 g test portion of the sieved material, weighed to the nearest 0,1 mg, to a 300 cm3 conical flask ([6.5.1](#page-18-2)). Using a graduated measuring cylinder ([6.5.3\)](#page-18-3), add 250 cm<sup>3</sup> of methanol [\(6.4.1](#page-18-4)). In the case of DCBS, use cyclohexane ([6.4.2](#page-18-5)) instead of methanol. Cover the flask with a watch glass ([6.5.5](#page-18-6)) and stir on a unheated magnetic stirrer, for 30 min at  $(25 \pm 5)$  °C.

**6.6.3** Filter the solution through a clean, dry, preweighed sintered glass crucible ([6.5.2](#page-18-7)). It is important that during the vacuum filtration, the crucible be only half-filled. Wash the conical flask with three 8 cm3 portions of methanol or, in the case of DCBS, with three 8 cm3 portions of cyclohexane. Filter the washings as well.

<span id="page-19-0"></span>**6.6.4** At the end of the filtration, remove the vacuum and wash the crucible two times with 25 cm3 of methanol or, in the case of DCBS, with 25 cm<sup>3</sup> of cyclohexane. Allow to stand for 2 min, then apply vacuum suction immediately. When this has been done, the walls of the crucible should be free from residue.

**6.6.5** Dry the crucible for 60 min in an oven  $(6.5.7)$  $(6.5.7)$  $(6.5.7)$  maintained at  $(70 \pm 2)$  °C.

**6.6.6** Cool to room temperature in a desiccator and obtain the mass of the crucible plus insolubles to the nearest milligram.

**6.6.7** Repeat the procedure on a second test portion.

#### <span id="page-19-3"></span>**6.7 Expression of results**

Calculate the percent insoluble material, *I*, expressed as a percentage by mass to the nearest 0,1 % (m/m), as follows:

$$
I = \frac{(m_3 - m_2)}{m_1} \times 100
$$
 (7)

where

- *m*<sup>1</sup> is the mass, in grams, of the test portion;
- $m<sub>2</sub>$  is the mass, in grams, of the empty crucible;
- *m*<sup>3</sup> is the mass, in grams, of the crucible and insoluble material.

#### <span id="page-19-4"></span>**7 Test methods for melting range**

#### <span id="page-19-1"></span>**7.1 Melting range by capillary tube**

#### **7.1.1 Scope**

This test method is suitable for determining the melting range of various rubber accelerators.

#### **7.1.2 Significance and use**

This test method may be used for research and development. It may also be used for quality assurance, provided agreement between producer and user has been obtained for a standard reference material.

#### **7.1.3 Limitations**

The melting range, as determined by this test method, is not recommended as a criterion of purity of a rubber chemical.

#### **7.1.4 Apparatus**

<span id="page-19-2"></span>**7.1.4.1 Melting apparatus**. The apparatus shall consist of a device for heating the sample uniformly at a predetermined rate. A suitable device consists of a glass H-type melting apparatus, usually called a Hershberg tube. One side-tube contains an agitator blade and an internal heater, both controlled by a variable transformer. The thermometer and capillary tubes are placed in the other side-tube. The apparatus shall be shielded from drafts. A good light source and magnifying glass shall be used. A heating medium such as DC-550 silicone fluid shall be used as the bath liquid. The liquid shall cover the bridge of the apparatus at room temperature. Other types of melting point tubes (Thiele, Thiele-Dennis) and other <span id="page-20-0"></span>types of melting-point apparatus, several of which can be found in chemical supply house catalogues, may be used for this test. The repeatability and reproducibility may vary if other types of equipment are used.

<span id="page-20-5"></span>**7.1.4.2 Capillary tube**, glass, approximately 150 mm long and 1,2 mm to 1,4 mm internal diameter with walls 0,2 mm to 0,3 mm thick and closed at one end to contain the sample.

<span id="page-20-3"></span>**7.1.4.3 Thermometer**, partial immersion type and of suitable range.

Its scale shall be graduated in divisions of 0,5 °C or less. Corrections for the thermometer shall be determined by calibration against a certified thermometer.

<span id="page-20-2"></span>**7.1.4.4 Sieve**, 150 µm mesh size (No. 100) for screening the sample.

#### <span id="page-20-4"></span>**7.1.5 Preparation of test sample**

If necessary, grind approximately 1 g of the well-blended lot sample to pass completely through a 150 µm (No. 100) sieve ([7.1.4.4](#page-20-2)).

#### **7.1.6 Procedure**

**7.1.6.1** Select the thermometer ([7.1.4.3\)](#page-20-3) for the proper range and support it so that it is immersed to the immersion mark in the liquid of the bath (see [7.1.4.1](#page-19-2)).

NOTE Sulfenamide accelerators cited in this International Standard have melting points ranging from 50 °C to 110 °C.

**7.1.6.2** Place sufficient sieved material  $(7.1.5)$  $(7.1.5)$  $(7.1.5)$  into the capillary glass tube  $(7.1.4.2)$  $(7.1.4.2)$  to form a column in the bottom of the tube approximately 3 mm to 6 mm high when packed down as closely as possible by moderate tapping on a solid surface.

**7.1.6.3** Heat the bath to a temperature approximately 25 °C below the expected melting range. Adjust the heat regulator to a rate increase of approximately 3 °C/min for the remainder of the determination except within the actual melting range. In this range, adjust the temperature rate to  $(1 \pm 0.2)$  °C/min. When the bath attains the temperature approximately 10 °C below the expected melting range, insert the capillary into the bath. Adjust the height of the tube so that the material in the capillary is beside the centre of the thermometer bulb. The capillary tube is not placed in the bath earlier, since many materials undergo decomposition from prolonged heating. Avoid making any major adjustments to the heat regulator within the actual melting range.

<span id="page-20-6"></span>**7.1.6.4** Record the melting range as the temperature range between which liquefaction first becomes evident and the temperature at which no further visual change is observed in the mass.

NOTE 1 The initial melting temperature is the temperature at which the first actual formation of liquid occurs, either as a minute drop or as a film. It is not a preliminary contraction, sintering, or darkening. It occurs well before the formation of a meniscus.

The liquefaction may occur at the top, bottom, or sides of the sample in the capillary, as well as the rear. When the latter occurs, the point may be missed, unless care is taken to watch the rear of the tube; a mirror is a convenient aid for this purpose.

NOTE 2 The final melting temperature is the temperature at which no further liquefaction is observed.

#### <span id="page-20-1"></span>**7.2 Melting range by differential scanning calorimetry (DSC)**

#### **7.2.1 Scope**

This method is suitable for determining the melting range of various rubber accelerators.

#### <span id="page-21-0"></span>**7.2.2 Significance and use**

**7.2.2.1** This test method may be used for research and development. It may also be used for quality assurance, provided agreement between producer and user has been obtained for a standard reference material.

**7.2.2.2** Differential scanning calorimeters are used to determine transition temperatures of materials. For absolute information, temperature calibration of the apparatus or comparison of the resulting data with that of standard reference materials is required.

#### **7.2.3 Limitations**

The melting range, as determined by this test method, is not recommended as a criterion of purity of a rubber chemical.

#### **7.2.4 Apparatus**

<span id="page-21-3"></span>**7.2.4.1 Differential scanning calorimeter**, capable of heating a test specimen and a reference material at a controlled rate and of automatically recording the differential heat flow between the sample and the reference material to the required sensitivity and precision.

<span id="page-21-2"></span>**7.2.4.2 Specimen pans**, with covers composed of clean aluminium or of other material with a high thermal conductivity.

<span id="page-21-4"></span>**7.2.4.3 Purge gas**, dry and inert (helium or nitrogen).

**7.2.4.4 Analytical balance**, accurate to within ± 0,1 mg.

#### <span id="page-21-1"></span>**7.2.5 Preparation of test sample**

If necessary, grind a sufficient quantity of the well-blended lot sample to pass completely through a 150 um sieve. Use this sieved material for the DSC test.

#### **7.2.6 Procedure**

**7.2.6.1** Weigh approximately 10 mg to 20 mg of the sieved sample (see [7.2.5](#page-21-1)) into a DSC specimen pan [\(7.2.4.2](#page-21-2)). Cover and seal the specimen pan and place it into the DSC chamber (see [7.2.4.1\)](#page-21-3).

**7.2.6.2** Place a covered empty specimen pan in the DSC reference chamber.

**7.2.6.3** Close the DSC sample chamber and set the purge-gas [\(7.2.4.3](#page-21-4)) flow through the sample chamber at 10 cm3/min to 20 cm3/min.

**7.2.6.4** Turn on the recording and heating units and programme the temperature for a heating rate of 5 °C/min. Record the DSC curve (see [Figure](#page-22-2) 1) from ambient temperature to 25 °C above the expected melting point.

<span id="page-21-5"></span>**7.2.6.5** From the resultant DSC curve, measure the temperatures for the desired points on the curve, *T*<sup>e</sup> and  $T_p$  ([Figure](#page-22-2) 1), to the required precision, where:

<span id="page-22-0"></span>

#### **Key**

- *T* temperature
- *T*<sup>e</sup> extrapolated onset temperature for fusion
- *T*<sup>p</sup> melting peak temperature
- a Endothermic.

#### <span id="page-22-2"></span>**Figure** 1 — Transition temperatures ( $T_e$  and  $T_p$ ) on a DSC curve

#### <span id="page-22-1"></span>**8 Test method for volatile material**

#### **8.1 Scope**

This test method is suitable for determining the loss of volatile materials in various rubber accelerators based on the mass loss upon heating at 70 °C.

#### **8.2 Principle**

A test portion is weighed before and after heating at 70 °C.

#### **8.3 Apparatus**

- <span id="page-22-3"></span>**8.3.1 Weighing bottle**, low form.
- <span id="page-22-4"></span>**8.3.2 Forced-air convection oven**, capable of maintaining the temperature at  $(70 \pm 2)$  °C.
- **8.3.3 Analytical balanc**e, accurate to within ± 0,1 mg.
- <span id="page-22-5"></span>**8.3.4 Desiccator**.

#### **8.4 Procedure**

**8.4.1** Dry a clean weighing bottle  $(8.3.1)$  $(8.3.1)$  $(8.3.1)$  and stopper (stopper removed) for 30 min in an oven  $(8.3.2)$  $(8.3.2)$ maintained at  $(70 \pm 2)$  °C. Place the bottle and stopper in the desiccator  $(8.3.4)$  $(8.3.4)$  and allow them to cool to room temperature. Weigh the bottle with the stopper to the nearest 0,1 mg (*m*1).

<span id="page-23-0"></span>**8.4.2** Weigh approximately a 20 g test portion into the weighing bottle, stopper and weigh to the nearest  $0.1$  mg  $(m<sub>2</sub>)$ .

**8.4.3** Place the weighing bottle, containing the test portion, and the stopper (with the stopper removed) in the oven, which has been equilibrated at 70 °C, for 3 h.

**8.4.4** After heating, stopper the weighing bottle and transfer it to the desiccator. Allow sufficient time for the assembly to reach equilibrium at room temperature. Reweigh the bottle to the nearest 0.1 mg  $(m_3)$ .

**8.4.5** Repeat the procedure on a second test portion.

#### <span id="page-23-5"></span>**8.5 Expression of results**

Calculate the percent volatile material, *V*, expressed as a percentage by mass to the nearest 0,1 % (m/m), as follows:

$$
V = \frac{(m_2 - m_3)}{(m_2 - m_1)} \times 100
$$
\n(8)

where

- $m_1$  is the mass, in grams, of weighing bottle and stopper;
- *m*<sub>2</sub> is the mass, in grams, of weighing bottle, stopper, and test portion before heating;
- *m*<sup>3</sup> is the mass, in grams, of weighing bottle, stopper, and test portion after heating.

#### <span id="page-23-1"></span>**9 Test method for wet sieve analysis**

#### **9.1 Scope**

This test method is suitable for evaluating the particle size distribution of the coarse fraction of sulfenamide accelerator powders. It is limited to the measurement of particles greater than 45  $\mu$ m.

#### **9.2 Significance and use**

This test method is used to evaluate sulfenamide accelerators for their suitability as rubber vulcanizing agents.

Accelerator particles must be sufficiently small to be readily dissolved or dispersed in rubber during curing and to produce a uniform crosslinked network. This test method is used for quality control to ensure that no excessively large particles are present and to determine whether the product has a typical size distribution pattern.

#### **9.3 Materials**

#### <span id="page-23-2"></span>**9.3.1 Liquid detergent**.

#### **9.4 Apparatus**

<span id="page-23-3"></span>**9.4.1 Standard sieves**, stainless steel, 76 mm diameter, containing stainless steel wire cloth selected from the range of  $45 \mu m$  to  $250 \mu m$  mesh size.

#### <span id="page-23-4"></span>**9.4.2 Bristle brush**.

<span id="page-24-0"></span>**9.4.3 Balance**, with a minimum capacity of 150 g and accurate to within ± 1 mg.

#### <span id="page-24-3"></span>**9.4.4 Forced-air convection oven**, capable of maintaining the temperature at  $(70 \pm 2)$  °C.

#### **9.5 Procedure**

**9.5.1** Weigh a 10,0 g test portion of the well-blended lot sample into a 250 cm3 beaker. Wet the accelerator with 25 cm<sup>3</sup> of water. Mix thoroughly with a glass stirring rod to guarantee wetting all the accelerator.

NOTE A 1 % solution of a liquid detergent ([9.3.1](#page-23-2)) may be used if the accelerator does not wet properly.

<span id="page-24-2"></span>**9.5.2** Weigh each cleaned and dried sieve [\(9.4.1](#page-23-3)) to the nearest 1 mg. Assemble preweighed stainless steel sieves in order of decreasing fineness with the coarsest screen on top. Carefully transfer the wetted accelerator to the top screen using additional water to wash all of the accelerator out of the beaker. Wash the accelerator through the top sieve with a gentle stream of water from a nozzle, using detergent as needed. Tap or vibrate the screen while washing. Finally, break up all agglomerated particles using the brush ([9.4.2\)](#page-23-4). Clean powder from the bristles of the brush using wash water. Be careful that the wash water does not back up on the finer sieves causing the accelerator slurry to overflow the sieve sides.

**9.5.3** Remove the top sieve. Wash off any residual accelerator slurry on the underside of the sieve. Repeat the washing procedure described in [9.5.2](#page-24-2) for each sieve, ensuring total transport of the fine particles through each successive sieve.

**9.5.4** Carefully dry the sides of the sieves with a lint-free towel, and place each sieve separately in a drying oven  $(9.4.4)$  $(9.4.4)$  $(9.4.4)$  maintained at  $(70 \pm 2)$  °C for 1 h or until the accelerator is dry. Remove the sieves and cool at least half an hour in a desiccator. If the sieved material shows evidence of melting, repeat the test and dry it at 40 °C for 2 h or until constant mass has been reached.

**9.5.5** Weigh each sieve to the nearest 1 mg. When the quantity of accelerator on the coarser sieves is very small (a few particles), it may be appropriate to brush the particles onto a preweighed glassine weighing paper and weigh the accelerator directly.

#### <span id="page-24-4"></span>**9.6 Expression of results**

Calculate the percentage by mass retained on each sieve, *P*, as follows:

$$
P = \frac{m_1}{m_2} \times 100\tag{9}
$$

where

- $m_1$  is the mass, in grams, of residue;
- *m*<sup>2</sup> is the mass, in grams, of the test portion.

In order to determine how much would be retained on a fine sieve, it is necessary to sum the mass of material retained on all the coarser sieves and add it to the mass of material from the selected sieve.

The quantity of material passing through each sieve is determined by subtracting the percent of the material retained on the sieve from 100.

#### <span id="page-24-1"></span>**10 Test method for the determination of ash**

#### **10.1 Scope**

This test method is suitable for determining the non-combustible content of rubber chemicals as ash.

#### <span id="page-25-0"></span>**10.2 Principle**

The ash content is determined by heating a known quantity of rubber chemical on a hot plate or over a gas burner to volatilize the sample and then heating it in a muffle furnace to complete the ashing process.

#### **10.3 Significance and use**

This test method is suitable for the determination of ash from rubber accelerators. This test method may be used for quality control, product acceptance, or research and development. For the purposes of this International Standard, percent ash is considered as an important characteristic of rubber accelerators.

#### **10.4 Apparatus**

<span id="page-25-2"></span>**10.4.1 Muffle furnace**, capable of maintaining the temperature at ± 25 °C between 500 °C and 800 °C.

<span id="page-25-5"></span>**10.4.2 Hot plate**, or laboratory gas burner.

**10.4.3 Laboratory fume hood**.

<span id="page-25-1"></span>**10.4.4 Porcelain crucible**, high form, size 0,15 cm3 capacity, in accordance with specifications given in ISO 1772.

- <span id="page-25-4"></span>**10.4.5 Clay triangle**.
- **10.4.6 Steel crucible tongs**.
- **10.4.7 Heat-resistant gloves**.
- <span id="page-25-3"></span>**10.4.8 Desiccator**.

**10.4.9 Analytical balance**, accurate to within ± 0,1 mg.

**10.4.10 Forced-air convection oven**, capable of maintaining the temperature at (70 ± 2) °C.

#### **10.5 Procedure**

**10.5.1** Heat the 15 cm<sup>3</sup> crucible  $(10.4.4)$  $(10.4.4)$  in the muffle furnace  $(10.4.1)$  $(10.4.1)$  maintained at  $(750 \pm 25)$  °C for 30 min.

**10.5.2** Transfer the crucible to the desiccator [\(10.4.8](#page-25-3)), cool to room temperature, and weigh to the nearest  $0.1$  mg  $(m_1)$ .

**10.5.3** Weigh approximately a 5 g test portion into the previously prepared (heated) crucible and weigh to the nearest 0,01 g. Place the crucible in the clay triangle ([10.4.5](#page-25-4)), and carefully heat the crucible and contents with the gas burner [\(10.4.2](#page-25-5)) until all volatile material and pyrolysis products have been removed (gases may flame) and the residue has been carbonized.

**10.5.4** Transfer the crucible to the muffle furnace at (750 ± 25) °C and heat for 2 h.

**10.5.5** Carefully transfer the crucible containing the ash to the desiccator, cool to room temperature, and reweigh to the nearest 0,1 mg (*m*3).

<span id="page-26-0"></span>**10.5.6** Repeat the procedure on a second test portion.

#### <span id="page-26-1"></span>**10.6 Expression of results**

Calculate the percentage by mass of ash *A* to the nearest 0,01 % (m/m) as follows:

$$
A = \frac{(m_3 - m_1)}{(m_2 - m_1)} \times 100
$$
\n(10)

where

- *m*<sup>1</sup> is the mass, in grams, of the crucible;
- *m*<sup>2</sup> is the mass, in grams, of the crucible and test portion.
- *m*<sup>3</sup> is the mass, in grams, of the crucible and ash.

#### **11 Test report**

The test report shall include the following information:

- a) a reference to this International Standard, i.e. ISO [11235;](http://dx.doi.org/10.3403/01826492U)
- b) all details necessary for complete identification of the material or product tested;
- c) for the determination of purity:
- the test method used  $[5.1$  (A or B) or  $[5.2]$ ;
- the percentage of sulfenamide obtained in accordance with [5.1.6.2](#page-13-5) or 5.2.11.2 (both determinations and their mean), and/or free amine content in accordance with [5.1.6.1](#page-12-1) (both determinations and their mean);
- any modification of the procedure specified;
- d) the insoluble material content (both determinations and their mean) obtained in accordance with [6.7;](#page-19-3)
- e) for the melting range:
- the test method used  $(7.1 \text{ or } 7.2)$  $(7.1 \text{ or } 7.2)$ ;
- the temperatures observed in  $7.1.6.4$  or  $7.2.6.5$  (range);
- f) the volatile material content (both determinations and their mean) obtained in accordance with  $8.5$ ;
- g) for the sieve residue: identification of each sieve size and the percentage material retained on the respective sieve obtained in accordance with [9.6;](#page-24-4)
- h) the ash content (both determinations and their mean) obtained in accordance with [10.6;](#page-26-1)
- i) any unusual observations or incidents likely to have affected the results;
- j) the date(s) of testing.

### **Annex A**

### (normative)

### <span id="page-27-0"></span>**Classification and key properties of sulfenamide (class 1) vulcanization accelerators**

#### **A.1 Significance and use**

**A.1.1** As a group, the benzothiazole-2-sulfenamides are the principal sulfur vulcanization accelerators used in the rubber industry today. The role of these materials in vulcanization is dual. They provide scorch time (delay period) in the crosslinking or vulcanization operation at processing temperatures. The delay avoids premature crosslinking during the processing, for example, mixing, extrusion, etc. Once the mixed rubber is at the vulcanization temperature, these materials promote a rapid rate of vulcanization (crosslinking).

**A.1.2** The presence of certain impurities in this class of materials can affect their performance characteristics.

**A.1.3** The benzothiazole-2-sulfenamides are subject to degradation on extended storage. Significant degradation can affect their performance characteristics. In particular, the quality of the material is a function of storage time, temperature, relative humidity, and impurity profile of the material; for example, free amines, salts of mercaptobenzothiazole (MBT), etc. Since sulfenamide degradation in storage is an autocatalytic process (degradation products accelerate further degradation), significant degradation may only occur after a long induction period.

### **A.2 Description of sulfenamide accelerators**

#### **A.2.1 General**

Compounds designated as benzothiazole-2-sulfenamides vary in chemical nature of the substitution around the sulfenamide nitrogen. The sulfenamide nitrogen is the nitrogen atom which is outside the ring in the structures given below. There are three fundamental types in common use.

#### **A.2.2 Classification**

#### **A.2.2.1 Sulfenamides of primary amines (type I)**

These compounds have one hydrogen on the sulfenamide nitrogen, in addition to the generic R group. In general, this type, as a group, exhibits a somewhat shorter scorch time and higher cure rate than the other sulfenamides (see Figure A.1).

#### **A.2.2.2 Sulfenamides of unhindered secondary amines (type II)**

These compounds have two primary carbon attachments, each with at least two hydrogens on the carbon bonded to the sulfenamide nitrogen. In this case, x can be one or two. This type, as a group, exhibits an intermediate scorch time and cure rate (see Figure A.2).

#### **A.2.2.3 Sulfenamides of hindered secondary amines (type III)**

These compounds have two secondary carbon attachments to the sulfenamide nitrogen. This type, as a group, exhibits a longer scorch time and lower cure rate than the other sulfenamides (see Figure A.3).





**Figure A.1 — Sulfenamides of primary amines Figure A.2 — Sulfenamides of unhindered secondary amines**



**Figure A.3 — Sulfenamides of hindered secondary amines**

#### **A.3 Composition and properties**

#### **A.3.1 General**

The following properties of the accelerators are judged to be most significant in terms of their performance in rubber. The control of these properties is important in maintaining consistent end product performance.

#### **A.3.2 Initial melting point**

The initial melting point can be an indication of relative purity of the accelerator. If the accelerator contains significant levels of other materials which are mutually soluble in the accelerator, a significant lowering of the melting point occurs. For example, this occurs when the sulfenamide has undergone appreciable degradation. Many inorganic impurities and certain high molecular mass, highly crystalline and/or polar organic molecules, may not depress the initial melting point significantly. Consequently, the melting point is not an absolute indicator of purity.

The determination of the initial melting point shall be carried out in accordance with [Clause](#page-19-4) 7.

#### **A.3.3 Particle size distribution by wet sieve analysis**

This test is only important for materials with melting points that are higher than the rubber compound mixing temperatures. To accelerate vulcanization efficiently, the accelerator must disperse uniformly in the rubber during mixing and dissolve at vulcanization temperatures. For high melting accelerators, this requires a relatively fine and easily dispersed physical form. A wet screen test is an indication of this property. This test cannot be used, however, with physical forms other than powders. The wet sieve analysis test shall be carried out in accordance with [Clause](#page-23-1) 9.

#### **A.3.4 Ash**

Inorganic materials (ash) are occasional contaminants in vulcanization accelerators, and they may cause problems since they ordinarily will not dissolve in rubbers. Transition metals such as iron, copper, and manganese, especially in soluble form, may have a detrimental effect on the oxidative stability of the rubber (not applicable to dithiocarbamates, which are metal salts). The determination of the quantity of non-combustibles shall be carried out in accordance with [Clause](#page-24-1) 10.

#### **A.3.5 Volatile material content lost on heating**

Excess moisture in a rubber mixture may cause problems during vulcanization since water is vaporized, which may produce porosity in the cured vulcanizate. The determination of the quantity of volatile material of the accelerator lost on heating shall be carried out in accordance with [Clause](#page-22-1) 8.

#### **A.3.6 Content of insoluble materials**

This test is important, since benzothiazyl disulfide (MBTS) may be present in benzothiazole sulfenamide accelerators as a by-product of the manufacturing process or as a result of benzothiazole sulfenamide degradation. MBTS is also a vulcanization accelerator. However, it has much less delay than the sulfenamides, and appreciable levels of MBTS can cause scorch problems in rubber manufacturing operations. MBTS is much less soluble in some organic solvents than the sulfenamides, and it can consequently be detected by measuring the quantity of material that does not dissolve in an appropriate solvent. The determination of insolubles in sulfenamides shall be carried out in accordance with [Clause](#page-17-1) 6.

#### **A.3.7 Purity**

A measurement of the quantity of the specified chemical entity in the accelerator by an assay is necessary, since the purity of the accelerator can affect vulcanization performance characteristics such as scorch time and cure efficiency as well as storage stability. Not all impurities have equally detrimental effects on the performance of the accelerator. The determination of sulfenamide purity shall be carried out in accordance with [Clause](#page-10-11) 5.

### **Annex B** (informative)

### <span id="page-30-1"></span>**Precision**

<span id="page-30-0"></span>**B.1** The precision results in this Annex give an estimate of the precision of the test method for purity by high performance liquid chromatography (HPLC) ([5.2\)](#page-13-2) with the materials (accelerators) used in the particular interlaboratory program described below. It is not recommended to use precision parameters for acceptance or rejection testing of any group of materials without documentation that they are applicable to those particular materials and the specific testing protocols that include this test method.

**B.2** A type 1 interlaboratory precision program (see ISO/TR 9272) was conducted. Both repeatability and reproducibility are short-term. A period of a few days separates replicate test results. Eight laboratories participated and four materials were used. Therefore, *p* = 8, *q* = 4, *n* = 4. A test result is the value obtained from a single determination. Each material was analysed twice on each of two separate days using the provided standards.

**B.3** Outliers: Two cell results were identified to be cell variance outliers based on Cochran's maximum variance test. These results, for CBS and MBS from one laboratory, were eliminated from the calculations in [Table](#page-31-0) B.1.

**B.4** The precision parameters are given in [Table](#page-31-0) B.1.

**B.4.1** Repeatability: The difference between two single test results (or determinations) found on identical test material under the repeatability conditions prescribed for a particular test will exceed the repeatability, *r*, as given in [Table](#page-31-0) B.1, on an average of not more than once in 20 cases in the normal and correct operation of the test method.

**B.4.2** Reproducibility: The difference between two single and independent test results found by two operators working under prescribed reproducibility conditions in different laboratories on identical test material will exceed the reproducibility, *R*, as given in [Table](#page-31-0) B.1, on an average of not more than once in 20 cases in the normal and correct performance of the test method.

**B.4.3** Bias: Sample impurities that are not resolved from the analyte of interest will produce a false result. There may be other undetermined sources of bias.

#### BS ISO 11235:2016 **ISO 11235:2016(E)**



#### <span id="page-31-0"></span>**Table B.1 — Precision data (type 1) — Sulfenamide purity determination**

*sr* = within-laboratory standard deviation;  $r =$  repeatability (in measurement units);

 $(r)$  = repeatability (in percent);

 $s_R$  = between-laboratory standard deviation;

 $R$  = reproducibility (in measurement units);

(*R*) = reproducibility (in percent).

NOTE The standards used in the preparation of this precision statement were individually prepared within each participating laboratory.

## **Bibliography**

<span id="page-32-0"></span>

BS ISO 11235:2016 **ISO 11235:2016(E)**

#### **ICS 83.040.20** Price based on 25 pages

© ISO 2016 – All rights reserved

# British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

#### **About us**

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

#### **Information on standards**

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at [bsigroup.com/standards](www.bsigroup.com/standards) or contacting our Customer Services team or Knowledge Centre.

#### **Buying standards**

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at [bsigroup.com/shop](www.bsigroup.com/shop), where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

#### **Subscriptions**

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to [bsigroup.com/subscriptions](www.bsigroup.com/subscriptions).

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

**PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit [bsigroup.com/shop](www.bsigroup.com/shop).

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com.

#### **BSI Group Headquarters**

389 Chiswick High Road London W4 4AL UK

#### **Revisions**

Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

#### **Copyright**

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department.

#### **Useful Contacts:**

**Customer Services Tel:** +44 845 086 9001 **Email (orders):** orders@bsigroup.com **Email (enquiries):** cservices@bsigroup.com

**Subscriptions Tel:** +44 845 086 9001 **Email:** subscriptions@bsigroup.com

**Knowledge Centre Tel:** +44 20 8996 7004 **Email:** knowledgecentre@bsigroup.com

**Copyright & Licensing Tel:** +44 20 8996 7070 **Email:** copyright@bsigroup.com

