BS ISO 10928:2016

BSI Standards Publication

Plastics piping systems — Glass-reinforced thermosetting plastics (GRP) pipes and fittings — Methods for regression analysis and their use

National foreword

This British Standard is the UK implementation of ISO 10928:2016. It supersedes BS ISO 10928:2009+A1:2013 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee PRI/88/2, Plastics piping for pressure applications.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2016. Published by BSI Standards Limited 2016

ISBN 978 0 580 92474 3

ICS 23.040.20; 23.040.45

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 December 2016.

Amendments/Corrigenda issued since publication

Date Text affected

INTERNATIONAL STANDARD

BS ISO 10928:2016 **[ISO](http://dx.doi.org/10.3403/30147306U) [10928](http://dx.doi.org/10.3403/30147306U)**

> Third edition 2016-12-15

Plastics piping systems — Glassreinforced thermosetting plastics (GRP) pipes and fittings — Methods for regression analysis and their use

Systèmes de canalisation en matières plastiques — Tubes et raccords plastiques thermodurcissables renforcés de verre (PRV) — Méthodes pour une analyse de régression et leurs utilisations

Reference number ISO 10928:2016(E)

© ISO 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

BS ISO 10928:2016 ISO 10928:2016(E)

Contents

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see [www.iso.org/directives\)](http://www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

The committee responsible for this document is ISO/TC 138, *Plastics pipes, fittings and valves for the transport of fluids*, Subcommittee SC 6, *Reinforced plastics pipes and fittings for all applications*.

This third edition cancels and replaces the second edition (ISO [10928:2009](http://dx.doi.org/10.3403/30147306)), which has been technically revised and includes the following changes. It also incorporates the Amendment [ISO 10928:2009/](http://dx.doi.org/10.3403/30147306)Amd 1:2013:

- [Annex](#page-21-1) A (GRP pressure pipe design procedure) has been removed from the document;
- several bibliographical references have been removed.

Introduction

This document describes the procedures intended for analysing the regression of test data, usually with respect to time and the use of the results in design and assessment of conformity with performance requirements. Its applicability is limited to use with data obtained from tests carried out on samples. The referring standards require estimates to be made of the long-term properties of the pipe for such parameters as circumferential tensile strength, long-term ring deflection, strain corrosion and creep or relaxation stiffness.

A range of statistical techniques that could be used to analyse the test data produced by destructive tests was investigated. Many of these simple techniques require the logarithms of the data to

- a) be normally distributed,
- b) produce a regression line having a negative slope, and
- c) have a sufficiently high regression correlation (see [Table](#page-10-1) 1).

While the last two conditions can be satisfied, analysis shows that there is a skew to the distribution and hence this primary condition is not satisfied. Further investigation into techniques that can handle skewed distributions resulted in the adoption of the covariance method of analysis of such data for this document.

However, the results from non-destructive tests, such as long-term creep or relaxation stiffness, often satisfy all three conditions and hence a simpler procedure, using time as the independent variable, can also be used in accordance with this document.

These data analysis procedures are limited to analysis methods specified in ISO product standards or test methods. However, other analysis procedures can be useful for the extrapolation and prediction of long-term behaviour of some properties of glass-reinforced thermosetting plastics (GRP) piping products. For example, a second-order polynomial analysis is sometimes useful in the extrapolation of creep and relaxation data. This is particularly the case for analysing shorter term data, where the shape of the creep or relaxation curve can deviate considerably from linear. A second-order polynomial analysis is included in [Annex](#page-21-1) A. In [Annex](#page-26-1) B, there is an alternative non-linear analysis method. These non-linear methods are provided only for information and the possible use in investigating the behaviour of a particular piping product or material therefore they might not be generally applicable to other piping products.

BS ISO 10928:2016

Plastics piping systems — Glass-reinforced thermosetting plastics (GRP) pipes and fittings — Methods for regression analysis and their use

1 Scope

This document specifies procedures suitable for the analysis of data which, when converted into logarithms of the values, have either a normal or a skewed distribution. It is intended for use with the test methods and referring standards for glass-reinforced thermosetting plastics (GRP) pipes or fittings for the analysis of properties as a function of time. However, it can be used for the analysis of other data.

Depending upon the nature of the data, two methods are specified. The extrapolation using these techniques typically extends the trend from data gathered over a period of approximately 10 000 h to a prediction of the property at 50 years, which is the typical maximum extrapolation time.

This document only addresses the analysis of data. The test procedures to collect the data, the number of samples required and the time period over which data are collected are covered by the referring standards and/or test methods. [Clause](#page-19-1) 6 discusses how the data analysis methods are applied to product testing and design.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at<http://www.electropedia.org/>
- ISO Online browsing platform: available at <http://www.iso.org/obp>

4 Principle

Data are analysed for regression using methods based on least squares analysis which can accommodate the incidence of a skew and/or a normal distribution. The two methods of analysis used are the following:

- method A: covariance using a first-order relationship;
- method B: least squares, with time as the independent variable using a first-order relationship.

The methods include statistical tests for the correlation of the data and the suitability for extrapolation.

5 Procedures for determining the linear relationships — Methods A and B

5.1 Procedures common to methods A and B

Use method A (see $\frac{5.2}{2}$) or method B (see $\frac{5.3}{2}$ $\frac{5.3}{2}$ $\frac{5.3}{2}$) to fit a straight line of the form given in [Formula](#page-9-2) (1) :

$$
y = a + b \times x \tag{1}
$$

where

- *y* is the logarithm, lg, of the property being investigated;
- *a* is the intercept on the y-axis;
- *b* is the slope;
- *x* is the logarithm, lg, of the time, in hours.

5.2 Method A — Covariance method

5.2.1 General

For method A, calculate the following variables in accordance with [5.2.2](#page-10-2) to [5.2.5](#page-12-1), using [Formulae](#page-9-3) (2), (3) and (4) :

$$
Q_{y} = \frac{\sum (y_i - Y)^2}{n}
$$
 (2)

$$
Q_{\rm x} = \frac{\sum (x_i - X)^2}{n} \tag{3}
$$

$$
Q_{xy} = \frac{\sum \left[\left(x_i - X \right) \times \left(y_i - Y \right) \right]}{n} \tag{4}
$$

where

 Q_v is the sum of the squared residuals parallel to the y-axis, divided by *n*;

- Q_x is the sum of the squared residuals parallel to the x-axis, divided by *n*;
- Q_{xy} is the sum of the squared residuals perpendicular to the line, divided by *n*;
- *Y* is the arithmetic mean of the *y* data, i.e. given as **[Formula](#page-9-6)** (5):

$$
Y = \frac{\sum y_i}{n} \tag{5}
$$

X is the arithmetic mean of the *x* data, i.e. given as [Formula](#page-9-7) (6):

$$
X = \frac{\sum x_i}{n} \tag{6}
$$

xi, *yi* are individual values;

n is the total number of results (pairs of readings for *xi*, *yi*).

NOTE If the value of Q_{xy} is greater than zero, the slope of the line is positive and if the value of Q_{xy} is less than zero, then the slope is negative.

5.2.2 Suitability of data

Calculate the linear coefficient of correlation, *r*, using [Formulae](#page-10-3) (7) and [\(8\):](#page-10-4)

$$
r^{2} = \frac{Q_{xy}^{2}}{Q_{x} \times Q_{y}}
$$

\n
$$
r = \left| \left(r^{2} \right)^{0.5} \right|
$$
\n(8)

Student's $t(f)$

If the value of *r* is less than

 \equiv , then the data are unsuitable for analysis.
2

$$
\sqrt{n-2+\Big[\text{Student's }t\Big(f\Big)\Big]}
$$

[Table](#page-10-1) 1 gives the minimum acceptable values of the correlation coefficient, *r*, as a function of the number of variables, *n*. The Student's *t* value is based on a two-sided 0,01 level of significance.

Table 1 — Minimum values of the correlation coefficient, *r***, for acceptable data from** *n* **pairs of data**

Number of variables	Degrees of freedom	Student's	Minimum
n	$n-2$	t(0,01)	r
13	11	3,106	0,683 5
14	12	3,055	0,6614
15	13	3,012	0,6411
16	14	2,977	0,6226
17	15	2,947	0,6055
18	16	2,921	0,5897
19	17	2,898	0,575 1
20	18	2,878	0,5614
21	19	2,861	0,5487
22	20	2,845	0,5368
23	21	2,831	0,5256
24	22	2,819	0,515 1
25	23	2,807	0,5052

5.2.3 Functional relationships

Find *a* and *b* for the functional relationship line using [Formula](#page-9-2) (1).

First, set *Γ* as given in [Formula](#page-11-1) (9):

$$
\Gamma = \frac{Q_y}{Q_x} \tag{9}
$$

then calculate a and b using [Formulae](#page-11-2) (10) and (11) :

$$
b = -\left(\Gamma\right)^{0,5} \tag{10}
$$

$$
a = Y - b \times X \tag{11}
$$

5.2.4 Calculation of variances

If t_u is the applicable time to failure, then set x_u as given in [Formula](#page-11-4) (12):

$$
x_{\rm u} = \lg t_{\rm u} \tag{12}
$$

Using [Formulae](#page-11-5) (13) , (14) and (15) respectively, calculate for $i = 1$ to *n*, the following sequence of statistics:

- the best fit x_i' for true x_i ;
- the best fit y_i' for true y_i ;
- the error variance, σ_{δ}^2 for *x*.

$$
x_i' = \frac{\Gamma \times x_i + b \times (y_i - a)}{2 \times \Gamma} \tag{13}
$$

$$
y_i' = a + b \times x_i'
$$
 (14)

$$
\sigma_{\delta}^{2} = \frac{\left[\sum (y_{i} - y_{i}')^{2} + \Gamma \times \sum (x_{i} - x_{i}')^{2}\right]}{(n-2) \times \Gamma}
$$
\n(15)

Calculate quantities *E* and *D* using [Formulae](#page-11-8) (16) and [\(17\)](#page-11-9):

$$
E = \frac{b \times \sigma_{\delta}^2}{2 \times Q_{\text{vv}}} \tag{16}
$$

$$
2 \times Q_{xy}
$$

$$
D = \frac{2 \times \Gamma \times b \times \sigma_{\delta}^2}{n \times Q_{xy}}
$$
 (17)

Calculate the variance, *C*, of the slope *b*, using [Formula](#page-11-10) (18):

$$
C = D \times (1 + E) \tag{18}
$$

5.2.5 Check for the suitability of data for extrapolation

If it is intended to extrapolate the line, calculate *T* using [Formula](#page-12-2) (19):

$$
T = \frac{b}{(\text{var }b)^{0,5}} = \frac{b}{C^{0,5}}
$$
(19)

If the absolute value, |*T*| (i.e. ignoring signs), of *T* is equal to or greater than the applicable value for Student's *t*, *t*v, shown in [Table](#page-12-3) 2 for (*n* − 2) degrees of freedom, then consider the data suitable for extrapolation.

Calculation of confidence limits is not required by the test methods or referring standards; however, the calculation of lower confidence limit, LCL, and lower prediction limit, LPL, is given in [Annex](#page-52-1) C.

Degree of freedom	Student's t value	Degree of freedom	Student's t value	Degree of freedom	Student's t value
$(n - 2)$	$t_{\rm V}$	$(n - 2)$	$t_{\rm V}$	$(n - 2)$	$t_{\rm V}$
$\mathbf{1}$	12,7062	36	2,028 1	71	1,9939
$\overline{2}$	4,3027	37	2,0262	72	1,993 5
3	3,1824	38	2,024 4	73	1,9930
$\overline{4}$	2,7764	39	2,0227	74	1,992 5
5	2,570 6	40	2,021 1	75	1,992 1
6	2,4469	41	2,019 5	76	1,9917
$\overline{7}$	2,3646	42	2,0181	77	1,9913
$\, 8$	2,3060	43	2,0167	78	1,9908
9	2,262 2	44	2,015 4	79	1,990 5
$10\,$	2,228 1	45	2,014 1	80	1,990 1
11	2,2010	46	2,0129	81	1,9897
12	2,1788	47	2,011 2	82	1,9893
13	2,1604	48	2,010 6	83	1,9890
14	2,1448	49	2,0096	84	1,9886
15	2,1315	50	2,0086	85	1,9883
16	2,1199	51	2,0076	86	1,9879
17	2,1098	52	2,0066	87	1,9876
18	2,1009	53	2,0057	88	1,9873
19	2,0930	54	2,0049	89	1,9870
$20\,$	2,0860	55	2,004 0	$90\,$	1,9867

Table 2 — Percentage points of Student's *t* **distribution (upper 2,5** $\%$ points; two-sided 5 $\%$ level of confidence; t_v for 97,5 $\%$)

Degree of freedom	Student's t value	Degree of freedom	Student's t value	Degree of freedom	Student's t value
$(n - 2)$	$t_{\rm V}$	$(n - 2)$	$t_{\rm V}$	$(n - 2)$	$t_{\rm V}$
21	2,0796	56	2,0032	91	1,9864
22	2,0739	57	2,0025	92	1,9861
23	2,0687	58	2,0017	93	1,9858
24	2,0639	59	2,0010	94	1,985 5
25	2,059 5	60	2,000 3	95	1,9853
26	2,055 5	61	1,9996	96	1,9850
27	2,0518	62	1,9990	97	1,9847
28	2,0484	63	1,9983	98	1,9845
29	2,0452	64	1,9977	99	1,9842
30	2,0423	65	1,9971	100	1,9840
31	2,039 5	66	1,9966		
32	2,0369	67	1,9960		
33	2,0345	68	1,995 5		
34	2,032 2	69	1,9949		
35	2,030 1	70	1,9944		

Table 2 *(continued)*

5.2.6 Validation of statistical procedures by an example calculation

The data given in [Table](#page-14-0) 3 are used in the following example to aid in verifying that statistical procedures, as well as computer programs and spreadsheets adopted by users, will produce results similar to those obtained from the formulae given in this document. For the purposes of the example, the property in question is represented by *V*, the values for which are of a typical magnitude and in no particular units. Because of rounding errors, it is unlikely that the results will agree exactly, so for a calculation procedure to be acceptable, the results obtained for *r*, *r*2, *b*, *a*, and the mean value of *V*, and *V*m, shall agree to within ±0,1 % of the values given in this example. The values of other statistics are provided to assist the checking of the procedure.

Sums of squares:

Q^x = 0,798 12;

Q^y = 0,000 88;

*Q*xy = −0,024 84.

Coefficient of correlation:

*r*² = 0,879 99;

r = 0,938 08.

Functional relationships:

- *Г* = 0,001 10;
- $b = -0.03317$;

a = 1,627 31.

Table 3 — Basic data for example calculation and statistical analysis validation

Calculated variances (see [5.2.4](#page-11-11)):

E = 3,520 2 × 10−2;

$$
D = 4.842 \ 2 \times 10^{-6};
$$

C = 5,012 7 × 10−6 (the variance of *b*);

 σ_{δ}^2 = 5,271 1 × 10⁻² (the error variance of *x*).

Check for the suitability for extrapolation (see $5.2.5$):

$$
n = 32;
$$

\n
$$
t_{\rm v} = 2,042 \, 3;
$$

\n
$$
T = -0,033 \, 17 \, / \, (5,012 \, 7 \times 10^{-6})^{0.5} = -14,816 \, 7;
$$

\n
$$
|T| = 14,816 \, 7 > 2,042 \, 3.
$$

The estimated mean values for *V* at various times are given in **[Table](#page-15-0) 4** and shown in **[Figure](#page-16-0) 1**.

Table 4 — Estimated mean values, V_{m} , for *V*

Figure 1 — Regression line from the results in [Table](#page-15-0) 4

5.3 Method B — Regression with time as the independent variable

5.3.1 General

For method B, calculate the sum of the squared residuals parallel to the Y-axis, S_y , using [Formula](#page-17-2) (20):

$$
S_{y} = \sum (y_{i} - Y)^{2} \tag{20}
$$

Calculate the sum of the squared residuals parallel to the X-axis, S_x , using **Formula (21)**:

$$
S_{\mathbf{x}} = \sum (x_i - X)^2 \tag{21}
$$

Calculate the sum of the squared residuals perpendicular to the line, S_{xy} , using [Formula](#page-17-4) (22):

$$
S_{xy} = \sum \left[\left(x_i - X \right) \times \left(y_i - Y \right) \right] \tag{22}
$$

where

Y is the arithmetic mean of the *y* data, i.e.

$$
Y=\frac{\sum y_i}{n};
$$

X is the arithmetic mean of the *x* data, i.e.

$$
X=\frac{\sum x_i}{n};
$$

xi, *yi* are individual values;

n is the total number of results (pairs of readings for *xi*, *yi*).

NOTE If the value of S_{xy} is greater than zero, the slope of the line is positive and if the value of S_{xy} is less than zero, then the slope is negative.

5.3.2 Suitability of data

Calculate the squared, r^2 , and the linear coefficient of correlation, r , using [Formulae](#page-17-5) (23) and [\(24\):](#page-17-6)

$$
r^2 = \frac{S_{xy}^2}{S_x \times S_y}
$$
 (23)

$$
r = \left| \left(r^2 \right)^{0,5} \right| \tag{24}
$$

If the value of *r*2 or *r* is less than the applicable minimum value given in [Table](#page-10-1) 1 as a function of *n*, consider the data unsuitable for analysis.

5.3.3 Functional relationships

Calculate *a* and *b* for the functional relationship line [see [Formula](#page-9-2) (1)], using [Formulae](#page-18-1) (25) and (26) :

$$
b = \frac{S_{xy}}{S_x} \tag{25}
$$

$$
a = Y - b \times X \tag{26}
$$

5.3.4 Check for the suitability of data for extrapolation

If it is intended to extrapolate the line, calculate *M* using [Formula \(27\)](#page-18-3):

$$
M = \frac{S_x^2}{S_{xy}^2} - \frac{t_v^2 \times (S_x \times S_y - S_{xy}^2)}{(n-2) \times S_y^2}
$$
 (27)

where

t^v is the applicable value for Student's *t* determined from [Table](#page-12-3) 2.

If *M* is equal to or less than zero, consider the data unsuitable for extrapolation.

5.3.5 Validation of statistical procedures by an example calculation

The data given in [Table](#page-18-4) 5 are used in the following example to aid in verifying that statistical procedures, as well as computer programs and spreadsheets adopted by users, will produce results similar to those obtained from the formulae given in this document. Use the data given in [Table](#page-18-4) 5 for the calculation procedures described in [5.3.2](#page-17-7) to [5.3.4](#page-18-5) to ensure that the statistical procedures to be used in conjunction with this method will give results for *r*, r^2 , *a*, *b* and V_m to within ± 0.1 % of the values given in this example.

\boldsymbol{n}	Time	X	V	Y
	T in h	lg T		lg V
$\mathbf{1}$	0,10	$-1,0000$	7 1 1 4	3,852 1
2	0,27	$-0,5686$	6935	3,8410
3	0,50	$-0,3010$	6824	3,8341
$\overline{4}$	1,00	0	6698	3,8259
5	3,28	0,5159	6533	3,8151
6	7,28	0,8621	6453	3,8098
7	20,0	1,3010	6307	3,7999
8	45,9	1,6618	6 1 9 9	3,7923
9	72,0	1,8573	6 1 3 3	3,7877
10	166	2,220 1	5692	3,755 2
11	219	2,3404	5508	3,7410
12	384	2,5843	5 3 9 3	3,7318
13	504	2,7024	5 3 6 4	3,729 5
14	3 0 0 0	3,477 1	5 2 0 0	3,7160
15	10 5 20	4,0220	4975	3,6968
Means:		$X = 1,4450$		$Y = 3,7819$

Table 5 — Basic data for example calculation and statistical validation

Sums of squares:

S^x = 31,681 1;

 $S_v = 0.0347$;

 $S_{xy} = -1,0242$.

Coefficient of correlation:

*r*² = 0,955 6;

```
r = 0,977 5.
```
Functional relationships (see [5.3.3\)](#page-18-6):

a = 3,828 6;

 $b = -0.0323$.

Check for the suitability for extrapolation (see $5.3.4$):

 $t_v = 2,1604$;

```
M = 942.21.
```
The estimated mean values, V_{m} , for *V* at various times are given in [Table](#page-19-2) 6.

Time			
h	$V_{\rm m}$		
0,1	7 2 5 9		
1	6739		
10	6256		
100	5808		
1000	5 3 9 1		
10 000	5 0 0 5		
100 000	4646		
438 000	4428		

Table 6 — Estimated mean values, V_{m} , for *V*

6 Application of methods to product design and testing

6.1 General

The referring standards specify limiting requirements for the long-term properties and performance of a product. Some of these are based on destructive tests, for example, hoop tensile strength, while others are based on actual or derived physical properties, such as creep stiffness.

These properties require an extrapolated long-term (e.g. 50 years) value for the establishment of a product design or comparison with the requirement. This extrapolated value is determined by inserting, as necessary, the values for *a* and *b*, determined in accordance with [5.2](#page-9-1) and [5.3](#page-17-1) as appropriate, into [Formula](#page-19-3) (28).

$$
\lg y = a + b \times t_{\text{L}} \tag{28}
$$

where

 $t_{\rm L}$ is the logarithm, lg, of the long-term period, in hours [for 50 years (438 000 h), $t_{\rm L}$ = 5,641 47].

Solving [Formula](#page-19-3) (28) for *y* gives the extrapolated value.

The use of the data and the specification of requirements in the product standards are in three distinct categories.

6.2 Product design

In the first category, the data are used for design or calculation of a product line. This is the case for long-term circumferential strength testing (ISO [7509\)](http://dx.doi.org/10.3403/30272890U)[\[1\]](#page-54-1). The long-term destructive test data are analysed using method A.

6.3 Comparison to a specified value

The second category is where the long-term extrapolated value is compared to a minimum requirement given in the product standard. This is the case for long-term ring bending (ISO 10471)[[3\]](#page-54-2) and strain corrosion (ISO [10952\)](http://dx.doi.org/10.3403/30149390U) $[4]$. The long-term destructive test data are analysed using method A and can be used to establish a value to compare to the product standard requirement. As the analysis of the data does provide a long-term stress or strain value, this value may also be utilized in analysis of product suitability for a range of installation and application conditions.

6.4 Declaration of a long-term value

The third category is when the long-term extrapolated value is used to calculate a long-term property and this value is then declared by the manufacturer. This is the case for long-term creep (ISO 10468)[[2](#page-54-4)] stiffness. The long-term non-destructive test data are analysed using method B.

Annex A

(informative)

Second-order polynomial relationships

A.1 General

This method fits a curved line of the form given in **[Formula](#page-21-2)** (A.1):

 $y = c + d \times x + e \times x^2$ (A.1)

where

y is the logarithm, lg, of the property being investigated;

c is the intercept on the y-axis;

- *d*, *e* are the coefficients to the two orders of *x*;
- *x* is the logarithm, lg, of the time, in hours.

A.2 Variables

Calculate the following variables:

- \bullet *x_i*, the sum of all individual *x* data;
- \bullet x_i^2 , the sum of all squared *x* data;
- \bullet x_i^3 , the sum of all *x* data to the third power;
- \bullet x_i^4 , the sum of all *x* data to the fourth power;
- \bullet y_i , the sum of all individual *y* data;

 $\left(\sum {{y}_{i}} \right)^{2}$, the squared sum of all individual y data;

 \bullet y_i^2 , the sum of all squared *y* data;

 $\sum (x_i \times y_i)$, the sum of all products x_i, y_i ;

 $\sum (x_i^2 \times y_i)$, the sum of all products $x_i^2y_i$;

 $S_x = \sum (x_i - X)^2$, the sum of the squared residuals parallel to the X-axis for the linear part;

 $S_{xx} = \sum (x_i^2 - X^2)^2$, the sum of the squared residuals parallel to the X-axis for the quadratic part;

 $S_{\rm v} = \sum (y_i - Y)^2$, the sum of the squared residuals parallel to the Y-axis;

 $S_{xy} = \sum (x_i - X) \times (y_i - Y)$, the sum of the squared residuals perpendicular to the line for the $linear$ nart;

 $S_{xxy} = \sum \left[\left(x_i^2 - X^2 \right) \times \left(y_i - Y \right) \right]$, the sum of the squared residuals perpendicular to the line for the quadratic part

where

- *Y* is the arithmetic mean of the *y* data, i.e. $Y = \frac{\sum y_i}{n}$;
- *X* is the arithmetic mean of the *x* data, i.e. $X = \frac{\sum x}{n}$ $=\frac{\sum x_i}{n}$.

A.3 Solution system

Determine *c*, *d* and *e* using the following matrix:

$$
\sum y_i = c \times n + d \times \sum x_i + e \times \sum x_i^2 \tag{A.2}
$$

$$
\sum (x_i \times y_i) = c \times \sum x_i + d \times \sum x_i^2 + e \times \sum x_i^3
$$
 (A.3)

$$
\sum \left(x_i^2 \times y_i \right) = c \times \sum x_i^2 + d \times \sum x_i^3 + e \times \sum x_i^4 \tag{A.4}
$$

A.4 Suitability of data

Calculate the squared, r^2 , and the linear coefficient of correlation, r, using [Formulae \(A.5\)](#page-22-0) and [\(A.6\)](#page-22-1):

$$
r^{2} = \frac{c \times \sum y_{i} + d \times \sum (x_{i} \times y_{i}) + e \times \sum (x_{i}^{2} \times y_{i}) - \left[\left(\sum y_{i} \right)^{2} / n \right]}{\sum y_{i}^{2} - \left[\left(\sum y_{i} \right)^{2} / n \right]}
$$
(A.5)

$$
r = \left| \left(r^2 \right)^{0,5} \right| \tag{A.6}
$$

If the value of r^2 or r is less than the applicable minimum value given in [Table](#page-10-1) 1 as a function of n , consider the data unsuitable for analysis.

A.5 Check for the suitability of data for extrapolation

If it is intended to extrapolate the line, calculate *M* using [Formula](#page-23-0) (A.7):

$$
M = \frac{S_x^2}{S_{xy}^2} + \frac{S_{xx}^2}{S_{xy}^2} - \frac{t_v^2 \times (S_x \times S_y - S_{xy}^2 + S_{xx} \times S_y - S_{xxy}^2)}{(n-2) \times S_y^2}
$$
(A.7)

If *M* is equal to or less than zero, consider the data unsuitable for extrapolation.

A.6 Validation of statistical procedures by an example calculation

Use the data given in [Table](#page-18-4) 5 for the calculation procedures described in $A.1$ to $A.5$ to ensure that the statistical procedures to be used in conjunction with this method will give results for *r*, *r*2, *a*, *b* and *V*^m to within ± 0.1 % of the values given in this example ($n = 15$).

Solution system:

c = 3,828 8; *d* = −0,026 2; *e* = −0,002 2.

Coefficient of correlation:

*r*² = 0,964 7;

r = 0,982 2.

Check for the suitability for extrapolation:

t^v = 2,160 4;

M = 15 859,6.

The estimated mean values, V_{m} , for *V* at various times are given in **Table A.1** and shown in [Figure](#page-25-0) A.1.

Time	$V_{\rm m}$		
h			
0,1	7 1 2 5		
1	6742		
10	6 3 1 5		
100	5856		
1 0 0 0	5 3 7 5		
10 000	4884		
100 000	4 3 9 3		
438 000	4 0 9 1		

Table A.1 $-$ Estimated mean values, V_{m} , for *V*

Figure A.1 — Regression line from the results in [Table](#page-24-0) A.1

Annex B

(informative)

Non-linear relationships

B.1 General

Given a model for a set of data obtained from a long-term stiffness test on GRP test pieces, the objective of this annex is to produce explicit formulae for

- a) estimating all four parameters in the model, i.e. *a*, *b*, *c* and *d*, and
- b) calculating confidence and prediction intervals about the curve.

These formulae are presented in this annex, along with associated graphical displays for a typical data set.

NOTE While the data and procedures refer to a long-term stiffness test, the method can also be applied to data which fit the mathematical model and require extrapolation to 50 years.

B.2 Model

As described in [B.4,](#page-35-0) the model shown can be re-expressed as two linked straight-line regression models called Line 1 and Line 2. Answers obtained from the procedures described for Line 1 are then applied in the Line 2 procedures to obtain the four parameters in the model, which is then used to obtain the longterm value for the property under investigation.

B.2.1 Procedure for Line 1

The formulae given in the following subclauses are used to develop the models for Lines 1 and 2.

NOTE Many of the formulae make reference to a subscript *i*, which is the count value shown in the tables. For the data used in the tables, *i* runs from 0 to 16, where data indexed 1 to 15 are the experimental measured values, and those indexed 0 or 16 are the calculated values. When using the procedures described in this annex, the amount of data that can be analysed is not limited to 15 data sets but can be any number.

B.2.1.1 Determination of derived values for Y_i **,** X_i **and** y_i

Calculate Y_i , X_i , Y_j , \overline{X} and \overline{Y} using [Formulae](#page-26-2) (B.1), [\(B.2\),](#page-26-3) [\(B.3\)](#page-26-4), [\(B.4\)](#page-26-5) and [\(B.5\):](#page-26-6)

$$
Y_i = \lg_{10} (S_i)
$$
 (B.1)

$$
x_i = \lg_{10}(\text{minutes} + 1) \tag{B.2}
$$

$$
y_i = \ln\left[\left(a+b-Y_i\right)/\left(Y_i-a\right)\right]
$$
\n(B.3)

$$
\overline{x} = \left(\sum x_i\right) / n \tag{B.4}
$$

$$
\bar{y} = \left(\sum y_i\right) / n \tag{B.5}
$$

[Formulae](#page-26-2) (B.1), [\(B.2\)](#page-26-3), [\(B.3\)](#page-26-4), [\(B.4\)](#page-26-5) and [\(B.5\)](#page-26-6) relate to values obtained for the property, *Si*, after various periods of time under test, *xi*.

B.2.1.2 Determination of parameters *a* **and** *b*

Calculate the following using **Formulae** $(B.6)$, $(B.7)$ and $(B.8)$:

$$
a_0 = 0.995 \min(Y_i)
$$
 (B.6)

$$
a_0 + b_0 = 1,005 \text{ max.} \left(Y_i \right) \tag{B.7}
$$

$$
b_0 = (a_0 + b_0) - a_0 \tag{B.8}
$$

[Formulae](#page-27-0) (B.6), [\(B.7\)](#page-27-1) and [\(B.8\)](#page-27-2) produce the initial estimates for two of the parameters in the model, a_0 and b_0 .

B.2.1.3 Determination of the least squares estimates for *A* and *B* and unbiased estimate for $\tilde{\sigma}_1^2$ 2

Calculate the following using **Formulae (B.9)**, $(B.10)$, $(B.11)$ and $(B.12)$:

$$
\hat{A} = \overline{y} - \hat{B}\overline{x} \tag{B.9}
$$

$$
\hat{B} = \sum (x_i - \overline{x})(y_i - \overline{y}) / \sum (x_i - \overline{x})^2
$$
\n(B.10)

$$
\tilde{\sigma}_1^2 = \sum \left(y_i - \hat{y}_i \right)^2 / \left(n - 2 \right) = \text{RSS} / \left(n - 2 \right) \tag{B.11}
$$

where

$$
RSS = \sum y_i^2 - \hat{A} \times \sum y_i - \hat{B} \times \sum x_i \times y_i
$$
 (B.12)

NOTE RSS is the residual sum of squares.

B.2.1.4 Determination of estimates for parameters *c* **and** *d*

Calculate the following using [Formulae \(B.13\)](#page-27-7) and [\(B.14\):](#page-27-8)

$$
\hat{c} = \left(\hat{A}\hat{B}^{-1} + \lg_{10} 60\right) \tag{B.13}
$$

$$
\hat{d} = -\hat{B}^{-1} \tag{B.14}
$$

B.2.2 Procedure for Line 2

B.2.2.1 Determination of X_i , Y_i , \overline{X} and \overline{Y}

Calculate *Xi* using [Formula \(B.15\)](#page-27-9):

$$
X_{i} = 1 / \left\{ 1 + \exp\left[-\lg_{10} \left(\text{Time} \right) - \hat{c} \right] / \hat{d} \right\}
$$
 (B.15)

NOTE Values for *c* and *d* are given as **[Formulae](#page-27-7)** (B.13) and [\(B.14\)](#page-27-8).

$$
Y_i = \lg_{10} \left(\text{stiffness} \right) \tag{B.16}
$$

$$
\overline{X} = \left(\sum X_i\right) / n \tag{B.17}
$$

$$
\overline{Y} = \left(\sum Y_i\right) / n \tag{B.18}
$$

B.2.2.2 Determination of the least squares estimates for \hat{a} and \hat{b} and unbiased estimate for $\tilde{\sigma}_1^2$ 2 The estimates are derived using [Formulae](#page-28-0) (B.19), [\(B.20\)](#page-28-1), [\(B.21\)](#page-28-2) and [\(B.22\):](#page-28-3)

$$
\hat{b} = \sum (X_i - \overline{X})(Y_i - \overline{Y}) / \sum (X_i - \overline{X})^2 =
$$
\n
$$
(n \times \sum XY - \sum X \times \sum Y) / (n \times \sum X^2 - \sum X \times \sum X)
$$
\n(B.19)

$$
\hat{a} = \overline{Y} - \hat{b} \times \overline{X} \tag{B.20}
$$

$$
\tilde{\sigma}_1^2 = \sum \left(Y_i - \hat{Y}_i \right)^2 / \left(n - 2 \right) = \text{RSS} / \left(n - 2 \right) \tag{B.21}
$$

where

$$
RSS = \sum Y_i^2 - \hat{a} \times \sum Y_i - \hat{b} \times \sum X_i \times Y_i
$$
 (B.22)

Check that the following constraints are met: $\hat{a} + \hat{b} > Y_i > \hat{a}$.

B.2.2.3 Determination of confidence and prediction intervals

Calculate the variances of \hat{a} and \hat{b} using [Formulae \(B.23\)](#page-28-4) and [\(B.24\):](#page-28-5)

$$
\text{var}\left(\hat{a}\right) = \left(\tilde{\sigma}_2^2 \sum X_i^2\right) / \left[n \sum X_i^2 - \left(\sum X_i\right)^2\right] = \left(\tilde{\sigma}_2^2 \sum X_i^2\right) / \left[n \sum \left(X_i - \bar{X}\right)^2\right]
$$
\n(B.23)

$$
\text{var}\left(\hat{b}\right) = \left(n\tilde{\sigma}_2^2\right) / \left[n\sum X_i^2 - \left(\sum X_i\right)^2\right] = \left(n\tilde{\sigma}_2^2\right) / \left[n\sum \left(X_i - \bar{X}\right)^2\right]
$$
\n(B.24)

Calculate the estimated standard error, ε , of \hat{a} and \hat{b} given as <u>Formulae (B.25)</u> and [\(B.26\):](#page-28-7)

$$
\varepsilon(\hat{a}) = \sqrt{\text{var}(\hat{a})} \tag{B.25}
$$

$$
\varepsilon(\hat{b}) = \sqrt{\text{var}(\hat{b})} \tag{B.26}
$$

Formulae for 100 % confidence and prediction intervals about the fitted Line 2 as functions of *X* are given as **[Formulae](#page-28-8)** ($B.27$) and ($B.28$), respectively:

Confidence interval
$$
\mu_X = \hat{\mu}_X \pm t_p \tilde{\sigma}_2 \sqrt{\left[\frac{1}{n} + \frac{(X - \overline{X})^2}{\sum (X_i - \overline{X})^2} \right]}
$$
 (B.27)

$$
\text{Prediction interval } Y_X = \hat{\mu}_X \pm t_P \tilde{\sigma}_2 \sqrt{1 + \frac{1}{n} + \frac{(X - \overline{X})^2}{\sum (X_i - \overline{X})^2}}
$$
\n(B.28)

where

$$
\hat{Y}_X = \hat{\mu}_X = \hat{a} + \hat{b}X \tag{B.29}
$$

B.2.2.4 Student's *t* **test for** *a* **and** *b*

To test whether \hat{a} or \hat{b} is equal to 0, perform the following calculations:

$$
\Pr\left(\left|t\right| < t_p\right) = P;
$$

t has Student's *t*-distribution on (*n* − 2) degrees of freedom.

From Statistical tables *t* boundary for *P* = 90 % = 1,771.

From Statistical tables *t* boundary for *P* = 95 % = 2,160.

If [Formulae](#page-29-1) (B.30) and [\(B.31\)](#page-29-2) give *t* values greater than the applicable one of the above bounds, it is certain that \hat{a} and \hat{b} are not equal to 0.

$$
t \text{ for } \hat{a} = \hat{a}/\varepsilon(\hat{a}) \tag{B.30}
$$

$$
t \text{ for } \hat{b} = \hat{b} \big/ \varepsilon(\hat{b}) \tag{B.31}
$$

B.2.2.5 Calculation of long-term (50-year) stiffness

All the formulae in **B.2.1** and **B.2.2** are standard formulae for straight-line regressions. From the values given in [Tables](#page-47-0) B.4 and [B.5](#page-49-0), the estimated long-term stiffness and its confidence and prediction limits can be determined using [Formulae](#page-29-3) (B.32), [\(B.33\)](#page-29-4), [\(B.34\),](#page-29-5) [\(B.35\)](#page-30-0) and [\(B.36\)](#page-30-1):

Using [Formula](#page-29-3) $(B.29)$, the extrapolated long-term stiffness is given as Formula $(B.32)$:

$$
\hat{Y}_X = \hat{\mu}_X = \hat{a} + \hat{b}X \tag{B.32}
$$

Using [Formula](#page-29-4) ($B.27$), the confidence limits for $\mu_{50 \text{ years}}$ are given as Formula ($B.33$):

$$
\mu_{50 \text{ years}} = \hat{\mu}_X \pm \mu_{\text{bounds}} \tag{B.33}
$$

Using [Formula \(B.28\)](#page-29-0), the prediction limits are given as [Formula](#page-29-5) (B.34):

$$
\hat{Y}_{50 \text{ years}} = Y_X \pm Y_Y_{\text{bounds}} \tag{B.34}
$$

Transforming these values back to stiffness gives:

Extrapolated long-term stiffness = 10 $\hat{Y}_{50 \text{ years}}$ 90 % confidence limits for extrapolated long-term stiffness are given as [Formula \(B.35\):](#page-30-0)

$$
\mu(S)_{50 \text{ years}} = 10^{\hat{\mu}_X \pm \mu_{\text{bounds}}} \tag{B.35}
$$

90 % prediction limits for extrapolated long-term stiffness are given as [Formula \(B.36\):](#page-30-1)

$$
S_{50 \text{ years}} = 10^{Y_X \pm Y_Y \text{ bounds}} \tag{B.36}
$$

B.3 Validation of statistical procedures by an example calculation

Use the data given in [Table](#page-38-0) B.1 for the calculation procedures described in $B.2.1$ to $B.2.2.5$ to ensure that the statistical procedures to be used in conjunction with this method will give results to within ± 0.1 % of the values given in this example $(n = 15)$.

B.3.1 Procedure for Line 1

 \mathcal{L}^{max}

B.3.1.1 Determination of derived values for Y_i **,** X_i **and** y_i

$$
Y_i = \lg_{10} (S_i) \tag{B.37}
$$

NOTE 1 See derived values in [Table](#page-38-0) B.1.

$$
x_i = \lg_{10}(\text{minutes} + 1) \tag{B.38}
$$

NOTE 2 See derived values in [Table](#page-38-0) B.1.

$$
y_i = \ln\left[\left(a+b-Y_i\right)/\left(Y_i-a\right)\right]
$$
\n(B.39)

NOTE 3 See derived values in [Table](#page-38-0) B.1.

$$
\bar{x} = \left(\sum x_i\right) / n = 48,465\,540/15 = 3,231\,036\tag{B.40}
$$

$$
\bar{y} = \left(\sum y_i\right) / n = -2{,}512\,828/15 = -0{,}167\,522\tag{B.41}
$$

B.3.1.2 Determination of parameters *a* **and** *b*

For values of Y_i , see [Table](#page-38-0) B.1.

$$
a_0 = 0.995 \text{ min.} (Y_i) = 0.995 \times 3.696 \text{ 793} = 3.678 \text{ 309} \tag{B.42}
$$

$$
a_0 + b_0 = 1,005 \text{ max.} \left(Y_i \right) = 1,005 \times 3,852 \text{ 114} = 3,871 \text{ 375}
$$
 (B.43)

$$
b_0 = (a_0 + b_0) - a_0 = 3,871\,375 - 3,678\,309 = 0,193\,066\tag{B.44}
$$

B.3.1.3 Determination of the least squares estimates for *A* and *B* and unbiased estimate for $\tilde{\sigma}_1^2$ 2

Calculate the following:

$$
\hat{A} = \overline{y} - \hat{B}\overline{x} = -0.1675 - 0.8319 \times 3.231036 = -2.8555
$$
\n(B.45)

$$
\hat{B} = \sum (x_i - \overline{x})(y_i - \overline{y}) / \sum (x_i - \overline{x})^2 = (n \times \sum xy - \sum x \times \sum y) \div \left[n \times \sum x^2 - (\sum x)^2\right]
$$
(B.46)

Using values from [Table](#page-41-0) B.2,

$$
\hat{B} = (15 \times 17, 8 - 48, 47 \times 2, 51) / [15 \times 187, 75 - (2\ 349, 34)] = 0,8319
$$

Using values for *A* and *B* in this subclause and from [Table](#page-41-0) B.2,

$$
\tilde{\sigma}_1^2 = \sum (y_i - \hat{y}_i)^2 / (n - 2) = \text{RSS} / (n - 2) = 0,665 \cdot 3 / 13 = 0,051 \cdot 2 \tag{B.47}
$$

where

$$
RSS = \sum y_i^2 - \hat{A} \times \sum y_i - \hat{B} \times \sum x_i \times y_i
$$
 (B.48)

B.3.1.4 Determination of estimates for parameters *c* **and** *d*

Using the values for \hat{A} and \hat{B} calculated above, the estimated values for \hat{c} and \hat{d} are:

$$
\hat{c} = \left(\hat{A}\hat{B}^{-1} + \lg_{10} 60\right) = 1,653\,53\tag{B.49}
$$

$$
\hat{d} = -\hat{B}^{-1} = -1,202\tag{B.50}
$$

B.3.2 Procedure for Line 2

B.3.2.1 Determination of X_i , Y_i , \overline{X} and \overline{Y}

Calculate the following:

$$
X_{i} = 1 / \left\{ 1 + \exp\left[-\lg_{10}\left(\text{Time}\right) - \hat{c}\right] / \hat{d}\right\}
$$
 (B.51)

NOTE 1 See derived values in [Table](#page-43-0) B.3.

NOTE 2 Values for *c* and *d* are given in [Formulae](#page-31-0) (B.49) and [\(B.50\).](#page-31-1)

$$
Y_i = \lg_{10} \left(\text{stiffness} \right) \tag{B.52}
$$

NOTE 3 See derived values in [Table](#page-43-0) B.3.

$$
\overline{X} = \left(\sum X_i\right) / n = 7,966\ 259 / 15 = 0,531\ 084\tag{B.53}
$$

$$
\overline{Y} = \left(\sum Y_i\right) / n = 56,728\ 211 / 15 = 3,781\ 881\tag{B.54}
$$

B.3.2.2 Determination of the least squares estimates for \hat{a} and \hat{b} and unbiased estimate for $\tilde{\sigma}_1^2$ 2 The estimates are derived using [Formulae](#page-32-0) (B.55), [\(B.56\),](#page-32-1) [\(B.57\)](#page-32-2) and [\(B.58\)](#page-32-3):

$$
\hat{b} = \sum (X_i - \bar{X})(Y_i - \bar{Y}) / \sum (X_i - \bar{X})^2 =
$$
\n
$$
(n \times \sum XY - \sum X \times \sum Y) / (n \times \sum X^2 - \sum X \times \sum X)
$$
\n
$$
\hat{b} = (15 \times 30,302557 - 7,966259 \times 56,728211) / (15 \times 5,146065 - 7,966259 \times 7,966259)
$$
\n
$$
= 2,626734 / 13,729693 = 0,191318
$$
\n
$$
\hat{a} = \bar{Y} - \hat{b} \times \bar{X}
$$
\n
$$
\hat{a} = 3,781881 - 0,191318 \times 0,5310834 = 3,680275
$$
\n
$$
\hat{\sigma}_1^2 = \sum (Y_i - \hat{Y}_i)^2 / (n - 2) = \text{RSS}/(n - 2)
$$
\n
$$
\text{RSS} = \sum Y_i^2 - \hat{a} \times \sum Y_i - \hat{b} \times \sum X_i \times Y_i =
$$
\n
$$
\sum Y^2 - \hat{a} \times \sum Y - \hat{b} \times \sum XY = 214,573977 - 3,680275 \times 56,728211 - 0,191318 \times 30,302557 =
$$
\n
$$
= 0,001136
$$
\n
$$
\hat{\sigma}_2^2 = 0,001136 / 13 = 0,000087
$$
\n(B.58)

Check that the following constraints are met: $\hat{a} + \hat{b} > Y_i > \hat{a}$

max. *Y_i* = 3,852 114, min. *Y_i* = 3,696 793, $\hat{a} + \hat{b} = 3,680$ 275 + 0,191 318 = 3,871 593 and $\hat{a} = 3,680$ 275 From inspection of these values, the constraints are satisfied.

B.3.2.3 Determination of confidence and prediction intervals

Using [Formulae \(B.59\)](#page-32-4) and [\(B.60\),](#page-32-5) determine the variances of \hat{a} and \hat{b} :

$$
\text{var}(\hat{a}) = (\tilde{\sigma}_2^2 \sum X_i^2) / \left[n \sum X_i^2 - (\sum X_i)^2 \right] = (\tilde{\sigma}_2^2 \sum X_i^2) / \left[n \sum (X_i - \bar{X})^2 \right]
$$
\n
$$
\text{var}(\hat{a}) = 0,000033
$$
\n
$$
\text{var}(\hat{b}) = (n\tilde{\sigma}_2^2) / \left[n \sum X_i^2 - (\sum X_i)^2 \right] = (n\tilde{\sigma}_2^2) / \left[n \sum (X_i - \bar{X})^2 \right]
$$
\n
$$
\text{var}(\hat{b}) = 0,000097
$$
\n
$$
\text{var}(\hat{b}) = 0,000097
$$
\n
$$
\text{(B.60)}
$$

Using <u>Formulae (B.61</u>) and <u>(B.62</u>), compute the estimated standard errors, ε , of \hat{a} and \hat{b} :

$$
\varepsilon(\hat{a}) = \sqrt{\text{var}(\hat{a})}
$$
\n
$$
\varepsilon(\hat{a}) = \sqrt{0.000033} = 0.005756
$$
\n
$$
\varepsilon(\hat{b}) = \sqrt{\text{var}(\hat{b})}
$$
\n
$$
\varepsilon(\hat{b}) = \sqrt{0.000097} = 0.009828
$$
\n(B.62)

Formulae for 100 % confidence and prediction intervals about the fitted Line 2 as functions of *X* are given as [Formulae](#page-33-2) (B.63) and [\(B.64\)](#page-33-3), respectively:

Confidence interval
$$
\mu_X = \hat{\mu}_X \pm t_p \tilde{\sigma}_2 \sqrt{\left[\frac{1}{n} + \frac{(X - \overline{X})^2}{\sum (X_i - \overline{X})^2} \right]}
$$
 (B.63)

$$
\text{Prediction interval } Y_X = \hat{\mu}_X \pm t_P \tilde{\sigma}_2 \sqrt{\left[1 + \frac{1}{n} + \frac{\left(X - \overline{X}\right)^2}{\sum \left(X_i - \overline{X}\right)^2}\right]}
$$
\n(B.64)

where

extrapolated long-term stiffness is $\hat{\mu}_x = \hat{a} + \hat{b}X$ (B.65)

$$
t_P\!=1,\!771
$$
 for $P\!=90$ %

In [Table](#page-47-0) B.4, the confidence intervals are shown as μ_L and μ_U and the prediction intervals as Y_L and Y_U . In [Table](#page-49-0) B.5, the confidence intervals are shown as $S\mu_L$ and $S\mu_U$ and the prediction intervals as S_L and S_U .

B.3.2.4 Student's *t* **test for** *a* **and** *b*

To test whether \hat{a} or \hat{b} is equal to 0, the following calculations are performed:

$$
\Pr\left(\left|t\right| < t_p\right) = P;
$$

t has Student's *t*-distribution on (*n* − 2) degrees of freedom.

From Statistical tables *t* boundary for *P* = 90 % = 1,771.

From Statistical tables *t* boundary for *P* = 95 % = 2,160.

If [Formulae](#page-33-4) (B.66) and [\(B.67\)](#page-34-0) give *t* values greater than the applicable one of the above bounds, it is certain that \hat{a} and \hat{b} are not equal to 0.

$$
t \text{ for } \hat{a} = \hat{a}/\varepsilon(\hat{a}) \tag{B.66}
$$

t for
$$
\hat{a} = 3,680 \frac{3}{10005} \frac{756}{6005} = 639,33753
$$

$$
t \text{ for } \hat{b} = \hat{b} \big/ \varepsilon(\hat{b}) \tag{B.67}
$$

t for $\hat{b} = 0,1913 / 0,009828 = 19,4666323$

By inspection, \hat{a} and \hat{b} are not equal to 0.

B.3.2.5 Calculation of long-term (50-year) stiffness

All of the formulae in **[B.3](#page-30-2)** are standard formulae for straight-line regressions. From the values given in [Tables](#page-47-0) B.4 and [B.5](#page-49-0), the estimated long-term stiffness and its confidence and prediction limits are:

Using [Formula \(B.65\)](#page-33-5), the extrapolated long-term stiffness is given as [Formula \(B.68\)](#page-34-1):

$$
\hat{Y}_X = \hat{\mu}_X = \hat{a} + \hat{b}X
$$
\n(B.68)

$$
\hat{Y}_X = \hat{\mu}_X = 3{,}680\,3 + 0{,}191\,3 \times 0{,}35 = 3{,}686\,968
$$

Using [Formula \(B.63\)](#page-33-2), the confidence limits for μ _{50 years} are given as [Formula \(B.69\):](#page-34-2)

$$
\mu_{50 \text{years}} = \hat{\mu}_X \pm \mu_{\text{bounds}} \tag{B.69}
$$

$$
\mu_{50 \text{years}} = 3,686\,968 \pm 0,009\,6 = \Big(3\,677\,322\quad3\,696\,614\Big)
$$

Using <u>[Formula \(B.64\)](#page-33-3)</u>, the prediction limits for $\hat{Y}_{50 \text{years}}$ are given as <u>Formula (B.70</u>):

$$
\hat{Y}_{50 \text{years}} = Y_X \pm Y_Y_{\text{bounds}} \tag{B.70}
$$

$$
\hat{Y}_{50 \text{years}} = 3,686\ 968 \pm 0,019\ 2 = \begin{pmatrix} 3\ 667\ 725 & 3\ 706\ 21 \end{pmatrix}
$$

Transforming these values back to stiffness gives:

Extrapolated long-term stiffness is equal to:

$$
S_{50 \text{ years}} = 10^{\hat{Y}_{50 \text{ years}}} \tag{B.71}
$$

$$
S_{50 \text{ years}} = 10^{3,686\,968} = 486\,4\,\text{N/m}^2
$$

90 % confidence limits for extrapolated long-term stiffness, $\mu(S)_{50 \text{ years}}$, are given as [Formula](#page-35-1) (B.72):

$$
\mu(S)_{50 \text{ years}} = 10^{\hat{\mu}_X \pm \mu_{\text{bounds}}} \tag{B.72}
$$

90 % confidence limits for extrapolated long-term stiffness, *μ*(*S*)⁵⁰ years, are given as [Formula](#page-35-2) (B.73):

$$
\mu(S)_{50 \text{ years}} = 10^{3,686\,968 \pm 0,009\,6} = (4\,757,497\,3)
$$
\n(B.73)

90 % prediction limits for extrapolated long-term stiffness, *Y*(*S*)⁵⁰ years, are given as [Formula](#page-35-3) (B.74):

$$
Y(S)_{50 \text{ years}} = 10^{Y_X \pm Y_Y \text{ bounds}} \tag{B.74}
$$

90 % prediction limits for extrapolated long-term stiffness, *Y*(*S*)⁵⁰ years, are given as [Formula](#page-35-4) (B.75):

$$
Y(S)_{50 \text{ years}} = 10^{3,686\,968 \pm 0,019\,2} = \left(4\,653\,508\,4\right) \tag{B.75}
$$

B.4 Description and comments on data and model

A sequential linearized procedure is utilized in this annex so as to meet the requirement for easily accessible explicit formulae. This procedure is almost certainly only marginally sub-optimal for the particular purposes of this document. In particular, it can be observed that for predicting the value of *S* at *S*₅₀ years, which is the extrapolated long-term stiffness normally at 50 years, only the parameter *a* plus the associated estimates of measurement error for *S* and *a* are important. The four-parameter model for this procedure is shown as **[Formula](#page-35-5)** (B.76):

$$
Y_i = \lg_{10} (S_i) = a + b \Big/ \Big\langle 1 + \exp\Big\{ - \Big[\lg_{10} (T_i) - c \Big] \Big/ d \Big\} \Big\rangle \quad i = 1, \dots, n \tag{B.76}
$$

where

- *S* is the stiffness, expressed in newtons per square metre (N/m²);
- *T* is time, expressed in hours (h);
- *i* is the index for observations.

This model is linear in the parameters *a* and *b* but non-linear in the parameters *c* and *d*. This means that a fully developed statistical analysis designed to produce all the required estimates and intervals would require much algebraic development coupled with a "black-box" use of professional statistical packages. However, an alternative sequential linearized procedure is utilized in this annex to meet the requirement for easily accessible explicit formulae.

B.4.1 Line 1

Line 1 is a rewrite of the model given as [Formula](#page-35-5) (B.76) in order to display time as a function of stiffness, followed by the addition of a simple random error term so as to complete the full specification for a standard straight-line regression model. It is obtained by transforming the Y-axis using preliminary estimates for *a* and *b* [see [Formula \(B.77\)\]](#page-36-0).

Line 1
$$
y_i = \lg_e \left[\left(a + b - Y_i \right) / \left(Y_i - a \right) \right] = A + Bx_i + e_{1,i} \quad i = 1, n
$$
 (B.77)

where

$$
e_{1,i} \approx N\left(0, \sigma_1^2\right)
$$
 is the added random error term.

NOTE 1 This represents normally distributed measurement and sample piece variability under nominally constant experimental conditions.

$$
x_i = \lg_{10} \left(60T_i + 1 \right) \approx \lg_{10} 60 + \lg_{10} T
$$

NOTE 2 The additional "1 min" is a variant on the standard adaptation to ensure that zeroes on the Time and lg (Time) axes roughly correspond.

So that

$$
A = \left(c + \lg_{10} 60\right) / d
$$
\n
$$
B = -1/d
$$

And hence

$$
c = -\left(AB^{-1} + \lg_{10} 60\right);
$$

$$
d = -B^{-1}.
$$

Given initial estimates for *a* and *b*, which are easily obtained via the observed maximum and minimum values for stiffness, this straight-line regression model can then be used to estimate *c* and *d*.

However, as it stands, this model for Line 1 requires $a + b > Y_i > a$ and this might not hold for the initial estimates. But assuming the model fits the data well, in which case measurement errors are small, it seems reasonable to replace y_i with [Formula](#page-36-1) (B.78):

$$
y_i = \lg_e \left\{ \text{abs} \left[\left(a + b - Y_i \right) / \left(Y_i - a \right) \right] \right\} \tag{B.78}
$$

Suitable initial estimates for *a* and *b* can be obtained from the data by setting:

 $\mathbb{R}^n \times \mathbb{R}^n$

$$
a_0 + b_0 = 1,005 \text{ max.} (Y_i);
$$

\n $a_0 = 0,995 \text{ min.} (Y_i);$
\nSo $b_0 = (a_0 + b_0) - a_0.$

Alternatively, values for *a*, *b*, *c* and *d* can be obtained using suitable statistical software which can compute a set of best-fit values for these variables from the data by iteration on an appropriately specified least-squares criterion. Such software may not, however, supply standard errors or confidence intervals for these best-fit values.

B.4.2 Line 2

Line 2 is obtained by rewriting the basic model [[Formula](#page-35-5) (B.76)] as a simple straight-line dependence of stiffness on a transformed Time axis using the Line 1 estimates for *c* and *d* [see [Formula](#page-37-0) (B.79)]:

$$
Y_i = a + bX_i + e_{2i}
$$
\n(B.79)

where

 $X_{i} = \left\langle 1 + \exp \left\{ - \left[\lg_{10} (T_{i}) - c \right] / d \right\} \right\rangle$ $1 + \exp\{-\left|\lg_{10}\right|$ 1 $\exp \{-|\lg_{10}(T_i) - c|/d\}\$; $e_{2,i} \approx N\Big(0,\sigma_2^{\,2}\Big)$ represents random measurement and sample pierce variability error.

NOTE This represents normally distributed measurement and sample piece variability under nominally constant experimental conditions.

Given the estimates for *c* and *d* obtained using either the Line 1 procedure described above or a suitable statistics package, this straight-line regression model can then be used to re-estimate *a* and *b*. Confidence and prediction intervals about this line can then be constructed using standard statistical techniques for linear models and hence, by back transformation, about the curve for *S* as a function of *X* or Time.

B.4.3 Analysis and formulae

Using the data set given in [Table](#page-38-0) B.1, the sequential procedure is demonstrated and fully described in this subclause.

WARNING — The calculations described in this annex should only be performed using suitable statistical software packages or appropriate spreadsheet software. This is to avoid errors which are known to occur when attempts are made to perform them using pocket calculators.

B.4.3.1 Line 1

The least-squares estimates for *A* and *B* and the unbiased estimate for $\tilde{\sigma}_1^2$ are given as <u>[Formulae](#page-37-1) (B.80)</u> and [\(B.81\).](#page-37-2)

B.4.3.1.1 Computation of \hat{B}

 \hat{B} is computed using <u>[Formula](#page-37-1) (B.80</u>):

$$
\hat{B} = \sum (x_i - \bar{x})(y_i - \bar{y}) / \sum (x_i - \bar{x})^2 = (n \times \sum xy - \sum x \times \sum y) / \left[n \times \sum x^2 - (\sum x)^2\right]
$$
\n(B.80)
\n
$$
= (15 \times 17,80 - 48,47 \times 2,51) / [15 \times 187,75 - (2\ 349,34)] = 0,8319
$$

B.4.3.1.2 Computation of \hat{A}

 \hat{A} is computed using <u>[Formula](#page-37-2) (B.81</u>):

$$
\hat{A} = \bar{y} - \hat{B}\bar{x} \tag{B.81}
$$

where

$$
\overline{y} = \sum y/n = -2.51/15 = -0.1675;
$$

\n
$$
\overline{x} = \sum x/n = 48.47/15 = 3.231036;
$$

\n
$$
\hat{B} = 0.8319.
$$

NOTE See [Formula](#page-37-1) (B.80).

 $\hat{A} = 0.1675 - 0.8319 \times 3.231036 = -2.8555$

B.4.3.1.3 Computation of $\tilde{\sigma}_1^2$ 2

 $\tilde{\sigma}_1^2$ is given as <u>[Formula](#page-38-1) (B.83)</u>: $\tilde{\sigma}_1^2 = \sum (y_i - \hat{y}_i)^2 / (n-2)$ (B.83)

where

$$
\sum (y_i - \hat{y}_i)^2 = \sum y^2 - A \times \sum y - B \times \sum xy/n - 2 = 22,65 - 2,8555 \times -2,51 - 0,8319 \times 17,8 = 0,6653
$$

$$
\tilde{\sigma}_1^2 = 0,6653/13 = 0,0512
$$
 (B.84)

Count		Raw data			Derived values		
	Time	Stiffness	$\lg_{10}(S)$	lg_{10} (mins+1)	Linearized Y	Linearized time	$lg_{10}(Time)$
	h	S	Y_i	X_i	y_i	X_i	Τj
Ω	Ω	\ast	\ast	0,000 000	\ast	\ast	\ast
1	0,10	7 1 1 4	3,852 114	0,845 098	$-2,199873$	0,900 981 089	$-1,000000$
2	0,27	6935	3,841 046	1,235 528	$-1,680067$	0,864 045 469	$-0,568636$
3	0,50	6824	3.834 039	1,491 362	$-1,428181$	0,835 713 323	$-0,301030$
4	1,00	6698	3,825 945	1,785 330	$-1,178593$	0,798 385 481	0,000 000
5	3,28	6533	3,815 113	2,296 226	$-0,888531$	0,720 523 173	0,515 874
6	7,28	6453	3,809 762	2,641 276	$-0,75777$	0,659 034 121	0,862 131
7	20,0	6 3 0 7	3,799 823	3,079 543	$-0,529608$	0,572 939 842	1,301 030
8	45,9	6 1 9 9	3,792 322	3,440 122	$-0,366$ 192	0,498 426 628	1,661 813
9	72,0	6 1 3 3	3,787 673	3,635 584	$-0,267,424$	0,457 861 654	1,857 332
10	166	5 6 9 2	3,755 265	3,998 303	0,411 303	0,384 436 030	2,220 108
11	219	5 5 0 8	3,740 994	4,118 628	0,732 338	0,361 035 235	2,340 444
12	384	5 3 9 3	3,731 830	4,362 501	0,958 300	0,315 663 484	2,584 331

Table B.1 — Raw data and derived values

NOTE 1 Linearized $Y = y_{i} = \ln \left\langle ABS \left\{ \left[a_{0} + b_{0} - \lg_{10} (S) \right] / \left[\lg_{10} (S) - a_{0} \right] \right\} \right\rangle$.

NOTE 2 Linearized time $X_i = 1 / \left\langle 1 + \exp\left\{-\left\lceil \log_{10} \left(\text{Time} \right) \right\rceil - c / d \right\} \right\rangle$.

NOTE 3 The raw data in this table are the same as those in [Table](#page-18-4) 5.

NOTE 4 The values given in rows 0 and 16 are calculated values, while the values in rows 1 to 15 inclusive are measured values or derived from measured values.

		Raw data		Derived values					
Count	Time h.	Stiffness S	$\lg_{10}(S)$ Y_i	lg_{10} (mins+1) X_i	Linearized Y y_i	Linearized time X_i	$lg_{10}(Time)$ T_i		
13	504	5 3 6 4	3.729 489	4.480 596	1,019 680	0.294 833 214	2,702 431		
14	3 0 0 0	5 200	3.716 003	5.255 275	1,416 309	0.179 974 497	3,477 121		
15	10 5 20	4975	3.696 793	5.800 168	2.245 487	0.122 406 128	4,022 016		
16	438 300	\ast	\ast	7,419 923	\ast	0,034 979 805	5,641 771		
	NOTE 1 Linearized $Y = y_i = \ln \left\langle ABS \left\{ \left[a_0 + b_0 - \lg_{10} (S) \right] / \left[\lg_{10} (S) - a_0 \right] \right\} \right\rangle$.								
	NOTE 2 Linearized time $X_i = 1 / \langle 1 + \exp\{-\lceil \lg_{10} (\text{Time}) \rceil - c / d \rangle\}.$								
NOTE 3 The raw data in this table are the same as those in Table 5.									
		values or derived from measured values.				NOTE 4 The values given in rows 0 and 16 are calculated values, while the values in rows 1 to 15 inclusive are measured			

Table B.1 *(continued)*

B.4.3.1.4 Computation of a , b , c and d

The values for *a*, *b*, *c* and *d* can be found by either using the procedure described in [B.4](#page-35-0) or by the use of suitable statistical software.

B.4.3.1.4.1 Using estimation procedure

Assuming measurements of stiffness for up to 10 000 h are available, suitable initial estimates for *a* and *b* are obtained from the data by using **[Formulae](#page-39-0)** ($B.85$), ($B.86$), and ($B.87$) (see also $B.2.1$):

$$
a + b = 1,005 \times \max\left(Y_i\right) = 1,005 \times 3,852\ 114 = 3,871\ 375\tag{B.85}
$$

$$
a = 0.995 \text{ min.} \left(Y_i \right) = 0.995 \times 3.696 \text{ 793} = 3.678 \text{ 309} \tag{B.86}
$$

$$
b = 3,871\,375 - 3,678\,309 = 0,193\,066\tag{B.87}
$$

For these data:

- *a* is lg_{10} [stiffness at 50 years (*S*₅₀)], therefore *S*₅₀ = $10^{3,678}$ 309 = 4 768 N/m²;
- *b* is change in lg₁₀(stiffness) between initial and 50 years so, *b* = lg₁₀ [of the ratio (*S*₀/*S*₅₀)];

but 10^{-b} = $10^{-0.193}$ 066 = 1,559 79

therefore, initial stiffness, $S_0 = 1,55979 \times S_{50} = 1,55979 \times 4768 = 7437 \text{ N/m}^2$.

Alternatively, $a + b$ is $\lg_{10}(S_0)$ so $S_0 = 10^{\text{A}}3,871\,375 = S_0 = 7\,437 \text{ N/m}^2$.

Hence, the implied estimates for *c* and *d* are:

$$
\hat{c} = -\left[A \, / \, B - \lg_{10}\left(60\right)\right] = 3,432\,504 - 1,778\,151\,3 = 1,653\,53\tag{B.88}
$$

$$
\hat{d} = -B^{-1} = -0.8319^{-1} = -1.202011
$$
\n(B.89)

where

 $\hat{c} = \lg_{10} (\text{half-period});$

NOTE The half-period is the time at which $\frac{g_{10}}{10}$ (stiffness) achieves 50 % of its overall loss.

 \hat{d} *is the negative inverse of the slope of the line in [Figure](#page-40-0) B.1.*

The fitted parameters are statistically significant and the fitted line is shown in [Figure](#page-40-0) B.1.

data points \blacksquare

Key

NOTE See [Table](#page-41-0) B.2 for details of the data used to produce this graph.

Figure B.1 — Line 1 — Straight-line fit

B.4.3.1.4.2 Using statistical software

By using initial estimates for *a*, *b* and *c* of 1 and −1 for *d* and the data in [Table](#page-38-0) B.1, the software was run for up to 1 000 iterations and the following values were produced:

a = 3,675 $b = 0.193$ $a + b = 3,871$ $c = 1,654$ *d* = −1,202

These values can be seen to be very similar to the estimated values obtained in [B.3.1.4](#page-31-2) and [B.3.1.3.](#page-31-3)

Count	X_i	y_i	x^2	y^2	xy	y _{hat} $A + Bx$	Residuals $y - y_{hat}$
Ω	0,000 000	$-2,855548$	0,000 000	8,154 155	0,000 000	$-2,855548$	0,000 000
$\mathbf{1}$	0,845 098	$-2,199873$	0,714 191	4,839 439	$-1,859108$	$-2,152478$	$-0,047395$
$\overline{2}$	1,235 528	$-1,680067$	1,526 531	2,822 626	$-2,075771$	$-1,827663$	0,147 596
3	1,491 362	$-1,428181$	2,224 160	2,039 700	$-2,129934$	$-1,614826$	0,186 645
4	1,785 330	$-1,178593$	3,187 403	1,389 081	$-2,104$ 177	$-1,370262$	0,191 669
5	2,296 226	$-0,888531$	5,272 655	0,789 487	$-2,040267$	$-0,945227$	0,056 696
6	2,641 276	$-0,75777$	6,976 338	0,574 226	$-2,001498$	$-0,658167$	$-0,099610$
7	3,079 543	$-0,529608$	9,483 585	0,280 485	$-1,630951$	$-0,293555$	$-0,236053$
8	3,440 122	$-0,366$ 192	11,834 437	0,134 097	$-1,259746$	0,006 425	$-0,372617$
9	3,635 584	$-0,267424$	13,217 473	0,071 516	$-0,972242$	0,169 038	$-0,436462$
10	3,998 303	0,411 303	15,986 426	0,169 170	1,644 515	0,470 798	$-0,059495$
11	4,118 628	0,732 338	16,963 100	0,536 319	3,016 228	0,570 901	0,161 437
12	4,362 501	0,958 300	19,031 418	0,918 339	4,180 586	0,773 789	0,184 512
13	4,480 596	1,019 680	20,075 742	1,039 746	4,568772	0,872 036	0,147 643
14	5,255 275	1,416 309	27,617 914	2,005 933	7,443 096	1,516 522	$-0,100213$
15	5,800 168	2,245 487	33,641 945	5,042 213	13,024 202	1,969 840	0,275 647
16	7,419 923	3,317 378	55,055 253	11,004 998	24,614 690	3,317 378	0,000 000
Totals	48,465 540	$-2,512828$	187,753 317	22,652 377	17,803 704	37,464 846	0,000 000

Table B.2 — Line 1 data results for [Figure](#page-40-0) B.1

NOTE 1 $x_i = \lg_{10}(\text{minutes} + 1)$.

NOTE 2 y_i = linearized *Y*.

NOTE 3 The values given in rows 0 and 16 are calculated values, while the values in rows 1 to 15 inclusive are measured values or derived from measured values. The values in rows 0 and 16 are not included in the totals below row 16.

B.4.3.1.5 Other derived variables associated with Line 1

$$
S_{x} = n \times \sum x_{i}^{2} - (\sum x_{i})^{2} = 467.39
$$
 (B.90)

$$
S_{y} = n \times \sum y_{i}^{2} - (\sum y_{i})^{2} = 333.47
$$
 (B.91)

$$
S_{xy} = n \times \sum x_i y_i - (\sum x_i \times \sum y_i) = 388,84
$$
 (B.92)

$$
\bar{x} = \sum x_i / n = 3,231\,036\tag{B.93}
$$

$$
\bar{y} = \sum y_i / n = -0.167522 \tag{B.94}
$$

B.4.3.2 Line 2

B.4.3.2.1 Computation of *a*, *b*, and $\hat{\sigma}_2$ 2

NOTE 1 The data used in these calculations are shown in [Table](#page-43-0) B.3.

BS ISO 10928:2016 **ISO 10928:2016(E)**

The least-squares estimate for *a* and *b* and the unbiased estimate for $\tilde{\sigma}_2^2$ are given as <u>[Formula](#page-42-0) (B.95)</u>:

$$
\hat{b} = \sum (X_i - \overline{X})(Y_i - \overline{Y}) / \sum (X_i - \overline{X})^2 = (n \times \sum XY - \sum X \times \sum Y) / (n \times \sum X^2 - \sum X \times \sum X);
$$

$$
\hat{b} = (15 \times 30,302557 - 7,966259 \times 56,728211) / (15 \times 5,146065 - 7,966259 \times 7,966259) =
$$

$$
= 2,626\,734 \, \text{/}\,13,729\,693 = 0,191\,318\tag{B.95}
$$

Using the estimates for *c* and *d*, [Formulae](#page-42-1) (B.96), [\(B.97\),](#page-42-2) [\(B.98\),](#page-42-3) [\(B.99\)](#page-42-4), [\(B.100\)](#page-42-5) and [\(B.101\)](#page-42-6) are derived using Line 1:

$$
\overline{Y} = \sum Y / n = 56,728 \ 211 / 15 = 3,781 \ 881 \tag{B.96}
$$

$$
\overline{X} = \sum X / n = 7,966259 / 15 = 0,531084
$$
\n(B.97)

$$
\hat{a} = \overline{Y} - \hat{b} \times \overline{X} = 3,781\,881 - 0,191\,318 \times 0,531\,083\,4 = 3,680\,275\tag{B.98}
$$

$$
\tilde{\sigma}_2^2 = \sum (Y_i - \hat{Y}_i)^2 / (n - 2) = \text{RSS}/n - 2
$$
\n(B.99)

$$
RSS = \sum Y^2 - \hat{a} \times \sum Y - \hat{b} \times \sum XY =
$$

= 214,573 977 - 3,680 275 × 56,728 211 - 0,191 318 × 30,302 557 = 0,001 136 (B.100)

$$
\hat{\sigma}_2^2 = 0.001\,136/13 = 0.000\,087\tag{B.101}
$$

NOTE 2 For the data observed, these estimates satisfy the model constraint $a + b > Y_i > a$.

Table B.3 (continued) **Table B.3** *(continued)*

BS ISO 10928:2016 **ISO 10928:2016(E)**

B.4.3.2.2 Prediction and confidence intervals

Estimates for the variances of \hat{a} and \hat{b} are given as [Formulae \(B.102\)](#page-45-0) and [\(B.103\):](#page-45-1)

$$
\text{var}(\hat{a}) = \left(\tilde{\sigma}_2^2 \sum X_i^2\right) / \left[n \sum X_i^2 - \left(\sum X_i\right)^2\right] = \left(\tilde{\sigma}_2^2 \sum X_i^2\right) / \left[n \sum \left(X_i - \bar{X}\right)^2\right] = 0,000\ 033\ \text{(B.102)}
$$

$$
\text{var}\left(\hat{b}\right) = \left(n\tilde{\sigma}_2^2\right) \Big/ \Bigg[n\sum X_i^2 - \left(\sum X_i\right)^2 \Bigg] = \left(n\tilde{\sigma}_2^2\right) \Big/ \Bigg[n\sum \left(X_i - \bar{X}\right)^2 \Bigg] = 0,000\ 097\tag{B.103}
$$

The square root of these variances is called the estimated standard error, ε, and for Line 2, the data set gives [Formulae](#page-45-2) (B.104) and [\(B.105\)](#page-45-3):

$$
\varepsilon(\hat{a}) = \sqrt{0.000033} = 0.005756
$$
 (B.104)

$$
\varepsilon(\hat{b}) = \sqrt{0,000\ 097} = 0,009\ 828\tag{B.105}
$$

The formulae for 100 % confidence and prediction intervals about the fitted Line 2 as functions of *X* are given as **[Formulae](#page-45-4)** (B.106) and [\(B.107\)](#page-45-5), respectively:

Confidence interval:

$$
\mu_X = \hat{\mu}_X \pm t_P \tilde{\sigma}_2 \sqrt{\frac{1}{n} + \frac{\left(X - \overline{X}\right)^2}{\sum \left(X_i - \overline{X}\right)^2}}
$$
\n(B.106)

Prediction interval:

$$
Y_X = \hat{\mu}_X \pm t_P \tilde{\sigma}_2 \sqrt{\left[1 + \frac{1}{n} + \frac{\left(X - \overline{X}\right)^2}{\sum \left(X_i - \overline{X}\right)^2}\right]}
$$
(B.107)

where

$$
\hat{\mu}_X = \hat{a} + \hat{b}X \tag{B.108}
$$

In [Table](#page-47-0) B.4, the confidence intervals are shown as μ_L and μ_U and the prediction intervals are Y_L and Y_U . In [Table](#page-49-0) B.5, the confidence intervals are shown as $S\mu_L$ and $S\mu_U$ and the prediction intervals are S_L and S_U .

B.4.3.2.3 Student's *t* **test for** *a* **and** *b*

To test whether *a* or *b* is equal to 0, perform the following calculations:

$$
\Pr\left(\left|t\right| < t_p\right) = P
$$

t has Student's *t*-distribution on (*n* − 2) degrees of freedom.

t boundary for
$$
P = 90\% = 1,771
$$

t for $\hat{a} = \hat{a}/\epsilon(\hat{a}) = 3{,}680 \frac{3}{0{,}005 \cdot 756} = 639{,}337 \cdot 53$

t for
$$
\hat{b} = \hat{b}/\varepsilon(\hat{b}) = 0.1913/0.009828 = 19.4666323
$$

As both of these values are greater than 1,771, it is certain that \hat{a} and \hat{b} are not equal to 0.

B.4.3.2.4 Calculation of long-term (50-year) stiffness

All the formulae in this subclause are standard formulae for straight-line regressions. The fitted parameters are statistically significant and graphs of the fitted line and implied curves, with these intervals superimposed, can be seen in [Figures](#page-48-0) B.2, [B.3](#page-50-0) and [B.4](#page-51-0). In particular, at the specified 50-year point (which has $X = 0.035$) and for $P = 90\%$, these intervals become [Formulae](#page-46-0) (B.109) and [\(B.110\)](#page-46-1), respectively:

$$
\mu_{50 \text{years}} = \hat{a} + \hat{b}X = 3,680\ 3 + 0,191\ 3 \times 0,035 = 3,686\ 996 \pm 0,009\ 6 \tag{B.109}
$$

$$
Y_{50 \text{years}} = 3,686\,996 \pm 0,019\,2\tag{B.110}
$$

Transforming back to stiffness gives [Formulae](#page-46-2) (B.111) and [\(B.112\)](#page-46-3):

$$
\mu(S)_{50 \text{years}} = 10^{3,687 \pm 0,009 \text{ 6}} = (4\ 757 \quad 497 \text{ 3})
$$
\n(B.111)

$$
S_{50 \text{years}} = 10^{3,687 \pm 0,019 \, 2} = \left(4\ 653\quad 508 \, 4\right) \tag{B.112}
$$

Key

- X transformed time, *X*
- $Y \t Y_i = \lg_{10}(\text{stiffness})$
- μ _L per cent lower confidence interval for line
- μ _U per cent upper confidence interval for line
- *Y*hat Line 2 trend-line, X
- *Y*^L per cent lower prediction interval for future *Y* values
- *Y*^U per cent upper prediction interval for future *Y* values
- data points, X,Y \blacksquare

NOTE See [Table](#page-47-0) B.4 for details of the data used to produce this graph.

Figure B.2 — Plot of \lg_{10} (stiffness) vs. transformed time for Line 2, including confidence and **prediction intervals**

BS ISO 10928:2016 **ISO 10928:2016(E)**

Key

- $X \quad x = \lg_{10}(\text{minutes} + 1)$
- Y stiffness, *S*
- *Sμ*^L per cent lower confidence interval for line
- *Sμ*^U per cent upper confidence interval for line
- *S*hat Line 2 trend-line, X
- *S*^L per cent lower prediction interval for future *S* values
- *S*^U per cent upper prediction interval for future *S* values
- data points, X,Y \blacksquare

NOTE See [Table](#page-49-0) B.5 for details of the data used to produce this graph.

Figure B.3 – Plot of stiffness vs. $lg_{10}(Time)$ for fitted model with confidence and prediction **intervals**

Key

- X minutes + 1
- Y stiffness, *S*
- *Sμ*^L per cent lower confidence interval for line
- $S\mu$ _U per cent upper confidence interval for line
- *S*hat Line 2 trend-line, X
- *S*^L per cent lower prediction interval for future *S* values
- S_{U} per cent upper prediction interval for future *S* values
- data points, X,Y \blacksquare

NOTE See [Table](#page-49-0) B.5 for details of the data used to produce this graph.

Figure B.4 — Plot of stiffness vs. lg of Time in minutes for fitted model with confidence and prediction intervals

Annex C

(normative)

Calculation of lower confidence and prediction limits for method A

C.1 General

The calculation of confidence limits is not required by any of the ISO or CEN test methods or referring standards. However, the calculation of lower confidence limit (LCL) and lower prediction limit (LPL) is required by other standards (ASTM, for example) using the same basic covariant analysis procedures of the test data collected by similar test methods.

C.2 Calculation of quantities and variances

Calculate the quantity *B* using **Formula** $(C.1)$:

$$
B = -D \times X(1 + E) \tag{C.1}
$$

Calculate the variance A of α using [Formula](#page-52-3) (C.2):

$$
A = D\left[X^2(1+E) + Q_{xy} / b\right]
$$
 (C.2)

Calculate the variance, σ_n^2 , of the fitted line at x_L using [Formula](#page-52-4) (C.3):

$$
\sigma_n^2 = A + Bx_L + Cx_L^2 \tag{C.3}
$$

Calculate the error variance, σ_{ε}^2 , using **Formula (C.4)**:

$$
\sigma_{\varepsilon}^2 = 2\Gamma \sigma_{\delta}^2 \tag{C.4}
$$

Calculate the total variance, σ_v^2 , or future values of y_L at x_L using [Formula](#page-52-6) (C.5):

$$
\sigma_y^2 = \sigma_n^2 + \sigma_z^2 \tag{C.5}
$$

Calculate the estimated standard deviation, σ_v , for y_L using [Formula](#page-52-7) (C.6):

$$
\sigma_y = (\sigma_n^2 + \sigma_\varepsilon^2)^{0,5} \tag{C.6}
$$

C.3 Calculation of confidence intervals

Calculate the predicted value y_L for *y* at x_L using [Formula](#page-52-8) (C.7):

$$
y_{\rm L} = a + bx_{\rm L} \tag{C.7}
$$

where

a and *b* are as calculated by **[Formulae](#page-11-2)** (10) and (11) (see [5.2.3](#page-10-5)).

Calculate the lower 95 % prediction interval $y_{L0,95}$ predicted for y_L using [Formula](#page-53-0) (C.8):

$$
y_{L0,95} = y_L - t_v \sigma_y \tag{C.8}
$$

where

t^v is the value from [Table](#page-12-3) 2.

Calculate the corresponding lower 95 % prediction limit for x_L using [Formula](#page-53-1) $(C.9)$:

$$
x_{L0,95} = 10^{y_{L0,95}} \tag{C.9}
$$

Setting $\sigma_y^2 = \sigma_n^2$ in [Formula](#page-52-6) (C.5) will calculate a confidence interval for the regression line, rather than a prediction interval for a future observation.

C.4 Validation of procedures by a sample calculation

The data given in [Table](#page-15-0) 3, analysed in [5.2.6](#page-13-1) and summarized in Table 4, are extended for the sample calculation of confidence intervals.

Quantities and variances:

 $B = -1,469 \times 10^{-5}$ $A = 4,6673 \times 10^{-5}$ at 50 years σ_n^2 = 4,046 6 × 10⁻⁵ σ_{ε}^2 = 1,160 1 × 10⁻⁴

The estimated values for LCL and LPL are given in [Table](#page-53-2) C.1 (see [Table](#page-15-0) 4).

Time			
h	$V_{\rm m}$	LCL	LPL
0,1	45,76	43,86	42,83
1	42,39	41,05	39,93
10	39,28	38,41	37,16
100	36,39	35,91	34,53
1 0 0 0	33,71	33,41	32,03
10 000	31,23	30,79	29,63
100 000	28,94	28,26	27,36
438 000	27,55	26,74	25,98

Table C.1 — Estimated values, V_{m} **, LCL and LPL for** *V*

Bibliography

- [1] ISO [7509,](http://dx.doi.org/10.3403/30272890U) *Plastics piping systems — Glass-reinforced thermosetting plastics (GRP) pipes — Determination of time to failure under sustained internal pressure*
- [2] ISO 10468, *Glass-reinforced thermosetting plastics (GRP) pipes — Determination of the long-term specific ring creep stiffness under wet conditions and calculation of the wet creep factor*
- [3] ISO 10471, *Glass-reinforced thermosetting plastics (GRP) pipes — Determination of the long-term ultimate bending strain and the long-term ultimate relative ring deflection under wet conditions*
- [4] ISO [10952,](http://dx.doi.org/10.3403/30149390U) *Plastics piping systems — Glass-reinforced thermosetting plastics (GRP) pipes and fittings — Determination of the resistance to chemical attack for the inside of a section in a deflected condition*

BS ISO 10928:2016 **ISO 10928:2016(E)**

Price based on 47 pages

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Copyright in BSI publications

All the content in BSI publications, including British Standards, is the property of and copyrighted by BSI or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use.

Save for the provisions below, you may not transfer, share or disseminate any portion of the standard to any other person. You may not adapt, distribute, commercially exploit, or publicly display the standard or any portion thereof in any manner whatsoever without BSI's prior written consent.

Storing and using standards

Standards purchased in soft copy format:

- A British Standard purchased in soft copy format is licensed to a sole named user for personal or internal company use only.
- The standard may be stored on more than 1 device provided that it is accessible by the sole named user only and that only 1 copy is accessed at any one time.
- A single paper copy may be printed for personal or internal company use only.

Standards purchased in hard copy format:

bsi.

- A British Standard purchased in hard copy format is for personal or internal company use only.
- It may not be further reproduced in any format to create an additional copy. This includes scanning of the document.

If you need more than 1 copy of the document, or if you wish to share the document on an internal network, you can save money by choosing a subscription product (see 'Subscriptions').

Reproducing extracts

For permission to reproduce content from BSI publications contact the BSI Copyright & Licensing team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email subscriptions@bsigroup.com.

Revisions

Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Useful Contacts

Customer Services Tel: +44 345 086 9001 **Email (orders):** orders@bsigroup.com **Email (enquiries):** cservices@bsigroup.com

Subscriptions

Tel: +44 345 086 9001 **Email:** subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004 **Email:** knowledgecentre@bsigroup.com

Copyright & Licensing

Tel: +44 20 8996 7070 **Email:** copyright@bsigroup.com

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK