BS ISO 10258:2015 ### **BSI Standards Publication** # Copper sulfide concentrates — Determination of copper content — Titrimetric methods BS ISO 10258:2015 BRITISH STANDARD #### National foreword This British Standard is the UK implementation of ISO 10258:2015. The UK participation in its preparation was entrusted to Technical Committee NFE/36, Copper lead and zinc ores and concentrates. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2015. Published by BSI Standards Limited 2015 ISBN 978 0 580 81811 0 ICS 73.060.99 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 June 2015. Amendments issued since publication Date Text affected # INTERNATIONAL STANDARD ISO 10258:2015 ISO 10258 Second edition 2015-07-01 ### Copper sulfide concentrates — Determination of copper content — Titrimetric methods Concentrés de sulfure de cuivre — Dosage du cuivre — Méthodes titrimétriques BS ISO 10258:2015 **ISO 10258:2015(E)** ### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2015, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Con | tent | S | Page | | | | | |-------|--|---|------------------|--|--|--|--| | Forev | word | | iv | | | | | | 1 | Scop | e | 1 | | | | | | 2 | Normative references | | | | | | | | 3 | Principle 3.1 Method 1 (Long iodide method) 3.2 Method 2 (Short iodide method) | | | | | | | | 4 | Reag | ents | 1 | | | | | | 5 | Appa | ıratus | 3 | | | | | | 6 | | Test sample | 4 | | | | | | 7 | Proc. 7.1 7.2 7.3 7.4 | Number of determinations Blank test Determination — method 1: Long iodide method 7.3.1 Decomposition of test portion 7.3.2 Separation of copper 7.3.3 Dissolution of copper precipitate 7.3.4 Titration 7.3.5 FAAS determination of copper in the insoluble residue, filtrate, and filter pap Determination — method 2: Short iodide method 7.4.1 Decomposition of the test portion 7.4.2 Titration | 4 5 5 5 6 er 6 7 | | | | | | 8 | Expr | ession of results | 8 | | | | | | 9 | 9.1
9.2
9.3
9.4 | Expression of precision Method for obtaining the final result (see Annex B) Precision between laboratories Check of trueness | 8
9 | | | | | | 10 | Test | report | 11 | | | | | | | pred | ormative) Procedure for the preparation and determination of the mass of a ried test portion | 12 | | | | | | | for to | formative) Flowsheet of the procedure for the acceptance of analytical values est samples | | | | | | | | | formative) Derivation of precision formulae | | | | | | | Dibli | agrank | T | 20 | | | | | ### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 183, *Copper, lead, zinc and nickel ores and concentrates*. This second edition cancels and replaces the first edition (ISO 10258:1994), of which the warning in A.3.1 in Annex A has been revised. # Copper sulfide concentrates — Determination of copper content — Titrimetric methods ### 1 Scope This International Standard specifies two titrimetric methods for the determination of the copper content of copper sulfide concentrates in the range 15% (m/m) to 50% (m/m), using sodium thiosulfate after separation (method 1) or without separation (method 2) of copper from interfering elements. ### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 385, Laboratory glassware — Burettes ISO 648, Laboratory glassware — Single-volume pipettes ISO 1042, Laboratory glassware — One-mark volumetric flasks ISO 4787, Laboratory glassware — Volumetric instruments — Methods for testing of capacity and for use ISO 9599, Copper, lead, zinc and nickel sulfide concentrates — Determination of hygroscopic moisture content of the analysis sample — Gravimetric method ### 3 Principle ### 3.1 Method 1 (Long iodide method) A test portion is decomposed in nitric and sulfuric acids, and arsenic, antimony, and tin are removed by treatment with hydrobromic acid. Copper is separated from interfering elements by precipitation of copper sulfide with sodium thiosulfate. The precipitate is dissolved in nitric and sulfuric acids, ammonium hydrogen difluoride is added to eliminate interference of residual iron, and excess potassium iodide is also added. Free iodine isolated by reaction between iodide ions and copper(II) ions is titrated with sodium thiosulfate using soluble starch as the indicator. ### 3.2 Method 2 (Short iodide method) A test portion is decomposed in nitric and sulfuric acids, and arsenic, antimony, and tin are removed by treatment with hydrobromic acid. Ammonium hydrogen difluoride is added to eliminate interference of iron, and excess potassium iodide is also added. Free iodine isolated by reaction between iodide ions and copper(II) ions is titrated with sodium thiosulfate using soluble starch as the indicator. ### 4 Reagents During the analysis, use only reagents of recognized analytical grade and distilled water or water of equivalent purity. **4.1 Copper metal**, minimum purity 99,99 %. ### 4.2 Potassium iodide. ### BS ISO 10258:2015 ISO 10258:2015(E) ### 4.3 Ammonium hydrogen difluoride. ### **4.4 Sulfuric acid**. diluted 1 + 1. Slowly add 500 ml of concentrated sulfuric acid (ρ_{20} 1,84 g/ml) to 500 ml of water, while stirring and cooling. ### **4.5 Sulfuric acid**, diluted 1 + 999. Add 1 ml of dilute sulfuric acid (4.4) to 500 ml of water. - **4.6** Nitrit acid, concentrated (ρ_{20} 1,42 g/ml). - **4.7 Nitrit acid**, diluted 1 + 1. Slowly add 500 ml of concentrated nitric acid (4.6) to 500 ml of water. - **4.8 Hydrofluoric acid** (ρ_{20} 1,14 g/ml). - 4.9 Bromine. - **4.10** Bromine water, saturated. - **4.11 Hydrobromic acid** (ρ_{20} 1,50 g/ml). - **4.12 Acetic acid**, diluted 1 + 3. Slowly add 25 ml of glacial acetic (ρ_{20} 1,05 g/ml) to 75 ml of water. ### 4.13 Nitration mixture. Slowly add 250 ml of concentrated sulfuric acid (ρ_{20} 1,84 g/ml) to 250 ml of concentrated nitric acid (4.6). - **4.14 Ammonium hydrogen difluoride**, 250 g/l solution. - **4.15 Sodium carbonate**, 20 g/l solution. - **4.16 Sodium thiosulfate pentahydrate**, 200 g/l solution. - **4.17 Potassium thiocyanate**, 100 g/l solution. - **4.18 Starch**, 2 g/l solution. Moisten 1 g of soluble starch with cold water, slowly pour into 500 ml of hot water while stirring, and boil for about 1 min. ### 4.19 Ethanol. ### 4.20 Standard solutions. Standard solutions should be prepared at the same ambient temperature as that at which the determinations will be conducted. **4.20.1 Sodium thiosulfate**, standard volumetric solution (20 g/l). ### 4.20.1.1 Preparation Dissolve 20 g of sodium thiosulfate (pentahydrate) in 1 l of freshly boiled and cooled water. Add 0,2 g of sodium carbonate, stir to dissolve and allow to stand for at least one day. Standardize this solution as specified in 4.20.1.2. ### 4.20.1.2 Standardization Clean a piece of copper metal (4.1) by immersing it in warm dilute acetic acid (4.12). Wash the copper thoroughly with water followed by ethanol (4.19) and allow to dry in air. Weigh into three separate 400 ml conical beakers to the nearest 0,1 mg, a mass of clean copper metal which approximates the copper content in the test portion. Record these masses as m_1 , m_2 , and m_3 . Dissolve the copper using 10 ml of dilute nitric acid (4.7) followed by 5 ml of dilute sulfuric acid (4.4). Heat to evaporate to dryness. Add 40 ml of water, heat to dissolve the soluble salts, and cool. Continue the standardization as specified in 7.3.4 for method 1 and in 7.4.2 for method 2. Record the volumes of sodium thiosulfate solution used in the titration as V_1 , V_2 , and V_3 . The standardization factor of the standard volumetric solution varies with the volume of sample solution, mass of potassium iodide, mass of copper, and temperature of solution. The same volume of solution and mass of potassium iodide as those used for the standardization should be used for the analysis of the test portion. The temperatures of standardization and determination should be essentially the same. Calculate the standardization factors f_1 , f_2 , and f_3 using the following formulae: $$f_1 = \frac{m_1}{V_1} \tag{1}$$ $$f_2 = \frac{m_2}{V_2} \tag{2}$$ $$f_3 = \frac{m_3}{V_3} \tag{3}$$ Calculate, to four significant figures, the mean standardization factor f for the sodium thiosulfate standard volumetric solution, provided that the range of the values of f_1 , f_2 , and f_3 does not exceed 10^{-5} g Cu/ml. If this range is exceeded, repeat the standardization. ### **4.20.2** Copper, standard solution (0,1 mg/ml). Weigh, to the nearest 0,1 mg, 0,1 g of copper metal (4.1) into a 200 ml beaker, decompose with 10 ml of dilute nitric acid (4.7). Heat to remove nitrogen oxides, cool, and add about 50 ml of water. Transfer to a 1 000 ml volumetric flask, fill up nearly to the mark with water, mix and cool to room temperature; then fill up exactly to the mark and mix again. ### 5 Apparatus Ordinary laboratory equipment and the following. - **5.1 Volumetric glassware**, of class A complying with ISO 385, ISO 648, and ISO 1042, and used in accordance with ISO 4787. - **5.2 Analytical balance**, sensitive to 0,1 mg. - **5.3** Platinum crucibles. ### BS ISO 10258:2015 **ISO 10258:2015(E)** ### **5.4 Atomic absorption spectrometer (AAS)**, with a copper hollow cathode lamp. Instrumental conditions: Flame: air/acetylene; Wavelength: 324,7 nm. ### 5.5 Inductively coupled plasma (ICP) atomic emission spectrometer (optional). ### 6 Sample ### 6.1 Test sample Prepare an air-equilibrated test sample in accordance with ISO 9599. NOTE A test sample is not required if predried test portions are to be used (see Annex A). ### 6.2 Test portion Taking multiple increments, extract a test portion from the test sample as specified in <u>Table 1</u> and weigh to the nearest 0,1 mg. At the same time as test portions are being weighed for analysis, weigh test portions for the determination of hygroscopic moisture in accordance with ISO 9599. Alternatively, the method specified in $\underline{\text{Annex A}}$ can be used to prepare predried test portions directly from the laboratory sample. | Copper content | | Mass of test portion | | | |----------------|----|----------------------|--|--| | ≥ | < | g | | | | 15 | 25 | 0,8 | | | | 25 | 50 | 0,4 | | | Table 1 — Recommended test Portion masses ### 7 Procedure ### 7.1 Number of determinations Carry out the determinations at least in duplicate, as far as possible under repeatability conditions, on each test sample. NOTE Repeatability conditions exist where mutually independent test results are obtained with the same method on identical test material in the same laboratory by the same operator using the same equipment, within short intervals of time. ### 7.2 Blank test Carry out a blank test in parallel with the analysis using the same quantities of all reagents but omitting the test portion. The purpose of the blank test in this method is to check the quality of reagents. If a significant blank titration value is obtained as a result of the blank test, check all reagents and rectify the problem. ### 7.3 Determination — method 1: Long iodide method ### 7.3.1 Decomposition of test portion Transfer the test portion to a 400 ml conical beaker and moisten with 10 ml of water. Add 20 ml of dilute nitric acid (4.7), cover with a watch glass and heat for about 10 min at 60 °C to 70 °C. Add 10 ml of dilute sulfuric acid (4.4) and heat gradually to decompose the test portion. After the completion of the initial reaction, rinse the underside of the watch glass with a minimum volume of water, collecting the washings in the conical beaker. Continue heating until strong white fumes are evolved, then cool. If the residue appears dark (presence of carbon), slowly add a small amount of the nitration mixture (4.13) to the hot solution until the solution becomes colourless or bluish and heat until strong white fumes are evolved. If decomposition of the deposited sulfur is insufficient, add 5 ml of nitric acid (4.6) and 1 ml of bromine (4.9), and heat until strong white fumes are evolved. Carefully add 5 ml of water and 10 ml of hydrobromic acid (4.11) and heat until strong white fumes are evolved. Remove from the source of heat and cool. After addition of 5 ml of dilute sulfuric acid (4.4) and 10 ml of hydrobromic acid (4.11), heat until strong white fumes are evolved. Remove from the source of heat and cool. Add 80 ml of water, warm to dissolve soluble salts, and heat until boiling. Filter through a medium porosity filter paper, wash well with hot water, and collect the filtrate in a 400 ml conical beaker. Reserve the filter paper and residue for the determination of copper by flame atomic absorption spectrometry (FAAS) (as described in 7.3.5) unless it has been proven, through previous testing, that the copper in the sample is completely soluble using the initial dissolution. ### 7.3.2 Separation of copper Dilute the filtrate to 200 ml and heat to 70 °C to 90 °C, slowly add 40 ml of sodium thiosulfate solution (4.16) while stirring, to produce a yellow or yellowish brown emulsion. Heat gradually and continue boiling gently until the precipitate coagulates. Filter the solution through a medium porosity filter paper and wash the filter paper and precipitate with hot water. Retain the filtrate for FAAS measurements of copper (as described in 7.3.5). Using water, rinse away the copper sulfide precipitate into the original conical beaker and decompose the remaining precipitate on the filter paper using drop by drop addition of bromine water (4.10) followed by nitric acid (4.6). Repeat this treatment as required, then wash well with hot water, collecting this solution in the beaker containing the main precipitate. Retain the filter paper for FAAS measurements of copper (as described in 7.3.5). NOTE Instead of using the above step, the following method can be used: Transfer the precipitate and filter paper into the original beaker, cover with a watch glass, and add 30 ml of nitration mixture (4.13). Heat slowly to decompose the precipitate and the filter paper, and evaporate to dryness. Use more nitration mixture if the residue appears dark. Continue heating strongly to destroy any elemental sulfur. After adding 10 ml of nitric acid (4.6) around the top of the beaker to rinse away the residual sulfur, add 2 ml of dilute sulfuric acid (4.4) and heat until strong white fumes are evolved. Remove from the heat source and cool. Add 40 ml of water, warm to dissolve the soluble salts, and cool. Proceed to 7.3.4. ### 7.3.3 Dissolution of copper precipitate Add 2 ml of dilute sulfuric acid (4.4) and 10 ml of nitric acid (4.6), heat slowly to decompose the precipitate, and then evaporate to dryness. Continue heating strongly to destroy any elemental sulfur. After adding 10 ml of nitric acid (4.6) around the top of the beaker to rinse away the residual sulfur, add 2 ml of dilute sulfuric acid (4.4), and heat until strong white fumes are evolved. Remove from the source of heat and cool. ### 7.3.4 Titration Add 40 ml of water, warm to dissolve the soluble salts, and cool the solution. Add sodium carbonate solution (4.15) until the copper precipitate appears, then add dilute acetic acid (4.12) until the copper precipitate disappears and an excess of 3 ml to 5 ml. Add 1 ml of ammonium hydrogen difluoride solution (4.14) and swirl. Add 15 g of potassium iodide (4.2), swirl to dissolve, and immediately titrate with sodium thiosulfate standard volumetric solution (4.20.1). When the yellow brown iodine colour fades to a pale yellow, add 5 ml of starch solution (4.18) as the indicator. NOTE 1 Instead of using the above step, the following method can be used. Add 3 g of potassium iodide (4.2), swirl to dissolve, and immediately titrate with sodium thiosulfate standard volumetric solution (4.20.1). When the yellow brown iodine colour fades to a pale yellow, add 5 ml of starch solution (4.18) as the indicator, and continue the titration until the colour of the solution becomes light blue. Then add 5 ml of potassium thiocyanate solution (4.17). NOTE 2 The presence of Ag, Bi, Hg, and Pb can obscure the colour change. In this case, add the starch solution (4.18) earlier in the titration, when the solution is a light brown colour. Continue the titration until the blue indicator colour just disappears. Record the volume, *V,* of sodium thiosulfate standard volumetric solution used in the titration. ### 7.3.5 FAAS determination of copper in the insoluble residue, filtrate, and filter paper ### 7.3.5.1 Decomposition of the insoluble residue Place the retained residue and the filter paper in a platinum crucible (5.3), dry, and ignite at 750 °C to 800 °C. Allow the crucible to cool, add 5 ml of dilute sulfuric acid (4.4) and 5 ml to 10 ml of hydrofluoric acid (4.8), heat to evaporate almost to dryness, and volatilize the silicon as silicon tetrafluoride. Dissolve with a small quantity of water and 1 ml of dilute sulfuric acid (4.4) by heating. Proceed to 7.3.5.3. ### 7.3.5.2 Decomposition of the precipitate remaining on the filter paper Transfer the retained filter paper into a beaker and add 30 ml of nitration mixture (4.13). Heat to evaporate to dryness. If the residue appears dark (presence of carbon), repeat this step. Dissolve with a small quantity of water and 1 ml of dilute sulfuric acid (4.4) by heating. Proceed to 7.3.5.3. ### 7.3.5.3 Spectrometric measurement Transfer the solutions prepared in 7.3.5.1, 7.3.5.2, and the retained filtrate from 7.3.2 into a 500 ml volumetric flask and make up to the mark with water. Prepare calibration solutions by adding, from a pipette or a micro-burette, 0,0 ml, 0,50 ml, 1,00 ml, 1,50 ml, 2,00 ml, and 3,00 ml of copper standard solution (4.20.2) into a series of 200 ml one-mark volumetric flasks, add 1 ml of dilute sulfuric acid (4.4) to each one, and make up to the marks with water. Aspirate the test solution and the calibration solutions into the atomic absorption spectrometer (5.4) using an air/acetylene flame and a wavelength of 324,7 nm with background correction. Prepare a calibration graph of masses of copper in the calibration solutions versus absorbances and read the mass, in micrograms, of copper in the test solution from the calibration graph. NOTE Alternatively, the ICP atomic emission spectrometer (5.5) can be used for the determination of copper at a wavelength of 324,7 mm. Calculate the mass of copper in the residue and filtrate using Formula (4): $$m_4 = m_5 \times 10^{-6} \tag{4}$$ where m_4 is the mass, in grams, of copper in the insoluble residue, the precipitate remaining on the filter paper, and the filtrate; m_5 is the mass, in micrograms, of copper in the test solution. ### 7.4 Determination — method 2: Short iodide method ### 7.4.1 Decomposition of the test portion Transfer the test portion to a 400 ml conical beaker and moisten with 10 ml of water. Add 20 ml of dilute nitric acid (4.7), cover with a watch glass, and heat for about 10 min at 60 °C to 70 °C. Add 10 ml of dilute sulfuric acid (4.4) and heat gradually to decompose the test portion. After completion of the initial reaction, rinse the underside of the watch glass with a minimum volume of water, collecting the washings in the conical beaker. Continue heating until strong white fumes are evolved, then cool. If the residue appears dark (presence of carbon), slowly add a small amount of the nitration mixture (4.13) to the hot solution until the solution becomes colourless or bluish and heat until strong white fumes are evolved. If decomposition of the deposited sulfur is insufficient, add 5 ml of nitric acid (4.6), 1 ml of bromine (4.9), and 2 ml of dilute sulfuric acid (4.5), and heat until strong white fumes are evolved. Carefully add 5 ml of water, 10 ml of hydrobromic acid (4.11), and 5 ml of dilute sulfuric acid (4.4), and heat until strong white fumes are evolved. Remove from the source of heat and cool. Add 5 ml of dilute sulfuric acid (4.4) and 10 ml of hydrobromic acid (4.11), and heat until strong white fumes are evolved. Continue heating to evaporate to complete dryness and then cool. If it has not been proven, through previous testing, that the copper in the sample is completely soluble using the initial dissolution described above, the following procedure should be carried out. Add 20 ml of water, warm to dissolve soluble salts, then heat until boiling. Filter through a medium-porosity filter paper, wash well with hot water collecting the filtrate and washings in a 400 ml conical beaker, and then heat to evaporate to dryness. Determine the copper content of the insoluble residue in accordance with 7.3.5. ### 7.4.2 Titration Add 40 ml of dilute sulfuric acid (4.5), warm to dissolve the soluble salts, and cool the solution. Add 3 g of ammonium hydrogen difluoride (4.3) to the test solution and swirl to dissolve. Add 15 g of potassium iodide (4.2), swirl to dissolve, and immediately titrate with sodium thiosulfate standard volumetric solution (4.20.1). When the yellow brown iodine colour fades to a pale yellow, add 5 ml of starch solution (4.18) as the indicator. NOTE 1 Instead of using the above step, the following method can be used: Add 3 g of potassium iodide (4.2), swirl to dissolve, and immediately titrate with sodium thiosulfate standard volumetric solution (4.20.1). When the yellow brown iodine colour fades to a pale yellow, add 5 ml of starch solution (4.18) as the indicator and continue the titration until the colour of the solution becomes light blue. Then add 5 ml of potassium thiocyanate solution (4.17). NOTE 2 The presence of Ag, Bi, Hg, and Pb can obscure the colour change. In this case, add the starch solution (4.18) earlier in the titration, when the solution is a light brown colour. ### BS ISO 10258:2015 **ISO 10258:2015(E)** Continue the titration until the blue indicator colour just disappears. Record the volume, *V,* of sodium thiosulfate standard volumetric solution used in the titration. ### 8 Expression of results The copper content of the test portion w_{Cu} , expressed as a percentage by mass, is given by Formula (5): $$w_{\text{Cu}} = \frac{(V \times f + m_4) \times 100}{m} \times \frac{100}{100 - H}$$ (5) where *V* is the volume, in millilitres, of sodium thiosulfate standard volumetric solution used; f is the mean standardization factor, in grams of copper per millilitre, for the sodium thiosulfate standard volumetric solution, calculated in 4.20.1.2; m_4 is the mass, in grams, of residual copper determined by FAAS, calculated in 7.3.5.3; *m* is the mass, in grams, of the test portion; H is the hygroscopic moisture content, in per cent, of the test portion (in the case of a predried test portion being used, H = 0). Calculate the copper content of the test portion to the second decimal place. ### 9 Precision ### 9.1 Expression of precision The precision of this analytical method is expressed by the following formulae: a) Long iodide method $$s_{\rm r} = 0.0008\,\overline{X} + 0.0485$$ (6) $$s_{\rm L} = 0,0042\,\overline{X} - 0,0077\tag{7}$$ b) Short iodide method $$s_r = 0.0014\overline{X} + 0.0282$$ (8) $$s_{\rm L} = 0,0005\,\overline{X} + 0,081\,9\tag{9}$$ where \overline{X} is the mean content of copper, expressed as a percentage by mass, in the sample; s_r is the within-laboratory standard deviation, expressed as a percentage by mass of copper; $s_{\rm L}$ is the between-laboratories standard deviation, expressed as a percentage by mass of copper. NOTE Additional information is given in Annex C. ### 9.2 Method for obtaining the final result (see Annex B) Calculate the following quantities from the duplicate results X_1 and X_2 and process according to the flowchart in Annex B: a) Mean of duplicates $$\overline{x} = \frac{x_1 + x_2}{2} \tag{10}$$ b) Within-laboratory standard deviation long iodide method $$s_{\rm r} = 0,0008\,\overline{X} + 0,048\,5\tag{11}$$ c) Short iodide method $$s_{\rm r} = 0.0014\,\overline{X} + 0.028\,2\tag{12}$$ d) Repeatability limit $$r = 2.8 s_{\rm r} \tag{13}$$ ### 9.3 Precision between laboratories The precision between laboratories is used to determine the agreement between the results reported by two (or more) laboratories. It is assumed that all the laboratories followed the same procedure. Calculate the following quantities: a) Mean of final results $$\mu_{1,2} = \frac{\mu_1 + \mu_2}{2} \tag{14}$$ - b) Between-laboratories standard deviation - 1) Long iodide method $$s_{\rm L} = 0,0042\,\mu_{1,2} - 0,0077\tag{15}$$ 2) Short iodide method $$s_{\rm L} = 0,0005 \,\mu_{1,2} + 0,0819 \tag{16}$$ - c) Within-laboratory standard deviation - 1) Long iodide method $$s_{\rm r} = 0.0008 \,\mu_{1.2} + 0.0485 \tag{17}$$ 2) Short iodide method $$s_{\rm r} = 0.0014 \,\mu_{1.2} + 0.0282 \tag{18}$$ d) Permissible difference $$P = 2.8 \sqrt{s_{\rm L}^2 + \frac{s_{\rm r}^2}{2}} \tag{19}$$ e) Range $$E = |\mu_1 - \mu_2| \tag{20}$$ where μ_1 is the final result, expressed as a percentage by mass of copper, reported by laboratory 1; μ_2 is the final result, expressed as a percentage by mass of copper, reported by laboratory 2. If *E* is less than or equal to *P*, the final results are in agreement. ### 9.4 Check of trueness The trueness of the analytical method can be checked by applying it to a certified reference material (CRM). The procedure is the same as that described in <u>Clause 7</u>. When the precision has been confirmed, the final laboratory result can be compared with the certified value, A_c . The following two possibilities exist: a) $$|\mu_c - A_c| \le C$$ (21) If this condition exists, the difference between the reported result and the certified value is statistically insignificant. b) $$|\mu_c - A_c| > C$$ (22) If this condition exists, the difference between the reported result and the certified value is statistically significant. where - μ_c is the final result, expressed as a percentage by mass of copper, of the certified reference material; - $A_{\rm C}$ is the certified value, expressed as a percentage by mass of copper, of the certified reference material; - *C* is a quantity, expressed as a percentage by mass of copper, depending on the type of the certified reference material used, as defined below. The reference materials used for this purpose should be prepared and certified in accordance with ISO Guide 35. Where the reference material is certified/characterized by an interlaboratory test programme, the quantity C (see 9.4), expressed by mass of copper, is given by the following formula: $$C = 2\sqrt{s_{\rm L}^2 + \frac{s_{\rm r}^2}{n} + s^2 \{A_{\rm c}\}}$$ (23) where $s^2{A_c}$ is the variance of the certified value; *n* is the number of replicate determinations. Where the reference material is certified/characterized by one laboratory, the quantity *C*, expressed as a percentage by mass of copper, is given by the following formula: $$C = 2\sqrt{2s_{\rm L}^2 + \frac{s_{\rm r}^2}{n}} \tag{24}$$ NOTE It is recommended that this type of certified reference material be avoided, unless the particular CRM is known to have an unbiased certified value. ### 10 Test report The test report shall contain the following information: - a) identification of the sample; - b) a reference to this International Standard, i.e. ISO 10258; - c) copper content of the sample, expressed as a percentage by mass; - d) date on which the test was carried out; - e) any occurrences noticed during the determination that could have had an influence on the results. ### Annex A (normative) # Procedure for the preparation and determination of the mass of a predried test portion ### A.1 General This annex specifies a method for the preparation and determination of the mass of a predried test portion in the analysis of copper sulfide concentrates. The method is applicable to copper sulfide concentrates not susceptible to oxidation and having hygroscopic moisture contents ranging from 0,05 % to 2 %. ### A.2 Principle The test portion to be used for analysis is dried in air in an oven maintained at $105 \, ^{\circ}\text{C} \pm 5 \, ^{\circ}\text{C}$. The dried test portion is then weighed and used for the analysis. No correction for moisture is required ### A.3 Reagent **A.3.1 Desiccant,** such as self-indicating silica gel or anhydrous magnesium perchlorate. WARNING — Care needs to be taken whenever disposing of exhausted magnesium perchlorate and all other laboratory chemicals. Environmental regulations often apply. Users should seek specialist's advice to determine an appropriate, effective, health-conscious, safety-conscious, and environmentally sound means of disposal. ### A.4 Apparatus Ordinary laboratory equipment and the following. - **A.4.1 Analytical balance**, sensitive to 0,1 mg. - **A.4.2 Weighing vessels**, of glass or silica or corrosion-resistant metal, with externally-fitting airtight covers. For small test portions (less than 3 g), the mass of the vessel shall be as small as possible, i.e. less than 20 g. **A.4.3 Laboratory oven**, capable of maintaining a temperature of 105 °C ± 5 °C. ### A.5 Procedure ### A.5.1 Preparation of the weighing vessel Dry the weighing vessel and its cover (A.4.2) by heating in the laboratory oven (A.4.3) at 105 °C \pm 5 °C for 1 h. Transfer the vessel and its cover to a desiccator containing a suitable fresh desiccant (A.3.1) and allow to cool to ambient temperature. ### A.5.2 Test portion Tare the dried weighing vessel and vessel cover (A.5.1). Immediately add the mass of laboratory sample specified for analysis. An accurate total mass of the test portion and weighing vessel is not required at this point. ### A.5.3 Determination of the test-portion dry mass Transfer the uncovered weighing vessel and test portion and vessel cover to the laboratory oven (A.4.3) and dry at 105 °C \pm 5 °C for 2 h. After the 2 h period, remove the weighing vessel and dry test portion from the oven, replace the vessel cover, and allow cooling to ambient temperature in the desiccator. When cool, remove the weighing vessel containing dry test portion and vessel cover from the desiccator and weigh to the nearest 0,1 mg (m_6) after slightly lifting the cover and quickly replacing it. Transfer the test portion into the appropriate analytical apparatus and immediately reweigh the empty weighing vessel and its cover. Record the mass (m_7) to the nearest 0,1 mg. For new concentrates of unknown characteristics, it is advisable to repeat the drying for another 2 h at $105 \,^{\circ}\text{C} \pm 5 \,^{\circ}\text{C}$ and to re-weigh the weighing vessel and test portion plus vessel cover to the nearest 0,1 mg (m'_6) . The mass of the test portion can be considered to be constant if the difference $(m_6 - m'_6)$ is less than or equal to 0,5 mg. If this condition is not achieved, the drying and weighing steps should be repeated. ### A.6 Calculation of the dry mass of the test portion The dry mass of the test portion m_8 , in grams, is given by Formula (A.1): $$m_8 = m_6 - m_7$$ (A.1) where m_6 is the mass, in grams, of the dried test portion plus the weighing vessel and its cover; m_7 is the mass, in grams, of the empty weighing vessel plus its cover. The mass of the dry test portion is the mass to be used to calculate the element content in the laboratory sample on a dry basis. No correction for hygroscopic moisture is required. # **Annex B** (informative) # Flowsheet of the procedure for the acceptance of analytical values for test samples NOTE r is defined in 9.2. Figure B.1 — Flowsheet of the procedure for the acceptance of analytical values for test samples ## **Annex C** (informative) ### **Derivation of precision formulae** ### C.1 General This International Standard was tested in an interlaboratory test programme involving 8 countries and 18 laboratories. Five samples of copper concentrate covering the range 20 % (m/m) to 60 % (m/m) were analysed to determine the copper content. The test programme was designed to determine the repeatability and within-laboratory and between laboratories reproducibilities in general, using the principles of ISO 5725-2. ### **C.2** Design of the test programme The analytical test programme was designed with the aim of providing maximum information. Each laboratory used two samples (two bags) of each concentrate and each sample was analysed twice independently. ### **C.3** Test samples This test programme used five samples of copper concentrate. The composition of these samples is shown in Table C.1. Table C.1 — Composition of copper concentrated samples | Flamout | Unit | Sample numbers | | | | | | | | |--------------------------------|-------------|--------------------------|---------------|---------------|----------------|----------------|--|--|--| | Element | | 85-6 ^a | 85–7 b | 85-8 c | 87–12 d | 87–18 e | | | | | Cu | % (m/m) | ≈ 20 | ≈ 25 | ≈ 35 | ≈ 50 | ≈ 30 | | | | | Ag | g/t | 1 250 | 35 | 170 | 100 | ≈ 70 | | | | | Au | g/t | 1 | 1 | 1 | 1 | ≈ 25 | | | | | Zn | % (m/m) | 13 | < 1 | 1 | 0,1 | < 1 | | | | | MgO | % (m/m) | ≈ 0,1 | ≈ 5 | 0,1 | < 1 | ≈ 0,5 | | | | | Bi | % (m/m) | ≈ 0,01 | < 0,01 | ≈ 0,005 | < 0,001 | ≈ 0,005 | | | | | Se | g/t | ≈ 50 | ≈ 50 | ≈ 50 | ≈ 10 | ≈ 150 | | | | | Те | g/t | ≈ 10 | < 5 | < 5 | ≈ 5 | ≈ 5 | | | | | SiO ₂ | % (m/m) | < 1 | 17 | 6 | 15 | ≈ 6 | | | | | Fe | % (m/m) | 23 | 2 | 22 | 1 | ≈ 25 | | | | | S | % (m/m) | 33 | 9 | 34 | 15 | ≈ 30 | | | | | As | % (m/m) 0,1 | | 0,1 | 0,2 | 0,1 | ≈ 0,02 | | | | | Sb | % (m/m) | 1,1 | 0,01 | 0,1 | < 0,1 | ≈ 0,03 | | | | | Sn | % (m/m) | ≈ 0,05 | ≈ 0,05 | < 0,01 < 0,1 | | ≈ 0,01 | | | | | Cd | % (m/m) | ≈ 0,002 | ≈ 0,002 | ≈ 0,002 | < 0,01 | ≈ 0,001 | | | | | Ni | % (m/m) | ≈ 0,02 | ≈ 0,02 | < 0,01 | < 0,01 | < 0,01 | | | | | Ca0 | % (m/m) | < 1 | ≈ 12 | ≈ 0,1 | 1 | ≈ 0,5 | | | | | Al ₂ O ₃ | % (m/m) | < 1 | ≈ 6 | ≈ 2 | 1 | ≈ 2 | | | | | Pb | % (m/m) | 6 | 1 | 0,03 | 0,03 ≈ 5 | | | | | | K ₂ O | % (m/m) | n.d. | 0,2 | ≈ 1 | < 0,01 | ≈ 0,2 | | | | a Rammelsberg concentrate (Germany). ### **C.4** Statistical evaluation The procedure for statistical evaluation is illustrated schematically in <u>Figure C.1</u>. The results of the statistical evaluation are summarized in <u>Table C.2</u>. b Polish concentrate (Poland). c Caridad concentrate (Mexico). d Coro-Coro concentrate (Bolivia). e Bougainville concentrate (Papua New Guinea). n.d. = not determined Figure C.1 — Flowsheet of procedure for statistical evaluation of analytical data resulting from international tests The estimated precisions $(s_r, s_L, r, \text{ and } P)$ are plotted against their corresponding sample means on a graph as shown in Figure C.2 (long iodide method) and Figure C.3 (short iodide method), and the regression equations of these precisions against sample means were computed and are presented in Table C.2. Table C.2 — Summary of precisions for all samples — Silver | Sample number | 1 | k | $k \mid n_0 \mid$ | $n = \overline{X}$ | = | r | P | $s_{\rm r}$ | 0 | s _L /s _r | | |---------------------------------------------|---------------------|----|-------------------------|--------------------|--------|-------------------------------------------|---------|-------------|-------------------------|--------------------------------|--| | (see <u>Table C.1</u>) | k ₀ | | | | X | | | | $S_{ m L}$ | | | | Long iodide method | | | | | | | | | | | | | 85-6 | 17 | 15 | 68 | 60 | 19,840 | 0,1543 | 0,189 5 | 0,054 5 | 0,054 7 | 1,00 | | | 85-7 | 17 | 16 | 68 | 64 | 24,180 | 0,198 9 | 0,463 9 | 0,070 3 | 0,156 2 | 2,22 | | | 85-8 | 17 | 16 | 68 | 64 | 33,348 | 0,309 5 | 0,358 1 | 0,109 3 | 0,100 1 | 0,92 | | | 87–12 | 17 | 15 | 68 | 60 | 53,421 | 0,238 0 | 0,667 3 | 0,084 1 | 0,228 4 | 2,72 | | | 87–18 | 18 | 16 | 72 | 64 | 30,761 | 0,159 9 | 0,306 2 | 0,056 5 | 0,100 6 | 1,78 | | | | Short iodide method | | | | | | | | | | | | 85-6 | 17 | 16 | 68 | 64 | 19,840 | 0,1543 | 0,181 9 | 0,054 5 | 0,051 4 | 0,94 | | | 85-7 | 17 | 16 | 68 | 64 | 24,118 | 0,219 2 | 0,533 0 | 0,077 5 | 0,180 2 | 2,33 | | | 85-8 | 17 | 15 | 68 | 60 | 34,410 | 0,1718 | 0,221 9 | 0,060 7 | 0,065 6 | 1,08 | | | 87–12 | 17 | 16 | 68 | 64 | 53,585 | 0,302 1 | 0,393 1 | 0,1068 | 0,116 6 | 1,09 | | | 87–18 | 18 | 16 | 72 | 64 | 30,737 | 0,171 2 | 0,231 5 | 0,060 5 | 0,069 7 | 1,15 | | | Long iodide | | | thod | | | Short iodide method | | | | | | | Regression equations | | | Correlation coefficient | | | Regression equations | | | Correlation coefficient | | | | $r = 0.0023\overline{X} + 0.1371$ | | | 0,469 5 | | | $r = 0.0038\overline{X} + 0.0799$ | | | 0,830 1 | | | | $P = 0.0117 \overline{X} + 0.018 4$ | | | 0,839 8 | | | $P = 0,0023\overline{X} + 0,2378$ | | | 0,203 6 | | | | $s_{\rm r} = 0.0008 \overline{X} + 0.0485$ | | | 0,469 5 | | | $s_{\rm r} = 0.0014\overline{X} + 0.0282$ | | | 0,830 0 | | | | $s_{\rm L} = 0.0042\overline{X} - 0.0077$ | | | 0,815 9 | | | $s_{\rm L} = 0,0005\overline{X} + 0,0819$ | | | 0,113 4 | | | k_0 is the total number of participating laboratories k is the number of participating laboratories used for computation of precision n_0 is the total number of analytical results *n* is the number of analytical results used for computation of precision X is the overall mean of the silver content, in grams per tonne r is the permissible within-laboratory tolerance (repeatability), in grams of silver per tonne P is the permissible between-laboratories tolerance, in grams of silver per tonne $s_{\rm r}$ is the within-laboratory standard deviation, in grams of silver per tonne $s_{\rm L}$ is the between-laboratories standard deviation, in grams of silver per tonne $[\]overline{X}$ is the mean content of silver, in grams per tonne of the sample Figure C.2 — Least-squares fit of precision against the mean silver content (long iodide method) Figure C.3 — Least-squares fit of precision against the mean silver content (short iodide method) ### **Bibliography** - [1] ISO 5725-2, Accuracy (trueness and precision) of measurement methods and results Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method - [2] ISO Guide 35, Reference materials General and statistical principles for certification ### British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. ### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. ### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. ### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. ### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK ### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. ### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com ### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com