BS ISO 8300:2013

BSI Standards Publication

Nuclear fuel technology — Determination of plutonium content in plutonium dioxide of nuclear grade quality — Gravimetric method

BS ISO 8300:2013 BRITISH STANDARD

National foreword

This British Standard is the UK implementation of ISO 8300:2013.

The UK participation in its preparation was entrusted to Technical Committee NCE/9, Nuclear fuel cycle technology.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2013. Published by BSI Standards Limited 2013

ISBN 978 0 580 75790 7

ICS 27.120.30

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 December 2013.

Amendments issued since publication

Date Text affected

INTERNATIONAL STANDARD

ISO 8300

Second edition 2013-12-15

Nuclear fuel technology — Determination of plutonium content in plutonium dioxide of nuclear grade quality — Gravimetric method

Technologie du combustible nucléaire — Détermination de la teneur en plutonium dans du dioxyde de plutonium de qualité nucléaire — Méthode gravimétrique

BS ISO 8300:2013 **ISO 8300:2013(E)**

COPYRIGHT PROTECTED DOCUMENT

© ISO 2013

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents				
Fore	eword		iv	
Intr	oduction		v	
1	Scope		1	
2		ple		
3		erences		
4	Appar	atus	1	
5	Procedure			
	5.1	Handling of the sample at the sampling station		
	5.2	Tarring of crucibles		
	5.3	Sub-sampling	2	
	5.4	Heating	2	
	5.5	Additional measurements	2	
6	Expression of result			
	6.1	Calculation of the gravimetric conversion factor	3	
	6.2	Calculation of impurity correction factor		
	6.3	Calculation of plutonium concentration	3	
	6.4	Repeatability	4	
	6.5	Systematic errors	4	
7	Test report			
Ann	ex A (info	ormative) Gravimetric conversion factor for the non-volatile impurities	5	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 85, *Nuclear energy, nuclear technologies, and radiological protection*, Subcommittee SC 5, *Nuclear fuel cycle*.

This second edition cancels and replaces the first edition (ISO 8300:1987), of which it constitutes a minor revision.

Introduction

The method specified in this International Standard is based on an oxidation of the plutonium followed by weighing. If the content of impurities is measured, a correction is made to allow for them.

Respecting certain conditions, the overall standard deviation on a single determination (gravimetric determination and impurities correction) can be below 0.1 %.

Nuclear fuel technology — Determination of plutonium content in plutonium dioxide of nuclear grade quality — Gravimetric method

1 Scope

This International Standard specifies a precise and accurate gravimetric method for determining the plutonium content in plutonium dioxide (PuO_2) of nuclear grade quality, containing a mass fraction of less than 0,65 % of non-volatile impurities.

The method is used to cross-check accountancy analyses of plutonium dioxide.

2 Principle

The method specified in this International Standard consists of the following:

- a) sampling and weighing of the sample in dry atmosphere;
- b) heating in air between 1 200 °C and 1 250 °C to constant mass in order to obtain a stoichiometric plutonium dioxide, which is stable and non-hygroscopic;
- c) weighing of the plutonium dioxide;
- d) impurity analysis and correction for non-volatile impurities;
- e) calculation of plutonium concentration;
- f) calculation of the plutonium content using a gravimetric conversion factor which depends slightly on the isotopic composition of the plutonium.

If the latter is not known, it shall be measured, usually by mass spectrometry.

3 Interferences

All impurities which are not volatile at 1 200 $^{\circ}$ C cause a positive bias in the analysis. Their actual content shall be measured with appropriate techniques, including, for example, atomic emission or absorption spectroscopy.

If the total non-volatile impurities content is of a mass fraction of up to 0,1 %, the overall uncertainty of the measurement will depend on the precision of the impurities determination.

4 Apparatus

- **4.1 Sub-sampling station,** comprising a glove box under dry atmosphere (dew point less than or equal to -40 °C) equipped with an analytical balance accurate to \pm 0,1 mg.
- **4.2 Heating box,** supplied with ambient air and equipped with a temperature-regulated muffle furnace capable of operating at 1 200 °C to 1 250 °C.
- 4.3 Stainless steel sampling vials.

4.4 Platinum crucibles.

4.5 Desiccators.

5 Procedure

5.1 Handling of the sample at the sampling station

- **5.1.1** Transfer at least 10 g of the material to be analysed into a vial (4.3).
- **5.1.2** Hermetically seal the vial.
- **5.1.3** Transfer the vial rapidly to the sub-sampling station (4.1).

5.2 Tarring of crucibles

- **5.2.1** Heat a clean crucible (4.4) for 1 h at 1 200 °C to 1 250 °C. Cool for 20 min in the desiccators (4.5) and then for 5 min in the balance (4.1 a), weigh to within ± 0.1 mg. Repeat the heating until the mass remains constant to within ± 0.1 mg.
- **5.2.2** Record the constant mass, m_1 , to an accuracy of ± 0.1 mg.

5.3 Sub-sampling

- **5.3.1** As soon as possible after receiving the vial containing the sample, transfer about 1,5 g of the sample into the tarred crucible.
- **5.3.2** Measure and record the gross mass of the crucible, m_2 , to an accuracy of ± 0.1 mg.
- **5.3.3** If several sub-samples are taken, keep the first in the sub-sampling station and weigh it again after all the sub-samples have been taken.
- **5.3.4** If the change in mass of the first sub-sample is less than 0,1 mg, transfer the sub-samples to the heating box (4.2). If this is not the case, discard the sub-samples, adjust the hygrometry of the box, and repeat the sampling and the procedure.

5.4 Heating

- **5.4.1** Heat the 1,5 g sample for 1 h at 1 200 °C to 1 250 °C.
- **5.4.2** Cool for 20 min in the desiccators and weigh it to within ± 0.1 mg.
- **5.4.3** Repeat 5.4.1 and 5.4.2 until the mass remains constant to within ± 0.1 mg.
- **5.4.4** Record the new gross mass, m_3 , to an accuracy of ± 0.1 mg.

5.5 Additional measurements

- **5.5.1** Perform an isotopic analysis of plutonium to calculate its mean relative atomic mass, $A_r(Pu)$.
- **5.5.2** Perform an analysis of the impurities that are not volatile at 1 200 °C.

6 Expression of result

6.1 Calculation of the gravimetric conversion factor

Calculate the gravimetric conversion factor using Formula (1).

$$C_{\text{Pu}} = \frac{A_{\text{r}}(\text{Pu})}{A_{\text{r}}(\text{Pu}) + 2A_{\text{r}}(0)} \tag{1}$$

where

 $A_{\rm r}(0)$ = 15,9994 is the relative atomic mass of oxygen;

 $A_{\rm r}({\rm Pu})$ is the mean relative atomic mass of plutonium calculated using Formula (2).

$$A_r(\text{Pu}) = \frac{1}{\frac{m_{238}}{238,050} + \frac{m_{239}}{239,052} + \frac{m_{240}}{240,054} + \frac{m_{241}}{241,057} + \frac{m_{242}}{242,059} + \frac{m_{244}}{244,064}}}$$
(2)

where m_{238} , m_{239} , etc... are the mass fractions of the plutonium isotopes 238 Pu, 239 Pu, etc... in the samples.

6.2 Calculation of impurity correction factor

Express the results of the impurity analyses in micrograms of each impurity element per gram of the original sample (I_n) .

Calculate the total mass of impurities, I_0 , in grams, in the heated sample using Formula (3).

$$I_0 = 10^{-6} \times (m_2 - m_1) \times \sum_n (I_n C_n)$$
 (3)

where

 $m_2 - m_1$ is the mass of the sample before heating;

*m*₂ is the gross mass before heating, in grams (sample plus crucible);

 m_1 is the mass of the crucible, in grams;

 I_n is the mass of impurity element n, in micrograms per gram of the original sample;

 C_n is the gravimetric conversion factor for element n (see Annex A).

NOTE Depending on the context in which the results are to be used, mass $(m_2 - m_1)$ can require standard corrections for air buoyancy effects.

6.3 Calculation of plutonium concentration

Calculate the plutonium concentration, *Pu*, as a percentage, in the sample using Formula (4).

$$Pu = C_{Pu} \times \frac{m_3 - m_1 - I_0}{m_2 - m_1} \times 100$$
 (4)

where

 m_3 is the gross mass after heating (sample plus crucible), in grams.

6.4 Repeatability

The standard deviation for a single gravimetric determination is about 0,05 %.

In order for the standard deviation of the impurity correction factor to stand below 0,1 %, the impurities shall be measured to the following:

- with a standard deviation of 50 % (detection limit) up to 1 000 μ g·g⁻¹ of impurities;
- with a standard deviation of 25 % (semiquantitative analysis) up to 2 500 μ g · g⁻¹ of impurities;
- with a standard deviation of 10 % (quantitative analysis) up to 6 500 μ g · g⁻¹ of impurities.

In these conditions, the overall standard deviation on a single determination (gravimetric determination and impurities correction) is below 0.1 %.

6.5 Systematic errors

- **6.5.1** The systematic errors due to weighing have a coefficient of variation no greater than 0,014 %.
- **6.5.2** Non-stoichiometry of the plutonium oxide is a potential systematic error or bias; the coefficient of variation of this factor is expected to be less than 0,1 %.
- **6.5.3** Non-volatile impurities are responsible for three further possible sources of bias:
- a) calibration errors in the impurity analysis;
- b) uncertainties in the impurity conversion factors;
- c) the impurities that are not corrected for, because they are neither measured nor detected, are a source of positive bias.

These sources can cause a systematic error of up to 20 % of the total impurity concentration.

7 Test report

The test report shall include the following information:

- a) identification of the sample;
- b) reference of the method used;
- c) results of the measurement and the associated overall uncertainties, impurities percentage, and method of expression used;
- d) unusual features noted during the test;
- e) operations not included in this International Standard (i.e. ISO 8300).

Annex A (informative)

Gravimetric conversion factor for the non-volatile impurities


 ${\it Table A.1-Gravimetric \, conversion \, factor \, for \, the \, non-volatile \, impurities }$

Impurity	Probable shape of the impurity	Conversion factor C_n	
Ag	Ag	1,00	
Al	Al_2O_3	1,89	
Am	AmO_2	1,13	
В	B ₂ O ₃	3,22	
Ва	BaO	1,12	
Be	BeO	2,78	
Bi	Bi ₂ O ₃	1,11	
Ca	CaO	1,40	
Cd	Cd	1,00	
Со	CoO	1,27	
Cr	Cr ₂ O ₃	1,46	
Cu	Cu	1,00	
Fe	Fe ₃ O ₄	1,38	
K	K ₂ O	1,21	
Mg	MgO	1,66	
Mn	Mn ₃ O ₄	1,39	
Na	Na ₂ O	1,35	
Ni	Ni ₂ O ₃	1,40	
P	P ₂ O ₅	2,29	
Pb	PbO	1,07	
Rare earth	M_2O_3	1,16	
Sb	Sb ₂ O ₃	1,20	
Si	SiO ₂	2,14	
Sn	SnO	1,13	
Та	Ta ₂ O ₅	1,22	
Th	ThO ₂	1,14	
Ti	TiO ₂	1,67	
V	V ₂ O ₅	1,78	
W	WO_3	1,26	

Table A.1 (continued)

Impurity	Probable shape of the impurity	Conversion factor C_n
Zn	ZnO	1,24
Zr	ZrO ₂	1,35

NOTE This information is deduced from the most reliable available information, taking into account the calcinations and the cooling conditions and the matrices effects due to plutonium oxide. The chemical shape of the impurities is not well known and, consequently, the maximum amount of impurities is fixed at 0.65% of the Pu mass.

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

Revisions

Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services

Tel: +44 845 086 9001

Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions

Tel: +44 845 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

Email: knowledgecentre@bsigroup.com

Copyright & Licensing

Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

