BS ISO 6953-1:2015 ### **BSI Standards Publication** # Pneumatic fluid power — Compressed air pressure regulators and filter-regulators Part 1: Main characteristics to be included in literature from suppliers and product-marking requirements BS ISO 6953-1:2015 BRITISH STANDARD #### National foreword This British Standard is the UK implementation of ISO 6953-1:2015. It supersedes BS ISO 6953-1:2000 which is withdrawn. The UK participation in its preparation was entrusted to Technical Committee MCE/18/-/5, Control components. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2015. Published by BSI Standards Limited 2015 ISBN 978 0 580 76274 1 ICS 23.100.50 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 March 2015. Amendments/corrigenda issued since publication Date Text affected # INTERNATIONAL STANDARD ISO 6953-1:2015 ISO 6953-1 Third edition 2015-03-01 # Pneumatic fluid power — Compressed air pressure regulators and filter-regulators — #### Part 1: Main characteristics to be included in literature from suppliers and product-marking requirements Transmissions pneumatiques — Régulateurs de pression et filtresrégulateurs pour air comprimé — Partie 1: Principales caractéristiques à inclure dans la documentation des fournisseurs et exigences de marquage du produit BS ISO 6953-1:2015 **ISO 6953-1:2015(E)** #### COPYRIGHT PROTECTED DOCUMENT © ISO 2015 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland | Co | ntent | S | | Page | |------|----------|----------------|---|------| | Fore | eword | | | iv | | Intr | oductio | n | | v | | 1 | Scon | P | | 1 | | | - | | | | | 2 | | | ferences | | | 3 | Tern | is and de | finitions | 2 | | 4 | Tech | nical req | uirements | 2 | | | 4.1 | Genera | 1 | 2 | | | 4.2 | Genera | l characteristics | | | | | 4.2.1 | General dimensions | | | | | 4.2.2 | Port forms | | | | | 4.2.3 | Rated pressure | | | | 4.0 | 4.2.4 | Range of operating temperatures | | | | 4.3 | | lar requirements | | | | | 4.3.1
4.3.2 | General Adjustable pressure ranges (outlet regulated pressure) | | | | | 4.3.2 | Adjustable pressure ranges (outlet regulated pressure) Flow-pressure characteristics | | | | | 4.3.4 | Pressure regulation characteristic | | | | | 4.3.5 | Pilot pressure/regulated pressure characteristics | | | | | 4.3.6 | Repeatability (optional characteristic) | | | | | 4.3.7 | Resolution in the case of pilot operated regulator with air bleed | | | | | 4.3.8 | Maximum air consumption at null forward flow rate or relief flow rate for | | | | | | operated regulator with air bleed | | | | | 4.3.9 | Useful retention capacity of the reservoir | | | | | 4.3.10 | Filter-regulator draining devices | | | | | 4.3.11 | Materials of construction | 9 | | 5 | Oper | ation an | d maintenance | 10 | | 6 | Marl | king | | 10 | | 7 | Iden | tification | statement (Reference to ISO 6953) | 10 | | Ann | ex A (in | formative | e) Port forms from ISO 1179-1:1981 | 11 | | Bibl | iograph | ıy | | 12 | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT), see the following URL: Foreword — Supplementary information. The committee responsible for this document is ISO/TC 131, *Fluid power systems*, Subcommittee SC 5, *Control products and components*. This third edition cancels and replaces the second edition (ISO 6953-1:2000), which has been technically revised. It also incorporates ISO 6953-1:2000/Cor 1:2006. ISO 6953 consists of the following parts, under the general title *Pneumatic fluid power — Compressed air pressure regulators and filter-regulators*: - Part 1: Main characteristics to be included in the supplier's literature and product-marking requirements - Part 2: Test methods to determine the main characteristics to be included in supplier's literature - Part 3: Alternative test methods for measuring the flow-rate characteristics of pressure regulators #### Introduction In pneumatic fluid power systems, power is transmitted and controlled through a gas under pressure within a circuit. When pressure reduction or pressure regulation is required, regulators and filter-regulators are components designed to maintain the pressure of the gas at an approximately constant level. It is therefore necessary to know some performance characteristics of these components in order to determine their suitability for an application. # Pneumatic fluid power — Compressed air pressure regulators and filter-regulators — #### Part 1: # Main characteristics to be included in literature from suppliers and product-marking requirements #### 1 Scope This part of ISO 6953 specifies which characteristics of compressed air pressure regulators are to be included in literature from their suppliers. It also applies to filter-regulators. This part of ISO 6953 applies to - manually controlled direct operated types (with or without relieving mechanism), - manually controlled internal pilot operating types (e.g. nozzle flapper), and - external pilot operated types. In addition, it specifies the product marking requirements for pressure regulators and filter-regulators. This part of ISO 6953 is applicable to compressed air pressure regulators with a rated inlet pressure of up to 2 500 kPa (25 bar) and an outlet adjustment pressure of up to 1 600 kPa (16 bar); and to filter-regulators with rated inlet and outlet pressures of up to 1 600 kPa (16 bar), in which the major contaminants are removed by mechanical means. NOTE 1 1 bar = 0,1 MPa = 10^5 Pa; 1 MPa = 1 N/mm². The rated pressure should be selected from the preferred pressures listed in ISO 2944. NOTE 2 The main characteristics to be included in the supplier's literature related to electrically modulated pneumatic continuous pressure control valves are specified in ISO 10094-1. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 7-1:1994, Pipe threads where pressure-tight joints are made on the threads — Part 1: Dimensions, tolerances and designation ISO 2944, Fluid power systems and components — Nominal pressures ISO 5598, Fluid power systems and components — Vocabulary ISO 5782-2:1997, Pneumatic fluid power — Compressed-air filters — Part 2: Test methods to determine the main characteristics to be included in supplier's literature ISO 6358-1, Pneumatic fluid power — Determination of flow-rate characteristics of components using compressible fluids — Part 1: General rules and test methods for steady-state flow ISO 6953-2:2015, Pneumatic fluid power — Compressed air pressure regulators and filter-regulators — Part 2: Test methods to determine the main characteristics to be included in literature from suppliers # BS ISO 6953-1:2015 **ISO 6953-1:2015(E)** ISO 10094-1, Pneumatic fluid power — Electro-pneumatic pressure control valves — Part 1: Main characteristics to include in the supplier's literature ISO 11727, Pneumatic fluid power — Identification of ports and control mechanisms of control valves and other components #### 3 Terms and definitions For the purposes of this part of ISO 6953, the terms and definitions given in ISO 5598, ISO 6358-1, ISO 10094-1, and the following apply. #### 3.1 #### compressed air pressure regulator component designed to maintain compressed air pressure, approximately constant within an enclosed circuit despite variation in operating flow rate and inlet pressure #### 3.2 #### relieving pressure regulator pressure regulator equipped with an unloading device that opens if the regulated pressure exceeds the original setting by a sufficient degree, and exhausts a limited flow rate of air from the outlet circuit to the atmosphere #### 3.3 #### filter-regulator device that combines the filter and regulator onto one body as a single unit Note 1 to entry: In such a device, the filter is always on the upstream side of the regulator. #### 3.4 #### pilot-operated regulator with air bleed regulator designed to minimize the variation of regulated pressure from its set point during flow, using a pilot supply that continuously flows through the pilot chamber and is exhausted #### 3.5 #### flow-pressure characteristic curve graphical representation of the relationship between the regulated pressure and the forward flow rate or the relief flow rate while the outlet set pressure and the inlet pressure are maintained constant #### 3.5.1 #### forward flow/pressure characteristic curve flow/pressure characteristic curve in accordance with 3.5 only for the forward flow rate #### 3.5.2 #### relief flow/pressure characteristic curve flow/pressure characteristic curve in accordance with 3.5 only for the relief flow rate #### 3.6 #### pressure regulation characteristic curve graphical representation of regulated pressure variation caused by changes in inlet (supply) pressure, at a constant small air flow rate and low regulated pressure #### 4 Technical requirements #### 4.1 General Descriptive literature covering compressed air pressure regulators and filter-regulators shall include the following characteristics given in 4.2 and 4.3. #### 4.2 General characteristics #### 4.2.1 General dimensions The dimensions shown on Figure 1 shall be given in millimetres. For ports, see 4.2.2. #### Key - A maximum overall width - *B* maximum installation height below the port centre line - C maximum overall depth, excluding pressure gauge - *D* distance between the faces of the compressed air connection (inlet/outlet) - *E* maximum height above the port centre line - $F^{\mathbf{a}}$ maximum installation depth from the port centre line - *G* maximum dimension of the regulated pressure adjusting device - *H* minimum clearance from the port centre line to permit dismantling - Ja distance between mounting holes - *K*^a distance between the port centre line and mounting holes - La minimum recommended diameter and length of mounting holes - Ma panel mounting thread - *N*^a panel mounting height above the port centre line - Pa maximum panel thickness - *Qb* distance between the port centre line to gage port - V drain hole description - W port description - *Xb* pilot port description - Y pressure gauge port description - NOTE a dimensions, *F*, *J*, *K*, *L*, *M*, *N*, and *P* shall be indicated only if the device has provisions for mounting; - b optional Figure 1 — Dimensions of compressed air regulators and filter-regulators #### 4.2.2 Port forms Port forms should be selected from ISO 16030 or ISO 1179 (all parts) for ports with pipe parallel threads, or from ISO 7-1 for ports with pipe-tapered threads. The connecting interface for flange-mounted designs can be plain ported and counter bored to accept 0-rings. For certain applications and connections, other port forms can be employed. NOTE Annex A describes thread forms from the former ISO 1179:1981. #### 4.2.3 Rated pressure Compressed air pressure regulators and filter-regulators shall be classified according to their rated pressure, selected from ISO 2944. The rated pressure shall be verified using the test procedure specified in ISO 6953-2: 2015, Clause 6. This procedure verifies the pressure rating of the pressure-containing envelope but does not cover the limitation that can be imposed by the diaphragm. The range of duties and sensitivities of the diaphragm used vary widely and their strength can be limited to achieve the accuracy required by the application. #### 4.2.4 Range of operating temperatures - **4.2.4.1** The temperature range in which the material and the operation of the pressure regulator and filter-regulator are not impaired shall be stated. - **4.2.4.2** Other combinations of pressure and temperature ratings for optional designs that could require a different rating shall be specified. #### 4.3 Particular requirements #### 4.3.1 General The data provided by the supplier shall assist the user in selecting the compressed air pressure regulator and filter-regulator best suited for the particular application. #### 4.3.2 Adjustable pressure ranges (outlet regulated pressure) The upper limit of the recommended adjustable pressure range should normally be chosen from the following preferred ranges but not to exceed the inlet rated pressure: - up to 100 kPa (1 bar); - up to 200 kPa (2 bar); - up to 400 kPa (4 bar); - up to 800 kPa (8 bar); - up to 1 000 kPa (10 bar); - up to 1 600 kPa (16 bar). Special ranges can also be available. The adjustability of the upper limit of the pressure range is a minimum and the upper limit should not be regarded as a limiting pressure. #### 4.3.3 Flow-pressure characteristics **4.3.3.1** Curves describing the regulated pressure versus air flow rate for different set pressures shall be plotted on a graph as shown in Figure 2; and the entire graph is applicable to a given inlet pressure. #### Kev - 1 regulated pressure kPa (bar) - 2 forward flow rate dm³/min (ANR) - 3 relief flow rate dm³/min (ANR) - 4 set pressures kPa (bar) - 5 inlet pressure kPa (bar) one value applies to the entire figure NOTE <u>Figure 2</u> is only an example of flow-pressure characteristic curves. For some components, the several flow-pressure curves might not terminate at the same point at maximum forward flow rate. Figure 2 — Flow-pressure characteristic curves **4.3.3.2** Each curve is plotted in accordance with ISO 6953-2:2015, 7.4.1. Each value of the regulated pressure is the mean value between the regulated pressures measured for increasing and decreasing flow rates. NOTE Use ISO 6953-3 for an alternate dynamic test method for determining flow-rate characteristics using an isothermal tank instead of a flow meter. This method only enables the capturing of decreasing flow rate part of the hysteresis curves for forward and relief flow characteristics. - **4.3.3.3** The hysteresis, expressed in percentage, of the regulated pressure full scale shall be calculated according to ISO 6953-2:2015, 7.4.2. The obtained value gives the maximum difference between the regulated pressure values measured with both increasing and decreasing flow rate. - **4.3.3.4** The maximum forward sonic conductance is calculated according to ISO 6953-2:2015, 7.4.3. - **4.3.3.5** The maximum relief sonic conductance is calculated according to ISO 6953-2:2015, 7.4.4. #### 4.3.4 Pressure regulation characteristic **4.3.4.1** The effect of inlet pressure variations upon the regulated pressure shall be indicated by a hysteresis curve on a graph, as shown in <u>Figure 3</u>. This curve describes the regulated pressure variation versus the inlet pressure for an approximately constant flow rate. | K | ρV | |----|----| | 17 | CV | regulated pressure inlet pressure forward flow rate kPa (bar) dm³/min (ANR) Figure 3 — Pressure regulation characteristic **4.3.4.2** Testing shall be conducted in accordance with ISO 6953-2:2015, 8.2. #### 4.3.5 Pilot pressure/regulated pressure characteristics #### 4.3.5.1 Pressure control characteristic curve The regulated pressure, p_2 , at null forward or relief flow rate shall be indicated on a graph, as shown in Figure 4. #### Key - X pilot pressure, in % - Y regulated pressure, in % - *p*₁ inlet pressure - a offset - b slope Figure 4 — Pilot pressure/regulated pressure characteristic This curve describes the processed data of the measured regulated pressure versus the external pilot pressure on its full scale, for a given inlet pressure, p_1 , indicated as a relative value, as shown in Figure 4. NOTE For the purpose of this part of ISO 6953, pressures are gauge pressures. The test shall be performed in accordance with ISO 6953-2:2015, 10.1.2. The characteristic straight line shall be plotted in accordance with ISO 6953-2:2015, 10.1.3.1. Each value of the pressure curve is the mean value of the two corresponding measured regulated pressures, p_2 , for increasing and decreasing pilot pressures. The offset value and slope of the characteristic straight line shall be indicated on the graph, as shown in Figure 4. #### **4.3.5.2 Linearity** The linearity, Δp_l , expressed as a percentage of the regulated pressure full-scale, shall be calculated in accordance with ISO 6953-2:2015, Formula (4). The value obtained gives the maximum difference between the regulated pressure mean values and the characteristic straight line shown in <u>Figure 4</u>. #### 4.3.5.3 Pilot pressure/regulated pressure hysteresis The hysteresis, Δp_h , expressed as a percentage of the regulated pressure full-scale, shall be calculated in accordance with ISO 6953-2:2015, Formula (5). The value obtained gives the maximum difference between the regulated pressure values measured with both an increasing and decreasing pilot pressure. The hysteresis can also be expressed as an absolute value. #### 4.3.6 Repeatability (optional characteristic) The repeatability, r, corresponds to the maximal dispersion in regulated pressure for a given set pressure. The test shall be performed in accordance with ISO 6953-2:2015, 10.3.4. The repeatability, *r*, expressed as a percentage of the regulated pressure full-scale, shall be determined in accordance with ISO 6953-2:2015, 10.3.4. #### 4.3.7 Resolution in the case of pilot operated regulator with air bleed The resolution, *S*, corresponds to the minimal difference between two rotating positions of the adjustable handle or two pilot pressure (set pressure) values for which there is a difference in the corresponding regulated pressure values. The test shall be performed in accordance with ISO 6953-2:2015, 10.2.4. The resolution, *S*, expressed in percentage of the regulated pressure full-scale, shall be determined in accordance with ISO 6953-2:2015, 10.2.4. ## 4.3.8 Maximum air consumption at null forward flow rate or relief flow rate for pilot operated regulator with air bleed The maximum air consumption flow rate indicates the maximum air consumption when the component under test is closed (i.e. leakage at null forward flow rate or relief flow rate). The air consumption rate shall be measured at the inlet port versus the regulated pressure on its full-scale, with both increasing and decreasing regulated pressure for a given inlet pressure. The test shall be performed in accordance with ISO 6953-2:2015, 9.2. The maximum value of the air consumption rate is determined in accordance with ISO 6953-2:2015, 9.3. #### 4.3.9 Useful retention capacity of the reservoir - **4.3.9.1** Provide the data as described in 4.3.9.2 if the unit is a filter-regulator. - **4.3.9.2** The useful retention capacity of the reservoir shall be measured in accordance with ISO 5782-2:1997, Clause 8, for every combination of filter reservoir size. The results shall be published together with other descriptive specifications for filter-regulators. #### 4.3.10 Filter-regulator draining devices The type of drain (manual, automatic, or other) shall be stated. #### 4.3.11 Materials of construction The generic materials of construction (for example, body, spring cage, bottom plug and internal parts, elastomers and bowl) shall be listed. #### 5 Operation and maintenance Information required for application, operation, examination, and maintenance shall be provided, including the following: - a) adjustment requirements; - b) the conditions under which it is desirable that the filter element be changed in order to avoid malfunction (for filter-regulators); - c) the products that can be used for cleaning the filter-regulator parts (filter element, reservoir, etc.); - d) the minimum operating temperature, with a warning of the effects of condensate freezing, if applicable; - e) the minimum pressure for operating the drain mechanism (for filter-regulator); - f) a pressure rating, possibly less than that verified through the test requirements in ISO 6953-2:2015, if the diaphragm has application limitations (see 4.2.3). #### 6 Marking - **6.1** The compressed air pressure regulator or filter-regulator shall be marked with the following information: - a) manufacturer's or supplier's name or trademark; - b) manufacturer's or supplier's model or type number; - c) rated pressure; - d) maximum temperature; - e) warning about use of cleaning products, if necessary; - f) flow direction in accordance with ISO 11727; - g) maximum fluid levels (if needed); - h) code indicating time of manufacture. - **6.2** Other data can also be marked on the compressed air pressure regulator and filter-regulator (for example, recommended regulated pressure adjustment range). #### 7 Identification statement (Reference to ISO 6953) It is strongly recommended that manufacturers use the following statement in test reports, catalogues, and sales literature when electing to comply with ISO 6953: "Characteristics and requirements for compressed air pressure regulators (or filter-regulators) are in accordance with ISO 6953-1, Pneumatic fluid power — Compressed air pressure regulators and filter-regulators — Part 1: Main characteristics to include in the supplier's literature and product-marking requirements." ### Annex A (informative) #### **Port forms from ISO 1179-1:1981** #### Key 1 joint surface flat and square to the axis of the thread Figure A.1 — Port forms Table A.1 — Port forms | Designatio
according to | n of thread
ISO 228-1[6] | Thread
length | Dimensions of recess a | | Dimensions of collar | | | | | |--|-----------------------------|-----------------------------------|------------------------|------------|-----------------------------------|---------------------------------|--|--|--| | D | d | L_1 male max. L_2 female min. | D_1 min. | h_1 max. | D ₂
h ₁₄ | h ₂ min _. | | | | | G 1/16 | G 1/16 A | 7,4 | 13 | 1 | 12 | 1 | | | | | G 1/8 | G 1/8 A | 7,4 | 15 | 1 | 14 | 1 | | | | | G 1/4 | G 1/4 A | 11,0 | 19 | 1,5 | 18 | 1,5 | | | | | G 3/8 | G 3/8 A | 11,4 | 23 | 2 | 22 | 2 | | | | | G 1/2 | G 1/2 A | 15,0 | 27 | 2,5 | 26 | 2,5 | | | | | G 3/4 | G 3/4 A | 16,3 | 33 | 2,5 | 32 | 2,5 | | | | | G 1 | G 1 A | 19,1 | 40 | 2,5 | 39 | 2,5 | | | | | G 1 1/4 | G 1 1/4 A | 21,4 | 50 | 2,5 | 49 | 2,5 | | | | | G 1 1/2 | G 1 1/2 A | 21,4 | 56 | 2,5 | 55 | 2,5 | | | | | G 2 | G 2 A | 25,7 | 59 | 3 | 68 | 3 | | | | | a 1 bar = 0,1 MPa = 10 ⁵ Pa; 1MPa = 1 N/mm ² | | | | | | | | | | The lengths L_2 of the female threads given in <u>Table A.1</u> are also suitable for assembly with male threads, in accordance with ISO 7-1. #### **Bibliography** - [1] ISO 1179:1981, Pipe connections, threaded to ISO 228/1, for plain end steel and other metal tubes in industrial applications - [2] ISO 1179 (all parts), Connections for general use and fluid power Ports and stud ends with ISO 228-1 threads with elastomeric or metal-to-metal sealing - [3] ISO 6353-2, Reagents for chemical analysis Part 2: Specifications First series - [4] ISO 8778, Pneumatic fluid power Standard reference atmosphere - [5] ISO 10094-2, Pneumatic fluid power Electro-pneumatic pressure control valves Part 2: Test methods to determine main characteristics to include in the supplier's literature - [6] ISO 228-1, Pipe threads where pressure-tight joints are not made on the threads Part 1: Dimensions, tolerances and designation - [7] ISO 16030, Pneumatic fluid power Connections Ports and stud ends # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com