BS ISO 6266:2013

BSI Standards Publication

Alpine skis — Determination of fatigue indexes — Cyclic loading test

BS ISO 6266:2013 BRITISH STANDARD

National foreword

This British Standard is the UK implementation of ISO 6266:2013.

The UK participation in its preparation was entrusted to Technical Committee SW/136/7, Snowsports equipment.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2013. Published by BSI Standards Limited 2013

ISBN 978 0 580 77191 0

ICS 97.220.20

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 March 2013.

Amendments issued since publication

Date Text affected

INTERNATIONAL STANDARD

ISO 6266:2013 ISO 6266

Second edition 2013-03-01

Alpine skis — Determination of fatigue indexes — Cyclic loading test

Skis alpins — Détermination des indices de fatigue — Essai en flexion alternée

BS ISO 6266:2013 **ISO 6266:2013(E)**

COPYRIGHT PROTECTED DOCUMENT

© ISO 2013

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents			Page	
Fore	word		iv	
Introduction			v	
1	Scop	oe	1	
2	Normative references		1	
3	Terms and definitions		1	
4	Principle		2	
5	Apparatus		2	
	5.1	Bending machine	2	
	5.2	Measuring device for bottom camber height		
	5.3	Measuring device for centre spring constant	4	
6	Test specimens		4	
	6.1	Lengths		
	6.2	Number	5	
7	Temperatures for conditioning and testing			
8	Procedure		5	
	8.1	Measurement of original bottom camber height, h _B	5	
	8.2	Measurement of original centre spring constant, $c_{ m M}$	5	
	8.3	Determination		
	8.4	Measurement of final bottom camber height, h'B		
	8.5	Measurement of final centre spring constant, c'_{M}		
	8.6	Assessment of damage	6	
9	Expression of results			
	9.1	Fatigue index for bottom camber height		
	9.2	Fatigue index for centre spring constant	6	
10	Test	Test report		

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 6266 was prepared by Technical Committee ISO/TC 83, *Sports and recreational equipment*, Subcommittee SC 4, *Snowsports equipment*.

This second edition cancels and replaces the first edition (ISO 6266:1980), which has been technically revised.

Introduction

Previous investigations showed that the fatigue of an alpine ski is not easy to describe. If one understands by fatigue the remaining negative change of some characteristics of the ski, influencing the performance of the ski, as a result of normal use, several tests would be necessary to determine exactly the susceptibility of a ski to such changes. In addition, some factors may have substantial influence on the results such as ski length, spring constant, test temperature, kind of vibration, frequency etc. It was therefore decided that a test method taking account of all these factors might be of some interest for ski research but that it should not be proposed for standardization.

Instead of this, a simplified test of the fatigue behaviour of two important characteristics of the ski (i.e. of camber height and centre spring constant) was proposed for standardization.

Alpine skis — Determination of fatigue indexes — Cyclic loading test

1 Scope

This International Standard specifies a method for the determination of the fatigue indexes of alpine skis (i.e. the resistance of the skis to changes in shape and of stiffness) after a bending test with cyclic loading.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 5902, Alpine skis — Determination of elastic properties

ISO 6289, Skis — Vocabulary

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

camber height

 h_{ν}

distance between the running surface on the ski and a planar surface, measured with the ski resting freely under its own mass

3.2

original weighted bottom camber height

 $h_{\rm B}$

weighted bottom camber height, according to ISO 6289, determined prior to the test

3.3

final weighted bottom camber height

 $h'_{\rm R}$

weighted bottom camber height, according to ISO 6289, determined after the test

3.4

spring constant

С

ratio of the force *F* applied to the ski, to the corresponding deflection *f*:

$$c = \frac{F}{f}$$

Note 1 to entry: Depending on the individual parts of the ski on which the force *F* is applied, one can define:

- the centre spring constant, $c_{\rm M}$;
- the shovel spring constant, c_S ;
- the rear spring constant, c_R ;

BS ISO 6266:2013 **ISO 6266:2013(E)**

- the afterbody spring constant, c_A ;
- the forebody spring constant, $c_{\rm R}$.

3.5

final centre spring constant

C'M

centre spring constant, according to ISO 5902, measured after the test

3 6

fatigue index for the bottom camber height

 K_{h}

percentage change of bottom camber height of the ski after cyclic loading and recovery

3.7

fatigue index for the centre spring constant

 $K_{\rm c}$

percentage change of centre spring constant of the ski after cyclic loading and recovery

3.8

stroke length

S

deflection of the ski during cyclic loading measured from a straight line through the supports, midway between the two supports

3.9

frequency

number of deflections of the ski per second

Note 1 to entry: The unit is the Hertz (Hz).

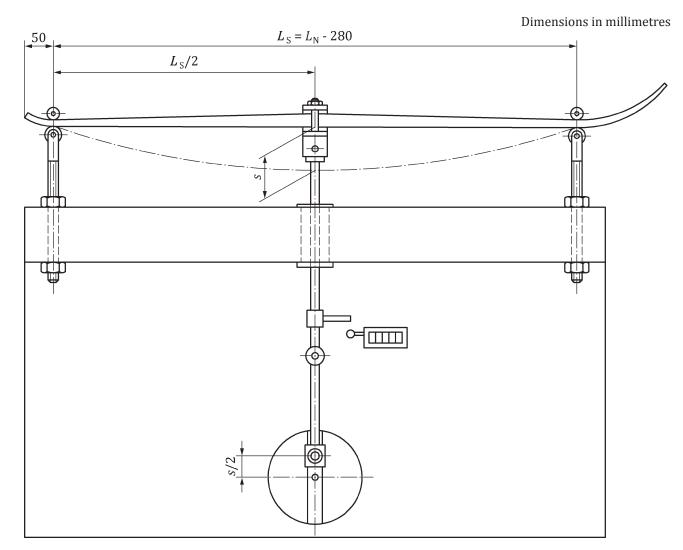
3.10

recovery time

time between the test and the measurement of $h'_{\rm B}$, (see 3.3) and $c'_{\rm M}$ (see 3.5), which is necessary to eliminate temporary changes in camber height and centre spring constant

4 Principle

Subjection of the ski to cyclic loading and recovery. Determination of the fatigue indexes by calculation of the percentage permanent change in:


- a) bottom camber height;
- b) centre spring constant.

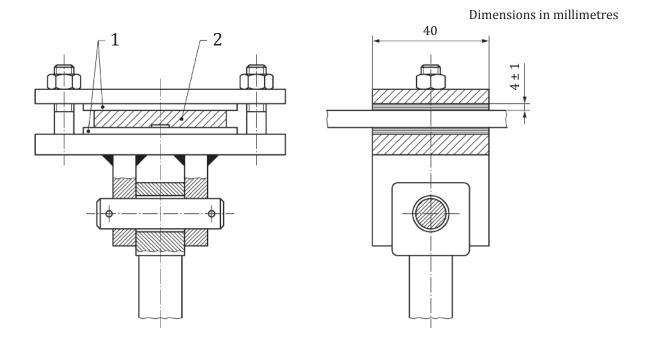
5 Apparatus

5.1 Bending machine

The bending machine shall essentially be constructed as shown in Figure 1. The machine has two supports which are vertically and horizontally adjustable. The supports of the bending machine are arranged at a distance of $L_S = L_N - 280$ mm where L_N is the nominal length. Nominal length shall be determined in accordance with ISO 6289. The support rolls shall have a diameter of approximately 50 mm. The supports shall have a spring loaded clamping roll in order to prevent lifting of the ski.

The driving mechanism consists of a disk fly wheel with adjustable crank pin, a connecting rod and a push rod with clamping fixture. The disk fly wheel shall have sufficient mass and driving power to effect a smooth sinusoidal flexing. The distance between crank pin and rotation axis shall be adjustable in order to be able to adjust a constant test load $F_{\rm T}$ by changing the stroke length s as indicated in 8.3.

Key


 $L_{\rm S}$ support length

L_N nominal length

s stroke length

Figure 1 — Bending machine

The frequency of the stroke shall be between 2 Hz and 3 Hz. The clamping fixture shall have a pivoting joint and jaws with elastic rubber layers, as shown in <u>Figure 2</u>, in order to avoid stress concentration at the clamping point of the ski.

Key

- 1 rubber
- 2 ski

Figure 2 — Clamping fixture

The dimensions of the rubber layers shall be as follows:

thickness: 4 mm ± 1 mm

width: 40 mm

hardness: (95 ± 5) Shore A

In addition, a counter shall be fixed to the push rod in order to record the number of cycles.

5.2 Measuring device for bottom camber height

For measuring the bottom camber height, a flat surface plate and a dial indicator with indicator holder are required.

5.3 Measuring device for centre spring constant

For measuring the centre spring constant, a device as described in ISO 5902 is required.

6 Test specimens

6.1 Lengths

To ensure the comparability of the published test results, the following ski lengths shall be used for tests:

- 1800 mm or 2000 mm
- 1600 mm
- 1 300 mm

6.2 Number

The test shall be carried out on 10 skis of the same type.

7 Temperatures for conditioning and testing

The fatigue properties of the ski as described in this International Standard can be affected by the test temperature to a greater or lesser extent, depending on the particular material configuration of the ski. Therefore, two different test temperatures are specified:

- A, standard laboratory test: 23 °C ± 2 °C;
- B, cold chamber test: -5 °C \pm 2 °C.

All measurements shall be carried out on a ski conditioned to the test temperature for at least 2 h.

8 Procedure

8.1 Measurement of original bottom camber height, $h_{\rm B}$

Measure the original bottom camber height $h_{\rm B}$ prior to the bending by cyclic loading. Press the ski against the flat surface plate (see <u>5.2</u>). Place the dial indicator at the measurement point on the top surface of the ski and set to zero. Remove the flatting load, and read the bottom camber height from the dial indicator to an accuracy of \pm 0,03 mm.

8.2 Measurement of original centre spring constant, $c_{\rm M}$

Measure the original spring constant $c_{\rm M}$ prior to the bending with cyclic loading, in accordance with ISO 5902, to an accuracy of \pm 0,2 N/mm.

8.3 Determination

Place the ski in the bending machine (see 5.1) and adjust the supports in such a way that the connecting line between the upper points of the lower support rolls and the surface of the clamping jaws, touching the running surface of the ski, is a straight line, when the push rod is in the upper dead centre.

Adjust the stroke length *s* by shifting the crank pin to its proper position. The stroke length, expressed in millimetres, is calculated from the following formula:

$$s = \frac{F_{\rm T}}{c_{\rm M}}$$

where

 $F_{\rm T}$ is the test load, in newtons;

 $c_{\rm M}$ is the original centre spring constant, in newtons per millimetre.

The permissible tolerance for stroke length is ± 2.5 mm.

The following loads shall be used:

1800 mm or 2000 mm: 450 N

1 600 mm: 350 N

BS ISO 6266:2013 **ISO 6266:2013(E)**

1 300 mm: 250 N

Subject the ski to 20 000 loading cycles at a frequency of 2 Hz to 3 Hz.

Remove the ski from the machine and place against a wall in a vertical and stress-free (relaxed) position. The recovery time for the elimination of temporary deformation is 24 h.

8.4 Measurement of final bottom camber height, $h'_{\rm B}$

Measure the bottom camber height $h'_{\rm B}$ after the recovery time as specified in 8.1.

8.5 Measurement of final centre spring constant, $c'_{\rm M}$

Measure the centre spring constant c'_{M} after the recovery time as specified in 8.2.

8.6 Assessment of damage

Visually inspect the ski for damage caused by the test (for example, cracks or stress marks in the surface of the material, cracks at steel edges, delaminations).

9 Expression of results

9.1 Fatigue index for bottom camber height

The fatigue index K_h for the bottom camber height of the ski, expressed as a percentage, is given by the formula

$$K_{\rm h} = \frac{h_{\rm B} - h'_{\rm B}}{h_{\rm B}} \times 100$$

where

 $h_{\rm B}$ is the original camber height, measured in accordance with 8.1;

 $h'_{\rm B}$ is the final camber height, measured in accordance with <u>8.4.</u>

Express the result as the mean of the 10 determinations.

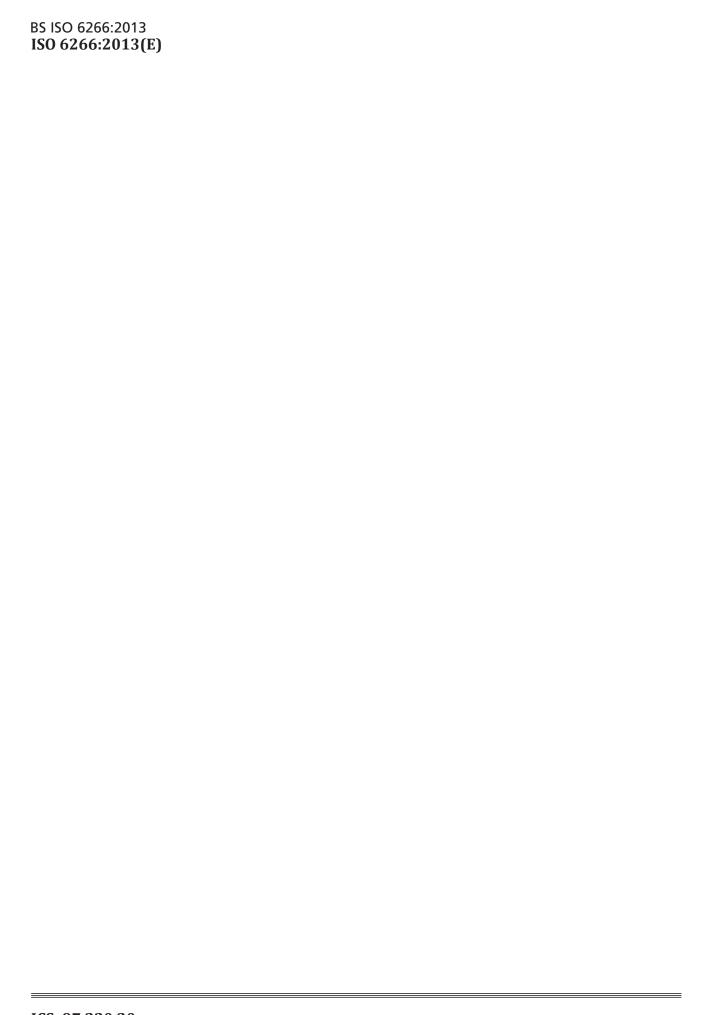
9.2 Fatigue index for centre spring constant

The fatigue index K_c for the centre spring constant of the ski, expressed as a percentage, is given by the formula

$$K_c = \frac{c_{\mathrm{M}} - c'_{\mathrm{M}}}{c_{\mathrm{M}}} \times 100$$

where

 $c_{\rm M}$ is the original centre spring constant, measured in accordance with 8.2;


 $c'_{\rm M}$ is the final centre spring constant, measured in accordance with 8.5.

Express the result as the mean of the 10 determinations.

10 Test report

The test report shall include the following particulars:

- a) reference to this International Standard, i.e. ISO 6266;
- b) complete identification of the ski (brand, model designation, nominal length and manufacturer's registration number);
- c) test temperature (A or B);
- d) fatigue index far the bottom camber height;
- e) fatigue index for the centre spring constant;
- f) damage to the ski caused by the test with exact description;
- g) any deviation from this International Standard with an explanation of the reason for the deviation.

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

Revisions

Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services

Tel: +44 845 086 9001

Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions

Tel: +44 845 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

Email: knowledgecentre@bsigroup.com

Copyright & Licensing

Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

