BS ISO 5631-1:2015

BSI Standards Publication

Paper and board — Determination of colour by diffuse reflectance

Part 1: Indoor daylight conditions (C/2°)

BS ISO 5631-1:2015 BRITISH STANDARD

National foreword

This British Standard is the UK implementation of ISO 5631-1:2015. It supersedes BS ISO 5631-1:2009 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee PAI/11, Methods of test for paper, board and pulps.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2015. Published by BSI Standards Limited 2015

ISBN 978 0 580 86897 9

ICS 85.060

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 November 2015.

Amendments/corrigenda issued since publication

Date Text affected

INTERNATIONAL STANDARD

ISO 5631-1:2015 ISO 5631-1

Second edition 2015-11-01

Paper and board — Determination of colour by diffuse reflectance —

Part 1: **Indoor daylight conditions** (C/2°)

Papier et carton — Détermination de la couleur par réflectance diffuse —

Partie 1: Conditions d'éclairage intérieur de jour (C/2°)

BS ISO 5631-1:2015 **ISO 5631-1:2015(E)**

COPYRIGHT PROTECTED DOCUMENT

© ISO 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Cor	ontents		
Fore	word	iv	
Intro	oduction	v	
1	Scope	1	
2	Normative references	1	
3	Terms and definitions	1	
4	Principle	3	
5	Apparatus 5.1 Reflectometer		
6	Sampling and conditioning	4	
7	Preparation of test pieces	4	
8	Procedure	4	
9	Calculation 9.1 CIE tristimulus values 9.2 CIELAB coordinates 9.3 Dispersion of the results	4 5	
10	Expression of results	6	
11	Precision	6	
12	Test report	6	
Anno	ex A (normative) Spectral characteristics of reflectometers for determining tristimulus values	7	
Bibli	iography	13	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 6, *Paper, board and pulps*.

This second edition cancels and replaces the first edition (ISO 5631-1:2009). The major change is to allow for calculations using ASTM E308 for instruments that have bandpass correction and still maintain the procedure for instruments without bandpass correction.

ISO 5631 consists of the following parts, under the general title *Paper and board — Determination of colour by diffuse reflectance*:

- Part 1: Indoor daylight conditions (C/2°)
- Part 2: Outdoor daylight conditions (D65/10°)
- Part 3: Indoor illumination conditions (D50/2°)

Introduction

The colour of an object can be uniquely characterized by means of a triplet of colour coordinates such as the CIE tristimulus values or the CIELAB 1976 *L**, *a**, *b** coordinates for a specified CIE illuminant and CIE standard observer.

Apart from the optical properties of the sample, the values of such coordinates depend upon the conditions of measurement, particularly the spectral and geometric characteristics of the instrument used. This part of ISO 5631 should therefore be read in conjunction with ISO 2469.

This part of ISO 5631 describes the measurement and description of colour in terms of the CIE illuminant C and the CIE 1931 (2°) standard observer. The other parts of this International Standard describe measurements and calculations carried out in an analogous manner using either the CIE standard illuminant D65 and the CIE 1964 (10°) standard observer or the CIE illuminant D50 and the CIE 1931 (2°) standard observer.

The choice of illuminant conditions is important when determining the colour coordinates of white papers containing a fluorescent whitening agent. In ISO 5631-2, the UV content of the illumination is much higher, approximating UV levels encountered in outdoor viewing conditions.

ISO 5631-3 describes the measurement and description of colour in terms of the CIE illuminant D50 and the CIE 1931 (2°) standard observer. This method is especially applicable to graphic arts situations since these illuminant/observer conditions are used within the graphic arts industry.

Paper and board — Determination of colour by diffuse reflectance —

Part 1:

Indoor daylight conditions (C/2°)

1 Scope

This part of ISO 5631 specifies a method for measuring the colour of paper and board by the diffuse reflectance method with the elimination of specular gloss.

This part of ISO 5631 is not applicable to coloured papers or boards which incorporate fluorescent dyes or pigments. It may be used to determine the colour of papers or boards which contain fluorescent whitening agents provided the UV content of the illumination on the test piece has been adjusted to conform to that in the CIE illuminant C, using a fluorescent reference standard that fulfils the requirements for international fluorescent reference standards of level 3 (IR3) as prescribed by ISO 2469 with an assigned ISO brightness value $(C/2^{\circ})$ provided by an authorized laboratory, as described in ISO 2470-1.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 186, Paper and board — Sampling to determine average quality

ISO 2469, Paper, board and pulps — Measurement of diffuse radiance factor (diffuse reflectance factor)

ISO 2470-1, Paper, board and pulps — Measurement of diffuse blue reflectance factor — Part 1: Indoor daylight conditions (ISO brightness)

ASTM E308, Standard Practice for Computing the Colors of Objects by Using the CIE System

CIE Publication 15:2004, Colorimetry, 3rd ed

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

radiance factor

R

ratio of the radiance of a surface element of a body in the direction delimited by a given cone, with its apex at the surface element, to that of the perfect reflecting diffuser under the same conditions of illumination

Note 1 to entry: For fluorescent (luminescent) materials, the total radiance factor, β , is the sum of two portions, the reflected radiance factor, β_R , and the luminescent radiance factor, β_L , so that $\beta = \beta_R + \beta_L$.

For non-fluorescent materials, the reflected radiance factor, β_R , is numerically equal to the reflectance factor, R.

3 2

intrinsic radiance factor

 β_{∞}

radiance factor of a layer or pad of material thick enough to be opaque, such that increasing the thickness of the pad by doubling the number of sheets results in no change in the measured radiance factor

Note 1 to entry: The intrinsic radiance factor is often expressed as a percentage.

3.3

reflectance factor

R

ratio of the radiation reflected by a surface element of a body in the direction delimited by a given cone, with its apex at the surface element to that of the perfect reflecting diffuser under the same conditions of illumination

Note 1 to entry: The ratio is often expressed as a percentage.

Note 2 to entry: The reflectance factor is influenced by the backing if the body is translucent.

3.4

intrinsic reflectance factor

 R_{∞}

reflectance factor of a layer or pad of material thick enough to be opaque, such that increasing the thickness of the pad by doubling the number of sheets results in no change in the measured reflectance factor

Note 1 to entry: The reflectance factor of a non-opaque sheet is dependent on the background and is not a material property.

3.5

tristimulus values

X, Y, Z

amount of the three reference colour stimuli, in a given chromatic system, required to match the stimulus considered

Note 1 to entry: In this part of ISO 5631, the CIE illuminant C and the CIE 1931 (2°) standard observer are used to define the trichromatic system.

Note 2 to entry: No subscript is applied to conform to the CIE convention that tristimulus values have no subscript when the CIE 1931 (2°) standard observer is used [the subscript 10 is applied for tristimulus values that are obtained using the CIE 1964 (10°) standard observer].

3.6

CIELAB colour space

three-dimensional, approximately uniform colour space, produced by plotting, in rectangular coordinates L^* , a^* , b^* , quantities defined by the formulae given in Clause 9

Note 1 to entry: The quantity, L^* , is a measure of the lightness of the test piece, where $L^* = 0$ corresponds to black and $L^* = 100$ is defined by the perfect reflecting diffuser. Visually, the quantities a^* and b^* represent respectively the red-green and yellow-blue axes in colour space, such that

- $+a^*$ is a measure of the degree of redness of the test piece,
- $-a^*$ is a measure of the degree of greenness of the test piece,
- $+b^*$ is a measure of the degree of yellowness of the test piece, and
- $-b^*$ is a measure of the degree of blueness of the test piece.

If both a^* and b^* are equal to zero, the test piece is achromatic.

4 Principle

The light reflected from a sample under specified conditions is analysed either by a tristimulus-filter colourimeter or by an abridged spectrophotometer, and the colour coordinates are then calculated for $C/2^{\circ}$ conditions.

5 Apparatus

5.1 Reflectometer

5.1.1 Reflectometer, having the geometric, spectral and photometric characteristics described in ISO 2469, and calibrated in accordance with the provisions of ISO 2469.

If materials containing fluorescent whitening agents are to be measured, the reflectometer shall be equipped with a radiation source having an adequate UV content control, adjusted to a UV condition corresponding to the C illuminant by the use of a reference standard, as described in ISO 2470-1.

5.1.2 In the case of a filter reflectometer, a set of filters that, in conjunction with the optical characteristics of the basic instrument, give overall responses equivalent to the CIE tristimulus values *X*, *Y* and *Z* of the CIE 1931 standard colourimetric system of the test piece evaluated for the CIE illuminant C.

In the case of a filter reflectometer, the radiation falling upon the test piece shall have a UV content corresponding to that of the CIE illuminant C.

5.1.3 In the case of an abridged spectrophotometer, a function that permits calculation of the CIE tristimulus values X, Y and Z of the CIE 1931 standard colourimetric system of the test piece evaluated for the CIE illuminant C using the weighting functions given in Annex A where the Tables A.1 and A.2 are used for instruments without bandpass correction and Tables A.3 and A.4 are used for instruments with bandpass correction.

In the case of an abridged spectrophotometer, the instrument shall have an adjustable filter with a cut-off wavelength of 395 nm or some other equivalent system, and this filter shall be adjusted or the system shall be calibrated with the help of the fluorescent reference standard (5.2.2), so that the UV content of the illumination falling upon the sample corresponds to that of the CIE illuminant C.

- **5.2 Reference standards**, for calibration of the instrument and the working standards and used frequently enough to ensure satisfactory calibration and UV adjustment.
- **5.2.1 Non-fluorescent reference standard**, for photometric calibration, issued by an authorized laboratory in accordance with the provisions of ISO 2469.
- **5.2.2 Fluorescent reference standard**, for use in adjusting the UV content of the radiation incident upon the sample, having an ISO brightness value assigned by an authorized laboratory, as prescribed in ISO 2470-1.
- **5.3 Working standards**, calibrated frequently enough to ensure that satisfactory calibration is maintained.
- **5.3.1** Two plates of flat opal glass, made of ceramic or other suitable material, cleaned and calibrated as described in ISO 2469.

NOTE In some instruments, the function of the primary working standard can be taken over by a built-in internal standard.

5.3.2 A stable plastic or **other tablet**, incorporating a fluorescent whitening agent.

- **5.4 Black cavity**, having a reflectance factor which does not differ from its nominal value by more than 0,2 % at all wavelengths. The black cavity should be stored upside down in a dust-free environment or with a protective cover.
- NOTE 1 The reflectance level of the black cavity can be checked by reference to the instrument manufacturer.
- NOTE 2 The nominal value is given by the manufacturer.

6 Sampling and conditioning

If the tests are being made to evaluate a lot of paper or board, the sample shall be selected in accordance with ISO 186. If the tests are made on another type of sample, make sure that the test pieces taken are representative of the sample received.

Conditioning according to ISO 187 is recommended but not required, but preconditioning with elevated temperatures should not be applied since it might change the optical properties.

7 Preparation of test pieces

Avoiding watermarks, dirt and obvious defects, cut rectangular test pieces approximately 75 mm \times 150 mm. Assemble at least 10 test pieces in a pad with their top sides uppermost; the number should be such that doubling the number of test pieces does not alter the radiance factor. Protect the pad by placing an additional sheet of paper or board on both the top and bottom of the pad. Avoid contamination and unnecessary exposure to light or heat.

Mark the top test piece in one corner to identify the sample and its top side, or to distinguish between the two sides.

If the top side can be distinguished from the wire side, it shall be uppermost; if not, as may be the case for papers manufactured on twin-wire machines, ensure that the same side of the sheet is uppermost.

8 Procedure

- **8.1** Ensure that calibration has been performed as described in ISO 2470-1 according to the instrument manufacturer's instructions.
- **8.2** Remove the protective sheets from the top and the bottom of the test piece pad. Without touching the test area, use the procedure appropriate to the instrument to obtain the three CIE tristimulus values of the first test piece (or CIELAB values if the instrument is designed to report directly in this colour space). Read and record the tristimulus values to the nearest 0,01 unit.
- **8.3** Move the uppermost test piece to the bottom of the pad and determine the values for succeeding test pieces until at least 10 test pieces have been evaluated. If required, repeat the procedure for the other side of the test pieces.

9 Calculation

9.1 CIE tristimulus values

If the instrument has a bandpass of 5 nm or narrower, calculate the CIE tristimulus values in accordance with CIE Publication 15:2004. In all other cases, calculate the tristimulus values using the appropriate weighting functions given in ASTM E308. If the instrument does not provide the CIE tristimulus values directly, obtain them by calculation using the tables provided in $\underline{\text{Annex A}}$.

9.2 CIELAB coordinates

Calculate the CIELAB coordinates from the tristimulus values *X*, *Y*, *Z*, by means of the following formulae:

$$L^* = 116(Y/Y_n)^{1/3} - 16 \tag{1}$$

$$a^* = 500 \left[\left(X/X_n \right)^{1/3} - \left(Y/Y_n \right)^{1/3} \right]$$
 (2)

$$b^* = 200 \left[\left(Y/Y_n \right)^{1/3} - \left(Z/Z_n \right)^{1/3} \right] \tag{3}$$

where X_n , Y_n , Z_n are the tristimulus values of the perfect reflecting diffuser under C/2° conditions. These are given as the "white point" values in Annex A.

Alternative equations shall, however, be used if any of the ratios X/X_n , Y/Y_n , $Z/Z_n \le (24/116)^3$ are satisfied as follows.

- a) If $(X/X_n) \le (24/116)^3$, replace the term $(X/X_n)^{1/3}$ in Formula (2) by the expression $(841/108)(X/X_n) + 16/116$.
- b) If $(Y/Y_n) \le (24/116)^3$, replace the term $(Y/Y_n)^{1/3}$ in Formulae (1), (2) and (3) by the expression $(841/108)(Y/Y_n) + 16/116$.
- c) If $(Z/Z_n) \le (24/116)^3$, replace the term $(Z/Z_n)^{1/3}$ in Formula (3) by the expression $(841/108)(Z/Z_n) + 16/116$.

NOTE 1 The term $(24/116)^3$ is approximately equal to 0,008 856.

NOTE 2 The term (841/108) is approximately equal to 7,787.

NOTE 3 Formula (1) transforms to $L^* = 903.3(Y/Y_n)$ when $(Y/Y_n) \le (24/116)^3$.

9.3 Dispersion of the results

Since the three-dimensional statistical calculations are extremely complicated, the following simple procedure for assessing the dispersion is recommended.

Calculate the mean values $< L^* >$, $< a^* >$ and $< b^* >$ of the L^* , a^* and b^* values.

Calculate, for each test piece, the deviation ΔE_{ab}^* from the mean according to Formula (4):

$$\Delta E_{ab}^* = \sqrt{\left[\left(\Delta L^*\right)^2 + \left(\Delta a^*\right)^2 + \left(\Delta b^*\right)^2\right]} \tag{4}$$

where ΔL^* , Δa^* and Δb^* are the differences between the L^* , a^* and b^* values of the test piece and the corresponding mean values $< L^* > , < a^* > , < b^* > .$

Calculate the mean $<\Delta E_{ab}^*>$ value. This is known as the Mean Colour Difference from the Mean (MCDM) value and defines the dispersion in terms of a sphere of radius $<\Delta E_{ab}^*>$ about the mean point in CIELAB space.

NOTE This calculation uses the expression for the colour difference between two samples which may be calculated in these coordinates as:

$$\Delta E_{ab}^* = \sqrt{\left[\left(\Delta L^*\right)^2 + \left(\Delta a^*\right)^2 + \left(\Delta b^*\right)^2\right]}$$
 (5)

where ΔL^* , Δa^* and Δb^* are the differences between the L^* , a^* and b^* values of the two samples.

BS ISO 5631-1:2015 **ISO 5631-1:2015(E)**

The calculation of colour differences is not, however, included in this part of ISO 5631.

10 Expression of results

Report the L^* , a^* and b^* values to three significant figures and the dispersion as the MCDM value to two significant figures.

NOTE Information about the nature of the variations can be obtained by calculating the mean ΔL^* , Δa^* and Δb^* as defined in Formula (4), but this is not included in this part of ISO 5631.

11 Precision

Information relating to the precision of the method is not yet available. It should be noted, however, that, when white or near white samples containing a fluorescent whitening agent are measured, the reproducibility between instruments will be reduced, since the adjustment of the UV content to match that of the CIE illuminant C is limited to a single-point adjustment based on the ISO brightness value of a fluorescent reference standard.

12 Test report

The test report shall include the following information:

- a) a reference to this part of ISO 5631, i.e. ISO 5631-1;
- b) the date and place of testing;
- c) the precise identification of the sample and the side or sides tested;
- d) whether the test pieces were conditioned and, if so, the conditioning atmosphere used;
- e) the average colour coordinates and the mean colour difference from the mean (see 9.3) for the required side(s) of the sample;
- f) the type of instrument used;
- g) any departure from this part of ISO 5631 which may have affected the results.

Annex A

(normative)

Spectral characteristics of reflectometers for determining tristimulus values

A.1 Filter reflectometers

The required spectral characteristics of the reflectometer are arrived at by a combination of lamps, integrating sphere, glass optics, filters and photodetectors. The filters shall be such that they, together with the optical characteristics of the instrument, give overall responses equivalent to the CIE tristimulus values *X*, *Y*, *Z* of the CIE 1931 (2°) standard colourimetric system for the test piece evaluated for the CIE illuminant C.

A.2 Abridged spectrophotometers

A.2.1 General

The desired tristimulus values are obtained by summing the products of the spectral reflectance factors and the weighting functions given in ASTM E308¹⁾ for the C illuminant and CIE 1931 (2°) observer.

"Checksum" and "white point" data are given at the bottom of each column in Tables A.1, A.2, A.3 and A.4. The "checksum" is the algebraic sum of the entries. It provides, for convenience, a check value to ensure that the tables have been copied correctly, should copying be required. These checksums may not be identical with the "white point" data located below them because of roundoff. Each value in a column has been rounded to three decimal digits. It is these "white point" data, and no other, that shall be used as X_n , Y_n , Z_n when converting tristimulus values calculated by use of these tables to CIELAB or CIELUV coordinates or for any other purpose requiring the ratio of the tristimulus value of the specimen to that of the "white point".

Apply the following instructions, given in ASTM E308, when the values are not available at the top or at the bottom of the range.

Wavelength range less than 360 nm to 780 nm. When data for $\beta(\lambda)$ are not available for the full wavelength range, add the weights at the wavelengths for which data are not available to the weights at the shortest or longest wavelength for which spectral data are available, i.e.:

- a) add the weights for all wavelengths (360 nm, ...) for which measured data are not available to the next higher weight for which such data are available;
- b) add the weights for all wavelengths (..., 780 nm) for which measured data are not available to the next lower weight for which such data are available.

In the absence of fluorescence, the spectral radiance factor can be replaced by, or referred to as, the spectral reflectance factor, $R(\lambda)$.

A.2.2 Procedure for using data without bandpass correction

Use <u>Tables A.1</u> and <u>A.2</u> when the spectral data have not been corrected for bandpass dependence and for which the bandpass is approximately equal to the measurement interval; <u>Table A.1</u> is to be used

¹⁾ Reprinted, with permission, from ASTM E308-06, *Standard Practice for Computing the Colors of Objects by Using the CIE System*, copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428, USA. A copy of the complete standard may be obtained from ASTM (http://www.astm.org).

when the data have been obtained at 10 nm measurement intervals; <u>Table A.2</u> is to be used when the data have been obtained at 20 nm measurement intervals. <u>Tables A.1</u> and <u>A.2</u> apply a correction for spectral bandpass dependence built into the calculation of the tristimulus values.

A.2.3 Procedure for using data with bandpass correction

Use <u>Tables A.3</u> and <u>A.4</u> when the spectral data have been already corrected for bandpass dependence (e.g. by the instrument manufacturer) and for which the bandpass is approximately equal to the measurement interval; <u>Table A.3</u> is to be used when the data have been obtained at 10 nm measurement intervals; <u>Table A.4</u> is to be used when the data have been obtained at 20 nm measurement intervals.

NOTE 1 $\underline{\text{Tables A.3}}$ and $\underline{\text{A.4}}$ were added to this part of ISO 5631 to allow for calculation using instrumentation that does not require bandpass correction, i.e. has already been built into the instrument and applied to the reported raw data.

NOTE 2 Raw reflectance data will differ from instruments, depending upon whether or not they have built-in bandpass correction. However, after the appropriate weighting table is used, the resulting colourimetric values will be nearly identical.

Table A.1 — Weighting functions (C/2°) for instruments without bandpass correction and measuring at 10 nm intervals (Source: ASTM E308)

Wavelength	TAZ	147	147
nm	W_{X}	$W_{ m Y}$	$W_{ m Z}$
360	0,000	0,000	0,000
370	0,001	0,000	0,003
380	0,004	0,000	0,017
390	0,015	0,000	0,069
400	0,074	0,002	0,350
410	0,261	0,007	1,241
420	1,170	0,032	5,605
430	3,074	0,118	14,967
440	4,066	0,259	20,346
450	3,951	0,437	20,769
460	3,421	0,684	19,624
470	2,292	1,042	15,153
480	1,066	1,600	9,294
490	0,325	2,332	5,115
500	0,025	3,375	2,788
510	0,052	4,823	1,481
520	0,535	6,468	0,669
530	1,496	7,951	0,381
540	2,766	9,193	0,187
550	4,274	9,889	0,081
560	5,891	9,898	0,036
570	7,353	9,186	0,019
580	8,459	8,008	0,015
590	9,036	6,621	0,010
600	9,005	5,302	0,007

Table A.1 (continued)

Wavelength nm	$W_{ m X}$	$W_{ m Y}$	W_{Z}
610	8,380	4,168	0,003
620	7,111	3,147	0,001
630	5,300	2,174	0,000
640	3,669	1,427	0,000
650	2,320	0,873	0,000
660	1,333	0,492	0,000
670	0,683	0,250	0,000
680	0,356	0,129	0,000
690	0,162	0,059	0,000
700	0,077	0,028	0,000
710	0,038	0,014	0,000
720	0,018	0,006	0,000
730	0,008	0,003	0,000
740	0,004	0,001	0,000
750	0,002	0,001	0,000
760	0,001	0,000	0,000
770	0,000	0,000	0,000
780	0,000	0,000	0,000
Check sum	98,074	99,999	118,231
White point	98,074	100,000	118,232

Table A.2 — Weighting functions (C/2°) for instruments without bandpass correction and measuring at 20 nm intervals (Source: ASTM E308)

Wavelength	W_{X}	$W_{ m Y}$	$W_{ m Z}$
nm	VV X	VV Y	N Z
360	0,000	0,000	0,000
380	0,066	0,000	0,311
400	-0,164	0,001	-0,777
420	2,373	0,044	11,296
440	8,595	0,491	42,561
460	6,939	1,308	39,899
480	2,045	3,062	18,451
500	-0,217	6,596	4,728
520	0,881	12,925	1,341
540	5,406	18,650	0,319
560	11,842	20,143	0,059
580	17,169	16,095	0,028
600	18,383	10,537	0,013
620	14,348	6,211	0,002
640	7,148	2,743	0,000

Table A.2 (continued)

Wavelength	$W_{ m X}$	$W_{ m Y}$	W_{Z}
nm	VV X	VV Y	NN Z
660	2,484	0,911	0,000
680	0,600	0,218	0,000
700	0,136	0,049	0,000
720	0,031	0,011	0,000
740	0,006	0,002	0,000
760	0,002	0,001	0,000
780	0,000	0,000	0,000
Check sum	98,073	99,998	118,231
White point	98,074	100,000	118,232

Table A.3 — Weighting functions (C/2°) for instruments with bandpass correction and measuring at 10 nm intervals (Source: ASTM E308)

Wavelength	W_{X}	$W_{ m Y}$	W_{Z}
nm	VV X	VVY	VV Z
360	0,000	0,000	0,000
370	0,001	0,000	0,0040
380	0,004	0,000	0,017
390	0,018	0,001	0,084
400	0,076	0,002	0,358
410	0,325	0,009	1,547
420	1,292	0,038	6,207
430	2,968	0,123	14,496
440	3,959	0,261	18,860
450	3,931	0,443	20,728
460	3,360	0,692	19,286
470	2,283	1,061	15,022
480	1,116	1,612	9,479
490	0,363	2,358	5,286
500	0,048	3,414	2,868
510	0,092	4,842	1,512
520	0,578	6,449	0,720
530	1,519	7,936	0,381
540	2,786	9,145	0,195
550	4,285	9,831	0,086
560	5,877	9,834	0,038
570	7,323	9,148	0,020
580	8,414	7,990	0,015
590	8,985	6,629	0,010
600	8,958	5,321	0,007
610	8,324	4,177	0,003

Table A.3 (continued)

Wavelength	$W_{ m X}$	$W_{ m Y}$	W_{Z}
nm	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,	
620	7,055	3,146	0,000
630	5,327	2,196	0,000
640	3,692	1,442	0,000
650	2,352	0,887	0,000
660	1,360	0,503	0,000
670	0,713	0,261	0,000
680	0,364	0,132	0,000
690	0,172	0,062	0,000
700	0,080	0,029	0,000
710	0,039	0,014	0,000
720	0,019	0,007	0,000
730	0,009	0,003	0,000
740	0,004	0,001	0,000
750	0,002	0,001	0,000
760	0,001	0,000	0,000
770	0,000	0,000	0,000
780	0,000	0,000	0,000
Check sum	98,074	100,0000	118,230
White point	98,074	100,000	118,232

Table A.4 — Weighting functions (C/2°) for instruments with bandpass correction and measuring at 20 nm intervals (Source: ASTM E308)

Wavelength	W_{X}	$W_{ m Y}$	W_{Z}
nm	W X	VV Y	VV Z
360	-0,001	0,000	-0,006
380	-0,011	0,000	-0,054
400	-0,089	-0,001	0,393
420	2,191	0,085	14,033
440	7,649	0,511	38,518
460	6,641	1,382	38,120
480	2,364	3,206	19,564
500	0,069	6,910	5,752
520	1,198	12,876	1,442
540	5,591	18,258	0,357
560	11,750	19,588	0,073
580	16,794	15,991	0,026
600	17,896	10,696	0,013
620	14,018	6,261	0,003
640	7,457	2,902	0,000
660	2,746	1,008	0,000

Table A.4 (continued)

Wavelength	W_{X}	$W_{ m Y}$	$W_{\rm Z}$
nm	, , , , , , , , , , , , , , , , , , ,	, , , ,	W Z
680	0,712	0,257	0,000
700	0,153	0,055	0,000
720	0,034	0,012	0,000
740	0,007	0,003	0,000
760	0,002	0,001	0,000
780	0,000	0,000	0,000
Check sum	98,077	100,001	118,234
White point	98,074	100,000	118,232

Bibliography

- [1] ISO 187, Paper, board and pulps Standard atmosphere for conditioning and testing and procedure for monitoring the atmosphere and conditioning of samples
- [2] ISO 11664-1:2007(E)/CIE S014-1/E:2006 Joint ISO/CIE Standard: Colorimetry Part 1: CIE Standard Colorimetric Observers
- [3] ISO 11664-2:2007(E)/CIE S014-2/E:2006 Joint ISO/CIE Standard: *Colorimetry Part 2: CIE Standard Illuminants*
- [4] CIE S017/E:2011 ILV:International Lighting Vocabulary, CIE Central Bureau, Kegelgasse 27, A-1030 Vienna, Austria
- [5] ERB W., & KRYSTEK K. Truncation error in colorimetric computations, Col. Res. Appl. 8, No. 1, 1983
- [6] ISO 11664-3:2012(E)/CIE S014-3/E:2011 Joint ISO/CIE Standard: *Colorimetry Part 3: CIE Tristimulus Values*
- [7] ISO 11664-4:2008(E)/CIE S014-4/E:2007 Joint ISO/CIE Standard: Colorimetry Part 4: $1976 L^*a^*b^*$ Colour Space

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

Revisions

Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services

Tel: +44 845 086 9001

Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions

Tel: +44 845 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

Email: knowledgecentre@bsigroup.com

Copyright & Licensing

Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

