BS ISO 4939:2016 ## **BSI Standards Publication** Steel — Determination of nickel — Dimethylglyoxime spectrophotometric method BS ISO 4939:2016 BRITISH STANDARD #### National foreword This British Standard is the UK implementation of ISO 4939:2016. It supersedes BS 6200-3.20.3:1985 which is withdrawn. The UK participation in its preparation was entrusted to Technical Committee ISE/102, Methods of Chemical Analysis for Iron and Steel. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2016. Published by BSI Standards Limited 2016 ISBN 978 0 580 81536 2 ICS 77.080.01 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 29 February 2016. Amendments/corrigenda issued since publication Date Text affected ## INTERNATIONAL STANDARD ISO 4939:2016 ISO 4939 Second edition 2016-02-01 # Steel — Determination of nickel — Dimethylglyoxime spectrophotometric method $\label{eq:continuity} A \textit{ciers} \leftarrow \textit{D\'etermination du nickel} \leftarrow \textit{M\'ethode spectrophotom\'etrique} \\ \text{\`a la dim\'ethylglyoxime}$ BS ISO 4939:2016 ISO 4939:2016(E) #### **COPYRIGHT PROTECTED DOCUMENT** $\, @ \,$ ISO 2016, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Contents | | | | | | |----------|---------------------------|---|--------|--|--| | Fore | word | | iv | | | | 1 | Scop | ne | 1 | | | | 2 | Normative references | | | | | | 3 | Principle | | | | | | 4 | Reagents | | | | | | _ | · · | | | | | | 5 | Apparatus | | | | | | 6 | • | pling | | | | | 7 | 7.1
7.2
7.3
7.4 | Test portion Blank test Determination 7.3.1 Preparation of the test solution 7.3.2 Colour development 7.3.3 Preparation of the compensating solution 7.3.4 Spectrophotometric measurement Establishment of the calibration curve 7.4.1 Preparation of the calibration solutions 7.4.2 Spectrophotometric measurement 7.4.3 Calibration curves | | | | | 8 | Expr | ression of results | 4 | | | | 9 | Prec
9.1
9.2
9.3 | ision General Repeatability Reproducibility | 5
5 | | | | 10 | Test | report | 5 | | | | Anne | x A (in | formative) Additional information on the international interlaboratory test | 7 | | | | | - | formative) Graphical representation of precision data | | | | | | _ | ny | | | | #### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information. The committee responsible for this document is ISO/TC 17, *Steel*, Subcommittee SC 1, *Methods of determination of chemical compound*. This second edition cancels and replaces the first edition (ISO 4939:1984), which has been technically revised. In particular, the specification of plotting of the calibration graphs shown in 7.4.3 has been corrected. ## Steel — Determination of nickel — Dimethylglyoxime spectrophotometric method #### 1 Scope This International Standard specifies a spectrophotometric method for the determination of nickel in steel using dimethylglyoxime. The method is applicable to the determination of nickel mass fractions in the range of 0.10 % and 2.0 %. Cobalt, copper and manganese can cause interferences (see 7.3.2). #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 648, Laboratory glassware — Single-volume pipettes ISO 1042, Laboratory glassware — One-mark volumetric flasks ISO 3696, Water for analytical laboratory use — Specification and test methods ISO 14284, Steel and iron — Sampling and preparation of samples for the determination of chemical composition #### 3 Principle Dissolution of a test portion in hydrochloric, nitric and perchloric acids. $Formation \ of a \ coloured \ complex \ of \ nickel (lll) \ with \ dimethylgly oxime \ in \ ammonia cal \ solution \ containing \ iodine \ and \ potassium \ iodide.$ Spectrophotometric measurement at a wavelength of about 535 nm. #### 4 Reagents During the analysis, unless otherwise stated, use only reagents of recognized analytical grade and only grade 2 water as specified in ISO 3696. #### 4.1 Acid mixture. Mix two volumes of hydrochloric acid, ρ approximately 1,19 g/ml, one volume of nitric acid, ρ approximately 1,40 g/ml and two volumes of water. #### **4.2 Perchloric acid**, ρ approximately 1,54 g/ml. WARNING — Perchloric acid vapour might cause explosions in the presence of ammonia, nitrous fumes or organic material in general. Perchloric acid, ρ approximately 1,67 g/ml, may also be used. 100 ml of perchloric acid, ρ approximately 1,54 g/ml is equivalent to 79 ml of perchloric acid, ρ approximately 1,67 g/ml. #### **4.3 Ammonium citrate**, 250 g/l solution. Dissolve 250 g of citric acid monohydrate ($C_6H_8O_7 \cdot H_2O$) in 250 ml of ammonia solution, ρ approximately 0,91 g/ml, cool, dilute to 1 l with water and mix. #### **4.4 Iodine**, 12,7 g/l solution. Dissolve 25 g of potassium iodide and 12,7 g of iodine in the minimum volume of water. Dilute to 1 l with water and mix. #### **4.5 Dimethylglyoxime**, 1 g/l solution. Dissolve 1 g of dimethylglyoxime in 500 ml of ammonia solution, ρ approximately 0,91 g/ml, dilute to 1 l with water and mix. #### **4.6 Ammonia solution**, ρ approximately 0,91 g/ml, diluted 1 + 1. #### **4.7** Nickel standard solution, 0,5 g/l. Weigh, to the nearest 0,001 g, 0,500 g of high purity nickel [purity > 99,95 % (mass fraction)] and dissolve in 20 ml of nitric acid, ρ approximately 1,40 g/ml, diluted 2 + 3. Heat to boiling to remove nitrous fumes. Cool and transfer the solution quantitatively to a 1 000 ml one-mark volumetric flask, dilute to the mark with water and mix. 1 ml of this standard solution contains 0,5 mg of nickel. #### 5 Apparatus All volumetric glassware shall be Class A, in accordance with ISO 648 and ISO 1042. Ordinary laboratory apparatus and the following shall be used. **Spectrophotometer**, suitable for measuring the absorbance of the solution at a wavelength of 535 nm with cells of 1 cm or 4 cm optical path length. #### 6 Sampling Carry out sampling in accordance with ISO 14284 or appropriate national standards for steel. #### 7 Procedure #### 7.1 Test portion Weigh, to the nearest 0,001 g, approximately 0,5 g of the test sample. #### 7.2 Blank test In parallel with the determination and following the same procedure, carry out a blank test using the same quantities of all the reagents except the test portion. #### 7.3 Determination #### 7.3.1 Preparation of the test solution Introduce the test portion (7.1) into a 250 ml beaker. Add 10 ml of acid mixture (4.1) and 10 ml of perchloric acid (4.2). Cover the beaker with a watch-glass and heat until acids action ceases. Evaporate until white fumes of perchloric acid appear and continue fuming at a temperature suitable to maintain a steady reflux of perchloric acid fumes on the walls of the beaker for at least 3 min and until any chromium is oxidized to chromate. Remove from the source of heat and allow to cool. Add 50 ml of water, heat to dissolve salts, cool and transfer quantitatively to a 250 ml one-mark volumetric flask. Dilute to the mark with water and mix. Filter by decantation through a dry filter to remove any residue or precipitate and collect the filtrate in a dry beaker, discarding the first fractions of the filtrate. #### 7.3.2 Colour development Transfer a 25 ml aliquot portion of the test solution (7.3.1) to a 100 ml one-mark volumetric flask. If the test solution (7.3.1) contains cobalt, copper or manganese, the aliquot portion taken should be such that the respective contents of these elements do not exceed the following limits: cobalt, 5 mg; copper, 0,5 mg; manganese, 1 mg. Add 20 ml of the ammonium citrate solution (4.3), mix, then add 3 ml of the iodine solution (4.4) and mix again. Allow to stand for 5 min. Add 20 ml of the dimethylglyoxime solution (4.5), dilute to the mark with water and mix. Allow to stand for at least 10 min and at most 20 min at a temperature of 20 °C \pm 5 °C. #### 7.3.3 Preparation of the compensating solution Transfer a 25 ml aliquot portion of the test solution (7.3.1) to another 100 ml volumetric flask. Add 20 ml of the ammonium citrate solution (4.3), mix, then add 3 ml of the iodine solution (4.4) and mix again. Allow to stand for 5 min. Add 20 ml of the ammonia solution (4.6), dilute to the mark with water and mix. Allow to stand for at least 10 min and at most 20 min at a temperature of 20 °C ± 5 °C. #### 7.3.4 Spectrophotometric measurement Carry out the spectrophotometric measurement of the test solution at a wavelength of about 535 nm in a cell of appropriate optical path length (1 cm or 4 cm) after having adjusted the spectrophotometer (Clause 5) to zero absorbance with the corresponding compensating solution (7.3.3). #### 7.4 Establishment of the calibration curve #### 7.4.1 Preparation of the calibration solutions Introduce into a series of 250 ml beakers containing 10 ml of the acid mixture (4.1) and 10 ml of perchloric acid (4.2), the volumes of the nickel standard solution (4.7) indicated in Table 1, as appropriate for the expected nickel content. Treat as described in 7.3.1 and 7.3.2, using the calibration solution "0" as the compensating solution. | Nickel content % (mass fraction) | Nickel standard
solution (4.7)
ml | Nickel
concentration in
the solution for
spectrophotometric
measurement
µg/ml | Cell optical
path length
cm | |----------------------------------|--|--|-----------------------------------| | 0,1 to 0,5 | 0
1,0
2,0
3,0
4,0
5,0 | 0
0,5
1,0
1,5
2,0
2,5 | 4 | | 0,5 to 2,0 | 0
4,0
6,0
8,0
10,0
14,0
16,0
20,0 | 0
2,0
3,0
4,0
5,0
7,0
8,0
10,0 | 1 | #### 7.4.2 Spectrophotometric measurement Carry out spectrophotometric measurements of each solution at a wavelength of about 535 nm after having adjusted the spectrophotometer (<u>Clause 5</u>) to zero absorbance with the calibration solution "0" (<u>7.4.1</u>) used as the compensating solution. #### 7.4.3 Calibration curves For each range of nickel content and appropriate optical path length of the cells (see <u>Table 1</u>), establish the corresponding calibration graph by plotting the net absorbance values against the nickel concentrations, expressed in micrograms per millilitre, in the calibration solutions. #### 8 Expression of results Convert the absorbance (7.3.4) into the corresponding concentration, expressed in micrograms of nickel per millilitre, in the colour-developed test solution by using the calibration curve (7.4.3). The nickel content (C_{Ni}), expressed as a (%) mass fraction, is given by Formula (1), Formula (2) and Formula (3): $$C_{\text{Ni}} = \left(\rho_{\text{Ni1}} - \rho_{\text{Ni0}}\right) \times \frac{1}{10^6} \times \frac{V_0}{V_1} \times \frac{V_t}{m} \times 100 \tag{1}$$ $$C_{\text{Ni}} = \left(\rho_{\text{Ni1}} - \rho_{\text{Ni0}}\right) \times \frac{1}{10^6} \times \frac{250}{25} \times \frac{100}{m} \times 100 \tag{2}$$ $$C_{\text{Ni}} = \left(\rho_{\text{Ni1}} - \rho_{\text{Ni0}}\right) \times \frac{1}{10m} \tag{3}$$ where *m* is the mass of the test portion (7.1), in grams; V_0 is the volume of the test solution (7.3.1), in millilitres; - V_1 is the volume of the aliquot portion (7.3.2), in millilitres,; - $V_{\rm t}$ is the volume of the colour-developed test solution (7.3.2), in millilitres; - ρ_{Ni0} is the concentration of nickel in the blank test solution (corrected for its compensating solution), expressed in micrograms per millilitre; - ρ_{Ni1} is the concentration of nickel in the test solution (corrected for its compensating solution), expressed in micrograms per millilitre. #### 9 Precision #### 9.1 General A planned trial of this method was carried out by five laboratories, at six levels of nickel, each laboratory making six determinations of nickel at each level. The results obtained were treated statistically in accordance with ISO 5725:1986[1]. The obtained data showed a logarithmic relationship between nickel content and repeatability and reproducibility of the test results. Table 2 shows the smoothed data derived from these relationships. The graphic presentation of the precision data is given in $\underline{\text{Annex B}}$. | Nickel content | Repeatability limit | Reproducibility limit | | |-------------------|---------------------|-----------------------|--| | % (mass fraction) | r | R | | | 0,1 | 0,010 | 0,013 | | | 0,2 | 0,013 | 0,018 | | | 0,5 | 0,019 | 0,027 | | | 1,0 | 0,025 | 0,038 | | | 2,0 | 0,034 | 0,053 | | Table 2 — Repeatability and reproducibility limits #### 9.2 Repeatability The difference between two single and independent results obtained on identical test material by one analyst using the same apparatus within a short time interval in the normal and correct operation of the test method will exceed the repeatability, r, only in one case in 20 cases. #### 9.3 Reproducibility The difference between two single and independent results obtained by two operators working in different laboratories on identical test material in the normal and correct operation of the test method will exceed the reproducibility, *R*, only in one case in 20 cases. #### 10 Test report The test report shall include the following information: - a) all information necessary for the identification of the sample, the laboratory and the date of analysis; - b) method used by reference to this International Standard, i.e. ISO 4939; - c) results and unit in which they are expressed; - d) any unusual features noted during the determination; ## BS ISO 4939:2016 **ISO 4939:2016(E)** ### Annex A (informative) ### Additional information on the international interlaboratory test <u>Table 2</u> has been derived from the results of the international trial carried out in 1979 on six steel samples in two countries involving five laboratories. The results of the trials were reported in document 17/1 N 433, November 1980. The test samples used are shown in Table A.1. Table A.1 — Test samples | | Sample | Nickel content
% (mass fraction) | | |-----------|---------------------------|-------------------------------------|---------| | | • | Certified | Found | | BCS 260/4 | (high purity iron) | 0,003 | 0,005 5 | | BCS 431 | (plain carbon steel) | 0,069 | 0,066 4 | | BCS 341 | (24 % Cr stainless steel) | 0,56 | 0,556 | | BCS 226/2 | (Ni-Cr-Mo steel) | 1,43 | 1,434 | | BCS 406 | (low alloy steel) | 1,69 | 1,690 | | BCS 410 | (low alloy steel) | 2,04 | 2,034 | NOTE 1 The statistical analysis was performed in accordance with ISO 5725:1986[1]. NOTE 2 Six samples were used for the international interlaboratory test. However, as the method is applicable to nickel mass fraction between 0,10 % and 2,0 %, only five points have been illustrated on the figure in $\frac{Annex\ B}{Annex\ B}$, the data for sample BCS 260/4 (Ni mass fraction: 0,003 %) have been omitted. ## Annex B (informative) ## Graphical representation of precision data #### Key X nickel content, % (mass fraction) Y precision, % (mass fraction) $\lg r = 0.4079 \lg W_{Ni} - 1.597$ $\lg R = 0.4677 \lg W_{Ni} - 1.420$ Figure B.1 — Logarithmic relationship between nickel content (w_{Ni}) and repeatability (r) and reproducibility (R) ## **Bibliography** $[1] \hspace{0.5cm} \textbf{ISO 5725:1986,} \\ \textbf{^{1)}} \textit{Precision of test methods} \leftarrow \textit{Determination of repeatability and reproducibility for a standard test method by inter-laboratory tests}$ ¹⁾ Withdrawn. (Replaced with the ISO 5725 series.) ## British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### Revisions Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com