Petroleum and liquid petroleum products — Measurement of level and temperature in storage tanks by automatic methods — Part 1: Measurement of level in atmospheric tanks ICS 75.180.30 #### National foreword This British Standard reproduces verbatim ISO 4266-1:2002 and implements it as the UK national standard. Together with BS ISO 4266:2002 Parts 2 to 6, it supersedes BS 7812:1995 which is withdrawn. The UK participation in its preparation was entrusted by Technical Committee PTI/12, Petroleum measurement and sampling, to Subcommittee PTI/12/1, Static and dynamic petroleum measurement, which has the responsibility to: - aid enquirers to understand the text; - present to the responsible international/European committee any enquiries on the interpretation, or proposals for change, and keep the UK interests informed: - monitor related international and European developments and promulgate them in the UK. A list of organizations represented on this subcommittee can be obtained on request to its secretary. #### **Cross-references** The British Standards which implement international publications referred to in this document may be found in the $BSI\ Catalogue$ under the section entitled "International Standards Correspondence Index", or by using the "Search" facility of the $BSI\ Electronic\ Catalogue$ or of British Standards Online. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. Compliance with a British Standard does not of itself confer immunity from legal obligations. This British Standard, having been prepared under the direction of the Materials and Chemicals Sector Policy and Strategy Committee, was published under the authority of the Standards Policy and Strategy Committee on 9 December 2002 #### Summary of pages This document comprises a front cover, an inside front cover, the ISO title page, pages ii to v, a blank page, pages 1 to 18, an inside back cover and a back cover. The BSI copyright date displayed in this document indicates when the document was last issued. #### Amendments issued since publication | Amd. No. | Date | Comments | |----------|------|----------| | | | | | | | | | | | | | | | | © BSI 9 December 2002 ISBN 0 580 40917 1 # INTERNATIONAL STANDARD ISO 4266-1 First edition 2002-11-15 # Petroleum and liquid petroleum products — Measurement of level and temperature in storage tanks by automatic methods — ### Part 1: # Measurement of level in atmospheric tanks Pétrole et produits pétroliers liquides — Mesurage du niveau et de la température dans les réservoirs de stockage par méthodes automatiques — Partie 1: Mesurage du niveau dans les réservoirs à pression atmosphérique | Contents | Page | |------------------------------------------------------------------|------| | 1 Scope | 1 | | 2 Normative references | 1 | | 3 Terms and definitions | 1 | | 4 Precautions | 3 | | 4.1 Safety precautions | 3 | | 4.2 Equipment precautions | 3 | | 4.3 General precautions | 3 | | 5 Accuracy | 4 | | 5.1 Intrinsic error of ALGs | 4 | | 5.2 Calibration prior to installation | 4 | | 5.3 Error caused by installation and operating conditions | 4 | | 5.4 Overall accuracy | 4 | | <b>5.4.1</b> General | 4 | | <b>5.4.2</b> Use of ALGs for fiscal /custody transfer purposes | 5 | | 6 Installation of ALGs | 5 | | <b>6.1</b> General | 5 | | 6.2 Mounting location | 5 | | 6.3 Manufacturer's requirements | 5 | | 6.4 Installation | 5 | | 6.5 Still-well design | 11 | | 7 Initial setting and initial verification of ALGs in the field | 11 | | 7.1 Introduction | 11 | | 7.2 General precautions | 12 | | 7.2.1 Initial requirements | 12 | | 7.2.2 Manual reference level measurement procedure | 12 | | 7.2.3 Reference measurement tape and weight certification | 12 | | 7.2.4 Effect of weather | 12 | | 7.2.5 ALG technology-specific considerations | 12 | | 7.2.6 Application-specific considerations | 12 | | 7.3 Initial settings of ALGs | 13 | | 7.3.1 Setting against manual reference ullage measurements | 13 | | 7.3.2 Setting against manual reference dip (innage) measurements | 13 | | 7.4 Initial verification | 14 | | 7.4.1 Introduction | 14 | | 7.4.2 Verification conditions | 15 | | 7.4.3 Initial verification procedures | 15 | | 7.5 Record keeping | 16 | | 8 Subsequent verification of ALGs | 17 | | 8.1 General | 17 | | 8.2 Frequency of subsequent verification | | 17 | |------------------------------------------|-----------------------------------------|----| | 8.3 | Procedure for subsequent verification | 17 | | 8.4 | 1 Tolerance for subsequent verification | 17 | | 9 | Data communication and receiving | 17 | | Bib | oliography | 18 | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this part of ISO 4266 may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. International Standard ISO 4266-1 was prepared by Technical Committee ISO/TC 28, *Petroleum products and lubricants*, Subcommittee SC 3, *Static petroleum measurement*. ISO 4266-1, together with ISO 4266-2 to ISO 4266-6, cancels and replaces ISO 4266:1994, which has been technically revised. ISO 4266 consists of the following parts, under the general title *Petroleum and liquid petroleum products* — *Measurement of level and temperature in storage tanks by automatic methods*: - Part 1: Measurement of level in atmospheric tanks - Part 2: Measurement of level in marine vessels - Part 3: Measurement of level in pressurized storage tanks (non-refrigerated) - Part 4: Measurement of temperature in atmospheric tanks - Part 5: Measurement of temperature in marine vessels - Part 6: Measurement of temperature in pressurized storage tanks (non-refrigerated) # Petroleum and liquid petroleum products — Measurement of level and temperature in storage tanks by automatic methods — #### Part 1: ## Measurement of level in atmospheric tanks #### 1 Scope This part of ISO 4266 gives guidance on the accuracy, installation, commissioning, calibration and verification of automatic level gauges (ALGs), of both intrusive and non-intrusive types, for measuring the level of petroleum and petroleum products having a Reid vapour pressure less than 100 kPa, stored in atmospheric storage tanks. This part of ISO 4266 is not applicable to the measurement of level in refrigerated storage tanks with ALG equipment. #### 2 Normative references The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO 4266. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO 4266 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards. ISO 1998 (all parts) Petroleum industry — Terminology ISO 4512:2000, Petroleum and liquid petroleum products — Equipment for measurement of liquid levels in storage tanks — Manual methods #### 3 Terms and definitions For the purposes of this part of ISO 4266, the terms and definitions given in ISO 1988, and the the following, apply. #### 3.1 #### anchor weight weight to which the detecting element guide wires of an automatic level gauge are attached to hold them taut and vertical #### 3.2 #### automatic level gauge **ALG** automatic tank gauge ATG instrument that continuously measures liquid height (dip or ullage) in storage tanks #### 3.3 dip innage vertical distance between the dipping datum point and the liquid level #### 3.4 #### dipping datum plate dipping datum point dip-plate horizontal metal plate located directly below the gauging reference point to provide a fixed contact surface from which manual liquid-depth measurements are made #### 3.5 #### dip-tape graduated steel tape with a tensioning dip-weight used for measuring the depth of oil or water in a tank, either directly by dipping or indirectly by ullaging #### 3.6 #### gauge-hatch gauging access point dip-hatch opening in the top of a tank through which gauging and sampling operations may be carried out #### 3.7 #### gauging reference point reference gauge point point clearly defined on the gauge hatch directly above the dipping datum point to indicate the position (and upper datum) from which manual dipping or ullaging should be carried out #### 3.8 #### innage-based ALGs ALGs designed and installed to measure the liquid dip, with an integral reference point at or close to the tank bottom, referenced to the dipping datum-plate #### 3.9 #### intrusive ALG ALG where the level-sensing device intrudes within the tank and makes physical contact with the liquid, e.g. float and servo-operated-type ALGs #### 3.10 #### non-intrusive ALG ALG where the level-sensing device may intrude within the tank, but does not make physical contact with the liquid, e.g. microwave or radar-type ALGs #### 3.11 #### still-well stilling-well still-pipe guide pole vertical, perforated pipe built into a tank to reduce measurement errors arising from liquid turbulence, surface flow or agitation of the liquid #### 3.12 #### ullage outage distance between the liquid level and the gauging reference point, measured along the vertical measurement axis #### 3.13 #### ullage-based ALGs ALGs designed and installed to measure the ullage distance from the upper ALG reference point to the liquid surface #### 4 Precautions #### 4.1 Safety precautions International Standards and government regulations on safety and material-compatibility precautions should be followed when using ALG equipment. In addition, the manufacturers' recommendations on the use and installation of the equipment should be followed. All regulations covering entry into hazardous areas should be observed. #### 4.2 Equipment precautions - **4.2.1** All of the ALG equipment should be capable of withstanding the pressure, temperature, operating and environmental conditions likely to be encountered in service. - **4.2.2** ALGs should be certified for use in the hazardous-area classification appropriate to their installation. - **4.2.3** Measures should be taken to ensure that all exposed metal parts of the ALG have the same electrical potential as the tank. - **4.2.4** All ALG equipment should be maintained in safe operating condition and the manufacturers' maintenance instructions should be complied with. - NOTE 1 The design and installation of ALGs may be subject to the approval of a national measurement organization, who will normally have issued a type approval for the design of the ALG for the particular service for which it is to be employed. Type approval is normally issued after an ALG has been subjected to a specific series of tests and is subject to the ALG being installed in an approved manner. - NOTE 2 Type-approval tests may include the following: visual inspection, performance, vibration, humidity, dry heat, inclination, fluctuations in power supplies, insulation, resistance, electromagnetic compatibility, and high voltage. #### 4.3 General precautions - **4.3.1** The general precautions given in 4.3.2 to 4.3.8 apply to all types of ALGs and should be observed where they are applicable. - **4.3.2** Tank temperatures should be measured at the same time as the tank level is measured. The tank temperature should be representative of the tank contents. - **4.3.3** Levels measured for bulk transfer should be recorded promptly when they are taken. - **4.3.4** Whenever determinations of the contents of a tank are made before the movement of a bulk quantity of liquid (opening gauge) and after the movement of a bulk quantity of liquid (closing gauge), the same general procedures should be used to measure the tank level. - **4.3.5** All parts of the ALG in contact with the product or its vapour should be chemically compatible with the product, to avoid both product contamination and corrosion of the ALG. - **4.3.6** ALGs should have sufficient dynamic response to track the liquid level during maximum tank filling or emptying rates. - **4.3.7** Following the transfer of product, the tank should be allowed to settle before the tank level is measured. - **4.3.8** ALGs should provide security to prevent unauthorized adjustment or tampering. ALGs used in fiscal/custody transfer applications should provide facilities to allow sealing for calibration adjustment #### 5 Accuracy #### 5.1 Intrinsic error of ALGs The level measurement accuracy of all ALGs is affected by the intrinsic error of the ALG, i.e. the error of the ALGs when tested under controlled conditions as specified by the manufacturers. #### 5.2 Calibration prior to installation The reading of the ALG to be used in a fiscal/custody transfer application should agree with a certified reference (e.g. a certified gauge tape) within $\pm$ 1 mm over the entire range of the ALG. The certified reference should be traceable to national standards and should be provided with a calibration correction table. The uncertainty of the reference should not exceed 0,5 mm, with the calibration correction applied. NOTE Metrology requirements for uncertainty of the calibration reference may be more stringent. #### 5.3 Error caused by installation and operating conditions The total error of the ALG in a fiscal/custody conditions transfer application should not be affected by more than $\pm$ 3 mm due to installation, due to variation of operating conditions and due to variation of physical and electrical properties of the liquid and/or vapour, provided these conditions are within the limits specified by the ALG manufacturer. NOTE 1 The accuracy of measurements using ullage-based ALGs is limited by vertical movement of the gauging reference point used to calibrate the ALG or vertical movement of the ALG top mounting point during tank transfers. The accuracy may be affected by tank-shell bulging due to liquid head stress. Any vertical movement of the gauging reference point due to liquid head stress of the tank shell may be compensated by a correction in the ALG. NOTE 2 The accuracy of measurements using innage-based ALGs may be limited by any vertical movement of the dipping datum plate used to calibrate the ALG, or vertical movement of the ALG bottom mounting point during tank transfers. NOTE 3 Volume measurements using tanks are limited by the following installed accuracy limitations, regardless of the ALGs used. These limitations may have a significant effect on the overall accuracy of both manual level gauging and of all types of automatic level gauges, and/or on the accuracy of the quantity of the content in the tank. - a) Tank capacity table accuracy (including the effect of tank tilt and hydrostatic pressure). - b) Bottom movement. - c) Encrustation of the tank shell. - d) Expansion of the tank diameter due to temperature. - e) Random and systematic errors in level, density, and temperature measurements. - f) Operational procedures used in the transfer. - g) Minimum difference between opening and closing levels (parcel size). #### 5.4 Overall accuracy #### 5.4.1 General The overall accuracy of level measurement by ALGs, as installed, is limited by the intrinsic error of the ALG equipment, the effect of installation methods, and the effect of the operating conditions. NOTE Depending on the overall accuracy of the ALG as installed ("installed accuracy"), ALGs may be used for fiscal/custody transfer purposes. The use of ALGs in fiscal/custody transfer applications requires the highest possible accuracy. The use of ALGs for other (i.e. stock control or for plant or terminal operations) purposes often permits a lower degree of accuracy. #### 5.4.2 Use of ALGs for fiscal/custody transfer purposes The ALG should meet the calibration tolerance prior to installation (see 5.2). Including the effects of installation methods and changes in operating conditions (see 5.3), the ALG should meet the field verification tolerance (see 7.4.3.3). The remote readout, if used, should meet the recommendations of this part of ISO 4266 (see clause 9). #### 6 Installation of ALGs #### 6.1 General Clauses 6.2 to 6.5 outline recommendations and precautions for the installation of ALGs. #### 6.2 Mounting location The mounting location of an ALG may affect the installed accuracy. For fiscal/custody transfer accuracy, the ALG mounting location should be stable, with minimal vertical movement under all practical operating conditions (e.g. due to changes in liquid head, vapour pressure and loading of the roof or gauging platform, etc.). (See 6.5.) #### 6.3 Manufacturer's requirements The ALG and level transmitter should be installed and wired in accordance with the manufacturer's instructions. #### 6.4 Installation - **6.4.1** For fiscal/custody transfer accuracy, an ullage ALG should be mounted on a properly supported, perforated still-well, as illustrated in Figures 1 and 2. - **6.4.2** As an alternative, an ullage-based ALG may be mounted on the roof or on a "gallows" supported from the top course of the shell. The ALG's calculation procedure for liquid level should include a means which compensates or corrects for movement of the ALG with respect to the gauging reference point (due to liquid height and temperature). Various types of "gallows" designs are used. An example of this type of installation is shown in Figure 3. Installation of some other ullage-based ALGs may involve a mounting attached to the outside of the tank shell near the tank bottom. An example of this type of installation is shown in Figure 4. NOTE An ALG may include a programme to compensate or correct for the movement of the ALG due to liquid height and temperature. - **6.4.3** Innage-based ALGs should be mounted at a stable location at the tank bottom where any effects due to liquid turbulence and/or tank bottom movement will be minimized. An example of this type of installation is shown in Figure 5. - **6.4.4** Where possible, the ALG should be located in close proximity to the manual gauge-hatch and should be accessible from the gauger's platform so that the ALG's accuracy can be easily verified by manual gauging. The ALG mounting and the gauging reference point of the manual gauging hatch should be rigidly connected to avoid errors due to differential and unpredictable movement. a) Installation of top-mounted ALGs on fixed-roof tanks with still-well b) Installation of top-mounted ALGs on external floating-roof tanks or on internal floating-roof tanks with still-well - 1 Flexible weather seal - 2 See note 1 - 3 Automatic level gauge (ALG) attached to top of still-well - 4 Perforated still-well sliding guide - 5 Perforated still-well (see notes 1 and 5) - 6 Level-detecting element (see note 2) - 7 Datum plate (see note 4) - 8 Perforated still-well (see notes 1 and 3) - Pontoon - NOTE 1 Separate still-well(s) for manual gauging and temperature measurement may be installed adjacent to the ALG still-well. - NOTE 2 Typical for some intrusive ALGs. Non-intrusive top-mounted ALGs can be installed in a similar way. - NOTE 3 Local environmental restrictions may require the use of non-perforated still-well(s) on external floating-roof (EFR) tanks, but this can result in serious gauging errors and have safety implications (risk of tank overflow) in certain circumstances (see 6.5.7). - NOTE 4 The datum plate should be mounted on the tank bottom located below the still-well, or attached to the still-well (as shown). - NOTE 5 An ALG may also be mounted on the stable section of the roof of a fixed-roof tank (not shown in this figure). Figure 1 — Example of an ALG (intrusive or non-intrusive) mounted on a still-well supported by the tank bottom a) Installation of top-mounted ALGs on fixed-roof tanks with still-well b) Installation of top-mounted ALGs on external floating-roof tanks or on internal floating-roof tanks with still-well - 1 Datum plate (see note 5) - 2 Still-well sliding guide and weather seal - 3 See note 1 - 4 Automatic level gauge (ALG) attached to top of still-well - 5 Still-well sliding guide) - 6 Perforated still-well (see notes 1 and 3) - 7 Level-detecting element (see note 2) - 8 See note 4 - 9 Pontoon - NOTE 1 Separate still-wells for manual gauging and temperature measurement may be installed adjacent to the ALG still-well. - NOTE 2 Typical for some intrusive ALGs. Non-intrusive, top-mounted level ALGs can be installed in a similar way. - NOTE 3 Local environmental restrictions may require the use of non-perforated still-well(s) on external floating-roof (EFR) tanks, but this can result in serious gauging errors and have safety implications (risk of tank overflow) in certain circumstances (see 6.5.7). - NOTE 4 As close to tank bottom as practical, typically 250 mm or less from the bottom. - NOTE 5 The datum plate should be attached to the still-well (as shown), or on the tank bottom plate. - NOTE 6 An ALG may also be mounted on the stable section of the roof of a fixed-roof tank (not shown in this figure). In order to minimize the vertical movement of the still-well due to hydrostatic deformation of the tank shell, it is recommended that the support bracket design decouples the stilling-well from the tank shell. Figure 2 — Example of an ALG (intrusive or non-intrusive) mounted on a still-well that is supported by a bracket hinged to the lower tank shell - 1 Bracket welded to upper ring-segment of tank - 2 Automatic level gauge (ALG) mounted on a bracket - 3 Flexible seal to prevent emission of vapour from tank (see note 2) - 4 Level-detecting element (see note 1) NOTE 1 Typical for some intrusive ALGs. Non-intrusive, top-mounted ALGs can be installed in a similar way. NOTE 2 Use of a flexible seal may be subject to environmental regulations. Figure 3 — Example of an ALG supported by a "gallows" #### Kev - 1 Anchor bar or weight - 2 Datum plate (see note 3) - 3 Guide wire - 4 Level-sensing element - 5 Perforated still-well (see notes 1 and 2) - 6 Sliding guides - 7 Pulley housing attached to top of still-well - 8 Sliding guides - 9 Automatic level gauge (ALG) attached to tank shell - 10 Bracket NOTE 1 A separate still-well for an automatic tank thermometer may be installed adjacent to the manual still-well. NOTE 2 Local environmental restrictions may require the use of non perforated still-well(s) on external floating-roof (EFR) tanks, but this can result in serious gauging errors and have safety implications (risk of tank overflow) in certain circumstances (see 6.5.7). NOTE 3 The dipping datum plate should be mounted on the tank bottom, located below the still-well or attached to the still-well (as shown). NOTE 4 The manual gauging still-well may alternatively be supported by a hinged trunnion arrangement, as shown in Figure 2. Figure 4 — Example of an intrusive ALG (displacement type) attached to the tank shell near the tank bottom - 1 ALG guided through gauger's platform - 2 ALG (see notes 1 et 3) - 3 Manual gauge hatch - 4 Floating roof - 5 Pontoon - 6 Level sensor - 7 ALG support - 8 Dipping datum plate NOTE 1 A still-well is often not required for innage ALGs, especially in small tanks. Where a still-well is provided for protection, for stability of mounting, and to minimize turbulence, it should be perforated (see 6.5.7). NOTE 2 A means to secure and support the innage ALG should be provided at the tank bottom. NOTE 3 An innage ALG should not be rigidly mounted on, nor supported from, the tank roof (fixed-roof tanks) or the gauger's platform (external floating-roof tanks). Instead, it should be guided through the roof and platform so that it remains vertical and is not affected by movement of the roof/platform due to tank-shell bulging with increasing hydrostatic head of the tank contents, and/or thermal expansion/contraction effects. Figure 5 — Example of an innage ALG supported on the tank bottom #### 6.5 Still-well design - **6.5.1** The still-well should be attached in either of the two ways described in 6.5.2 and 6.5.3. - **6.5.2** The still-well may be supported on the bottom of the tank. Figure 1a) is an example of an ALG mounted on a still-well supported on the floor of a fixed-roof tank. Figure 1b) is an example of an ALG mounted on a still-well supported on the floor of a floating-roof tank. NOTE When a tank is filled, the bottom of the tank may be deflected upwards by the angular deflection of the shell in the area immediately adjacent to the bottom joint. Further from the shell, the bottom may be deflected downwards. The amount of deflection depends on the soil conditions, the foundation design and the material and construction of the tank shell and bottom. In most cases, bulging of the shell ceases to cause bottom movement approximately 450 mm from the shell. For tank construction considerations, the still-well and its supports should be located beyond this distance (see Figures 1 and 2). **6.5.3** The still-well may be supported by a trunnion or hinge connected to the bottom course of the shell. The trunnion-supported still-well should be designed to minimize vertical movement. Figure 2a) is an example of an ALG mounted on a still-well supported by a trunnion on the shell of a fixed-roof tank. Figure 2b) shows an ALG mounted on a still-well supported by a trunnion on the shell of a floating-roof tank. In order to minimize the vertical movement of the still-well, due to hydrostatic deformation of the tank shell, it is recommended that the support bracket design decouples the still-well from the tank shell. **6.5.4** The upper end of the still-well and the sliding guide should be designed to allow vertical free movement of the still-well when the tank shell bulges or moves vertically. The construction of the still-well and the top guide should not restrict vertical movement of the tank roof. If the ALG level-detecting element is subjected to excessive turbulence, certain types of ALGs may be thrown out of calibration. When using these ALGs, the level-detecting element should be located far enough away from the tank inlet and outlet connections to minimize the effect of eddies, currents and turbulence. When this cannot be done, the level-detecting element should be protected by means of a still-well. Where tank mixers are installed, the ALG manufacturer should be consulted. - **6.5.5** The recommended minimum still-well diameter is 200 mm. Smaller diameter still-wells may be used depending on the type and design of the ALGs used. If smaller diameter still-wells are used, the design and construction should be checked for mechanical rigidity and strength. Larger diameter still-wells may be required to accommodate larger level-sensing elements for some types of ALGs. - **6.5.6** The distance from the bottom of the still-well to the bottom of the tank should be less than 300 mm. The top of the still-well should be above the maximum liquid level. - **6.5.7** The still-well should be perforated with one or two rows of slots or holes, about 25 mm wide. The perforations should continue above the maximum liquid level. The spacing between the perforations should be less than 300 mm, or as recommended by the manufacturer of the ALG. The still-well should be straight with internal burrs and welds removed. NOTE Use of still-wells without perforations can lead to serious level measurement errors. **6.5.8** After the tank has been hydrostatically tested, the still-well should remain vertical. #### 7 Initial setting and initial verification of ALGs in the field #### 7.1 Introduction The initial setting is the procedure by which the ALG reading is set equal to the average tank level determined by manual reference level measurement (at a single level). The initial verification is the procedure that verifies or confirms that the installed accuracy of the ALG is appropriate for the intended service. It is performed by comparing the ALG against manual reference level measurements with the liquid at three different levels. The differences between the manual and the ALG readings are evaluated. #### 7.2 General precautions #### 7.2.1 Initial requirements Prior to initial setting or initial verification of a new or repaired ALG, the tank should be allowed to stand at a constant level long enough for air or vapour to be released from the liquid and for the tank bottom to reach a stable position. New tanks should be filled and allowed to stand to minimize the errors caused by initial bottom settlement. The tank mixer should be turned off long enough before setting or verification, to allow the liquid to come to rest. The tank should be run through at least one operational cycle, filling and emptying the tank within normal working limits of filling and discharge rate. #### 7.2.2 Manual reference level measurement procedure When an ALG is set to level or verified by comparison with manual reference level measurement, the manual measurements should be performed to obtain the highest accuracy (see ISO 4512). Manual reference measurements should be performed by skilled operators. #### 7.2.3 Reference measurement tape and weight certification The measurement tape and weight used for ALG setting or verification should be a reference master tape/weight combination certified by an accredited calibration laboratory and traceable to a national measurement standard, or a working tape/weight combination that has been recently compared with a certified reference tape and weight meeting the maximum permissible error limits specified in ISO 4512. The calibration corrections for the tape/weight combination should be applied. #### 7.2.4 Effect of weather High winds, heavy rain, snow, or severe storms may cause movements of the tank shell, the ALG mounting and/or the liquid surface. These movements can influence both manual and ALG readings. The effect on manual gauging may be different from that on the ALG. Setting and verification should not be carried out under adverse weather conditions or at wind speeds exceeding 8 m/s. #### 7.2.5 ALG technology-specific considerations There may be additional technology-specific considerations which affect ALG verification. Specific, additional steps may be needed to prepare the ALG prior to the initial setting (see 7.3). Technology-specific considerations include, for example, the effect of physical and electrical properties of the liquid and vapour in the tank, the need of checking free movement of the level sensor, and others. Reference should be made to ALG manufacturers' documentation. #### 7.2.6 Application-specific considerations In tanks storing heavy or viscous liquids, it may be difficult to measure or verify the manual or ALG reference heights. The procedures for measuring reference heights described in 7.3 and 7.4 may not be feasible under these circumstances. #### 7.3 Initial settings of ALGs #### 7.3.1 Setting against manual reference ullage measurements - a) With the tank contents static at a level between one-third and two-thirds full, record the stable ALG reading before the gauger arrives at the tank. Also record the ALG reading immediately before making the manual reference measurements. Check whether the presence of the gauger on the tank top affects the ALG reading. If the ALG reading varies by more than 1 mm, investigate the cause before proceeding. - b) Measure the tank reference height at the official gauging access position specified in the tank calibration table until three consecutive measurements agree within a range of 1 mm, or five consecutive measurements agree within a range of 2 mm. Calculate the arithmetic average value for the reference height (i.e. the average of the consecutive measurements), and compare with the calibration reference height. If the measured and calibration reference heights differ by more than 2 mm, difficulties may be experienced with the initial verification procedure. Investigate the cause before proceeding. NOTE Failure to achieve repeatable tank reference height measurements may be due to adverse weather conditions, build-up of debris on the datum plate, turbulence of the liquid or inconsistency in the measurement technique. Failure to achieve agreement between the measured and calibration reference heights may be due to one or more of the reference datums being affected by variations in the hydrostatic head of the liquid at different levels within the tank. - c) Determine the manual reference ullage measurement of the tank contents from the same gauging access point (using the same measurement tape and weight) until three consecutive measurements agree within a range of 1 mm, or five consecutive measurements agree within a range of 2 mm. Calculate the arithmetic average value of the ullage (i.e. the average of the consecutive measurements). - d) Determine the equivalent dip by subtracting the average manual ullage from the average measured tank reference height. - e) Record the ALG reading immediately after making the manual reference measurements and confirm that no change has occurred during the manual gauging. If the ALG reading has changed from that recorded during step a), check that there has been no transfer either to or from the tank, that the tank valves are closed, and repeat the procedure from step a). - f) Compare the ALG reading with the calculated equivalent dip. If the two do not agree (within the resolution of the ALG), set the ALG so that it reads the same as the equivalent dip. #### 7.3.2 Setting against manual reference dip (innage) measurements - a) With the tank contents static at a level between one-third and two-thirds full, record the stable ALG reading before the gauger arrives at the tank. Also record the ALG reading immediately before making the manual reference measurements. Check whether the presence of the gauger on the tank top affects the ALG reading. If the ALG reading varies by more than 1 mm, investigate the cause before proceeding. - b) Measure the tank reference height at the official gauging access position specified in the tank calibration table until three consecutive measurements agree within a range of 1 mm, or five consecutive measurements agree within a range of 2 mm. Calculate the arithmetic average value for the reference height (i.e. the average of the consecutive measurements), and compare with the calibration reference height. If the measured and calibration reference heights differ by more than 2 mm, difficulties may be experienced with the initial verification procedure. Investigate the cause before proceeding. NOTE Failure to achieve repeatable tank reference height measurements may be due to adverse weather conditions, build-up of debris on the datum plate, turbulence of the liquid or inconsistency in the measurement technique. Failure to achieve agreement between the measured and calibration reference heights may be due to one or more of the reference datums being affected by variations in the hydrostatic head of the liquid at different levels within the tank. - c) Determine the level of the tank contents by manual reference dip measurements until three consecutive measurements agree within a range of 1 mm, or five consecutive measurements agree within a range of 2 mm. The tank reference height should be verified every time a manual reference dip measurement is made. In any case where the reference height is found to be more than 1 mm different from the average value determined in step b), the dip measurement should be rejected as suspect. - Failure to achieve manual measurements within these tolerances may be due to adverse weather conditions, movement of the liquid surface, or inconsistencies in the measurement technique. The verification procedure should be repeated after corrective action has been taken. - d) Calculate the arithmetic average value of the dip (i.e. the average of the consecutive measurements obtained in step c). - e) Record the ALG reading immediately after making the manual reference measurements and confirm that no change has occurred during the manual gauging. If the ALG reading has changed from that recorded during step a), check that there has been no transfer either to or from the tank, that the tank valves are closed, and repeat the procedure from step a). - f) Compare the ALG reading with the average manual reference dip. If the two do not agree (within the resolution of the ALG), set the ALG so that it reads the same as the average manual reference dip. #### 7.4 Initial verification #### 7.4.1 Introduction Ullage-based ALGs are designed to measure the distance from the ALG reference point to the liquid surface. Some types of ullage-based ALG may be able to compensate for tank reference datum movement (where such movement has been quantified and found to be repeatable). However, most traditional types of ullage-based ALG cannot compensate for many of the limitations to the accuracy of tank level measurement given in this part of ISO 4266. Innage-based ALGs are designed to measure the liquid dip directly. They should be less prone to some of the tank stability problems that can cause level measurement errors with ullage-based ALGs, but they require the tank bottom on which the ALG is mounted to be stable. Apart from the effect of the stability of the tank reference points (i.e. the dipping datum plate and the gauging reference point) on the accuracy of ALG and manual level measurements, several other factors may result in level measurement errors and should be considered during ALG verification. These include - tank installation errors, - changes in operating conditions, - changes in physical properties of the liquid and/or vapour, - changes in electrical properties of the liquid and/or vapour, - changes in local ambient conditions, - manual gauging errors, and - errors inherent in the ALG. Following the initial setting of the ALG, its overall accuracy is verified by - comparing the ALG against manual reference level measurement at three different levels and evaluating the differences between the ALG readings and the manual reference measurements, or - measuring the tank reference height at each of the three levels, and evaluating any change in reference height. Depending on the results, the tank and ALG combinations should be considered suitable for fiscal/custody transfer purposes, if the calibration/verification tolerances given in this part of ISO 4266 are met. #### 7.4.2 Verification conditions The initial verification of an ALG requires measurement comparisons to be made with the liquid level within the regions of the tank corresponding to the upper, middle and lower thirds of the tank's working capacity. The middle level measurement may be the same one used during the initial setting procedure (see 7.3), or it may be repeated. Verification comparisons should only be carried out under static conditions with no liquid being transferred to or from the tank. The time interval between the verification measurement at the three different levels should be kept as short as practical. #### 7.4.3 Initial verification procedures #### 7.4.3.1 ALG verification by manual reference ullage (outage) measurements - a) After the initial setting of the ALG (see 7.3), a transfer should be made either to or from the tank so that the level is within either the upper or lower third of the tank's working capacity (7.4.2). - b) Record the stable ALG reading before the gauger arrives at the tank. Also record the ALG reading immediately before making the manual reference measurements. Check whether the presence of the gauger on the tank top affects the ALG reading. If the ALG reading varies by more than 1 mm then investigate the cause before proceeding. - c) Measure the tank reference height at the official gauging position specified in the tank calibration table until three consecutive measurements agree within a range of 1 mm, or five consecutive measurements agree within a range of 2 mm. Calculate the arithmetic average value for the reference height (i.e. the average of the qualified, consecutive measurements which agree within the specified tolerance) without rounding, and compare with the calibration reference height. If the measured and calibration reference heights differ by more than 2 mm, investigate the cause before proceeding. NOTE Failure to achieve repeatable tank reference height measurements may be due to adverse weather conditions, build-up of debris on the datum plate, turbulence of the liquid or inconsistency in the measurement technique. Failure to achieve agreement between the measured and calibration reference heights may be due to one or more of the reference datums being affected by variations in the hydrostatic head of the liquid at different levels within the tank. d) Determine the manual reference ullage measurement of the tank contents from the same gauging access point (using the same measurement tape and weight) until three consecutive measurements agree within a range of 1 mm, or five consecutive measurements agree within a range of 2 mm. Failure to achieve manual measurements within these tolerances may be due to adverse weather conditions, movement of the liquid surface, or inconsistencies in the measurement technique. The verification procedure should be repeated after corrective action has been taken. - e) Calculate the arithmetic average value of the ullage (i.e. the average of the qualified, consecutive measurements which agree within the specified tolerance). Do not round this result. - f) Determine the equivalent dip by subtracting the average manual ullage from the average measured tank reference height. Do not round this result. - g) Record the ALG reading immediately after making the manual reference measurements and confirm that no change has occurred during the manual gauging. If the ALG reading has changed from that recorded during step b), check that there has been no transfer either to or from the tank, that the tank valves are closed, and repeat the procedure from step b). - h) Compare the ALG reading with the calculated equivalent dip. The difference between these two measurements is referred to as the "test difference". - i) Arrange for another transfer to or from the tank so that the liquid level is within the other third (i.e. the upper or lower third) of the tank's working capacity, and repeat steps b) to h) to determine the test difference at this level. #### 7.4.3.2 ALG verification by manual reference dip (innage) measurements - a) After the initial setting of the ALG (see 7.3), a transfer should be made either to or from the tank so that the level is within either the upper or lower third of the tank's working capacity (7.4.2). - b) Record the stable ALG reading before the gauger arrives at the tank. Also record the ALG reading immediately before making the manual reference measurements. Check whether the presence of the gauger on the tank top affects the ALG reading. If the ALG reading varies by more than 1 mm, investigate the cause before proceeding. - Measure the tank reference height at the official gauging access position specified in the tank calibration table until three consecutive measurements agree within a range of 1 mm, or five consecutive measurements agree within a range of 2 mm. Calculate the arithmetic average value for the reference height (i.e. the average of the qualified, consecutive measurements which agree within the specified tolerance) without rounding, and compare with the calibration reference height. If the measured and calibration reference heights differ by more than 2 mm, investigate the cause before proceeding. NOTE Failure to achieve repeatable tank reference height measurements may be due to adverse weather conditions, build-up of debris on the datum plate, turbulence of the liquid or inconsistency in the measurement technique. Failure to achieve agreement between the measured and calibration reference heights may be due to one or more of the reference datums being affected by variations in the hydrostatic head of the liquid at different levels within the tank. d) Determine the manual reference dip measurement of the tank contents from the same gauging access point (using the same measurement tape and weight) until three consecutive measurements agree within a range of 1 mm, or five consecutive measurements agree within a range of 2 mm. The tank reference height should be verified every time a manual reference dip measurement is made. In any case where the reference height is found to be more than 1 mm different from the average determined in step c), the dip measurement should be rejected as suspect. Failure to achieve manual measurements within these tolerances may be due to adverse weather conditions, movement of the liquid surface, or inconsistencies in the measurement technique. The verification procedure should be repeated after corrective action has been taken. - e) Calculate the arithmetic average value of the dip (i.e. the average of the qualified, consecutive measurements which agree within the specified tolerance). Do not round this result. - f) Record the ALG reading immediately after making the manual reference measurements and confirm that no change has occurred during the manual gauging. If the ALG reading has changed from that recorded during step b), check that there has been no transfer either to or from the tank, that the tank valves are closed, and repeat the procedure from step b). - g) Compare the ALG reading with the average manual reference dip [from step e)]. The difference between these two measurements is referred to as the "test difference". - h) Arrange for another transfer to or from the tank so that the liquid level is within the other third (i.e. the upper or lower third) of the tank's working capacity, and repeat steps b) to f) to determine the test difference at this level. #### 7.4.3.3 Verification tolerance for ALGs in fiscal/custody transfer application The purpose of the fiscal/custody transfer verification is to ensure that the ALG, as installed, can sense and indicate the level over its measuring range as accurately as properly performed manual reference tank level measurement. If the test difference is not greater than 4 mm at any of the test levels, the ALG should be considered to be suitable for fiscal and/or custody transfer applications. If the test difference exceeds 4 mm at any of the test levels, check the stability of the tank reference datums, and check for possible problems with the ALG installation and/or tank stability. #### 7.5 Record keeping Full records should be kept of the initial setting, verification, and subsequent verification of each ALG used. Records of maintenance work should be kept. #### 8 Subsequent verification of ALGs #### 8.1 General A verification programme should be established for ALGs used in fiscal/custody transfer. #### 8.2 Frequency of subsequent verification ALGs used in fiscal/custody transfer should be verified on a regular basis. The ALG should initially be inspected and its calibration verified at a single level at least once per month. If operating experience confirms stable performance within the verification tolerance (7.4.3.3) for a period of at least six months consecutively without adjustments or resetting being performed, the verification schedule may be extended to once per quarter (i.e. every 3 months). NOTE Some regulatory authorities may require that the performance of ALGs in custody transfer and/or fiscal duty is verified at specified intervals (e.g. monthly). #### 8.3 Procedure for subsequent verification The ALG should be inspected and its accuracy verified at levels which are typical of both the normal operational tank opening and closing readings (i.e. stock levels). The initial field verification described in 7.4 should be followed, except that it is only necessary to carry out the verification at a single level. #### 8.4 Tolerance for subsequent verification For ALGs used in fiscal/custody transfer service, the test difference given in 7.4.3.3 should be used as the tolerance. If this tolerance is met, the ALG should be considered to be within calibration and suitable to continue in use for fiscal/custody transfer measurement applications. If the ALG fails to meet the tolerance, the cause should be investigated and corrective action taken. The ALG should then be reverified by following the procedure described in 7.4. If the ALG needs to be readjusted or reset, it should then be reverified following the procedure described in 7.4. #### 9 Data communication and receiving The following provides recommendations for the specification of the communication between level transmitter(s) and receiver(s) and vice versa. The measurement data by an ALG may include other information. The ALG system should be designed and installed such that transmission and receiving units should - not compromise the accuracy of the measurement, i.e. the difference between the level readings displayed by the remote receiving unit and the level readings displayed (or measured) by the ALG at the tank should not exceed $\pm$ 1 mm, - not compromise the resolution of the measurement output signal, - provide proper security and protection of the measured data to ensure its integrity, - provide adequate speed to meet the update time required for the receiving unit, and - be electromagnetically immune. # **Bibliography** - [1] ISO 4268:2000, Petroleum and liquid petroleum products Temperature measurements Manual methods - [2] ISO 7507 (all parts), Petroleum and liquid petroleum products Calibration of vertical cylindrical tanks ### **BSI** — British Standards Institution BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter. #### Revisions British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions. It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400. BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards. #### **Buying standards** Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: +44 (0)20 8996 9001. Fax: +44 (0)20 8996 7001. Email: orders@bsi-global.com. Standards are also available from the BSI website at <a href="http://www.bsi-global.com">http://www.bsi-global.com</a>. In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested. #### Information on standards BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre. Tel: +44 (0)20 8996 7111. Fax: +44 (0)20 8996 7048. Email: info@bsi-global.com. Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: +44 (0)20 8996 7002. Fax: +44 (0)20 8996 7001. Email: membership@bsi-global.com. Information regarding online access to British Standards via British Standards Online can be found at <a href="http://www.bsi-global.com/bsonline">http://www.bsi-global.com/bsonline</a>. Further information about BSI is available on the BSI website at <a href="http://www.bsi-global.com">http://www.bsi-global.com</a>. #### Copyright Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means — electronic, photocopying, recording or otherwise — without prior written permission from BSI. This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained. Details and advice can be obtained from the Copyright & Licensing Manager. Tel: +44 (0)20 8996 7070. Fax: +44 (0)20 8996 7553. Email: copyright@bsi-global.com. BSI 389 Chiswick High Road London W4 4AL