### BS ISO 3529-3:2014 ## **BSI Standards Publication** # Vacuum technology — Vocabulary Part 3: Total and partial pressure vacuum gauges BS ISO 3529-3:2014 BRITISH STANDARD #### National foreword This British Standard is the UK implementation of ISO 3529-3:2014. The UK participation in its preparation was entrusted to Technical Committee MCE/8/-/4, Vacuum technology. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2014. Published by BSI Standards Limited 2014 ISBN 978 0 580 81460 0 ICS 01.040.23; 23.160 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 April 2014. Amendments issued since publication Date Text affected BS ISO 3529-3:2014 ## INTERNATIONAL STANDARD ISO 3529-3 Second edition 2014-04-15 ## Vacuum technology — Vocabulary — ## Part 3: ## **Total and partial pressure vacuum gauges** Technique du vide — Vocabulaire — Partie 3: Manomètres de pression totale et analyseurs de pressions partielles BS ISO 3529-3:2014 **ISO 3529-3:2014(E)** #### COPYRIGHT PROTECTED DOCUMENT © ISO 2014 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland | Contents | | | Page | | |--------------|----------|----------------------------------------------------------------|------|--| | Foreword | | | | | | 1 | Scop | ne | 1 | | | 2 | | | | | | | 2.1 | ns and definitions<br>General terms | 1 | | | | 2.2 | General categories of vacuum gauges | 2 | | | | 2.3 | Characteristics of vacuum gauges | 2 | | | | 2.4 | Total pressure vacuum gauges | 3 | | | | 2.5 | Total pressure vacuum gauges<br>Partial pressure vacuum gauges | 7 | | | Anne | ex A (in | formative) Tree diagram of total pressure vacuum gauges | 9 | | | Bibliography | | | 10 | | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 112, Vacuum technology. This second edition cancels and replaces the first edition (ISO 3529-3:1981), which has been technically revised in order to include terms of now common vacuum gauges and to adapt terms to new developments and general use of terms in publications. ISO 3529 consists of the following parts, under the general title *Vacuum technology — Vocabulary*: - Part 1: General terms - Part 2: Vacuum pumps and related terms - Part 3: Total and partial pressure vacuum gauges ## Vacuum technology — Vocabulary — #### Part 3: ## Total and partial pressure vacuum gauges #### 1 Scope This part of ISO 3529 gives definitions of total and partial pressure vacuum gauges. It is a continuation of ISO 3529-1, which defines general terms used in vacuum technology, and of ISO 3529-2, which gives definitions of vacuum pumps and related terms. The terms for those gauges are defined, which had been either very important in the past or are important today and normally commercially available or which physical principle is important still today. #### 2 Terms and definitions For the purposes of this document, the following terms and definitions apply. NOTE A tree diagram of total pressure vacuum gauges is illustrated in Figure A.1. #### 2.1 General terms #### 2.1.1 #### pressure gauge instrument for measuring gas or vapour pressures, greater, equal to or less than the prevailing atmospheric pressure #### 2.1.2 #### vacuum gauge instrument for measuring gas or vapour pressures less than the prevailing atmospheric pressure Note 1 to entry: A vacuum gauge is a subset of a pressure gauge. Note 2 to entry: Some types of vacuum gauges commonly in use do not actually measure a pressure (as expressed in terms of a force acting on a surface), but some other physical quantity related to pressure, under specific conditions. #### 2.1.2.1 #### gauge head <of certain types of gauge> part of the gauge which contains the pressure-sensitive element and which is directly connected to the vacuum system #### 2.1.2.1.1 #### nude gauge gauge head without an envelope Note 1 to entry: In this case, the sensitive element is inserted directly into the vacuum system. #### 2.1.2.2 #### control unit #### controller <of certain types of gauge> part of the gauge containing the power supply and all electrical circuitry necessary for the operation of the gauge ## BS ISO 3529-3:2014 ISO 3529-3:2014(E) #### 2.1.2.2.1 #### indicator #### indicating unit <of certain types of gauge> part of the gauge which indicates the output signal, usually scaled in units of pressure #### 2.2 General categories of vacuum gauges #### 2.2.1 #### differential vacuum gauge vacuum gauge which measures the difference of pressures existing simultaneously on either side of a sensitive partition element, for example a flexible diaphragm or a movable separating liquid #### 2.2.2 #### absolute vacuum gauge vacuum gauge by means of which pressure may be determined in terms of measured physical quantities alone #### 2.2.3 #### total pressure vacuum gauge vacuum gauge for measuring the total pressure of a gas or a gaseous mixture #### 2.2.4 #### partial pressure vacuum gauge #### partial pressure analyser vacuum gauge for measuring currents derived from the ionized constituents of a gaseous mixture Note 1 to entry: These currents represent partial pressures with different proportionality constants for different components. Note 2 to entry: Sometimes this gauge is denoted as a "residual gas analyser". Since this term characterizes only one of several possible applications of partial pressure analysers, it should be avoided. #### 2.3 Characteristics of vacuum gauges #### 2.3.1 #### measurement range <of a vacuum gauge> range between minimum and maximum pressure where the reading of the gauge is within the specified measurement uncertainty limits Note 1 to entry: For certain types of gauge, this range depends on the nature of the gas. In such a case, the pressure range for nitrogen shall always be specified. #### 2.3.2 #### sensitivity #### sensitivity coefficient <for a given pressure > change in the signal indicated by the vacuum gauge, divided by the corresponding change in pressure and, where appropriate, divided by parameters not depending on pressure Note 1 to entry: For certain types of gauge, the sensitivity depends on the nature of the gas. In such a case, the sensitivity for nitrogen shall always be specified. #### 2.3.3 #### relative sensitivity factor <of a vacuum gauge for a specified gas> sensitivity of the gauge for that gas divided by the sensitivity of the gauge for nitrogen, at the same pressure and under the same operating conditions #### 2.3.4 #### ionization sensitivity <for a given gas> change of ion current divided by the corresponding change in pressure #### 2.3.5 #### equivalent nitrogen pressure <of a gas acting on a vacuum gauge> that pressure of nitrogen which would produce the same gauge reading #### 2.3.6 #### X-ray limit <of an ionization gauge> that pressure of pure nitrogen which would give the same gauge reading, without a X-ray effect, as is produced by the residual current caused by photo-electrons mainly emitted at the ion collector Note 1 to entry: For ionization gauges with a discharge by crossed electromagnetic fields, the X-ray limit is normally not significant. #### 2.4 Total pressure vacuum gauges #### 2.4.1 Vacuum gauges based on mechanical phenomena #### 2.4.1.1 #### liquid level manometer absolute differential manometer, commonly a U-tube, in which the sensitive element is a movable separating liquid (for example mercury) Note 1 to entry: The pressure difference is obtained by measuring the difference in the liquid levels. #### 2.4.1.2 #### elastic element gauge differential vacuum gauge in which the flexible partition is an elastic element EXAMPLE Bourdon gauge, diaphragm gauge, capacitance diaphragm gauge, etc. Note 1 to entry: The pressure difference can be determined by measuring either the displacement of the elastic element (direct method) or the force required to compensate its displacement (zero method). #### 2.4.1.2.1 #### **Bourdon gauge** elastic element gauge where the elastic element is a tube formed into a spiral or a helix. #### 2.4.1.2.2 #### diaphragm gauge #### membrane gauge elastic element gauge where the elastic element is a membrane that changes the shape under a pressure difference across it EXAMPLE An example is a piezoresistive gauge where the force onto the membrane is measured by a piezo element. Another example is the *capacitance diaphragm gauge* (2.4.1.2.3) and the resonant silicon gauge. #### 2.4.1.2.3 #### capacitance diaphragm gauge diaphragm gauge where the membrane is part of a capacitor Note 1 to entry: A capacitance diaphragm gauge is sometimes also termed a "capacitance manometer". #### 2.4.1.3 #### compression gauge #### McLeod gauge vacuum gauge in which a known volume of the gas at the pressure to be measured is compressed (for example by the movement of a column of liquid – e.g. mercury) in a known ratio and the resulting higher pressure then measured Note 1 to entry: If the higher pressure is measured by a liquid level manometer, such a gauge is absolute for a gas which satisfies the ideal gas law. #### 2.4.1.4 #### pressure balance #### piston gauge absolute vacuum gauge in which the pressure to be measured is suitably applied to an accurately matched piston-cylinder assembly of known cross-sectional area, the resulting force being compared with the gravitational force acting on a group of known masses or being measured by a force meter Note 1 to entry: A piston gauge where the piston and surrounding cylinder rotate against each other is called a "rotating piston gauge" or "rotating pressure balance". #### 2.4.2 Vacuum gauges based on transport phenomena in gases #### 2.4.2.1 #### viscosity gauge vacuum gauge in which the pressure is determined in relation to the viscous forces acting on a surface EXAMPLE Quartz friction gauges, tuning fork gauges, decrement gauge, molecular drag gauge. Note 1 to entry: This gauge is based on the viscosity of a gas being pressure dependent. #### 2.4.2.1.1 #### spinning rotor gauge viscosity gauge in which the surface is a spinning rotor magnetically suspended in a vacuum thimble and the relative deceleration rate of the rotor is measured Note 1 to entry: The deceleration of the rotor is caused by momentum transfer from the rotor to the gas molecules in high vacuum and additionally by gas friction (viscous forces) at higher pressures. #### 2.4.2.1.2 #### quartz friction vacuum gauge viscosity gauge in which resonant frequency of the quartz tuning fork depends on the pressure #### 2.4.2.2 #### thermal conductivity gauge vacuum gauge in which the pressure is determined in relation to the transfer of thermal energy between the surfaces of two fixed elements maintained at different temperatures EXAMPLE Pirani gauge, thermocouple gauge, thermistor gauge, bimetal gauge. Note 1 to entry: This gauge is based on the thermal conductivity of a gas being pressure dependent. #### 2.4.2.2.1 #### thermocouple gauge thermal conductivity gauge in which the temperature of the heated element is measured by a thermocouple attached to it #### 2.4.2.2.2 #### Pirani gauge thermal conductivity gauge in which the heated element is part of a Wheatstone bridge that supplies the energy to the element and by which the electrical resistance or the dissipated power of the element is being measured Note 1 to entry: The heated element, often a wire, may be maintained at a constant temperature and the required heating power in dependence of pressure is measured. This is the most accurate measuring principle of a Pirani gauge. Alternatively, the heating power (as in the original design of Pirani) or the current is kept constant and the compensation current in the bridge is used as a measure of pressure. #### 2.4.2.2.3 #### thermistor gauge thermal conductivity gauge in which the heated element is a semiconductor with a high specific resistance coefficient #### 2.4.2.2.4 #### thermo-molecular gauge vacuum gauge in which the pressure is determined by measuring the net rate of transfer of momentum by gas molecules striking fixed surfaces maintained at different temperatures EXAMPLE Knudsen gauge, diamagnetic levitation. Note 1 to entry: The dimensions shall be very small compared to the mean free path of the gas molecules. #### 2.4.3 Vacuum gauges on ionization phenomena in gases #### 2.4.3.1 #### ionization vacuum gauge vacuum gauge in which the molecular density is determined by measuring the ion current produced in the gas by ionization under controlled conditions Note 1 to entry: The pressure is directly related to gas density. #### 2.4.3.2 #### crossed field ionization gauge ionization vacuum gauge in which the ions are produced by a cold cathode discharge in crossed electrical and magnetic fields Note 1 to entry: This kind of gauge was formerly defined as a "cold cathode gauge". Due to the availability of cold cathodes like field emission cathodes or carbon nano tubes as emitting cathodes, the new term was introduced. #### 2.4.3.2.1 #### Penning gauge crossed field ionization gauge with a magnet and which has a particular electrode geometry Note 1 to entry: One of the electrodes consists of two linked parallel discs. The other electrode (normally the anode) is usually annular and placed between the discs, parallel to them. The magnetic field is perpendicular to the discs. #### 2.4.3.2.2 #### magnetron gauge crossed field ionization gauge having electrodes arranged as coaxial cylinders, the cathode being the inner one, and an axial magnetic field perpendicular to the electric field #### 2.4.3.2.3 #### inverted magnetron gauge crossed field ionization gauge having electrodes arranged as coaxial cylinders, the anode being the inner one, and an axial magnetic field perpendicular to the electric field #### 2.4.3.3 #### emitting cathode ionization gauge ionization vacuum gauge in which the gas is ionized by electrons emitted from a cathode Note 1 to entry: The cathode is commonly a hot wire, but may also be an electron field emitter or carbon nanotubes, etc. #### 2.4.3.3.1 #### hot cathode ionization gauge ionization vacuum gauge in which the gas is ionized by electrons emitted from a heated cathode #### 2.4.3.3.2 #### triode gauge emitting cathode ionization gauge with a conventional triode structure, the filament being axially located with the grid as anode, and the plate as ion collector concentric to it #### 2.4.3.3.3 #### high pressure ionization gauge emitting cathode ionization gauge designed in such a way that its pressure range is shifted towards the medium vacuum range, compared with the pressure range of a conventional triode gauge Note 1 to entry: This is mainly achieved by reducing the distances between the electrodes. #### 2.4.3.3.4 #### **Bayard-Alpert gauge** emitting cathode ionization gauge in which the X-ray limit is reduced by the use of a thin ion-collector wire arranged axially in a cylindrical grid with the cathode mounted outside the grid #### 2.4.3.3.5 #### modulator gauge emitting cathode ionization gauge of the Bayard-Alpert type fitted with a modulator electrode in which the effect of residual currents (including any X-ray currents) may be estimated by measuring the effect on ion collector current when the potential applied to the modulator is varied #### 2.4.3.3.6 #### suppressor gauge emitting cathode ionization gauge in which the X-ray limit is reduced by mounting a suppressor electrode in the vicinity of the ion collector so that any secondary electrons emitted at the ion collector are returned to it #### 2.4.3.3.7 #### extractor gauge emitting cathode ionization gauge in which the X-ray limit and the influence of ions formed by electron stimulated desorption is reduced by using a short thin wire as ion collector, axially located outside the cylindrical grid within a shield, thus extracting ions from the ionization region #### 2.4.3.3.8 #### ion energy analysing gauge emitting cathode ionization gauge in which ions are analysed according to their energy in order to separate ions formed in free space and formed on surfaces within the gauge EXAMPLE Helmer gauge, ion spectroscopy gauge, axial symmetric transmission gauge, bent beam gauge. Note 1 to entry: This kind of emitting cathode ionization gauge is mainly designed for low UHV measurement. #### 2.4.3.3.9 #### orbitron gauge emitting cathode ionization gauge in which electrons are injected so that they are made to orbit in long paths, so increasing the number of ions produced per electron Note 1 to entry: Injection takes place in a electrostatic field between a cylindrical ion collector and a coaxial thin wire. Low electron currents reduce the effects of X-rays and desorbed ions #### 2.4.3.3.10 #### hot cathode magnetron gauge #### Lafferty gauge emitting cathode ionization gauge with a heated cathode, resembling a simple cylindrical magnetron operating under cut-off conditions, in which a magnetic field is used to lengthen the electron path and so increase the number of ions produced #### 2.5 Partial pressure vacuum gauges #### 2.5.1 #### mass spectrometer instrument which separates ionized particles of different mass/charge ratios and measures the respective ion currents Note 1 to entry: The mass spectrometer may be used as a vacuum gauge to measure the partial pressure of a specific gas, as a leak detector sensitive to a particular search gas, or as an analytical instrument to determine the percentage composition of a gas mixture. Types are distinguished by the methods of separating the ions. #### 2.5.2 With shaped electric fields #### 2.5.2.1 #### radio frequency mass spectrometer mass spectrometer in which ions travel in a linear path and are accelerated through a series of openings of grids alternately attached to a radio frequency oscillator, emerging into an electrostatic field which permits only the ions accelerated in the radio frequency field to reach the collector #### 2.5.2.2 #### quadrupole mass spectrometer mass spectrometer in which ions are injected axially into a quadrupole lens consisting of a system of four electrodes, usually rods, to which radio frequency and d.c. electric fields in a critical ratio are applied, so that only ions with a certain mass-to-charge ratio emerge #### 2.5.2.3 #### monopole mass spectrometer mass spectrometer in which an V-shaped electrode and a single rod symmetrically disposed to it provide a field configuration similar to that in one quadrant of the quadrupole, ions being injected near to the corner of the V-shaped electrode and only ions with a certain mass to charge ratio (depending on the electric fields) emerging #### 2.5.2.4 #### ion trap mass spectrometer mass spectrometer in which the ions are oscillating in a suitably shaped electrostatic, electromagnetic, high-frequency electrical or high-frequency electromagnetic field and are then separated and directed to a detector by exhibiting the ions to a field that introduces path instability according to their respective mass/charge ratios #### 2.5.3 With crossed electric-magnetic fields #### 2.5.3.1 #### magnetic deflection mass spectrometer mass spectrometer in which accelerated ions are separated into different circular arcs under the action of a magnetic field #### 2.5.3.2 #### double focusing mass spectrometer mass spectrometer in which ions are separated by the successive actions of a radial electrostatic field and a magnetic sector field so that the velocity dispersion is opposite and approximately equal in the two analysers #### 2.5.3.3 #### trochoidal focusing mass spectrometer mass spectrometer in which ions are separated by crossed electric and magnetic fields in which they follow different cycloidal paths, coming to different foci depending on their mass-to-charge ratios #### 2.5.3.4 #### omegatron mass spectrometer mass spectrometer in which ions are separated by following spiral paths of increasing radius due to a cyclotron resonance effect provided by radio frequency electric and steady magnetic fields which are perpendicular to one another #### 2.5.4 Time of flight #### 2.5.4.1 #### time of flight mass spectrometer mass spectrometer in which ions or neutrals with same energy are dispersed in time according to their velocity in a drift space of known length #### 2.5.4.1.1 #### reflectron mass spectrometer time-of-flight mass spectrometer which contains a section with a retarding electrical field that cause the ions to revers direction #### 2.5.4.1.2 #### Wiley-McLaren mass spectrometer time-of-flight mass spectrometer which contains a pulsed two-grid ion source to compensate for temporal and initial kinetic energy distribution ### Annex A (informative) ## Tree diagram of total pressure vacuum gauges Figure A.1 — Tree diagram of total pressure vacuum gauges[1] ## **Bibliography** [1] JOUSTEN K. ed. *Handbook of Vacuum Technology*. 1012 pgs., 2008, Copyright Wiley-VCH Verlag GmbH & Co KGaA. Reproduced with permission ## British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com