# Food and feed products — General guidelines for determination of nitrogen by Kjeldahl method ICS 67.050 #### National foreword This British Standard is the UK implementation of ISO 1871:2009. The UK participation in its preparation was entrusted to Technical Committee AW/-/3, Food analysis - Horizontal methods. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 September 2009 © BSI 2009 ISBN 978 0 580 56149 8 #### Amendments/corrigenda issued since publication | Date | Comments | |------|----------| | | | | | | | | | | | | ## INTERNATIONAL STANDARD BS ISO 1871:2009 ISO 1871 Second edition 2009-09-01 # Food and feed products — General guidelines for the determination of nitrogen by the Kjeldahl method Produits alimentaires et aliments des animaux — Lignes directrices générales pour le dosage de l'azote selon la méthode de Kjeldahl BS ISO 1871:2009 ISO 1871:2009(E) #### PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the respons bility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. #### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2009 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland BS ISO 1871:2009 ISO 1871:2009(E) #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 1871 was prepared by Technical Committee ISO/TC 34, Food products. This second edition cancels and replaces the first edition (ISO 1871:1975), which has been technically revised. BS ISO 1871:2009 ISO 1871:2009(E) #### Introduction The analysis of products of animal or plant origin, such as those used in food and feed products, often includes determining their nitrogen content according to the Kjeldahl method. This method can be standardized in principle, as it is generally accepted that different apparatus or operating methods are equivalent if their results are similar. The purpose of this document is to describe the various stages of the method, the associated critical points and the minimum objectives to be achieved to ensure that the method is applied correctly. This document provides general guidelines; it is not intended to replace existing International Standards which are in use. ## Food and feed products — General guidelines for the determination of nitrogen by the Kjeldahl method WARNING — The use of this International Standard may involve hazardous materials, operations and equipment. This International Standard does not purport to address all the safety problems associated with its use. It is the responsibility of the user of this International Standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. #### 1 Scope This International Standard provides general guidelines for the determination of nitrogen by the Kjeldahl method. It applies to food and feed products containing nitrogenous compounds that can be directly determined by the Kjeldahl method. NOTE This measurement principle does not take into account the nitrogen from nitrates and nitrites. #### 2 Principle Digestion of a test portion with concentrated sulfuric acid in the presence of catalysts to convert the organic nitrogen into ammonium sulfate. Excess sodium hydroxide is added to the cooled digest to release the ammonia. The released ammonia is distilled into an excess of boric acid solution and then titrated with a standard solution of sulfuric or hydrochloric acid. The nitrogen content is calculated from the quantity of ammonia produced. NOTE In the following text, the term "nitrogen" refers to organic nitrogen. #### 3 Reagents Use only reagents of recognized analytical grade, *unless otherwise specified*, and distilled or demineralized water or water of equivalent purity. - **3.1 Sulfuric acid**, virtually free from nitrogenous compounds and of mass density $\rho_{20} = 1.83 \text{ g/ml}$ to 1.84 g/ml. - **3.2** Catalysts (see 5.2.1). - **3.3 Boric acid solution** (10 g/l to 40 g/l depending on the apparatus used). If using the colorimetric end-point titration, boric acid solution shall contain indicator (the pH or colour of this mixed solution shall be adjusted before use). - **3.4 Standard hydrochloric acid** (0,02 mol/l to 0,50 mol/l) or **sulfuric acid solution** (0,01 mol/l to 0,25 mol/l). The titre of the solution, $c_t$ , shall be known to at least within 0,001 mol/l. - **3.5 Indicators**, which should change colour between pH 4 and pH 5. NOTE Various indicators are available. A methyl red and bromocresol green mixed indicator is most commonly used. Ready-to-use boric acid solutions containing mixed indicators are available. - **3.6 Hydrogen peroxide** (H<sub>2</sub>O<sub>2</sub>), min. 30 % mass fraction. - 3.7 Sodium hydroxide solution, min. 30 % mass fraction. - 3.8 Antifoaming agents. EXAMPLE Silicone, liquid paraffin. **3.9** Ammonium sulfate or ammonium chloride (minimum purity 99,9 %). Immediately before use, dry the ammonium sulfate or ammonium chloride at 104 $^{\circ}$ C $\pm$ 4 $^{\circ}$ C for at least 2 h. Allow it to cool at ambient temperature in a desiccator. NOTE Solutions of known concentration can be used. 3.10 Tryptophan or acetanilide or lysine hydrochloride (minimum purity 99 % mass fraction). These reagents should be kept away from humidity. WARNING — Do not dry these reagents in an oven before use. **3.11 Sucrose**, with nitrogen content less than a mass fraction of 0,002 %. WARNING — Do not dry sucrose in an oven before use. #### 4 Apparatus and materials Usual laboratory apparatus and, in particular, the following. - **4.1** Analytical balance, capable of weighing to the nearest 0,001 g. - 4.2 Digestion, steam distillation and titration systems. They are used to perform the operations described in Clause 5 and to ensure that the performance objectives described in 5.5.3 and 5.5.4 are met. - **4.3 Boiling point regulators** (if needed), for example pumice grains, glass beads, aluminium oxide (corundum) or silicon carbide. - **4.4 Weighing paper** or **medium**, free from nitrogenous compounds and suitable for the test portion and type of product. #### 5 Operating method NOTE According to the nature of the sample, it may be necessary to prepare the test portion in advance to obtain a homogeneous sample (grinding, homogenization, etc.). #### 5.1 Test portion The test portion, the quantity of which depends on the presumed nitrogen content determined by the Kjeldahl method, shall be representative of the sample and contain between 0,005 g and 0,2 g of nitrogen. The test portion can be obtained by weighing with the analytical balance (4.1), to give mass, m, in grams or by using a pipette, to give volume, $V_t$ , in millilitres. The test portion can be inserted into the tube directly or via a support (4.4). The quantity of test portion can be adjusted according to the composition of the product under test and the quantity of sulfuric acid (see 5.2.2). #### 5.2 Digestion #### 5.2.1 Catalysts It is important to differentiate between the substances used to raise the boiling point of the liquid during digestion and the catalysts themselves that facilitate digestion. The former are usually potassium sulfate or, possibly, sodium sulfate. They are introduced in sufficient quantity to raise the boiling point of the acid to between 380 °C and 430 °C. The most commonly used catalyst is copper in the form of copper sulfate alone or mixed with titanium oxide. The optional addition of hydrogen peroxide (3.6) on the basis of 3 ml to 5 ml per tube prior to heating accelerates digestion, but should be used with the utmost care to ensure that no nitrogen is lost in the form of vapour. Moreover, great care should be taken when adding hydrogen peroxide to the tubes, as this causes a strong exothermic reaction. The quantity of potassium sulfate provided by the catalyst should not be less than 7 g. Depending on the sectors of activity, various compositions are used. They should meet the requirements of the blank test (5.5.2) and the control tests (5.5.3 and 5.5.4). Operators should handle selenium-based catalysts and waste conditions with care. NOTE Ready-to-use composite catalysts are available on the market (for example in tablet or pellet form). #### 5.2.2 Addition of acid It is important to use a sufficient quantity of sulfuric acid to ensure digestion after: - acid consumption by the organic matter of the sample, bearing in mind the fact that 1 g of fat consumes 10 ml of sulfuric acid, 1 g of protein consumes 5 ml of sulfuric acid, 1 g of carbohydrate consumes 4 ml of sulfuric acid; - acid consumption by the reagents (salts); - acid losses by evaporation. The addition of 20 ml to 25 ml of acid (3.1) is generally sufficient for good digestion and to maintain excess acid at the end of the reaction. #### 5.2.3 Heating #### WARNING — The following operations should be performed under a very well ventilated fume hood. The manufacturer's instructions relating to the use of the equipment should generally be followed. The digestion system should be made homogeneous, for example by creating a thermal or digestion efficiency process diagram (5.5.3). Foam-producing agents should be brought to boiling point by increasing the temperature gradually or in steps. Three to four drops of antifoaming agent per tube (3.8) can also be used. For "dry" products (i.e. with no visible wetness), the tubes can be placed directly in a preheated unit. © ISO 2009 – All rights reserved BS ISO 1871:2009 ISO 1871:2009(E) Acid fumes shall be removed with an extraction system suitable for the equipment used. Excessive extraction may cause crystallization and a loss of nitrogen (see Annex A). In all cases, the digestion temperature and time should be determined to meet the requirements of the digestion control test (5.5.3). NOTE 1 Heating at 420 °C for two hours is appropriate for numerous matrices. The digest obtained should be clear and free from black particles. At the end of the digestion process, allow the tubes to cool away from any possible contamination. At this stage, the test portions can be stored and distilled later. NOTE 2 Dilution step with water as described in 5.3.1 may be done at this stage in order to avoid crystallization. #### 5.3 Ammonia distillation #### 5.3.1 Alkalinization Dilute the digest with water, and then alkalise by adding at least 3,5 ml of sodium hydroxide solution (3.7) per millilitre of sulfuric acid (3.1) used for the digestion process. NOTE The volume of the added sodium hydroxide solution (3.7) may be lower if its mass fraction is higher than 30 %. WARNING — Care should be taken when adding the solution, as the medium becomes very hot. #### 5.3.2 Distillation Perform the distillation with the apparatus under consideration in its usual condition. Collect the distillate in the boric acid solution (3.3), which shall contain the indicator (3.5). Adjust the pH until there is a change of colour to grey (bromocresol green + methyl red indicator) before beginning the distillation. There are several criteria for determining when the distillation process is finished, for example, when a specific volume of distillate has been collected, after a fixed distillation time, and so on. Ensure that in compliance with the control tests (5.5), the ammonia distillation is complete and that there is no excess by entrainment of the alkaline liquid. #### 5.4 Titration The distillate obtained is titrated with sulfuric (3.1) or hydrochloric acid (3.4); this can be done simultaneously or after distillation. Post-distillation titration should be performed as soon as possible after distillation. There are two methods of detecting the end point. - By visual colorimetry or using an optical measurement system: The end point is reached when the indicator changes colour. In the case of visual colorimetry, it is important to titrate each test referring to the conditions obtained in the blank test. - By potentiometric analysis with a pH measurement system: Depending on the equipment or operating methods, the end point may be a fixed pH (generally pH 4,6, which corresponds to the inflection point of the titration curve), the pH obtained in the blank test, or the original pH of the boric acid solution. In both cases, the validity of the titration operations should be checked as described in 5.5.4. Record the volumes of titrant obtained: $V_0$ for the blank test and $V_1$ for the samples. #### 5.5 Control tests #### 5.5.1 General One blank test and at least one distillation control test and one digestion control test should be included in each set of nitrogen determination tests. #### 5.5.2 Blank test Perform a blank test using the operating method described above, replacing the liquid test portion with the same volume of water and adding the appropriate quantity of sucrose (3.11). NOTE In blank and digestion control tests, the sucrose is used as organic matter to consume a quantity of sulfuric acid equivalent to that of a test portion during digestion. #### 5.5.3 Digestion test Perform a digestion control test using the operating method described above, replacing the test portion with the same quantity of tryptophan or acetanilide or lysine hydrochloride (3.10) as the quantity of nitrogen in the samples and adding the appropriate quantity of sucrose (3.11). Calculate the percentage mass fraction of nitrogen recovered, which should be between 98 % and 101 %. #### 5.5.4 Distillation-titration tests Perform a blank distillation-titration test using the operating method described in 5.3, but without a test portion. The volume obtained should be subtracted from that of the distillation-titration test. Perform a distillation-titration control test under the same conditions on a test portion of ammonium salt (3.9) corresponding to the quantity of nitrogen in the samples. Calculate the percentage mass fraction of nitrogen recovered, which should be between 99 % and 101 %. #### 6 Expression of results The nitrogen content, expressed as a percentage mass fraction or in grams per 100 ml, is equal to: $$\frac{(V_1 - V_0) \times c_t \times 14 \times 100}{m \times 1000}$$ or $$\frac{(V_1 - V_0) \times c_t \times 14 \times 100}{V_t \times 1000}$$ #### where - *m* is the mass, in grams, of the test portion; - $c_{\rm t}$ is the titre, in moles per litre, of the hydrochloric acid or sulfuric acid; - $V_0$ is the volume, in millilitres, of hydrochloric acid or sulfuric acid used in the blank test titration; - $V_1$ is the volume, in millilitres, of hydrochloric acid or sulfuric acid used in the test portion titration; - $V_{t}$ is the volume, in millilitres, of the test portion. ### Annex A (informative) #### **Potential sources of error** | Faults noted | Causes | Solutions proposed | |--------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------| | 1. During digestion | | | | Too much spray or foam | Too rapid a rise in temperature | Reduce the heating rate or adjust the steps | | | Fat or sweet sample tests | Use an antifoaming agent | | | Too high a volume of liquid samples | Use a smaller test portion | | Black particles in the digest | Inappropriate digestion time/temperature | Optimize the conditions: check the digestion (5.5.3) | | | | Check the sample/acid/catalyst proportions | | Pellet crystallization | Loss of acid due to a too powerful fume extraction system | Reduce the extraction rate: it can<br>be reduced as soon as the white<br>fumes disappear | | | | Check the sample/acid/catalyst proportions | | 2. During distillation and nitroge | n content determination | | | Distillation-titration test result too low | Loss of ammonia | Check the apparatus for tightness (seals and glass instruments) | | | Insufficient boric acid | Increase the concentration or volume of the boric acid solution | | | Ammonia entrainment incomplete | Increase the distillation time | | | Incorrect acid titre measurement | Titrate the acid | | | Blank distillation-titration test result too high | Perform a new blank test | | Distillation-titration test result | Incorrect acid titre measurement | Titrate the acid | | too high | Pollution due to ammonia vapour | Avoid handling ammonia in the vicinity | | | Entrainment of sodium hydroxide in the distillate | Reduce the volume of water added before distillation | | Digestion test result too low | Inappropriate digestion time/temperature | Optimize the conditions: check the digestion (5.5.3) | | | | Check the sample/acid/catalyst proportions | #### **Bibliography** - [1] ISO 5983-1:2005, Animal feeding stuffs Determination of nitrogen content and calculation of crude protein content Part 1: Kjeldahl method - [2] ISO 8968-1:2001, Milk Determination of nitrogen content Part 1: Kjeldahl method - [3] ISO 20483:2006, Cereals and pulses Determination of the nitrogen content and calculation of the crude protein content Kjeldahl method ICS 67.050 Price based on 7 pages #### **BSI - British Standards Institution** BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter. #### Revisions British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions. It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400. BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards. #### **Buying standards** Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: +44 (0)20 8996 9001. Fax: +44 (0)20 8996 7001 Email: orders@bsigroup.com You may also buy directly using a debit/credit card from the BSI Shop on the Website http://www.bsigroup.com/shop In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested. #### Information on standards BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact Information Centre. Tel: +44 (0)20 8996 7111 Fax: +44 (0)20 8996 7048 Email: info@bsigroup.com Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: +44 (0)20 8996 7002 Fax: +44 (0)20 8996 7001 Email: membership@bsigroup.com Information regarding online access to British Standards via British Standards Online can be found at http://www.bsigroup.com/BSOL Further information about BSI is available on the BSI website at http://www.bsigroup.com #### Copyright Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained. Details and advice can be obtained from the Copyright and Licensing Manager. Tel: $\pm 44~(0)20~8996~7070$ Email: copyright@bsigroup.com BSI Group Headquarters 389 Chiswick High Road, London, W4 4AL, UK Tel +44 (0)20 8996 9001 Fax +44 (0)20 8996 7001 www.bsigroup.com/ standards