BS ISO 1136:2015 # **BSI Standards Publication** # Wool — Determination of mean diameter of fibres — Air permeability method BS ISO 1136:2015 BRITISH STANDARD #### National foreword This British Standard is the UK implementation of ISO 1136:2015. The UK participation in its preparation was entrusted to Technical Committee TCI/24, Physical testing of textiles. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2015. Published by BSI Standards Limited 2015 ISBN 978 0 580 83766 1 ICS 59.060.10 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 March 2015. Amendments/corrigenda issued since publication Date Text affected # INTERNATIONAL STANDARD ISO 1136 Second edition 2015-03-01 # Wool — Determination of mean diameter of fibres — Air permeability method Laine — Détermination du diamètre moyen des fibres — Méthode perméamétrique BS ISO 1136:2015 **ISO 1136:2015(E)** #### COPYRIGHT PROTECTED DOCUMENT © ISO 2015 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland | Contents | | | Page | |----------|------------------|--|------| | Fore | word | | iv | | Intro | oductio | on | v | | 1 | | De | | | 2 | - | native references | | | 3 | | ns and definitions | | | 4 | | 1 | | | _ | | | | | 5 | App : 5.1 | 2 | | | | 5.2 | Forms of apparatus | | | 6 | Cond | ditioning and testing atmosphere | | | 7 | | 4 | | | | 7.1 | Unopened sliver | | | | | 7.1.1 Cleaning | 4 | | | 7.2 | 7.1.2 Number of specimens | | | | | 7.1.3 Selection of specimens | | | | | 7.1.4 Specimen mass | | | | | 7.1.5 Preparation | | | | | Opened sliver | | | | | 7.2.2 Preparation | | | | | 7.2.3 Number of specimens | | | | | 7.2.4 Selection of specimens | | | | | 7.2.5 Specimen mass | | | 8 | Procedure | | | | | 8.1 | Unopened sliver | | | | 8.2 | Opened sliver | | | 9 | - | ression of results | | | 10 | Test | report | 7 | | Ann | ex A (in | formative) Calibration of apparatus | 8 | | Ann | ex B (in | formative) Reproducibility of results | 11 | | Ann | ex C (no | ormative) Correction for relative humidity | 12 | | Ann | ex D (in | nformative) Special types of wool | 13 | | Ann | ex E (in | formative) Reference slivers for calibration | 14 | | Bibl | iograpl | h y | 15 | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT), see the following URL: Foreword — Supplementary information. The committee responsible for this document is ISO/TC 38, *Textiles*, Subcommittee SC 23, *Fibres and yarns*. This second edition cancels and replaces the first edition (ISO 1136:1976), which has been technically revised. #### Introduction When a current of air is passed through a uniformly-arranged mass of fibres packed in a chamber with perforated ends, the ratio of air flow to differential pressure is uniquely determined by the total surface area of the fibres, and by various constants. This was predicted from the hydrodynamic equations of Kozeny and others. For fibres of circular or near-circular cross-section and constant density, such as non-medullated wool, the surface area of a given mass of fibres is proportional to the average fibre diameter. This principle can be utilized to construct apparatus giving an estimate of fibre diameter. Because of its speed and simplicity, the method is particularly suitable for quality control in mill testing laboratories. Since the method is indirect, the apparatus is first calibrated from wools of known fibre diameter. For this purpose, eight reference slivers have been provided (see Annex E). It has been shown that the estimate of fibre diameter actually given by the permeability method is $d = (1+c^2)$, where d is the average fibre diameter (length biased) measured by the projection microscope, and c is the fractional coefficient of variation. Since c normally lies within comparatively small limits for unblended slivers, it is usual, however, to calibrate the apparatus directly in terms of d. The method requires that the fibres be reasonably clean and dispersed in a uniform open state, such as card slivers or combed slivers. It is thus unsuitable for raw wool unless first scoured and carded. Some types of wool need special calibrations as described in <u>Annex D</u>. The preparation of test specimens for measurement is identical with that used for calibration specimens. This second edition to ISO 1136 is based on the test method IWTO-6-98, drawn up by the International Wool Textile Organization (IWTO). # Wool — Determination of mean diameter of fibres — Air permeability method #### 1 Scope This International Standard specifies a method for the determination of the mean diameter of wool fibres, using an apparatus which passes a current of air through a bundle of fibres. This International Standard is applicable to clean, unmedullated wool fibres dispersed in a uniform, open state. It provides a method particularly suitable for combed slivers. The dichloromethane extractable matter content of the specimen must not exceed 1,0 %. It is applicable to oil-combed slivers after cleaning with an organic solvent. The method described in this International Standard is less accurate for lambswool and for wool which is appreciably medullated (see <u>Annex D</u>) and heavily dyed wool. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 139, Textiles — Standard atmospheres for conditioning and testing #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### 3.1 #### laboratory sample conditioned sample of fibres, representative of the bulk, from which the test specimens are weighed out Note 1 to entry: In many cases, the laboratory sample will consist of one or more short lengths of sliver. #### 3.2 #### test specimen weighed amount of fibre which is packed into the constant volume chamber #### 4 Principle A specified mass of fibres to be tested is compressed to a constant volume in a cylindrical chamber with perforated ends to which a flowmeter and a manometer are connected. The fibres are packed in such a way that they lie predominantly at right angles to the long axis of the chamber. A regulated current of air is then passed through the compressed fibres and the average fibre diameter read off from a scale on the manometer or the flowmeter. #### 5 Apparatus #### 5.1 Forms of apparatus Two alternative forms of apparatus are described: "constant flow" and "constant pressure". Both forms of apparatus have the same arrangement of parts, as illustrated in Figure 1. The constant flow apparatus utilizes a specimen mass of 1,5 g; the flowmeter is adjusted to a fixed value and the fibre diameter is read off from the manometer scale. This scale is not linear since the successive intervals, corresponding to $1 \mu m$, decrease with the diameter. The constant pressure apparatus utilizes a specimen mass of 2,5 g; the manometer is adjusted to a fixed pressure and the fibre diameter is read off from the flowmeter. The constant pressure apparatus gives a nearly linear scale in micrometres. Since less accuracy in weighing the specimen is required, this method has some advantages for mill use. #### 5.2 Detailed parts The apparatus consists of the following parts arranged as shown in Figure 1. #### Key - A constant volume chamber - B air valve - C manometer - D reservoir - E flowmeter - P, Q, R reference marks Figure 1 — General arrangement of apparatus - **5.2.1 Air valve (B)**, giving sufficiently fine control of the air supply, such that the lever of the flowmeter or manometer can be quickly adjusted to the working value. - **5.2.2 Suction pump**, of a type providing a smooth output of at least 30 l/min at 200 mmH_2O with minimal fluctuation of the float of the flowmeter. A filter to trap any loose fibres may be inserted between the pump and the air valve (B). NOTE 1 mmH₂O=9 806 65 Pa=9 806 65 N/m² **5.2.3 Constant volume chamber (A)**, of brass, hardened steel, or any other suitable metal, comprising the three following parts: the base into which the fibres are packed, the plunger which compresses the fibres, and the screw cap which clamps the plunger to the base. The finish shall be smooth so that the plunger slides easily into the base without trapping fibres. Suggested dimensions of the constituent elements of the chamber are given in Figure 2. Figure 2 — Suggested dimensions of constant volume chamber (A) Important dimensions are 22,3–25,2–25,25–42,5 and 38,1 mm. **5.2.4 Manometer (C)**, made of glass tubing of internal diameter at least 5 mm to reduce surface tension effects. In both cases, a small amount of dye may be added to the manometer fluid, and where this consists of distilled water, a small trace of chromic acid should be added to give a clear meniscus. A millimetre scale is fixed behind the open limb as described in <u>A.3.1</u>. **5.2.5 Reservoir (D) of the fluid manometer (**5.2.4**)**, having the characteristics specified in the following table, and mounted at a sufficient height to give a clear working distance PQ of 350 mm in the open limb of the manometer. | Characteristic | Constant flow | Constant pressure | |-------------------------------|---------------------|-------------------| | Minimum diameter of reservoir | 150 mm | 60 mm | | Type of manometer fluid | n-Propyl
alcohol | Distilled water | | Working range of flowmeter | 10 l/min to | 5 l/min to | Table 1 — Manometer and flowmeter characteristics - **5.2.6** Flowmeter (E), having the characteristics indicated in Table 1. - **5.2.7 Rubber tube**, connecting the manometer reservoir (D) to the chamber (A), consisting of pressure tubing of small internal diameter to avoid constriction at the bends. - **5.2.8 Rubber or plastic tube** from the chamber (A) to the flowmeter (E), of internal diameter not less than 6 mm. The tube shall be as short as possible and shall not be twisted or kinked between calibration of the apparatus and its subsequent use. **5.2.9 Balance**, capable of weighing the specimen to an accuracy of ± 2 mg for the constant flow method and of ± 4 mg for the constant pressure method. #### 6 Conditioning and testing atmosphere **6.1** The test specimens shall be dried sufficiently and brought to equilibrium and tested in one of the standard atmospheres for testing specified in ISO 139. NOTE The laboratory sample can be dried in an oven with forced draft circulation or a rapid dryer at between 50 °C to 107 °C. The time required needs to be determined for the specific laboratory situation. Each laboratory is to carry out investigations on the rate of equilibration, for its particular conditioning system, of wool samples prepared in its specific equipment so that the appropriate conditioning time can be established. - **6.2** The tested specimen shall be weighed in the standard atmospheres at the level of accuracy specified in the method. - **6.3** If tests are not carried out in the standard atmosphere for testing, the laboratory sample shall be conditioned to equilibrium near the apparatus and the relative humidity of the atmosphere at the time of test noted. The final results shall be corrected by the factors given in Annex C. NOTE A source of error might occur if the moisture of the specimen changes during test. This could happen if the laboratory sample is allowed insufficient time to attain moisture equilibrium with the testing atmosphere. The minimum time required to ensure conditioning to equilibrium of a length of sliver in an opened-out state in a well-ventilated room is about 60 min. #### 7 Preparation of test specimens #### 7.1 Unopened sliver #### 7.1.1 Cleaning In general, the laboratory sample shall have a mass of about 8 g and shall first be degreased by rinsing well in two baths each of about 200 ml of petroleum ether before conditioning. #### 7.1.2 Number of specimens Unless otherwise specified, test a minimum of two specimens for fibre diameter below 30 μ m and a minimum of three specimens for fibre diameter above 30 μ m. #### 7.1.3 Selection of specimens The specimens shall be taken from different places in the laboratory sample. In the case of balls of sliver, the laboratory sample shall be made up of pieces of sliver from both inside and outside the ball. #### 7.1.4 Specimen mass For the constant flow method, the specimen mass shall be 1,5 g \pm 0,002 g. For the constant pressure method, the specimen mass shall be 2,5 g \pm 0,004 g. #### 7.1.5 Preparation For slivers with cut ends, the specimen shall be prepared by cutting off with scissors a length to give as nearly as possible the specimen mass and then making up to the exact mass by adding shorter cut lengths or portions. For slivers with pulled ends, about five hand draws shall be removed and discarded and the specimens weighed out by taking several successive hand draws. These two methods of sampling give the same results if carried out properly. #### 7.2 Opened sliver #### 7.2.1 Cleaning The laboratory sample should weigh not less than 10 g, and if it is known to have an oil content not exceeding 1,0 %, the test specimen may be taken from it without cleaning. Otherwise, the sample should first be degreased by rinsing it well in two baths each of about 200 ml of petroleum ether before conditioning. #### 7.2.2 Preparation Take from the sample $10\,\mathrm{g}$ to $20\,\mathrm{g}$ of sliver and deparallelize using a Shirley Analyser or another method to give the laboratory sample. Pre-condition (see 6.1) and condition the laboratory sample. For the Shirley Analyser, cut the sliver into lengths of 15 mm to 20 mm before deparallelizing. Other methods may refer to Shirley Analyser. Laboratories can, according to their own conditions, develop their own method. #### 7.2.3 Number of specimens Unless otherwise specified, test a minimum of two specimens, and measurements per test specimen two times. #### 7.2.4 Selection of specimens Passing the cut sliver through a Shirley Analyser or other methods thoroughly blends the fibres. Test specimens need not, therefore, be made up from pinches of fibre from different parts of the prepared laboratory sample. #### 7.2.5 Specimen mass For the constant flow method, the specimen mass shall be 1.5 ± 0.002 g. For the constant pressure method, the specimen mass shall be 2.5 g ± 0.004 g. #### 8 Procedure #### 8.1 Unopened sliver - **8.1.1** Ensure that the meniscus of the manometer (5.2.4) is at the zero mark and, if required, carry out an orifice plate check as detailed in A.3.3. - **8.1.2** Pull out the weighed test specimen into a long thin sliver and feed it evenly into the constant volume chamber (5.2.3), packing the fibres down with a smooth rod from time to time. Insert the plunger and screw down the cap to the furthermost extent so that the lip of the plunger is in contact with the base. - **8.1.3** Depending on the method to be used, adjust the air valve (5.2.1) as follows: - a) for the constant flow method, adjust the air valve until the top of the float of the flowmeter (5.2.6) coincides with the reference mark R and note the fluid level of the manometer (5.2.4) to the nearest 1 mm or 0,1 μ m (see A.3.1); - b) for the constant pressure method, adjust the air valve until the fluid level of the manometer coincides with the 180 mm reference mark P and note the position of the float of the flowmeter to the nearest 1 mm or 0,1 μ m (see A.3.2). - **8.1.4** Remove the specimen from the constant volume chamber (5.2.3), tease out the fibres by hand, repack in the constant volume chamber without loss of fibre, insert the plunger, and screw down the cap. - **8.1.5** Repeat the operation specified in 8.1.4 so that a total of three readings on each test specimen is obtained. #### 8.2 Opened sliver - **8.2.1** Ensure that the meniscus of the manometer (5.2.4) is at the zero mark and, if required, carry out an orifice plate check as detailed in A.3.3. - **8.2.2** Pack the specimen evenly into the cylindrical base, a small amount at a time, using forceps, not fingers, to handle the specimen, so as not to contaminate or change the moisture regain of the specimen. Push the fibre into the cylindrical base preferably using the short end of the packing rod and taking particular care to ensure that the fibres are uniformly packed and that the walls and bottom of the chamber are not scratched or marked. - **8.2.3** Insert and push down the perforated plunger into the cylindrical base. Secure the plunger cap without rotation of the perforated plunger, ensuring no fibres are trapped between the perforated plunger and the chamber and that the shoulder of the plunger rests firmly on the lip of the chamber. - **8.2.4** Depending on the method to be used, adjust the air valve (5.2.1) as follows: - a) for the constant flow method, adjust the air valve until the top of the float of the flowmeter (5.2.6) coincides with the reference mark R and note the fluid level of the manometer (5.2.4) to the nearest 1 mm or 0,1 μ m (see A.3.1); - b) for the constant pressure method, adjust the air valve until the fluid level of the manometer coincides with the 180 mm reference mark P and note the position of the float of the flowmeter to the nearest 1 mm or $0.1 \mu m$ (see A.3.2). - **8.2.5** Take the specimen out of the chamber and repack it in reverse direction without teasing it out. Use forceps, not fingers, to handle the specimen, so as not to contaminate or change the moisture regain of the specimen. Repeat the procedure described in <u>8.2.1</u> to <u>8.2.5</u> on at least one further test specimen, thus obtaining a total of at least 4 readings. *If using one airflow fineness meter:* Measure 2 test specimens. If the range of the 4 readings is greater than that in <u>Table 2</u>, measure one more test specimen. If the range of the 6 readings so obtained is greater than that shown in <u>Table 2</u>, repeat the test on 3 additional test specimens. Mean fibre diameter
(μm)Number of test specimens (Reading)2(4)3(6)Less than 26 μm0,5 μm0,6 μm26 μm or greater0,8 μm0,9 μm Table 2 — Readings from one airflow fineness meter *If using two airflow fineness meters:* Measure 2 test specimens (one specimen in each airflow apparatus). If the range of the 4 readings is greater than that in <u>Table 3</u>, measure 2 more specimens (one specimen in each apparatus). If the range of the 8 readings so obtained is greater than that shown in <u>Table 3</u>, measure an additional 2 specimens (one specimen in each apparatus). | | Range | | | |-----------------------------|------------------------------------|--------|--| | Mean fibre diameter
(μm) | Number of test specimens (Reading) | | | | (μπ) | 2(4) | 3(6) | | | Less than 26 μm | 0,7 μm | 0,8 μm | | | 26 μm or greater | 0,9 μm | 1,1 μm | | Table 3 — Readings from two airflow fineness meters #### 9 Expression of results Calculate the average of the three readings for each specimen and express the result to the nearest $0.1 \, \mu m$. #### 10 Test report The test report shall include the following particulars: - a) a reference to this International Standard, i.e. ISO 1136; - b) the method used (constant flow or constant pressure); - c) the results obtained in accordance with <u>Clause 9</u>; - d) whether the sample was tested after cleaning in petroleum ether or without cleaning; - e) the relative humidity and temperature of the conditioning and testing atmospheres, and whether the result has been corrected for the relative humidity; - f) all operating conditions not specified in this International Standard, as well as any incidents that might have influenced the results. #### Annex A (informative) #### **Calibration of apparatus** #### A.1 Leakage test After assembling the apparatus, as seen in Figure 1, remove the cap and plunger from the constant volume chamber (A) and insert a rubber stopper. By means of a Hoffmann Clip, close the rubber tube between (A) and (E) after introducing a pressure difference causing the level of the meniscus in the manometer to alter by about 150 mm. Note the position of the meniscus periodically for several minutes; if it changes, examine the apparatus for leaks. #### A.2 Samples of slivers Obtain sufficient quantities of the reference slivers (see Annex E) for calibration. In requesting these, state - a) the test specimen mass for the apparatus to be used (1,5 or 2,5 g), and - b) whether oil-combed or dry-combed samples are required. Sufficient numbers of each type of sliver are supplied for four specimens. #### A.3 Graduating the scale #### A.3.1 Constant flow apparatus Make a horizontal mark R (see Figure 1) near the top of the flowmeter scale, avoiding any position giving marked fluctuation of the float. Fix a scale graduated in millimetres behind the manometer and adjust the zero mark to coincide with the meniscus of the liquid. Then condition and weigh out, according to the procedure specified in Clauses 6 and 7, 1,5 g specimens of each sample of reference sliver and test according to the procedure specified in Clause 8, noting the distance in millimetres below the zero to which the meniscus falls. Do not clean the sliver before test. Test five specimens from each of the eight reference slivers in this way and calculate the average of the nine readings for each reference sliver. Plot the average depression h, in millimetres, of the manometer meniscus against the known value of fibre diameter d, in micrometres, and, after inspection to ensure that the points lie about a smooth curve, fit a relation by least squares as given below. From this relation, a conversion table may be prepared, in micrometres, or a scale may be graduated in micrometres and fixed behind the manometer. #### Adjustment of results by the least squares method The relation between d and h is of the form hd^b = constant, and it is thus necessary to take logarithms to obtain a linear relation. Let $X = \log d$ and $Y = \log h$. For each of the *n* lots of sliver used for standardization, two values (X_1 and X_2 , X_2 and Y_2 , etc.) are obtained. First, calculate the following quantities: $$\sum X = X_1 + X_2 + \dots + X_n$$ $$\sum Y = Y_1 + Y_2 + \dots + Y_n$$ $$\sum Y^2 = Y_1^2 + Y_2^2 + \dots + Y_n^2$$ $$\sum XY = X_1Y_1 + X_2Y_2 + \dots + X_nY_n$$ $$\sum Y^2 = \sum Y^2 - \frac{\left(\sum Y\right)^2}{n}$$ $$\sum XY = \sum XY - \frac{\sum X \sum Y}{n}$$ $$b = \frac{\sum XY}{\sum Y^2}$$ The regression equation of *X* and *Y* which applies to the apparatus is then $$X = \frac{\sum X}{n} + b \left(Y - \frac{\sum Y}{n} \right) \tag{A.1}$$ Finally, construct a table relating h to d by taking values of h at 5 mm intervals, finding $\log h$, substituting in Formula (A.1) to obtain X and so tabulating d = antilog X for each value of h. #### A.3.2 Constant pressure apparatus Make a horizontal mark at a distance corresponding to 180 mm water pressure from the zero mark Q of the manometer. Fix a scale graduated in millimetres behind the flowmeter (E) so that the zero of this scale coincides with a file mark (Zero) made near the bottom of the flowmeter. Condition and weigh out 2,5 g specimens of each sample of reference sliver according to the procedure specified in <u>Clause 6</u> and <u>Clause 7</u>, and test according to the procedure specified in <u>Clause 8</u>, noting the distance *y*, in millimetres, of the float of the flowmeter from zero. Do not clean the slivers before test. Test five specimens from each of eight reference slivers in this way and calculate the average of the nine readings for each reference sliver. Plot the average reading, in millimetres, y_1 , y_2 , etc., against the known values of fibre diameter d_1 , d_2 , etc. The result will be a nearly linear relation; fit a second degree regression line of y on d. This is done by finding the coefficients a, b, c, in Formula (A.2) $$y = a + bd + cd^2 \tag{A.2}$$ by solving the equations $$\sum y = 8a + b \sum d + c \sum d^2$$ $$\sum dy = a \sum d + b \sum d^2 + c \sum d^3$$ $$\sum d^2 y = a \sum d^2 + b \sum d^3 + c \sum d^4$$ $Formula\ (A.2)\ is\ then\ used\ to\ graduate\ a\ scale, in\ micrometres, which\ may\ be\ fixed\ behind\ the\ flowmeter.$ #### A.3.3 Orifice plate checks To make regular daily checks that the apparatus is in good order, the use of the two orifice plates is recommended. These consist of aluminium disks of the same diameter as the inside of the constant volume chamber, each with a central hole. The disks have a rim which in use rests on the annular top of # BS ISO 1136:2015 **ISO 1136:2015(E)** the constant volume chamber. The diameter of the central hole in one disk is chosen to give a reading of about one-third of the available scale on the manometer (constant flow method) or flowmeter (constant pressure method) when clamped and used in the apparatus under working conditions, with no fibres in the chamber. The diameter of the central hole in the second disk is chosen to give a reading of about two-thirds of the available scale under the conditions described above. At least once a day, clamp the orifice plates in the apparatus so that air enters through the central hole only and note the readings. Variations in the readings given by the scale shall not exceed 2 mm and 4 mm respectively for the two orifice plates. This provides a useful and quick check on the functioning of the apparatus, particularly as regards the presence of air bubbles in the manometer system. # Annex B (informative) #### Reproducibility of results It is desirable that the persons to whom a test result is communicated should have some idea of the appropriate confidence limits of each average reading reported. Confidence limits will depend amongst other things on the number of tests, the variability of the material, experimental error, differences between apparatus, and the probability level assumed. There are two important cases about which information is available at present. This information, which is summarized below, should be regarded as illustrative and as applying only to the particular material tested. The original papers should be consulted for further details. #### "Within Sample" confidence limits Suppose about 1 m of sliver is received for test and n test specimens are weighed out and tested, three readings being taken on each in accordance with standard procedure. A total of 3 n readings would be obtained, and since the variance due to repacking is normally about the same as that between different weighings, the 95 % confidence limits of the average readings are given by $$\pm \frac{1,96\sigma}{\sqrt{3n}}$$ where σ is the standard deviation of the 3 n readings. From the work of various authors, it appears that the value of σ is about 0,2 μ m for wool of 20 μ m, rising to about 0,4 μ m for wool of 30 μ m. #### "Between apparatus" confidence limits The following confidence limits have been established by a determination carried out by the usual method on two test specimens in any one of 16 laboratories participating in tests with certified apparatus using parts of four identical reference slivers. | Average
μm | 95 % confidence limits µm | |----------------------|---------------------------| | 20 | ±0,18 | | 25 | ±0,29 | | 30 | ±0,42 | | 35 | ±0,59 | #### Variability within lots during processing Although the variability within lots is not related to the reproducibility of the method of test, it is sometimes necessary to take variability within lots into account when comparing results obtained in different laboratories, since the laboratory samples may have been taken at different times from different portions of a non-homogeneous lot. Some tests relating to variations in mean fibre diameter of combed slivers during processing have shown that significant differences might occur. # Annex C (normative) ### **Correction for relative humidity** The standard conditions for testing as specified in ISO 139 are 65 % \pm 4 % relative humidity and a temperature of 20 °C \pm 2 °C. If tests are carried out in a non-standard atmosphere of known relative humidity, the results in micrometres may be corrected by the following factors, applicable to fibre diameters between 19 μ m and 37 μ m. | Relative humidity
% | Multiplier to convert to 65 % relative humidity | |------------------------|---| | 40 | 1,022 | | 45 | 1,019 | | 50 | 1,015 | | 55 | 1,010 | | 60 | 1,005 | | 65 | 1,000 | | 70 | 0,995 | | 75 | 0,988 | | 80 | 0,980 | | 85 | 0,969 | ## Annex D (informative) #### Special types of wool #### D.1 Noils It has been shown that in general, the air-flow method is applicable to noils. Particular care should be taken, however, when testing noils to remove all vegetable matter and to degrease the laboratory sample with petroleum ether before weighing out the specimens. Representative laboratory samples should be made up by taking bunches of fibres from several places in the bulk. #### D.2 Lambswool Tests have shown that the estimate of diameter obtained by the air-flow methods were systematically lower than those given by the projection microscope, the apparatus having been calibrated from slivers of ordinary wool. The maximum difference obtained in estimated fibre diameter by the two methods was 6,7 %. #### D.3 Medullated wool The theory of the permeability (air-flow) method assumes that the fibres have a constant overall density, so that a fixed mass of fibres of the same average diameter will always give the same amount of fibre surface. Highly medullated fibres could have an appreciably lower fibre density than the accepted value of 1,30 to 1,31 g/cm³ for solid wool fibres. An air-flow test carried out on such medullated fibres will give a reading lower than the fibre diameter as measured on a projection microscope. This error could be of significance for fibre coarser than about 35 μ m. The effect is illustrated by the following data taken from a specific study: | Density (g/cm ³) | 1,31 | 1,29 | 1,27 | 1,25 | |---|------|------|------|------| | Mean apparent fibre diameter obtained by the permeability method (μm) | 35,0 | 34,2 | 33,2 | 32,3 | #### D.4 Dyed fibres Differences in mean apparent fibre diameter between undyed slivers and dyed slivers have been reported by various workers when tested by the air-flow method, the dyed fibres giving higher values. The effect is likely to be of significance only for heavier shades, for example chrome black where the difference could be up to about $0.8~\mu m$. #### **Annex E** (informative) #### Reference slivers for calibration For calibration of the air-flow apparatus as described in <u>Annex A</u>, laboratory samples of eight reference slivers are available. The fibre diameter of each sliver has been measured by the projection microscope in several laboratories and is known accurately. The slivers are dry-combed, fatty matter content less than 1 %. A set of eight reference slivers can be obtained by appropriate laboratories on application to the: International Wool Textile Organization Sidings Close; Canal Road Bradford West Yorkshire BD2 1AZ England info@interwoollabs.org ### **Bibliography** [1] IWTO-6-98, Method of testing for the determination of the mean diameter of wool fibres in combed sliver using the Airflow apparatus # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com