BS ISO 705:2015

BSI Standards Publication

Rubber latex — Determination of density between 5 °C and 40 °C

BS ISO 705:2015 BRITISH STANDARD

National foreword

This British Standard is the UK implementation of ISO 705:2015. It supersedes BS 6057-3.7:1995 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee PRI/50, Raw materials (including latex) for use in the rubber industry.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2015. Published by BSI Standards Limited 2015

ISBN 978 0 580 89093 2

ICS 83.040.10

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 November 2015.

Amendments/corrigenda issued since publication

Date Text affected

INTERNATIONAL STANDARD

ISO 705:2015 **ISO** 705

Third edition 2015-11-01

Rubber latex — Determination of density between 5 °C and 40 °C

Latex de caoutchouc — Détermination de la masse volumique entre 5 °C et 40 °C

BS ISO 705:2015 ISO 705:2015(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Contents Pa				
Fore	Forewordiv			
1	Scope	1		
2	Normative references	1		
3	Terms and definitions	1		
4	Principle	1		
5	Apparatus	1		
6	Sampling	2		
7	Procedure	2		
8	Expression of results	3		
9	Test report	5		
Bibl	liography	6		

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 3, *Raw materials (including latex) for use in the rubber industry.*

This third edition cancels and replaces the second edition (ISO 705:1994), which has been revised to

- update the normative references (in <u>Clause 2</u> and throughout the text),
- move part of the scope into a new <u>Clause 4</u> "Principle", and
- add a bibliography.

Rubber latex — Determination of density between 5 °C and 40 °C

1 Scope

This International Standard specifies a method for the determination of the density of natural rubber latex concentrate between the temperatures of 5 °C and 40 °C.

This International Standard is intended for use when density determinations are used to calculate the mass of a measured volume of latex in locations where it is not practical to weigh directly or to control the temperature of the laboratory.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 123, Rubber latex — Sampling

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

density

mass divided by volume at a stated temperature

Note 1 to entry: Density is measured in megagrams per cubic metre. \\

3.2

natural rubber latex concentrate

natural rubber latex containing ammonia and/or other preservatives and which has been subjected to some form of concentration

4 Principle

For the determination of the density of natural rubber latex concentrate between 5 $^{\circ}$ C and 40 $^{\circ}$ C, it is essential that the density be determined on a latex sample containing the same amount of air as contained when the volume was measured. Therefore, the latex bulk is allowed to stand for a minimum period of 24 h before sampling to ensure the removal of air bubbles. The density determination is preferably made at the same temperature as the volume measurement, otherwise a correction shall be applied.

This method is suitable for all latices from natural sources, for synthetic latex and for compounded or prevulcanized latex, as well as for artificial dispersions of rubber. However, the temperature correction given in <u>8.2</u> is not necessarily valid for all these.

For measurements made at standard temperatures, ISO 2811-1 and ISO 2811-3 should be used.

5 Apparatus

Ordinary laboratory equipment, plus the following.

5.1 Density bottle (pyknometer), capacity 50 cm³ having a ground-glass stopper through which a capillary tube passes, and fitted with a ground-glass cap (see Figure 1).

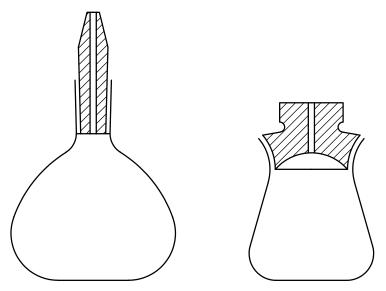


Figure 1 — Density bottles (pyknometers)

- **5.2** Constant-temperature bath, accurate to within \pm 0,2 °C and adjustable to a temperature above or below ambient temperature. If a constant-temperature bath is not available, a water bath shall be used to ensure that the latex is at a known temperature.
- **5.3 Balance**, accurate to 1 mg.
- **5.4 Two conical flasks,** of at least 200 cm³ capacity, each fitted with a rubber stopper holding a short glass inlet tube with a blowing ball at the external end and a glass tube at the inside end reaching nearly to the bottom of the flask.

6 Sampling

The latex to be sampled shall have stood for at least 24 h to ensure the removal of air bubbles.

Record the temperature θ of the bulk of the latex at the time of sampling. Carry out the sampling in accordance with one of the methods specified in ISO 123, taking care to avoid entrapment of air and ensuring that the bottle in which the sample is placed is completely filled.

7 Procedure

- **7.1** Carry out the determination as soon as possible after sampling. If an adjustable constant-temperature bath (5.2) is not available, proceed in accordance with $\overline{7.3}$. The procedure takes account of the difficulties of controlling the temperature at the point of sampling natural rubber latex concentrate and the consequent need for a temperature correction.
- **7.2** Adjust the temperature of the constant temperature bath to θ (see <u>Clause 6</u>). Stir the sample of the latex gently without introducing any air bubbles. Partly fill one of the conical flasks (<u>5.4</u>) with a suitable volume of latex and place in the bath. Likewise, partly fill the second conical flask with cool, freshly boiled, distilled water and place in the bath.

Weigh the clean and dry density bottle (5.1) with its stopper and cap to the nearest 1 mg. Immerse the density bottle up to its neck in the bath, with the ground-glass stopper in place but not the cap.

Allow the density bottle and the two conical flasks containing the latex and the water to come to the temperature of the bath. This requires a minimum of 20 min.

Using the blowing ball, take a few cubic centimetres of latex from the conical flask containing the latex and discard. Then transfer a sufficient amount into the density bottle to fill it completely. Put the stopper in place and immediately wipe clean the top surface (tissue paper is recommended for this purpose), taking care not to remove any latex from the capillary tube. Remove the density bottle from the bath and immediately put in place the ground-glass cap. Dry the outside of the density bottle with the minimum of handling and then weigh the density bottle to the nearest 1 mg.

Empty the density bottle and wash free from latex with distilled water. Immerse the density bottle up to its neck in the constant-temperature bath as before. Fill the density bottle with distilled water, transferring it by blowing from the second conical flask. Allow it to stand for 5 min in the bath. Empty the density bottle, put it back in the bath and refill by the same procedure. Immediately insert the stopper and wipe dry the top surface (tissue paper is recommended for this purpose), taking care not to remove any water from the capillary tube. Remove the density bottle from the bath and immediately put in place the ground-glass cap. Dry the outside of the bottle with the minimum of handling and then weigh the bottle to the nearest 1 mg.

7.3 If a non-adjustable water bath is used, the temperature of the bath shall be such that it is not likely to fluctuate during the course of the determination and it shall be as close as is practical to the temperature θ of the bulk latex (see <u>Clause 6</u>).

Record the temperature θ_1 of the bath.

Proceed as described in 7.1. Recheck the temperature of the bath before filling the density bottle with latex and after filling it with water. If the temperature of the bath has altered by more than 1 °C, repeat the procedure.

8 Expression of results

8.1 Calculate the density ρ of the latex at the temperature of the bath, in megagrams per cubic meter, using the following equation:

$$\rho = \frac{m_{\rm L} \times \rho_{\rm W}}{m_{\rm W}}$$

where

 $m_{\rm L}$ is the mass, in grams, of the latex in the density bottle;

 $m_{\rm W}$ is the mass, in grams, of the water in the density bottle;

 $\rho_{\rm W}$ is the density, in megagrams per cubic meter (Mg/m³), of water at the bath temperature as given in Table 1.

The results of duplicate determinations shall be within 0,001 Mg/m³.

Table 1 — Density of water at various temperatures

Temperature °C	Density Mg/m ³
5	1,000 0
6	0,999 9
7	0,999 9
8	0,999 8
9	0,9998
10	0,999 7
11	0,999 6
12	0,999 5
13	0,999 4
14	0,999 2
15	0,999 1
16	0,998 9
17	0,998 8
18	0,998 6
19	0,998 4
20	0,998 2
21	0,998 0
22	0,997 8
23	0,997 5
24	0,997 3
25	0,997 0
26	0,996 8
27	0,996 5
28	0,996 2
29	0,995 9
30	0,995 6
31	0,995 3
32	0,995 0
33	0,994 7
34	0,994 4
35	0,994 0
36	0,993 7
37	0,993 3
38	0,993 0
39	0,992 6
40	0,992 2

8.2 In the case of natural rubber latex concentrate of 55 % to 75 % total solids content, when the temperature of the density determination θ_1 (see <u>7.3</u>) differs from that of the bulk latex, the corrected density shall be calculated using the following equation (correct over the range 5 °C to 40 °C):

$$\rho_c = \rho_1 \left[1 - 0,000 \; 5 \left(\theta - \theta_1 \right) \right]$$

where

 $\rho_{\rm c}$ is the corrected density at temperature θ ;

 ρ_1 is the density determined at temperature θ_1 .

9 Test report

The test report shall include the following information:

- a) a reference to this International Standard;
- b) all details necessary for the identification of the sample;
- c) the results and the units in which they have been expressed;
- d) the temperatures of the bulk latex and the bath;
- e) any unusual features noted during the determination;
- f) the date of the test;
- g) any operation not included in the International Standard or regarded as optional.

Bibliography

- $[1] \hspace{0.5cm} \textbf{ISO 2811-1, Paints and varnishes} \color{red} \color{blue} \textit{Determination of density} \color{blue} \textit{Part 1: Pyknometer method}$
- [2] ISO 2811-3, Paints and varnishes Determination of density Part 3: Oscillation method

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

Revisions

Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services

Tel: +44 845 086 9001

Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions

Tel: +44 845 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

Email: knowledgecentre@bsigroup.com

Copyright & Licensing

Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

