BS ISO 249:2016

BSI Standards Publication

Rubber, raw natural — Determination of dirt content

BS ISO 249:2016 BRITISH STANDARD

National foreword

This British Standard is the UK implementation of ISO 249:2016. It supersedes BS ISO 249:2014 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee PRI/50, Raw materials (including latex) for use in the rubber industry.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2016. Published by BSI Standards Limited 2016

ISBN 978 0 580 92668 6

ICS 83.040.10

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 July 2016.

Amendments issued since publication

Date Text affected

INTERNATIONAL STANDARD

BS ISO 249:2016 ISO 249

Fifth edition 2016-07-01

Rubber, raw natural — Determination of dirt content

Caoutchouc naturel brut — Détermination de la teneur en impuretés

BS ISO 249:2016 ISO 249:2016(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Co	ntent	itents				
Fore	eword		iv			
1	Scor	pe	1			
2	Nor	mative references	1			
3	Reag	1				
4	App	oaratus	2			
5	Proc 5.1 5.2 5.3 5.4	Preparation of the test portion Preparation of the peptizer Determination Care of sieves				
6	Expi	ression of results	6			
7	Precision					
8	Test report					
Ann	ex A (ir	nformative) Guidance for using precision results	7			
Ann	ex B (ir	nformative) Precision	8			
Rihl	iogran]	ıhv	10			

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html

The committee responsible for this document is ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 3, *Raw materials (including latex) for use in the rubber industry.*

This fifth edition cancels and replaces the fourth edition (ISO 249:2014), of which constitutes a minor revision with the following change:

— the first sentence of 5.1.1 has been corrected.

Rubber, raw natural — Determination of dirt content

WARNING — Persons using this International Standard should be familiar with normal laboratory practice. This International Standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions.

1 Scope

This International Standard specifies a method for the determination of the dirt content of raw natural rubber.

It is not applicable to dirt present as surface contamination.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 565, Test sieves — Metal wire cloth, perforated metal plate and electroformed sheet — Nominal sizes of openings

ISO 1795, Rubber, raw natural and raw synthetic — Sampling and further preparative procedures

3 Reagents

WARNING — All recognized health and safety precautions shall be exercised during the operations of this analysis, with particular emphasis on safe handling of the flammable solvents required. All solvents shall be free from water and dirt.

During the analysis, wherever possible, use only reagents of recognized analytical grade.

- **3.1 Mixed xylenes**, boiling range 139 °C to 141 °C.
- **3.2 High-aromatic hydrocarbon solvent known as white spirit**, boiling range 155 °C to 198 °C, or other hydrocarbon solvents of similar boiling range.
- **3.3 Light petroleum**, boiling range 60 °C to 80 °C or other hydrocarbon solvents of similar boiling range.
- 3.4 Toluene.
- 3.5 Rubber peptizing agents.
- **3.5.1 Xylyl mercaptan solution**, a mass fraction of 36 % in mineral oil.
- 3.5.2 2-mercaptobenzothiazole.
- 3.5.3 Di-(2-benzamidophenyl) disulfide.

- **3.5.4** Tolyl mercaptan solution, a mass fraction of 20 % to a mass fraction of 40 % in mineral oil.
- 3.5.5 Other fully soluble rubber peptizing agent.

4 Apparatus

Ordinary laboratory equipment, and the following.

- **4.1 Conical flask**, of capacity 250 cm³ or 500 cm³ fitted with a suitable stopper; or beaker, of capacity 250 cm³ or 500 cm³, and a clock glass of appropriate diameter as cover.
- **4.2 Short air condenser**, (optional).
- **4.3** Thermometer, reading to at least 200 °C.
- **4.4 Heater**, for heating the conical flask or beaker (4.1) and its contents (see 5.3.4).

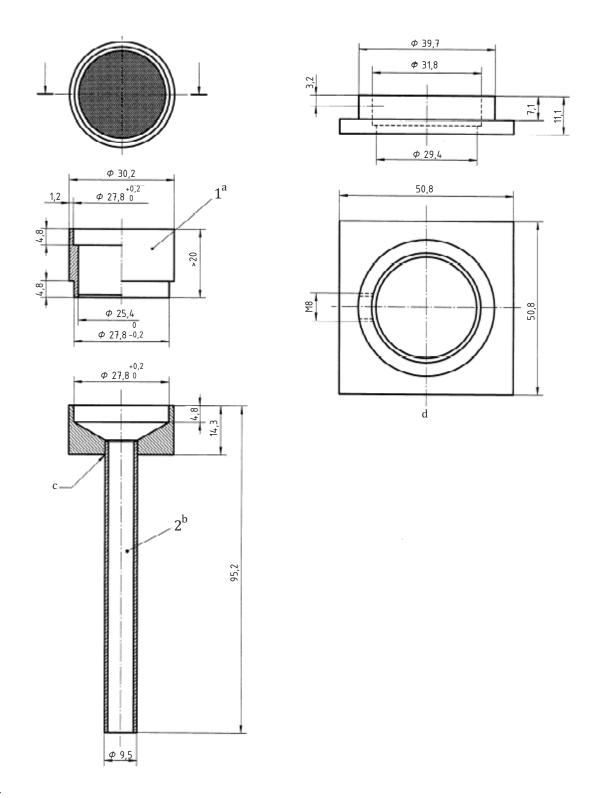
Hotplates which provide uniform heating surfaces, or infrared lamps, are recommended. Infrared lamps (250 W) can be placed in rows, with the base of the conical flask about 20 cm from the top of the lamp. Individual control of each lamp is recommended to prevent localized overheating. Alternatively, a sand bath may be used.

- **4.5 Sieve**, of nominal size of openings 44 μ m to 45 μ m (325 mesh) of corrosion-resistant wire gauze, preferably stainless steel, complying with ISO 565.
- **4.5.1** The wire gauze shall be mounted across the end of a metal tube about 25 mm in diameter and greater than 20 mm long.
- **4.5.2** The sieve shall be constructed in such a way that the gauze is free from distortion and is protected from accidental damage. A suitable construction is shown in <u>Figure 1</u>.
- **4.5.3** Sieves and holders may also be constructed by removing the bottom of a metal crucible having the appropriate dimensions, and soldering the screen to the crucible. This results in an ample container for the rubber solution during filtering.
- **4.5.4** A coarse screen may also be soldered under the 44 μ m to 45 μ m (325 mesh) gauze to protect it from accidental damage. This "guard" screen shall not hinder the filtration in any way but only provide a support for the gauze.
- **4.5.5** Commercially available filtration apparatus having 44 μm to 45 μm (325 mesh) gauze is acceptable, provided it can be used as specified in this International Standard.
- **4.6 Ultrasonic equipment**, for cleaning sieves (4.5) (optional but desirable).

5 Procedure

5.1 Preparation of the test portion

5.1.1 Prepare a homogenized laboratory sample of raw natural rubber in accordance with ISO 1795. From the homogenized laboratory sample, take about 30 g, and pass it twice between the cold rolls of a laboratory mill, the nip being adjusted to $0.5 \text{ mm} \pm 0.1 \text{ mm}$ by means of a lead strip (see ISO 2393).[1]


- **5.1.2** Immediately weigh a test portion of 10 g to 20 g to the nearest 0,1 g. (For "clean" rubbers of low dirt content, a 20 g test portion is recommended. For heavily contaminated rubbers, a smaller test portion should be used.)
- **5.1.3** Carry out the determination in duplicate.

5.2 Preparation of the peptizer

- **5.2.1** If xylyl mercaptan (3.5.1) is used, use 1 g of the solution per test portion and 150 cm³ to 230 cm³ of solvent (3.1 or 3.2).
- **5.2.2** If 2-mercaptobenzothiazole (3.5.2) or di-(2-benzamidophenyl) disulfide (3.5.3) is used, use 0,5 g per test portion. Prepare a solution by dissolving 0,5 g of solid in 200 cm³ of solvent (3.1 or 3.2) and filtering off any insoluble material.
- **5.2.3** If tolyl mercaptan (3.5.4) is used, use 1 g to 1,5 g of the solution per test portion and 200 cm³ of solvent (3.1 or 3.2).

5.3 Determination

- **5.3.1** To the conical flask or the beaker (4.1), add solvent and peptizer according to 5.2.1, 5.2.2, and 5.2.3.
- **5.3.2** Cut the test portion into pieces, each of mass about 1 g, and drop each piece, separately, into the flask or beaker containing solvent (5.3.1).
- **5.3.3** Heat the flask or beaker and its contents (see 4.4) at 125 °C to 130 °C until a smooth solution is obtained, or stopper the flask or cover the beaker with a clock glass and stand for several hours at room temperature before heating to 125 °C to 130 °C. A short air condenser (4.2) can be used during the heating, to reduce evaporation of the solvent.

Key

- 1 sieve (stainless sieve ring with wire gauze soldered on to it)
- 2 sieve holder (stainless steel or brass cylinder)
- a A recess of 1 mm around the inner edge of the top and the outer edge of the lower end is allowed for easy stacking of the sieves.
- b Dimensions: 30 mm external diameter, 2 mm to 3 mm wall thickness, and 3 mm height.
- c Braze on outside.
- d Sieve holder for inspection of sieve.

Figure 1 — Details of suitable sieve and holder for dirt determination

5.3.4 Agitate the flask or beaker occasionally by hand.

Boiling or overheating of the rubber solution can result in the formation of a gel-like substance which renders subsequent filtration difficult and can result in a higher apparent dirt content; hence, avoid apparatus and conditions which can cause local overheating.

- **5.3.5** When the rubber is completely dissolved (and the solution is adequately mobile), decant the hot solution through the sieve (4.5), which has been weighed to the nearest 0,1 mg, retaining the bulk of the dirt in the flask or beaker.
- **5.3.6** Wash the flask or beaker and the retained dirt with hot solvent (3.1 or 3.2) until the rubber has been completely removed. Again, retain the bulk of the dirt in the flask or beaker. (About 100 cm³ of hot solvent is normally required for effective washing.) During the later stages of the washing operation, rinse the dirt from the flask or beaker into the sieve. Loosen any dirt adhering to the flask or beaker with a glass rod, so it can be rinsed on to the sieve.
- **5.3.7** Remove any gelled rubber which will not pass through the sieve by one of the following methods:
- a) gently brushing the underside of the gauze with a small sable brush while hot solvent remains in the sieve;
- b) standing the sieve in a beaker containing about 10 mm depth of toluene (3.4) and gently boiling for 1 h, covering the beaker with a clock glass.

These operations should preferably be carried out under a hood.

- **5.3.8** Wash the sieve twice, either with light petroleum (3.3), in which case dry at 100 °C for 30 min, or with white spirit (3.2), in which case dry at 100 °C for 1 h.
- **5.3.9** The dirt on the sieve after drying should be loose and, apart from fibrous matter, be free-flowing. It should be readily dislodgeable from the wire gauze. If this is not so, treat the sieve with boiling toluene as in 5.3.7 b).
- **5.3.10** If gelled rubber still remains, abandon the determination and carry out a repeat determination.
- **5.3.11** Cool the sieve and residue in a desiccator and weigh to the nearest 0,1 mg.

5.4 Care of sieves

- **5.4.1** At all stages, handle the sieve carefully. Inspect it after each determination to check for damage, for example under a microscope, with a slide projector (to throw an image of the gauze on a screen) or with magnifying glass (×10). If noticeable distortion of the wire gauze has occurred, replace it with new gauze.
- **5.4.2** After each determination, remove loose dirt by careful brushing. Partially blocked sieves can usually be cleaned by boiling in xylene, but more effectively with ultrasonic equipment (4.6). If, in spite of this treatment, the gauze is badly blocked and the mass of the sieve has increased more than 1 mg, replace the wire gauze.
- **5.4.3** Sieves can be stored in warm toluene (3.4) to lessen build-up of rubber.

6 Expression of results

The dirt content, expressed as a percentage by mass, of the test portion is given by Formula (1):

$$\frac{m_1}{m_0} \times 100 \tag{1}$$

where

 m_0 is the mass, in grams, of the test portion;

 m_1 is the mass, in grams, of the dirt.

Express the result to the nearest 0,01 %.

7 Precision

See Annex B.

8 Test report

The test report shall contain the following information:

- a) a reference to this International Standard, i.e. ISO 249;
- b) all details necessary for identification of the sample;
- c) the mean of the two results;
- d) the solvent and peptizer used;
- e) any particular points observed in the course of the test;
- f) any operation not specified in this International Standard or in the International Standards to which reference is made, and any operation regarded as optional.

Annex A

(informative)

Guidance for using precision results

- **A.1** The general procedure for using precision results is as follows, with the symbol $|x_1 x_2|$ designating a positive difference in any two measurement values (i.e. regardless of the sign).
- **A.2** Enter the appropriate precision table (for any test parameter being considered) at an average value (of the measured parameter) nearest to the "test" data average under consideration. This line will give the applicable r, (r), R or (R) for use in the decision process.
- **A.3** With these r and (r) values, the following general repeatability statements may be used to make decisions.
- **A.3.1** For an absolute difference: The difference $|x_1 x_2|$ between two test (value) averages, found on nominally identical material samples under normal and correct operation of the test procedure, will exceed the tabulated repeatability r on average not more than once in 20 cases.
- **A.3.2** For a percentage difference between two test (value) averages: The percentage difference between two test values, found on nominally identical material samples under normal and correct operation of the test procedure, will exceed the tabulated repeatability (r) on average not more than once in 20 cases.

$$\left[\left|x_1 - x_2\right| / \left(x_1 + x_2\right) / 2\right] \times 100$$

- **A.4** With these *R* and (*R*) values, the following general reproducibility statements may be used to make decisions.
- **A.4.1** For an absolute difference: The absolute difference $|x_1 x_2|$ between two independently measured test (value) averages, found in two laboratories using normal and correct test procedures on nominally identical material samples, will exceed the tabulated reproducibility R not more than once in 20 cases.
- **A.4.2** For a percentage difference between two test (value) averages: The percentage difference between two independently measured test (value) averages, found in two laboratories using normal and correct test procedures on nominally identical material samples, will exceed the tabulated reproducibility (*R*) not more than once in 20 cases.

$$[|x_1-x_2|/(x_1+x_2)/2] \times 100$$

Annex B

(informative)

Precision

B.1 General

Precision calculations to express repeatability and reproducibility were performed in accordance with ISO/TR 9272.[2] Consult ISO/TR 9272 for precision concepts and nomenclature. Annex A gives guidance on the use of repeatability and reproducibility.

An interlaboratory test programme was organized in late 2010 and 2011 by the Malaysian Rubber Board. Two separate programmes were conducted, one in March and one in September. Two types of materials were sent to each laboratory:

- a) blended samples of two rubbers "A" and "B";
- b) unblended samples of the same two materials "A" and "B".

For both blended and unblended samples, a test result was taken as the mean of five separate determinations.

NOTE Blended samples are samples blended before they are given to participants; unblended samples are not blended before being given to participants.

"Type 1" precision was measured in the interlaboratory test programme. The time period for repeatability and reproducibility was on a scale of days. A total of 11 laboratories participated in the programme for blended samples and a total of 10 laboratories in the programme for unblended samples.

B.2 Precision results

Precision results for the blended-sample programme are given in <u>Table B.1</u> and the results for the unblended sample programme are in <u>Table B.2</u>.

Table B.1 — Type 1 precision — Blended sample testing using turpentine as the solvent and using a 44 μm sieve

Ī	Rubber sample	Average of dirt content % (m/m)	Within-laboratory repeatability		Interlaboratory reproducibility	
			r	(r)	R	(R)
Ī	A	0,049 1	0,012 8	26,07	0,036 9	75,15
Ī	В	0,149 4	0,019 4	12,99	0,127 3	85,21

r = repeatability, in percent by mass.

⁽r) = repeatability, in percent (relative) of the average.

R = reproducibility, in percent by mass.


⁽R) = reproducibility, in percent (relative) of the average.

Table B.2 — Type 1 precision — Unblended sample testing using turpentine as the solvent and using a 44 μm sieve

Rubber sample	_	Within-laboratory repeatability		Interlaboratory reproducibility			
	content % (<i>m/m</i>)	r	(r)	R	(R)		
A	0,045 2	0,008 1	17,92	0,028 2	62,39		
В	0,050 4	0,010 4	20,63	0,019	37,70		
See <u>Table B.1</u> for symbol definitions.							

Bibliography

- [1] ISO 2393, Rubber test mixes Preparation, mixing and vulcanization Equipment and procedures
- [2] ISO/TR 9272, Rubber and rubber products Determination of precision for test method standards

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Copyright in BSI publications

All the content in BSI publications, including British Standards, is the property of and copyrighted by BSI or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use.

Save for the provisions below, you may not transfer, share or disseminate any portion of the standard to any other person. You may not adapt, distribute, commercially exploit, or publicly display the standard or any portion thereof in any manner whatsoever without BSI's prior written consent.

Storing and using standards

Standards purchased in soft copy format:

- A British Standard purchased in soft copy format is licensed to a sole named user for personal or internal company use only.
- The standard may be stored on more than 1 device provided that it is accessible
 by the sole named user only and that only 1 copy is accessed at any one time.
- A single paper copy may be printed for personal or internal company use only.

Standards purchased in hard copy format:

- A British Standard purchased in hard copy format is for personal or internal company use only.
- It may not be further reproduced in any format to create an additional copy.
 This includes scanning of the document.

If you need more than 1 copy of the document, or if you wish to share the document on an internal network, you can save money by choosing a subscription product (see 'Subscriptions').

Reproducing extracts

For permission to reproduce content from BSI publications contact the BSI Copyright & Licensing team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email subscriptions@bsigroup.com.

Revisions

Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Useful Contacts

Customer Services

Tel: +44 345 086 9001

Email (orders): orders@bsigroup.com **Email (enquiries):** cservices@bsigroup.com

Subscriptions

Tel: +44 345 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

 $\textbf{Email:} \ knowledge centre @bsigroup.com$

Copyright & Licensing

Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

