BS ISO 248-1:2011 ## **BSI Standards Publication** # Rubber, raw — Determination of volatile-matter content Part 1: Hot-mill method and oven method BS ISO 248-1:2011 BRITISH STANDARD #### National foreword This British Standard is the UK implementation of ISO 248-1:2011. It supersedes BS ISO 248:2005 which is withdrawn. The UK participation in its preparation was entrusted to Technical Committee PRI/23, Test methods for rubber and non-black compounding ingredients. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © BSI 2011 ISBN 978 0 580 66334 5 ICS 83.040.10 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 November 2011. Amendments issued since publication Date Text affected ## INTERNATIONAL STANDARD ISO 248-1:2011 248-1 First edition 2011-10-15 ### Rubber, raw — Determination of volatilematter content — Part 1: Hot-mill method and oven method Caoutchouc brut — Détermination des matières volatiles — Partie 1: Méthode par mélangeage à chaud et méthode par étuvage BS ISO 248-1:2011 ISO 248-1:2011(E) #### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2011 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland #### **Contents** Page Forewordiv 1 Scope......1 2 3 4 Principle2 5 Oven method......4 6 7 Precision6 8 Annex A (informative) Selection of appropriate test method8 Annex B (normative) Homogenization.....9 Annex C (informative) Precision.......10 Bibliography......13 BS ISO 248-1:2011 **ISO 248-1:2011(E)** #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 248-1 was prepared by Technical Committee ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 2, *Testing and analysis*. This first edition cancels and replaces ISO 248:2005, which has been technically revised. ISO 248 consists of the following parts, under the general title *Rubber*, raw — Determination of volatile-matter content: - Part 1: Hot-mill method and oven method - Part 2: Thermogravimetric methods using an automatic analyser with an infrared drying unit #### Rubber, raw — Determination of volatile-matter content — #### Part 1: #### Hot-mill method and oven method WARNING — Persons using this part of ISO 248 should be familiar with normal laboratory practice. This part of ISO 248 does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions. IMPORTANT — Certain procedures specified in this part of ISO 248 might involve the use or generation of substances, or the generation of waste, that could constitute a local environmental hazard. Reference should be made to appropriate documentation on safe handling and disposal after use. #### 1 Scope - **1.1** This part of ISO 248 specifies two methods for the determination of volatile-matter content in raw rubbers by using a hot mill or an oven. - **1.2** The methods are applicable to the determination of the volatile-matter content in the "R" group of rubbers listed in ISO 1629. These are rubbers having an unsaturated carbon chain, for example natural rubber and synthetic rubbers derived at least partly from diolefins. The methods can also be applicable to other raw rubbers, but in these cases it is necessary to demonstrate that the change in mass is due solely to loss of actual volatile matter and not to rubber degradation. - **1.3** The hot-mill method is not applicable to natural rubber, to synthetic rubbers which are too difficult to handle on a hot mill or to synthetic rubbers in powder or chip form. - **1.4** The test methods do not necessarily give identical results. Therefore, in cases of dispute, the oven method, procedure A, is the reference method. NOTE The applicability of each test method to various types of rubber is summarized in Annex A. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 1629, Rubber and latices — Nomenclature ISO 1795, Rubber, raw natural and raw synthetic — Sampling and further preparative procedures ISO 2393, Rubber test mixes — Preparation, mixing and vulcanization — Equipment and procedures #### 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO 1795 and the following apply. #### 3.1 #### test portion quantity of rubber taken from the test sample or laboratory sample for the purpose of a single specific test, for example the amount actually weighed out for a single determination of the volatile-matter content #### 4 Principle #### 4.1 Hot-mill method A test portion is sheeted out on a heated mill until all volatile matter is driven off. The loss in mass during milling is calculated and expressed as the volatile-matter content. If the test portion is homogenized in accordance with Annex B before drying, the loss in mass during the homogenization is included in the calculation. #### 4.2 Oven method A test portion is dried in an oven to constant mass. The loss in mass is calculated and expressed as the volatile-matter content. If the test portion is homogenized in accordance with Annex B before drying, the loss in mass during the homogenization is included in the calculation. #### 5 Hot-mill method #### 5.1 General - **5.1.1** Two procedures are specified, as follows: - Hot-mill method, procedure A: A test sample is homogenized using a laboratory mill, and a test portion from the homogenized test sample is dried to constant mass using a hot mill. - Hot-mill method, procedure B: A test portion is dried to constant mass using a hot mill. - NOTE Procedure B is a simplified one which does not include a homogenization process. - **5.1.2** When the sample is flaky or becomes sticky on the hot mill, making weighing difficult or impossible, the oven method shall be used. - **5.1.3** The number of test portions shall be agreed between the interested parties. #### 5.2 Apparatus - **5.2.1 Mixing mill**, complying with the requirements of ISO 2393. - **5.2.2 Balance**, capable of weighing to the nearest 0,1 g. #### 5.3 Procedure #### 5.3.1 Hot-mill method, procedure A **5.3.1.1** Take a test sample of about 250 g from the laboratory sample in accordance with ISO 1795 and homogenize it in accordance with Annex B. Weigh to the nearest 0,1 g before and after homogenization (masses m_1 and m_2 , respectively). Cut test portions needed for other chemical and physical tests from the homogenized test sample, if necessary. - **5.3.1.2** Adjust the clearance of the mill rolls to 0,25 mm \pm 0,05 mm, using lead strips as specified in ISO 2393. Maintain the surface temperature of the rolls at 105 °C \pm 5 °C. - **5.3.1.3** Pass a weighed test portion (mass m_3), preferably of 100 g or more, taken from the homogenized test sample repeatedly through the mill for 4 min. Do not allow the test portion to band and take care to prevent any loss of material. Weigh the test portion to the nearest 0,1 g. Pass the test portion through the mill for an additional 2 min and reweigh. If the masses at the end of the 4 min and 6 min periods differ by less than 0,1 g, calculate the volatile-matter content. If not, continue passing the test portion through the mill for 2 min periods until the mass does not decrease by more than 0,1 g between successive weighings (final mass m_4). Before each weighing, allow the test portion to cool to room temperature in a desiccator. #### 5.3.2 Hot-mill method, procedure B - **5.3.2.1** Take a test portion of about 250 g from the laboratory sample and weigh to the nearest 0,1 g (mass m_5). - **5.3.2.2** Adjust the clearance of the mill rolls to 0,25 mm \pm 0,05 mm, using lead strips as specified in ISO 2393. Maintain the surface temperature of the rolls at 105 °C \pm 5 °C. Pass the test portion through the mill not less than twice, then reweigh to the nearest 0,1 g, followed by passing through the mill not less than twice again and reweighing. - **5.3.2.3** If the difference in mass of the test portion before and after it is passed through the rolls is less than 0,1 g, the test portion is considered to be well dried. If it is not well dried, continue passing the test portion twice through the rolls until the mass difference is less than 0,1 g (final mass m_6). NOTE Cooling in a desiccator before weighing is desirable. #### 5.4 Expression of results #### 5.4.1 Hot-mill method, procedure A The volatile-matter content w_1 is given, as a percent mass fraction, by the formula: $$w_1 = \left(1 - \frac{m_2 \times m_4}{m_1 \times m_3}\right) \times 100$$ where m_1 is the mass, in grams, of the test sample before homogenization; m_2 is the mass, in grams, of the test sample after homogenization; m_3 is the mass, in grams, of the test portion before milling; m_4 is the mass, in grams, of the test portion after milling. #### 5.4.2 Hot-mill method, procedure B The volatile-matter content w_2 is given, as a percent mass fraction, by the following formula: $$w_2 = \frac{m_5 - m_6}{m_5} \times 100$$ where m_5 is the mass, in grams, of the test portion before milling; m_6 is the mass, in grams, of the test portion after milling. #### 6 Oven method #### 6.1 General - **6.1.1** Two procedures are specified, as follows: - Oven method, procedure A: A test sample is homogenized using a laboratory mill, and a test portion taken from the homogenized test sample is dried in an oven to constant mass. If the sample is in powder form or impossible to weigh before and after homogenization, a test portion shall simply be dried, without carrying out the homogenization process. - Oven method, procedure B: A test sample is sheeted out using a laboratory mill, and a test portion taken from the sheeted test sample is dried in an oven for 1 h. If the sample is in powder form or is difficult to pass through the mill, the test portion shall simply be dried, without carrying out the sheeting process. This procedure is only applicable to synthetic rubbers since natural rubber requires homogenization. - **6.1.2** The number of test portions shall be agreed between the interested parties. #### 6.2 Apparatus - **6.2.1 Oven**, ventilated, preferably of the air-circulation type, capable of being maintained at 105 $^{\circ}$ C \pm 5 $^{\circ}$ C. - **6.2.2 Balance**, capable of weighing to the nearest 0,1 mg. - **6.2.3 Mixing mill**, complying with the requirements of ISO 2393. #### 6.3 Procedure #### 6.3.1 Oven method, procedure A #### 6.3.1.1 Natural rubber - **6.3.1.1.1** Take a test sample of about 600 g from the laboratory sample in accordance with ISO 1795 and homogenize it in accordance with Annex B. Weigh the test sample to the nearest 0,1 g before and after this homogenization (masses m_7 and m_8 , respectively). Allow to cool to room temperature before the final weighing. Cut test portions needed for other chemical and physical tests from the homogenized test sample, if necessary. - **6.3.1.1.2** Take a test portion of about 10 g from the homogenized test sample and weigh it to the nearest 1 mg (mass m_9). - **6.3.1.1.3** Pass the test portion twice through the mill with the rolls set at 70 $^{\circ}$ C \pm 5 $^{\circ}$ C and with a mill opening which will produce a sheet of less than 2 mm thickness. - **6.3.1.1.4** Dry the test portion for 1 h in the oven, maintained at 105 °C \pm 5 °C, with the ventilators open and with the air-circulating fan, if fitted, switched on. Arrange the test portion so as to present the largest possible surface area to the hot air. Allow to cool to room temperature in a desiccator and weigh. Repeat the heating for further 30 min periods until the mass does not decrease by more than 1 mg between successive weighings (final mass m_{10}). - **6.3.1.1.5** If the sample is in powder form, take a test portion of about 10 g at random and place it on a clean watch-glass or a clean aluminium tray to facilitate weighing. Weigh it to the nearest 1 mg (mass m_9). Dry the test portion in accordance with 6.3.1.1.4 and weigh to the nearest 1 mg (final mass m_{10}). #### 6.3.1.2 Synthetic rubber - **6.3.1.2.1** Take a test sample of about 250 g from the laboratory sample in accordance with ISO 1795 and homogenize it in accordance with Annex B. Weigh the test sample to the nearest 0,1 g before and after this homogenization (masses m_7 and m_8 , respectively). Cut test portions needed for other chemical and physical tests from the homogenized test sample, if necessary. - **6.3.1.2.2** Take a test portion of about 10 g from the homogenized test sample and weigh it to the nearest 1 mg (mass m_9). - **6.3.1.2.3** Pass the test portion twice through the mill with the rolls set at 70 $^{\circ}$ C \pm 5 $^{\circ}$ C and with a mill opening which will produce a sheet of less than 2 mm thickness. - **6.3.1.2.4** When sheeting is impossible, take a test portion of about 10 g from the homogenized test sample and cut it by hand into small cubes with edges of 2 mm to 5 mm. Place the cubes on a clean watch-glass or a clean aluminium tray to facilitate weighing. Weigh to the nearest 1 mg (mass m_9). - **6.3.1.2.5** Dry the test portion in accordance with 6.3.1.1.4 and weigh to the nearest 1 mg (final mass m_{10}). - **6.3.1.2.6** If it is difficult to weigh the test portion before and after the homogenization process because it sticks to the roll surfaces, take a test portion of about 10 g directly from the laboratory sample and cut it by hand into small cubes with edges of 2 mm to 5 mm. Place the cubes on a clean watch-glass or a clean aluminium tray to facilitate weighing. Weigh to the nearest 1 mg (mass m_9). Dry the test portion in accordance with 6.3.1.1.4 and weigh to the nearest 1 mg (final mass m_{10}). - **6.3.1.2.7** If the sample is in powder form, take a test portion of about 10 g at random and place it on a clean watch-glass or a clean aluminium tray to facilitate weighing. Weigh to the nearest 1 mg (mass m_9). Dry the test portion in accordance with 6.3.1.1.4 and weigh to the nearest 1 mg (final mass m_{10}). #### 6.3.2 Oven method, procedure B - **6.3.2.1** Take a test sample of about 250 g and pass it through the mill with the surface temperature of the rolls adjusted to about 30 °C and the roll clearance to 0,25 mm \pm 0,05 mm to obtain a thin sheet. From the sheeted test sample, take two test portions of about 50 g and weigh each to the nearest 10 mg (mass m_{11}). Dry the test portions for 1 h in the oven, maintained at 105 °C \pm 5 °C. Remove the test portions from the oven and cool to room temperature in a desiccator. Reweigh to the nearest 10 mg (mass m_{12}). - **6.3.2.2** If the sample is in powder form or is impossible to sheet because it sticks to the roll surfaces or because it is flaky, take two test portions of about 10 g directly from the laboratory sample. Cut the test portions by hand into small cubes with edges of 2 mm to 5 mm, if necessary. Place each test portion in a tared clean aluminium tray of 15 mm depth and 60 mm diameter, or of similar shape, and weigh to the nearest 1 mg (mass m_{11}). Place the trays containing the test portions in the oven, maintained at 105 °C ± 5 °C, for 1 h. Remove the trays from the oven and allow to cool in a desiccator to room temperature. Reweigh to the nearest 1 mg (mass m_{12}). #### 6.4 Expression of results #### 6.4.1 Oven method, procedure A **6.4.1.1** When the test portion is taken from a homogenized test sample (see 6.3.1.1.2, 6.3.1.2.2 and 6.3.1.2.4), the volatile-matter content w_3 is given, as a percent mass fraction, by the formula: $$w_3 = \left(1 - \frac{m_8 \times m_{10}}{m_7 \times m_9}\right) \times 100$$ where m_7 is the mass, in grams, of the test sample before homogenization; m_8 is the mass, in grams, of the test sample after homogenization; $m_{\rm Q}$ is the mass, in grams, of the test portion before drying; m_{10} is the mass, in grams, of the test portion after drying. **6.4.1.2** When the sample is in powder form or sticks to the roll surface (see 6.3.1.1.5, 6.3.1.2.6 and 6.3.1.2.7), the volatile-matter content w_4 is given, as a percent mass fraction, by the formula: $$w_4 = \frac{m_9 - m_{10}}{m_9} \times 100$$ where m_9 is the mass, in grams, of the test portion before drying; m_{10} is the mass, in grams, of the test portion after drying. #### 6.4.2 Oven method, procedure B The volatile-matter content w_5 is given, as a percent mass fraction, by the formula: $$w_5 = \frac{m_{11} - m_{12}}{m_{11}} \times 100$$ where m_{11} is the mass, in grams, of the test portion before drying; m_{12} is the mass, in grams, of the test portion after drying. The test result is the average of the results for the duplicate test portions. #### 7 Precision See Annex C. #### 8 Test report The test report shall include the following particulars: - a) all details necessary for full identification of the raw rubber tested; - b) test method: - 1) a reference to this part of ISO 248, - 2) the method used (hot-mill method, procedure A, hot-mill method, procedure B, oven method, procedure A, or oven method, procedure B); - c) details of the test: - 1) the number of test portions tested, - 2) details of any operation not specified in this part of ISO 248 or regarded as optional, - 3) any unusual features noted during the determination; - d) results of the test; - e) the date of the test. ## Annex A (informative) #### Selection of appropriate test method #### A.1 Rubbers in the "R" group listed in ISO 1629 Table A.1 summarizes the applicability of the test methods specified in this part of ISO 248 for rubbers in the "R" group listed in ISO 1629. Table A.1 — Rubbers and applicable test methods | | Rubbers in the "R" group listed in ISO 1629 | | | | | | | | | |-------------|---------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--| | | Natural rubber | | Synthetic rubber | | | | | | | | Method | With homogenization | In powder
form | Possible to weigh before and after homogenization | | Impossible to weigh before and after homogenization | In powder form | | | | | | Sheeted out | | Possible
to sheet
out | Impossible to sheet out | Sticks to roll surface | | | | | | Procedure A | N | N | Υ | N | N | N | | | | | Procedure B | N | N | Υ | N | N | N | | | | | Procedure A | Y | Υ | Υ | Υ | Y | Υ | | | | | Procedure B | N | N | Υ | Y | Y | Υ | | | | | | Procedure A Procedure B Procedure A | With homogenization Sheeted out Procedure A N Procedure B N Procedure A Y | Natural rubber With homogenization Sheeted out Procedure A N N Procedure B N N Procedure A Y Y | Natural rubber With homogenization In powder form Possible to and homogenization Sheeted out Procedure A N N Y Procedure B N N Y Procedure A Y Y Y | Wethod Natural rubber Symbol With homogenization In powder form Possible to weigh before and after homogenization Sheeted out Possible to sheet out out Impossible to sheet out out Procedure A N N Y N Procedure B N N Y Y Procedure A Y Y Y Y | MethodNatural rubberSynthetic rubberWith homogenizationIn powder formPossible to weigh before and after homogenizationImpossible to weigh before and after homogenizationSheeted outPossible to sheet out outImpossible to sheet out outSticks to roll surfaceProcedure ANNYNNProcedure BNNYNNProcedure AYYYY | | | | ^{&#}x27;: applicable. #### A.2 Other rubbers which are not in the "R" group listed in ISO 1629 When the test method specified in this part of ISO 248 is used for rubbers other than those in the "R" group, it will be necessary to demonstrate that the change in mass is due solely to loss of original volatile matter and not to rubber degradation. Table A.1 may be used to select the test method for the rubber under test. N: not applicable. # Annex B (normative) #### Homogenization #### **B.1 Apparatus** **B.1.1** Roll mill, as specified in ISO 2393, for homogenizing test samples. #### **B.2 Procedure** - **B.2.1** Weigh the test sample specified for the test method concerned to the nearest 0,1 g and homogenize it by passing it ten times between the surfaces of the mill rolls with the nip set at 1,3 mm \pm 0,15 mm and with the surface temperature of the rolls maintained at 70 °C \pm 5 °C. - **B.2.2** In passes two to nine inclusive, roll up the test sample after passing it through the nip and present the roll endwise to the nip for the next pass. Return to the test sample any solid matter separating from it. - **B.2.3** On the tenth pass, sheet the test sample, allow it to cool in a desiccator and weigh it again to the nearest 0,1 g. ## Annex C (informative) #### **Precision** #### C.1 General The precision calculations to provide repeatability and reproducibility values were performed in accordance with ISO/TR 9272:1986. Consult this for precision concepts and nomenclature. #### C.2 Details of an ITP conducted in 1984 - **C.2.1** An interlaboratory test programme (ITP) was organized in late 1984 by the Rubber Research Institute of Malaysia. Two separate programmes were conducted, one in March and one in July. Two types of material were sent to each laboratory: - a) blended samples of two rubbers "A" and "B"; - b) unblended (normal) samples of the same two materials "A" and "B". - **C.2.2** For both the blended and the unblended samples, the test result was taken as the mean of three separate determinations. - **C.2.3** The oven method, procedure A, was used. - **C.2.4** A "type 1" precision was measured in the ITP. The time period for repeatability and reproducibility was on a scale of days. A total of 14 laboratories participated in the programme for blended samples and a total of 13 laboratories in the programme for unblended samples. #### C.3 Details of an ITP conducted in 2003 - **C.3.1** An ITP was conducted between April and May 2003 with the participation of seven laboratories for the hot-mill method, procedure B, and eight laboratories for the oven method, procedure B. - **C.3.2** Two samples of raw rubber, sample C (SBR 1500) and sample D (non-oil-extended BR), were used for both methods. - **C.3.3** The results given in Table C.3 for the oven method, procedure B, and in Table C.4 for the hot-mill method, procedure B, are averaged values and give an estimate of the precision of these test methods, as determined in the ITP, for laboratories performing duplicate analyses on two raw-rubber samples. #### C.4 Precision results The results of the 1984 ITP for the blended samples are given in Table C.1 and the results for the unblended samples in Table C.2. The results of the 2003 ITP for the oven method, procedure B, are given in Table C.3 and those for the hot-mill method, procedure B, in Table C.4. The precision results as determined by these ITPs should not be applied to acceptance or rejection testing of any group of materials or products without documentation that the results of this precision evaluation actually apply to the products or materials tested. Table C.1 — Precision data for the oven method, procedure A — Blended-sample testing | Sample | Average volatile-matter content | With | in-lab | Between labs | | | |---------------|---------------------------------|-------|--------|--------------|------|--| | - | % (mass fraction) | r | (r) | R | (R) | | | А | 0,37 | 0,031 | 8,54 | 0,154 | 41,9 | | | В | 0,37 | 0,032 | 8,71 | 0,151 | 40,7 | | | Pooled values | 0,37 | 0,032 | 8,62 | 0,152 | 41,3 | | Symbols are as follows: Table C.2 — Precision data for the oven method, procedure A — Unblended-sample testing | Sample | Average volatile-matter content | With | in-lab | Between labs | | | |---------------------------------------|---------------------------------|-------|--------|--------------|------|--| | | % (mass fraction) | r | (r) | R | (R) | | | А | 0,35 | 0,081 | 22,9 | 0,257 | 73,1 | | | В | 0,40 | 0,091 | 23,1 | 0,299 | 74,5 | | | Pooled values | 0,37 | 0,086 | 23,0 | 0,279 | 74,6 | | | See Table C.1 for symbol definitions. | | | | | | | Table C.3 — Precision data for the oven method, procedure B | Sample | Average volatile-
matter content | Within lab | | | Between labs | | | |---------|-------------------------------------|------------|------|------|--------------|------|------| | | % (mass fraction) | S_r | r | (r) | s_R | R | (R) | | C (SBR) | 0,10 | 0,02 | 0,04 | 45,7 | 0,02 | 0,06 | 67,6 | | D (BR) | 0,22 | 0,03 | 0,08 | 35,1 | 0,08 | 0,22 | 99,2 | s_r is the repeatability standard deviation; r is the repeatability limit, in percent mass fraction; ⁽r) is the repeatability limit, in percent (relative) of the average; R is the reproducibility limit, in percent mass fraction; ⁽R) is the reproducibility limit, in percent (relative) of the average. s_R is the reproducibility standard deviation. See Table C.1 for other symbol definitions. Table C.4 — Precision data for the hot-mill method, procedure B | Sample | Average volatile-
matter content | Within-lab | | | Between labs | | | |---------|-------------------------------------|------------|------|------|--------------|------|-------| | | % (mass fraction) | $S_{I'}$ | r | (r) | s_R | R | (R) | | C (SBR) | 0,07 | 0,02 | 0,07 | 97,8 | 0,03 | 0,10 | 137,3 | | D (BR) | 0,23 | 0,04 | 0,10 | 44,7 | 0,06 | 0,18 | 80,5 | s_r is the repeatability standard deviation; s_R is the reproducibility standard deviation. See Table C.1 for other symbol definitions. ## **Bibliography** [1] ISO/TR 9272:1986, Rubber and rubber products — Determination of precision for test method standards [now withdrawn] Price based on 13 pages ## British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### Knowledge Centre Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com