BS ISO 127:2012

BSI Standards Publication

Rubber, natural latex concentrate — Determination of KOH number

BS ISO 127:2012 BRITISH STANDARD

National foreword

This British Standard is the UK implementation of ISO 127:2012. It supersedes BS 6057-3.5:1996 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee PRI/50/-/1, Rubber - Latex.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2012. Published by BSI Standards Limited 2012

ISBN 978 0 580 73936 1

ICS 83.040.10

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 May 2012.

Amendments issued since publication

Date Text affected

INTERNATIONAL STANDARD

BS ISO 127:2012 ISO 127

Fourth edition 2012-04-15

Rubber, natural latex concentrate — Determination of KOH number

Latex concentré de caoutchouc naturel — Détermination de l'indice de potasse

BS ISO 127:2012 ISO 127:2012(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents Page Forewordiv 1 Scope ______1 2 3 4 Reagents 1 5 Apparatus ______2 6 Sampling 2 7 Procedure 2 8 Expression of results 3 9 Precision 3 10 Test report 3 Annex C (informative) Precision statement 8

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 127 was prepared by Technical Committee ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 3, *Raw materials (including latex) for use in the rubber industry.*

This fourth edition cancels and replaces the third edition (ISO 127:1995), in which the following modifications have been undertaken:

- the normative references have been updated;
- the first sentence in Clause 8 has been modified.

It also incorporates the Amendment ISO 127:1995/Amd.1:2006, the precision data from which have been included as a new informative annex (Annex C);

Rubber, natural latex concentrate — Determination of KOH number

WARNING — Persons using this International Standard should be familiar with normal laboratory practice. This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions.

1 Scope

This International Standard specifies a method for the determination of the KOH number of natural rubber latex concentrate which is preserved wholly or in part with ammonia. The method is applicable to latices containing boric acid. The method is not applicable to latices preserved with potassium hydroxide. It is not necessarily suitable for latices from natural sources other than *Hevea brasiliensis*, or for latices of synthetic rubber, compounded latex, vulcanized latex or artificial dispersions of rubber.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 123, Rubber latex — Sampling

ISO 124, Latex, rubber — Determination of total solids content

ISO 125, Natural rubber latex concentrate — Determination of alkalinity

ISO 976, Rubber and plastics — Polymer dispersions and rubber latices — Determination of pH

ISO 1802, Natural rubber latex concentrate — Determination of boric acid content

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

KOH number

<rubber latex> number of grams of potassium hydroxide equivalent to the acid radicals combined with ammonia in latex containing 100 g of total solids

[ISO 1382:2008]

4 Reagents

During the analysis, use only reagents of recognized analytical grade and only distilled water free of dissolved carbon dioxide, or water of equivalent purity.

- **4.1** Potassium hydroxide, standard volumetric solution, $c(KOH) = 0.1 \text{ mol/dm}^3$, carbonate-free.
- **4.2** Potassium hydroxide, standard volumetric solution, $c(KOH) = 0.5 \text{ mol/dm}^3$, carbonate-free.

4.3 Formaldehyde, 45 g to 50 g in 1 dm³ of solution [$c(HCHO) = 1.5 \text{ mol/dm}^3$ to 1,67 mol/dm³], acid-free, prepared by diluting concentrated formaldehyde with water and neutralizing with 0,1 mol/dm³ potassium hydroxide solution (4.1), using as indicator the faint pink colour of phenolphthalein.

Determine the concentration of the formaldehyde solution as described in Annex A.

5 Apparatus

Standard laboratory glassware, plus the following:

- **5.1 pH-meter**, conforming to ISO 976 but capable of being read to 0,01 units.
- **5.2 Glass electrode**, of a type suitable for use in solutions of pH up to 12,0.
- **5.3 Mechanical stirrer**, with earthed motor and glass paddle, or **magnetic stirrer**.

An automatic titrator may be used provided it has been checked as giving the same result as the standard method.

6 Sampling

Carry out the sampling in accordance with one of the methods specified in ISO 123.

7 Procedure

Calibrate the pH-meter by the method specified in ISO 976. If the total solids (w_{TS}) and alkalinity (A) of the latex are not known, determine them in accordance with ISO 124 and ISO 125, respectively. If the latex contains boric acid and the content is not known, determine it in accordance with ISO 1802.

Carry out the determination in duplicate.

Weigh, to the nearest 0,1 g, into a 400 cm³ beaker a test portion (mass m) of the test sample containing approximately 50 g of total solids. If necessary, adjust the alkalinity to (0.5 ± 0.1) % ammonia calculated with respect to the water phase by adding, while stirring, the required quantity of formaldehyde solution (4.3).

Calculate the volume, V_f, in cubic centimetres, of formaldehyde solution to be added from the equation

$$V_{\rm f} = \frac{m(100 - w_{\rm TS})(A - 0.5)}{113.4 \ c({\rm HCHO})}$$

where

m is the mass, in grams, of the test portion;

w_{TS} is the total solids content, expressed as a percentage by mass, of the latex concentrate;

A is the alkalinity;

 $c(\mathsf{HCHO})$ is the actual concentration, expressed in moles per cubic decimetre, of the formaldehyde

solution (4.3).

Dilute the latex with water to about 30 % total solids.

Insert the electrodes of the pH-meter (5.1) into the diluted latex concentrate and record the pH.

If the initial pH is less than 10,3, slowly add 5 cm³ of 0,5 mol/dm³ potassium hydroxide solution (4.2) while stirring slowly with the glass paddle or magnetic stirrer (5.3). Record the resultant equilibrium pH reading. With continued stirring, add 0,5 mol/dm³ potassium hydroxide solution (4.2) in 1 cm³ increments at regular (e.g. 15 s) intervals, recording the resultant equilibrium pH after each addition. Continue until the end-point has been passed.

If the initial pH is 10,3 or higher, omit the initial addition of 5 cm³ at one time and proceed directly to "add 0,5 mol/dm³ potassium hydroxide solution (4.2) in 1 cm³ increments" as described above.

The end-point of the titration is the point of inflexion of the titration curve of the pH-value against the volume, in cubic centimetres, of potassium hydroxide solution. At this point, the slope of the curve, i.e. the first differential, reaches a maximum and the second differential changes from a positive to a negative value. The end-point shall be calculated from the second differential on the assumption that the change from a positive to a negative value bears a linear relation to the addition of potassium hydroxide during the 1 cm³ interval involved.

An example of a typical titration and the calculation of the end-point is given in Annex B.

The results of duplicate determinations shall agree to within 5 % (by mass).

8 Expression of results

Calculate the KOH number, *K*, using the equation

$$K = \frac{561c \times V}{w_{\mathsf{TS}} \times m}$$

where

- c is the actual concentration, expressed in moles of KOH per cubic decimetre, of the potassium hydroxide solution (4.2);
- *V* is the volume, in cubic centimetres, of the nominally 0,5 mol/dm³ potassium hydroxide solution (4.2) required to reach the end-point;

w_{TS} is the total solids content, expressed as a percentage by mass, of the latex concentrate;

m is the mass, in grams, of the test portion.

If the latex concentrate contains boric acid, subtract the KOH number equivalent to the boric acid from the KOH number obtained above. Calculate the KOH number equivalent to the boric acid present, K_{BA} , from the equation

$$K_{\text{BA}} = 91 \times \frac{w_{\text{BA}}}{w_{\text{TS}}}$$

where

 w_{BA} is the boric acid content, expressed as a percentage by mass;

w_{TS} is the total solids content, expressed as a percentage by mass, of the latex concentrate.

9 Precision

See Annex C.

10 Test report

The test report shall include the following information:

- a) a reference to this International Standard;
- b) all details necessary for complete identification of the sample;
- c) all details necessary for complete identification of the pH-meter used;
- d) the result obtained;

BS ISO 127:2012 ISO 127:2012(E)

- e) the correction applied for boric acid, if present;
- f) details of any operation not included in this International Standard or regarded as optional;
- g) the date of the test.

Annex A (informative)

Determination of formaldehyde

The method, using a standard solution of ammonia, given in the first and second editions of this International Standard for determining the concentration of the formaldehyde solution appears not to have been widely used due to the fact that standard solutions of ammonia are considered to be unsatisfactory. Having regard to the consistent quality of analytical-grade concentrated formaldehyde solution, the majority of users prepare a standard solution of formaldehyde directly.

Where it is necessary to determine the concentration of the diluted formaldehyde, a variety of methods exist and users are referred to the *Encyclopaedia of Industrial Chemical Analysis*, Vol. 13, published by Interscience (1971). The method given below is for information only.

A.1 Reagents

- **A.1.1** Sodium sulfite, anhydrous, analytical grade.
- **A.1.2** Sulfuric acid, standard volumetric solution, $c(H_2SO_4) = 0.25 \text{ mol/dm}^3$.
- **A.1.3** Thymolphthalein, indicator solution.

Dissolve 80 mg of thymolphthalein in 100 cm³ of ethyl alcohol and dilute with 100 cm³ of distilled water.

A.2 Procedure

Prepare a solution of 125 g of anhydrous sodium sulfite (A.1.1) in 500 cm³ of water and dilute to 1 dm³. Transfer 100 cm³ of the solution to a 500 cm³ conical flask. Accurately weigh into the flask 6,0 g to 8,0 g of the nominally 50 g/dm³ formaldehyde solution (4.3)¹⁾ and swirl to mix thoroughly. Allow to stand for 5 min, then titrate with 0,25 mol/dm³ sulfuric acid (A.1.2) to the first colourless end-point using thymolphthalein (A.1.3) as indicator. Run a blank determination with the sodium sulfite solution.

A.3 Expression of results

Calculate the formaldehyde content, expressed as a percentage by mass, of the formaldehyde solution from the formula

$$\frac{30,03(V_1 - V_2) \times 2c(H_2SO_4)}{10m_1}$$

where

 V_1 is the volume, in cubic centimetres, of sulfuric acid (A.1.2) used for the titration of the test portion of formaldehyde solution; V_2 is the volume, in cubic centimetres, of sulfuric acid (A.1.2) required for the blank; $c(H_2SO_4)$ is the actual concentration, in moles of H_2SO_4 per cubic decimetre, of the sulfuric acid; is the mass, in grams, of the test portion of formaldehyde solution.

© ISO 2012 – All rights reserved

¹⁾ When analysing concentrated formaldehyde solution, 1,8 g to 2,0 g of solution is a more convenient amount to take.

Annex B (informative)

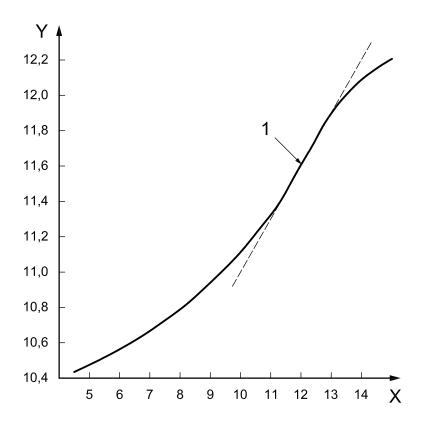

Example of a typical titration and calculation of the end-point

Table B.1 — Example of a typical titration to show variation in pH

Volume of KOH solution	pH reading	First difference	Second difference
added		∆pH/cm ³	∆pH/cm ³
cm ³		·	·
Initial	10,09		
5	10,46		
		0,09	
6	10,55		0,01
		0,10	
7	10,65		0,01
		0,11	
8	10,76		0,03
		0,14	
9	10,90		0,04
		0,18	
10	11,08		0,06
		0,24	
11	11,32		0,07
		0,31	
12	11,63		-0,01
		0,30	
13	11,93		-0,09
		0,21	
14	12,14	,	

In this example, the first difference reaches a maximum of 0,31 between 11 cm 3 and 12 cm 3 of potassium hydroxide solution. The precise point of inflexion is calculated from the ratio of the adjacent second-difference values, i.e. 0.07/(0.07 + 0.01) = 0.875 of the difference between 11 cm 3 and 12 cm 3 , i.e. 11.875 cm 3 .

Figure B.1 presents these data graphically to show the point of inflexion.

Key

- X volume of potassium hydroxide solution (cm³)
- Y pH
- 1 end-point

Figure B.1 — Illustrative curve showing change of pH during titration

Annex C

(informative)

Precision statement

C.1 Background

- **C.1.1** The precision of this method was determined in accordance with ISO/TR 9272:1986. Refer to this document for terminology and explanations of statistical concepts.
- **C.1.2** The precision details in this precision statement give an estimate of the precision of this test method with the materials used in the particular interlaboratory programme as described below. The precision parameters should not be used for acceptance/rejection testing of any group of materials without documentation that the parameters are applicable to those particular materials and the specific test protocol of this test method.
- **C.1.3** The precision results are given in Table C.1. The precision is expressed on the basis of a 95 % confidence level for the values established for repeatability r and reproducibility R.
- **C.1.4** The results contained in Table C.1 are mean values and give an estimate of the precision of this test method as determined in an interlaboratory test programme (ITP) conducted in 2001. Thirteen laboratories performed triplicate analyses on two samples, A and B, which were prepared from highly ammoniated latex. The bulk latex was strained and then homogenized by thorough blending and stirring prior to being subsampled into 1-litre bottles labelled A and B. Thus, essentially, samples A and B were the same and were treated as such in the statistical computations. Each participating laboratory was required to carry out the test using these two samples on the dates which had been given to the participants in the ITP.
- C.1.5 A type 1 precision was determined, based on the sampling method used for the latex samples in the ITP.

C.2 Repeatability

The repeatability r (in measurement units) of this test method has been established as the appropriate value tabulated in Table C.1. Two single test results, obtained in the same laboratory under normal test conditions, that differ by more than the tabulated value of r (for any given level) should be considered to have come from different (non-identical) sample populations.

C.3 Reproducibility

The reproducibility R (in measurement units) of this test method has been established as the appropriate value tabulated in Table C.1. Two single test results, obtained under normal test conditions, that differ by more than the tabulated value of R (for any given level) should be considered to have come from different (non-identical) sample populations.

Table C.1 — Estimate of precision of determination of KOH number

Mean	Within-laboratory		Between laboratories	
	s_r	r	SR	R
0,57	0,007	0,02	0,027	0,08

 $r = 2.83 \times s_r$

where r is the repeatability (in measurement units) and s_r is the within-laboratory standard deviation. $R = 2.83 \times s_R$

where $\it R$ is the reproducibility (in measurement units) and $\it s_{\it R}$ is the between-laboratory standard deviation.

C.4 Bias

In test method terminology, bias is the difference between an average test value and the reference (or true) test property value.

Reference values do not exist for this test method since the value (of the test property) is exclusively defined by the test method. Bias cannot, therefore, be determined for this particular test method.

Bibliography

- [1] ISO 1382:2008, Rubber Vocabulary
- [2] ISO/TR 9272:1986, Rubber and rubber products Determination of precision for test method standards [now withdrawn the currently valid edition, which can be consulted for terminology and statistical concepts, is ISO/TR 9272:2005]

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

Revisions

Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services

Tel: +44 845 086 9001

Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions

Tel: +44 845 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

Email: knowledgecentre@bsigroup.com

Copyright & Licensing

Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

