
raising standards worldwide™

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

BSI Standards Publication

IEEE standard for property
specification language (PSL)

BS IEC 62531:2012

National foreword

This British Standard is the UK implementation of IEC 62531:2012. It super-
sedes BS IEC 62531:2007 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee
GEL/93, Design automation.

A list of organizations represented on this committee can be obtained on
request to its secretary.

This publication does not purport to include all the necessary provisions of a
contract. Users are responsible for its correct application.

© The British Standards Institution 2012

Published by BSI Standards Limited 2012

ISBN 978 0 580 77672 4

ICS 25.040.01; 35.060

Compliance with a British Standard cannot confer immunity from
legal obligations.

This British Standard was published under the authority of the Standards
Policy and Strategy Committee on 31 August 2012.

Amendments issued since publication

Amd. No. Date Text affected

BRITISH STANDARDBS IEC 62531:2012

IEC 62531
Edition 2.0 2012-06

INTERNATIONAL
STANDARD

Property Specification Language (PSL)

INTERNATIONAL

ELECTROTECHNICAL

COMMISSION XH
ICS 25.040; 35.060

PRICE CODE

ISBN 978-2-83220-106-0

 Warning! Make sure that you obtained this publication from an authorized distributor.

IEEE Std 1850™

BS IEC 62531:2012

– ii –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Contents

1. Overview.. 1

1.1 Scope.. 1
1.2 Purpose... 1

1.2.1 Background.. 2
1.2.2 Motivation.. 2
1.2.3 Goals .. 2

1.3 Usage ... 2
1.3.1 Functional specification ... 3
1.3.2 Functional verification ... 3

2. Normative references ... 7

3. Definitions, acronyms, and abbreviations.. 9

3.1 Definitions ... 9
3.2 Acronyms and abbreviations ... 12
3.3 Special terms.. 12

4. Organization... 15

4.1 Abstract structure ... 15
4.1.1 Layers... 15
4.1.2 Flavors ... 15

4.2 Lexical structure .. 16
4.2.1 Identifiers ... 16
4.2.2 Keywords ... 16
4.2.3 Operators.. 17
4.2.4 Macros ... 22
4.2.5 Comments .. 24

4.3 Syntax .. 24
4.3.1 Conventions ... 24
4.3.2 HDL dependencies... 25

4.4 Semantics ... 29
4.4.1 Clocked vs. unclocked evaluation ... 29
4.4.2 Safety vs. liveness properties... 30
4.4.3 Linear vs. branching logic ... 30
4.4.4 Simple subset ... 30
4.4.5 Finite-length vs. infinite-length behavior .. 31
4.4.6 The concept of strength.. 31

5. Boolean layer ... 33

5.1 Expression type classes.. 33
5.1.1 Bit expressions ... 33
5.1.2 Boolean expressions .. 34
5.1.3 BitVector expressions .. 35
5.1.4 Numeric expressions.. 35
5.1.5 String expressions .. 36

5.2 Expression forms .. 36
5.2.1 HDL expressions.. 36
Copyright ©2010 IEEE. All rights reserved. ix

IEC 62531:2012
IEEE Std 1850-2010 – iii –

BS IEC 62531:2012
5.2.2 PSL expressions ... 39
5.2.3 Built-in functions ... 39
5.2.4 Union expressions.. 45

5.3 Clock expressions .. 45
5.4 Default clock declaration ... 47

6. Temporal layer ... 49

6.1 Sequential expressions ... 50
6.1.1 Sequential Extended Regular Expressions (SEREs) ... 50
6.1.2 Sequences... 57

6.2 Properties ... 63
6.2.1 FL properties.. 63
6.2.2 Optional Branching Extension (OBE) properties .. 84
6.2.3 Replicated properties ... 90

6.3 Local variables ... 93
6.4 Procedural blocks... 97
6.5 Property and sequence declarations ... 103

6.5.1 Parameters.. 104
6.5.2 Declarations ... 106
6.5.3 Instantiation ... 107

7. Verification layer ... 111

7.1 Verification directives.. 111
7.1.1 assert .. 111
7.1.2 assume.. 112
7.1.3 restrict .. 113
7.1.4 restrict! ... 113
7.1.5 cover... 115
7.1.6 fairness and strong_fairness... 116

7.2 Verification units ... 117
7.2.1 Verification unit binding.. 121
7.2.2 Verification unit instantiation .. 121
7.2.3 Verification unit inheritance .. 122
7.2.4 Overriding assignments ... 124

8. Modeling layer ... 129

8.1 Integer ranges... 129
8.2 Structures ... 130

9. Scope and visibility rules ... 131

9.1 Immediate scope .. 131
9.2 Extended scope .. 131
9.3 Direct and indirect name references .. 132

Annex A (normative) Syntax rule summary.. 135

Annex B (normative) Formal Syntax and Semantics of IEEE Std 1850 Property Specification Language
(PSL) .. 149

Annex C (informative) Bibliography... 167
Annex D (in�

Property Specification Language (PSL)

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising

all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation.

IEEE Standards documents are developed within IEEE Societies and Standards Coordinating Committees of the
IEEE Standards Association (IEEE-SA) Standards Board. IEEE develops its standards through a consensus
development process, which brings together volunteers representing varied viewpoints and interests to achieve
the final product. Volunteers are not necessarily members of IEEE and serve without compensation. While IEEE
administers the process and establishes rules to promote fairness in the consensus development process, IEEE
does not independently evaluate, test, or verify the accuracy of any of the information contained in its
standards. Use of IEEE Standards documents is wholly voluntary. IEEE documents are made available for use
subject to important notices and legal disclaimers (see http://standards.ieee.org/IPR/disclaimers.html for more
information).

IEC collaborates closely with IEEE in accordance with conditions determined by agreement between the two
organizations.

2) The formal decisions of IEC on technical matters express, as nearly as possible, an international consensus of
opinion on the relevant subjects since each technical committee has representation from all interested IEC
National Committees. The formal decisions of IEEE on technical matters, once consensus within IEEE Societies
and Standards Coordinating Committees has been reached, is determined by a balanced ballot of materially
interested parties who indicate interest in reviewing the proposed standard. Final approval of the IEEE
standards document is given by the IEEE Standards Association (IEEE-SA) Standards Board.

3) IEC/IEEE Publications have the form of recommendations for international use and are accepted by IEC
National Committees/IEEE Societies in that sense. While all reasonable efforts are made to ensure that the
technical content of IEC/IEEE Publications is accurate, IEC or IEEE cannot be held responsible for the way in
which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
(including IEC/IEEE Publications) transparently to the maximum extent possible in their national and regional
publications. Any divergence between any IEC/IEEE Publication and the corresponding national or regional
publication shall be clearly indicated in the latter.

5) IEC and IEEE do not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC and IEEE are not responsible
for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or IEEE or their directors, employees, servants or agents including individual
experts and members of technical committees and IEC National Committees, or volunteers of IEEE Societies
and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board,
for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect,
or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this
IEC/IEEE Publication or any other IEC or IEEE Publications.

8) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that implementation of this IEC/IEEE Publication may require use of
material covered by patent rights. By publication of this standard, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. IEC or IEEE shall not be held responsible for
identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal
validity or scope of Patent Claims or determining whether any licensing terms or conditions provided in
connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or
non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent
rights, and the risk of infringement of such rights, is entirely their own responsibility.

– iv –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012

International Standard IEC 62531/ IEEE Std 1850-2010 has been processed through IEC
technical committee 93: Design automation, under the IEC/IEEE Dual Logo Agreement.

This second edition cancels and replaces the first edition, published in 2007, and constitutes
a technical revision.

The text of this standard is based on the following documents:

IEEE Std FDIS Report on voting

IEEE Std 1850-2010 93/319/FDIS 93/326/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

The IEC Technical Committee and IEEE Technical Committee have decided that the contents
of this publication will remain unchanged until the stability date indicated on the IEC web site
under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the
publication will be

• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.

IEC 62531:2012
IEEE Std 1850-2010 – v –

BS IEC 62531:2012

– vi –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
IEEE Std 1850TM-2010
(Revision of

IEEE Std1850-2005)

IEEE Standard for
Property Specification Language (PSL)

Sponsor

Design Automation Standards Committee
of the
IEEE Computer Society

and the
IEEE Standards Association Corporate Advisory Group

Approved 25 March 2010
IEEE-SA Standards Board

 – vii –

IEC 62531:2012
IEEE Std 1850-2010

BS IEC 62531:2012
Grateful acknowledgment is made to Accellera Organization, Inc. for the permission to use the
following source material:

Accellera Property Specification Language Reference Manual (version 1.1), Accellera

GDL: General Description Language, Accellera, Mar. 2005

Abstract: The IEEE Property Specification Language (PSL) is defined. PSL is a formal notation
for specification of electronic system behavior, compatible with multiple electronic system design
languages, including IEEE Std 1076™ (VHDL®), IEEE Std 1354 (Verilog®), IEEE Std 1666™
(SystemC®), and IEEE Std 1800™ (SystemVerilog®), thereby enabling a common specification
and verification flow for multi-language and mixed-language designs. PSL captures design intent
in a form suitable for simulation, formal verification, formal analysis, and hybrid verification tools.
PSL enhances communication among architects, designers, and verification engineers to increase
productivity throughout the design and verification process. The primary audiences for this
standard are the implementors of tools supporting the language and advanced users of the
language.
Keywords: ABV, assertion, assertion-based verification, assumption, cover, model checking,
property, PSL, specification, temporal logic, verification

IEEE, 802, and POSIX are registered trademarks in the U.S. Patent & Trademark Office, owned by The Institute of
Electrical and Electronics Engineers, Incorporated.

VHDL and Verilog are both registered trademarks of Cadence Design Systems, Inc.

SystemVerilog is a registered trademark of Accellera Organization, Inc.

SystemC is a registered trademark of Synopsys, Inc.

.

– viii –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
IEEE Introduction

IEEE Std 1850 Property Specification Language (PSL) is based upon the Accellera Property Specification
Language (Accellera PSL), a language for formal specification of electronic system behavior, which was
developed by Accellera, a consortium of Electronic Design Automation (EDA), semiconductor, and system
companies. IEEE Std 1850 PSL 2010 refines IEEE Std 1850 PSL 2005 by providing extensions for
improved verification IP reuse (e.g., the vpkg type of vunit) and interaction between the assertions and the
simulation environment (local variables), and by addressing minor technical issues. The formal semantics
were updated to reflect these changes.

Notice to users

Laws and regulations

Users of these documents should consult all applicable laws and regulations. Compliance with the
provisions of this standard does not imply compliance to any applicable regulatory requirements.
Implementers of the standard are responsible for observing or referring to the applicable regulatory
requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in
compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and private
uses. These include both use, by reference, in laws and regulations, and use in private self-regulation,
standardization, and the promotion of engineering practices and methods. By making this document
available for use and adoption by public authorities and private users, the IEEE does not waive any rights in
copyright to this document.

Updating of IEEE documents

Users of IEEE standards should be aware that these documents may be superseded at any time by the
issuance of new editions or may be amended from time to time through the issuance of amendments,
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect. In order to determine whether
a given document is the current edition and whether it has been amended through the issuance of
amendments, corrigenda, or errata, visit the IEEE Standards Association website at http://
ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process,
visit the IEEE-SA website at http://standards.ieee.org.

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http://
standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for
errata periodically.

This introduction is not part of IEEE Std 1850-2010, IEEE Standard for Property Specification Language (PSL).
iv Copyright ©2010 IEEE. All rights reserved.

 – ix –

IEC 62531:2012
IEEE Std 1850-2010 – ii –

BS IEC 62531:2012
Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/
index.html.

Patents

Attention is called to the possibility that implementation of this amendment may require use of subject
matter covered by patent rights. By publication of this standard, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. The IEEE is not responsible for identifying
Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity
or scope of Patents Claims or determining whether any licensing terms or conditions provided in connection
with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-
discriminatory. Users of this amendment are expressly advised that determination of the validity of any
patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further
information may be obtained from the IEEE Standards Association.

IEC 62531:2012
IEEE Std 1850-2010 – 1 –

BS IEC 62531:2012

Property Specification Language (PSL)

IMPORTANT NOTICE: This standard is not intended to ensure safety, security, health, or
environmental protection in all circumstances. Implementers of the standard are responsible for
determining appropriate safety, security, environmental, and health practices or regulatory requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers. These
notices and disclaimers appear in all publications containing this document and may be found under the
heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents.”
They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/
disclaimers.html.

1. Overview

1.1 Scope

This standard defines the property specification language (PSL), which formally describes electronic system
behavior. This standard specifies the syntax and semantics for PSL and also clarifies how PSL interfaces
with various standard electronic system design languages.

1.2 Purpose

The purpose of this standard is to provide a well-defined language for formal specification of electronic
system behavior, one that is compatible with multiple electronic system design languages, including IEEE
Std 1076™ (VHDL®),1 IEEE Std 1364™ (Verilog®), IEEE Std 1800™ (SystemVerilog®), and IEEE Std
1666™ (SystemC®), to facilitate a common specification and verification flow for multi-language and
mixed-language designs.

This standard creates an updated IEEE standard based upon IEEE Std 1850-2005. The updated standard will
refine IEEE standard, addressing errata, minor technical issues, and proposed extensions specifically related
to property reuse and improved simulation usability.

1Information on references can be found in Clause 2.

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 2 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
1.2.1 Background

The complexity of Very Large Scale Integration (VLSI) has grown to such a degree that traditional
approaches have begun to reach their limitations, and verification costs have reached 60%–70% of
development resources. The need for advanced verification methodology, with improved observability of
design behavior and improved controllability of the verification process, has become critical. Over the last
decade, a methodology based on the notion of “properties” has been identified as a powerful verification
paradigm that can assure enhanced productivity, higher design quality, and, ultimately, faster time to market
and higher value to engineers and end-users of electronics products. Properties, as used in this context, are
concise, declarative, expressive, and unambiguous specifications of desired system behavior that are used to
guide the verification process. IEEE 1850 PSL is a standard language for specifying electronic system
behavior using properties. PSL facilitates property-based verification using both simulation and formal
verification, thereby enabling a productivity boost in functional verification.

1.2.2 Motivation

Ensuring that a design’s implementation satisfies its specification is the foundation of hardware verification.
Key to the design and verification process is the act of specification. Yet historically, the process of
specification has consisted of creating a natural language description of a set of design requirements. This
form of specification is both ambiguous and, in many cases, unverifiable due to the lack of a standard
machine-executable representation. Furthermore, ensuring that all functional aspects of the specification
have been adequately verified (that is, covered) is problematic.

The IEEE PSL was developed to address these shortcomings. It gives the design architect a standard means
of specifying design properties using a concise syntax with clearly-defined formal semantics. Similarly, it
enables the RTL implementer to capture design intent in a verifiable form, while enabling the verification
engineer to validate that the implementation satisfies its specification through dynamic (that is, simulation)
and static (that is, formal) verification means. Furthermore, it provides a means to measure the quality of the
verification process through the creation of functional coverage models built on formally specified
properties. In addition, it provides a standard means for hardware designers and verification engineers to
create a rigorous and machine-executable design specification.

1.2.3 Goals

PSL was specifically developed to fulfill the following general hardware functional specification
requirements:

— Easy to learn, write, and read
— Concise syntax
— Rigorously well-defined formal semantics
— Expressive power, permitting specifications of a large class of real-world design properties
— Known efficient underlying algorithms in simulation, as well as formal verification

1.3 Usage

PSL is a language for the formal specification of hardware. It is used to describe properties that are required
to hold in the design under verification. PSL provides a means to write specifications that are both easy to
read and mathematically precise. It is intended to be used for functional specification on the one hand and as
input to functional verification tools on the other. Thus, a PSL specification is an executable specification of
a hardware design.
2 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 3 –

BS IEC 62531:2012
1.3.1 Functional specification

PSL can be used to capture requirements regarding the overall behavior of a design, as well as assumptions
about the environment in which the design is expected to operate. PSL can also capture internal behavioral
requirements and assumptions that arise during the design process. Both enable more effective functional
verification and reuse of the design.

One important use of PSL is for documentation, either in place of or along with an English specification. A
PSL specification can describe simple invariants (for example, signals read_enable and
write_enable are never asserted simultaneously) as well as multi-cycle behavior (for example, correct
behavior of an interface with respect to a bus protocol or correct behavior of pipelined operations).

A PSL specification consists of assertions regarding properties of a design under a set of assumptions. A
property is built from three kinds of elements: Boolean expressions, which describe behavior over one cycle;
sequential expressions, which can describe multi-cycle behavior; and temporal operators, which describe
temporal relationships among Boolean expressions and sequences. For example, consider the following
Verilog Boolean expression:

ena || enb

This expression describes a cycle in which at least one of the signals ena and enb are asserted. The PSL
sequential expression

{req; ack; !cancel}

describes a sequence of cycles, such that req is asserted in the first cycle, ack is asserted in the second
cycle, and cancel is deasserted in the third cycle. The following property, obtained by applying the
temporal operators always and |=> to these expressions,

always {req;ack;!cancel} |=> (ena || enb)

means that always (that is, in every cycle), if the sequence {req;ack;!cancel} occurs, then either ena
or enb is asserted one cycle after the sequence ends. Adding the directive assert as follows:

assert always {req;ack;!cancel} |=> (ena || enb);

completes the specification, indicating that this property is expected to hold in the design and that this
expectation needs to be verified.

1.3.2 Functional verification

PSL can also be used as input to verification tools, for both verification by simulation, as well as formal
verification using a model checker or a theorem prover. Each of these is discussed in the subclauses that
follow.

1.3.2.1 Simulation

A PSL specification can also be used to automatically generate checks of simulated behavior. This can be
done, for example, by directly integrating the checks in the simulation tool; by interpreting PSL properties in
a testbench automation tool that drives the simulator; by generating HDL monitors that are simulated
alongside the design; or by analyzing the traces produced during simulation.

For instance, the following PSL property:
Copyright © 2010 IEEE. All rights reserved. 3

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 4 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Property 1: always (req -> next !req)

states that signal req is a pulsed signal, i.e., if it is high in some cycle, then it is low in the following cycle.
Such a property can be easily checked using a simulation checker written in some HDL that has the
functionality of the finite state machine (FSM) shown in Figure 1.

Figure 1—A simple (deterministic) FSM that checks Property 1

For properties more complicated than the property shown in Figure 1, manually writing a corresponding
checker is painstaking and error-prone, and maintaining a collection of such checkers for a constantly chang-
ing design under development is a time-consuming task. Instead, a PSL specification can be used as input to
a tool that automatically generates simulatable checkers.

Although in principle, all PSL properties can be checked for finite paths in simulation, the implementation
of the checks is often significantly simpler for a subset called the simple subset of PSL. Informally, in this
subset, composition of temporal properties is restricted to ensure that time moves forward from left to right
through a property, as it does in a timing diagram. (See 4.4.4 for the formal definition of the simple subset.)
For example, the property

Property 2: always (a -> next[3] b)

which states that, if a is asserted, then b is asserted three cycles later, belongs to the simple subset, because
a appears to the left of b in the property and also appears to the left of b in the timing diagram of any
behavior that is not a violation of the property. Figure 2 shows an example of such a timing diagram.

Figure 2—A trace that satisfies Property 2

An example of a property that is not in this subset is the property

Property 3: always ((a && next[3] b) -> c)

which states that, if a is asserted and b is asserted three cycles later, then c is asserted (in the same cycle as
a). This property does not belong to the simple subset, because although c appears to the right of a and b in

 0 1 2 3 4 5 6 7

a

b

4 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 5 –

BS IEC 62531:2012
the property, it appears to the left of b in a timing diagram that is not a violation of the property. Figure 3
shows an example of such a timing diagram.

Figure 3—A trace that satisfies Property 3

1.3.2.2 Formal verification

PSL is an extension of the standard temporal logics Linear-Time Temporal Logic (LTL) and Computation
Tree Logic (CTL). A specification in the PSL Foundation Language (respectively, the PSL Optional Branch-
ing Extension) can be compiled down to a formula of pure LTL (respectively, CTL), possibly with some
auxiliary HDL code, known as a satellite.

 0 1 2 3 4 5 6 7

a

b

c

Copyright © 2010 IEEE. All rights reserved. 5

– 6 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 7 –

BS IEC 62531:2012
2. Normative references

The following referenced documents are indispensable for the application of this document (i.e., they must
be understood and used, so each referenced document is cited in text and its relationship to this document is
explained). For dated references, only the edition cited applies. For undated referenced, the latest edition of
the referenced document (including any amendments or corrigenda) applies.

“General Description Language,” Accellera, Napa, CA, Mar. 2005.2

IEC/IEEE 62142 (IEEE Std 1364.1), Standard for Verilog Register Transfer Level Synthesis.3

IEEE Std 1076™, IEEE Standard VHDL Language Reference Manual.4, 5

IEEE Std 1076.6™, IEEE Standard for VHDL Register Transfer Level (RTL) Synthesis.

IEEE Std 1364™, IEEE Standard for Verilog Hardware Description Language.

IEEE Std 1666™, IEEE Standard for the SystemC Language.

IEEE Std 1800™, IEEE Standard for the SystemVerilog Language.

2This document is available from the IEEE Standards World Wide Web site, at http://standards.ieee.org/downloads/1850/1850-2005/
gdl.pdf.
3IEC publications are available from the Sales Department of the International Electrotechnical Commission, Case Postale 131, 3, rue
de Varembé, CH-1211, Genève 20, Switzerland/Suisse (http://www.iec.ch/). IEC publications are also available in the United States
from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036, USA.
4IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ 08855-1331, USA (http://standards.ieee.org/).
5The IEEE standards or products referred to in this standard are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
Copyright © 2010 IEEE. All rights reserved. 7

– 8 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 9 –

BS IEC 62531:2012
3. Definitions, acronyms, and abbreviations

For the purposes of this document, the following terms and definitions apply. The IEEE Standards Diction-
ary: Glossary of Terms & Definitions should be referenced for terms not defined in this clause.6

3.1 Definitions

This subclause defines the terms used in this standard.

assertion: A statement that a given property is required to hold and a directive to functional verification
tools to verify that it does hold.

assumption: A statement that the design is constrained by the given property and a directive to functional
verification tools to consider only paths on which the given property holds.

asynchronous property: A property whose clock context is equivalent to True.

behavior: A path.

Boolean (expression): An expression that yields a logical value.

checker: An auxiliary process (usually constructed as a finite state machine) that monitors simulation of a
design and reports errors when asserted properties do not hold. A checker may be represented in the same
HDL code as the design or in some other form that can be linked with a simulation of the design.

completes: A term used to identify the last cycle of a path that satisfies a sequential expression or property.

computation path: A succession of states of the design, such that the design can actually transition from
each state on the path to its successor.

constraint: A condition (usually on the input signals) that limits the set of behaviors to be considered. A
constraint may represent real requirements (e.g., clocking requirements) on the environment in which the
design is used, or it may represent artificial limitations (e.g., mode settings) imposed in order to partition the
functional verification task.

count: A number or range.

coverage: A measure of the occurrence of certain behavior during (typically dynamic) functional
verification and, therefore, a measure of the completeness of the (dynamic) functional verification process.

cycle: An evaluation cycle.

describes: A term used to identify the set of behaviors for which Boolean expression, sequential expression,
or property holds.

design: A model of a piece of hardware, described in some hardware description language (HDL). A design
typically involves a collection of inputs, outputs, state elements, and combinational functions that compute
next state and outputs from current state and inputs.

design behavior: A computation path for a given design.

6The IEEE Standards Dictionary: Glossary of Terms & Definitions is available at http://shop.ieee.org/.
Copyright © 2010 IEEE. All rights reserved. 9

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 10 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
dynamic verification: A verification process such as simulation, in which a property is checked over indi-
vidual, finite design behaviors that are typically obtained by dynamically exercising the design through a
finite number of evaluation cycles. Generally, dynamic verification supports no inference about whether the
property holds for a behavior over which the property has not yet been checked.

evaluation: The process of exercising a design by iteratively applying values to its inputs, computing its
next state and output values, advancing time, and assigning to the state variables and outputs their next
values.

evaluation cycle: One iteration of the evaluation process. At an evaluation cycle, the state of the design is
recomputed (and may change).

extension (of a given path): A path that starts with precisely the succession of states in the given path.

False: An interpretation of certain values of certain data types in an HDL. In the SystemVerilog and Verilog
flavors, the single bit values 1’b0, 1’bx, and 1’bz are interpreted as the logical value False. In the
VHDL flavor, the values STD.Standard.Boolean’(False) and STD.Standard.Bit’(‘0’), as well as the values
IEEE.std_logic_1164.std_logic’(‘0’), IEEE.std_logic_1164.std_logic’(‘L’),
IEEE.std_logic_1164.std_logic’(‘X’), and IEEE.std_logic_1164.std_logic’(‘Z’)
are all interpreted as the logical value False. In the SystemC flavor, the value 'false' of type bool and any
integer literal with a numeric value of 0 are interpreted as the logical value False. In the GDL flavor, the
Boolean value 'false' and bit value 0B are both interpreted as the logical value False.

finite range: A range with a finite high bound.

formal verification: A functional verification process in which analysis of a design and a property yields a
logical inference about whether the property holds for all behaviors of the design. If a property is declared
true by a formal verification tool, no simulation can show it to be false. If the property does not hold for all
behaviors, then the formal verification process should provide a specific counterexample to the property, if
possible.

functional verification: The process of confirming that, for a given design and a given set of constraints, a
property that is required to hold in that design actually does hold under those constraints.

holds: A term used to talk about the meaning of a Boolean expression, sequential expression, or property.

holds tightly: A term used to talk about the meaning of a sequential expression. Sequential expressions are
evaluated over finite paths (behavior).

liveness property: A property that specifies an eventuality that is unbounded in time. Loosely speaking, a
liveness property claims that “something good” eventually happens. More formally, a liveness property is a
property for which any finite path can be extended to a path satisfying the property. For example, the prop-
erty “whenever signal req is asserted, signal ack is asserted some time in the future” is a liveness property.

logic type: An HDL data type that includes values that are interpreted as logical values. A logic type may
also include values that are not interpreted as logical values. Such a logic type usually represents a multi-val-
ued logic.

logical value: A value in the set {True, False}.

model checking: A type of formal verification.

number: A non-negative integer value, and a statically computable expression yielding such a value.
10 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 11 –

BS IEC 62531:2012
occurs: A term used to indicate that a Boolean expression holds in a given cycle.

occurrence (of a Boolean expression): A cycle in which the Boolean expression holds.

path: A succession of states of the design, whether or not the design can actually transition from one state
on the path to its successor.

positive count: A positive number or a positive range.

positive number: A number that is greater than zero (0).

positive range: A range with a low bound that is greater than zero (0).

prefix (of a given path): A path of which the given path is an extension.

property: A collection of logical and temporal relationships between and among subordinate Boolean
expressions, sequential expressions, and other properties that in aggregate represent a set of behaviors.

range: A series of consecutive numbers, from a low bound to a high bound, inclusive, such that the low
bound is less than or equal to the high bound. In particular, this includes the case in which the low bound is
equal to the high bound. Also, a pair of statically computable integer expressions specifying such a series of
consecutive numbers, where the left expression specifies the low bound of the series, and the right expres-
sion specifies the high bound of the series. A range may describe a set of values or a variable number of
cycles or event repetitions.

restriction: A statement that the design is constrained by the given sequential expression and a directive to
functional verification tools to consider only paths on which the given sequential expression holds.

safety property: A property that specifies an invariant over the states in a design. The invariant is not neces-
sarily limited to a single cycle, but it is bounded in time. Loosely speaking, a safety property claims that
“something bad” does not happen. More formally, a safety property is a property for which any path
violating the property has a finite prefix such that every extension of the prefix violates the property. For
example, the property, “whenever signal req is asserted, signal ack is asserted within 3 cycles” is a safety
property.

sequence: A sequential expression that may be used directly within a property or directive.

sequential expression: A finite series of terms that represent a set of behaviors.

sequential extended regular expression: A form of sequential expression, and a component of a sequence.

starts: A term used to identify the first cycle of a path that satisfies a sequential expression.

strictly before: Before, and not in the same cycle as.

strong operator: A temporal operator, the non-negated use of which usually creates a liveness property.

temporal expression: An expression that involves one or more temporal operators.

temporal operator: An operator that represents a temporal (i.e., time-oriented) relationship between its
operands.

terminating condition: A Boolean expression, the occurrence of which causes a property to complete.
Copyright © 2010 IEEE. All rights reserved. 11

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 12 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
terminating property: A property that, when it holds, causes another property to complete.

True: An interpretation of certain values of certain data types in an HDL. In the SystemVerilog and Verilog
flavors, the single bit value 1'b1 is interpreted as the logical value True. In the VHDL flavor, the values
STD.Standard.Boolean'(True), STD.Standard.Bit'('1'),
IEEE.std_logic_1164.std_logic'('1'), and IEEE.std_logic_1164.std_logic'('H')
interpreted as the logical value True. In the SystemC flavor, the value 'true' of type bool and any integer
literal with a non-zero numeric value are interpreted as the logical value True. In the GDL flavor, the Bool-
ean value 'true' and bit value 1B are both interpreted as the logical value True.

unknown value: A value of a (multi-valued) logic type, other than 0 or 1.

weak operator: A temporal operator, the non-negated use of which does not create a liveness property.

3.2 Acronyms and abbreviations

This subclause lists the acronyms and abbreviations used in this standard.

ABV assertion-based verification
BNF extended Backus-Naur Form
cpp C pre-processor
CTL computation tree logic
EDA electronic design automation
FL Foundation Language
FSM finite state machine
GDL General Description Language
HDL hardware description language
iff if and only if
LTL linear-time temporal logic
PSL Property Specification Language
OBE Optional Branching Extension
RTL Register Transfer Level
SERE Sequential Extended Regular Expression
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

3.3 Special terms

The following terms are used in the definition of this standard.

When presenting requirements, options, and recommendations regarding the implementation and use of
PSL, the following terms are used:

— can: Used for statements of possibility and capability. In the context of this standard, describes a
possible use of PSL to express a given specification, or a possible application of a PSL specification
in the design and verification of electronic systems.

— may: Used to indicate a course of action permissible within the limits of the standard. In the context
of this standard, typically describes a non-mandatory feature of PSL syntax or semantics, the use of
which in a given PSL specification is up to the author of that specification. Also used to identify
12 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 13 –

BS IEC 62531:2012
permissible implementation approaches in a verification tool supporting the standard, as well as
permissible decisions that can be made when implementing a design according to a given PSL
specification.

— shall: Used to indicate mandatory requirements to be followed strictly in order to conform to the
standard and from which no deviation is permitted. In the context of this standard, describes a man-
datory feature of PSL syntax or semantics that must be present in a given PSL specification, or in the
negative form, a syntactic structure or semantic relationship that must not be present, for that
specification to be in conformance with the standard.

— should: Used to indicate that among several possibilities, one is recommended as particularly suit-
able, without mentioning or excluding others; or that a certain course of action is preferred but not
necessarily required; or that (in the negative form) a certain course of action is deprecated but not
prohibited. In the context of this standard, describes a feature of PSL syntax that is recommended
but not mandatory, or (in the negative form) that is not recommended but not prohibited.

When explaining the requirements and options imposed by a PSL specification on the behavior of a design
or a design’s environment, if that design or environment is to satisfy the PSL specification, the following
term is used:

— is required to: Used to indicate that the functionality or behavior described by a PSL specification is
mandatory for the system to which the specification pertains. This phrase is typically used to state
that a design or its environment must function in a manner that is consistent with the specification.
Copyright © 2010 IEEE. All rights reserved. 13

– 14 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 15 –

BS IEC 62531:2012
4. Organization

4.1 Abstract structure

PSL consists of four layers, which partition the language with respect to functionality. PSL also comes in
five flavors, which partition the language with respect to HDL compatibility. Each of these is explained in
detail in the following subclauses.

4.1.1 Layers

PSL consists of four layers: Boolean, temporal, verification, and modeling.

4.1.1.1 Boolean layer

The Boolean layer is used to build expressions that are, in turn, used by the other layers. Although it contains
expressions of many types, it is known as the Boolean layer because it is the supplier of Boolean
expressions to the heart of the language—the temporal layer. Boolean layer expressions are evaluated in a
single evaluation cycle.

4.1.1.2 Temporal layer

The temporal layer is the heart of the language; it is used to describe properties of the design. It is known as
the temporal layer because, in addition to simple properties, such as “signals a and b are mutually
exclusive,” it can also describe properties involving complex temporal relations between signals, such as, “if
signal c is asserted, then signal d shall be asserted before signal e is asserted, but no more than eight clock
cycles later.” Temporal expressions are evaluated over a series of evaluation cycles.

4.1.1.3 Verification layer

The verification layer is used to tell the verification tools what to do with the properties described by the
temporal layer. For example, the verification layer contains directives that tell a tool to verify that a property
holds or to check that a specified sequence is covered by some test case.

4.1.1.4 Modeling layer

The modeling layer is used to model the behavior of design inputs (for tools, such as formal verification
tools, which do not use test cases) and to model auxiliary hardware that is not part of the design, but is
needed for verification.

4.1.2 Flavors

PSL comes in five flavors: one for each of the hardware description languages SystemVerilog, Verilog,
VHDL, SystemC, and GDL. The syntax of each flavor conforms to the syntax of the corresponding HDL in
a number of specific areas—a given flavor of PSL is compatible with the corresponding HDL’s syntax in
those areas.

4.1.2.1 SystemVerilog flavor

In the SystemVerilog flavor, all expressions of the Boolean layer, as well as modeling layer code, are written
in SystemVerilog syntax (see IEEE Std 1800). The SystemVerilog flavor also has limited influence on the
syntax of the temporal layer. For example, ranges of the temporal layer are specified using the
SystemVerilog-style syntax i:j.
Copyright © 2010 IEEE. All rights reserved. 15

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 16 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
4.1.2.2 Verilog flavor

In the Verilog flavor, all expressions of the Boolean layer, as well as modeling layer code, are written in
Verilog syntax (see IEC/IEEE 62142). The Verilog flavor also has limited influence on the syntax of the
temporal layer. For example, ranges of the temporal layer are specified using the Verilog-style syntax i:j.

4.1.2.3 VHDL flavor

In the VHDL flavor, all expressions of the Boolean layer, as well as modeling layer code, are written in
VHDL syntax (see IEEE Std 1076). The VHDL flavor also has some influence on the syntax of the temporal
layer. For example, ranges of the temporal layer are specified using the VHDL-style syntax i to j.

4.1.2.4 SystemC flavor

In the SystemC flavor, all expressions of the Boolean layer, as well as modeling layer code, are written in
SystemC syntax (see IEEE Std 1666). The SystemC flavor also has limited influence on the syntax of the
temporal layer. For example, ranges of the temporal layer are specified using the syntax i:j.

4.1.2.5 GDL flavor

In the GDL flavor, all expressions of the Boolean layer, as well as modeling layer code, are written in GDL
syntax (see “General Description Language”). The GDL flavor also has some influence on the syntax of the
temporal layer. For example, ranges of the temporal layer are specified using the GDL-style syntax i..j.

4.2 Lexical structure

This subclause defines the identifiers, keywords, operators, macros, and comments used in PSL.

4.2.1 Identifiers

Identifiers in PSL consist of an alphabetic character, followed by zero or more alphanumeric characters;
each subsequent alphanumeric character may optionally be preceded by a single underscore character.

Example

mutex
Read_Transaction
L_123

PSL identifiers are case-sensitive in the SystemVerilog, Verilog, and SystemC flavors and case-insensitive in
the VHDL and GDL flavors.

4.2.2 Keywords

Keywords are reserved identifiers in PSL, so an HDL name that is a PSL keyword cannot be referenced
directly, by its simple name, in an HDL expression used in a PSL property. However, such an HDL name can
be referenced indirectly, using a hierarchical name or qualified name as allowed by the underlying HDL.

The keywords used in PSL are shown in Table 1.
16 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 17 –

BS IEC 62531:2012
4.2.3 Operators

4.2.3.1 HDL operators

For a given flavor of PSL, the operators of the underlying HDL have the highest precedence. In particular,
this includes logical, relational, and arithmetic operators of the HDL. The HDL’s logical operators for
negation, conjunction, and disjunction of Boolean values may be used in PSL for negation, conjunction, and
disjunction of properties as well. In such applications, those operators have their usual precedence and
associativity, as if the PSL properties that are operands produced Boolean values of a type appropriate to the
logical operators native to the HDL.

4.2.3.2 Foundation Language (FL) operators

Various operators are available in PSL. Each operator has a precedence relative to other operators. In
general, operators with a higher relative precedence are associated with their operands before operators with
a lower relative precedence. If two operators with the same precedence appear in sequence, then the
operators are associated with their operands according to the associativity of the operators. Left-associative

Table 1—Keywords

A
AF
AG
AX
abort
always
anda

assert
assume
async_abort

before
before!
before!_
before_
bit
bitvector
boolean

clock
const
countones
cover

default

E
EF
EG
EX
ended
eventually!

F
fairness
fell
for
forall

G

hdltype

in
inf
inherit
isb

isunknown

mutable

never
next

next!
next_a
next_a!
next_e
next_e!
next_event
next_event!
next_event_a
next_event_a!
next_event_e
next_event_e!
nondet
nondet_vector
notc

numeric

onehot
onehot0
ord

property
prev

report
restrict
restrict!

rose

sequence
stable
string
strong
sync_abort

toe

U
union
until
until!
until!_
until_

vmode
vpkg
vprop
vunit

W
within

X
X!

aand is a keyword only in the VHDL flavor; see the flavor macro AND_OP (4.3.2.6).
bis is a keyword only in the VHDL flavor; see the flavor macro DEF_SYM (4.3.2.9).
cnot is a keyword only in the VHDL flavor; see the flavor macro NOT_OP (4.3.2.6).
dor is a keyword only in the VHDL flavor; see the flavor macro OR_OP (4.3.2.6).
eto is a keyword only in the VHDL flavor; see the flavor macro RANGE_SYM (4.3.2.7).
Copyright © 2010 IEEE. All rights reserved. 17

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 18 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
operators are associated with operands in left-to-right order of appearance in the text; right-associative
operators are associated with operands in right-to-left order of appearance in the text.

Table 2—FL operator precedence and associativity

NOTE—The notation next* represents the next family of operators, which includes the operators next, next!,
next_a, next_a!, next_e, next_e!, next_event, next_event!, next_event_a!, and
next_event_e!. The notation until* represents the until family of operators, which includes the operators until,
until!, until_, and until!_. The notation before* represents the before family of operators, which includes
the operators before, before!, before_, and before!_.7

4.2.3.2.1 Union operator

For any flavor of PSL, the FL operator with the next highest precedence after the HDL operators is that used
to indicate a non-deterministic expression:

 union union operator

The union operator is left-associative.

4.2.3.2.2 Clocking operator

For any flavor of PSL, the FL operator with the next highest precedence is the clocking operator, which is
used to associate a clock expression with a property or sequence:

 @ clock event

The clocking operator is left-associative.

Operator class Associativity Operators
(highest precedence)

HDL operators
Union operator left union
Clocking operator left @
SERE repetition operators left [*] [+] [=] [->]
Sequence within operator left within
Sequence AND operators left & &&
Sequence OR operator left |
Sequence fusion operator left :
Sequence concatenation operator left ;
FL termination operator left abort async_abort

sync_abort
FL occurrence operators right next* eventually!

X X! F
FL bounding operators right U W

until* before*
Sequence implication operators right |-> |=>

Boolean implication operators right -> <->

FL invariance operators

(lowest precedence)

right always never
G

7Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.
18 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 19 –

BS IEC 62531:2012
4.2.3.2.3 SERE repetition operators

For any flavor of PSL, the FL operators with the next highest precedence are the repetition operators, which
are used to construct Sequential Extended Regular Expressions (SEREs). These operators are as follows:

[*] consecutive repetition
[+] consecutive repetition
[=] non-consecutive repetition
[->] goto repetition

SERE repetition operators are left-associative.

4.2.3.2.4 Sequence within operator

For any flavor of PSL, the FL operator with the next highest precedence is the sequence within operator,
which is used to describe behavior in which one sequence occurs during the course of another, or within a
time-bounded interval:

 within sequence within operator

The sequence within operator is left-associative.

4.2.3.2.5 Sequence conjunction operators

For any flavor of PSL, the FL operators with the next highest precedence are the sequence conjunction
operators, which are used to describe behavior consisting of parallel paths. These operators are as follows:

& non-length-matching sequence conjunction
&& length-matching sequence conjunction

Sequence conjunction operators are left-associative.

4.2.3.2.6 Sequence disjunction operator

For any flavor of PSL, the FL operator with the next highest precedence is the sequence disjunction operator,
which is used to describe behavior consisting of alternative paths:

 | sequence disjunction

The sequence disjunction operator is left-associative.

4.2.3.2.7 Sequence fusion operator

For any flavor of PSL, the FL operator with the next highest precedence is the sequence fusion operator,
which is used to describe behavior in which a later sequence starts in the same cycle in which an earlier
sequence completes:

 : sequence fusion

The sequence fusion operator is left-associative.
Copyright © 2010 IEEE. All rights reserved. 19

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 20 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
4.2.3.2.8 Sequence concatenation operator

For any flavor of PSL, the FL operator with the next highest precedence is the sequence concatenation
operator, which is used to describe behavior in which one sequence is followed by another:

 ; sequence concatenation

The sequence concatenation operator is left-associative.

4.2.3.2.9 FL termination operators

For any flavor of PSL, the FL operators with the next highest precedence are the FL termination operators,
which are used to describe behavior in which a condition causes both current and future obligations to be
canceled:

sync_abort immediate termination of current and future obligations, synchronous with the clock
async_abort immediate termination of current and future obligations, independent of the clock
abort equivalent to async_abort

The FL termination operators are left-associative.

4.2.3.2.10 FL occurrence operators

For any flavor of PSL, the FL operators with the next highest precedence are those used to describe behavior
in which an operand holds in the future. These operators are as follows:

eventually! the right operand holds at some time in the indefinite future
next* the right operand holds at some specified future time or range of future times

FL occurrence operators are right-associative.

4.2.3.2.11 Bounding operators

For any flavor of PSL, the FL operators with the next highest precedence are those used to describe behavior
in which one property holds in some cycle or in all cycles before another property holds. These operators are
as follows:

until* the left operand holds at every time until the right operand holds
before* the left operand holds at some time before the right operand holds

FL bounding operators are right-associative.

4.2.3.2.12 Suffix implication operators

For any flavor of PSL, the FL operators with the next highest precedence are those used to describe behavior
consisting of a property that holds at the end of a given sequence. These operators are as follows:

|-> overlapping suffix implication
|=> non-overlapping suffix implication

The suffix implication operators are right-associative.

NOTE—The FL Property {r} (f) is an alternative form for (and has the same semantics as) the FL Property {r} |-> f.
20 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 21 –

BS IEC 62531:2012
4.2.3.2.13 Logical implication operators

For any flavor of PSL, the FL operators with the next highest precedence are those used to describe behavior
consisting of a Boolean, a sequence, or a property that holds if another Boolean, sequence, or property holds.
These operators are as follows:

-> logical IF implication
<-> logical IFF implication

The logical IF and logical IFF implication operators are right-associative.

4.2.3.2.14 FL invariance operators

For any flavor of PSL, the FL operators with the next highest precedence are those used to describe behavior
in which a property does or does not hold, globally. These operators are as follows:

always the right operand holds, globally
never the right operand does NOT hold, globally

FL occurrence operators are right-associative.

4.2.3.3 Optional Branching Extension (OBE) operators

Table 3—OBE operator precedence and associativity

4.2.3.3.1 OBE occurrence operators

For any flavor of PSL, the OBE operators with the next highest precedence after the HDL operators are
those used to specify when a subordinate property is required to hold, if the parent property is to hold. These
operators include the following:

AX on all paths, at the next state on each path
AG on all paths, at all states on each path
AF on all paths, at some future state on each path
EX on some path, at the next state on the path
EG on some path, at all states on the path
EF on some path, at some future state on the path
A[U] on all paths, in every state up to a certain state on each path
E[U] on some path, in every state up to a certain state on that path

The OBE occurrence operators are left-associative.

Operator class Associativity Operators
(highest precedence)

HDL operators
OBE occurrence operators left AX AG AF EX EG EF

A [U] E [U]
Boolean implication operators

(lowest precedence)

right -> <->
Copyright © 2010 IEEE. All rights reserved. 21

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 22 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
4.2.3.3.2 OBE implication operators

For any flavor of PSL, the OBE operators with the next highest precedence are those used to describe
behavior consisting of a Boolean or a property that holds if another Boolean or property holds. These
operators are:

-> logical IF implication
<-> logical IFF implication

The logical IF and logical IFF implication operators are right-associative.

4.2.4 Macros

PSL provides macro processing capabilities that facilitate the definition of properties. SystemC, VHDL, and
GDL flavors support cpp pre-processing directives (e.g., #define, #ifdef, #else, #include, and #undef).
SystemVerilog and Verilog flavors support Verilog compiler directives (e.g., `define, `ifdef, `else, `include,
and `undef). All flavors also support PSL macros %for and %if, which can be used to conditionally or
iteratively generate PSL statements. The cpp or Verilog compiler directives shall be interpreted first, and
PSL %if and %for macros shall be interpreted second.

4.2.4.1 The %for construct

The %for construct replicates a piece of text a number of times, usually with each replication particularized
via parameter substitution. The syntax of the %for construct is as follows:

 %for /var/ in /expr1/ .. /expr2/ do
 ...
 %end

or:

 %for /var/ in { /item/, /item/, ... , /item/ } do
 ...
 %end

The replicator name var is any legal PSL identifier name. It shall not be the same as any other identifier
(variable, unit name, design signal etc.) except another non-enclosing PSL replicator var. The replication
expressions expr1 and expr2 shall be statically computed expressions resulting in a legal PSL range. A
replication item item is any legal PSL alphanumeric string or previously defined cpp style macro.

In the first case, the text inside the %for-%end pairs will be replicated expr2-expr1+1 times (assuming
that expr2>=expr1). In the second case, the text will be replicated according to the number of items in
the list. During each replication of the text, the loop variable value is substituted into the text as follows.
Suppose the loop variable is called ii. Then the current value of the loop variable may be accessed from the
loop body using the following three methods:

a) The current value of the loop variable can be accessed using simply ii if ii is a separate token in
the text. For instance:

 %for ii in 0..3 do
 define aa(ii) := ii > 2;
 %end

is equivalent to:
22 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 23 –

BS IEC 62531:2012
 define aa(0) := 0 > 2;
 define aa(1) := 1 > 2;
 define aa(2) := 2 > 2;
 define aa(3) := 3 > 2;

b) If ii is part of an identifier, the value of ii may be accessed using %{ii} as follows:
 %for ii in 0..3 do
 define aa%{ii} := ii > 2;
 %end

which is equivalent to:

 define aa0 := 0 > 2;
 define aa1 := 1 > 2;
 define aa2 := 2 > 2;
 define aa3 := 3 > 2;

c) If ii needs to be used as part of an expression, it may be accessed as follows:
 %for ii in 1..4 do
 define aa%{ii-1} := %{ii-1} > 2;
 %end

The above is equivalent to:

 define aa0 := 0 > 2;
 define aa1 := 1 > 2;
 define aa2 := 2 > 2;
 define aa3 := 3 > 2;

The following operators may be used in pre-processor expressions:

= !=
< >
<= >=
+ -
* /

 %

4.2.4.2 The %if construct

The %if construct is similar to the #if construct of the cpp pre-processor. However, unlike the #if
construct, the %if construct can be conditioned on variables defined in an enclosing %for construct. The
syntax of %if is as follows:

 %if /expr/ %then

 %end

or:

%if /expr/ %then
 ...
 %else
 ...
 %end
Copyright © 2010 IEEE. All rights reserved. 23

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 24 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
4.2.5 Comments

PSL provides the ability to add comments to PSL specifications. For each flavor, the comment capability is
consistent with that provided by the corresponding HDL environment.

For the SystemC, SystemVerilog, and Verilog flavors, both the block comment style (/* */) and the
trailing comment style (// <eol>) are supported.

For the VHDL flavor, the trailing comment style (-- <eol>) is supported.

For the GDL flavor, both the block comment style (/* */) and the trailing comment style
(-- <eol>) are supported.

4.3 Syntax

4.3.1 Conventions

The formal syntax described in this standard uses the following extended Backus-Naur Form (BNF).

a) The initial character of each word in a nonterminal is capitalized. For example:

PSL_Statement

A nonterminal is either a single word or multiple words separated by underscores. When a multiple-
word nonterminal containing underscores is referenced within the text (e.g., in a statement that
describes the semantics of the corresponding syntax), the underscores are replaced with spaces.

b) Boldface words are used to denote reserved keywords, operators, and punctuation marks as a
required part of the syntax. For example:

vunit (;
c) The ::= operator separates the two parts of a BNF syntax definition. The syntax category appears

to the left of this operator and the syntax description appears to the right of the operator. For
example, item d) shows three options for a Vunit_Type.

d) A vertical bar separates alternative items (use one only) unless it appears in boldface, in which case
it stands for itself. For example:

Vunit_Type ::=
vunit | vpkg | vprop | vmode

e) Square brackets enclose optional items unless they appear in boldface, in which case they stand for
themselves. For example:

Sequence_Declaration ::=
sequence Name [(Formal_Parameter_List)] DEF_SYM Sequence ;

indicates that (Formal_Parameter_List) is an optional syntax item for Sequence_Declaration,
whereas

| Sequence [* [Range]]

indicates that (the outer) square brackets are part of the syntax, while Range is optional.
f) Braces enclose a repeated item unless they appear in boldface, in which case they stand for

themselves. A repeated item may appear zero or more times; the repetition is equivalent to that given
by a left-recursive rule. Thus, the following two rules are equivalent:
24 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 25 –

BS IEC 62531:2012
Formal_Parameter_List ::=
Formal_Parameter { ; Formal_Parameter }

Formal_Parameter_List ::=
Formal_Parameter | Formal_Parameter_List ; Formal_Parameter

g) A colon (:) in a production starts a line comment unless it appears in boldface, in which case it
stands for itself.

h) If the name of any category starts with an italicized part, it is equivalent to the category name
without the italicized part. The italicized part is intended to convey some semantic information. For
example, vunit_Name is equivalent to Name.

The main text uses italicized type when a term is being defined, and monospace font for examples and
references to constants such as 0, 1, or x values.

4.3.2 HDL dependencies

PSL is defined in several flavors, each of which corresponds to a particular hardware description language
with which PSL can be used. Flavor macros reflect the flavors of PSL in the syntax definition. A flavor
macro is similar to a grammar production, in that it defines alternative replacements for a nonterminal in the
grammar. A flavor macro is different from a grammar production, in that the alternatives are labeled with an
HDL name and, in the context of a given HDL, only the alternative labeled with that HDL name can be
selected.

The name of each flavor macro is shown in all uppercase. Each flavor macro defines analogous, but possibly
different syntax choices allowed for each flavor. The general format is the term Flavor Macro, then the
actual macro name, followed by the = operator, and, finally, the definition for each of the HDLs.

Example

Flavor Macro RANGE_SYM =
 SystemVerilog: : / Verilog: : / VHDL: to / SystemC: : / GDL: ..

shows the range symbol macro (RANGE_SYM).

PSL also defines a few extensions to Verilog declarations as shown in Syntax 4-1.

Syntax 4-1—Extended Verilog Declaration

4.3.2.1 HDL_UNIT

At the topmost level, a PSL specification consists of a set of HDL design units and a set of PSL verification
units. The Flavor Macro HDL_UNIT identifies the nonterminals that represent top-level design units in the
grammar for each of the respective HDLs, as shown in Syntax 4-2.

Extended_Verilog_Declaration ::=
Verilog_module_or_generate_item_declaration

| Extended_Verilog_Type_Declaration
Copyright © 2010 IEEE. All rights reserved. 25

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 26 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Syntax 4-2—Flavor macro HDL_UNIT

4.3.2.2 HDL_DECL and HDL_STMT

PSL verification units may contain certain kinds of HDL declarations and statements. Flavor macros
HDL_DECL, HDL_STMT, and HDL_SEQ_STMT connect the PSL syntax with the syntax for declarations
and statements in the grammar for each HDL. All of these are shown in Syntax 4-3.

Syntax 4-3—Flavor macros HDL_DECL, HDL_STMT, and HDL_SEQ_STMT

4.3.2.3 HDL_EXPR and HDL_CLOCK_EXPR

Expressions in PSL are those allowed in the underlying HDL description. This applies to expressions
appearing directly within a temporal layer property, including those that appear within clock expressions, as
well as to any subexpressions of those expressions. The definitions of HDL_EXPR and
HDL_CLOCK_EXPR capture this requirement, as shown in Syntax 4-4.

Flavor Macro HDL_UNIT =
 SystemVerilog: SystemVerilog_module_declaration
/ Verilog: Verilog_module_declaration
/ VHDL: VHDL_design_unit
/ SystemC: SystemC_class_sc_module
/ GDL: GDL_module_declaration

Flavor Macro HDL_DECL =
SystemVerilog: SystemVerilog_module_or_generate_item_declaration

 / Verilog: Extended_Verilog_Declaration
/ VHDL: VHDL_declaration
/ SystemC: SystemC_declaration
/ GDL: GDL_module_item_declaration

Flavor Macro HDL_STMT =
SystemVerilog: SystemVerilog_module_or_generate_item

/ Verilog: Verilog_module_or_generate_item
/ VHDL: VHDL_concurrent_statement
/ SystemC: SystemC_statement
/ GDL: GDL_module_item

Flavor Macro HDL_SEQ_STMT =
SystemVerilog: SystemVerilog_statement_item
/ Verilog: Verilog_statement
/ VHDL: VHDL_sequential_statement
/ SystemC: SystemC_statement
/ GDL: GDL_process_item
26 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 27 –

BS IEC 62531:2012
Syntax 4-4—Flavor macro HDL_EXPR and HDL_CLOCK_EXPR

4.3.2.4 HDL_VARIABLE_TYPE

The formal types of PSL named declarations may be HDL variable types. PSL formal types are described in
6.5.1. Flavor macro HDL_VARIABLE_TYPE defines the HDL types that may be used as PSL formal type,
as shown in Syntax 4-5.

Syntax 4-5—Flavor macro HDL_VARIABLE_TYPE

4.3.2.5 HDL_RANGE

Some HDLs provide special syntax for referring to the range of values that a variable or index may take on.
Flavor macro HDL_RANGE captures this possibility, as shown in Syntax 4-6. Unlike other flavor macros,
this one only includes options for those languages that support special range syntax.

Flavor Macro HDL_EXPR =
SystemVerilog: SystemVerilog_Expression

/ Verilog: Verilog_Expression
/ VHDL: VHDL_Expression
/ SystemC: C++_Expression
/ GDL: GDL_Expression

Flavor Macro HDL_CLOCK_EXPR =
SystemVerilog: SystemVerilog_Event_Expression

/ Verilog: Verilog_Event_Expression
/ VHDL: VHDL_Expression
/ SystemC: SystemC_Event_Expression
/ GDL: GDL_Expression

SystemC_Event_Expression ::=
sc_event

| sc_event_finder
| sc_event_and_list
| sc_event_or_list
| sc_signal
| sc_port

Flavor Macro HDL_VARIABLE_TYPE =
SystemVerilog : SystemVerilog_data_type

/ Verilog : Verilog_Variable_Type
/ VHDL : VHDL_subtype_indication
/ SystemC: SystemC_simple_type_specifier
/ GDL : GDL_variable_type

Verilog_Variable_Type ::=
 task_port_type

| reg [signed] [range]
Copyright © 2010 IEEE. All rights reserved. 27

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 28 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Syntax 4-6—Flavor macro HDL_RANGE

NOTE—Flavor macro HDL_RANGE only applies in a VHDL context, because VHDL is the only language that
includes special syntax for referring to previously defined ranges.

4.3.2.6 AND_OP, OR_OP, and NOT_OP

Each flavor of PSL overloads the underlying HDL’s symbols for the logical conjunction, disjunction, and
negation operators so the same operators are used for conjunction and disjunction of Boolean expressions
and for conjunction, disjunction, and negation of properties. The definitions of AND_OP, OR_OP, and
NOT_OP reflect this overloading, as shown in Syntax 4-7.

Syntax 4-7—Flavor macros AND_OP, OR_OP, and NOT_OP

4.3.2.7 RANGE_SYM, MIN_VAL, and MAX_VAL

Within properties it is possible to specify a range of integer values representing the number of cycles, or
number of repetitions that are allowed to occur, or a range of integer values to specify the set of values in a
for or forall property. PSL adopts the general form of range specification from the underlying HDL, as
reflected in the definition of RANGE_SYM, MIN_VAL, and MAX_VAL shown in Syntax 4-8.

Syntax 4-8—Flavor macros RANGE_SYM, MIN_VAL, and MAX_VAL

However, unlike HDLs, in which ranges are always finite, a range specification in PSL may have an infinite
upper bound. For this reason, the definition of MAX_VAL includes the keyword inf, representing infinite.

Flavor Macro HDL_RANGE =
 VHDL: VHDL_Expression

Flavor Macro AND_OP =
SystemVerilog: && / Verilog: && / VHDL: and / SystemC: && / GDL: &

Flavor Macro OR_OP =
SystemVerilog: || / Verilog: || / VHDL: or / SystemC: || / GDL: |

Flavor Macro NOT_OP =
SystemVerilog: ! / Verilog: ! / VHDL: not / SystemC: ! / GDL: !

Flavor Macro RANGE_SYM =
SystemVerilog: : / Verilog: : / VHDL: to / SystemC: :/ GDL: ..

Flavor Macro MIN_VAL =
SystemVerilog: 0 / Verilog: 0 / VHDL: 0 / SystemC: 0 / GDL: null

Flavor Macro MAX_VAL =
SystemVerilog: $ / Verilog: inf / VHDL: inf / SystemC: inf / GDL: null
28 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 29 –

BS IEC 62531:2012
4.3.2.8 LEFT_SYM and RIGHT_SYM

In replicated properties, it is possible to specify the replication index Name as a vector of Boolean values.
PSL allows this specification to take the form of an array reference in the underlying HDL, as reflected in
the definition of LEFT_SYM and RIGHT_SYM shown in Syntax 4-9.

Syntax 4-9—Flavor macro LEFT_SYM and RIGHT_SYM

4.3.2.9 DEF_SYM

Finally, as in the underlying HDL, PSL can declare new named objects. To make the syntax of such
declarations consistent with those in the HDL, PSL adopts the symbol used for declarations in the
underlying HDL, as reflected in the definition of DEF_SYM shown in Syntax 4-10.

Syntax 4-10—Flavor macro DEF_SYM

4.4 Semantics

The following subclauses introduce various general concepts related to temporal property specification and
explain how they apply to PSL.

4.4.1 Clocked vs. unclocked evaluation

Every PSL property, sequence, and built-in function has an associated clock context. The property,
sequence, or built-in function is evaluated only in cycles in which the clock context holds. A nested
property, sequence, or built-in function within a given property or sequence can have a different clock
context than that of the parent property or sequence.

The base clock context is True, i.e., the granularity of time as seen by the verification tool. Different
verification tools may model time at different levels of granularity. For example, an event-driven simulation
tool typically has a relatively fine-grained model of time, whereas a cycle-based simulation or formal
verification tool typically has a more coarse-grained model of time.

A clock context may be specified locally, or may be inherited from an enclosing construct, or may be
specified by a default clock declaration. A locally specified clock context takes precedence over an inherited
or default clock context.

Flavor Macro LEFT_SYM =
SystemVerilog: [/ Verilog: [/ VHDL: (/ SystemC: [/ GDL: (

Flavor Macro RIGHT_SYM =
SystemVerilog:] / Verilog:] / VHDL:) / SystemC:] / GDL:)

Flavor Macro DEF_SYM =
SystemVerilog: = / Verilog: = / VHDL: is / SystemC : = / GDL: :=
Copyright © 2010 IEEE. All rights reserved. 29

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 30 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
A PSL property or sequence whose clock context is specified locally by a clock expression associated with
the property or sequence (by the @ operator) is a clocked property or sequence, respectively; otherwise it is
an unclocked property or sequence.

A PSL property, sequence, or built-in function whose clock context is equivalent to True is an asynchronous
property, sequence, or built-in function; otherwise it is a synchronous property, sequence, or built-in
function, respectively.

A synchronous PSL property that contains no nested asynchronous properties, sequences, or built-in func-
tions shall give the same result in cycle-based and event-based verification tools, provided that there is a
one-to-one, in-order correspondence between (a) the succession of event-based states in which any clock
context of the property holds, and (b) the succession of cycle-based states in which the same clock context
holds.

4.4.2 Safety vs. liveness properties

A safety property is a property that specifies an invariant over the states in a design. The invariant is not nec-
essarily limited to a single cycle, but it is bounded in time. Loosely speaking, a safety property claims that
“something bad” does not happen. More formally, a safety property is a property for which any path violat-
ing the property has a finite prefix such that every extension of the prefix violates the property. For example,
the property “whenever signal req is asserted, signal ack is asserted within 3 cycles” is a safety property.

A liveness property is a property that specifies an eventuality that is unbounded in time. Loosely speaking, a
liveness property claims that “something good” eventually happens. More formally, a liveness property is a
property for which any finite path can be extended to a path satisfying the property. For example, the prop-
erty “whenever signal req is asserted, signal ack is asserted sometime in the future” is a liveness property.

4.4.3 Linear vs. branching logic

PSL can express both properties that use linear semantics as well as those that use branching semantics. The
former are properties of the PSL Foundation Language, while the latter belong to the Optional Branching
Extension. Properties with linear semantics reason about computation paths in a design and can be checked
in simulation, as well as in formal verification. Properties with branching semantics reason about computa-
tion trees and can be checked only in formal verification.

While the linear semantics of PSL are the ones most used in properties, the branching semantics add impor-
tant expressive power. For instance, branching semantics are sometimes required to reason about deadlocks.

4.4.4 Simple subset

PSL can express properties that cannot be easily evaluated in simulation, although such properties can be
addressed by formal verification methods.

In particular, PSL can express properties that involve branching or parallel behavior, which tend to be more
difficult to evaluate in simulation, where time advances monotonically along a single path. The simple
subset of PSL is a subset that conforms to the notion of monotonic advancement of time, left to right through
the property, which in turn ensures that properties within the subset can be simulated easily. The simple
subset of PSL contains any PSL FL Property meeting all of the following conditions:

— The operand of a negation operator is a Boolean.
— The operand of a never operator is a Boolean or a Sequence.
— The operand of an eventually! operator is a Boolean or a Sequence.
— At most one operand of a logical or operator is a non-Boolean.
— The left-hand side operand of a logical implication (->) operator is a Boolean.
30 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 31 –

BS IEC 62531:2012
— Both operands of a logical iff (<->) operator are Boolean.
— The right-hand side operand of a non-overlapping until* operator is a Boolean.
— Both operands of an overlapping until* operator are Boolean.
— Both operands of a before* operator are Boolean.
— The operand of next_e* is Boolean.
— The FL Property operand of next_event_e* is Boolean.

All other operators not mentioned above are supported in the simple subset without restriction. In particular,
the operators always, next*, next_a*, next_event, next_event_a*, and all forms of suffix
implication are supported without restriction in the simple subset.

4.4.5 Finite-length vs. infinite-length behavior

The semantics of PSL allow us to decide whether a PSL property holds on a given behavior. How the
outcome of this problem relates to the design depends on the behavior that was analyzed. In dynamic
verification, only behaviors that are finite in length are considered. In such a case, PSL defines the following
four levels of satisfaction of a property:

Holds strongly:
— No bad states have been seen
— All future obligations have been met
— The property will hold on any extension of the path

Holds (but does not hold strongly):
— No bad states have been seen
— All future obligations have been met
— The property may or may not hold on any given extension of the path

Pending:
— No bad states have been seen
— Future obligations have not been met
— (The property may or may not hold on any given extension of the path)

Fails:
— A bad state has been seen
— (Future obligations may or may not have been met)
— The property will not hold on any extension of the path

4.4.6 The concept of strength

PSL uses the term strong in two different ways: an operator may be strong, and the satisfaction of a property
on a path may be strong. While the two are related, the use of the concept of strength in each context is best
understood first in isolation. Each is presented in the subclauses that follow, then the relation between them
is explained.

4.4.6.1 Strong vs. weak operators

Some operators have a terminating condition that comes at an unknown time. For example, the property
“busy shall be asserted until done is asserted” is expressed using an operator of the until family, which
states that signal busy shall stay asserted until the signal done is asserted. The specific cycle in which signal
done is asserted is not specified.
Copyright © 2010 IEEE. All rights reserved. 31

– 32 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 33 –

BS IEC 62531:2012
5. Boolean layer

The Boolean layer consists of expressions that represent design behavior. These expressions build upon the
expression capabilities of the HDL(s) used to describe the design under consideration. An expression in the
Boolean layer evaluates immediately, at an instant in time.

Expressions may be of various HDL-specific data types. Certain classes of HDL data types are distinguished
in PSL, due to their specific roles in describing behavior. Each class of data types in PSL corresponds to a set
of specific data types in the underlying HDL design.

Expressions may involve HDL-specific expression syntax or PSL-defined operators and built-in functions.
PSL-defined operators and built-in functions map onto underlying HDL-specific operations, as appropriate
for the HDL context and the data type of the expression.

HDL-specific expressions are not redefined by PSL. Rather, PSL uses a subset of the existing IEEE
standards. The details of this subset are given in 5.1.

5.1 Expression type classes

Five classes of expression are distinguished in PSL: Bit, Boolean, BitVector, Numeric, and String
expressions. Each of these corresponds to a set of specific data types in the underlying HDL context, and an
interpretation of the values of those data types.

Some PSL built-in functions take operands that may be of any HDL data type or PSL type class, as shown in
Syntax 5-1. In such a case, there is no interpretation of type or values involved.

Syntax 5-1—Any type expression

Other PSL built-in functions and expressions, and PSL temporal layer constructs, require operands that
belong to specific type classes. In such a case, if an HDL expression appears in a location at which the PSL
grammar requires an expression of a specific PSL type class, then the value of the HDL expression will be
interpreted as a value of a corresponding PSL type class, as described below.

PSL expressions and built-in functions can be used in an HDL context, either in the modeling layer or in an
HDL expression within the modeling layer. In such a case, the value of the PSL type class returned by the
PSL expression or built-in function is converted back to a specific HDL data type, as described below.

If an HDL expression appears immediately within an HDL context, e.g., as a subexpression within another
HDL expression, then neither the interpretation of HDL expression values as values of a PSL type class, nor
the conversion of values of a PSL type class back to values of an HDL data type, apply.

5.1.1 Bit expressions

Bit expressions represent the values of individual signals or memory elements in the design. The data types
used in bit expressions include types that model bits as strictly binary (having values in {0,1}) as well as
multi-valued logic types, with values in {X, 0, 1, Z}. (See Syntax 5-2.)

Any_Type ::=
 HDL_or_PSL_Expression
Copyright © 2010 IEEE. All rights reserved. 33

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 34 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Syntax 5-2—Bit expression

In Verilog, the built-in logic type is a Bit type.

In SystemVerilog, the built-in types bit and logic are Bit types.

In VHDL, type STD.Standard.Bit, and type IEEE.Std_Logic_1164.std_ulogic, as well as subtypes thereof,
are Bit types.

In SystemC, types sc_bit and sc_bv are Bit types.

In GDL, type boolean is a Bit type.

5.1.2 Boolean expressions

Boolean expressions, for which the Boolean layer is named, describe states of the design, in terms of signals,
values, and their relationships. They represent simple properties, which can be composed using temporal
operators to create temporal properties. (See Syntax 5-3.)

Syntax 5-3—Boolean expression

Boolean expressions may be dynamic; i.e., they may contain signals whose values change over time.
Boolean expressions may have subexpressions of any type.

In VHDL, type STD.Standard.Boolean is a Boolean type.

In SystemC, type bool is a Boolean type.

In GDL, type boolean is a Boolean type.

Any Bit type is interpretable as a Boolean type. For Verilog, SystemVerilog, and System C, a BitVector
expression may also appear where a Boolean expression is required, in which case the expression is
interpreted as True or False according to the rules of Verilog, SystemVerilog, and SystemC, respectively, for
interpreting an expression that appears as the condition of an if statement.

The return value from a PSL expression or built-in function that returns a Boolean value is of the appropriate
type for the context. For Verilog, the return value is of the built-in logic type; for SystemVerilog, the return
value is of the built-in type logic; for VHDL, the return value is of type STD.Standard.Boolean; for
SystemC, the return value is of built-in type bool.

Literals True and False represent the corresponding literals in the underlying HDL Boolean type (or Bit type
interpreted as a Boolean type) involved in a given expression.

Bit ::=
 bit_HDL_or_PSL_Expression

Boolean ::=
 boolean_HDL_or_PSL_Expression
34 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 35 –

BS IEC 62531:2012
A Boolean expression is required wherever the nonterminal Boolean appears in the syntax.

5.1.3 BitVector expressions

BitVector expressions represent words composed of bits, of various widths, as shown in Syntax 5-4.

Syntax 5-4—BitVector expression

In Verilog, and in SystemVerilog, any reg, wire, or net type, and any word in a memory, is interpretable as a
BitVector type.

In VHDL and GDL, any type that is a one-dimensional array of a Bit type is interpretable as a BitVector
type.

In SystemC, each of the types sc_bv, sc_lv, sc_int, sc_uint, sc_bigint, and sc_biguint is interpretable as a Bit-
Vector type.

5.1.4 Numeric expressions

Numeric expressions represent integer constants such as cycle or occurrence counts that are part of the
definition of a temporal property, as shown in Syntax 5-5.

.

Syntax 5-5—Numeric expression

In Verilog, any BitVector expression that contains no unknown bit values is interpretable as a Numeric
expression. In SystemVerilog, any integral type is interpretable as a Numeric type. In VHDL, any expression
of an integer type is interpretable as a Numeric expression. In SystemC, any expression of type bool, char,
short, int, long, or long long, or of types sc_bit, sc_bv, sc_int, sc_uint, sc_bigint, or sc_biguint, is
interpretable as a Numeric expression. In GDL, any expression of an integer type, or of type Boolean, is
interpretable as a Numeric expression.

The return value from a PSL built-in function that returns a Numeric value is of the appropriate type for the
context. For Verilog, the return value is a vector of the built-in logic type; for SystemVerilog, the return
value is of the built-in type int; for VHDL, the return value is of type STD.Standard.Integer; for SystemC,
the return value is of built-in type unsigned int.

A Numeric expression is required wherever the nonterminal Number appears in the syntax.

BitVector ::=
 bitvector_HDL_or_PSL_Expression

Number ::=
 numeric_HDL_or_PSL_Expression
Copyright © 2010 IEEE. All rights reserved. 35

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 36 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Restrictions

Numeric expressions shall be statically evaluatable—signals or variables that change value over time shall
not be used in Numeric expressions. Numeric expressions are always required to be non-negative; in some
cases they are required to be non-zero as well.

5.1.5 String expressions

String expressions represent text messages that are attached to a PSL directive to help in debugging, as
shown in Syntax 5-6.

Syntax 5-6—String expression

In Verilog and GDL, any string literal is a String expression. In SystemVerilog, any expression of type string
is a String expression. In VHDL, any expression of type STD.Standard.String is a String expression. In Sys-
temC, any expression of type std::string or char* is a String expression.

A String expression is required wherever the nonterminal String appears in the syntax.

5.2 Expression forms

Expressions in the Boolean Layer are built from HDL expressions, PSL expressions, PSL built-in functions,
and union expressions, as Syntax 5-7 illustrates.

Syntax 5-7—HDL or PSL Expression

In each flavor of PSL, at any place where an HDL subexpression may appear within an HDL or PSL
expression, the grammar of the corresponding HDL is extended to allow any form of HDL or PSL
expression. Thus HDL expressions, PSL expressions, built-in functions, and union expressions may all be
used as subexpressions within HDL or PSL expressions.

NOTE—Subexpressions of a Boolean expression may be of any type supported by the corresponding HDL.

5.2.1 HDL expressions

An HDL expression may be used wherever a Bit, Boolean, BitVector, Numeric, or String expression is
required, provided that the type of the expression is (or is interpretable as) the required type. The form of
HDL expression allowed in a given context is determined by the flavor of PSL being used, as shown in
Syntax 5-8.)

String ::=
 string_HDL_or_PSL_Expression

HDL_or_PSL_Expression ::=
 HDL_Expression
| PSL_Expression
| Built_In_Function_Call
| Union_Expression
36 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 37 –

BS IEC 62531:2012
Syntax 5-8—HDL expression

Informal Semantics

The meaning of an HDL expression in a PSL context is determined by the meanings of the names and
operator symbols in the HDL expression.

The meaning of the HDL expression is determined with respect to a given verification unit that acts as the
root of a verification run—the root verification unit. The meaning of the HDL expression is consistent
through all vunits inherited by the root verification unit.

NOTE—An HDL expression declared in a certain verification unit may have distinct meaning when it is the root vunit,
and when it is inherited by another root vunit. It may also have distinct meaning when it is inherited by different root
vunits.

A verification unit is said to transitively inherit a name or operator symbol if there exists a finite number of
verification units V1, V2, ... ,Vk–1, Vk such that the following conditions are met:

a) V1 is the given verification unit, and
b) for every i such that 1 <= i < k–1 it holds that Vi inherits using the default (transitive) inherit key-

word Vi+1, and
c) Vk–1 inherits Vk using either the transitive or nontransitive inherit keyword, and
d) Vk declares that name or operator symbol.

That is, a given verification unit V1 transitively inherits a name or operator symbol if there exists a (possibly
empty) path in the inheritance graph (see 7.2.3) to another verification unit Vk such that all edges except
maybe the last are solid and the name or operator is declared in Vk.

For each name and operator symbol in the HDL expression, the meaning of the name or operator symbol in
a given root verification unit is determined as follows:

1) If this is an operator symbol that is predefined in the flavor of PSL used, then the operator symbol
has its predefined meaning.

2) If the root verification unit contains a (single) declaration of this name or operator symbol, then the
object created by that declaration is the meaning of this name or operator symbol.

3) Otherwise, if the root verification unit transitively inherits a single declaration of this name or
operator symbol, then the object created by that declaration is the meaning of this name or operator
symbol.

4) Otherwise, if the root verification unit transitively inherits more than one declaration of this name or
operator symbol, but all declarations appear in vunits that are related to each other by the transitive

HDL_Expression ::=
 HDL_EXPR

Flavor Macro HDL_EXPR =
 SystemVerilog: SystemVerilog_Expression
 / Verilog: Verilog_Expression
 / VHDL: VHDL_Expression

/ SystemC: SystemC_Expression
 / GDL: GDL_Expression
Copyright © 2010 IEEE. All rights reserved. 37

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 38 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
closure with respect to inheritance, then the object created by the declaration closest to the root with
respect to the inheritance relation is the meaning of this name or operator symbol.

5) Otherwise, if the default verification mode contains a single declaration of this name or operator
symbol, then the object created by that declaration is the meaning of this name or operator symbol.

6) Otherwise, if this name or operator symbol has an unambiguous meaning at the end of the design
module or instance to which the current verification unit is bound, then that meaning is the meaning
of this name or operator symbol.

7) Otherwise, this name or operator symbol has no meaning.

It is an error if more than one declaration of a given name appears in the root verification unit [in step 1) or
step 2)], or in the transitive closure of all inherited verification units where one is not related by inheritance
to the other [in step 3) and step 4)], or in the default verification mode [in step 5)], or if the name is ambigu-
ous at the end of the associated design module or instance [in step 6)].

NOTE—Whenever the text above refers to a declaration, the declaration may in particular be an override declaration.

Example

vunit A {
 wire a;
 inherit B;
}

vunit B {
 wire b;
 nontransitive inherit C;
}

vunit C {
 wire c;
 inherit D;
}

vunit D {
 wire d;
 inherit E;
}

vunit E {
 wire e;
}

The names a, b, and c (but not d and e) have meaning in verification unit A. In verification unit B, only
names b and c have meaning. In verification unit C, only names c and d and e have meaning.

For each operator symbol in the HDL expression, the meaning of the operator symbol is determined as
follows:

— For the SystemVerilog, Verilog, SystemC, and GDL flavors, this operator symbol has the same
meaning as the corresponding operator symbol in the HDL.

— For the VHDL flavor, if this operator symbol has an unambiguous meaning at the end of the design
unit or component instance associated with the current verification unit, then that meaning is the
meaning of this operator symbol.

— Otherwise, this operator symbol has no meaning.

See 7.2 for an explanation of verification units and modes.
38 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 39 –

BS IEC 62531:2012
5.2.2 PSL expressions

PSL defines a collection of operators that represent underlying HDL operators, as shown in Syntax 5-9.

Syntax 5-9—PSL expression

Both PSL expression operators involve operands that are (or are interpretable as) Boolean. Each produces a
Boolean result.

Informal Semantics

Each of these operators represent, or map to, equivalent operators defined by the HDL in which the relevant
portion of the design is described, as appropriate for the data types of the operands.

In a Verilog, SystemVerilog, or SystemC context, the mapping is as follows: PSL expression a -> b maps
to the equivalent expression (!(a) || (b)), and PSL expression a <-> b maps to the equivalent
expression (((a) && (b)) || (!(a) && !(b))).

In a VHDL context, the mapping is as follows: PSL expression a -> b maps to the equivalent expression
(not (a) or (b)), and PSL expression a <-> b maps to the equivalent expression (((a) and
(b)) or (not (a) and not (b))).

In the GDL flavor, these operators are native operators, so no mapping is involved.

5.2.3 Built-in functions

PSL defines a collection of built-in functions that detect typically interesting conditions, or compute useful
values, as shown in Syntax 5-10.

There are three classes of built-in functions. Functions prev(), next(), stable(), rose(), fell(),
and ended() all have to do with the values of expressions over time. Functions isunknown(),
countones(), onehot(), and onehot0() all have to do with the values of bits in a vector at a given
instant. Functions nondet() and nondet_vector() have to do with nondeterministic choice of a
value.

5.2.3.1 prev()

The built-in function prev() takes an expression of any type as argument and returns a previous value of
that expression. With a single argument, the built-in function prev() gives the value of the expression in
the previous cycle, with respect to the clock of its context. If a second argument is specified and has the non-
negative value i, the built-in function prev() gives the value of the expression in the ith previous cycle,
with respect to the clock of its context. For the case in which the value of i equals zero, the built-in function
prev() returns the current value of the expression. If a third argument is specified and has the value c, the
built-in function prev() gives the value of the expression in the ith previous cycle, with respect to clock
context c.

HDL_or_PSL_Expression ::=
 PSL_Expression

PSL_Expression ::=
 Boolean -> Boolean
 | Boolean <-> Boolean
Copyright © 2010 IEEE. All rights reserved. 39

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 40 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Syntax 5-10—Built-in functions

If there is no (ith) previous clock cycle or that clock cycle is not at initialization time or later and if a value
is given to the expression for time points prior to initialization time by the simulation semantics for the HDL
underlying the PSL flavor in question, then the built-in function prev() should return that value.

NOTE 1—In the absence of an explicit clock context parameter, the clock context is determined by the context in which
the built-in function appears, as defined by the rules given in 5.3 for determination of the clock context of a Boolean
(specifically, a built-in function).

NOTE 2—The first argument of prev() is not necessarily a Boolean expression. For example, if the argument to
prev() is a bit vector, then the result is the previous value of the entire bit vector.

Restrictions

If a call to prev() includes a Number, it shall be a positive Number that is statically evaluatable.

Example

In the following timing diagram, the function call prev(a) returns the value 1 at times 3, 4, and 6, and the
value 0 at other times, if its clock context is True. In the context of clock clk, the call prev(a) returns the
value 1 at times 5 and 7, and the value 0 at other tick points. In the context of clock clk, the call
prev(a,2) returns the value 1 at time 7, and 0 at other tick points.

 time 0 1 2 3 4 5 6 7

 clk 0 1 0 1 0 1 0 1
 a 0 0 1 1 0 1 0 0

Built_In_Function_Call ::=
prev (Any_Type [, Number [, Clock_Expression]])

| next (Any_Type)
| stable (Any_Type [, Clock_Expression])
| rose (Bit [, Clock_Expression])
| fell (Bit [, Clock_Expression])
| ended (Sequence [, Clock_Expression])
| isunknown (BitVector)
| countones (BitVector)
| onehot (BitVector)
| onehot0 (BitVector)
| nondet (Value_Set)
| nondet_vector (Number, Value_Set)

Value_Set ::=
{ Value_Range { , Value_Range } }

| boolean

Value_Range ::=
Value

| finite_Range

finite_Range ::=
Low_Bound RANGE_SYM High_Bound
40 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 41 –

BS IEC 62531:2012
5.2.3.2 next()

The built-in function next() gives the value of a signal of any type at the next cycle, with respect to the
finest granularity of time as seen by the verification tool. In contrast to the built-in functions ended(),
prev(), stable(), rose(), and fell(), the function next() is not affected by the clock of its
context.

Restrictions

The argument of next() shall be the name of a signal; an expression other than a simple name is not
allowed. A call to next() may only be used on the right-hand side of an assignment to a memory element
(register or latch). It shall not be used on the right-hand side of an assignment to a combinational signal nor
directly in a property, or in a sequence, or as a parameter to a built-in function.

Example

In the following timing diagram, the function call next(a) returns the value 1 at times 1, 2, and 4, and the
value 0 at other times.

 time 0 1 2 3 4 5 6 7

 clk 0 1 0 1 0 1 0 1

a 0 0 1 1 0 1 0 0

The value of next(a) is not affected by the clock context (implied here by the signal clk in the timing
diagram).

Function next() can be used to create a signal in the modeling layer that mirrors (i.e., always has the same
value as) another signal. This is particularly useful in conjunction with the nondeterministic assignments
involving the union operator or the nondet() built-in function. For example, consider the following code:

always @(posedge clk)
rega <= #1 exp1 union exp2;

This assigns a value to rega that is either the value of exp1 or the value of exp2, nondeterministically chosen
when the assignment is executed.

Suppose regb is required to have the same value as rega under certain conditions. Assigning the value of
rega to regb would introduce a delay, which might not be acceptable. Assigning the same expression
(exp1 union exp2) to regb would not work, because the assignment to regb would also be
nondeterministic, and therefore rega and regb could end up with different values. However, using the
next() function, the following code would ensure that, whenever the enable input is high, regb is
always assigned the same value as rega is being assigned:

always @(posedge clk)
if (enable) regb <= #1 next(rega);

5.2.3.3 stable()

The built-in function stable() takes an expression of any type as argument. With a single argument,
stable() returns True if the argument’s value is the same as it was at the previous cycle, with respect to the
clock of its context; otherwise, it returns False. If a second argument is specified and has the value c, the
Copyright © 2010 IEEE. All rights reserved. 41

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 42 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
built-in function stable() returns True if the first argument’s value is the same as it was at the previous
cycle, with respect to clock context c; otherwise, it returns False.

The function stable() can be expressed in terms of the built-in function prev() as follows: For any bit
expression e and any Boolean c, stable(e,c) is equivalent to the Verilog or SystemVerilog expression
(prev(e,1,c) === e), and is equivalent to the VHDL expression (prev(e,1,c) = e). The
function stable() may be used anywhere a Boolean is required.

NOTE—If the clock context is True, the clock context is determined by the context in which the built-in function
appears, as defined by the rules given in 5.3 for determination of the clock context of a Boolean (specifically, a built-in
function).

Example

In the following timing diagram, the function call stable(a) is true at times 1, 3, and 7, and at no other
time if it does not have a clock context. In the context of clock clk, the function call stable(a) is true at
the tick of clk at time 5 and at no other tick point of clk.

 time 0 1 2 3 4 5 6 7

 clk 0 1 0 1 0 1 0 1
 a 0 0 1 1 0 1 0 0

5.2.3.4 rose()

The built-in function rose() takes a Bit expression as argument. With a single argument, rose() returns
True if the argument’s value is 1 at the current cycle and 0 at the previous cycle, with respect to the clock of
its context; otherwise, it returns False. If a second argument is specified and has the value c, the built-in
function rose() returns True if the first argument’s value is 1 at the current cycle and 0 at the previous
cycle, with respect to clock context c; otherwise, it returns False.

The function rose() can be expressed in terms of the built-in function prev() as follows: For any bit
expression e and any Boolean c, rose(e,c) is equivalent to the Verilog or SystemVerilog expression
(prev(e,1,c)==1’b0 && e==1’b1), and is equivalent to the VHDL expression (prev(e,1,c)
=’0 and e=’1). The function rose() may be used anywhere a Boolean is required.

NOTE 1—In the absence of an explicit clock context parameter, the clock context is determined by the context in which
the built-in function appears, as defined by the rules for determination of the clock context of a Boolean (specifically, a
built-in function), given in 5.3.

NOTE 2—The function rose(c) is similar to the Verilog event expression (posedge c) and the VHDL function
rising_edge(c) defined in package IEEE.std_logic_1164. For a given property f and signal clk, f@rose(clk),
f@(posedge clk), and f@(rising_edge(clk))all have equivalent semantics, provided that signal clk takes
on only 0 and 1 values, and no signal in f changes at the same time as clk (i.e., there are no race conditions).

If signal clk can take on X or Z values, then the semantics of f@(posedge clk)may differ from those of
f@rose(clk) and f@(rising_edge(clk)). In such a case, the clock expression (posedge clk) will generate
an event on 0->X, X->1, 0->Z, and Z->1 transitions of clk, whereas the clock expressions rose(clk) and
rising_edge(clk)will ignore these transitions.

If at least one signal appearing in f changes at the same time as clk, then the semantics of f@(posedge clk),
f@rose(clk) , and f@(rising_edge(clk)) may be different, due to differences in their respective handling of
race conditions.
42 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 43 –

BS IEC 62531:2012
Example

In the following timing diagram, the function call rose(a) is true at times 2 and 5 and at no other time, if
its clock context is True. In the context of clock clk, the function call rose(a) is true at the tick of clk at
time 3 and at no other tick point of clk.

 time 0 1 2 3 4 5 6 7

 clk 0 1 0 1 0 1 0 1
 a 0 0 1 1 0 1 0 0

5.2.3.5 fell()

The built-in function fell() takes a Bit expression as argument. With a single argument, fell() returns
True if the argument’s value is 0 at the current cycle and 1 at the previous cycle, with respect to the clock of
its context; otherwise, it returns False. If a second argument is specified and has the value c, the built-in
function fell() returns True if the first argument’s value is 1 at the current cycle and 0 at the previous
cycle, with respect to clock context c; otherwise, it returns False.

The function fell() can be expressed in terms of the built-in function prev() as follows: For any bit
expression e and any Boolean c, fell(e,c) is equivalent to the Verilog or SystemVerilog expression
(prev(e,1,c)==1’b1 && e==1’b0), and is equivalent to the VHDL expression (prev(e,1,c)
=’1 and e=’0). The function fell() may be used anywhere a Boolean is required.

NOTE 1—In the absence of an explicit clock context parameter, the clock context is determined by the context in which
the built-in function appears, as defined by the rules given in 5.3 for determination of the clock context of a Boolean
(specifically, a built-in function).

NOTE 2—The function fell(c) is similar to the Verilog event expression (negedge c) and the VHDL function
falling_edge(c) defined in package IEEE.std_logic_1164. For a given property f and signal clk, f@fell(clk),
f@(negedge clk), and f@(falling_edge (clk)) all have equivalent semantics, provided that signal clk
takes on only 0 and 1 values, and no signal in f changes at the same time as clk (i.e., there are no race conditions).

If signal clk can take on X or Z values, then the semantics of f@(negedge clk) may differ from those of
f@fell(clk) and f@(falling_edge (clk)). In such a case, the clock expression (negedge clk) will gen-
erate an event on 1->X, X->0, 1->Z, and Z->0 transitions of clk, whereas the clock expressions fell(clk) and
falling_edge(clk) will ignore these transitions.

If at least one signal appearing in f changes at the same time as clk, then the semantics of f@(negedge clk),
f@fell(clk), and f@(falling_edge (clk)) may be different, due to differences in their respective handling
of race conditions.

Example

In the following timing diagram, the function call fell(a) is true at times 4 and 6 and at no other time if
its clock context is True. In the context of clock clk, the function call fell(a) is true at the tick of clk at
time 7 and at no other tick point of clk.

 time 0 1 2 3 4 5 6 7

 clk 0 1 0 1 0 1 0 1
 a 0 0 1 1 0 1 0 0

5.2.3.6 ended()

The built-in function ended() takes a Sequence as an argument. With a single argument, ended()
returns True in any cycle in which the sequence completes; otherwise it returns False. If the first argument is
Copyright © 2010 IEEE. All rights reserved. 43

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 44 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
s, and a second argument c is specified, then it is equivalent to ended({s}@c). Function ended() may
be used anywhere a Boolean is required.

NOTE—In the absence of an explicit clock context parameter, the clock context is determined by the context in which
the built-in function appears, as defined by the rules given in 5.3 for determination of the clock context of a Boolean
(specifically, a built-in function).

5.2.3.7 isunknown()

The built-in function isunknown() takes a BitVector as argument. It returns True if the argument contains
any bits that have unknown values; otherwise it returns False.

Function isunknown() may be used anywhere a Boolean is required.

5.2.3.8 countones()

The built-in function countones() takes a BitVector as argument. It returns a count of the number of bits
in the argument that have the value 1.

Bits that have unknown values are ignored.

NOTE—Although function countones() returns a Numeric result, it may only be used where a Number is required
if it has a statically evaluatable argument.

5.2.3.9 nondet()

The built-in function nondet() takes one Value Set argument. The set of values can be specified in four
different ways:

— The keyword boolean specifies the set of values {True, False}.
— A Value Range specifies the set of all Number values within the given range.
— A comma (,) between Value Ranges indicates the union of the obtained sets.
— A list of comma-separated values specifies a Value Set of arbitrary type; all values shall be of the

same underlying HDL type.

The function nondet() performs nondeterministic choice among the values in the Value Set, and returns
the chosen value. The value returned is of the same type as the Value Set elements.

If the type of the return value is T, then the function nondet() may be used anywhere that a value of type
T is allowed.

Examples

nondet(boolean) -- returns a value chosen nondeterministically in the
-- set {True, False}

nondet({1:2,4,15:18} -- returns a value chosen nondeterministically
-- in the set {1,2,4,15,16,17,18}

5.2.3.10 nondet_vector()

This function accepts two arguments. The first argument is a Number. The second argument is a Value Set,
as specified for the nondet() function. If the first argument to nondet_vector() is k, it returns an
array of length k, whose elements are chosen nondeterministically in the set of values described by the
second argument.
44 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 45 –

BS IEC 62531:2012
If the type of the Value Set elements is T, then the function nondet_vector() may be used anywhere
that an array of length k with elements of type T is allowed.

The first argument of nondet_vector() shall be a positive Number that is statically evaluatable.

Examples

nondet_vector(16, boolean)-- returns an array of length 16, with each element
-- chosen nondeterministically in the set {True, False}

nondet(8, {1:2,4,15:18}) -- returns an array of length 8, with each element chosen
-- nondeterministically in the set {1,2,4,15,16,17,18}

5.2.3.11 onehot(), onehot0()

The built-in function onehot() takes a BitVector as argument. It returns True if the argument contains
exactly one bit with the value 1; otherwise, it returns False.

The built-in function onehot0() takes a BitVector as argument. It returns True if the argument contains at
most one bit with the value 1; otherwise, it returns False.

For either function, bits that have unknown values are ignored.

Functions onehot() and onehot0() may be used anywhere a Boolean is required.

5.2.4 Union expressions

The union operator specifies two values, shown in Syntax 5-11, either of which can be the value of the
resulting expression.

Syntax 5-11—Union expression

Restrictions

The two operands shall be of the same underlying HDL type.

Example

 a = b union c;

This is a non-deterministic assignment of either b or c to variable or signal a.

5.3 Clock expressions

A clock expression determines when other expressions (including temporal expressions) are evaluated (see
Syntax 5-12).

Union_Expression ::=
 Any_Type union Any_Type
Copyright © 2010 IEEE. All rights reserved. 45

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 46 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Syntax 5-12—Clock expression

Any PSL expression that is a Boolean expression can be enclosed in parentheses and used as a clock
expression. In particular, PSL built-in functions rose(), fell(), and ended() can be used as clock
expressions. Boolean names and built-in function calls may also be used as clock expressions without
enclosing them in parentheses.

In the SystemVerilog flavor, any expression that SystemVerilog allows to be used as the condition in an if
statement may be used as a clock expression. In addition, any SystemVerilog event expression that is not a
single Boolean expression may be used as a clock expression. Such a clock expression is considered to hold
in a given cycle iff it generates an event in that cycle.

In the Verilog flavor, any expression that Verilog allows to be used as the condition in an if statement may be
used as a clock expression. In addition, any Verilog event expression that is not a single Boolean expression
may be used as a clock expression. Such a clock expression is considered to hold in a given cycle iff it
generates an event in that cycle.

In the VHDL flavor, any expression that VHDL allows to be used as the condition in an if statement may be
used as a clock expression.

In the SystemC flavor, any expression that SystemC allows to be used as the condition in an if statement
may be used as a clock expression. In addition, any SystemC event expression may be used as a clock
expression. Such a clock expression is considered to hold in a given cycle iff it generates an event in that
cycle.

In the GDL flavor, any expression that GDL allows to be used as the condition in an if statement may be
used as a clock expression.

Informal Semantics

A clock expression defines a clock context. A clock context determines the path on which an FL Property,
Sequence, or Boolean is evaluated.

The path determined by a given clock context consists of the succession of states in which the clock context
holds. The base clock context is True, which holds in every cycle and therefore represents the smallest
granularity of time as seen by the verification tool. A clock expression itself shall be evaluated on the path
determined by the base clock context.

A subordinate FL Property, Sequence, or Boolean may have an explicitly specified clock context that is
different from that of the immediately enclosing construct.

Clock_Expression :=
 boolean_Name
| boolean_Built_In_Function_Call
| (Boolean)
| (HDL_CLOCK_EXPR)

Flavor Macro HDL_CLOCK_EXPR =
 SystemVerilog: SystemVerilog_Event_Expression
/ Verilog: Verilog_Event_Expression
/ VHDL: VHDL_Expression
/ SystemC: SystemC_Expression
/ GDL: GDL_Expression
46 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 47 –

BS IEC 62531:2012
For a Boolean, including a built-in function call, the clock context is as follows:

— (For a built-in function call only) specified by the optional clock parameter, if present; otherwise
— Inherited from the immediately enclosing Boolean expression or built-in function call, if any;

otherwise
— True, if it is the right operand of an abort operator; otherwise
— True, if it appears immediately within a clock expression or in modeling layer code; otherwise
— Inherited from the immediately enclosing property or sequence, if any; otherwise
— True

For a property or sequence, the clock context is as follows:

— Specified by the @ operator, if present; otherwise
— Inherited from the immediately enclosing property or sequence, if any; otherwise
— Inherited from the property or sequence in which it is instantiated, if any; otherwise
— (For a top-level property or sequence) specified by the applicable default clock declaration, if any;

otherwise
— True

NOTE—The fact that a clock expression shall be evaluated on the path determined by the base clock context implies
that, if a built-in function call appears in a clock expression and includes a parameter to specify the clock context of the
built-in function call, then the value of that parameter shall be equivalent to True.

5.4 Default clock declaration

A default clock declaration, shown in Syntax 5-13, specifies the clock context of the top-level property or
sequence of any directive to which the default declaration applies.

Syntax 5-13—Default clock declaration

Restrictions

At most one default clock declaration shall appear in a given verification unit.

Informal Semantics

The applicable default clock declaration is determined as follows:

a) If the current verification unit contains a (single) default clock declaration, then that is the applicable
default clock declaration.

b) Otherwise, if the transitive closure with respect to inheritance of all verification units inherited by
the current verification unit contains a (single) default clock declaration, then that is the applicable
default clock declaration.

c) Otherwise, if the default verification mode contains a (single) default clock declaration, then that is
the applicable default clock declaration.

PSL_Declaration ::=
Clock_Declaration

Clock_Declaration ::=
default clock DEF_SYM Clock_Expression ;
Copyright © 2010 IEEE. All rights reserved. 47

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 48 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
d) Otherwise, no applicable default clock declaration exists.

It is an error if, in step a), more than one default clock declaration appears in the current verification unit; or
if, in step b), more than one default clock declaration appears in the transitive closure of all inherited
verification units; or if, in step c), more than one default clock declaration appears in the default verification
mode.

Example

default clock = (posedge clk);

assert always (req -> next ack);
cover {req; ack; !req; !ack};

is equivalent to

assert (always (req -> next ack))@(posedge clk);
cover {req; ack; !req; !ack} @(posedge clk);

NOTE 1—A property f@True, in the context of a default clock, has the same effect as property f, without a default
clock. The clock expression True effectively masks the default clock so that it has no effect on property f.

NOTE 2—The default clock declaration

 default clock = True ;

has the same effect as having no default clock declaration.
48 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 49 –

BS IEC 62531:2012
6. Temporal layer

The temporal layer is used to define sequential expressions and properties, both of which describe behavior
over time. Both can describe the behavior of the design or the behavior of the external environment.

A sequential expression is built from the following elements:

— Boolean expressions
— Clock expressions
— Subordinate sequential expressions

A property is built from the following four types of building blocks:

— Boolean expressions
— Clock expressions
— Sequential expressions
— Subordinate properties

Boolean expressions and clock expressions are part of the Boolean layer; they are described in Chapter 5.
Sequential expressions involve various forms called Sequential Extended Regular Expressions (SEREs),
which are described in 6.1.1. Sequences, a distinguished form of SERE, are described in 6.1.2. Properties are
described in 6.2.

In the following subclauses, the term cycle refers to states in which the clock context of the corresponding
property, sequence, or Boolean holds, and the term path refers to a succession of zero or more such cycles.

Informal Semantics

Sequential expressions are evaluated over finite paths (see), i.e., behaviors of the design. A sequential
expression is said to hold tightly on a given finite path (see , 4.4.5) if the finite path satisfies the sequential
expression. Each form of sequential expression is presented in a subclause of 6.1; for each form, the corre-
sponding subclause specifies the cases in which a given finite path satisfies that form of sequential expres-
sion.

For example, {a;b;c} holds tightly on a path iff the path is of length three, where a holds (i.e., is true) in
the first cycle, b holds in the second cycle, and c holds in the third cycle. The SERE {a[*];b} holds
tightly on a path iff b holds in the last cycle of the path, and a holds in all preceding cycles.

A Boolean expression, sequential expression, or property is evaluated over the first cycle of a finite or
infinite path. A Boolean expression, sequential expression, or property is said to hold on a given path (see ,
4.4.5) if the path satisfies the Boolean expression, sequential expression, or property. Each form of property
is presented in a subclause of 6.2; for each form, the corresponding subclauses specifies the cases in which a
given path satisfies that form of property.

For example, a Boolean expression p holds in the first cycle of a path iff p evaluates to True in the first
cycle. A SERE holds on the first cycle of a path iff it holds tightly on a prefix of that path. The sequential
expression {a;b;c} holds on a first cycle of a path iff a holds on the first cycle, b holds on the second
cycle, and c holds on the third cycle. Note that the path itself may be of length greater than three. The
sequential expression {a[*];b} holds in the first cycle of a path iff: 1) the path contains a cycle in which
b holds, and 2) a holds in all cycles before that cycle. It is not necessary that the cycle in which b holds is
the last cycle of the path (contrary to the requirement for {a[*];b} to hold tightly on a path). Finally, the
property always p holds in a first cycle of a path iff p holds in that cycle and in every subsequent cycle.
Copyright © 2010 IEEE. All rights reserved. 49

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 50 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
A Boolean expression, sequential expression, or property is said to describe (see) the set of behaviors that
satisfy it; that is, the set of behaviors for which the Boolean expression, sequential expression, or property
holds. A Boolean expression is said to occur (see) in a cycle if it holds in that cycle. An occurrence of a
Boolean expression (see) is a cycle in which that Boolean expression occurs, or holds. For example, “the
next occurrence of b” refers to the next cycle in which the Boolean expression b holds.

A sequential expression is said to start at the first cycle of any behavior for which it holds. In addition, a
sequential expression starts at the first cycle of any behavior that is a prefix of a behavior for which it holds.
For example, if a holds at cycle 7 and b holds at every cycle from 8 onward, then the sequential expression
{a;b[*];c} starts at cycle 7. A sequential expression is said to complete at the last cycle of any design
behavior on which it holds tightly. For example, if a holds at cycle 3, b holds at cycle 4, and c holds at cycle
5, then the sequence {a;b;c} completes at cycle 5. Similarly, given the behavior {a;b;c}, the property
(a before c) completes when c occurs. A Boolean condition that causes a property to complete is
called a terminating condition. A property that causes another property to complete is called a terminating
property.

6.1 Sequential expressions

6.1.1 Sequential Extended Regular Expressions (SEREs)

SEREs shown in Syntax 6-1, describe single- or multi-cycle behavior built from a series of Boolean
expressions.

Syntax 6-1—SEREs and Sequences

The most basic SERE is a Boolean expression. A Sequence (see 6.1.2) is also SEREs.

More complex sequential expressions are built from Boolean expressions using various SERE operators.
These operators are described in the subclauses that follow.

A sequential expression is evaluated on a path, which is defined by the clock context of the sequential
expression and by the clock contexts of any subordinate sequential expression. See 5.3 for an explanation of
how the clock context of a sequential expression, or portion thereof, is determined.

NOTE—SEREs are grouped using curly braces ({}), as opposed to Boolean expressions that are grouped using
parentheses (()). See 6.1.2.4.

6.1.1.1 Simple SEREs

Simple SEREs represent a single thread of subordinate behaviors, occurring in successive cycles.

6.1.1.1.1 SERE concatenation (;)

The SERE concatenation operator (;), shown in Syntax 6-2, constructs a SERE that is the concatenation of
two other SEREs.

SERE ::=
Boolean

| Sequence
50 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 51 –

BS IEC 62531:2012
Syntax 6-2—SERE concatenation operator

The right operand is a SERE that is concatenated after the left operand, which is also a SERE.

Restrictions

None.

Informal Semantics

For SEREs A and B:

A;B holds tightly on a path iff there is a future cycle n, such that A holds tightly on the path up to
and including the nth cycle and B holds tightly on the path starting at the n+1th cycle.

6.1.1.1.2 SERE fusion (:)

The SERE fusion operator (:), shown in Syntax 6-3, constructs a SERE in which two SEREs overlap by one
cycle. That is, the second starts at the cycle in which the first completes. (See Syntax 6-3.)

Syntax 6-3—SERE fusion operator

The operands of : are both SEREs.

Restrictions

None.

Informal Semantics

For SEREs A and B:

A:B holds tightly on a path iff there is a future cycle n, such that A holds tightly on the path up to
and including the nth cycle and B holds tightly on the path starting at the nth cycle.

6.1.1.2 Compound SEREs

Compound SEREs represent a set of one or more threads of subordinate behaviors, starting from the same
cycle, and occurring in parallel. (See Syntax 6-4.)

SERE ::=
SERE ; SERE

SERE ::=
SERE : SERE
Copyright © 2010 IEEE. All rights reserved. 51

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 52 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Syntax 6-4—Compound SEREs

A Repeated SERE, a Braced SERE, and a Clocked SERE (all of which are forms of Sequence; see 6.1.2) are
Compound SEREs. Compound SERE operators allow the construction of additional forms of Compound
SERE.

6.1.1.2.1 SERE or (|)

The SERE or operator (|), shown in Syntax 6-5, constructs a Compound SERE in which one of two alterna-
tive Compound SEREs hold at the current cycle.

Syntax 6-5—SERE or operator

The operands of | are both Compound SEREs.

Restrictions

None.

Informal Semantics

For Compound SEREs A and B:

A|B holds tightly on a path iff at least one of A or B holds tightly on the path.

SERE ::=
Compound_SERE

Compound_SERE ::=
 Repeated_SERE
| Braced_SERE
| Clocked_SERE

 | Compound_SERE | Compound_SERE
| Compound_SERE & Compound_SERE
| Compound_SERE && Compound_SERE
| Compound_SERE within Compound_SERE
| Parameterized_SERE

Compound_SERE ::=
Compound_SERE | Compound_SERE
52 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 53 –

BS IEC 62531:2012
6.1.1.2.2 SERE non-length-matching and (&)

The SERE non-length-matching and operator (&), shown in Syntax 6-6, constructs a Compound SERE in
which two Compound SEREs both hold at the current cycle, regardless of whether they complete in the
same cycle or in different cycles.

Syntax 6-6—SERE non-length-matching and operator

The operands of & are both Compound SEREs.

Restrictions

None.

Informal Semantics

For Compound SEREs A and B:

A&B holds tightly on a path iff either A holds tightly on the path and B holds tightly on a prefix of
the path or B holds tightly on the path and A holds tightly on a prefix of the path.

6.1.1.2.3 SERE length-matching and (&&)

The SERE length-matching and operator (&&), shown in Syntax 6-7, constructs a Compound SERE in which
two Compound SEREs both hold at the current cycle, and furthermore both complete in the same cycle.

Syntax 6-7—SERE length-matching and operator

The operands of && are both Compound_SEREs.

Restrictions

None.

Informal Semantics

For Compound_SEREs A and B:

A&&B holds tightly on a path iff A and B both hold tightly on the path.

Compound_SERE ::=
Compound_SERE & Compound_SERE

Compound_SERE ::=
Compound_SERE && Compound_SERE
Copyright © 2010 IEEE. All rights reserved. 53

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 54 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
6.1.1.2.4 SERE within

The SERE within operator (within), shown in Syntax 6-8, constructs a Compound SERE in which the sec-
ond Compound SERE holds at the current cycle, and the first Compound SERE starts at or after the cycle in
which the second starts, and completes at or before the cycle in which the second completes.

Syntax 6-8—SERE within operator

The operands of within are both Compound SEREs.

Restrictions

None.

Informal Semantics

For Compound SEREs A and B:

A within B holds tightly on a path iff the SERE {[*];A;[*]} && {B} holds tightly on the path.

6.1.1.2.5 Parameterized SERE

The parameterizing operators, shown in Syntax 6-9, apply a given base operator to a set of compound
SEREs obtained by instantiating a base compound SERE once for each possible value or combination of
values of the given parameter(s).

Syntax 6-9—Parameterized SERE

NOTE 1—The term “instantiated” is used figuratively. It does not imply that instantiation actually takes place. Whether
or not any instantiation does take place depends on the implementation.

Compound_SERE ::=
Compound_SERE within Compound_SERE

Compound_SERE ::=
Parameterized_SERE

Parameterized_SERE::=
for Parameters_Definition : And_Or_SERE_OP { SERE }

Parameters_Definition ::=
Parameter_Definition {, Parameter_Definition }

Parameter_Definition ::=
PSL_Identifier [Index_Range] in Value_Set

And_Or_SERE_Op :: =
&& | & | |
54 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 55 –

BS IEC 62531:2012
The PSL Identifiers are the names of the parameters. A PSL Identifier with an Index Range is an array. The
base operator can be either SERE or (|), SERE length-matching and (&&), or SERE non-length matching
and (&). The Compound SERE enclosed in braces is the base compound SERE.

For each PSL Identifier, the Value Set defines the set of values that the corresponding parameter or array ele-
ments can take on.

The set of values can be specified in the following our different ways:

— The keyword boolean specifies the set of values {True, False}.
— A Value Range specifies the set of all Number values within the given range.
— A comma (,) between Value Ranges indicates the union of the obtained sets.
— A list of comma-separated values specifies a value set of arbitrary type; all values shall be of the

same underlying HDL type.

If the value set is specified by a list of values of arbitrary type, each of the values shall be statically
computable.

For a single parameter,

a) If the parameter is not an array, and the set of values has size K, then the obtained set is of size K.
Each element in the set is obtained by instantiating the base compound SERE with one of the
possible values in the set of values.

b) If the parameter is an array of size N, and the set of values has size K then the obtained set is of size
KN. Each element in the set is obtained by instantiating the base compound SERE with one of the
combination of values that can be taken on by the array.

For multiple parameters, the set of values is that obtained by applying the above rules repeatedly, once for
each parameter.

Restrictions

The restrictions of the base operator apply to the resulting Compound SERE as specified in the subclauses of
the respective base operator 6.1.1.2.1 SERE or (|), 6.1.1.2.2 SERE non-length-matching, and (&), and
6.1.1.2.3 SERE length-matching and (&&).

For each parameter definition, the following restrictions apply:

— If the parameter name has an associated Index Range, the Index Range shall be specified as a finite
Range, each bound of the Range shall be statically computable, and the left bound of the Range shall
be less than or equal to the right bound of the Range.

— If a Value is used to specify a Value Range, the Value shall be statically computable.
— If a Range is used to specify a Value Range, the Range shall be a finite Range, each bound of the

Range shall be statically computable, and the left bound of the Range shall be less than or equal to
the right bound of the Range.

— The parameter name shall be used in one or more expressions in the Property, or as an actual
parameter in the instantiation of a parameterized SERE, so that each of the instances of the SERE
corresponds to a unique value of the parameter name.

NOTE 2—The parameter is considered to be statically computable, and therefore the parameter names can be used in a
static expression, such as that required by a repetition count.
Copyright © 2010 IEEE. All rights reserved. 55

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 56 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Informal Semantics

For Compound SERE A:

— for i in boolean: | {A(i)} is equivalent to applying ‘|’ to the set containing the two
Compound SEREs:

A(false) and A(true),

i.e., is equivalent to the Compound SERE:

{A(false)} | {A(true)}

— for i in {j:k}: && A(i) is equivalent to applying ‘&&’ to the set containing the k – j + 1
Compound SEREs:

A(j), A(j+1), ..., A(k),

i.e., is equivalent to the Compound SERE:

{A(j)} && {A(j+1)} && ... && {A(k)}

— for i in {j,k,l}: && A(i) is equivalent to applying ‘&&’ to the set containing the 3
Compound SEREs:

A(j), A(k), and A(l),

i.e., is equivalent to the Compound SERE:

{A(j)} && {A(k)} && {A(l)}

— for i[0:1] in boolean: & A(i) is equivalent to applying ‘&’ to the set containing the 4
Compound SEREs:

A({false,false}), A({false,true}),
A({true,false}), and A({true,true}),

i.e., is equivalent to the Compound SERE:

{A({false,false})} & {A({false,true})} &
{A({true,false})} & {A({true,true})}

— for i[0:2] in {c,d}: | A(i) is equivalent to applying ‘|’ to the set containing the 8
Compound SEREs:

A({c,c,c}), A({c,c,d}), A({c,d,c}), A({c,d,d}),
A({d,c,c}), A({d,c,d}), A({d,d,c}), and A({d,d,d}),

i.e., is equivalent to the Compound SERE:

{A({c,c,c})} | {A({c,c,d})} | {A({c,d,c})} | {A({c,d,d})} |
{A({d,c,c})} | {A({d,c,d})} | {A({d,d,c})} | {A({d,d,d})}
56 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 57 –

BS IEC 62531:2012
— for i in {j:k}, l in {m:n}: & A(i,l) is equivalent to applying ‘&’ to the set contain-
ing the (k – j + 1) × (n – m + 1) Compound SEREs:

A(j,m), A(j,m+1), ..., A(j,n),
A(j+1,m), A(j+1,m+1), ..., A(j+1,n),
...,
A(k,m), A(k,m+1), ..., A(k,n),

i.e., is equivalent to the Compound SERE:

{A(j,m)} & {A(j,m+1)} & ... & {A(j,n)} &
{A(j+1,m)} & {A(j+1,m+1)} & ... & {A(j+1,n)} &
... &
{A(k,m)} & {A(k,m+1)} & ... & {A(k,n)}

6.1.2 Sequences

A sequence is a SERE that may appear at the top level of a declaration, directive, or property. (See
Syntax 6-10.)

Syntax 6-10—Sequences

Sequence Instances are described in 6.5.3.1. The remaining forms of Sequence are described in the
following subclauses.

6.1.2.1 SERE consecutive repetition ([*])

The SERE consecutive repetition operator ([*]), shown in Syntax 6-11, constructs repeated consecutive
concatenation of a given Boolean or Sequence.

Sequence ::=
Sequence_Instance

| Repeated_SERE
| Braced_SERE
| Clocked_SERE
| Sequence Proc_Block
Copyright © 2010 IEEE. All rights reserved. 57

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 58 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Syntax 6-11—SERE consecutive repetition operator

The first operand is a Boolean or Sequence to be repeated. The second operand gives the Count (a number or
range) of repetitions.

If the Count is a number, then the repeated SERE describes exactly that number of repetitions of the first
operand.

Otherwise, if the Count is a range, then the repeated SERE describes any number of repetitions of the first
operand such that the number falls within the specified range. If the high value of the range (High_Bound) is
specified as MAX_VAL, the repeated SERE describes at least as many repetitions as the low value of the
range. If the low value of the range (Low_Bound) is specified as MIN_VAL, the repeated SERE describes at
most as many repetitions as the high value of the range. If no range is specified, the repeated SERE describes
any number of repetitions, including zero, i.e., the empty path is also described.

When there is no Boolean or Sequence operand and only a Count, the repeated SERE describes any path
whose length is described by the second operand as above.

The notation [+] is a shortcut for a repetition of one or more times.

Restrictions

If the repeated SERE contains a Count, and the Count is a Number, then the Number shall be statically
computable. If the repeated SERE contains a Count, and the Count is a Range, then each bound of the Range
shall be statically computable, and the low bound of the Range shall be less than or equal to the high bound
of the Range.

Informal Semantics

For Boolean or Sequence A and numbers n and m:

Repeated_SERE::=
Boolean [* [Count]]

| Sequence [* [Count]]
| [* [Count]]
| Boolean [+]
| Sequence [+]
| [+]
| Boolean Proc_Block
| Sequence Proc_Block

Count ::=
Number

| Range

Range ::=
Low_Bound RANGE_SYM High_Bound

Low_Bound ::=
Number

| MIN_VAL

High_Bound ::=
Number

| MAX_VAL
58 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 59 –

BS IEC 62531:2012
— A[*n]holds tightly on a path iff the path can be partitioned into n parts, where A holds tightly on
each part.

— A[*n:m]holds tightly on a path iff the path can be partitioned into between n and m parts, inclusive,
where A holds tightly on each part.

— A[*0:m]holds tightly on a path iff the path is empty or the path can be partitioned into at most m
parts, where A holds tightly on each part.

— A[*n:inf]holds tightly on a path iff the path can be partitioned into at least n parts, where A holds
tightly on each part.

— A[*0:inf]holds tightly on a path iff the path is empty or the path can be partitioned into some
number of parts, where A holds tightly on each part.

— A[*]holds tightly on a path iff the path is empty or the path can be partitioned into some number of
parts, where A holds tightly on each part.

— A[+]holds tightly on a path iff the path can be partitioned into some number of parts, where A holds
tightly on each part.

— [*n]holds tightly on a path iff the path is of length n.
— [*n:m]holds tightly on a path iff the length of the path is between n and m, inclusive.
— [*0:m]holds tightly on a path iff it is the empty path or the length of the path is at most m.
— [*n:inf]holds tightly on a path iff the length of the path is at least n.
— [*0:inf]holds tightly on any path (including the empty path).
— [*]holds tightly on any path (including the empty path).
— [+]holds tightly on any path of length at least one.

NOTE—If a repeated SERE begins with a Sequence that is itself a repeated SERE (e.g., a[*2][*3], where the repetition
operator [*3] applies to the Sequence that is itself the repeated SERE a[*2]), the semantics are the same as if that
Sequence were braced (e.g., {a[*2]}[*3]).

6.1.2.2 SERE non-consecutive repetition ([=])

The SERE non-consecutive repetition operator ([=]), shown in Syntax 6-12, constructs repeated (possibly
non-consecutive) concatenation of a Boolean expression.

Syntax 6-12—SERE non-consecutive repetition operator

The first operand is a Boolean expression to be repeated. The second operand gives the Count (a number or
range) of repetitions.

If the Count is a number, then the repeated SERE describes exactly that number of repetitions.

Repeated_SERE ::=
Boolean [= Count]

Count ::=
Number

| Range

Range ::=
Low_Bound RANGE_SYM High_Bound

Low_Bound ::=
Number | MIN_VAL

High_Bound ::=
Number | MAX_VAL
Copyright © 2010 IEEE. All rights reserved. 59

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 60 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Otherwise, if the Count is a range, then the repeated SERE describes any number of repetitions such that the
number falls within the specified range. If the high value of the range (High_Bound) is specified as
MAX_VAL, the repeated SERE describes at least as many repetitions as the low value of the range. If the
low value of the range (Low_Bound) is specified as MIN_VAL, the repeated SERE describes at most as
many repetitions as the high value of the range. If no range is specified, the repeated SERE describes any
number of repetitions, including zero, i.e., the empty path is also described.

Restrictions

If the repeated SERE contains a Count, and the Count is a Number, then the Number shall be statically
computable.

If the repeated SERE contains a Count, and the Count is a Range, then each bound of the Range shall be stat-
ically computable, and the low bound of the Range shall be less than or equal to the high bound of the
Range.

Informal Semantics

For Boolean A and numbers n and m:

— A[=n]holds tightly on a path iff A occurs exactly n times along the path.
— A[=n:m]holds tightly on a path iff A occurs between n and m times, inclusive, along the path.
— A[=0:m]holds tightly on a path iff A occurs at most m times along the path.
— A[=n:inf]holds tightly on a path iff A occurs at least n times along the path.
— A[=0:inf]holds tightly on a path iff A occurs any number of times along the path, i.e., A[=0:inf]

holds tightly on any path.

NOTE—If a repeated SERE begins with a Sequence that is itself a repeated SERE (e.g., a[=2][*3], where the repetition
operator [*3] applies to the Sequence that is itself the repeated SERE a[=2]), the semantics are the same as if that
Sequence were braced (e.g., {a[=2]}[*3]).

6.1.2.3 SERE goto repetition ([->])

The SERE goto repetition operator ([->]), shown in Syntax 6-13, constructs repeated (possibly non-
consecutive) concatenation of a Boolean expression, such that the Boolean expression holds on the last cycle
of the path.

Syntax 6-13—SERE goto repetition operator

Repeated_SERE ::=
Boolean [-> [positive_Count]]

Count ::=
Number

| Range

Range ::=
Low_Bound RANGE_SYM High_Bound

Low_Bound ::=
Number | MIN_VAL

High_Bound ::=
Number | MAX_VAL
60 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 61 –

BS IEC 62531:2012
The first operand is a Boolean expression to be repeated. The second operand gives the Count of
repetitions.

If the Count is a number, then the repeated SERE describes exactly that number of repetitions.

Otherwise, if the Count is a range, then the repeated SERE describes any number of repetitions such that the
number falls within the specified range. If the high value of the range (High_Bound) is specified as
MAX_VAL, the repeated SERE describes at least as many repetitions as the low value of the range. If the
low value of the range (Low_Bound) is specified as MIN_VAL, the repeated SERE describes at most as
many repetitions as the high value of the range. If no range is specified, the repeated SERE describes exactly
one repetition, i.e., behavior in which the Boolean expression holds exactly once, in the last cycle of the
path.

Restrictions

If the repeated SERE contains a Count, it shall be a statically computable, positive Count (i.e., indicating at
least one repetition). If the Count is a Range, then each bound of the Range shall be statically computable,
and the low bound of the Range shall be less than or equal to the high bound of the Range.

Informal Semantics

For Boolean A and numbers n and m:

— A[->n] holds tightly on a path iff A occurs exactly n times along the path and the last cycle at
which it occurs is the last cycle of the path.

— A[->n:m] holds tightly on a path iff A occurs between n and m times, inclusive, along the path,
and the last cycle at which it occurs is the last cycle of the path.

— A[->1:m] holds tightly on a path iff A occurs at most m times along the path and the last cycle at
which it occurs is the last cycle of the path.

— A[->n:inf] holds tightly on a path iff A occurs at least n times along the path and the last cycle at
which it occurs is the last cycle of the path.

— A[->1:inf] holds tightly on a path iff A occurs one or more times along the path and the last
cycle at which it occurs is the last cycle of the path.

— A[->] holds tightly on a path iff A occurs in the last cycle of the path and in no cycle before that.

NOTE—If a repeated SERE begins with a Sequence that is itself a repeated SERE (e.g., a[->2][*3], where the repetition
operator [*3] applies to the Sequence that is itself the repeated SERE a[->2]), the semantics are the same as if that
Sequence were braced (e.g., {a[->2]}[*3]).

6.1.2.4 Braced SERE

A SERE enclosed in braces is another form of sequence, as shown in Syntax 6-14.8

Syntax 6-14—Braced SERE

Braced_SERE ::=
{[[[HDL_DECL {HDL_DECL}]]] SERE }

| {[free(HDL_Identifier {,HDL_Identifier})] SERE }

8In the Verilog flavor, if a series of tokens matching { HDL_or_PSL_Expression } appears where a Sequence is allowed, then it should
be interpreted as a Sequence, not as a concatenation of one argument.
Copyright © 2010 IEEE. All rights reserved. 61

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 62 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
6.1.2.5 Clocked SERE (@)

The SERE clock operator (@), shown in Syntax 6-15, provides a way to clock a SERE.

Syntax 6-15—SERE clock operator

The first operand is the braced SERE to be clocked. The second operand is a clock expression (see 5.3) with
which to clock the SERE.

The @ operator specifies that the clock expression that is its right operand defines the clock context of its left
operand.

NOTE 1—Default clock declarations (5.4) and the optional clock parameters of certain built-in functions (5.2.3) also
specify clock contexts.

Restrictions

None.

Informal Semantics

A sequence {R}@C1 is evaluated on a path P1 determined by clock context C1.

If R contains a subordinate built-in function F with clock context C2, and evaluation of R involves evaluat-
ing F in some cycle N of P1, then F is evaluated on a path P2 determined by clock context C2 and ending at
N.

If R contains a subordinate sequence {S}@C3, and evaluation of R involves evaluating S at some cycle M
of P1, then S is evaluated on path P3 starting at M and determined by clock context C3.

NOTE 2—When clocks are nested, the inner clock takes precedence over the outer clock. That is, the SERE
{a;{b}@clk2;c}@clk is equivalent to the SERE {{a}@clk; {b}@clk2; {c}@clk}, with the outer clock
applied to only the unclocked sub-SEREs. In particular, there is no conjunction of nested clocks involved.

Example 1

Consider the following behavior of Booleans a, b, and clk, where time is at the granularity observed by the
verification tool:

 time 0 1 2 3 4

 clk 0 1 0 1 0
 a 0 1 1 0 0
 b 0 0 0 1 0

The unclocked SERE {a;b} holds tightly from time 2 to time 3. It does not hold tightly over any other inter-
val of the given behavior.

Clocked_SERE ::=
Braced_SERE @ Clock_Expression
62 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 63 –

BS IEC 62531:2012
The clocked SERE {a;b}@clk holds tightly from time 0 to time 3, and also from time 1 to time 3. It does
not hold tightly over any other interval of the given behavior.

Example 2

Consider the following behavior of Booleans a, b, c, clk1, and clk2, where time is at the granularity
observed by the verification tool:

 time 0 1 2 3 4 5 6 7

 clk1 0 1 0 1 0 1 0 1
 a 0 1 1 0 0 0 0 0
 b 0 0 0 1 0 0 0 0
 c 0 0 0 0 1 0 1 0
 clk2 1 0 0 1 0 0 1 0

The unclocked SERE {{a;b};c} holds tightly from time 2 to time 4. It does not hold tightly over any other
interval of the given behavior.

The multiply-clocked SERE {{a;b}@clk1;c}@clk2 holds tightly from time 0 to time 6 and from time 1
to time 6. It does not hold tightly over any other interval of the given behavior.

The singly-clocked SEREs {{a;b};c}@clk1 and {{a;b};c}@clk2 do not hold tightly over any interval
of the given behavior.

6.2 Properties

Properties express temporal relationships among Boolean expressions, sequential expressions, and
subordinate properties. Various operators are defined to express various temporal relationships.

Some operators occur in families. A family of operators is a group of operators that are related. A family of
operators usually share a common prefix, which is the name of the family, and optional suffixes !, _, and
!_. For example, the until family of operators include the operators until, until!, until_, and
until!_.

6.2.1 FL properties

FL Properties, shown in Syntax 6-16, describe single- or multi-cycle behavior built from Boolean expres-
sions, sequential expressions, and subordinate properties.

Syntax 6-16—FL properties

The most basic FL Property is a Boolean expression. An FL Property enclosed in parentheses is also an FL
Property.

More complex FL properties are built from Boolean expressions, sequential expressions, and subordinate
properties using various temporal operators.

FL_Property ::=
Boolean

| ([[[HDL_DECL {,HDL_DECL}]]] FL_Property)
Copyright © 2010 IEEE. All rights reserved. 63

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 64 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
An FL property is evaluated on a path, which is defined by a clock context. See 5.3 for an explanation of
how the clock context of an FL Property is determined.

NOTE—Like Boolean expressions, FL properties are grouped using parentheses (()), as opposed to SEREs that are
grouped using curly braces ({}).

6.2.1.1 Sequential FL properties

Sequential expressions are FL properties that specify that the behavior described by a sequence occurs. (See
Syntax 6-17.)

Syntax 6-17—Sequential FL Property

Restrictions

None.

Informal Semantics

For a Sequence S:

— The FL Property S! holds on a given path iff there exists a non-empty prefix of the path on which S
holds tightly.

— The FL Property S holds on a given path iff either there exists a prefix of the path on which S holds
tightly, or the property S! does not fail on any finite prefix of the given path.

NOTE—If S contains no contradictions, a simpler description of the semantics of the property S can be given as follows:
The FL property S holds on a given path iff either there exists a prefix of the path on which S holds tightly, or every finite
prefix of the given path can be extended to a path on which S holds tightly.

6.2.1.2 Clocked FL properties

The FL clock operator operator(@), shown in Syntax 6-18, provides a way to clock an FL Property.

Syntax 6-18—FL Property clock operator

The first operand is the FL Property to be clocked. The second operand is a Boolean expression with which
to clock the FL Property.

The @ operator specifies that the clock expression that is its right operand defines the clock context of its
left operand.

FL_Property ::=
Sequence [!]

FL_Property ::=
FL_Property @ Clock_Expression
64 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 65 –

BS IEC 62531:2012
NOTE 1—Default clock declarations (5.4) and the optional clock parameters of certain built-in functions (5.2.3) also
specify clock contexts.

Restrictions

None.

Informal Semantics

A property A@C1 is evaluated on a path P1 determined by clock context C1.

If A contains a subordinate built-in function F with clock context C2, and evaluation of A involves evaluat-
ing F in some cycle N of P1, then F is evaluated on a path P2 determined by clock context C2 and ending at
N.

If A contains a subordinate sequence {S}@C3, and evaluation of A involves evaluating S at some cycle M
of P1, then S is evaluated on path P3 starting at M and determined by clock context C3.

If A contains a subordinate property B@C4, and evaluation of A involves evaluating B at some cycle M of
P1, then B is evaluated on a path P4 starting at M and determined by clock context C4.

NOTE 2—When clocks are nested, the inner clock takes precedence over the outer clock. That is, the property
(a -> b@clk2)@clk is equivalent to the property (a@clk -> b@clk2), with the outer clock applied to
only the unclocked sub-properties (if any). In particular, there is no conjunction of nested clocks involved.

Example 1

Consider the following behavior of Booleans a, b, and clk, where time is at the granularity observed by the
verification tool:

 time 0 1 2 3 4 5 6 7 8 9

 clk 0 1 0 1 0 1 0 1 0 1
 a 0 0 0 1 1 1 0 0 0 0
 b 0 0 0 0 0 1 0 1 1 0

The unclocked FL Property

(a until! b)

holds at times 5, 7, and 8, because b holds at each of those times. The property also holds at times 3 and 4,
because a holds at those times and continues to hold until b holds at time 5. It does not hold at any other
time of the given behavior.

The clocked FL Property

(a until! b) @clk

holds at times 2, 3, 4, 5, 6, and 7. It does not hold at any other time of the given behavior.
Copyright © 2010 IEEE. All rights reserved. 65

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 66 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Example 2

Consider the following behavior of Booleans a, b, c, clk1, and clk2, where “time” is at the granularity
observed by the verification tool:

 time 0 1 2 3 4 5 6 7 8 9

 clk1 0 1 0 1 0 1 0 1 0 1
 a 0 0 0 1 1 1 0 0 0 0
 b 0 0 0 0 0 1 0 1 1 0
 c 1 0 0 0 0 1 1 0 0 0
 clk2 1 0 0 1 0 0 1 0 0 1

The unclocked FL Property

(c && next! (a until! b))

holds at time 6. It does not hold at any other time of the given behavior.

The singly-clocked FL Property

(c && next! (a until! b))@clk1

holds at times 4 and 5. It does not hold at any other time of the given behavior.

The singly-clocked FL Property

(a until! b)@clk2

does not hold at any time of the given behavior.

The multiply-clocked FL Property

(c && next! (a until! b)@clk1)@clk2

holds at time 0. It does not hold at any other time of the given behavior.

6.2.1.3 Simple FL properties

6.2.1.3.1 always

The always operator, shown in Syntax 6-19, specifies that an FL Property holds at all times, starting from
the present.

Syntax 6-19—always operator

The operand of the always operator is an FL Property.

FL_Property ::=
always FL_Property
66 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 67 –

BS IEC 62531:2012
Restrictions

None.

Informal Semantics

An always property holds in the current cycle of a given path iff the FL Property that is the operand holds
at the current cycle and all subsequent cycles.

NOTE—If the operand (FL Property) is temporal (i.e., spans more than one cycle), then the always operator defines a
property that can describe overlapping occurrences of the behavior described by the operand. For example, the property
always {a;b;c} describes any behavior in which {a;b;c} holds in every cycle, thus any behavior in which a
holds in the first and every subsequent cycle, b holds in the second and every subsequent cycle, and c holds in the third
and every subsequent cycle.

6.2.1.3.2 never

The never operator, shown in Syntax 6-20, specifies that an FL Property or a sequence never holds.

Syntax 6-20—never operator

The operand of the never operator is an FL Property.

Restrictions

Within the simple subset (see 4.4.4), the operand of a never property is restricted to be a Boolean expres-
sion or a sequence.

Informal Semantics

A never property holds in the current cycle of a given path iff the FL Property that is the operand does not
hold at the current cycle and does not hold at any future cycle.

6.2.1.3.3 eventually!

The eventually! operator, shown in Syntax 6-21, specifies that an FL Property holds at the current cycle
or at some future cycle.

Syntax 6-21—eventually! operator

The operand of the eventually! operator is an FL Property.

FL_Property ::=
never FL_Property

FL_Property ::=
eventually! FL_Property
Copyright © 2010 IEEE. All rights reserved. 67

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 68 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Restrictions

Within the simple subset (see 4.4.4), the operand of an eventually! property is restricted to be a
Boolean or a Sequence.

Informal Semantics

An eventually! property holds in the current cycle of a given path iff the FL Property that is the operand
holds at the current cycle or at some future cycle.

6.2.1.3.4 next

The next family of operators, shown in Syntax 6-22, specify that an FL Property holds at some next cycle.

Syntax 6-22—next operators

The FL Property that is the operand of the next! or next operator is a property that holds at some next
cycle. If present, the Number indicates at which next cycle the property holds, that is, for number i, the
property holds at the ith next cycle. If the Number operand is omitted, the property holds at the very next
cycle.

The next! operator is a strong operator, thus it specifies that there is a next cycle (and so does not hold at
the last cycle, no matter what the operand). Similarly, next![i] specifies that there are at least i next
cycles.

The next operator is a weak operator, thus it does not specify that there is a next cycle, only that if there is,
the property that is the operand holds. Thus, a weak next property holds at the last cycle of a finite behavior,
no matter what the operand. Similarly, next[i] does not specify that there are at least i next cycles.

NOTE 1—The Number may be 0. That is, next[0](f) is allowed, which says that f holds at the current cycle.

Restrictions

If a property contains a Number, then the Number shall be statically computable.

Informal Semantics

— A next! property holds in the current cycle of a given path iff
a) There is a next cycle and
b) The FL Property that is the operand holds at the next cycle.

— A next property holds in the current cycle of a given path iff
a) There is not a next cycle or
b) The FL Property that is the operand holds at the next cycle.

— A next![i] property holds in the current cycle of a given path iff
a) There is an ith next cycle and

FL_Property ::=
next! FL_Property

| next FL_Property
| next! [Number] (FL_Property)
| next [Number] (FL_Property)
68 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 69 –

BS IEC 62531:2012
b) The FL Property that is the operand holds at the ith next cycle.
— A next[i] property holds in the current cycle of a given path iff

a) There is not an ith next cycle or
b) The FL Property that is the operand holds at the ith next cycle.

NOTE 2—The property next(f) is equivalent to the property next[1](f).

6.2.1.4 Extended next FL properties

6.2.1.4.1 next_a

The next_a family of operators, shown in Syntax 6-23, specify that an FL Property holds at all cycles of a
range of future cycles.

Syntax 6-23—next_a operators

The FL Property that is the operand of the next_a! or next_a operator is a property that holds at all
cycles between the ith and jth next cycles, inclusive, where i and j are the low and high bounds, respectively,
of the finite Range.

The next_a! operator is a strong operator, thus it specifies that there is a jth next cycle, where j is the high
bound of the Range.

The next_a operator is a weak operator, thus it does not specify that any of the ith through jth next cycles
necessarily exist.

Restrictions

If a next_a or next_a! property contains a Range, then the Range shall be a finite Range, each bound of
the Range shall be statically computable, and the left bound of the Range shall be less than or equal to the
right bound of the Range.

Informal Semantics

— A next_a![i:j] property holds in the current cycle of a given path iff
a) There is a jth next cycle and
b) The FL Property that is the operand holds at all cycles between the ith and jth next cycle,

inclusive.
— A next_a[i:j] property holds in the current cycle of a given path iff the FL Property that is the

operand holds at all cycles between the ith and jth next cycle, inclusive. (If not all those cycles exist,
then the FL Property that is the operand holds on as many as do exist.)

NOTE—The left bound of the Range may be 0. For example, next_a[0:n](f) is allowed, which says that f holds
starting in the current cycle, and for n cycles following the current cycle.

FL_Property ::=
next_a! [finite_Range] (FL_Property)

| next_a [finite_Range] (FL_Property)
Copyright © 2010 IEEE. All rights reserved. 69

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 70 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
6.2.1.4.2 next_e

The next_e family of operators, shown in Syntax 6-24, specify that an FL Property holds at least once
within some range of future cycles.

Syntax 6-24—next_e operators

The FL Property that is the operand of the next_e! or next_e operator is a property that holds at least
once between the ith and jth next cycle, inclusive, where i and j are the low and high bounds, respectively, of
the finite Range.

The next_e! operator is a strong operator, thus it specifies that there are enough cycles so the FL Property
that is the operand has a chance to hold.

The next_e operator is a weak operator, thus it does not specify that there are enough cycles so the FL
Property that is the operand has a chance to hold.

Restrictions

If a next_e or next_e! property contains a Range, then the Range shall be a finite Range, each bound of
the Range shall be statically computable, and the left bound of the Range shall be less than or equal to the
right bound of the Range.

Within the simple subset (see 4.4.4), the operand of next_e or next_e! is restricted to be a Boolean.

Informal Semantics

— A next_e![i:j] property holds in the current cycle of a given path iff there is some cycle
between the ith and jth next cycle, inclusive, where the FL Property that is the operand holds.

— A next_e[i:j] property holds in the current cycle of a given path iff
a) There are less than j next cycles following the current cycle, or
b) There is some cycle between the ith and jth next cycle, inclusive, where the FL Property that is

the operand holds.

NOTE—The left bound of the Range may be 0. For example, next_e[0:n](f) is allowed, which says that f holds
either in the current cycle or in one of the n cycles following the current cycle.

6.2.1.4.3 next_event

The next_event family of operators, shown in Syntax 6-25, specify that an FL Property holds at the next
occurrence of a Boolean expression. The next occurrence of the Boolean expression includes an occurrence
at the current cycle.

FL_Property ::=
next_e! [finite_Range] (FL_Property)

| next_e [finite_Range] (FL_Property)
70 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 71 –

BS IEC 62531:2012
Syntax 6-25—next_event operators

The rightmost operand of the next_event! or next_event operator is an FL Property that holds at the
next occurrence of the leftmost operand. If the FL Property includes a Number, then the property holds at the
ith occurrence of the leftmost operand (where i is the value of the Number), rather than at the very next
occurrence.

The next_event! operator is a strong operator, thus it specifies that there is a next occurrence of the left-
most operand. Similarly, next_event![i] specifies that there are at least i occurrences.

The next_event operator is a weak operator, thus it does not specify that there is a next occurrence of the
leftmost operand. Similarly, next_event[i] does not specify that there are at least i next occurrences.

Restrictions

If a next_event or next_event! property contains a Number, then the Number shall be a statically
computable, positive Number.

Informal Semantics

— A next_event! property holds in the current cycle of a given path iff
a) The Boolean expression and the FL Property that are the operands both hold at the current

cycle, or at some future cycle, and
b) The Boolean expression holds at some future cycle, and the FL Property that is the operand

holds at the next cycle in which the Boolean expression holds.

— A next_event property holds in the current cycle of a given path iff
a) The Boolean expression that is the operand does not hold at the current cycle, nor does it hold

at any future cycle; or
b) The Boolean expression that is the operand holds at the current cycle or at some future cycle,

and the FL Property that is the operand holds at the next cycle in which the Boolean expression
holds.

— A next_event![i] property holds in the current cycle of a given path iff
a) The Boolean expression that is the operand holds at least i times, starting at the current cycle,

and
b) The FL Property that is the operand holds at the ith occurrence of the Boolean expression.

— A next_event[i] property holds in the current cycle of a given path iff
a) The Boolean expression that is the operand does not hold at least i times, starting at the current

cycle, or
b) The Boolean expression that is the operand holds at least i times, starting at the current cycle,

and the FL Property that is the operand holds at the ith occurrence of the Boolean expression.

FL_Property ::=
next_event! (Boolean) (FL_Property)

| next_event (Boolean) (FL_Property)
| next_event! (Boolean) [positive_Number] (FL_Property)
| next_event (Boolean) [positive_Number] (FL_Property)
Copyright © 2010 IEEE. All rights reserved. 71

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 72 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
NOTE—The formula next_event(true)(f) is equivalent to the formula next[0](f). Similarly, if p holds in
the current cycle, then next_event(p)(f) is equivalent to next_event(true)(f) and therefore to
next[0](f). However, none of these is equivalent to next(f).

6.2.1.4.4 next_event_a

The next_event_a family of operators, shown in Syntax 6-26, specify that an FL Property holds at a
range of the next occurrences of a Boolean expression. The next occurrences of the Boolean expression
include an occurrence at the current cycle.

Syntax 6-26—next_event_a operators

The rightmost operand of the next_event_a! or next_event_a operator is an FL Property that holds
at the specified Range of next occurrences of the Boolean expression that is the leftmost operand. The FL
Property that is the rightmost operand holds on the ith through jth occurrences (inclusive) of the Boolean
expression, where i and j are the low and high bounds, respectively, of the Range.

The next_event_a! operator is a strong operator, thus it specifies that there are at least j occurrences of
the leftmost operand.

The next_event_a operator is a weak operator, thus it does not specify that there are j occurrences of the
leftmost operand.

Restrictions

If a next_event_a or next_event_a! property contains a Range, then the Range shall be a finite,
positive Range, each bound of the Range shall be statically computable, and the left bound of the Range
shall be less than or equal to the right bound of the Range.

Informal Semantics

— A next_event_a![i:j] property holds in the current cycle of a given path iff
a) The Boolean expression that is the operand holds at least j times, starting at the current cycle,

and
b) The FL Property that is the operand holds at the ith through jth occurrences, inclusive, of the

Boolean expression.
— A next_event_a[i:j] property holds in a given cycle of a given path iff the FL Property that

is the operand holds at the ith through jth occurrences, inclusive, of the Boolean expression, starting
at the current cycle. If there are less than j occurrences of the Boolean expression, then the FL
Property that is the operand holds on all of them, starting from the ith occurrence.

6.2.1.4.5 next_event_e

The next_event_e family of operators, shown in Syntax 6-27, specify that an FL Property holds at least
once during a range of next occurrences of a Boolean expression. The next occurrences of the Boolean
expression include an occurrence at the current cycle.

FL_Property ::=
next_event_a! (Boolean) [finite_positive_Range] (FL_Property)

| next_event_a (Boolean) [finite_positive_Range] (FL_Property)
72 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 73 –

BS IEC 62531:2012
Syntax 6-27—next_event_e operators

The rightmost operand of the next_event_e! or next_event_e operator is a FL Property that holds
at least once during the specified Range of next occurrences of the Boolean expression that is the leftmost
operand. The FL Property that is the rightmost operand holds on one of the ith through jth occurrences (inclu-
sive) of the Boolean expression, where i and j are the low and high bounds, respectively, of the Range.

The next_event_e! operator is a strong operator, thus it specifies that there are enough cycles so that the
FL Property has a chance to hold.

The next_event_e operator is a weak operator, thus it does not specify that there are enough cycles so
that the FL Property has a chance to hold.

Restrictions

If a next_event_e or next_event_e! property contains a Range, then the Range shall be a finite,
positive Range, each bound of the Range shall be statically computable, and the left bound of the Range
shall be less than or equal to the right bound of the Range.

Within the simple subset (see 4.4.4), the FL Property of next_event_e or next_event_e! is restricted
to be a Boolean.

Informal Semantics

— A next_event_e![i:j] property holds in the current cycle of a given path iff there is some
cycle during the ith through jth next occurrences of the Boolean expression at which the FL Property
that is the operand holds.

— A next_event_e[i:j] property holds in the current cycle of a given path iff

a) There are less than j next occurrences of the Boolean expression, or
b) There is some cycle during the ith through jth next occurrences of the Boolean expression at

which the FL Property that is the operand holds.

6.2.1.5 Compound FL properties

6.2.1.5.1 abort, async_abort, and sync_abort

The abort, async_abort, and sync_abort operators, shown in Syntax 6-28, specify a condition
that removes any obligation for a given FL Property to hold. The sync_abort operator expects the abort
condition to occur in a cycle in which the context clock holds. The abort and async_abort operators
accept asynchronous abort conditions as well.

FL_Property ::=
next_event_e! (Boolean) [finite_positive_Range] (FL_Property)

| next_event_e (Boolean) [finite_positive_Range] (FL_Property)
Copyright © 2010 IEEE. All rights reserved. 73

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 74 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Syntax 6-28—sync_abort, async_abort, and abort operators

The left operand of the abort operators is the FL Property to be aborted. The right operand of the abort
operators is the Boolean condition that causes the abort to occur.

Restrictions

None.

Informal Semantics

An abort / async_abort property holds in the current cycle of a given path iff

— The FL Property that is the left operand holds, or
— The FL Property that is the left operand does not fail (see 4.4.5) prior to the first cycle (of the path

defined by the base clock context) in which the Boolean condition that is the right operand holds.

A sync_abort property holds in the current cycle of a given path iff

— The FL Property that is the left operand holds, or
— The FL Property that is the left operand does not fail (see 4.4.5) prior to the first cycle (of the path

defined by the clock context of the abort property) in which the Boolean condition that is the right
operand holds.

NOTE 1—The abort operator is identical to the async_abort operator. It is currently maintained in the language
for reasons of backward compatibility.

NOTE 2—For asynchronous properties, aborting with sync_abort or async_abort (or abort) is the same.

Example

Using async_abort to model an asynchronous interrupt: “A request is always followed by an
acknowledge, unless a cancellation occurs. The request and acknowledge signals are sampled at clock clk.
The cancellation signal may come asynchronously (not in a cycle of clk).”

always ((req -> eventually! ack) async_abort cancel)@clk;

or

always ((req -> eventually! ack) async_abort cancel);

when the default clock is clk.

FL_Property ::=
FL_Property sync_abort Boolean

| FL_Property async_abort Boolean
| FL_Property abort Boolean
74 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 75 –

BS IEC 62531:2012
Using sync_abort to model a synchronous interrupt: “A request is always followed by an acknowledge,
unless a cancellation occurs. The request, acknowledge, and cancellation signals are sampled at clock clk.
A rise of the cancellation signal when clk does not hold is ignored.”

always ((req -> eventually! ack) sync_abort cancel)@clk;

or

always ((req -> eventually! ack) sync_abort cancel);

when the default clock is clk.

6.2.1.5.2 before

The before family of operators, shown in Syntax 6-29, specify that one FL Property holds before a second
FL Property holds.

Syntax 6-29—before operators

The left operand of the before family of operators is an FL Property that holds before the FL Property that
is the right operand holds.

The before! and before!_ operators are strong operators, thus they specify that the left FL Property
eventually holds.

The before and before_ operators are weak operators, thus they do not specify that the left FL Property
eventually holds.

The before! and before operators are non-inclusive operators, that is, they specify that the left operand
holds strictly before the right operand holds.

The before!_ and before_ operators are inclusive operators, that is, they specify that the left operand
holds before or at the same cycle as the right operand holds.

Restrictions

Within the simple subset (see 4.4.4), each operand of a before property is restricted to be a Boolean
expression.

Informal Semantics

— A before! property holds in the current cycle of a given path iff
a) The FL Property that is the left operand holds at the current cycle or at some future cycle, and
b) The FL Property that is the left operand holds strictly before the FL Property that is the right

operand holds, or the right operand never holds.

FL_Property ::=
FL_Property before! FL_Property

| FL_Property before!_ FL_Property
| FL_Property before FL_Property
| FL_Property before_ FL_Property
Copyright © 2010 IEEE. All rights reserved. 75

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 76 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
— A before!_ property holds in the current cycle of a given path iff
a) The FL Property that is the left operand holds at the current cycle or at some future cycle, and
b) The FL Property that is the left operand holds before or at the same cycle as the FL Property

that is the right operand, or the right operand never holds.
— A before property holds in the current cycle of a given path iff

a) Neither the FL Property that is the left operand nor the FL Property that is the right operand
ever hold in any future cycle, or

b) The FL Property that is the left operand holds strictly before the FL Property that is the right
operand holds.

— A before_ property holds in the current cycle of a given path iff
a) Neither the FL Property that is the left operand nor the FL Property that is the right operand

ever hold in any future cycle, or
b) The FL Property that is the left operand holds before or at the same cycle as the FL Property

that is the right operand.

6.2.1.5.3 until

The until family of operators, shown in Syntax 6-30, specify that one FL Property holds until a second FL
Property holds.

Syntax 6-30—until operators

The left operand of the until family of operators is an FL Property that holds until the FL Property that is
the right operand holds. The right operand is called the terminating property.

The until! and until!_ operators are strong operators, thus they specify that the terminating property
eventually holds.

The until and until_ operators are weak operators, thus they do not specify that the terminating
property eventually holds (and if it does not eventually hold, then the FL Property that is the left operand
holds forever).

The until! and until operators are non-inclusive operators, that is, they specify that the left operand
holds up to, but not necessarily including, the cycle in which the right operand holds.

The until!_ and until_ operators are inclusive operators, that is, they specify that the left operand
holds up to and including the cycle in which the right operand holds.

Restrictions

Within the simple subset (see 4.4.4), the right operand of an until! or until property is restricted to be a
Boolean expression, and both the left and right operands of an until!_ or until_ property are restricted
to be a Boolean expression.

FL_Property ::=
FL_Property until! FL_Property

| FL_Property until!_ FL_Property
| FL_Property until FL_Property
| FL_Property until_ FL_Property
76 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 77 –

BS IEC 62531:2012
Informal Semantics

— An until! property holds in the current cycle of a given path iff
a) The FL Property that is the right operand holds at the current cycle or at some future cycle, and
b) The FL Property that is the left operand holds at all cycles up to, but not necessarily including,

the earliest cycle at which the FL Property that is the right operand holds.
— An until!_ property holds in the current cycle of a given path iff

a) The FL Property that is the right operand holds at the current cycle or at some future cycle, and
b) The FL Property that is the left operand holds at all cycles up to and including the earliest cycle

at which the FL Property that is the right operand holds.
— An until property holds in the current cycle of a given path iff

a) The FL Property that is the left operand holds forever, or
b) The FL Property that is the right operand holds at the current cycle or at some future cycle, and

the FL Property that is the left operand holds at all cycles up to, but not necessarily including,
the earliest cycle at which the FL Property that is the right operand holds.

— An until_ property holds in the current cycle of a given path iff
a) The FL Property that is the left operand holds forever, or
b) The FL Property that is the right operand holds at the current cycle or at some future cycle, and

the FL Property that is the left operand holds at all cycles up to and including the earliest cycle
at which the FL Property that is the right operand holds.

6.2.1.6 Sequence-based FL properties

6.2.1.6.1 Suffix implication

The suffix implication family of operators, shown in Syntax 6-31, specify that an FL Property or sequence
holds if some pre-requisite sequence holds.

Syntax 6-31—Suffix implication operators

The right operand of the operators is an FL property that is specified to hold if the Sequence that is the left
operand holds.

Restrictions

None.

Informal Semantics

— A Sequence |-> FL_Property holds in a given cycle of a given path iff
a) The Sequence that is the left operand does not hold at the given cycle, or
b) The FL Property that is the right operand holds in any cycle C such that the Sequence that is the

left operand holds tightly from the given cycle to C.
— A Sequence |=> FL_Property holds in a given cycle of a given path iff

FL_Property ::=
 { SERE } (FL_Property)

| Sequence |-> FL_Property
| Sequence |=> FL_Property
Copyright © 2010 IEEE. All rights reserved. 77

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 78 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
a) The Sequence that is the left operand does not hold at the given cycle, or
b) The FL Property that is the right operand holds in the cycle immediately after any cycle C such

that the Sequence that is the left operand holds tightly from the given cycle to C.

NOTE—A {Sequence}(FL_Property) FL Property has the same semantics as Sequence |-> FL_Property.

6.2.1.7 Logical FL properties

6.2.1.7.1 Parameterized property

The parameterizing operators, shown in Syntax 6-32, apply a given base operator to a set of FL Properties
obtained by instantiating a base FL Property once for each possible value or combination of values of the
given parameter(s).

Syntax 6-32—Parameterized property

NOTE 1—The term “instantiated” is used figuratively. It does not imply that instantiation actually takes place. Whether
or not any instantiation does take place depends on the implementation.

The PSL Identifiers are the names of the parameters. A PSL Identifier with an Index Range is an array. The
base operator can be either a logical and or a logical or. The FL Property enclosed in parenthesis is the base
FL Property. For each PSL Identifier, the Value Set defines the set of values that the corresponding
parameter or array elements can take on.

The set of values can be specified in four different ways, as follows:

— The keyword boolean specifies the set of values {True, False}.
— A Value Range specifies the set of all Number values within the given range.
— A comma (,) between Value Ranges indicates the union of the obtained sets.
— A list of comma-separated values specifies a value set of arbitrary type; all values shall be of the

same underlying HDL type.

If the value set is specified by a list of values of arbitrary type, each of the values shall be statically
computable.

For a single parameter,

a) If the parameter is not an array, and the set of values has size K, then the obtained set is of size K.
Each element in the set is obtained by instantiating the base compound SERE with one of the
possible values in the set of values.

FL_Property ::=
Parameterized_Property

Parameterized_Property ::=
for Parameters_Definition : And_Or_Property_OP (FL_Property)

Parameters_Definition ::=
Parameter_Definition { Parameter_Definition }

Parameter_Definition ::=
PSL_Identifier [Index_Range] in Value_Set

And_Or_Property_OP ::=
AND_OP | OR_OP
78 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 79 –

BS IEC 62531:2012
b) If the parameter is an array of size N, and the set of values has size K then the obtained set is of size
KN. Each element in the set is obtained by instantiating the base compound SERE with one of the
combination of values that can be taken on by the array.

For multiple parameters, the set of values is that obtained by applying the above rules repeatedly, once for
each parameter.

Restrictions

The restrictions of the base operator, specified in 6.2.1.7.4 and 6.2.1.7.5 respectively, also apply to parame-
terized property constructed with the corresponding operator. The simple subset restrictions in 4.4.4 also
apply. In particular, since the simple subset restricts the logical or operator to have at most one non-Boolean
operand, a parameterized property constructed with the logical or operator belongs to the simple subset iff
the base FL Property is Boolean.

For each parameter definition the following restrictions apply:

— If the parameter name has an associated Index Range, the Index Range shall be specified as a finite
Range, each bound of the Range shall be statically computable, and the left bound of the Range shall
be less than or equal to the right bound of the Range.

— If a Value is used to specify a Value Range, the Value shall be statically computable.
— If a Range is used to specify a Value Range, the Range shall be a finite Range, each bound of the

Range shall be statically computable, and the left bound of the Range shall be less than or equal to
the right bound of the Range.

— The parameter name shall be used in one or more expressions in the Property, or as an actual
parameter in the instantiation of a parameterized SERE, so that each of the instances of the SERE
corresponds to a unique value of the parameter name.

NOTE 2—The parameter is considered to be statically computable, and therefore the parameter names may be used in a
static expression, such as that required by a repetition count.

NOTE 3—Parameterized properties are a generalization of the forall construct (6.2.3). Any property written with forall
can be written equivalently using a parameterized logical and operator. The forall construct is currently maintained in the
language for reasons of backward compatibility.

Informal Semantics

For FL_Property F:

— for i in boolean: || (F(i)) is equivalent to the applying || to the set containing the
two FL Properties:

F(false) and F(true),

i.e., is equivalent to the FL Property:

(F(false)) || (F(true))

— for i in {j:k}: && (F(i)) is equivalent to applying && to the set containing the k–j+1 FL
Properties:

F(j), F(j+1), ..., F(k),
Copyright © 2010 IEEE. All rights reserved. 79

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 80 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
i.e., is equivalent to the FL Property:

(F(j)) && (F(j+1)) && ... && (F(k))

— for i in {j,k,l}: && (F(i)) is equivalent to applying && to the set containing the 3 FL
Properties:

F(j), F(k), and F(l),
i.e., is equivalent to the FL Property:

(F(j)) && (F(k)) && (F(l))

— for i[0:1] in boolean: && (F(i)) is equivalent to applying && to the set containing
the 4 FL Properties:

F({false,false}), F({false,true}),
F({true,false}), and F({true,true}),

i.e., is equivalent to the FL Property:

(F({false,false})) && (F({false,true})) &&
(F({true,false})) && (F({true,true}))

— for i[0:2] in {c,d}: || (F(i)) is equivalent to applying || to the set containing the 8
FL Properties:

F({c,c,c}), F({c,c,d}), F({c,d,c}), F({c,d,d}),
F({d,c,c}), F({d,c,d}), F({d,d,c}), and F({d,d,d}),

i.e., is equivalent to the FL Property:

(F({c,c,c}))||(F({c,c,d}))||(F({c,d,c}))||(F({c,d,d}))||
(F({d,c,c}))||(F({d,c,d}))||(F({d,d,c}))||(F({d,d,d}))

— for i in {j:k}, l in {m:n}: && (F(i,l)) is equivalent to applying '&&' to the set
containing the (k–j+1)×(n–m+1) FL Properties:

F(j,m), F(j,m+1), ..., F(j,n),
F(j+1,m), F(j+1,m+1), ..., F(j+1,n),
...,
F(k,m), F(k,m+1), ..., F(k,n)

i.e., is equivalent to the FL Property:

(F(j,m)) && (F(j,m+1)) && ... && (F(j,n)) &&
(F(j+1,m)) && (F(j+1,m+1)) && ... && (F(j+1,n)) &&
... &&
(F(k,m)) && (F(k,m+1)) && ... && (F(k,n))

6.2.1.7.2 Logical implication

The logical implication operator (->), shown in Syntax 6-33, is used to specify logical implication.
80 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 81 –

BS IEC 62531:2012
Syntax 6-33—Logical implication operator

The right operand of the logical implication operator is an FL Property that is specified to hold if the FL
Property that is the left operand holds.

In the SystemC flavor, if the operator '->' appears in an expression and its left operand is the name of a
pointer to an object that has a member whose name is the right operand, then the '->' operator is interpreted
as the SystemC member operator, not as the logical implication operator.

Restrictions

Within the simple subset (see 4.4.4), the left operand of a logical implication property is restricted to be a
Boolean expression.

Informal Semantics

A logical implication property holds in a given cycle of a given path iff

— The FL Property that is the left operand does not hold at the given cycle, or
— The FL Property that is the right operand does hold at the given cycle.

6.2.1.7.3 Logical iff

The logical iff operator (<->), shown in Syntax 6-34, is used to specify the iff (if and only if) relation
between two properties.

Syntax 6-34—Logical iff operator

The two operands of the logical iff operator are FL Properties. The logical iff operator specifies that either
both operands hold, or neither operand holds.

Restrictions

Within the simple subset (see 4.4.4), both operands of a logical iff property are restricted to be a Boolean
expression.

Informal Semantics

A logical iff property holds in a given cycle of a given path iff

FL_Property ::=
FL_Property -> FL_Property

FL_Property ::=
FL_Property <-> FL_Property
Copyright © 2010 IEEE. All rights reserved. 81

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 82 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
— Both FL Properties that are operands hold at the given cycle, or
— Neither of the FL Properties that are operands holds at the given cycle.

6.2.1.7.4 Logical and

The logical and operator, shown in Syntax 6-35, is used to specify logical and.

Syntax 6-35—Logical and operator

The operands of the logical and operator are two FL Properties that are both specified to hold.

Informal Semantics

A logical and property holds in a given cycle of a given path iff the FL Properties that are the operands both
hold at the given cycle.

6.2.1.7.5 Logical or

The logical or operator, shown in Syntax 6-36, is used to specify logical or.

Syntax 6-36—Logical or operator

The operands of the logical or operator are two FL Properties, at least one of which is specified to hold.

Restrictions

Within the simple subset (see 4.4.4), at most one operand of a logical or property may be non-Boolean.

Informal Semantics

A logical or property holds in a given cycle of a given path iff at least one of the FL Properties that are the
operands holds at the given cycle.

6.2.1.7.6 Logical not

The logical not operator, shown in Syntax 6-37, is used to specify logical negation.

FL_Property ::=
FL_Property AND_OP FL_Property

FL_Property ::=
FL_Property OR_OP FL_Property
82 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 83 –

BS IEC 62531:2012
Syntax 6-37—Logical not operator

The operand of the logical not operator is an FL Property that is specified to not hold.

Restrictions

Within the simple subset (see 4.4.4), the operand of a logical not property is restricted to be a Boolean
expression.

Informal Semantics

A logical not property holds in a given cycle of a given path iff the FL Property that is the operand does not
hold at the given cycle.

6.2.1.8 LTL operators

The LTL operators, shown in Syntax 6-38, provide standard LTL syntax for other PSL operators.

Syntax 6-38—LTL operators

The standard LTL operators are alternate syntax for the equivalent PSL operators, as shown in Table 4.

FL_Property ::=
NOT_OP FL_Property

FL_Property ::=
X FL_Property

| X! FL_Property
| F FL_Property
| G FL_Property
| [FL_Property U FL_Property]
| [FL_Property W FL_Property]

Table 4—PSL equivalents

Standard LTL
operator

Equivalent PSL
operator

X next

X! next!

F eventually!

G always

U until!

W until
Copyright © 2010 IEEE. All rights reserved. 83

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 84 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Restrictions

The restrictions that apply to each equivalent PSL operator also apply to the corresponding standard LTL
operator.

NOTE—The syntax of the U and W operators requires brackets, e.g., [p U q]. For complete equivalence, the corre-
sponding expressions using PSL operators should be parenthesized. For example, [p U q] is equivalent to (p
until! q), and [p W q] is equivalent to (p until q).

6.2.2 Optional Branching Extension (OBE) properties

Properties of the Optional Branching Extension (OBE), shown in Syntax 6-39, are interpreted over trees of
states as opposed to properties of the Foundation Language (FL), which are interpreted over sequences of
states. A tree of states is obtained from the model by unwrapping, where each path in the tree corresponds to
some computation path of the model. A node in the tree branches to several nodes as a result of non-
determinism in the model. A completely deterministic model unwraps to a tree of exactly one path, i.e., to a
sequence of states. An OBE property holds or does not hold for a specific state of the tree.

Syntax 6-39—OBE properties

The most basic OBE Property is a Boolean expression. An OBE Property enclosed in parentheses is also an
OBE Property.

6.2.2.1 Universal OBE properties

6.2.2.1.1 AX operator

The AX operator, shown in Syntax 6-40, specifies that an OBE property holds at all next states of the given
state.

Syntax 6-40—AX operator

The operand of AX is an OBE Property that is specified to hold at all next states of the given state.

Restrictions

None.

OBE_Property ::=
Boolean

| (OBE_Property)

OBE_Property ::=
AX OBE_Property
84 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 85 –

BS IEC 62531:2012
Informal Semantics

An AX property holds at a given state iff, for all paths beginning at the given state, the OBE Property that is
the operand holds at the next state.

6.2.2.1.2 AG operator

The AG operator, shown in Syntax 6-41, specifies that an OBE property holds at the given state and at all
future states.

Syntax 6-41—AG operator

The operand of AG is an OBE Property that is specified to hold at the given state and at all future states.

Restrictions

None.

Informal Semantics

An AG property holds at a given state iff, for all paths beginning at the given state, the OBE Property that is
the operand holds at the given state and at all future states.

6.2.2.1.3 AF operator

The AF operator, shown in Syntax 6-42, specifies that an OBE property holds now or at some future state,
for all paths beginning at the current state.

Syntax 6-42—AF operator

The operand of AF is an OBE Property that is specified to hold now or at some future state, for all paths
beginning at the current state.

Restrictions

None.

Informal Semantics

An AF property holds at a given state iff, for all paths beginning at the given state, the OBE Property that is
the operand holds at the first state or at some future state.

OBE_Property ::=
AG OBE_Property

OBE_Property ::=
AF OBE_Property
Copyright © 2010 IEEE. All rights reserved. 85

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 86 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
6.2.2.1.4 AU operator

The AU operator, shown in Syntax 6-43, specifies that an OBE property holds until a specified terminating
property holds, for all paths beginning at the given state.

Syntax 6-43—AU operator

The first operand of AU is an OBE Property that is specified to hold until the OBE Property that is the second
operand holds along all paths starting at the given state.

Restrictions

None.

Informal Semantics

An AU property holds at a given state iff, for all paths beginning at the given state:

— The OBE Property that is the right operand holds at the current state or at some future state, and
— The OBE Property that is the left operand holds at all states, up to but not necessarily including, the

state in which the OBE Property that is the right operand holds.

6.2.2.2 Existential OBE properties

6.2.2.2.1 EX operator

The EX operator, shown in Syntax 6-44, specifies that an OBE property holds at some next state.

The operand of EX is an OBE property that is specified to hold at some next state of the given state.

Syntax 6-44—EX operator

Restrictions

None.

Informal Semantics

An EX property holds at a given state iff there exists a path beginning at the given state, such that the OBE
Property that is the operand holds at the next state.

OBE_Property ::=
A [OBE_Property U OBE_Property]

OBE_Property ::=
EX OBE_Property
86 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 87 –

BS IEC 62531:2012
6.2.2.2.2 EG operator

The EG operator, shown in Syntax 6-45, specifies that an OBE property holds at the current state and at all
future states of some path beginning at the current state.

Syntax 6-45—EG operator

The operand of EG is an OBE Property that is specified to hold at the current state and at all future states of
some path beginning at the given state.

Restrictions

None.

Informal Semantics

An EG property holds at a given state iff there exists a path beginning at the given state, such that the OBE
Property that is the operand holds at the given state and at all future states.

6.2.2.2.3 EF operator

The EF operator, shown in Syntax 6-46, specifies that an OBE property holds now or at some future state of
some path beginning at the given state.

Syntax 6-46—EF operator

The operand of EF is an OBE Property that is specified to hold now or at some future state of some path
beginning at the given state.

Restrictions

None.

Informal Semantics

An EF property holds at a given state iff there exists a path beginning at the given state, such that the OBE
Property that is the operand holds at the current state or at some future state.

OBE_Property ::=
EG OBE_Property

OBE_Property ::=
EF OBE_Property
Copyright © 2010 IEEE. All rights reserved. 87

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 88 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
6.2.2.2.4 EU operator

The EU operator, shown in Syntax 6-47, specifies that an OBE property holds until a specified terminating
property holds, for some path beginning at the given state.

Syntax 6-47—EU operator

The first operand of EU is an OBE Property that is specified to hold until the OBE Property that is the second
operand holds for some path beginning at the given state.

Restrictions

None.

Informal Semantics

An EU property holds at a given state iff there exists a path beginning at the given state, such that:

— The OBE Property that is the right operand holds at the current state or at some future state, and
— The OBE Property that is the left operand holds at all states, up to but not necessarily including, the

state in which the OBE Property that is the right operand holds.

6.2.2.3 Logical OBE properties

6.2.2.3.1 OBE implication

The OBE implication operator (->), shown in Syntax 6-48, is used to specify logical implication.

Syntax 6-48—OBE implication operator

The right operand of the OBE implication operator is an OBE Property that is specified to hold if the OBE
Property that is the left operand holds.

Restrictions

None.

Informal Semantics

An OBE implication property holds in a given state iff

OBE_Property ::=
E [OBE_Property U OBE_Property]

OBE_Property ::=
OBE_Property -> OBE_Property
88 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 89 –

BS IEC 62531:2012
— The OBE property that is the left operand does not hold at the given state, or
— The OBE property that is the right operand does hold at the given state.

6.2.2.3.2 OBE iff

The OBE iff operator (<->), shown in Syntax 6-49, is used to specify the iff (if and only if) relation between
two properties.

Syntax 6-49—OBE iff operator

The two operands of the OBE iff operator are OBE Properties. The OBE iff operator specifies that either
both operands hold or neither operand holds.

Restrictions

None.

Informal Semantics

An OBE iff property holds in a given state iff

— Both OBE Properties that are operands hold at the given state, or
— Neither of the OBE Properties that are operands hold at the given state.

6.2.2.3.3 OBE and

The OBE and operator, shown in Syntax 6-50, is used to specify logical and.

Syntax 6-50—OBE and operator

The operands of the OBE and operator are two OBE Properties that are both specified to hold.

Restrictions

None.

Informal Semantics

An OBE and property holds in a given state iff the OBE Properties that are the operands both hold at the
given state.

OBE_Property ::=
OBE_Property <-> OBE_Property

OBE_Property ::=
OBE_Property AND_OP OBE_Property
Copyright © 2010 IEEE. All rights reserved. 89

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 90 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
6.2.2.3.4 OBE or

The OBE or operator, shown in Syntax 6-51, is used to specify logical or.

Syntax 6-51—OBE or operator

The operands of the OBE or operator are two OBE Properties, at least one of which is specified to hold.

Restrictions

None.

Informal Semantics

A OBE or property holds in a given state iff at least one of the OBE Properties that are the operands holds at
the given state.

6.2.2.3.5 OBE not

The OBE not operator, shown in Syntax 6-52, is used to specify logical negation.

Syntax 6-52—OBE not operator

The operand of the OBE not operator is an OBE Property that is specified to not hold.

Restrictions

None.

Informal Semantics

An OBE not property holds in a given state iff the OBE Property that is the operand does not hold at the
given state.

6.2.3 Replicated properties

Replicated properties are specified using the operator forall, as shown in Syntax 6-53. The first operand
of the replicated property is a Replicator and the second operand is a parameterized property.

OBE_Property ::=
OBE_Property OR_OP OBE_Property

OBE_Property ::=
NOT_OP OBE_Property
90 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 91 –

BS IEC 62531:2012
Syntax 6-53—Replicating properties

NOTE 1—The term replicated property is used figuratively. It does not imply that replication actually takes place.
Whether or not any part of the property is replicated depends on the implementation.

The PSL Identifier in the replicator is the name of the parameter in the parameterized property. This param-
eter can be an array. The Value Set defines the set of values over which replication occurs.

— If the parameter is not an array, then the property is equivalent to a property obtained by the follow-
ing steps:
1) Replicating the parameterized property for each value in the set of values, with that value

substituted for the parameter (so that the total number of replications is equal to the size of the
set of values).

2) Logically “anding” all of the replications.
— If the parameter is an array of size N, then the property is equivalent to a property obtained by the

following steps:
1) Replicating the parameterized property for each possible combination of N (not necessarily

distinct) values from the set of values, with those values substituted for the N elements of the
array parameter (if the set of values has size K, then the total number of replications is equal to
KN).

2) Logically “anding” all of the replications.

Observe that in both cases the meaning of a replicated property is equivalent to the replication process. This
does not imply that any replication must actually take place.

The set of values can be specified in four different ways, as follows:

— The keyword boolean specifies the set of values {True, False}.
— A Value Range specifies the set of all Number values within the given range.
— A comma (,) between Value Ranges indicates the union of the obtained sets.
— A list of comma-separated values specifies a value set of arbitrary type; all values shall be of the

same underlying HDL type.

Property ::=
Replicator Property

Replicator ::=
forall Parameter_Definition :

Parameter_Definition ::=
 PSL_Identifier [Index_Range] in Value_Set

Index_Range ::=
LEFT_SYM finite_Range RIGHT_SYM

Flavor Macro LEFT_SYM =
Verilog: [/ SystemVerilog: [/ VHDL: (/ SystemC: (/ GDL: (

Flavor Macro RIGHT_SYM =
Verilog:] / SystemVerilog:] / VHDL:) / SystemC:) / GDL:)
Copyright © 2010 IEEE. All rights reserved. 91

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 92 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Restrictions

If the parameter name has an associated Index Range, the Index Range shall be specified as a finite Range,
each bound of the Range shall be statically computable, and the left bound of the Range shall be less than or
equal to the right bound of the Range.

If a Value is used to specify a Value Range, the Value shall be statically computable.

If a Range is used to specify a Value Range, the Range shall be a finite Range, each bound of the Range shall
be statically computable, and the left bound of the Range shall be less than or equal to the right bound of the
Range.

If the value set is specified by a list of values of arbitrary type, each of the values shall be statically
computable.

The parameter name shall be used in one or more expressions in the Property, or as an actual parameter in
the instantiation of a parameterized Property, so that each of the replicated instances of the Property corre-
sponds to a unique value of the parameter name.

An implementation may impose restrictions on the use of a replication parameter name defined by a Repli-
cator. However, an implementation shall support at least comparison (equality, inequality) between the
parameter name and an expression, and use of the parameter name as an index or repetition count.

A replicator may appear in the declaration of a named property, provided that instantiations of the named
property do not appear inside non-replicated properties.

NOTE 2—The parameter defined by a replicator is considered to be statically computable, and therefore the parameter
name can be used in a static expression, such as that required by a repetition count.

NOTE 3—Parameterized properties (6.2.3) are a generalization of the forall construct. Any property written with forall
can be written equivalently using a parameterized logical and operator. The forall construct is currently maintained in the
language for reasons of backward compatibility.

Informal Semantics

— A forall i in boolean: f(i) property is equivalent to:
f(true) && f(false)

— A forall i in {j:k} : f(i) property is equivalent to:
f(j) && f(j+1) && f(j+2) && ... && f(k)

— A forall i in {j,k} : f(i) property is equivalent to:
f(j) && f(k)

— A forall i[0:1] in boolean : f(i) property is equivalent to:
f({false,false}) && f({false,true}) &&
f({true ,false}) && f({true ,true})

— A forall i[0:2] in {4,5} : f(i) property is equivalent to:
f({4,4,4}) && f({4,4,5}) && f({4,5,4}) && f({4,5,5}) &&
f({5,4,4}) && f({5,4,5}) && f({5,5,4}) && f({5,5,5})
92 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 93 –

BS IEC 62531:2012
Examples

Legal:
forall i[0:3] in boolean:
 request && (data_in == i) -> next(data_out == i)

forall i in boolean:
 forall j in {0:7}:
 forall k in {0:3}:
 f(i,j,k)

forall j in {0:7}:
 forall k in {0:j}:
 f(j,k)

Illegal:

always (request ->
 forall i in boolean: next_e[1:10](response[i]))

6.3 Local variables

A local variable is declared inside a property enclosed in parentheses or inside a braced sequence. The local
variable declaration uses the syntax of the underlying flavor language and is enclosed within the delimiters
“[[” and “]]”.

Local variables can be of any type supported by the underlying flavor language.

The variables can be modified inside procedural blocks using the underlying flavor language syntax (see
6.4). Syntax 6-54 shows the syntax for procedural blocks. Syntax 6-55 shows the syntax for SEREs and
properties with local variable declaration, and the syntax for the “free” operator. The free operator when
applied to a local variable removes the variable from the current scope. Syntax 6-56 shows the syntax for
attaching a procedural block to a Boolean or sequence.

Syntax 6-54—Procedural block

Syntax 6-55—Local variable declaration

Proc_Block ::=
[[Proc_Block_Item { Proc_Block_Item }]]

Proc_Block_Item::=
HDL_DECL
| HDL_SEQ_STMT

Braced_SERE ::=
{ [[[HDL_DECL {HDL_DECL}]]] SERE }
| { [free (HDL_Identifier {, HDL_Identifier})] SERE }

FL_Property ::=
([[[HDL_DECL {HDL_DECL}]]] FL_Property)
Copyright © 2010 IEEE. All rights reserved. 93

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 94 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Syntax 6-56—Sequence/Boolean with procedural blocks

A local variable is visible in the SERE or property in which it is declared and in any sub-SERE or sub-prop-
erty of the SERE or property in which it is declared, except if it has been freed using the free operator. A
local variable is visible in a procedural block if it is visible in the Boolean expression to which the proce-
dural block is attached. A local variable can be referenced by any Boolean expression or procedural block in
which it is visible. A local variable can be modified by any procedural block in which it is visible.

A local variable keeps its value until the value is changed by an assignment or until the local variable is freed
with the free operator.

Example 1

Consider the property

([[reg [31:0] i <= 32’d0;]]{a; b [[i <= i+32’d1;]];
c ; d [[i <= i+32’d1;]]} |=> {e})

Local variable i is initialized to 0. At the point where a occurs it has the value 0. At the point where b occurs
it also has the value 0, and is then incremented to 1. At the point where c occurs it has the value 1, and at the
point where d occurs it has the value 1 and is then incremented to 2. At the point where e occurs, it has the
value 2.

A single local variable declaration may result in multiple copies of a local variable as the result of a temporal
operator or a SERE repetition operator.

Example 2

If we enclose the property in Example 1 in an always operator, like this:

always ([[reg [31:0] i <= 32’d0;]]
{ a ; b [[i <= i+32’d1;]] ;
c ; d [[i <= i+32’d1;]]} |=> {e})

then there are multiple independent copies of local variable i, one per cycle, because the declaration itself is
enclosed in the always operator.

Example 3

If a local variable declaration appears in a SERE, like this:

{ [[reg [31:0] i<=32’d0;]] a ; {b [[i <= i+32’d1;]] | c} ; d} |=> {e}

Sequence ::=
Sequence Proc_Block

Repeated_SERE ::=
Boolean Proc_Block
| Sequence Proc_Block

SERE ::=
Boolean Proc_Block
94 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 95 –

BS IEC 62531:2012
then adding a repetition operator such as the following:

{[*] ; { [[reg [31:0] i<=32’d0;]] a ;
{b [[i <= i+32’d1;]] | c} ; d}} |=> {e}

results in multiple independent copies of local variable i, because the declaration itself is reached at every
cycle (because of the [*]).

Even when the declaration is not modified by an always operator or a SERE repetition operator, there may
be multiple independent copies of a local variable as a result of multiple matches of a SERE.

Example 4

Consider the following SERE:

{ [[reg [31:0] i<=32’d0;]]a[*]; b[[i <= i+32’d1;]][*];c} |=> {d}

There is a single declaration of i, but if the left-hand SERE matches the path in multiple ways, then multiple
independent copies of the local variable will be born. For example, see the following trace in Figure 4.

Figure 4—Example 4

The left-hand SERE holds tightly on cycles 0–6 and it does so in multiple ways. If we have matched zero a’s
with a[*], then the value of i at evaluation cycle 6 is 6, and if we have matched one a with a[*], then the
value of i at evaluation cycle 6 is 5.

NOTE—We use the terms “multiple independent copies” and “will be born” figuratively. A tool is free to implement
local variables and keep track of the values it may have in ways that do not actually spawn multiple copies of a local
variable (for example, using a non-deterministic automaton, a sparse array or other efficient data structure) as long as the
behavior of the local variables as seen by the user is consistent with the behavior that would be exhibited by multiple
independent copies.

Example 5

([[reg [31:0] count;]]
{[*]; start [[count<=32’d0 ;]];
{error[->][[count<=count+32’d1;]]}[*];end} |->
{count <= MAX_ERROR})

The property above passes if the number of errors between start and end does not exceed MAX_ERROR.
The property declares the local variable count of type reg[31:0] that counts the number of errors. This
is done by initializing count to 0 when start holds and incrementing it by 1 whenever error holds.

Finally, count is compared to MAX_ERROR when end holds. Note that if there are overlapping sequences
of cycles starting with start and ending with end, then there will be multiple independent copies of the
local variable count.
Copyright © 2010 IEEE. All rights reserved. 95

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 96 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
For example, see the trace in Figure 5.

Figure 5—Example 5

At cycle 0 there is only one copy of the local variable count corresponding to the start of cycle 0. At
cycle 3 another copy of the local variable count is born which counts the number of errors between the
start of cycle 3 and end. At cycle 4, the first copy has value 2 and the second copy has value 1.

Example 6

Consider the following property:

always ([[reg [31:0] count_r<= 32’d0; reg [31:0] count_w<= 32’d0;]]
{ {fifo_empty;
{ free(count_w) read_req[->][[count_r<=count_r+32’d1;]][*];
!read_req[*]} &&

{ free(count_r) write_req[->][[count_w<=count_w+32’d1;]][*];
!write_req[*]};

fifo_empty }} |-> {count_r==count_w})

The property holds if between any two cycles in which the FIFO is empty the number of read requests is
equal to the number of write requests. The property declares the local variables count_r and count_w.
The left hand side operand of the && operator makes the local variable count_r count the number of read
requests. The right hand side operand counts the number of write requests. Each of the operands “frees” the
local variable it does not assign in order to let it take on any value. At the end of the sequence of cycles
matched by the left-hand side of the |- > (in which the FIFO is once again empty), count_r and count_w
are compared to check if they are equal. Since count_r and count_w are referred to outside the scope of
the && operator, they have to be declared outside the &&.

Example 7

The following example shows what would happen in the case that the free operator is not used to free
count_w and count_r as in the previous example. Since the left operand increments count_r but the
right operand does not (and vice versa for count_w), we get that the left-hand side of the suffix implication
does not hold tightly on any sequence of cycles. Thus, the property passes vacuously on every path.

always ([[reg [31:0] count_r<= 32’d0; reg [31:0] count_w<= 32’d0;]]
{{fifo_empty;
{ read_req[->][[count_r<=count_r+32’d1;]][*];!read_req[*]} &&
{ write_req[->][[count_w<=count_w+32’d1;]][*];!write_req[*]};
fifo_empty }} |-> {count_r==count_w})
96 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 97 –

BS IEC 62531:2012
6.4 Procedural blocks

The goal of a procedural block is modifying local variables and printing output through the evaluation of a
property or SERE. A procedural block is triggered whenever we have seen a finite prefix of a path on which
the property holds weakly, and the last cycle of the path corresponds to the location in the property at which
the procedural block is attached. In fusion and overlapping suffix implication operators procedural blocks
that are attached to the end of the left operand are triggered whenever the left operand is matched regardless
of the right operand, and the evaluation of the right operand starts after the completion of the procedural
blocks in the left operand.

Example 8

Consider the property and timing diagram as follows:

([[reg [31:0] i<= 32’d0;]]{[*];
{a;b}[[i<=32’d3]] : {c[[i<=i+32’d1;d}[[$display("%d",i)]]}
|->{e;f})

Figure 6—Example 8

The value of i at cycle 3 is 4 because the procedural block attached to b is triggered before the procedural
block attached to c. The value of i (4) is displayed at cycle 4 because d holds on this cycle and the fact that
e does not hold at this cycle does not affect the triggering.

All variables visible to a property or SERE are automatically visible in procedural blocks inside this prop-
erty/SERE.

Restrictions

— Procedural blocks can be attached only to maximal Booleans (that is, Booleans that are not part of
another Boolean) or to sequences.

— The code inside a procedural block should be such that it can be inserted into a procedure or function
“shell” (i.e., an empty procedure or function) and be syntactically legal in the flavor language. The
local variables visible in the Boolean or sequence to which the procedural block is attached are
regarded as being implicitly passed by reference to the procedure.

— A procedural block cannot consume time. It should complete execution in atomic time as a basic
block. In particular wait statements and their equivalents (e.g., # of delays in Verilog) are not
allowed inside procedural blocks.

— A procedural block contains only sequential statements. In particular, fork/join constructs are not
allowed.
Copyright © 2010 IEEE. All rights reserved. 97

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 98 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
— Procedural blocks shall be triggered only when the property in which they are declared is used as an
assertion or cover. It should not be triggered when used as an assumption or in a fairness or restrict
verification directive.

— Procedural blocks should not change the environment or the design.

Example 9

Consider the following property:

{[[reg [31:0] lv;]] [*];a[[lv<=32’d0;]]; b[[lv<=lv+32’d1;]][*];
c[[$display("%d",lv)]]}

Denote the procedural blocks in the SERE above by the following:

A1 : lv<= 32’d0;
A2 : lv<=lv + 32’d1;
A3 : $display(“%d”, lv);

The timing diagram shown in Figure 7 has two matches for the SERE above.

The timing diagrams in Figure 8 and Figure 9 show these matches and the triggering of procedural blocks in
each of these matches.

Figure 7—Example 9

Figure 8—Match 1 of the SERE of Example 9
98 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 99 –

BS IEC 62531:2012
Figure 9—Match 2 of the SERE of Example 9

Figure 10 shows the timing diagram of Figure 7 with the triggering of procedural blocks A1, A2, and A3, that
is, it shows the union of the triggerings of match 1 and match 2. The order of triggering of procedural blocks
corresponding to different matches is arbitrary, i.e., if more than one procedural block is triggered at the
same cycle (for different matches), there is no way to predict in which order they will be executed. For
example, in Example 6 both A1 and A2 are triggered on cycle 2 for different matches. There is no way to
predict in what order they will be triggered. Note, however, that since procedural blocks update only local
variables, and every procedural block updates its own copy of the local variable the order of triggering will
only affect the order of reporting.

Figure 10—Example 9: Triggering of procedural blocks

Example 10

Consider the following property:

([[reg[31:0] lv;]]
{[*]; a[[lv<=32’d0;]];
Copyright © 2010 IEEE. All rights reserved. 99

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 100 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
{{b[[lv<=lv+32’d1;]][+]} | {c[[lv<=lv+32’d1;]][+]; d}} }
|=>{e [[$display("%d", lv);]]})

Denote the procedural blocks in the previous SERE by

A1 = lv <= 32’d0;
A2 = lv <= lv + 32’d1;
A3 = lv <= lv + 32’d1;
A4 = $display(“%d”, lv);

The way to understand triggering of procedural blocks in a suffix implication property is to consider the
SERE formed by concatenating the left and right sides of the suffix implication operator. In the example
above, the resulting SERE is as follows:

({[*]; a[[lv<=32’d0;]];
{{b[[lv<=lv+32’d1;]][+]} | {c[[lv<=lv+32’d1;]][+]; d}};
e [[$display("%d", lv);]]})

SERE 1

The timing diagram shown in Figure 11 has three matches of the above SERE. The SERE holds tightly on
paths on which the property holds non-trivially (that is, the left hand side holds tightly). These matches are
shown in Figure 12 through Figure 14.

Figure 11—Example 10
100 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 101 –

BS IEC 62531:2012
Figure 12—Match 1 of SERE 1
Copyright © 2010 IEEE. All rights reserved. 101

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 102 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Figure 13—Match 2 of SERE 1

Figure 14—Match 3 of SERE 1
102 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 103 –

BS IEC 62531:2012
Figure 15—Triggering of procedural blocks in the path in Figure 11

Figure 15 shows the timing diagram of Figure 11 with the triggering of procedural blocks A1, A2, A3, and
A4; that is, it shows the union of the triggerings of all matches.

A1 is triggered at time 1 because match 1 reaches its time point and at time 2 because matches 2 and 3 reach
its time point. A2 is triggered at times 3, 4, and 5 because match 2 reaches its time point. A3 is triggered at
times 2, 3, and 4 because matches 1 and 3 reached its time point. A4 is triggered at time 6 since all the three
matches reached its time point.

6.5 Property and sequence declarations

A given temporal expression may be applicable in more than one part of the design. In such a case, it is con-
venient to be able to define the expression once and refer to the single definition wherever the expression
applies. Declaration and instantiation of named declarations provide this capability. (See Syntax 6-57.)

Informal Semantics

The PSL_Identifier following the keyword sequence or property in the PSL_Declaration is the name
of the declaration. The PSL_Identifiers given in the formal parameter list are the names of the formal param-
eters of the named declaration.
Copyright © 2010 IEEE. All rights reserved. 103

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 104 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Syntax 6-57—Property declaration

Restrictions

The name of the declaration shall not be same as any other declaration in the same verification unit.

NOTE 1—There is no requirement to use formal parameters in a declaration. The declaration may refer directly to sig-
nals in the design as well as to formal parameters.

NOTE 2—Writing const without a Value_Parameter is the same as writing const numeric and is left in for backward
compatibility.

6.5.1 Parameters

A named declaration can optionally specify a list of formal parameters that may be referenced in the declara-
tion. An instantiation creates an instance of a named declaration and provides actual expressions for formal
parameters.

A formal parameter that is a Value_Parameter can be optionally qualified with const. The actual expres-
sion that maps to a const formal parameter shall be statically computable. If no type is specified for a
const formal parameter, the parameter shall default to Numeric type.

6.5.1.1 PSL formal parameter type classes

A formal parameter of a PSL sequence or property declaration can be defined to accept any expression that
is a member of a general class of expression types. A formal parameter may be defined to be of any of the

PSL_Declaration ::=
Sequence_declaration | Property_declaration

Sequence_declaration ::=
sequence PSL_Identifier (Formal_Parameter_List)] DEF_SYM Sequence ;

Property_declaration ::=
property PSL_Identifier (Formal_Parameter_List)] DEF_SYM Property ;

Formal_Parameter_List ::=
Formal_Parameter { ; Formal_Parameter }

Formal_Parameter ::=
Param_Spec PSL_Identifier { , PSL_Identifier }

Param_Spec ::=
const
| [const | mutable] Value_Parameter
| Temporal_Parameter

Value_Parameter ::=
 HDL_Type
 | PSL_Type_Class

HDL_Type ::=
 hdltype HDL_VARIABLE_TYPE

PSL_Type_Class ::=
 boolean | bit | bitvector | numeric | string

Temporal_Parameter ::=
sequence | property
104 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 105 –

BS IEC 62531:2012
PSL expression type classes defined in 5.1; a formal parameter may also be defined to be of the class of
temporal expressions that includes all Sequences, or the class of temporal expressions that includes all
Properties (see Table 5).

NOTE—A many-to-one mapping from HDL types to a PSL formal parameter type class can result in type ambiguity
issues in strongly typed languages like VHDL. For example:

sequence s (boolean b0, b1) is {b0 = b1};

In the VHDL flavor, both bit and std_ulogic map to Boolean type class, but it is an error to pass expressions of type bit
and std_ulogic to formal parameters b0 and b1 respectively in this example if the '=' operator is not defined for operands
of type bit and std_ulogic.

6.5.1.2 HDL formal parameter types

In addition to language neutral types, PSL allows formal parameters to be of HDL data types. If an HDL
data type can be used in a formal parameter declaration of a subroutine defined in the HDL flavor, it may be
used as a formal parameter type in a PSL named declaration. This includes user-defined types. The actual
parameter to formal parameter mapping rules are the same as for subroutines in that flavor.

HDL formal parameter types shall be qualified with the hdltype keyword.

Example

VHDL flavor

sequence color_is_red (hdltype COLOR c) is {c = RED};
sequence slope_is_1 (hdltype COORDINATE_RECORD c) is {(c.x / c.y) = 1};

SystemVerilog flavor

sequence color_is_red (hdltype COLOR c) = {c == RED};
sequence slope_is_1 (hdltype COORDINATE_STRUCT c) = ((c.x / c.y) == 1);

Table 5—PSL formal parameter type classes

PSL formal parameter type class Actual expression type

boolean Boolean expression (refer to 5.1.2)

bit Bit expression (refer to 5.1.1)

bitvector BitVector expression (refer to 5.1.3)

numeric Numeric expression (refer to 5.1.4)

string String expression (refer to 5.1.5)

sequence Sequence (refer to 6.1.2)

property Property (refer to 6.2.1)
Copyright © 2010 IEEE. All rights reserved. 105

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 106 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Named properties and sequences can contain procedural blocks. The formal parameters of the named con-
structs can be refered to inside these procedural blocks. A formal parameter that is a Value Parameter can
optionally be qualified with mutable. Named constructs that contain mutable formal parameters can be
instantiated only within sequences or properties. Formal parameters that are qualified with mutable can be
changed inside procedural blocks in the named construct. Since procedural blocks can change only local
variables, the actual expression that maps to a mutable formal parameter shall be a local variable visible in
the instantiating sequence or property. If the instantiated named construct modifies the value of the mutable
formal parameter, the instantiating sequence or property sees the modified value of the local variable that
maps to this mutable formal parameter.

The syntax of named constructs parameters is shown in Syntax 6-58.

Syntax 6-58—Syntax of named constructs parameters

Example 8

Sequence count cycles are defined as follows:

sequence count_cycles(boolean sig;
mutable hdltype reg [31:0] num_cycles)=

{a[[num_cycles<=num_cycles+32’d1]][*]};

assert always
([[reg [31:0] num_a<=32’d0; reg [31:0] num_b<=32’d0;]]

{start; count_cycles(a, num_a);
count_cycles(b, num_b); end }

|-> {num_a==num_b});

The property above checks that whenever we have a sequence on which {start; a[*]; b[*]; end}
holds tightly, the number of a and b occurences between start and end are equal. The property declares
the local variables num_a and num_b and initializes them to 0. num_a is passed as mutable to the first
instance of count_cycles, which counts the number of occurences of a. Similarly, the second instance
of count_cycles counts the number of b occurences into the local variable num_b. Finally num_a and
num_b are compared for equality.

6.5.2 Declarations

6.5.2.1 Sequence declaration

A sequence declaration defines a sequence and gives it a name.

Restrictions

Formal parameters of a sequence declaration cannot be of parameter type class Property.

Param_Spec ::=
const
| [const | mutable] Value_Parameter
| Temporal_Parameter
106 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 107 –

BS IEC 62531:2012
Example

sequence BusArb (boolean br, bg; const numeric n) =
{ br; (br && !bg)[*0:n]; br && bg };

The named sequence BusArb represents a generic bus arbitration sequence involving formal parameters
br (bus request) and bg (bus grant), as well as a formal parameter n that specifies the maximum delay in
receiving the bus grant.

sequence ReadCycle (sequence ba; boolean bb, ar, dr) =
 { ba; {bb[*]} && {ar[->]; dr[->]}; !bb };

The named sequence ReadCycle represents a generic read operation involving a bus arbitration sequence
and Boolean conditions bb (bus busy), ar (address ready), and dr (data ready).

NOTE—There is no requirement to use formal parameters in a sequence declaration. A declared sequence may refer
directly to signals in the design as well as to formal parameters.

6.5.2.2 Property declaration

A property declaration defines a property and gives it a name.

Example

property ResultAfterN
(boolean start; property result; const numeric n; boolean stop) =

always ((start -> next[n] (result)) @ (posedge clk)
async_abort stop);

This property could also be declared as follows:

property ResultAfterN
(boolean start, stop; property result; const numeric n) =

always ((start -> next[n] (result)) @ (posedge clk)
async_abort stop);

The two declarations have slightly different interfaces (i.e., different formal parameter orders), but they both
declare a property called ResultAfterN. Each property describes behavior in which a specified result (a
property) occurs n cycles after an enabling condition (parameter start) occurs, with cycles defined by
rising edges of signal clk, unless an asynchronous abort condition (parameter stop) occurs.

NOTE—There is no requirement to use formal parameters in a property declaration. A declared property may refer
directly to signals in the design as well as to formal parameters.

6.5.3 Instantiation

An instantiation of a PSL declaration creates an instance of the named declaration and provides an actual
parameter for each formal parameter. In the instance created by the instantiation, each actual parameter
expression in the actual parameter list of the instantiation replaces all references to the formal parameter in
the corresponding position of the formal parameter list of the named declaration.
Copyright © 2010 IEEE. All rights reserved. 107

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 108 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Restrictions

For each formal parameter of the declaration, the instantiation shall provide a corresponding actual
expression. For a const formal parameter, the actual expression shall be a statically computable
expression. The expression type of the actual parameter shall map to the respective formal parameter type
according to the rules specified in 6.5.1. Further, the expression obtained after replacing all formals with the
actual expression in the declaration expression shall be a legal expression in the language flavor.

6.5.3.1 Sequence instantiation

A sequence instantiation, shown in Syntax 6-59, creates an instance of a named sequence. An instance of a
named sequence is also a Sequence (see 6.1.2).

Syntax 6-59—Sequence instantiation

Informal Semantics

An instance of a named sequence describes the behavior that is described by the sequence obtained from the
named sequence by replacing each formal parameter in the named sequence with the corresponding actual
parameter from the sequence instantiation.

Example

Given the declarations for the sequences BusArb and ReadCycle in 6.5.2.1,

BusArb (breq, back, 3)

is equivalent to

{ breq; (breq && !back)[*0:3]; breq && back }

and

ReadCycle(BusArb(breq, back, 5), breq, ardy, drdy)

is equivalent to

{ { breq; (breq && !back)[*0:5]; breq && back };
{breq[*]} && {ardy[->]; drdy[->]}; !breq }

Sequence ::=
Sequence_Instance

Sequence_Instance ::=
sequence_Name [(sequence_Actual_Parameter_List)]

sequence_Actual_Parameter_List ::=
sequence_Actual_Parameter { , sequence_Actual_Parameter }

sequence_Actual_Parameter ::=
AnyType | Sequence
108 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 109 –

BS IEC 62531:2012
6.5.3.2 Property instantiation

A property instantiation, shown in Syntax 6-60, creates an instance of a named property. An instance of a
named property is also a Property (6.2).

Syntax 6-60—Property instantiation

Informal Semantics

An instance of a named property that is an FL Property is itself an FL Property.

An instance of a named property that is an OBE Property is itself an OBE Property.

An instance of a named property holds at a given evaluation cycle (for an FL Property) or in a given state
(for an OBE Property) iff the named property, modified by replacing each formal parameter in the property
declaration with the corresponding actual parameter in the property instantiation, holds in that evaluation
cycle or state, respectively.

Restrictions

If a named property is an FL Property, and it has a formal parameter that is a Property, then in any instance
of that named property, the actual parameter corresponding to that formal parameter shall be an FL Property.

If a named property is an OBE Property, and it has a formal parameter that is a Property, then in any instance
of that named property, the actual parameter corresponding to that formal parameter shall be an OBE
Property.

Example

Given the first declaration for the property ResultAfterN in 6.5.2.2,

ResultAfterN (write_req, eventually! ack, 3, cancel)

is equivalent to

always ((write_req -> next[3] (eventually! ack))
@ (posedge clk) async_abort cancel)

and

FL_Property ::=
FL_property_Name [(Actual_Parameter_List)]

OBE_Property ::=
OBE_property_Name [(Actual_Parameter_List)]

Actual_Parameter_List ::=
Actual_Parameter { , Actual_Parameter }

Actual_Parameter ::=
AnyType | Sequence | Property
Copyright © 2010 IEEE. All rights reserved. 109

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 110 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
ResultAfterN (read_req, eventually! (ack | retry), 5,
(cancel | write_req))

is equivalent to

always ((read_req -> next[5] (eventually! (ack | retry)))
@ (posedge clk) async_abort (cancel | write_req))
110 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 111 –

BS IEC 62531:2012
7. Verification layer

The verification layer provides directives that tell a verification tool what to do with specified sequences and
properties. The verification layer also provides constructs that group related directives and other PSL
statements.

7.1 Verification directives

Verification directives give directions to verification tools (see Table 7-1).

Syntax 7-1—Verification directives

A verification directive may be preceded by a label. If a label is present, it shall not be the same as any other
label in the same verification unit.

Labels enable construction of a unique name for any instance of that directive (see Table 7-2). Such unique
names can be used by a tool for selective control and reporting of results.

Syntax 7-2—Labels

NOTE 1—Labels cannot be referenced from other PSL constructs. They are provided only to enable unique
identification of PSL directives within tool graphical interfaces and textual reports.

NOTE 2—The directives assume_guarantee and restrict_guarantee are no longer in the language.

7.1.1 assert

The Assert Directive, shown in Syntax 7-3, instructs the verification tool to verify that a property holds.

Syntax 7-3—Assert Directive

PSL_Directive ::=
 [Label :] Verification_Directive

Verification_Directive ::=
 Assert_Directive
 | Assume_Directive
| Restrict_Directive
| Restrict!_Directive
| Cover_Directive

 | Fairness_Directive

Label ::=
 PSL_Identifier

Assert_Directive ::=
assert Property [report String] ;
Copyright © 2010 IEEE. All rights reserved. 111

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 112 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
An Assert Directive may optionally include a character string containing a message to report when the
property fails to hold.

Example

The directive

assert always (ack -> next (!ack until req))
 report “A second ack occurred before the next req”;

instructs the verification tool to verify that the property

 always (ack -> next (!ack until req))

holds in the design. If the verification tool discovers a situation in which this property does not hold, it
should display the following message:

 A second ack occurred before the next req

7.1.2 assume

The Assume Directive, shown in Syntax 7-4, instructs the verification tool to constrain the verification (e.g.,
the behavior of the input signals) so that the given property holds.

Syntax 7-4—Assume Directive

Restrictions

The Property that is the operand of an Assume Directive shall be an FL Property or a replicated FL Property.

Example

The directive

assume always (ack -> next !ack);

instructs the verification tool to constrain the verification (e.g., the behavior of the input signals) so that the
property

always (ack -> next !ack)

holds in the design.

Assumptions are often used to specify the operating conditions of a design property by constraining the
behavior of the design inputs. In other words, an asserted property is required to hold only along those paths
that obey the assumption.

Assume_Directive ::=
assume Property ;
112 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 113 –

BS IEC 62531:2012
NOTE 1—Verification tools are not obligated to verify the assumed property.

NOTE 2—See 7.1.4 for additional examples related to the Assume Directive, as well as a comparison to other directives.

7.1.3 restrict

The Restrict Directive, shown in Syntax 7-5, is a special form of assumption, which uses a sequence instead
of a property. Like the Assume Directive, the Restrict Directive instructs the verification tool to constrain the
verification, e.g., by constraining the behavior of design inputs.

Syntax 7-5—Restrict Directive

Informal Semantics

Let End-Of-Path (EOP) be a signal that is asserted on the last cycle of every finite path in the design (and is
deasserted on all other cycles). For a given sequence S, the directive

restrict S ;

is equivalent to the directive

assume { S : EOP } ;

In other words, restrict S; instructs the verification tool to constrain the verification, so that the
property

{ S : EOP } ;

holds on every path in the design.

Examples

See 7.1.4 for examples related to the Restrict Directive, as well as a comparison to other directives.

7.1.4 restrict!

The Restrict! Directive, shown in Syntax 7-6, is related to the Restrict Directive, and is also used for
constraining the verification as specified by a given sequence.

Syntax 7-6—Restrict! Directive

Restrict_Directive ::=
 restrict Sequence ;

Restrict!_Directive ::=
 restrict! Sequence ;
Copyright © 2010 IEEE. All rights reserved. 113

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 114 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Informal Semantics

Let EOP (End-Of-Path) be a signal that is asserted on the last cycle of every finite path in the design (and is
deasserted on all other cycles). For a given sequence S, the directive

restrict! S ;

is equivalent to the directive

assume { S : EOP } ! ;

In other words, restrict! S; instructs the verification tool to constrain the verification, so that every
path in the design exactly matches the sequence S (i.e., every path models tightly S).

NOTE 1—When a Restrict! Directive is applied to the verification, all infinite paths are eliminated from the design,
since an infinite path cannot tightly match a sequence.

NOTE 2—For a given sequence S, each of the following verification directives has a different meaning:

restrict S ;
restrict! S ;
assume S ;
assume S ! ;

Table 6 shows the differences between the four directives, when they are applied to the sequence {!rst;
rst[*3]}.

Table 6—Differences between directives I

Directive Description
restrict
{!rst; rst[*3]};

Informal semantics
The property {{!rst;rst[*3]} : EOP} holds on every path in the design

Explanation
Every path in the design is of length at most 4, and obeys the restriction that rst is
low on the first cycle and high for each of the next 3 cycles (if they exist)

restrict!
{!rst; rst[*3]};

Informal semantics
The property {{!rst;rst[*3]} : EOP}! holds on every path in the design

Explanation
Every path in the design is of length exactly 4, and obeys the restriction that rst is
low on the first cycle and high for each of the next 3 cycles

assume
{!rst; rst[*3]} ;

Informal semantics
The property {!rst; rst[*3]} holds on every path in the design

Explanation
Every path in the design may be of any length, and obeys the restriction that rst is
low on the first cycle and high for each of the next 3 cycles (if they exist)

assume
{!rst; rst[*3]} ! ;

Informal semantics
The property {!rst; rst[*3]}! holds on every path in the design

Explanation
Every path in the design is of length at least 4, and obeys the restriction that rst is
low on the first cycle and high for each of the next 3 cycles
114 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 115 –

BS IEC 62531:2012
Table 7 shows the differences between the four directives, when they are applied to the sequence {!rst;
rst[*3]; !rst[*]}

Table 7—Differences between directives II

7.1.5 cover

The Cover Directive, shown in Syntax 7-7, directs the verification tool to check if a certain path was covered
by the verification space based on a simulation test suite or a set of given constraints.

Syntax 7-7—Cover Directive

A Cover Directive may optionally include a character string containing a message to report when the
specified sequence occurs.

Example

Directive Description
restrict
{!rst; rst[*3]; !rst[*]};

Informal semantics
The property {{!rst;rst[*3];!rst[*]} : EOP}
holds on every path in the design

Explanation
Every path in the design may be of any length, and obeys the restric-
tion that rst is low on the first cycle, rst is high for the next 3
cycles (if they exist), and rst is low for all remaining cycles until the
end of the path (if they exist)

restrict!
{!rst; rst[*3]; !rst[*]};

Informal semantics
The property {{!rst;rst[*3];!rst[*]} : EOP}!
holds on every path in the design

Explanation
Every path in the design is finite, of length at least 4, and obeys the
restriction that rst is low on the first cycle, rst is high for the next
3 cycles, and rst is low for all remaining cycles until the end of the
path (if they exist)

assume
{!rst; rst[*3]; !rst[*]} ;

Informal semantics
The property {!rst; rst[*3];!rst[*]}
holds on every path in the design

Explanation
Same as assume {!rst; rst[*3]};

assume
{!rst; rst[*3]; !rst[*]} ! ;

Informal semantics
The property {!rst; rst[*3];!rst[*]}!
holds on every path in the design

Explanation
Same as assume {!rst; rst[*3]} ! ;

Cover_Directive ::=
cover Sequence [report String] ;
Copyright © 2010 IEEE. All rights reserved. 115

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 116 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
The directive

cover {start_trans;!end_trans[*];start_trans & end_trans}
 report “Transactions overlapping by one cycle covered” ;

instructs the verification tool to check if there is at least one case in which a transaction starts and then
another one starts in the same cycle in which the previous one completed.

NOTE—cover {r} is semantically equivalent to cover {[*];r}. That is, there is an implicit [*] starting the
sequence.

7.1.6 fairness and strong_fairness

The Fairness Directives, shown in Syntax 7-8, are special kinds of assumptions that correspond to liveness
properties.

Syntax 7-8—Fairness Directives

If a Fairness Directive includes the keyword strong, then it is a strong fairness constraint; otherwise, it is
a simple fairness constraint.

Fairness constraints can be used to filter out certain behaviors. For example, they can be used to filter out a
repeated occurrence of an event that blocks another event forever. Fairness constraints guide the verification
tool to verify the property only over fair paths. A path is fair if every fairness constraint holds along the path.
A simple fairness constraint holds along a path if the given Boolean expression occurs infinitely many times
along the path. A strong fairness constraint holds along the path if a given Boolean expression does not
occur infinitely many times along the path or if a second Boolean expression occurs infinitely many times
along the path.

Examples

The directive

fairness p;

instructs the verification tool to verify the formula only over paths in which the Boolean expression p occurs
infinitely often. Semantically, it is equivalent to the assumption

assume G F p;

The directive

strong fairness p,q;

instructs the verification tool to verify the formula only over paths in which either the Boolean expression p
does not occur infinitely often or the Boolean expression q occurs infinitely often. Semantically, it is
equivalent to the assumption

assume (G F p) -> (G F q);

Fairness_Directive ::=
fairness Boolean ;

| strong fairness Boolean , Boolean ;
116 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 117 –

BS IEC 62531:2012
7.2 Verification units

A verification unit, shown in Syntax 7-9, is used to group PSL declarations, directives, and modeling code.

Syntax 7-9—Verification_Unit

The PSL Identifier following the keyword vunit is the name by which this verification unit is known to the
verification tools.

If a Hierarchical HDL Name is given, then the verification unit is explicitly bound to the design module or
module instance indicated by the HDL module name(s) and HDL instance name(s) of the Hierarchical HDL
Name. If only one HDL module name is given, then the name indicates a VHDL entity, a Verilog module, a
SystemVerilog module or interface, or a SystemC (C++) class that inherits from sc_module. If two HDL

Verification_Unit ::=
Vunit_Type PSL_Identifier [(Context_Spec)] {

{ Inherit_Spec }
 { Override_Spec }
 { Vunit_Item }
}
Vunit_Type ::=

vunit | vpkg | vprop | vmode
Context_Spec ::=

Binding_Spec | Formal_Parameter_List

Binding_Spec ::=
 Hierarchical_HDL_Name

Hierarchical_HDL_Name ::=
HDL_Module_NAME { Path_Separator instance_Name }

HDL_Module_Name ::=
HDL_Module_Name [(HDL_Module_Name)]

Path_Separator ::=
 . | /

instance_Name ::=
HDL_or_PSL_Identifier

Inherit_Spec ::=
[nontransitive] inherit vunit_Name { , vunit_Name } ;

Vunit_Item ::=
HDL_DECL
 | HDL_STMT
 | PSL_Declaration
 | PSL_Directive
| Vunit_Instance

Override_Spec ::=
override Name_List ;

Name_List ::=
 Name { ',' Name }

Formal_Parameter_List ::=
Formal_Parameter { ; Formal_Parameter }
Copyright © 2010 IEEE. All rights reserved. 117

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 118 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
module names are given, then the pair of module names indicates a VHDL entity and architecture,
respectively. If no Hierarchical HDL Name is given, then the verification unit is not explicitly bound. See
7.2.1 for a discussion of binding.

An Inherit Spec indicates another verification unit from which this verification unit inherits contents. See
7.2.3 for a discussion of inheritance.

A Vunit Item can be any of the following:

a) Any modeling layer statement or declaration.
b) A property, sequence, or default clock declaration.
c) Any verification directive.

The Vunit Type specifies the type of the Verification Unit.

The default vmode (i.e., one named default) can be used to define constraints that are common to all
verification environments, or defaults that can be overridden in other verification units. For example, the
default verification unit might include a default clock declaration or a sequence declaration for the most
common reset sequence.

Verification units can be used in various ways to specify a verification task. For example:

1) An abstract verification task can be modeled using a set of verification units, none of which are
bound to a design.

2) A verification task related to a design can be modeled using a set of verification units, all of which
are related to one another through inheritance or instantiation, and at least one of which is bound to
a design module or instance.

3) A verification task related to a design can also be modeled using multiple sets of verification units,
where each set is structured as defined in item 2), but each set is bound to possibly different modules
or instances in the design.

A given tool may support any of these or other use models.

vunit

A verification unit which has the Vunit_Type as 'vunit' is called a vunit. A vunit is a verification unit
intended for general purpose usage.

A vunit may contain any kind of Vunit Item. A vunit may also inherit or instantiate other verification units.

A vunit may be bound to a design module or instance, or instantiated, or inherited.

Restrictions

It is an error if a vunit has a binding_spec and is instantiated.

vpkg

A verification unit which has the Vunit_Type as 'vpkg' is called a vpkg. A vpkg is a verification unit
specifically intended for encapsulating a set of declarations for reuse.

A vpkg may contain any PSL declaration. A vpkg may also inherit or instantiate other verification units.
118 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 119 –

BS IEC 62531:2012
A vpkg may be inherited or instantiated.

Restrictions

A vpkg shall not contain PSL directives.

A vpkg does not inherit the default vmode.

A vpkg shall not contain override statements.

A vpkg shall not be bound to an HDL module or instance. All signals or variables referenced within a vpkg
shall be defined as parameters of either an individual declaration (local parameters) or of the vpkg itself
(global parameters).

If a vpkg A inherits or instantiates a verification unit B, then B shall satisfy the restrictions that apply to a
vpkg, regardless of whether B is declared as a vpkg or as some other kind of verification unit. This allows
the user who wants to create a vpkg to use declarations defined in an existing vunit without having to change
the vunit to a vpkg.

NOTES—A vpkg as a whole shall be parameterized (and instantiated), or the declarations contained within the vpkg
shall be parameterized (and instantiated), or some combination of these two approaches shall be used in order to use the
vpkg’s declarations in a given context.

Example 1

// declaration of a parameterized vpkg
 vpkg Pkg1 (boolean req, ack; const T) {
 property ReqAckT = always (req -> next {{ack} within [*T]});
 property AckBeforeReq = always (req -> next (ack before req));
 }
 ...
 // instantiation of this vpkg
 P1: vpkg Pkg1 (rq, ak, 5);
 ...
 // use of this vpkg's declarations
 assert P1.ReqAckT;
 assume P1.AckBeforeReq;
 ...

Example 2

// declaration of a vpkg containing parameterized declarations
 vpkg Pkg2 {
 property ReqAckT (boolean req, ack; const T) =

always (req -> next {{ack} within [*T]});
 property AckBeforeReq (boolean req, ack) =

always (req ->(next ack before req));
 }
 ...
 // instantiation of this vpkg
 P2: vpkg Pkg2;
 ...
 // use of this vpkg's declarations
Copyright © 2010 IEEE. All rights reserved. 119

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 120 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
 assert P2.ReqAckT(rq,ak,5);
 assume P2.AckBeforeReq(rq,ak);
 ...

Example 3

// declaration of a partially parameterized vpkg containing
// parameterized declarations
 vpkg Pkg3 (boolean ack) {
 property ReqAckT (boolean req, const T) =

always (req -> next {{ack} within [*T]});
 }
 ...
 // instantiation of this vpkg
 P3: vpkg Pkg3 (ak); // all requests get a common acknowledge (ak)

...
 // use of this vpkg's declarations
 assert P3.ReqAckT(req1, 5); // higher priority request
 assert P3.ReqAckT(req2, 10); // lower priority request
 ...

vmode

A verification unit that has the Vunit_Type as 'vmode' is called a vmode. A vmode is a verification unit
specifically intended for specifying a verification environment.

A vmode can contain modeling code, PSL declarations, and PSL assume, restrict, and fairness directives. A
vmode can also contain instantiations of other verification units. A vmode may also inherit other verification
units.

A vmode that is named “default” can be used to define constraints that are common to all verification
environments or defaults that can be overridden in other verification units. For example, the default
verification unit might include a default clock declaration or a sequence declaration for the most common
reset sequence.

Restrictions

A default verification unit may not inherit other verification units of any type.

A vmode may be bound to a design module or instance, or instantiated, or inherited.

A vmode shall not contain an assert directive or a cover directive.

If a vmode A inherits or instantiates a verification unit B, then B shall satisfy the restrictions that apply to a
vmode, regardless of whether B is declared as a vmode or as some other kind of verification unit.

vprop

A verification unit that has Vunit_Type as 'vprop' is called a vprop. A vprop is a verification unit specifically
intended for specifying properties to verify.
120 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 121 –

BS IEC 62531:2012
A vprop can contain modeling code and PSL declarations. It may contain only assert and cover PSL
directives. A vprop can also contain instantiations of other verification units. A vprop may also inherit other
verification units.

A vprop may be bound to a design module or instance, or instantiated, or inherited.

Restrictions

If a vprop A inherits or instantiates a verification unit B, then B shall satisfy the restrictions that apply to a
vprop, regardless of whether B is declared as a vprop or as some other kind of verification unit.

A vprop may not override design signals.

7.2.1 Verification unit binding

A verification unit may be bound to a design module or instance. Binding allows a verification unit to
reference the names visible in that design module or instance.

Binding does not affect the visibility of names in locations other than the bound verification unit. In
particular, if verification units A and B are both bound to design module or instance M, and neither A nor B
inherit the other, then the names declared in A are not visible in B, and the names declared in B are not
visible in A.

A verification unit A may be bound to a design module or instance M, regardless of whether the flavor of A
and the implementation language of M are the same or are different. If they are different, then implicit cross-
language type conversions are performed as required, following the conventions for mixed-language
simulation.

A vunit with no binding_spec is considered to be unbound.

The declarations in an unbound vunit shall be bound using the binding rules of the inheriting or instantiating
vunit if the unbound vunit is inherited or instantiated in a bound vunit.

Restrictions

A parameterized verification unit shall not be bound.

A vpkg shall not be bound.

An unbound verification unit may only inherit another unbound verification unit.

7.2.2 Verification unit instantiation

A verification unit instantiation, shown in Syntax 7-10, creates an instance of a verification unit. An instance
of a verification unit is also a verification unit.

Syntax 7-10—Verification unit instantiation

Vunit_Instance ::=
 Label ':' Vunit_Type /vunit/_Name ['('
Actual_Parameter_List ')'] ';'
Copyright © 2010 IEEE. All rights reserved. 121

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 122 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
The Vunit_Type specified in the Vunit Instance shall agree with that of the verification unit with the
specified name.

Informal Semantics

Each instantiation of a verification unit V within another verification unit V2 creates a unique copy of the
instantiated verification unit V, accessible only within verification unit V2.

A verification unit developed in a particular flavor of PSL may instantiate a verification unit developed in a
different flavor of PSL. In this case, implicit cross-language type conversions are performed as required,
following the conventions for mixed-language simulation.

Examples

vunit V1 (logic x, y){
…
…
}

vunit V2 (top.i1) {
// top.i1 is a verilog model
…
 V1_inst: vunit V1(D, reset);

}

NOTE—The instantiation rules of 6.5.3 apply to vunit instances as well.

7.2.3 Verification unit inheritance

One verification unit may inherit another verification unit. Inheritance allows the inheriting verification unit
to reference the declarations contained in the inherited verification unit. Inheritance can also be used as one
means of composing a set of directives that, in aggregate, define a verification task.

Inheritance does not affect the visibility of names in locations other than the inheriting verification unit. In
particular, if verification units A and B are both inherited by verification unit C, and neither A nor B inherit
the other, then the names declared in A are not visible in B, and the names declared in B are not visible in A.

A verification unit A may be inherited by a verification unit B, regardless of whether the flavor of A and the
flavor of B are the same or are different. If they are different, then implicit cross-language type conversions
are performed as required, following the conventions for mixed-language simulation.

Inheritance only provides access to existing declarations; it does not create local copies of declarations. If a
verification unit C contains a variable V, and C is inherited by two verification units A and B, then the
variable C.V is visible in both A and B. Only one instance of this variable is created, and that one instance
is accessible from both A and B.

Transitive closure applies by default to vunit inheritance. Thus, if vunit A inherits vunit B and vunit B
inherits vunit C, then the declarations of C become visible in vunit A. Furthermore, if vunit A is bound to a
design module or instance M, and vunit A is inherited in vunits B and C, then the symbols in M are visible to
both B and C.
122 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 123 –

BS IEC 62531:2012
Nontransitive closure can be applied to vunit inheritance using a keyword called “nontransitive.” When
nontransitive closure is specified, then only decalarations within the immediately inherited vunit are visible
to the inheriting vunit. Thus if vunit A inherits vunit B using the “nontransitive” keyword, then the
declarations of vunit B are visible to vunit A alone, irrespective of how vunit A is inherited by other vunits.

Inheritance Graph

An inheritance graph is a directed acyclic graph in which nodes are vunits and there is an edge from vunit
A to vunit B if and only if A inherits B. If A inherits B using the “nontransitive” keyword, then the edge
from A to B is dashed; otherwise, it is solid.

A vunit A in an inheritance graph is the root vunit of the sub-graph composed of all the vunits reachable
from A by paths in which all edges are solid except, possibly, the last edge of the path.

Restrictions

a) If one verification unit inherits another, and both are bound to instances, then either both shall be
bound to the same instance; or one shall be bound to an instance that is instantiated directly or
indirectly within the instance to which the other is bound.

b) If one verification unit inherits another, and one or both are bound to a module, then the binding
shall be such that if each binding to a module is considered as binding to each of its instances, the
restrictions of item a) above are met.

Example

Module top;
 mod_b mod_b_inst();

mod_c mod_c_inst();
endmodule

module mod_b;
mod_d mod_d_inst();

endmodule

module mod_c;
mod_e mod_e_inst();

endmodule

Consider vunits/vmodes X and Y where X is inherited by Y.

Valid use models, assuming no other instances of module top, mod_b, and mod_c:

a) X bound to top, Y bound to either
— instance top.mod_b_inst or
— top.mod_c_inst or
— to top or
— to mod_b or
— to mod_c

b) X bound to top, Y bound to either
— top.mod_b_inst.mod_d_inst or
— top.mod_c_inst.mod_e_inst
Copyright © 2010 IEEE. All rights reserved. 123

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 124 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
c) Y bound to top.mod_b_inst, X bound to top.mod_b_inst.mod_d_inst
d) X bound to top.mod_c_inst, Y bound to top.mod_c_inst.mod_e_inst
e) X and Y both bound to top
f) X and Y both bound to top.mod_b_inst

Invalid use model:

— X bound to top.mod_b_inst, Y bound to top.mod_c_inst

7.2.4 Overriding assignments

A verification unit may declare that it will override assignments made to a variable or signal declared
elsewhere, as shown in Syntax 7-11.

Syntax 7-11—Override_Spec

Any name that appears in an override specification shall be visible in the containing verification unit.

The override keyword is required. It is illegal to make an assignment to a variable or a signal declared
elsewhere without specifying as such using the override keyword.

NOTE—override is a new keyword in the language. In IEEE Std 1850 PSL 2005 any assignment could override the
behavior of a signal without having to specify it explicitly.

7.2.4.1 Simple case

In the simple case in which there is a single vunit or multiple vunits, all of which are related by hierarchy or
instantiation, overriding has the following effect. If a variable or signal name N appears in the name list of
an override specification, then the following effectively occurs:

a) All existing assignments to N in the design and in other verification units are redirected to assign to
a new variable N'.

b) The built-in function |original(N)| returns the value of this new variable N'.
c) Any assignments to N made in this verification unit are applied to N.

As a result, assignments made to N in this verification unit effectively mask any assignments made to N
elsewhere.

If an override specification is provided for a given variable or signal, and the containing verification unit
does not assign to that variable or signal, then the variable or signal will act as a free variable (that is, will
have a nondeterministic value).

Example

vunit top(mydesign) {
override sig1;

Override_Spec ::=
override Name_List ;

Name_List ::=
 Name { ',' Name }
124 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 125 –

BS IEC 62531:2012
assign sig1 = 0;
assert always sig2;

}

Assume that vunit top is the only vunit. Vunit top overrides signal sig1 with the value 0. If sig1 is a
design signal of design mydesign, then the override effectively creates a new version of mydesign in which
signal sig1 is tied to zero (and consequently all signals in the fanout of sig1 are influenced), and the
assertion is made with respect to this version of the design.

7.2.4.2 Multiple unrelated vunits

In the case where multiple vunits are not related by hierarchy or instantiation, the override affects only those
vunits that are related to the overriding vunit by hierarchy or instantiation.

Example 1

vunit X(mydesign) {
override sig1;
assign sig1 = 0;
assert always sig2;

}
vunit Y(mydesign) {

assert always sig3;
}

Vunits X and Y are not related by hierarchy or instantiation. Therefore, the override statement in vunit X
affects only vunit X but does not affect vunit Y. If signal sig1 is a design signal of design mydesign, this
means that there are two versions of mydesign—one in which signal sig1 has its original behavior (this
version is seen by vunit Y) and one in which signal sig1 is tied to 0 (this version is seen by vunit X).

If a tool does not support more than one version of a design per run, then vunits X and Y may not be run
together (although they may be run separately).

Example 2

vunit A(mydesign) {
inherit B;
override sig1;
assign sig1 = 0;
assert always sig2;

}
vunit B(mydesign) {

assert always sig3;
}
vunit C(mydesign) {

inherit A;
assert always sig4;

}
vunit D(mydesign) {

assert always sig5;
}

Copyright © 2010 IEEE. All rights reserved. 125

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 126 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Vunits A, B, and C are related by inheritance. Thus, if they are run together with C as the root, the assertions
contained in them refer to the version of the design created by the override statement in vunit A. Vunit D is
unrelated by inheritance to A, B, or C. Thus, its assertion refers to the orginal design, without the override.
If a tool supports more than one version of a design per run, then vunits A, B, C, and D may be run together,
otherwise vunit D shall be run separately from the others (and a tool will report an error if it is not).

Note that the version of the design referred to by vunit B depends on whether it is run as the root of an
inheritance/instantiation tree (in which case its assertion refers to the original design) or together with vunit
A, which inherits it (in which case it is affected by the override statement appearing in A). This means that
there is no meaning to the statement “the assertions of vunit B passed.” Rather, a tool shall also report the
context in which a vunit was run (either as the root of an inheritance/instantiation tree or as inherited/
instantiated within another tree).

7.2.4.3 Multiple overrides to the same signal

If there are multiple overrides to the same signal, then the resolution of the multiple override statements is
similar to the resolution of multiple signal declarations. That is, if the multiple overrides appear in unrelated
vunits, then no resolution is necessary. However, if there are multiple overrides to the same signal in related
vunits, then an override that appears in an instantiating or inheriting vunit takes precedence over an override
that appears in the instantiated or inherited vunit, and if sibling vunits override the same signal but a parent
vunit does not, then the result is an illegal vunit because of ambiguity.

Example 1

vunit top(mydesign) {
inherit bot;
override sig1;
assign sig1 = 0;
assert always sig2;

}
vunit bot(mydesign) {

override sig1;
assign sig1 = 1;
assert always sig3;

}

Vunits top and bot both override design signal sig1. If vunit bot is run alone, then it uses a version of the
design in which signal sig1 is tied to 1. However, if vunit top is run as the root, then its override takes
precedence, since it is the inheriting vunit, and thus it will use a version of the design in which signal sig1
is tied to 0.

Example 2

vunit top(mydesign) {
inherit A;
inherit B;
assert always sig2;

}
vunit A(mydesign) {

override sig1;
assign sig1 = 0;
assert always sig3;

}

126 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 127 –

BS IEC 62531:2012
vunit B(mydesign) {
override sig1;
assign sig1 = 1;
assert always sig4;

}

Vunits A and B both override signal sig1, and both are inherited by vunit top. Vunit top does not override
signal sig1; therefore, the behavior of sig1 in vunit top is ambiguous, and thus vunit top is illegal.
Copyright © 2010 IEEE. All rights reserved. 127

– 128 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 129 –

BS IEC 62531:2012
8. Modeling layer

The modeling layer provides a means to model behavior of design inputs (for tools such as formal
verification tools in which the behavior is not otherwise specified), and to declare and give behavior to
auxiliary signals and variables. The modeling layer comes in five flavors, corresponding to SystemVerilog,
Verilog, VHDL, SystemC, and GDL.

The SystemVerilog flavor of the modeling layer will consist of the synthesizable subset of SystemVerilog,
which is not yet defined.

The Verilog flavor of the modeling layer consists of the synthesizable subset of Verilog, defined by
IEC/IEEE 62142. The Verilog flavor of the modeling layer extends Verilog to include integer range dec-
larations, as defined in 8.1, and struct declarations, as defined in 8.2.

The VHDL flavor of the modeling layer consists of the synthesizable subset of VHDL, defined by
IEEE Std 1076.6.

The SystemC flavor of the modeling layer consists of those SystemC declarations that would be legal in the
context of the SystemC module to which the vunit is bound, and those statements that would be legal in the
context of the constructor of the SystemC module to which the vunit is bound.

The GDL flavor of the modeling layer consists of all of GDL.

In each flavor of the modeling layer, at any place where an HDL expression may appear, the modeling layer
is extended to allow any form of HDL or PSL expression, as defined in Clause 5. Thus, HDL expressions,
PSL expressions, built-in functions, and union expressions may all be used as expressions within the
modeling layer.

Each flavor of the modeling layer supports the comment constructs of the corresponding hardware
description language.

8.1 Integer ranges

The Verilog flavor of the modeling layer is extended to include declaration of a finite integer type, shown in
Syntax 8-1, where the range of values that the variable can take on is indicated by the declaration.

Syntax 8-1—Integer range declaration

The nonterminals list_of_variable_identifiers and constant_expression are defined in the syntax for IEC/
IEEE 62142.

Extended_Verilog_Type_Declaration ::=
 Finite_Integer_Type_Declaration

 Finite_Integer_Type_Declaration ::=
 integer Integer_Range list_of_variable_identifiers ;

Integer_Range ::=
(constant_expression : constant_expression)
Copyright © 2010 IEEE. All rights reserved. 129

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 130 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Example

integer (1:5) a, b[1:20];

This declares an integer variable a, which can take on values between 1 and 5, inclusive, and an integer
array b, each of whose twenty entries can take on values between 1 and 5, inclusive.

8.2 Structures

The Verilog flavor of the modeling layer is also extended to include declaration of C-like structures, as
shown in Syntax 8-2.

Syntax 8-2—Structure declaration

The nonterminals list_of_variable_identifiers, net_declaration, reg_declaration, and integer_declaration are
defined in the syntax for IEC/IEEE 62142.

Example

struct {
 wire w1, w2;
 reg r;
 integer(0:7) i;
} s1, s2;

which declares two structures, s1 and s2, each with four fields, w1, w2, r, and i. Structure fields are
accessed as s1.w1, s1.w2, etc.

Extended_Verilog_Type_Declaration ::=
 Structure_Type_Declaration

Structure_Type_Declaration ::=
 struct { Declaration_List } list_of_variable_identifiers ;

Declaration_List ::=
HDL_Variable_or_Net_Declaration { HDL_Variable_or_Net_Declaration }

HDL_Variable_or_Net_Declaration ::=
net_declaration

| reg_declaration
| integer_declaration
130 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 131 –

BS IEC 62531:2012
9. Scope and visibility rules

A PSL sequence declaration, property declaration, or verification unit declaration defines a name for a
sequence, property, or verification unit, respectively. A PSL verification unit instantiation or PSL directive
that includes a label defines the label as the name of the statement. A formal parameter list defines the names
of formal parameters to be used within a parameterized construct. A forall property, a parameterized
sequence, and a parameterized property each define the name of a parameter used in the replication of a
sequence or property.

For each of these named objects, the defined name has a scope, i.e., a portion of the text of a PSL description
in which the name can be used to refer to the corresponding object. This scope generally extends throughout
the context in which the object is defined, and it may also extend beyond that context.

9.1 Immediate scope

The following rules define the immediate scope of each kind of name:

a) The immediate scope of the name of a verification unit is global. It extends over the set of
verification units defined for use in a given context.

b) The immediate scope of the name of a sequence or property declaration extends throughout the
verification unit within which it is declared.

c) The immediate scope of the label on a PSL verification unit instantiation or a PSL directive extends
throughout the verification unit within which that construct occurs.

d) The immediate scope of a formal parameter extends throughout the named sequence, property, or
verification unit declaration with which the formal parameter is associated.

e) The immediate scope of a replication parameter extends throughout the sequence or property within
which it is defined, including any nested sub-sequences or sub-properties.

Restrictions

It is an error if a given name is defined more than once within the same immediate scope.

NOTE—As a consequence of the above rules, it is an error if there are two verification units with the same name, or two
property or sequence declarations with the same name in the same verification unit, or if a given name is used as both a
sequence or property name and as a label in the same verification unit, or two replication parameters with the same name
defined for the same (sub) property, etc.

9.2 Extended scope

The immediate scope of a name can be extended further as a result of inheritance or instantiation. If a name
is declared within a verification unit, and that verification unit is inherited by or instantiated in another
verification unit, then the extended scope of the name also extends throughout the inheriting or instantiating
verification unit.

The scope of a name declared in a design module or instance can also be extended further, as a result of
binding. If the scope of a name extends to the end of a design module or instance, and a verification unit V
is bound to that design module or instance, then the extended scope of that name also extends throughout the
verification unit bound to that design module or instance.
Copyright © 2010 IEEE. All rights reserved. 131

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 132 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
9.3 Direct and indirect name references

A direct name reference is a reference that consists of just the name itself.

An indirect name reference involves a prefix that defines the scope within which the name was declared.

Within the immediate scope of a given name, a direct reference to that name is always unambiguous. This is
a consequence of the definition of immediate scope and the fact that it is an error for the same name to be
declared twice within a given scope.

Within the extended scope of a given name, a direct reference to that name may be illegal, because a direct
reference would be ambiguous. In particular, a direct reference to a given name is illegal at a given point if
the point of reference is within the immediate scope of another declaration of the same name. A direct
reference to a given name would be ambiguous (and is therefore illegal) if the point of reference is within the
extended scope of two or more different declarations of the same name. In either case, the given name can
be referred to indirectly using a dotted name.

A dotted name consists of a prefix, followed by a '.' character, followed by a suffix. The prefix is the name
of a scope: i.e., a design module name or instance pathname, a verification unit, a sequence declaration, or a
property declaration. The prefix name shall be directly visible (i.e., prefix shall either be declared in
immediate scope or shall represent a verification unit scope) at the point where the dotted name occurs. The
suffix is a name that is defined within that scope (i.e., the scope denoted by the prefix), or is a dotted name
whose prefix is a name that is defined within that scope.

Example 1

If vunit A inherits vunit B, vunit B instantiates vunit C with label C1, and each of the three vunits define
sequence S, then in vunit A, one can refer to S (the one defined in A), or B.S (the one defined in B), or
B.C1.S (the one defined in instance C1 of C within B).

Example 2

If vunit A defines a variable X then

a) If vunit B instantiates A, then X shall be accessed in vunit B only using an indirect reference "A.X"
b) If vunit B inherits A, then access to X in vunit B may be using a direct reference to X or using an

indirect reference "A.X"

Restrictions

— A vunit name cannot appear in the suffix of a longer dotted name. It can only begin a dotted name.
— A vunit name that is the prefix of a dotted name shall be the name of a vunit that is inherited (directly

or indirectly) by the enclosing vunit.
— The suffix of a given dotted name shall be visible in the vunit that is the prefix of the given name.
132 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 133 –

BS IEC 62531:2012
Examples

vunit A {
 sequence s = ...
 <can refer to A.s, or directly to s>
}

vunit B {
 inherit A;
 <can refer to A.s, or directly to s>
}

vunit C {
 <can refer to A or B, in order to inherit it>
 inherit B;
 <can refer to B.s because of the transitivity of inheritance>
 <cannot refer to B.A.s, because this is not a legal form of a dotted
name>
 <cannot refer to A.s, because A is not inherited by C>
 <can refer to s (declared in A), as there is no ambiguity on s

}
Copyright © 2010 IEEE. All rights reserved. 133

– 134 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 135 –

BS IEC 62531:2012
Annex A

(normative)

Syntax rule summary

A.1 Conventions

The formal syntax described in this standard uses the following extended Backus-Naur Form (BNF).

a) The initial character of each word in a nonterminal is capitalized. For example:

PSL_Statement

A nonterminal is either a single word or multiple words separated by underscores. When a multiple-
word nonterminal containing underscores is referenced within the text (e.g., in a statement that
describes the semantics of the corresponding syntax), the underscores are replaced with spaces.

b) Boldface words are used to denote reserved keywords, operators, and punctuation marks as a
required part of the syntax. For example:

vunit (;
c) The ::= operator separates the two parts of a BNF syntax definition. The syntax category appears

to the left of this operator and the syntax description appears to the right of the operator. For exam-
ple, item d) shows three options for a Vunit_Type.

d) A vertical bar separates alternative items (use one only) unless it appears in boldface, in which case
it stands for itself. For example:

Vunit_Type ::=
vunit | vpkg | vprop | vmode

e) Square brackets enclose optional items unless it appears in boldface, in which case it stands for
itself. For example:

Sequence_Declaration ::=
 sequence Name [(Formal_Parameter_List)] DEF_SYM Sequence ;

indicates that (Formal_Parameter_List) is an optional syntax item for Sequence_Declaration,
whereas

| Sequence [* [Range]]

indicates that (the outer) square brackets are part of the syntax, while Range is optional.
f) Braces enclose a repeated item unless it appears in boldface, in which case it stands for itself. A

repeated item may appear zero or more times; the repetitions occur from left to right as with an
equivalent left-recursive rule. Thus, the following two rules are equivalent:

Formal_Parameter_List ::=
Formal_Parameter { ; Formal_Parameter }

Formal_Parameter_List ::=
Formal_Parameter | Formal_Parameter_List ; Formal_Parameter
Copyright © 2010 IEEE. All rights reserved. 135

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 136 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
g) A colon (:) in a production starts a line comment unless it appears in boldface, in which case it
stands for itself.

h) If the name of any category starts with an italicized part, it is equivalent to the category name with-
out the italicized part. The italicized part is intended to convey some semantic information. For
example, vunit_Name is equivalent to Name.

i) Flavor macros, containing embedded underscores, are shown in uppercase. These reflect the various
HDLs that can be used within the PSL syntax and show the definition for each HDL. The general
format is the term Flavor Macro, then the actual macro name, followed by the = operator, and,
finally, the definition for each of the HDLs. For example:

Flavor Macro RANGE_SYM =
 SystemVerilog: : / Verilog: : / VHDL: to / GDL: / ..

shows the range symbol macro (RANGE_SYM). See 4.3.2 for further details about flavor macros.

The main text uses italicized type when a term is being defined, and monospace font for examples and ref-
erences to constants such as 0, 1, or x values.

A.2 Tokens

PSL syntax is defined in terms of primitive tokens, which are character sequences that act as distinct sym-
bols in the language.

Each PSL keyword is a single token. Some keywords end in one or two non-alphabetic characters (‘!’ or ‘_’
or both). Those characters are part of the keyword, not separate tokens.

Each of the following character sequences is also a token:

[] () { }

, ; : .. = :=

* + |-> |=> <-> ->

 [* [+] [-> [=

&& & || | !

$ @ . /

Finally, for a given flavor, the tokens of the corresponding HDL are tokens of PSL.

A.3 HDL dependencies

PSL depends upon the syntax and semantics of an underlying hardware description language. In particular,
PSL syntax includes productions that refer to nonterminals in SystemVerilog, Verilog, VHDL, or GDL. PSL
syntax also includes Flavor Macros that cause each flavor of PSL to match that of the underlying HDL for
that flavor.
136 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 137 –

BS IEC 62531:2012
For SystemVerilog, the PSL syntax refers to the following nonterminals in the IEEE Std 1800 syntax:

— module_or_generate_item_declaration
— module_or_generate_item
— list_of_variable_identifiers
— identifier
— expression
— constant_expression

For Verilog, the PSL syntax refers to the following nonterminals in the IEC/IEEE 62142 syntax:

— module_or_generate_item_declaration
— module_or_generate_item
— list_of_variable_identifiers
— identifier
— expression
— constant_expression
— task_port_type

For VHDL, the PSL syntax refers to the following nonterminals in the IEEE Std 1076 syntax:

— block_declarative_item
— concurrent_statement
— design_unit
— identifier
— expression
— entity_aspect

For SystemC, the PSL syntax refers to the following nonterminals in the IEEE Std 1666 syntax:

— simple_type_specifier
— expression
— event_expression
— declaration
— statement
— identifier

For GDL, the PSL syntax refers to the following nonterminals in the GDL syntax:

— module_item_declaration
— module_item
— module_declaration
— identifier
— expression

A.3.1 Verilog extensions

For the Verilog flavor, PSL extends the forms of declaration that can be used in the modeling layer by defin-
ing two additional forms of type declaration.
Copyright © 2010 IEEE. All rights reserved. 137

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 138 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Extended_Verilog_Declaration ::=
Verilog_module_or_generate_item_declaration

| Extended_Verilog_Type_Declaration

Extended_Verilog_Type_Declaration ::=
Finite_Integer_Type_Declaration

| Structure_Type_Declaration

Finite_Integer_Type_Declaration ::=
integer Integer_Range list_of_variable_identifiers ;

Structure_Type_Declaration ::=
struct { Declaration_List } list_of_variable_identifiers ;

Integer_Range ::=
(constant_expression : constant_expression)

Declaration_List ::=
HDL_Variable_or_Net_Declaration { HDL_Variable_or_Net_Declaration }

HDL_Variable_or_Net_Declaration ::=
net_declaration

| reg_declaration
| integer_declaration

A.3.2 Flavor macros

Flavor Macro DEF_SYM =
SystemVerilog: = / Verilog: = / VHDL: is / SystemC: = / GDL: :=

Flavor Macro RANGE_SYM =
SystemVerilog: : / Verilog: : / VHDL: to / SystemC: : / GDL: ..

Flavor Macro AND_OP =
SystemVerilog: && / Verilog: && / VHDL: and / SystemC: && / GDL: &

Flavor Macro OR_OP =
SystemVerilog: || / Verilog: || / VHDL: or / SystemC: || / GDL: |

Flavor Macro NOT_OP =
SystemVerilog: ! / Verilog: ! / VHDL: not / SystemC: ! / GDL: !

Flavor Macro MIN_VAL =
SystemVerilog: 0 / Verilog: 0 / VHDL: 0 / SystemC: 0 / GDL: null

Flavor Macro MAX_VAL =
SystemVerilog: $ / Verilog: inf / VHDL: inf / SystemC: inf / GDL: null
138 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 139 –

BS IEC 62531:2012
Flavor Macro HDL_EXPR =
SystemVerilog: SystemVerilog_Expression
/ Verilog: Verilog_Expression
/ VHDL: VHDL_Expression
/ SystemC: SystemC_Expression
/ GDL: GDL_Expression

Flavor Macro HDL_CLOCK_EXPR =
 SystemVerilog: SystemVerilog_Event_Expression
/ Verilog: Verilog_Event_Expression
/ VHDL: VHDL_Expression
/ SystemC: SystemC_Event_Expression
/ GDL: GDL_Expression

Flavor Macro HDL_UNIT =
SystemVerilog: SystemVerilog_module_declaration
/ Verilog: Verilog_module_declaration
/ VHDL: VHDL_design_unit
/ SystemC: SystemC_class_sc_module
/ GDL: GDL_module_declaration

Flavor Macro HDL_DECL =
SystemVerilog: SystemVerilog_module_or_generate_item_declaration
/ Verilog: Extended_Verilog_Declaration
/ VHDL: VHDL_block_declarative_item
/ SystemC: SystemC_declaration
/ GDL: GDL_module_item_declaration

Flavor Macro HDL_STMT =
SystemVerilog: SystemVerilog_module_or_generate_item
/ Verilog: Verilog_module_or_generate_item
/ VHDL: VHDL_concurrent_statement
/ SystemC: SystemC_statement
/ GDL: GDL_module_item

Flavor Macro HDL_SEQ_ STMT =
SystemVerilog: SystemVerilog_statement_item
/ Verilog: Verilog_statement
/ VHDL: VHDL_sequential_statement
/ SystemC: SystemC_statement
/ GDL: GDL_process_item

Flavor Macro HDL_VARIABLE_TYPE =
SystemVerilog : SystemVerilog_data_type

/ Verilog : Verilog_Variable_Type
/ VHDL : VHDL_subtype_indication
/ SystemC: SystemC_simple_type_specifier
/ GDL : GDL_variable_type

Flavor Macro HDL_RANGE =
VHDL: range_attribute_name

Flavor Macro LEFT_SYM =
SystemVerilog: [/ Verilog: [/ VHDL: (/ SystemC: (/ GDL: (
Copyright © 2010 IEEE. All rights reserved. 139

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 140 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Flavor Macro RIGHT_SYM =
SystemVerilog:] / Verilog:] / VHDL:) / SystemC:) / GDL:)

A.4 Syntax productions

The rest of this annex defines the PSL syntax.

A.4.1 Verification units

PSL_Specification ::=
{ Verification_Item }

Verification_Unit ::=
Vunit_Type PSL_Identifier [(Context_Spec)] {

{ Inherit_Spec }
 { Override_Spec }
 { Vunit_Item }
}
Vunit_Type ::=

vunit | vpkg | vprop | vmode
Context_Spec ::=

Binding_Spec | Formal_Parameter_List

Binding_Spec ::=
 Hierarchical_HDL_Name

Hierarchical_HDL_Name ::=
HDL_Module_NAME { Path_Separator instance_Name }

HDL_Module_Name ::=
HDL_Module_Name [(HDL_Module_Name)]

Path_Separator ::=
 . | /

instance_Name ::=
HDL_or_PSL_Identifier

Inherit_Spec ::=
[nontransitive] inherit vunit_Name { , vunit_Name } ;

Vunit_Item ::=
HDL_DECL
 | HDL_STMT
 | PSL_Declaration
 | PSL_Directive
| Vunit_Instance

Override_Spec ::=
 'override' Name_List ;

Name_List ::=
 Name { ',' Name }

Formal_Parameter_List ::=
Formal_Parameter { ; Formal_Parameter }
140 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 141 –

BS IEC 62531:2012
A.4.2 PSL declarations

PSL_Declaration ::=
Property_Declaration

| Sequence_Declaration
| Clock_Declaration

Property_Declaration ::=
property PSL_Identifier [(Formal_Parameter_List)] DEF_SYM Property ;

Formal_Parameter_List ::=
Formal_Parameter { ; Formal_Parameter }

Formal_Parameter ::=
Param_Spec PSL_Identifier { , PSL_Identifier }

Param_Spec ::=
const

| [const | mutable] Value_Parameter
| sequence
| property

Value_Parameter ::=
HDL_Type

| PSL_Type_Class

HDL_Type ::=
hdltype HDL_VARIABLE_TYPE

PSL_Type_Class ::=
boolean | bit | bitvector | numeric | string

Sequence_Declaration ::=
sequence PSL_Identifier [(Formal_Parameter_List)] DEF_SYM Sequence ;

Clock_Declaration ::=
default clock DEF_SYM Clock_Expression ;

Clock_Expression ::=
 boolean_Name
| boolean_Built_In_Function_Call
| (Boolean)
| (HDL_CLOCK_EXPR)

Actual_Parameter_List ::=
Actual_Parameter { , Actual_Parameter }

Actual_Parameter ::=
AnyType|Number | Boolean | Property | Sequence
Copyright © 2010 IEEE. All rights reserved. 141

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 142 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
A.4.3 PSL directives

PSL_Directive ::=
[Label :] Verification_Directive

Label ::=
PSL_Identifier

HDL_or_PSL_Identifier ::=
 SystemVerilog_Identifier
| Verilog_Identifier
| VHDL_Identifier
| SystemC_Identifier
| GDL_Identifier
| PSL_Identifier

Verification_Directive ::=
Assert_Directive

| Assume_Directive
| Restrict_Directive
| Restrict!_Directive
| Cover_Directive
| Fairness_Statement

Assert_Directive ::=
assert Property [report String] ;

Assume_Directive ::=
assume Property ;

Restrict_Directive ::=
restrict Sequence ;

Restrict!_Directive ::=
restrict! Sequence ;

Cover_Directive ::=
cover Sequence [report String] ;

Fairness_Statement ::=
fairness Boolean ;

| strong fairness Boolean , Boolean ;

A.4.4 PSL properties

Property ::=
Replicator Property

| FL_Property
| OBE_Property

Replicator ::=
forall Parameter_Definition :
142 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 143 –

BS IEC 62531:2012
Index_Range ::=
 LEFT_SYM finite_Range RIGHT_SYM
| (HDL_RANGE)

Value_Set ::=
{ Value_Range { , Value_Range } }

| boolean

Value_Range ::=
Value

| finite_Range

Value ::=
Boolean
| Number

Proc_Block ::=
[[Proc_Block_Item { Proc_Block_Item }]]

Proc_Block_Item::=
HDL_DECL
| HDL_SEQ_STMT

FL_Property ::=
Boolean

| ([[[HDL_DECL {,HDL_DECL}]]] FL_Property)
| Sequence [!]
| FL_property_Name [(Actual_Parameter_List)]
| FL_Property @ Clock_Expression
| FL_Property abort Boolean
| FL_Property async_abort Boolean
| FL_Property sync_abort Boolean
| Parameterized_Property

: Logical Operators :
| NOT_OP FL_Property
| FL_Property AND_OP FL_Property
| FL_Property OR_OP FL_Property
:
| FL_Property -> FL_Property
| FL_Property <-> FL_Property

: Primitive LTL Operators :
| X FL_Property
| X! FL_Property
| F FL_Property
| G FL_Property
| [FL_Property U FL_Property]
| [FL_Property W FL_Property]

: Simple Temporal Operators :
| always FL_Property
| never FL_Property
| next FL_Property
| next! FL_Property
Copyright © 2010 IEEE. All rights reserved. 143

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 144 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
| eventually! FL_Property
:
| FL_Property until! FL_Property
| FL_Property until FL_Property
| FL_Property until!_ FL_Property
| FL_Property until_ FL_Property
:
| FL_Property before! FL_Property
| FL_Property before FL_Property
| FL_Property before!_ FL_Property
| FL_Property before_ FL_Property

: Extended Next (Event) Operators :
| X [Number] (FL_Property)
| X! [Number] (FL_Property)
| next [Number] (FL_Property)
| next! [Number] (FL_Property)
:(see A.4.7)
| next_a [finite_Range] (FL_Property)
| next_a! [finite_Range] (FL_Property)
| next_e [finite_Range] (FL_Property)
| next_e! [finite_Range] (FL_Property)
:
| next_event! (Boolean) (FL_Property)
| next_event (Boolean) (FL_Property)
| next_event! (Boolean) [positive_Number] (FL_Property)
| next_event (Boolean) [positive_Number] (FL_Property)
:
| next_event_a! (Boolean) [finite_positive_Range] (FL_Property)
| next_event_a (Boolean) [finite_positive_Range] (FL_Property)
| next_event_e! (Boolean) [finite_positive_Range] (FL_Property)
| next_event_e (Boolean) [finite_positive_Range] (FL_Property)

: Operators on SEREs :
| { SERE } (FL_Property)
| Sequence |-> FL_Property
| Sequence |=> FL_Property

A.4.5 Sequential Extended Regular Expressions (SEREs)

SERE ::=
 Boolean
| Boolean Proc_Block
| Sequence
| SERE ; SERE
| SERE : SERE
| Compound_SERE

Compound_SERE ::=
Repeated_SERE

| Braced_SERE
| Clocked_SERE

 | Compound_SERE | Compound_SERE
| Compound_SERE & Compound_SERE
144 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 145 –

BS IEC 62531:2012
| Compound_SERE && Compound_SERE
| Compound_SERE within Compound_SERE
| Parameterized_SERE

A.4.6 Parameterized Properties and SEREs

Parameterized_Property ::=
for Parameters_Definition : And_Or_Property_OP (FL_Property)

Parameterized_SERE ::=
for Parameters_Definition : And_Or_SERE_OP { SERE }

Parameters_Definition ::=
Parameter_Definition { Parameter_Definition }

Parameter_Definition ::=
PSL_Identifier [Index_Range] in Value_Set

And_OR_Property_OP ::=
AND_OP

| OR_OP

And_Or_SERE_Op :: =
&& | & | |

A.4.7 Sequences

Sequence ::=
 Sequence_Instance
| Repeated_SERE
| Braced_SERE
| Clocked_SERE
| Sequence Proc_Block

Repeated_SERE ::=
 Boolean [* [Count]]
| Sequence [* [Count]]
| [* [Count]]
| Boolean [+]
| Sequence [+]
| [+]
| Boolean [= Count]
| Boolean [-> [positive_Count]]
| Boolean Proc_Block
| Sequence Proc_Block

Braced_SERE ::=
{ [[[HDL DECL {HDL DECL}]]] SERE }
| { [free HDL Identifier {HDL Identifier}] SERE }
Copyright © 2010 IEEE. All rights reserved. 145

IEEE
Std 1850-2010 IEEE STANDARD FOR

– 146 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Sequence_Instance ::=
 sequence_Name [(Actual_Parameter_List)]

Clocked_SERE ::=
 Braced_SERE @ Clock_Expression

Count ::=
 Number
| Range

Range ::=
 Low_Bound RANGE_SYM High_Bound

Low_Bound ::=
 Number
| MIN_VAL

High_Bound ::=
 Number
| MAX_VAL

A.4.8 Forms of expression

Any_Type ::=
HDL_or_PSL_Expression

Bit ::=
bit_HDL_or_PSL_Expression

Boolean ::=
boolean_HDL_or_PSL_Expression

BitVector ::=
bitvector_HDL_or_PSL_Expression

Number ::=
numeric_HDL_or_PSL_Expression

String ::=
string_HDL_or_PSL_Expression

HDL_or_PSL_Expression ::=
 HDL_Expression
| PSL_Expression
| Built_In_Function_Call
| Union_Expression

HDL_Expression ::=
 HDL_EXPR

PSL_Expression ::=
 Boolean -> Boolean
| Boolean <-> Boolean
146 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 147 –

BS IEC 62531:2012
Built_In_Function_Call ::=
prev (Any_Type [, Number [, Clock_Expression]])

| next (Any_Type)
| stable (Any_Type [, Clock_Expression])
| rose (Bit [, Clock_Expression])
| fell (Bit [, Clock_Expression])
| ended (Sequence [, Clock_Expression])
| isunknown (BitVector)
| countones (BitVector)
| onehot (BitVector)
| onehot0 (BitVector)
| nondet (Value_Set)
| nondet_vector (Number, Value_Set)

Union_Expression ::=
Any_Type union Any_Type

A.4.9 Optional Branching Extension

OBE_Property ::=
Boolean

| (OBE_Property)
| OBE_property_Name [(Actual_Parameter_List)]

: Logical Operators :
| NOT_OP OBE_Property
| OBE_Property AND_OP OBE_Property
| OBE_Property OR_OP OBE_Property
| OBE_Property -> OBE_Property
| OBE_Property <-> OBE_Property

: Universal Operators :
| AX OBE_Property
| AG OBE_Property
| AF OBE_Property
| A [OBE_Property U OBE_Property]

:
Existential Operators :

| EX OBE_Property
| EG OBE_Property
| EF OBE_Property
| E [OBE_Property U OBE_Property]
Copyright © 2010 IEEE. All rights reserved. 147

– 148 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012

A

(n

Fo
ca

Th

B

Ta
tex

NO

Fo

(gi

Gr

B

Th
of
do

IEC 62531:2012
IEEE Std 1850-2010 – 149 –

BS IEC 62531:2012
nnex B

ormative)

rmal Syntax and Semantics of IEEE Std 1850 Property Specifi-
tion Language (PSL)

is annex formally describes the syntax and semantics of the temporal layer.

.1 Typed-text representation of symbols

ble B.1 shows the mapping of various symbols used in this definition to the corresponding typed-
t PSL representation, in the different flavors.

Table B.1: Typed-text symbols in the SystemVerilog, Verilog, VHDL, SystemC and GDL flavors

SystemVerilog Verilog VHDL SystemC GDL

→ |-> |-> |-> |-> |->

⇒ |=> |=> |=> |=> |=>
→ -> -> -> -> ->
↔ <-> <-> <-> <-> <->
¬ ! ! not ! !
∧ && && and && &
∨ || || or || |
.. : : to : ..
〈 〉 [] [] () () ()
← <= <= <= = :=

∪ | | | | |
∩ && && && && &&
· ; ; ; ; ;
◦ : : : : :

Z←E [[equivalent sequence of assignments in the flavor language]]
var(Z) [[declaration of Z in the flavor language]]
free(Z) [[free(Z)]]

TE −
r reasons of simplicity, the syntax given herein is more flexible than the one defined by the extended BNF

ven in Annex A). That is, some of the expressions which are legal here are not legal under the BNF

ammar. Users should use the stricter syntax, as defined by the BNF grammar in Annex A.

.2 Syntax

e logic PSL is defined with respect to a non-empty finite set of atomic propositions P , a finite set
local variables V with a finite domain D, a given set of (unary and binary) operators O over the
main D. We assume that t and f belong to D.
The definition of Boolean expressions, expressions and SEREs is given by mutual induction.

De
tha
an

W
is,

pr

De
¯
Le

De
an
of
ind

W
Z
us

De
va
set

NO

Th

De
Bo

De

– 150 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
finition 1 (Boolean Expressions) Let ¯b ∈ O and ⊗b ∈ O be unary and binary operators such
t ¯b : D 7→ {t, f} and ⊗b : D2 7→ {t, f}. Let p ∈ P and let k be a non-negative integer. Let e be
expression and r a SERE.
The set of Boolean expressions B is defined inductively as follows:

b ::= p | ¯b e | e⊗b e | prev(b, k) | ended(r)

e refer to a Boolean expression that does not use local variables and does not refer to the past (that
does not use prev or ended) as a basic Boolean expression.

We use true and false as abbreviations for p∨¬p and p∧¬p, respectively, where p is some atomic
oposition, and ∨,∧ ∈ ⊗b and ¬ ∈ ¯b are defined in the usual way.

finition 2 (Expressions) Let b ∈ B be a Boolean expression and y ∈ V be a local variable. Let
∈ O and ⊗ ∈ O be unary and binary operators, respectively, such that ¯ : D 7→ D and ⊗ : D2 7→ D.
t k be a non-negative integer.
The set of expressions E is defined inductively as follows:

e ::= b | y | ¯ e | e⊗ e | prev(e, k)

finition 3 (Sequential Extended Regular Expressions (SEREs)) Let e be an expression
d d a value in D. Let Z be a (possibly empty) finite sequence of local variables. Let E be a sequence
expressions of the same length as Z. Let b be a Boolean expression.The set of SEREs is defined
uctively as follows:

r ::= [∗0] | e=d,Z←E | r · r | r ◦ r | r[+] | r ∪ r | r ∩ r
{r} | {var(Z) r} | {free(Z) r} | r@b |

e sometimes use to denote the empty assignment, i.e. an assignment of the form Z←E where
is an empty sequence. For an expression e and value d, we use e=d to abbreviate e=d, and we
e e to abbreviate e=t and e=t, .

finition 4 (Formulas) Let k be a non-negative integer, r a SERE, Z ⊆ V a finite set of local
riables. Let b be a Boolean expression. Let t be a SERE that does not refer to local variables. The
of FL formulas is defined inductively as follows:

ϕ ::= r! | r | r →ϕ | (ϕ) | ¬ϕ | ϕ ∧ ϕ
X![k] ϕ | ϕ U ϕ | ϕ sync abort t | (var(Z) ϕ) | ϕ@b

TE −
e formula ϕ sync abort t is only accessible to the user when t is a Boolean expression.

finition 5 (Formulas of the Optional Branching Extension (OBE)) Let b be a basic
olean expression. The set of OBE formulas is defined inductively as follows:

f ::= b | (f) | ¬f | f ∧ f | EXf | E[f U f] | EGf

finition 6 (PSL Formulas)

1. Every FL formula is a PSL formula.

2. Every OBE formula is a PSL formula.

In Section B.4, we show additional operators which provide syntactic sugaring to the ones above.

B

Th
(S
is
fun

π
π
ev
th
L(
infi

B.

W
ref

B.

Th
or
an

ass
us

us
ov
{w
Fo
de
co

to
wi

at
an
po

lan

De

de

IEC 62531:2012
IEEE Std 1850-2010 – 151 –

BS IEC 62531:2012
.3 Semantics

e semantics of PSL formulas are defined with respect to a model. A model is a quintuple
, S0, R, P , L), where S is a finite set of states, S0 ⊆ S is a set of initial states, R ⊆ S × S
the transition relation, P is a non-empty set of atomic propositions, and L is the valuation, a
ction L : S −→ 2P , mapping each state with a set of atomic propositions valid in that state.
A path π is a possibly empty finite (or infinite) sequence of states π = (π0, π1, π2, · · · , πn) (or

= (π0, π1, π2, · · ·)). A computation path π of a model M is a non-empty finite (or infinite) path
such that π0 ∈ S0 and for every i < n, R(πi, πi+1) and for no s, R(πn, s) (or such that for
ery i, R(πi, πi+1)). Given a finite (or infinite) path π, we overload L, to denote the extension of
e valuation function L from states to paths as follows: L(π) = L(π0)L(π1) . . . L(πn) (or L(π) =
π0)L(π1) . . .). Thus, we have a mapping from states in M to letters of 2P , and from finite (or
nite) paths in M to finite (or infinite) words over 2P .

3.1 Semantics of FL formulas

e first define the semantics without the clock operator (@), local variables, or expressions that
er to the past (prev() and ended()). Then we define the full semantics.

3.1.1 The Basic Semantics

e basic semantics are the semantics of formulas without the clock operator (@), local variables
expressions that refer to the past (prev() and ended()). In the basic semantics, D = {true, false}
d all expressions are basic Boolean expressions.
We denote an element of P by p and an element of D by d. Let Σ be the set of all possible
ignments to the atomic propositions P (i.e., Σ = 2P). We denote an element of Σ by σ and we

e σ(p) to denote the truth value given to p by σ.
We use u, v, w to denote (possibly empty) words over Σ. We use a, b, c to denote letters over Σ. We

e ε to denote the empty word. We use · and ◦ to denote concatenation and concatenation with one
erlapping letter, respectively. Formally, given languages L1 and L2 we use L1·L2 to denote the set
1w2 | w1 ∈ L1 and w2 ∈ L2}. We use L1◦L2 to denote the set {w1`w2 | w1` ∈ L1 and `w2 ∈ L2}.
r a language L we use L0 to denote {ε}. We use Li to denote Li−1·L. We use L∗ and L+ to
note

⋃
i≥0 Li and

⋃
i>0 Li, respectively. We use Lω for the language composed of infinitely many

ncatenations of L with itself. We use L∞ for the union L∗ ∪ Lω.
For a finite/infinite word w where w = a0a1 · · · an or w = a0a1a2 · · · and integers i, j we use wi

denote the (i+1)th letter of w. That is, wi = ai. We use wi.. to denote the suffix of w starting at
. That is, wi.. = aiai+1 · · · an or wi.. = aiai+1 · · ·. We use wi..j to denote the finite word starting
position i and ending at position j. That is, wi..j = aiai+1 · · · aj . We make use of an “overflow”
d “underflow” for the positions of w. That is, wi.. and wi..j are defined for i bigger than the last
sition of w and for j < i as follows: wi.. = wi..j = ε.
For d ∈ {t, f} and a (Boolean) expression e, the semantics of e = d, denoted B(e = d), is the
guage of all letters a on which e = d holds. It is defined formally as follows.

finition 7 (The Basic Boolean Semantics)

1. Base case:
− B(p=d) = {a | a(p) = d}

2. Standard operators:
− B(¯e=d) = {a | ∃d′∈D s.t. ¯(d′)=d and a∈B(e=d′)}
− B(e1 ⊗ e2=d) = {a | ∃d1, d2 ∈ D s.t. (d1 ⊗ d2)=d and a∈B(e1=d1) and a∈B(e2=d2)}

For a regular expression r the basic language of r, denoted L(r), is defined as follows, where

notes an empty sequence of assignments.

De

res
F(
fal
infi

De

De

υ ∈
vie
W

SE
str
so
A
stu
ne

de

De

– 152 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
finition 8 (The Basic Language of SEREs)

1. Base cases:
− L([∗0]) = ε − L(e=d,) = B(e=d)

2. Standard SERE operators:
− L({r}) = L(r) − L(r[+]) = L(r)+

− L(r1·r2) = L(r1)·L(r2) − L(r1 ∪ r2) = L(r1) ∪ L(r2)
− L(r1◦r2) = L(r1)◦L(r2) − L(r1 ∩ r2) = L(r1) ∩ L(r2)

The basic language of proper prefixes and the basic loop language of r, denoted F(r) and I(r)
pectively, will be used to define the semantics of a formula r (a weak SERE formula). Intuitively,
r) consists of finite proper prefixes of words in L(r), except that logical contradictions such as
se and structural contradictions such as {b}∩ {b·b} are considered satisfiable, and I(r) consists of
nite words in which we get “stuck forever” in a starred sub-expression of r.

finition 9 (The Basic Language of Proper Prefixes of SEREs)

1. Base cases:
− F([∗0]) = ∅ − F(e = d,) = ε

2. Standard SERE operators:
− F({r}) = F(r) − F(r[+]) = L(r)∗·F(r)
− F(r1·r2) = F(r1) ∪ (L(r1)·F(r2)) − F(r1 ∪ r2) = F(r1) ∪ F(r2)
− F(r1◦r2) = F(r1) ∪ (L(r1)◦F(r2)) − F(r1 ∩ r2) = F(r1) ∩ F(r2)

finition 10 (The Basic Loop Language of SEREs)

1. Base cases:
− I([∗0]) = ∅ − I(e=d,) = ∅

2. Standard SERE operators:
− I({r}) = I(r) − I(r[+]) = (L(r)∗·I(r)) ∪ L(r)ω

− I(r1·r2) = I(r1) ∪ (L(r1)·I(r2)) − I(r1 ∪ r2) = I(r1) ∪ I(r2)
− I(r1◦r2) = I(r1) ∪ (L(r1)◦I(r2)) − I(r1 ∩ r2) = I(r1) ∩ I(r2)

We define the semantics of a formula with respect to a word w and a context indicating the view
{s,n,w} (where s,n,w correspond to the strong, neutral and weak views, respectively). For a

w υ we use υ to denote the dual view which is s if υ = w, w if υ = s, and υ otherwise (if υ = n).
e use j and k below to denote non-negative integers.
The base cases for the definitions of a formula are strong and weak SEREs: r! and r. A strong
RE r! holds under the neutral or strong view if it has a non-empty prefix in the language of r. A
ong SERE r! holds under the weak view if it holds under the neutral view or the word “‘ended too
on” — that is, the word is a proper prefix of a word in the language of r (formally, w ∈ F(r)∪{ε}).
weak SERE r holds on a given word if the strong SERE r holds on that word or the word “got
ck forever” in a starred sub-SERE of r. That is, w ∈ I(r). In addition, under the weak and

utral views the word may “end too soon”.
The relation w |=υ ϕ, read “w models ϕ in the view υ under the basic semantics”, is formally

fined as follows.

finition 11 (Satisfaction in the Basic Semantics)

i. w |=υ r! ⇐⇒ either ∃j s.t. w0..j ∈ L(r)
or (υ = w and w ∈ F(r) ∪ {ε})

υ 0..j
ii. w |= r ⇐⇒ either ∃j s.t. w ∈ L(r) or w ∈ I(r)
or (υ ∈ {w,n} and w ∈ F(r) ∪ {ε})

i

i

v

v

vi

i

De

NO

i

IEC 62531:2012
IEEE Std 1850-2010 – 153 –

BS IEC 62531:2012
ii. w |=υ r → ϕ ⇐⇒ ∀j s.t. w0..j ∈ L(r) we have that wj.. |=υ ϕ and
either υ ∈ {w,n} or w /∈ F(r) ∪ {ε}

v. w |=υ (ϕ) ⇐⇒ w |=υ ϕ

v. w |=υ ¬ϕ ⇐⇒ w |=/υ ϕ

i. w |=υ ϕ ∧ ψ ⇐⇒ w |=υ ϕ and w |=υ ψ

ii. w |=υ X! [k] ϕ ⇐⇒ either w0..k ∈ L(true [k+1]) and wk.. |=υ ϕ
or (υ = w and w ∈ F(true [k+1]) ∪ {ε})

ii. w |=υ ϕU ψ ⇐⇒ ∃k s.t. w |=υ X! [k] ψ and ∀j < k, w |=υ X! [j] ϕ

x. w |=υ ϕ sync abort t ⇐⇒ either w |=υ ϕ or ∃j, k s.t. wj..k ∈ L(t) and w0..k−1 |=w ϕ

finition 12 (Holds Weakly, Neutrally, Strongly, Pending and Fails in the Basic Semantics)
Let w be a word and ϕ a PSL formula.

− ϕ holds weakly on w in the basic semantics if w |=w ϕ.

− ϕ holds (neutrally) on w in the basic semantics if w |=n ϕ.

− ϕ holds strongly on w in the basic semantics if w |=s ϕ.

− ϕ is pending on word w iff w |=w ϕ and w |=/n ϕ

− ϕ fails on word w iff w |=/w ϕ

TES −
i. The semantics given here for the ltl operators under the neutral view and in the absence of non-

degenerate SEREs is equivalent to the standard ltl semantics Manna and Pnueli [B10], Pnueli [B11].
In particular, the semantics of X! and U under the neutral view can be equivalently phrased as follows:

− w |=n X! [k] ϕ ⇐⇒ |w| > k and wk.. |=n ϕ

− w |=n ϕ U ψ ⇐⇒ ∃k s.t. wk.. |=n ψ and ∀j < k, wj.. |=n ϕ

The semantics of these operators are phrased as they are in Definition 11 since this form is more
similar to the one for full semantics.

ii. The semantics given here for the ltl operators and the sync abort operator is equivalent to the trun-
cated semantics given in Eisner et al. [B1] where |=s , |=n and |=w are denoted |=+

, |= and |=−, respec-
tively, and sync abort is denoted trunc w.

ii. For FL formulas without the ∩ operator, the semantics here is equivalent to the semantics given in
the previous version of the standard (IEEE 1850-2005) where words are interpreted over 2P ∪{>,⊥}.
Then, as shown in Eisner et al. [B3], the three following equivalences hold for a formula ϕ of ltltrunc:

w |=w ϕ ⇐⇒ w>ω |= ϕ

w |=n ϕ ⇐⇒ w |= ϕ

w |=s ϕ ⇐⇒ w⊥ω |= ϕ

iv. As in Eisner et al. [B1], for an infinite word w and a formula ϕ the three views coincide. That is,

w |=w ϕ ⇐⇒ w |=n ϕ ⇐⇒ w |=s ϕ when w is infinite.

v. There is a subtle difference between Boolean negation and formula negation. For instance, consider
the formula ¬b. If ¬ is Boolean negation, then ¬b is equivalent to formula {¬b}, which holds on an
empty path. If ¬ is formula negation, then ¬b is equivalent to formula ¬{b}, which does not hold
on an empty path. Rather than introduce distinct operators for Boolean and formula negation, we
instead adopt the convention that negation applied to a Boolean expression is Boolean negation. This

does not restrict expressivity, as braces can be used to get formula negation.

B.

In
va

B.

In
th
us
NO

Th

ap

clo

res

B.

In
co

th
pr
(i.
th

ov
let
W
co

(i.
of
va
ass
NO

Th

B.

In

– 154 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
vi. For FL formulas including the ∩ operator, the semantics here differs from the semantics given in the
previous version of the standard (IEEE 1850-2005) for formulas including structural contradictions
such as {a}∩{a·a}. In the previous version of the standard, the formula {a·b[∗]·r} holds weakly on an
infinite path such that a holds on the first letter and b on all the rest if r is a logical contradiction such
as false, but not if r is a structural contradiction such as {c} ∩ {c·c}. In the semantics presented here,
logical and structural contradictions are treated in a consistent manner. We achieve this by eliminating
letters > and ⊥ and including instead a context which represents the view (strong, neutral or weak)
and three languages for a SERE. The language L(r) corresponds to tight satisfaction of the previous
version of the semantics. Intuitively, the language of proper prefixes F(r) consists of finite proper
prefixes of words in L(r) except that logical and structural contradictions are considered satisfiable.
The loop language I(r) consists of infinite words in which we get “stuck forever” in a starred sub-
expression of r. See Eisner and Fisman [B6] for a thorough study of this subject.

3.1.2 The Full Semantics

the full semantics we add the following to the basic semantics: the clock operator (@), local
riables, and expressions that refer to the past (prev() and ended()).

3.1.2.1 Supporting the clock operator @

order to support the clock operator @, we add a context κ — a Boolean expression that remembers
e current clock. In addition, we define three languages no tick, tick and past tick, each of which
es the clock context (see Definition 19).
TE −
e clocked semantics for the ltl subset follows Eisner et al. [B2], with the exception that strength is

plied at the SERE level rather than at the propositional level. Furthermore, following Fisman [B8]

ck alignment operators are added. The clock strong and weak alignment operators are X![0] and X[0],

pectively.

3.1.2.2 Supporting local variables

order to support local variables we use an enhanced alphabet Υ as defined below, and we add a
ntext Y that remembers the set of local variables currently in scope.
We denote an element of P by p, an element of V by x, y or z, and an element of D by d. Recall

at D can be any finite superset of {t, f}. Let Σ be the set of all possible assignments to the atomic
opositions P (i.e., Σ = 2P). Let Γ be the set of all possible valuations of the local variables in V
e., Γ = DV). We denote an element of Σ by σ and an element of Γ by γ. We use σ(p) to denote
e truth value given to p by σ, and γ(y) to denote the value given to y by γ.
We use Υ to denote the alphabet Σ×Γ×Γ. We use u, v,w,h to denote (possibly empty) words

er Υ. We use a,b, c to denote letters over Υ. We refer to letters and words over Υ as enhanced
ters and enhanced words, respectively. Let w = (σ0, γ0, γ

′
0)(σ1, γ1, γ

′
1) · · · be an enhanced word.

e use w|σ,w|γ ,w|γ′ to denote the word obtained from w by leaving only the first, second or third
mponent, respectively. That is w|σ = σ0σ1 · · ·, w|γ = γ0γ1 · · · and w|γ′ = γ′0γ

′
1 · · ·.

The intuitive roles of the components of a letter are as follows. The first component of a letter a
e. a|σ) holds the valuation of the atomic propositions at the given cycle. The second component
a letter a (i.e. a|γ) holds the current values of the local variables at the given cycle (the pre-
lue). The third component of a letter a (i.e. a|γ′) holds the values of the local variables after the
ignments have taken place (the post-value).
TE −
e semantics for local variables follows the semantics proposed in Eisner and Fisman [B5,B7].

3.1.2.3 Supporting past expressions prev() and ended()
order to support past expressions prev() and ended() we use words with history defined as follows.

h
ref

let
we
his
to
co
h2

be
tw
do
let

De
of
an
−
−

L
de
co

we
� s
W
�i.

po
as

B.

Fo
loc
wh
wi
in

De

IEC 62531:2012
IEEE Std 1850-2010 – 155 –

BS IEC 62531:2012
We refer to a pair of words (h,w) as a word with history (or h-word for short) where intuitively
is the history and w is the present and future, with the first letter of w being the present. We
er to a pair (h,a) as an h-letter. We use � and � to denote h-words.
For standard words w1 and w2 from some alphabet, concatenation means simply placing the

ters of w2 after the letters of w1 to get the word w = w1w2. Concatenating h-words is similar, but
must account for history. Intuitively, the historical component h of an h-word (h,w) records the
torical context of w, for use in case we encounter a prev or ended operator. For concatenation
be consistent, then, concatenating h-words (h1,w1) and (h2,w2) should only be possible if h2

rrectly records the history seen by the resulting word just before it encounters w2. That is, if
= h1w1. Fusion of h-words is similar to concatenation, except that there is a one-letter overlap

tween the words being concatenated, where intuitively, the overlap letter is actually the merging of
o separate letters such that the σ components of the two letters agree, but the γ and γ′ components
not necessarily agree. This allows us to support an assignment taking place “in the middle of a
ter”, as we desire.

finition 13 (Concatenation and fusion of languages of h-words) Let L1 and L2 be sets
h-words. Their concatenation and fusion is defined as follows, where · and ◦ denote concatenation
d fusion, respectively.
L1·L2 = {(h1,u1u2) | (h1,u1) ∈ L1 and (h1u1,u2) ∈ L2}
L1◦L2 = {(h1, v1av2) | ∃γ̃ such that (h1, v1(a|σ,a|γ , γ̃)) ∈ L1 and (h1v1, (a|σ, γ̃,a|γ′)v2) ∈ L2}

We use � to denote the set {(h, ε) | h ∈ Υ∗} where ε denotes the empty word. For a language
of h-words we use L0 to denote the set �. We use Li to denote Li−1·L. We use L∗ and L+ to
note

⋃
i≥0 Li and

⋃
i>0 Li, respectively. We use Lω for the language composed of infinitely many

ncatenations of L with itself. We use L∞ for the union L∗ ∪ Lω.
For a finite/infinite h-word � = (h,w) where w = a0a1 · · ·an or w = a0a1a2 · · · and integers j, k
use �i to denote the letter (i+1)th letter of w. That is, �i = ai. We use �i.. to denote the suffix of
tarting at �i. That is, �i.. = (ha0a1 · · ·ai−1, aiai+1 · · ·an) or �i.. = (ha0a1 · · ·ai−1, aiai+1 · · ·).

e use �i..j to denote the finite word starting at position i and ending at position j. That is,
.j = (ha0a1 · · ·ai−1, aiai+1 · · ·aj). We make use of an “overflow” and “underflow” for the
sitions of �. That is, �j.. and �j..k are defined for j bigger than the last position of � and for k < j
follows: �j.. = �j..k = (hw, ε).

3.1.2.4 The Full Semantics

r a (Boolean) expression e = d, the Boolean semantics of e = d with respect to a given set of
al variables Y and a clock context κ, denoted Bκ,y(e), is the language of all h-letters (h,a) on
ich e = d holds. It is defined formally as follows. The definition is given by mutual induction
th the language of SEREs, denoted Lκ,y(·), given in Definition 20 and the definition of ticks given
Definition 19.

finition 14 (The Boolean Semantics)

1. Base cases:
− Bκ,y(p=d) = {(h,a) | a|σ(p) = d}
− Bκ,y(y=d) = {(h,a) | a|γ(y) = d}

2. Standard operators:
− Bκ,y(¯e=d) = {(h,a) | ∃d′ ∈ D s.t. ¯(d′)=d and (h,a)∈Bκ,y(e=d′)}

− Bκ,y(e1 ⊗ e2=d) =
{

(h,a)
∣∣∣∣
∃d1, d2 ∈ D s.t. (d1 ⊗ d2)=d and
(h,a)∈Bκ,y(e1=d1) and (h,a)∈Bκ,y(e2=d2)

}

3. Past expressions: { ∣∣ ∃u, v ∈ Υ∗ ∃b ∈ Υ s.t. ha = ubv and
}

− Bκ,y(prev(e, n)=d) = (h,a) ∣∣ (u,bv) ∈ past tickn+1
κ,y and (u,b) ∈ Bκ,y(e=d)

De
eκ

De
γ2

of
lik
th
zn

De
be
seq

W
me

su

De
be
lan

De
lan

mu

De

– 156 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
− Bκ,y(ended(r)=t) = {(h,a) | ∃u, v ∈ Υ∗ s.t. h = uv and (u, va) ∈ Lκ,y(r)}

finition 15 (The value of an expression) For an h-letter (h,a) and an expression e we use
,y(h,a) to denote the single element of the language {d | (h,a) ∈ Bκ,y(e=d)}.

finition 16 (Agrees Relative to Y) Let γ1, γ2 ∈ Γ and Y ⊆ V . We say that γ1 agrees with
relative to Y, denoted γ1

y∼ γ2, if for every y ∈ Y we have γ1(y) = γ2(y).

Given a sequence of assignments Z←E where Z = {z1, z2, . . . , zn} is a finite (possibly empty) set
local variables and E = {e1, e2 . . . , en} is a sequence of assignments of the same length, we would
e to compute the results of all these assignments taking place one after the other. That is, first
e assignment z1←e1 takes place, then the assignment z2←e2 takes place etc., until the assignment
←en takes place.

finition 17 (Sequence of Assignments) Let κ be a Boolean expression and Y ⊆ V . Let z
a local variable and e an expression. Let Z = z1, . . . , zn be a sequence of local variables and E a
uence of expressions E = e1, . . . , en of the same length.

− We write [z←e]κ,y(h,a) to denote the valuation γ̂ such that γ̂(z) = eκ,y(h,a) and for every
local variable y ∈ V \{z} we have that γ̂(y) = γ(y).

− We write [z1←e1, . . . , zn←en]κ,y(h,a) to denote the recursive application

[z2←e2, . . . , zn←en]κ,y(h, 〈a|σ, γ̂,a|γ′〉)

where γ̂ = [z1←e1]κ,y(h,a).

e write Z←E to abbreviate z1←e1, . . . , zn←en. If Z is empty we read Z←E as the empty assign-
nt and understand [Z←E]κ,y(h,a) to be a|γ .

The assignment language of Z←E formally defined below returns the set of all h-letters (h,a)
ch that a records correctly the assignment Z←E taking place at on a given the past is h.

finition 18 (The Assignment Language) Let κ be a Boolean expression and Y ⊆ V . Let Z
a sequence of local variables and E a sequence of expressions E of the same length. The assignment
guage of Z←E with respect to κ,Y is defined as follows.

− Aκ,y(Z←E) = {(h,a) | a|γ′ y∼ [Z←E]κ,y(h,a)}

finition 19 (no tick,tick,past tick) Let κ be a Boolean expression and Y ⊆ V . We define the
guages no tickκ,y, tickκ,y and past tickκ,y as follows:

− no tickκ,y = (Btrue,y(¬κ) ∩ Aκ,y())

− tickκ,y = (no tickκ,y)∗·Btrue,y(κ)

− past tickκ,y = Btrue,y(κ)·(no tickκ,y)∗

For a regular expression r the language of r with respect to κ,Y, denoted Lκ,y(r), is defined by
tual induction with Definition 14 as follows.

finition 20 (The Language of SEREs)

1. Base cases:
− Lκ,y([∗0]) = �
− Lκ,y(e=d,Z←E) = tickκ,y ∩ (Υ∗·(Bκ,y(e=d) ∩ Aκ,y(Z←E)))

De

De

κ
th
ne
if
int

va
th
sid
G (
sh
SE
ma
Σ
σ c

IEC 62531:2012
IEEE Std 1850-2010 – 157 –

BS IEC 62531:2012
2. Standard SERE operators:
− Lκ,y({r}) = Lκ,y(r) − Lκ,y(r[+]) = Lκ,y(r)

+

− Lκ,y(r1·r2) = Lκ,y(r1)·Lκ,y(r2) − Lκ,y(r1 ∪ r2) = Lκ,y(r1) ∪ Lκ,y(r2)
− Lκ,y(r1◦r2) = Lκ,y(r1)◦Lκ,y(r2) − Lκ,y(r1 ∩ r2) = Lκ,y(r1) ∩ Lκ,y(r2)

3. Context operators:
− Lκ,y({var(Z) r}) = Lκ,y∪z(r)
− Lκ,y({free(Z) r}) = Lκ,y\z(r)
− Lκ,y(r@b) = Lb,y(r)

finition 21 (The Language of Proper Prefixes of SEREs)

1. Base cases:
− Fκ,y([∗0]) = ∅
− Fκ,y(e = d,Z←E) = (no tickκ,y)∗

2. Standard SERE operators:
− Fκ,y({r}) = Fκ,y(r) − Fκ,y(r[+]) = Lκ,y(r)

∗·Fκ,y(r)
− Fκ,y(r1·r2) = Fκ,y(r1) ∪ (Lκ,y(r1)·Fκ,y(r2)) − Fκ,y(r1 ∪ r2) = Fκ,y(r1) ∪ Fκ,y(r2)
− Fκ,y(r1◦r2) = Fκ,y(r1) ∪ (Lκ,y(r1)◦Fκ,y(r2)) − Fκ,y(r1 ∩ r2) = Fκ,y(r1) ∩ Fκ,y(r2)

3. Context operators:
− Fκ,y({var(Z) r}) = Fκ,y∪z(r)
− Fκ,y({free(Z) r}) = Fκ,y\z(r)
− Fκ,y(r@b) = Fb,y(r)

finition 22 (The Loop Language of SEREs)

1. Base cases:
− Iκ,y([∗0]) = ∅
− Iκ,y(e=d,Z←E) = (no tickκ,y)ω

2. Standard SERE operators:
− Iκ,y({r}) = Iκ,y(r) − Iκ,y(r[+]) = (Lκ,y(r)

∗·Iκ,y(r)) ∪ Lκ,y(r)
ω

− Iκ,y(r1·r2) = Iκ,y(r1) ∪ (Lκ,y(r1)·Iκ,y(r2)) − Iκ,y(r1 ∪ r2) = Iκ,y(r1) ∪ Iκ,y(r2)
− Iκ,y(r1◦r2) = Iκ,y(r1) ∪ (Lκ,y(r1)◦Iκ,y(r2)) − Iκ,y(r1 ∩ r2) = Iκ,y(r1) ∩ Iκ,y(r2)

3. Context operators:
− Iκ,y({var(Z) r}) = Iκ,y∪z(r)
− Iκ,y({free(Z) r}) = Iκ,y\z(r)
− Iκ,y(r@b) = Ib,y(r)

We define the semantics of a formula with respect to an h-word � and a tuple τ = 〈κ,Y, υ〉 where
is a Boolean expression indicating the clock context, Y ⊆ V is a set of local variables indicating
e controlled variables, and υ ∈ {s,n,w} denotes the view (where s,n,w correspond to the strong,
utral and weak views, respectively). For a view υ we use υ to denote the dual view which is s
υ = w, w if υ = s, and υ otherwise (if υ = n). We use j and k below to denote non-negative
egers.
Intuitively, the semantics of local variables are such that an ltl operator does not change the

lue of a local variable. For example, in the formula G (var(z) {req, z←tag} → X! F(ack∧tag = z)),
e value of z “seen” by the operand of the F operator should be the value assigned by the left-hand
e of the suffix implication (exactly as in the following alternative formulation of the same property:
var(z) {req, z←tag} → {true·true[∗]·ack ∧ tag = z}!)). Conceptually, this means that a formula
ould “see” the value of the local variables as they were at the beginning of the word, unless a
RE is encountered, in which case the values “seen” should be those dictated by the assignments
de within the SERE. We accomplish this as follows: The semantics of w |= ϕ for a word w over
takes an initial context of local variables and holds it constant across an extended word w whose

omponent is exactly w. The semantics of r!, r and r → ϕ then release the constant value of local

va
va
th
th

De
b|γ
pre

De
equ

De
wo

De

i

i

v

v

vi

i

x

De
tha
w|
the
co

De
an

– 158 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
riables at the points on the word where a “match” of r is being checked. This allows the local
riables to be controlled by r. Finally, in the case of r → ϕ, “after” a match of r has been “seen”,
e semantics constrains the values of the local variables to take on constant values starting from
e end of the “match” of the SERE. We accomplish this using three auxiliary definitions, below.

finition 23 (Good) We say that w is good if w = ε or w = a or w = abv and bv is good and
= a|′γ , that is, the pre-value of the local variables on a letter is the same as the post-value on the
vious letter (i.e. is the result of the assignments that took place on the previous letter).

finition 24 (The equivalence class of � releasing γ) Let � = (h,w). Then J�K denotes the
ivalence class {(h′,w′) | h′ = h, w′ is good, w′|σ = w|σ and either w = w′ = ε or w0|γ = w′0|γ}.
finition 25 (Constraining γ on �) Let � = (h,w) and γ̂ ∈ Γ. Then �[(γ,γ′) ← γ̂] denotes the
rd �′ = (h′,w′) such that h′ = h, w′|σ = w|σ and w′|γ = w′|γ′ ∈ {γ̂}∞.

The relation � |=τ ϕ, read “� models ϕ in the context of τ”, is formally defined as follows.

finition 26 (Satisfaction on h-words)

i. � |=τ r! ⇐⇒ ∃� ∈ J�K s.t. either ∃j s.t. �0..j ∈ Lκ,y(r)
or (υ = w and � ∈ Fκ,y(r) ∪ �)

ii. � |=τ r ⇐⇒ ∃� ∈ J�K s.t. either ∃j s.t. �0..j ∈ Lκ,y(r) or � ∈ Iκ,y(r)
or (υ ∈ {w,n} and � ∈ Fκ,y(r) ∪ �)

ii. � |=τ r → ϕ ⇐⇒ ∀j ∀� ∈ J�K s.t. �0..j ∈ Lκ,y(r) we have that �j..[(γ,γ′) ← �j |γ′] |=τ ϕ and
either υ ∈ {w,n} or w /∈ Fκ,y(r) ∪ {ε}

v. � |=τ (ϕ) ⇐⇒ � |=τ ϕ

v. � |=τ ¬ϕ ⇐⇒ � |=/τ ϕ where τ = τ [υ←υ]

i. � |=τ ϕ ∧ ψ ⇐⇒ � |=τ ϕ and � |=τ ψ

ii. � |=τ X! [k] ϕ ⇐⇒ either ∃j s.t. �0..j ∈ Lκ,y(tick [k+1]) and �j.. |=υ ϕ
or (υ = w and � ∈ Fκ,y(tick [k+1]) ∪ �)

ii. � |=τ ϕUψ ⇐⇒ ∃k s.t. � |=τ X! [k] ψ and ∀j < k, � |=τ X! [j]ϕ

x. � |=τ ϕ sync abort t ⇐⇒ either � |=τ ϕ or ∃k s.t. �k.. |=τ ′ ended(t) and �0..k−1 |=τ ′′ϕ
where τ ′ = τ [υ←s] and τ ′′ = τ [υ←w]

x. � |=τ (var(Z) ϕ) ⇐⇒ � |=τ ′ ϕ where τ ′ = τ [Y←Y ∪ Z]

i. � |=τ ϕ@b ⇐⇒ � |=τ ′ ϕ where τ ′ = τ [κ←b]

finition 27 (Satisfaction over Σ) Let w be a word over Σ and ϕ be an FL formula. We say
t w models ϕ in the view υ, denoted w |=υ ϕ iff for all γ̂ ∈ Γ and all extended words w such that

σ = w we have that (ε,w)[(γ,γ′) ← γ̂] |=τυ ϕ, where τυ = 〈true, ∅, υ〉. That is, the past is empty,
pre- and post-values are γ on every letter, the initial clock context is true and the initial set of

ntrolled variables is empty.

finition 28 (Holds Weakly, Strong, Neutrally, Pending, Fails) Let w be a word over Σ
d ϕ an FL formula. We say that

− ϕ holds weakly on w if w |=w ϕ

− ϕ holds (neutrally) on w if w |=n ϕ

− ϕ holds strongly on w if w |=s ϕ

− ϕ is pending on word w iff w |=w ϕ and w |=/n ϕ

− ϕ fails on word w iff w |=/w ϕ

B.

Th
wo
no
∀s

Ba

fol

B

Th
po
ab

NO

Th

the

B.

Le
co

B.

Le
De

IEC 62531:2012
IEEE Std 1850-2010 – 159 –

BS IEC 62531:2012
3.2 Semantics of OBE formulas

e semantics of OBE formulas are defined over states in the model, rather than finite or infinite
rds. Let f be an OBE formula, M = (S, S0, R, P , L) a model and s ∈ S a state of the model. The
tation M, s |= f means that f holds in state s of model M . The notation M |= f is equivalent to
∈ S0 : M, s |= f . In other words, f is valid for every initial state of M .
The semantics of OBE formulas are defined inductively, using as the base case the semantics of
sic Boolean expressions over letters in 2P , as given in Definition 7.
The semantics of an OBE formula are those of standard CTL. The semantics are defined as

lows, where b denotes a Boolean expression and f , f1, and f2 denote OBE formulas.

1. M, s |= b ⇐⇒ L(s) ∈ B(b = t)

2. M, s |= (f) ⇐⇒ M, s |= f

3. M, s |= ¬f ⇐⇒ M, s 6|= f

4. M, s |= f1 ∧ f2 ⇐⇒ M, s |= f1 and M, s |= f2

5. M, s |= EX f ⇐⇒ there exists a computation path π of M such that |π| > 1, π0 = s, and
M, π1 |= f

6. M, s |= E[f1 U f2] ⇐⇒ there exists a computation path π of M such that π0 = s and there
exists k < |π| such that M, πk |= f2 and for every j such that j < k: M, πj |= f1

7. M, s |= EG f ⇐⇒ there exists a computation path π of M such that π0 = s and for every j
such that 0 ≤ j < |π|: M,πj |= f

.4 Syntactic Sugaring

e remainder of the temporal layer is syntactic sugar. In other words, it does not add expressive
wer, and every piece of syntactic sugar can be defined in terms of the basic operators presented
ove. The syntactic sugar is defined below.

TE −
e definitions given here do not necessarily represent the most efficient implementation. In some cases,

re is an equivalent syntactic sugaring, or a direct implementation, that is more efficient.

4.1 Additional Boolean expressions

t b ∈ B and e ∈ E . Then additional Boolean expressions can be viewed as abbreviations of the
re Boolean expressions given in Definition 1, as follows:

1. rose(b) def= ¬prev(b) ∧ b

2. fell(b) def= prev(b) ∧ ¬b

3. stable(e) def= prev(e) = e

4.2 Additional expressions

t e ∈ E . Then additional expressions can be viewed as abbreviations of the expressions given in
finition 2, as follows:

def
− prev(e) = prev(e, 1)

B.

W
th

Le

B.

Le
SE
as

1

1

1

1

1

1

– 160 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
4.3 Additional SEREs

e regard a procedural block as mechanism for both calculating a set of expressions and assigning
em to a set of local variables which are given to the procedural block as inputs. Formally,

− f(z1, . . . , zn) where f is a procedural block and z1, . . . , zn are local variables is interpreted as
an abbreviation for the sequence of assignments z1←ef1 , . . . , zn←efn

where ef1 , . . . , efn
are

expressions corresponding to intermediate calculations of f .

t b, c ∈ B and e ∈ E . Let k be a non-negative integer. Then the following are SEREs:

1. rose(b, c) def= rose(b)@c

2. fell(b, c) def= fell(b)@c

3. stable(e, c) def= stable(e)@c

4. prev(e, k, c) def= prev(e, k)@c

5. ended(r, c) def= ended(r)@c

4.4 Additional SERE operators

t i, j, k, and l be integer constants such that i ≥ 0, j ≥ i, k ≥ 1, l ≥ k. Then additional
RE operators can be viewed as abbreviations of the core SERE operators given in Definition 3,
follows, where b denotes a boolean expression, and r denotes a SERE.

1. r[∗] def= [∗0] ∪ r[+]

2. r[∗0] def= [∗0]

3. r[∗k] def=
k times︷ ︸︸ ︷
r·r·...·r

4. r[∗i..j] def= r[∗i] | ... | r[∗j]

5. r[∗i..] def= r[∗i]·r[∗]

6. r[∗..i] def= r[∗0] | ... | r[∗i]

7. r[∗..] def= r[∗0..]

8. [+] def= true[+]

9. [∗] def= true[∗]

0. [∗i] def= true[∗i]

1. [∗i..j] def= true[∗i..j]

2. [∗i..] def= true[∗i..]

3. [∗..i] def= true[∗..i]

4. [∗..] def= true[∗..]
def
5. b[= i] = {¬b[∗]·b}[∗i]·¬b[∗]

1

1

1

1

2

2

2

2

2

2

2

2

2

2

B.

Le
ca
a b

1

1

IEC 62531:2012
IEEE Std 1850-2010 – 161 –

BS IEC 62531:2012
6. b[= i..j] def= b[= i] | ... | b[= j]

7. b[= i..] def= b[= i]·[∗]

8. b[= ..i] def= b[= 0] | ... | b[= i]

9. b[= ..] def= b[= 0..]

0. b[→] def= ¬b[∗]·b

1. b[→ k] def= {¬b[∗]·b}[∗k]

2. b[→ k..l] def= b[→ k] | ... | b[→ l]

3. b[→ k..] def= b[→ k] | {b[→ k]·[∗]·b}

4. b[→ ..k] def= b[→ 1] | ... | b[→ k]

5. b[→ ..] def= b[→ 1..]

6. skip
def= {free(V) true} where V is the entire set of local variables

7. r1 & r2
def= { {r1·skip[∗]} ∩ r2 } ∪ { r1 ∩ {r2·skip[∗]} }

8. r1 within r2
def= {skip[∗]· r1· skip[∗]} ∩ {r2}

9. {var(Z←E) r} def= {var(Z) {{true,Z ← E}◦r} ∪ {[∗0] ∩ r}}

4.5 Additional FL operators

t i, j, k and l are integers such that i ≥ 0, j ≥ i, k > 0 and l ≥ k. Then additional FL operators
n be viewed as abbreviations of the core operators given in Definition 4, as follows, where b denotes
oolean expression, r, r1, and r2 denote SEREs, and ϕ, ϕ1, and ϕ2 denote FL formulas.

1. ϕ1 ∨ ϕ2
def= ¬(¬ϕ1 ∧ ¬ϕ2)

2. ϕ1 → ϕ2
def= ¬ϕ1 ∨ ϕ2

3. ϕ1 ↔ ϕ2
def= (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)

4. X[i]ϕ def= ¬X![i] ¬ϕ

5. X!ϕ
def= X![1] ϕ

6. Xϕ
def= X[1] ϕ

7. Fϕ
def= true U ϕ

8. Gϕ
def= ¬F¬ϕ

9. ϕ1 W ϕ2
def= (ϕ1 U ϕ2) ∨ Gϕ1

0. always ϕ
def= G ϕ
1. never ϕ
def= G ¬ϕ

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

– 162 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
2. next! ϕ
def= X! ϕ

3. next ϕ
def= X ϕ

4. eventually! ϕ
def= Fϕ

5. ϕ1 until! ϕ2
def= ϕ1 U ϕ2

6. ϕ1 until ϕ2
def= ϕ1 W ϕ2

7. ϕ1 until! ϕ2
def= ϕ1 U (ϕ1 ∧ ϕ2)

8. ϕ1 until ϕ2
def= ϕ1 W (ϕ1 ∧ ϕ2)

9. ϕ1 before! ϕ2
def= (¬ϕ2) U (ϕ1 ∧ ¬ϕ2)

0. ϕ1 before ϕ2
def= (¬ϕ2) W (ϕ1 ∧ ¬ϕ2)

1. ϕ1 before! ϕ2
def= (¬ϕ2) U ϕ1

2. ϕ1 before ϕ2
def= (¬ϕ2) W ϕ1

3. next![i] ϕ
def= X![i] ϕ

4. next[i] ϕ
def= X[i] ϕ

5. next a![i..j]ϕ def= (X![i]ϕ) ∧ . . . ∧ (X![j]ϕ)

6. next a[i..j]ϕ def= (X[i]ϕ) ∧ . . . ∧ (X[j]ϕ)

7. next e![i..j]ϕ def= (X![i]ϕ) ∨ . . . ∨ (X![j]ϕ)

8. next e[i..j]ϕ def= (X[i]ϕ) ∨ . . . ∨ (X[j]ϕ)

9. next event!(b)(ϕ) def= (¬b) U b ∧ ϕ

0. next event(b)(ϕ) def= (¬b) W (b ∧ ϕ)

1. next event!(b)[k](ϕ) def= next event!(b)

k−1 times︷ ︸︸ ︷
(X! next event!(b)...(X! next event!(b)(ϕ))...)

2. next event(b)[k](ϕ) def= next event(b)

k−1 times︷ ︸︸ ︷
(Xnext event(b)...(Xnext event(b)(ϕ))...)

3. next event a!(b)[k..l](ϕ) def= next event!(b)[k](ϕ) ∧ ... ∧ next event!(b)[l](ϕ)

4. next event a(b)[k..l](ϕ) def= next event(b)[k](ϕ) ∧ ... ∧ next event(b)[l](ϕ)

5. next event e!(b)[k..l](ϕ) def= next event!(b)[k](ϕ) ∨ ... ∨ next event!(b)[l](ϕ)

6. next event e(b)[k..l](ϕ) def= next event(b)[k](ϕ) ∨ ... ∨ next event(b)[l](ϕ)

def

7. r(ϕ) = r → ϕ

3

3

4

B.

Le
an
ha

W
〈sl

l ≤

va
for

wh
ϕ[
sj

IEC 62531:2012
IEEE Std 1850-2010 – 163 –

BS IEC 62531:2012
8. r ⇒ ϕ
def= {r ◦ {true·true}} → ϕ

9. ϕ async abort t
def= ϕ sync abort (t@true)

0. ϕ abort t
def= ϕ async abort t

4.6 Parameterized SEREs and Formulas

t r be a SERE, and l,m integers. Let S be a set of constants, integers or boolean values and p
identifier. The left hand side of the following are SEREs, equivalent to the SEREs on the right

nd side.

1. for p in S : ∪ r
def= ∪

s∈S
{r[p ← s]}

2. for p〈l..m〉 in S : ∪ r
def= ∪

sl∈S
. . . ∪

sm∈S
{r[p〈l..m〉 ← 〈sl..sm〉]}

3. for p in S : ∩ r
def= ∩

s∈S
{r[p ← s]}

4. for p〈l..m〉 in S : ∩ r
def= ∩

sl∈S
. . . ∩

sm∈S
{r[p〈l..m〉 ← 〈sl..sm〉]}

5. for p in S : & r
def= &

s∈S
{r[p ← s]}

6. for & p〈l..m〉 in S : & r
def= &

sl∈S
. . . &

sm∈S
{r[p〈l..m〉 ← 〈sl..sm〉]}

here r[p ← s] is the SERE obtained from r by replacing every occurrence of p by s and r[p〈l..m〉 ←
..sm〉] is the SERE obtained from r by replacing every occurrence of pj with sj for all j such that
j ≤ m.
Let ϕ be an FL formula, and l,m integers. Let S be a set of constants, integers or boolean

lues and p an identifier. The left hand side of the following are FL formulas equivalent to the FL
mulas on the right hand side.

1. for p in S : ∨ ϕ
def=

∨

s∈S

ϕ[p ← s]

2. for p〈l..m〉 in S : ∨ ϕ
def=

∨

sl∈S

. . .
∨

sm∈S

ϕ[p〈l..m〉 ← 〈sl..sm〉]

3. for p in S : ∧ ϕ
def=

∧

s∈S

ϕ[p ← s]

4. for p〈l..m〉 in S : ∧ ϕ
def=

∧

sl∈S

. . .
∧

sm∈S

ϕ[p〈l..m〉 ← 〈sl..sm〉]

5. forall p in S : ϕ
def= for p in S : ∧ ϕ

6. forall p〈l..m〉 in S : ϕ
def= for p〈l..m〉 in S : ∧ ϕ

ere ϕ[p ← s] is the formula obtained from ϕ by replacing every occurrence of p by s and
p〈l..m〉 ← 〈sl..sm〉] is the formula obtained from ϕ by replacing every occurrence of pj with
for all j such that l ≤ j ≤ m.

B.

Le
OB

B

In
de
th
un

Th

1

1

1

Th

– 164 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
4.7 Additional OBE operators

t f, f1, f2 denote OBE formulas. Then additional OBE operators can be derived from the core
E operators given in Definition 5 as follows:

1. f1 ∨ f2 = ¬(¬f1 ∧ ¬f2)

2. f1 → f2 = ¬f1 ∨ f2

3. f1 ↔ f2 = (f1 → f2) ∧ (f2 → f1)

4. EFf = E[true U f]

5. AXf = ¬EX¬f

6. A[f1 U f2] = ¬(E[¬f2 U (¬f1 ∧ ¬f2)] ∨ EG¬f2)

7. AGf = ¬E[true U ¬f]

8. AFf = A[true U f]

.5 Rewriting rules for clocks

Section B.3.1.2 we gave the semantics of clocked FL formulas directly. There is an equivalent
finition in terms of FL formulas without clocks, as follows: Starting from the outermost clock, use
e following rules to translate clocked SEREs into unclocked SEREs, and clocked FL formulas into
clocked FL formulas.

e rewrite rules for SEREs are:

1. Rc({r}) = Rc(r)

2. Rc(b) = ¬c[∗] · (c ∧ b)

3. Rc(b,Z←E) = ¬c[∗] · (c ∧ b,Z←E)

4. Rc(r1 · r2) = Rc(r1) · Rc(r2)

5. Rc(r1 ◦ r2) = {Rc(r1)} ◦ {Rc(r2)}

6. Rc(r1 ∪ r2) = {Rc(r1)} ∪ {Rc(r2)}

7. Rc(r1 ∩ r2) = {Rc(r1)} ∩ {Rc(r2)}

8. Rc([∗0]) = [∗0]

9. Rc(r[+]) = {Rc(r)}[+]

0. Rc(var(Z) r) = {var(Z) Rc(r)}

1. Rc(free(Z) r) = {free(Z) Rc(r)}

2. Rc(r@c1) = Rc1(r)

e rewrite rules for FL formulas are:

1. Fc((ϕ)) = (Fc(ϕ))

1

1

IEC 62531:2012
IEEE Std 1850-2010 – 165 –

BS IEC 62531:2012
2. Fc(¬ϕ) = ¬Fc(ϕ)

3. Fc(ϕ ∧ ψ) = (Fc(ϕ) ∧ Fc(ψ))

4. Fc(r!) = Rc(r)!

5. Fc(r) = Rc(r)

6. Fc(r → ϕ) = Rc(r) → Fc(ϕ)

7. Fc(X![0]ϕ) = (¬c U (c ∧ Fc(ϕ)))))
Fc(X!ϕ) = (¬c U (c ∧ X! (¬c U (c ∧ Fc(ϕ)))))
Fc(X![k]ϕ) = Fc(X! . . . X!︸ ︷︷ ︸

k times

ϕ) for k ≥ 2

8. Fc(ϕ U ψ) = ((c → Fc(ϕ)) U (c ∧ Fc(ψ)))

9. Fc(ϕ sync abort t) = Fc(ϕ) sync abort Fc(t)

0. Fc(var(Z) ϕ) = (var(Z) Fc(ϕ))

1. Fc(ϕ@c1) = Fc1(ϕ)

– 166 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

IEC 62531:2012
IEEE Std 1850-2010 – 167 –

BS IEC 62531:2012
Annex C

(informative)

Bibliography

[B1] Eisner, C., Fisman, D., Havlicek, J., Yoad Lustig, A. M., and Campenhout, D. V., Reasoning with
temporal logic on truncated paths. In Proc. 15th International Conference on Computer-Aided Verification
conference (CAV'O3), volume 2725 of LNCS, pages 27–39, 2003.

[B2] Eisner, C., Fisman, D., Havlicek, J., McIsaac, A., and Campenhout, D. V., The definition of a temporal
clock operator. In ICALP, volume 2719 of Lecture Notes in Computer Science, pages 857–870. Springer,
2003.

[B3] Eisner, C., Fisman, D., Havlicek, J., and Martensson, J., The \top, \bottom approach to truncated
semantics. Technical Report 2006.01, Accellera, 2006.

[B4] Eisner, C., Fisman, D., Havlicek, J., A topological characterization of weakness. In PODC '05:
Proceedings of the twenty-fourth Annual ACM Symposium on Principles of Distributed Computing, pages
1–8, New York, NY, USA, 2005. ACM.

[B5] Eisner, C., Fisman, D., Proposal for extending Annex B of PSL with local variables, procedural blocks,
past expressions and clock alignment operators. Technical Report H-0256, IBM, 2008.

[B6] Eisner, C., Fisman, D., Structural Contradictions. In Proc. 4th International Haifa Verification
Conference, volume 5394 of Lecture Notes in Computer Science, pages 164–178. Springer, 2008.

[B7] Eisner, C., Fisman, D., Augmenting a Regular Expression-Based Temporal Logic with Local Variables.
FMCAD'08: Proc. 8th International Conference on Formal Methods in Computer-Aided Design, 2008.

[B8] Fisman, D., On the characterization of until as a fixed point under clocked semantics. In Proc.
International Haifa Verification Conference, volume 4899 of Lecture Notes in Computer Science, pages
19–33. Springer, 2007.

[B9] Havlicek, J., Fisman, D., and Eisner, C., Basic Results on the Semantics of Accellera PSL1.1.
Technical Report 2004.02, Accellera, 2004.

[B10] Manna, Z., and Pnueli, A., Temporal Verification of Reactive Systems: Safety. Springer-Verlag, New
York, 1995.

[B11] Pnueli, A., A temporal logic of concurrent programs. Theoretical Computer Science, 13:45–60, 1981.
Copyright © 2010 IEEE. All rights reserved. 167

– 168 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012

Annex D

(informative)

IEEE List of Participants

At the time this standard was submitted to the IEEE-SA for approval, the IEEE P1850 PSL Working Group
had the following membership:

Harry Foster, Accellera, Chair
Sitvanit Ruah, IBM, Co-Chair

N. S. Subramanian, Cadence, Secretary
Anne Lustig-Picus, IBM, Editor

Hanan Singer, IBM, Editor

The following members of the entity balloting committee voted on this standard. Balloters may have voted
for approval, disapproval, or abstention.

Mohamed-Lyes Benalycherif, ST-Ericsson
Surrendra Dudani, Synopsys
Cindy Eisner, IBM
Dana Fisman, IBM
Sandeep Gupta, Cadence
Joseph Lu, Altera
Sami Maisnemi, Nokia

Erich Marschner, Cadence
Johan Mårtensson, Jasper DA
Avigail Orni, IBM
Dmitry Pidan, IBM
Tej Singh, Mentor Graphics
Richard Wallace, Northrop Grumman
Yaron Wolfsthal, IBM

Accelera
Cadence Design

IBM Mentor Graphics
Synopsys

IEC 62531:2012
IEEE Std 1850-2010 – 169 –

BS IEC 62531:2012

– 170 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
The working group gratefully acknowledges the contributions of the following organizations and
participants. Without their assistance and dedication, the initial standard would not have been completed.

Organization Participant
Accellera .. Harry Foster, Chair
Altraverifica Ltd. ... Adriana Maggiore
Cadence.. Sandeep Gupta

Makarand Joshi
Erich Marschner
N. S. Subramanian, Secretary
Stephen Ward

IBM.. Cindy Eisner
Dana Fisman
Anne Lustig-Picus, Editor
Avigail Orni
Dmitry Pidan
Sitvanit Ruah, Co-chair
Hanan Singer, Editor
Yaron Wolfsthal

Infineon ... Klaus Winkelmann
Intel .. Alex Levin
Jasper DA... Johan Alfredsson

Johan Mårtensson
Mentor Graphics .. Stephen Bailey

Andrew Seawright
Tej Singh

Nokia.. Jari Kalinainen
Sami Maisnemi

Northrop Grumman.. Richard Wallace
Novas Software, Inc... Bassam Tabbara
NVidia.. Joseph Lu
Phillips ... Sylvain Boucher
ST Microelectronics... Mohamed-Lyes Benalycherif

Andrea Fedeli
Sun Microsystems.. Tom Thatcher
Synopsys .. Surrendra Dudani
vi Copyright ©2010 IEEE. All rights reserved.

IEC 62531:2012
IEEE Std 1850-2010 – 171 –

BS IEC 62531:2012
When the IEEE-SA Standards Board approved this standard on 25 March 2010, it had the following
membership:

Robert M. Grow, Chair
Richard H. Hulett, Vice Chair

Steve M. Mills, Past Chair
Judith Gorman, Secretary

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Howard L. Wolfman, TAB Representative
Michael Janezic, NIST Representative

Satish K. Aggarwal, NRC Representative

Michelle Turner
IEEE Standards Program Manager, Document Development

Michael Kipness
IEEE Standards Program Manager, Technical Program Development

John Barr
Karen Bartleson
Victor Berman
Ted Burse
Richard DeBlasio
Andy Drozd

Mark Epstein
Alexander Gelman
Jim Hughes
Young Kyun Kim
Joseph L. Koepfinger*
John Kulick
David J. Law

Ted Olsen
Glenn Parsons
Ronald C. Petersen
Narayanan Ramachandran
Jon Walter Rosdahl
Sam Sciacca
Cop
yright ©2010 IEEE. All rights reserved.

vii

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

Index

– 172 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
Symbols
[[and]] delimiters 93
A
abort 73
AF 85
AG 85
always 66
and

length-matching 53
non-length-matching 53

assert 111
assertion 3, 9
assume 112
assumption 9
assumptions 3
async_abort 73
asynchronous property 9, 30
AU 86
AX 84
B
base clock context 29
before 75
behavior 9
Boolean expression 3, 9, 15
Boolean layer 15, 33
branching semantics 30
built-in functions 39–46
C
checker 9
clock 62, 64
clock context 29
clocked property 30
comments 24
completes 9
computation path 9
concatenation 50
consecutive repetition 57
constraint 9
count 9
countones() 39, 44
cover 115
coverage 9

CTL 5
cycle 9
D
default clock declaration 47
delimiters [[and]] 93
describes 9
design 9
design behavior 9
directives 111
dynamic verification 10
E
EF 87
EG 87
ended() 39, 41, 43
EU 88
evaluation 10
evaluation cycle 10
eventually! 67
EX 86
extension 10
F
fair 116
fairness constraints 116
False 10
family of operators 63
fell() 39, 41, 43
finite range 10
FL operators 17
FL properties 63
flavor 15, 24

EDL 16
SystemC 16
Verilog 16
VHDL 16

flavor macro 25
forall 90
formal verification 10
Foundation Language 17
functional verification 10
fusion 51
G
goto repetition 60
Copyright © 2010 IEEE. All rights reserved. 169

IEEE
Std 1850-2010 IEEE STANDARD FOR

IEC 62531:2012
IEEE Std 1850-2010 – 173 –

BS IEC 62531:2012
H
holds 10
holds tightly 10
I
iff 12
inherit 117, 140
inheritance graph 123
isunknown() 39, 44
K
keywords 16
L
layers 15
length-matching and 53
linear semantics 30
liveness property 10, 30
local variable 93
local variable declaration 93
logic type 10
logical

and 82
iff 81
implication 80
not 82
or 82

logical operators 17
logical value 10
LTL 5
LTL operators 83
M
match of a sequence 97
model checking 10
modeling layer 15
multi-cycle behavior 3, 50, 63
mutable 104, 106
N
never 67
next 68
next_a 69
next_e 70
next_event 70
next_event_a 72
next_event_e 72
next() 39, 41
non-consecutive repetition 59
nondet_vector() 39, 41, 44
nondet() 39, 41, 44

non-length-matching and 53
nontransitive 37, 117, 123, 140
number 11
O
OBE 21, 84

and 89
iff 89
implication 88
not 90
or 90

occurrence 11
occurs 11
onehot() 39, 45
onehot0() 39, 45
operator

clock 62, 64
HDL 17
LTL 83
OBE 21
temporal 3

operators 63
Optional Branching Extension 21, 84
or 52
overlap 51
override 117, 119, 121, 124, 140
P
parameterized property 78, 79
parameterized SERE 54, 79
path 11
positive count 11
positive number 11
positive range 11
prefix 11
prev() 39
procedural block 93, 97
procedural block, triggering of 93, 97
properties 63, 84
property 3, 11, 21, 49

declaration 103
liveness 10, 30
safety 30

property declaration 107
R
range 11
repetition

consecutive 57
170 Copyright © 2010 IEEE. All rights reserved.

IEEE
PROPERTY SPECIFICATION LANGUAGE (PSL) Std 1850-2010

– 174 –
IEC 62531:2012

IEEE Std 1850-2010

BS IEC 62531:2012
goto 60
non-consecutive 59

replicated properties 90
restrict 113
restrict! 113
restriction 11
root vunit 123
rose() 39, 41, 42
S
safety property 11, 30
satellite 5
sequence 11
sequence declaration 106
sequential expression 11, 49
sequential expressions 3
Sequential Extended Regular Expression
19, 50
sequential extended regular expression 11
SERE 19, 50
simple subset 4, 31
simulation checker 4
stable() 39, 41
standard temporal logics 5
starts 11
strictly before 11
strong

operator 11
struct 130
structure 130
suffix implication 77
sync_abort 73
synchronous property 30
T
temporal expersion 11
temporal layer 15
temporal operator 12
temporal operators 3
terminating condition 12, 31
terminating property 12
tree of states 84
True 12
U
unclocked property 30
union 36, 45
until 76

V
verification layer 15
verification unit 117, 118
vmode 117, 120, 140
vpkg 117, 118, 140
vprop 117, 120, 140
vunit 117, 118, 140
W
weak

operator 12
Copyright © 2010 IEEE. All rights reserved. 171

This page deliberately left blank

This page deliberately left blank

BSI is the independent national body responsible for preparing British Standards and other
standards-related publications, information and services. It presents the UK view on standards in
Europe and at the international level.

BSI is incorporated by Royal Charter. British Standards and other standardisation products are
published by BSI Standards Limited.

British Standards Institution (BSI)

raising standards worldwide™

BSI

389 Chiswick High Road London W4 4AL UK

Tel +44 (0)20 8996 9001
Fax +44 (0)20 8996 7001
www.bsigroup.com/standards

Revisions
British Standards and PASs are periodically updated by amendment or
revision. Users of British Standards and PASs should make sure that they
possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and
services. We would be grateful if anyone finding an inaccuracy or ambiguity
while using British Standards would inform the Secretary of the technical
committee responsible, the identity of which can be found on the inside front
cover. Similary for PASs, please notify BSI Customer Services.

Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001

BSI offers BSI Subscribing Members an individual updating service called
PLUS which ensures that subscribers automatically receive the latest editions
of British Standards and PASs.

Tel: +44 (0)20 8996 7669 Fax: +44 (0)20 8996 7001
Email: plus@bsigroup.com

Buying standards
You may buy PDF and hard copy versions of standards directly using a
credit card from the BSI Shop on the website www.bsigroup.com/shop.
In addition all orders for BSI, international and foreign standards publications
can be addressed to BSI Customer Services.

Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001
Email: orders@bsigroup.com

In response to orders for international standards, BSI will supply the British
Standard implementation of the relevant international standard, unless
otherwise requested.

Information on standards
BSI provides a wide range of information on national, European
and international standards through its Knowledge Centre.

Tel: +44 (0)20 8996 7004 Fax: +44 (0)20 8996 7005
Email: knowledgecentre@bsigroup.com

BSI Subscribing Members are kept up to date with standards developments
and receive substantial discounts on the purchase price
of standards. For details of these and other benefits contact Membership
Administration.

Tel: +44 (0)20 8996 7002 Fax: +44 (0)20 8996 7001
Email: membership@bsigroup.com

Information regarding online access to British Standards and PASs
via British Standards Online can be found at
www.bsigroup.com/BSOL
Further information about British Standards is available on the BSI website
at www.bsi-group.com/standards

Copyright
All the data, software and documentation set out in all British Standards and
other BSI publications are the property of and copyrighted by BSI, or some
person or entity that own copyright in the information used (such as the
international standardisation bodies) has formally licensed such information
to BSI for commerical publication and use. Except as permitted under the
Copyright, Designs and Patents Act 1988 no extract may be reproduced,
stored in a retrieval system or transmitted in any form or by any means –
electronic, photocopying, recording or otherwise – without prior written
permission from BSI. This does not preclude the free use, in the course of
implementing the standard, of necessary details such as symbols, and size,
type or grade designations. If these details are to be used for any other
purpose than implementation then the prior written permission of BSI must
be obtained. Details and advice can be obtained from the Copyright &
Licensing Department.

Tel: +44 (0)20 8996 7070
Email: copyright@bsigroup.com

	30266932-VOR.pdf
	CONTENTS
	Introduction
	Notice to users
	Laws and regulations
	Copyrights
	Updating of IEEE documents
	Errata
	Interpretations
	Patents

	Participants
	Contents
	1. Overview
	1.1 Scope
	1.2 Purpose
	1.2.1 Background
	1.2.2 Motivation
	1.2.3 Goals

	1.3 Usage
	1.3.1 Functional specification
	1.3.2 Functional verification

	2. Normative references
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations
	3.3 Special terms

	4. Organization
	4.1 Abstract structure
	4.1.1 Layers
	4.1.2 Flavors

	4.2 Lexical structure
	4.2.1 Identifiers
	4.2.2 Keywords
	4.2.3 Operators
	4.2.4 Macros
	4.2.5 Comments

	4.3 Syntax
	4.3.1 Conventions
	4.3.2 HDL dependencies

	4.4 Semantics
	4.4.1 Clocked vs. unclocked evaluation
	4.4.2 Safety vs. liveness properties
	4.4.3 Linear vs. branching logic
	4.4.4 Simple subset
	4.4.5 Finite-length vs. infinite-length behavior
	4.4.6 The concept of strength

	5. Boolean layer
	5.1 Expression type classes
	5.1.1 Bit expressions
	5.1.2 Boolean expressions
	5.1.3 BitVector expressions
	5.1.4 Numeric expressions
	5.1.5 String expressions

	5.2 Expression forms
	5.2.1 HDL expressions
	5.2.2 PSL expressions
	5.2.3 Built-in functions
	5.2.4 Union expressions

	5.3 Clock expressions
	5.4 Default clock declaration

	6. Temporal layer
	6.1 Sequential expressions
	6.1.1 Sequential Extended Regular Expressions (SEREs)
	6.1.2 Sequences

	6.2 Properties
	6.2.1 FL properties
	6.2.2 Optional Branching Extension (OBE) properties
	6.2.3 Replicated properties

	6.3 Local variables
	6.4 Procedural blocks
	6.5 Property and sequence declarations
	6.5.1 Parameters
	6.5.2 Declarations
	6.5.3 Instantiation

	7. Verification layer
	7.1 Verification directives
	7.1.1 assert
	7.1.2 assume
	7.1.3 restrict
	7.1.4 restrict!
	7.1.5 cover
	7.1.6 fairness and strong_fairness

	7.2 Verification units
	7.2.1 Verification unit binding
	7.2.2 Verification unit instantiation
	7.2.3 Verification unit inheritance
	7.2.4 Overriding assignments

	8. Modeling layer
	8.1 Integer ranges
	8.2 Structures

	9. Scope and visibility rules
	9.1 Immediate scope
	9.2 Extended scope
	9.3 Direct and indirect name references

	Annex A (normative) Syntax rule summary
	A.1 Conventions
	A.2 Tokens
	A.3 HDL dependencies
	A.3.1 Verilog extensions
	A.3.2 Flavor macros

	A.4 Syntax productions
	A.4.1 Verification units
	A.4.2 PSL declarations
	A.4.3 PSL directives
	A.4.4 PSL properties
	A.4.5 Sequential Extended Regular Expressions (SEREs)
	A.4.6 Parameterized Properties and SEREs
	A.4.7 Sequences
	A.4.8 Forms of expression
	A.4.9 Optional Branching Extension

	Annex B (normative) Formal Syntax and Semantics of IEEE Std 1850 Property Specification Language (PSL)
	Annex C (informative) Bibliography
	Index

