
raising standards worldwide™

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

BSI Standards Publication

IEEE standard for signal
and test definition

BS IEC 62529:2012

National foreword

This British Standard is the UK implementation of IEC 62529:2012. It super-
sedes BS IEC 62529:2007 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee
GEL/93, Design automation.

A list of organizations represented on this committee can be obtained on
request to its secretary.

This publication does not purport to include all the necessary provisions of a
contract. Users are responsible for its correct application.

© The British Standards Institution 2012

Published by BSI Standards Limited 2012

ISBN 978 0 580 77675 5

ICS 25.040.01; 35.060

Compliance with a British Standard cannot confer immunity from
legal obligations.

This British Standard was published under the authority of the Standards
Policy and Strategy Committee on 31 August 2012.

Amendments issued since publication

Amd. No. Date Text affected

BRITISH STANDARDBS IEC 62529:2012

IEC 62529
Edition 2.0 2012-06

INTERNATIONAL
STANDARD

Standard for Signal and Test Definition

INTERNATIONAL

ELECTROTECHNICAL

COMMISSION XM
ICS 25.040; 35.060

PRICE CODE

ISBN 978-2-83220-103-9

 Warning! Make sure that you obtained this publication from an authorized distributor.

IEEE Std 1641™

colour
inside

BS IEC 62529:2012

 IEC 62529:2012
 – ii – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Contents

1. Overview .. 1
1.1 Scope ... 1
1.2 Purpose .. 1
1.3 Application .. 1
1.4 Annexes ... 2

2. Definitions, abbreviations, and acronyms... 2
2.1 Definitions ... 2
2.2 Abbreviations and acronyms ... 4

3. Structure of this standard .. 5
3.1 Layers .. 5
3.2 Signal Modeling Language (SML) layer ... 6
3.3 BSC layer ... 6
3.4 TSF layer ... 6
3.5 Test requirement layer ... 6
3.6 Using the layers ... 7

4. Signals and SignalFunctions ... 7
4.1 Introduction ... 7
4.2 Physical signal states ... 8
4.3 Event states .. 9
4.4 Digital stream states ... 9

5. SML layer ... 10

6. BSC layer ... 11
6.1 BSC layer base classes ... 11
6.2 General description of BSCs.. 11
6.3 SignalFunction template .. 12

7. TSF layer .. 12
7.1 TSF classes .. 13
7.2 TSF signals defined by a model ... 13
7.3 TSF signals defined by an external reference .. 16

8. Test procedure language (TPL) .. 16
8.1 Goals of the TPL .. 16
8.2 Elements of the TPL .. 16
8.3 Use of the TPL ... 17

9. Maximizing test platform independence... 17

Annex A (normative) Signal modeling language (SML) ... 18
A.1 Use of the SML ... 18
A.2 Introduction... 18
A.3 Physical types ... 19
A.4 Signal definitions .. 22
A.5 Pure signals ... 24
A.6 Pure signal-combining mechanisms.. 26
A.7 Pure function transformations ... 32

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – iii –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

A.8 Measuring, limiting, and sampling signals ... 32
A.9 Digital signals ... 34
A.10 Basic component SML .. 38
A.11 Fast Fourier analysis support .. 63

Annex B (normative) Basic signal components (BSC) layer ... 65
B.1 BSC layer base classes .. 65
B.2 BSC subclasses ... 65
B.3 Description of a BSC .. 69
B.4 Physical class .. 76
B.5 PulseDefns class .. 87
B.6 SignalFunction class ... 89

Annex C (normative) Dynamic signal descriptions .. 143
C.1 Introduction ... 143
C.2 Basic classes .. 144
C.3 Dynamic signal goals and use cases .. 152

Annex D (normative) Interface definition language (IDL) basic components ... 153
D.1 Introduction... 153
D.2 IDL BSC library ... 153

Annex E (informative) Test signal framework (TSF) for C/ATLAS ... 154
E.1 Introduction ... 154
E.2 TSF library definition in extensible markup language (XML) .. 154
E.3 Interface definition language (IDL) for the TSF for C/ATLAS .. 154
E.4 AC_SIGNAL<type: Current|| Power|| Voltage> ... 155
E.5 AM_SIGNAL .. 157
E.6 DC_SIGNAL<type: Voltage|| Current|| Power> ... 159
E.7 DIGITAL_PARALLEL .. 161
E.8 DIGITAL_SERIAL ... 163
E.9 DIGITAL_TEST ... 165
E.10 DME_INTERROGATION ... 168
E.11 DME_RESPONSE .. 171
E.12 FM_SIGNAL<type: Voltage|| Power|| Current> ... 174
E.13 ILS_GLIDE_SLOPE<type: Voltage|| Power> .. 177
E.14 ILS_LOCALIZER<type: Power|| Voltage> .. 180
E.15 ILS_MARKER .. 183
E.16 PM_SIGNAL .. 186
E.17 PULSED_AC_SIGNAL<type: Current|| Power|| Voltage> .. 188
E.18 PULSED_AC_TRAIN<type: Voltage|| Current|| Power> ... 190
E.19 PULSED_DC_SIGNAL<type: Voltage|| Current|| Power> .. 192
E.20 PULSED_DC_TRAIN<type: Voltage|| Current|| Power> ... 194
E.21 RADAR_RX_SIGNAL ... 196
E.22 RADAR_TX_SIGNAL<type: Current|| Voltage|| Power>.. 199
E.23 RAMP_SIGNAL<type: Voltage|| Current|| Power> ... 200
E.24 RANDOM_NOISE ... 202
E.25 RESOLVER .. 204
E.26 RS_232 .. 207
E.27 SQUARE_WAVE<type: Current|| Voltage|| Power> ... 208
E.28 SSR_INTERROGATION<type: Voltage|| Current|| Power> .. 210
E.29 SSR_RESPONSE<type: Voltage|| Current|| Power> .. 213
E.30 STEP_SIGNAL ... 217
E.31 SUP_CAR_SIGNAL ... 219
E.32 SYNCHRO .. 221
E.33 TACAN ... 225

BS IEC 62529:2012

 IEC 62529:2012
 – iv – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.34 TRIANGULAR_WAVE_SIGNAL<type: Voltage|| Current|| Power> ... 229
E.35 VOR .. 231

Annex F (informative) Test signal framework (TSF) library for digital pulse classes 235
F.1 Introduction ... 235
F.2 TSF library definition in extensible markup language (XML) .. 235
F.3 Graphical models of TSFs ... 235
F.4 Pulse class family of TSFs .. 235
F.5 DTIF .. 252

Annex G (normative) Carrier language requirements .. 254
G.1 Carrier language requirements .. 254
G.2 Interface definition language (IDL) .. 254
G.3 Datatypes .. 254
G.4 Data-processing requirements ... 259
G.5 Control structures .. 263

Annex H (normative) Test procedure language (TPL) ... 265
H.1 TPL layer .. 265
H.2 Elements of the TPL ... 265
H.3 Structure of test requirements ... 265
H.4 Carrier language .. 265
H.5 Signal statements .. 265
H.6 Mapping of test statements to carrier language ... 267
H.7 Test statement definitions ... 267
H.8 Elements used in test statement definitions .. 285
H.9 Attributes with multiple properties ... 288
H.10 Transferring data in digital signals.. 292
H.11 Creating test requirements .. 296
H.12 Delimiting TPL statements ... 298

Annex I (normative) Extensible markup language (XML) signal descriptions .. 300
I.1 Introduction .. 300
I.2 XSD for BSCs .. 301
I.3 XSD for TSFs ... 302

Annex J (informative) Support for ATLAS nouns and modifiers .. 308
J.1 Signal and test definition (STD) support for ATLAS signals .. 308
J.2 STD support for ATLAS nouns ... 308
J.3 STD support for C/ATLAS noun modifiers ... 311
J.4 Support for C/ATLAS extensions .. 319

Annex K (informative) Guide for maximizing test platform independence and test application
interchangeability ... 320

K.1 Introduction... 320
K.2 Guiding principles... 320
K.3 Best practice rules ... 320

Annex L (informative) Bibliography .. 323

Annex M (informative) IEEE List of Participants ... 325

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – v –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Standard for Signal and Test Definition

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization

comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to
promote international co-operation on all questions concerning standardization in the electrical and
electronic fields. To this end and in addition to other activities, IEC publishes International Standards,
Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides
(hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any
IEC National Committee interested in the subject dealt with may participate in this preparatory work.
International, governmental and non-governmental organizations liaising with the IEC also participate in
this preparation.

IEEE Standards documents are developed within IEEE Societies and Standards Coordinating Committees
of the IEEE Standards Association (IEEE-SA) Standards Board. IEEE develops its standards through a
consensus development process, which brings together volunteers representing varied viewpoints and
interests to achieve the final product. Volunteers are not necessarily members of IEEE and serve without
compensation. While IEEE administers the process and establishes rules to promote fairness in the
consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of
any of the information contained in its standards. Use of IEEE Standards documents is wholly voluntary.
IEEE documents are made available for use subject to important notices and legal disclaimers (see
http://standards.ieee.org/IPR/disclaimers.html for more information).

IEC collaborates closely with IEEE in accordance with conditions determined by agreement between the
two organizations.

2) The formal decisions of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees. The formal decisions of IEEE on technical matters, once consensus
within IEEE Societies and Standards Coordinating Committees has been reached, is determined by a
balanced ballot of materially interested parties who indicate interest in reviewing the proposed standard.
Final approval of the IEEE standards document is given by the IEEE Standards Association (IEEE-SA)
Standards Board.

3) IEC/IEEE Publications have the form of recommendations for international use and are accepted by IEC
National Committees/IEEE Societies in that sense. While all reasonable efforts are made to ensure that
the technical content of IEC/IEEE Publications is accurate, IEC or IEEE cannot be held responsible for the
way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
(including IEC/IEEE Publications) transparently to the maximum extent possible in their national and
regional publications. Any divergence between any IEC/IEEE Publication and the corresponding national
or regional publication shall be clearly indicated in the latter.

5) IEC and IEEE do not provide any attestation of conformity. Independent certification bodies provide
conformity assessment services and, in some areas, access to IEC marks of conformity. IEC and IEEE are
not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or IEEE or their directors, employees, servants or agents including
individual experts and members of technical committees and IEC National Committees, or volunteers of
IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA)
Standards Board, for any personal injury, property damage or other damage of any nature whatsoever,
whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication,
use of, or reliance upon, this IEC/IEEE Publication or any other IEC or IEEE Publications.

8) Attention is drawn to the normative references cited in this publication. Use of the referenced publications
is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that implementation of this IEC/IEEE Publication may require use of
material covered by patent rights. By publication of this standard, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. IEC or IEEE shall not be held
responsible for identifying Essential Patent Claims for which a license may be required, for conducting
inquiries into the legal validity or scope of Patent Claims or determining whether any licensing terms or
conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing
agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that
determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely
their own responsibility.

BS IEC 62529:2012

http://standards.ieee.org/IPR/disclaimers.html

 IEC 62529:2012
 – vi – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

International Standard IEC 62529 / IEEE Std 1641-2010 has been processed through IEC
technical committee 93: Design automation, under the IEC/IEEE Dual Logo Agreement.

This second edition cancels and replaces the first edition, published in 2007, and
constitutes a technical revision.

The text of this standard is based on the following documents:

IEEE Std FDIS Report on voting

IEEE Std 1641-2010 93/322/FDIS 93/329/RVD

Full information on the voting for the approval of this standard can be found in the report
on voting indicated in the above table.

The IEC Technical Committee and IEEE Technical Committee have decided that the
contents of this publication will remain unchanged until the stability date indicated on the
IEC web site under "http://webstore.iec.ch" in the data related to the specific publication.
At this date, the publication will be

• reconfirmed,

• withdrawn,

• replaced by a revised edition, or

• amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct
understanding of its contents. Users should therefore print this document using a
colour printer.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – vii –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

IEEE Std 1641™-2010
(Revision of

IEEE Std 1641-2004)

IEEE Standard for
Signal and Test Definition

Sponsor

IEEE Standards Coordinating Committee 20 on
Test and Diagnosis for Electronic Systems

Approved 17 June 2010

IEEE-SA Standards Board

BS IEC 62529:2012

 IEC 62529:2012
 – viii – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Abstract: This standard provides the means to define and describe signals used in testing. It also
provides a set of common basic signals, built upon formal mathematical specifications so that
signals can be combined to form complex signals usable across all test platforms.

Keywords: ATE, ATLAS, automatic test equipment, IEEE 1641, signal definitions, test
definitions, test requirements, test signals, unit under test, UUT

•

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and Electronics
Engineers, Incorporated.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – ix –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

IEEE Introduction

This introduction is not part of IEEE Std 1641-2010, IEEE Standard for Signal and Test Definition.

This signal and test definition (STD) standard provides the ability to unambiguously define test signals. It
includes a rigorous mathematical and definitive foundation for all of its signal components. Any signal
defined using this standard will be the same regardless of the equipment is used to create it. The standard
supports the implementation of new technologies by providing users with the ability to describe their own
signals by combining existing signals. Thus, any desired signal may be described, and there is no limit on
the extensibility of signals supported by this standard.

Signals defined using this standard can be used in a programming environment of the user’s choice
provided that that environment fulfills the minimum requirements defined in this standard. This universality
enables the user to take full advantage of modern program structures and development environments,
including graphical programming environments.

This standard was developed by the Test and ATS Description Subcommittee (of the IEEE Standards
Coordinating Committee 20 (SCC20) on Test and Diagnosis for Electronic Systems), which has prepared a
companion guide, IEEE Std 1641.1™, to explain how to implement signal definitions and test requirements
in conformance with STD.

Notice to users

Laws and regulations

Users of these documents should consult all applicable laws and regulations. Compliance with the
provisions of this standard does not imply compliance to any applicable regulatory requirements.
Implementers of the standard are responsible for observing or referring to the applicable regulatory
requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in
compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and
private uses. These include both use, by reference, in laws and regulations, and use in private self-
regulation, standardization, and the promotion of engineering practices and methods. By making this
document available for use and adoption by public authorities and private users, the IEEE does not waive
any rights in copyright to this document.

Updating of IEEE documents

Users of IEEE standards should be aware that these documents may be superseded at any time by the
issuance of new editions or may be amended from time to time through the issuance of amendments,
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect. In order to determine whether

BS IEC 62529:2012

 IEC 62529:2012
 – x – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

a given document is the current edition and whether it has been amended through the issuance of
amendments, corrigenda, or errata, visit the IEEE Standards Association web site at
http://ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process,
visit the IEEE-SA web site at http://standards.ieee.org.

Errata

Errata, if any, for this and all other standards can be accessed at the following URL:
http://standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL
for errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/
index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence
or validity of any patent rights in connection therewith. The IEEE is not responsible for identifying
Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity
or scope of Patents Claims or determining whether any licensing terms or conditions provided in
connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable
or nondiscriminatory. Users of this standard are expressly advised that determination of the validity of any
patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further
information may be obtained from the IEEE Standards Association.

BS IEC 62529:2012

http://ieeexplore.ieee.org/xpl/standards.jsp
http://standards.ieee.org/
http://standards.ieee.org/reading/ieee/updates/errata/index.html
http://standards.ieee.org/reading/ieee/interp/index.html
http://standards.ieee.org/reading/ieee/interp/index.html

IEC 62529:2012
IEEE Std 1641-2010 – 1 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Standard for
Signal and Test Definition

IMPORTANT NOTICE: This standard is not intended to ensure safety, security, health, or
environmental protection. Implementers of the standard are responsible for determining appropriate
safety, security, environmental, and health practices or regulatory requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers.
These notices and disclaimers appear in all publications containing this document and may
be found under the heading “Important Notice” or “Important Notices and Disclaimers
Concerning IEEE Documents.” They can also be obtained on request from IEEE or viewed at
http://standards.ieee.org/IPR/disclaimers.html.

1. Overview

1.1 Scope

This standard provides the means to define and describe signals used in testing. It provides a set of common
basic signal definitions, built upon formal mathematical specifications, so that signals can be combined to
form complex signals usable across all test platforms. The standard provides support for structural textual
languages and programming language interfaces for interoperability.

1.2 Purpose

This standard provides a common reference for signal definitions, which may be used throughout the life
cycle of a unit under test (UUT) or test system. Such a reference will in turn facilitate information transfer,
test reuse, and broader application of test information—accessible through commercially available
development tools.

1.3 Application

This signal and test definition (STD) standard provides the capability to describe and control signals, while
permitting a choice of operating environment, including the choice of carrier language. STD permits signal
operations to be embedded in any object-oriented environment and thus to be used by the architecture

BS IEC 62529:2012

http://standards.ieee.org/IPR/disclaimers.html

 IEC 62529:2012
 – 2 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

standards of various automatic test systems (ATSs). STD may be used to create truly portable test
requirements. It will allow test information to pass more freely between the design, test, and maintenance
phases of a project and enable the same information to be used directly across project phases. This more
efficient use of information will lead to reduced life-cycle costs.

1.4 Annexes

This standard also contains annexes that describe various elements of the standard in detail. The normative
annexes include definitions of the basic signals (in words and with reference to an extensible markup
language (XML) format), supporting mathematical definitions for these signals, dynamic model
information, interface definition descriptions, and a definition of the requirements of a supporting computer
language.

Informative annexes are provided to present examples of signal libraries together with their associated
XML definition.

2. Definitions, abbreviations, and acronyms

2.1 Definitions

For the purposes of this document, the following terms and definitions apply. The IEEE Standards
Dictionary: Glossary of Terms & Definitions should be referenced for terms not defined in this clause.1

Abbreviated Test Language for All Systems (ATLAS): A stylized, abbreviated English language used in
the preparation and documentation of test requirements and test programs, which can be implemented
either manually or with automatic or semi-automatic test equipment.2

argument: Input values that can be passed to a function.

attribute: A property value that is used to define signal characteristics or behavior.

automatic test system (ATS): A system that includes the automatic test equipment (ATE) and all support
equipment, support software, test programs, and interface adapters.

base class: A class from which another class inherits attributes or properties.

basic signal component (BSC): The lowest level of building block used to define signals.

class: A generic set of predefined abstract test objects.

component: A part of a system, which may be hardware or software and which may be subdivided into
other components. Components communicate their functionality through their interface definitions.

connection: The application of a signal to a unit under test (UUT).

1 The IEEE Standards Dictionary: Glossary of Terms & Definitions is available at http://shop.ieee.org/.
2 In this standard, the term “ATLAS” refers to any version or subset whether it is a formal standardized version or a project specific
modified subset.

BS IEC 62529:2012

http://shop.ieee.org/

IEC 62529:2012
IEEE Std 1641-2010 – 3 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

data bus: A signal line or set of signal lines used by a data communication system to interconnect a
number of devices and to communicate information.

dynamic signal: A signal whose definition changes over time, by use of the control interface. These
changes must be initiated with one of the signal method calls or by changing the interconnections of a
signal model.

function: A construct that is a logically separated block of code that operates upon test values (i.e.,
arguments). Another name for a function is method. Syn: method.

interface definition language (IDL): A machine-compilable language that is used to describe the
interfaces that software objects call and object implementations provide. The language provides a neutral
way to define software interfaces.

method: Syn: function.

model: A mathematical or physical representation (i.e., simulation) of system relationships for a process,
device, or concept.

physical: Pertaining to the natural characteristics of the universe according to the natural laws of science.

procedural: The part of an signal and test definition (STD) test requirement that defines the tests in the
manner and order required for testing.

property: The special form of method (or function) that supports the semantics of assignment (l-value) and
reading (r-value).

reserved word: A keyword whose meaning and use are fixed by the semantics of a language. In certain or
all contexts, a reserved word cannot be used for any purpose other than as defined for that language.

semantics: A branch of linguistics concerned with meaning. For the test procedure language (TPL),
semantics is the connotative meaning of words in an TPL statement. For software, semantics is the
relationships of symbols and their meaning, independent of the manner of their interpretation and use. For
meta-languages, semantics is the discipline for expressing the meanings of computer-language constructs in
a meta-language.

sensor: A transducer that converts a test parameter to a form suitable for measurement.

SignalFunction: The name of the base class, for all classes that provide signals.

Subclass: A class that inherits attributes or properties from a base class.

static signal: A signal whose definition does not change over time. All basic signal components (BSCs)
and test signal framework (TSF) models are static signals.

syntax: The grammatical arrangement of words in a language statement.

system: A set of interconnected hardware and/or software components that achieves a defined objective by
performing specified functions.

system architecture: The structure of and relationship between the components of a system. A system
architecture may include the system interface with its operational environment.

template: A pattern or design that establishes the outline, dimensions, or process for subsequent users or
implementers.

BS IEC 62529:2012

 IEC 62529:2012
 – 4 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

test: (A) An action or group of actions that are performed on a unit under test (UUT) to evaluate its
parameter(s) or characteristic(s). (Derived from IEEE Std 771-1989). (B) An observed activity that may be
caused to occur (e.g., stimulus-response) in order to obtain information about the behavior of a test subject.
(Derived from IEEE Std 1671-2006). (C) A set of stimuli, either applied or known, combined with a set of
observed responses and criteria for comparing these responses to a known standard. (Derived from IEEE
Std 1232-2002).

test requirement: A definition of the tests and test conditions required to be performed on a unit under test
(UUT) to verify conformance with its performance specification.

test specification: A definition of the tests to be performed on a unit under test (UUT) to verify
conformance with its performance specification, with or without fault diagnostics, and without reference to
any specific test equipment.

test procedure: A description of the tests, test methods, and test sequences to be performed on a unit under
test (UUT) to verify conformance with its test specification, with or without fault diagnostics, and without
reference to specific test equipment.

test program: An implementation of the tests, test methods, and test sequences to be performed on a unit
under test (UUT) to verify conformance with its test specification, with or without fault diagnosis. A test
program is configured for execution on a specific test system.

transducer: A device that converts a physical magnitude of one form of energy into another form,
generally on a one-to-one correspondence or according to a specified mathematical formula.

unit under test (UUT): An entity that can be tested and that may range from a single component to a
complete system.

value: The quantitative size of a signal attribute.

2.2 Abbreviations and acronyms

ARB auxiliary reference burst
ARINC Aeronautical Radio, Inc.
ASCII American Standard Code for Information Interchange
ATC air traffic control
ATE automatic test equipment
ATLAS Abbreviated Test Language for All Systems
ATS automatic test system
BSC basic signal component
C/ATLAS Common/Abbreviated Test Language for All Systems (IEEE Std 716™-1995 [B12]3)
DME distance measuring equipment
DTIF Digital Test Interchange Format
IDL interface definition language
IFF identification, friend, or foe
ILS instrument landing system
MRB main reference burst
PRF pulse repetition frequency

3 The numbers in brackets correspond to the numbers of the bibliography in Annex L.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 5 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

RF radio frequency
rms root mean square
SML signal modeling language
SSR secondary surveillance radar
STANAG NATO Standardization Agreements
STD signal and test definition
TACAN tactical air navigation
trms true root mean square
TPL test procedure language
TSF test signal framework
UHF ultrahigh frequency
UUT unit under test
VHF very high frequency
VOR VHF omnidirectional range
XSD XML Schema Definition
XML extensible markup language

3. Structure of this standard

3.1 Layers

This standard has a layered format depicted in Figure 1. Each layer and its purpose are described in
Clause 3. Each layer builds on items defined in previous layers. This format does not require that each layer
use only items in its immediate lower level, but does imply that each layer has to be fully defined in terms
of its lower level layers.

Test Requirement Layer

Test Signal Framework

Basic Signal Components

Signal Modeling Language

Figure 1 —STD layers

BS IEC 62529:2012

 IEC 62529:2012
 – 6 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

This standard provides the capability to describe and control signals and allows the user to choose the
operating environment, including the choice of programming language. The STD test requirements take the
form of signal definitions, which can be written in any programming or declarative language, including
XML or object-oriented environment.

The link to Abbreviated Test Language for All Systems (ATLAS) and Common/Abbreviated Test
Language for All Systems (C/ATLAS) standards is preserved as test requirements are mapped to signals
that have formal definitions tied to the test signal framework (TSF) and basic signal component (BSC)
layers. This link comprises an example TSF library for ATLAS (see Annex E) and an annex showing how
ATLAS NOUNS and NOUN MODIFIERS may be supported (see Annex J).

3.2 Signal Modeling Language (SML) layer

The SML layer provides the mathematical definitions that support the description of BSCs. This
mathematical underpinning provides evidence that the signals defined by BSCs can be functionally
compared and simulated. The SML signal definitions form the basis for reuse that is essential to the
extension of STD capabilities without a corresponding explosion in nomenclature and complexity.

3.3 BSC layer

The BSC layer provides reusable, formally described, fundamental signal classes. These classes define the
lowest level of signal building blocks available to the STD environment. Each BSC is described by its class
name, class type, properties and default values, XML Schema definitions (XSDs), interface definition
language (IDL) description, and SML signal definition.

3.4 TSF layer

The TSF layer identifies how libraries of reusable, formally described signal classes are defined. The
content of a TSF library is a collection of domain-specific signal definitions made up from other TSF
signals and/or BSCs.

The TSF layer provides for TSF libraries, which are the extendibility mechanism that allows the creation of
additional signal class definitions. Each TSF class within a TSF library is described by its class name, class
type, properties and default values, XML description containing an interface definition in XML, a static
signal model definition, and a textual description from which an IDL interface and XSD can be derived.

A TSF library may contain TSF classes, which themselves refer to other TSF classes. In order that the
library definition is complete, any TSF classes so referenced shall be provided.

3.5 Test requirement layer

The test requirement layer allows test descriptions (e.g., test requirements, test procedures, test programs)
to be formally described by combining STD signals with features that satisfy the carrier language
requirements (see Annex G).

Test specifications and signal libraries conforming to the requirements of this layer may be ported between
different ATSs with the same functional capability and carrier language. Minimal translation would be
required to convert between different carrier languages.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 7 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

The signals may be described using XML, calls to the IDL interface, or the STD-specific test procedure
language (TPL). The TPL allows test actions to be formally described in a stylized textual format suitable
for preprocessing into a target carrier language

3.6 Using the layers

A user need only refer to the layers that are required to directly support a signal or test that needs to be
defined. In many cases, only BSCs and TSFs are required to describe a signal using, for example, XML
descriptions. Signal descriptions may be reused as required with different attribute values. They are created
when required and destroyed when their function is complete, e.g., a signal used in a measurement is
destroyed when the measurement is complete (unless otherwise determined in the test). The states that
signals, events, and digital streams can take are outlined in Clause 3 and explained in detail in the
normative annexes.

All names used for entities defined in this standard are case sensitive, e.g., signal names, attribute names.
However, names of elements within the same scope shall not be differentiated solely by case.

4. Signals and SignalFunctions

4.1 Introduction

Throughout all the layers, there exists the concept of signals. Signals are the outputs from SignalFunctions,
where SignalFunctions are interconnected and built up as required to provide the required signal
characteristics. The signal is considered “physical” only when it is used, e.g., when applied to a UUT pin
interface. By definition BSCs are SignalFunctions. SignalFunctions are characterized by their type, which
may be typeless, generic, or abstract or may map onto a physical type. Examples of typeless
SignalFunctions are events. Generic SignalFunctions (such as Sum) inherit their type from their inputs.
Abstract SignalFunctions provide typeless value information (such as RMS sensor). An example of a type
that maps onto a physical type is Voltage, such as in a Sinusoidal signal of type Voltage. The type of a
SignalFunction also includes the reference type; most signals encountered in this standard have the
reference type Time. Therefore, a Sinusoidal Voltage signal describes how the signal’s voltage changes
with respect to time, in a sinusoidal manner. The use of types is such that SignalFunctions can be combined
to build signals only when they have compatible types such as when one or more of the types are typeless,
abstract, or generic or where the different signal types can be provided independently. Types that appear
different and that represent a transform are allowed, as they represent a different method of specifying the
same signal, e.g., Sinusoid (Voltage, Frequency) with Sinusoid (Voltage, Time). An example of an illegal
signal definition is one in which both current and voltage are specified because both cannot be controlled
independently. Extendibility is served by providing the capability to describe new signals formally by
creating them from the existing signals in either the TSF or BSC layer. SignalFunctions are described in
detail in Annex B.

NOTE—The standard does allow a voltage to be specified together with a current limit (or vice versa) because limit
signals are generic types.4

A physical signal, event, or digital stream element may be active or inactive and also may be controlled by
events, i.e., it may be gated on or off. Thus, there are four possible states that may be adopted: active &
gated on, active & gated off, inactive & gated on, or inactive & gated off. Not all four states are applicable
to all signals, events, and digital elements. The states that can be adopted by each may be illustrated
diagrammatically (see Figure 2, Figure 3, and Figure 4). These figures provide a simplified indication of

4 Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement this standard.

BS IEC 62529:2012

 IEC 62529:2012
 – 8 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

the states that can be attained by a sources. The states attained by conditioners will also depend upon the
signals on their inputs.

4.2 Physical signal states

Figure 2 shows the states available to a signal. Before a signal exists, it may be considered to be in the
“No Signal” (Z) state. When it is invoked, it passes into the active state and, in the simplest case, will
appear with its specified value (V), i.e., the “Signal with Value” state in Figure 2. The value may be
changed while the signal exists, as indicated in Figure 2 by the value changing from VX to VY and so on. If
the signal is provided with a gate, the signal may be gated on and off by external events. When the signal is
gated on, the signal is output with its specified value. When gated off, the signal has no value, i.e., the
signal is active but nothing is known about its value. When subsequently gated on again, the signal appears
with its current value. In other words, the value may have changed while it was gated off, but cannot be
determined until is it gated on again.

Z

X V

No Signal

Signal with No Value Signal with Value

VYVX

Off On

Active

Inactive

(Inactive Signal)

(Changing values)

Figure 2 —Signal states

Generally, the signal cannot be switched into the “Inactive Signal” or “No Signal” states by any action on
the signal. The signal is returned to the “No Signal” state only when it is destroyed, e.g., when it is no
longer required. At that time, the signal may be considered to have passed momentarily through the
“Inactive Signal” state.

The output of a signal carries its own event information: an active signal is equivalent to “Event Active,”
and “No Signal” is equivalent to “Event Inactive.”

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 9 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

4.3 Event states

Figure 3 shows the states available to an event. Before an event exists, it may be considered to be in the
“No Event” (Z) state. When it is invoked, it passes into the gated on state, but may be active or inactive. An
event may change between active and inactive while gated on. Signals may be gated on and off by an event
as explained in 3.2. Other events may be gated on and off by an event, and as shown in Figure 3, these
other events are switched between the “No Event” state and either the “Event Inactive” or “Event Active”
state, as appropriate.

Z I

A

No Event Event Inactive

Event Active

Off On

Active

Inactive

X
Event Off

Figure 3 —Event states

When used to gate a signal, there is very little difference between an event in the “No Event” state and the
“Event Inactive” state; either of these will effectively gate the signal off. Only the “Event Active” state will
gate the signal on. The difference is apparent when gating an event such as a NotEvent. A NotEvent
changes an “Event Active” state at its input to an “Event Inactive” state at its output, and vice versa. Gating
a NotEvent will change its output between “No Event” and the appropriate “Event Active” or “Event
Inactive” state.

The fourth state, “Event Off,” may be considered not to exist for an event source.

4.4 Digital stream states

Figure 4 shows the states available to elements of a digital stream. When there is no digital signal, it may
be considered to be in the “Digital Off” state. A digital stream, whether serial or parallel, may comprise a
series of H, L, X, and Z characters, which represent the usual digital states as shown in Figure 4.

BS IEC 62529:2012

 IEC 62529:2012
 – 10 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Z

X

L

H

Digital Low

Digital High

Digital Off

Unknown State

Off On

Active

Inactive

(High Impedance & not monitored)

(Logic Zero)

(Logic One)

(No Signal or
High Impedance)

Figure 4 —Digital stream states

A “Digital Off” (Z) state indicates that there is no signal. The “Digital High” (H) and “Digital Low” (L)
states represent the normal two digital states (0 and 1). The “Unknown State” (X) represents the fact that a
digital signal is present, but it is not possible to know what it is. It is not driving a 1 or 0 when used as a
stimulus, and it is not monitored when used as response information (a “do not care”). Both the X and Z
states will be represented by an X (Signal with No Value) state when converted into a physical signal,
usually in the form of a high impedance output.

It is important to note that Figure 4 applies only to digital stream information. After a digital stream has
been converted into a physical signal, the description in 3.2 applies.

5. SML layer

The SML layer provides the definition of signals, both analog and digital, as well as their functions in any
number of domains. It provides this capability by giving a number of predefined behaviors that can be
combined as necessary to produce the desired signal definition. This clause describes the use of SML to
define signals, the measurement of signal parameters, and the conditions that a signal must meet.

The SML provides an exact mathematical definition for each BSC, in terms of dependant and independent
variables, by using the de-facto functional programming concepts of Haskell [B7]. Each definition
represents the functioning of a component, which is a requirement for use and reuse. This representation is
accomplished by giving a formal definition of the syntax and predefined signals. An execution mechanism
may be provided for simulating the modeled signal, plotting against its definition domain, and measuring
its various properties. Within the SML layer, the type of a signal is known as the dependant variable, and
the reference type is known as the independent variable.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 11 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

6. BSC layer

Clause 6 describes the methodology adopted to define signals with BSCs and the mechanisms by which
they may be combined and synchronized.

6.1 BSC layer base classes

All BSC classes used to define signals are derived from the SignalFunction class. BSC classes define their
properties using one of the base classes shown in Table 1 or using tradional programming types. This class
approach is useful for categorizing BSCs according to their characteristics, behavior, and interfaces.

Table 1 —BSC base classes

Base class Description
SignalFunction The base class of all BSCs
Signal Allows BSCs to exchange information
PulseDefns Defines a group of pulses
Physical Real, dimensioned signal values

6.2 General description of BSCs

BSCs are the fundamental components of this standard. The BSCs are the building blocks used to define
more complex signals and cannot be decomposed into simpler components.

BSCs are used to build signal models, which define the required signal. A signal model can contain a single
BSC to define a simple signal or combined BSCs to define a more complex signal.

BSCs can be used to either define static signal models or perform dynamic signal programming by
programmatically changing signal models through a programming language.

Signal models represent static signal descriptions, where the signal model does not change over time. The
BSC control interface (i.e., the IDL description) can also be used to define dynamic signal definitions,
where the value of the attributes or the signal model changes while the signal is being used.

The signal described by a signal model can be used to create a source signal or to measure a signal
characteristic attribute.

Unless otherwise stated, the default reference type for a BSC is Time; and where required, the default
signal type is Voltage.

Each BSC is described using object orientation terminology as follows:

a) A class derived from SignalFunction base class (or subclass)

b) Class type and reference type description

c) Attributes and default values

d) A control interface (defined using an IDL description)

e) A formal SML description

f) An XSD entry

BS IEC 62529:2012

 IEC 62529:2012
 – 12 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

The following annexes describe BSC features:

 Annex A gives details of the BSC formal SML descriptions.

 Annex B gives details of the BSC classes and attributes.

 Annex C gives details of the dynamic signal model behavior.

 Annex D gives a list of the IDL descriptions for each BSCs.

 Annex I gives a list of the XML descriptions for mapping signal models.

NOTE—Annex D and Annex I are normative annexes in that they provide the normative descriptions for the BSCs in
IDL and XML, respectively. BSCs may also be described in other interface languages.

6.3 SignalFunction template

A template is used as document shorthand to define types of derived classes of SignalFunction, where each
class has similar behavior and supports the same IDL description, but describes signals of different types.
Note that the class name is always the same; only the class type changes.

The use of the template defines alternative class types, where each derived class name could equally have
been written using “cut & paste” and replacing the keyword “type” with any physical class defined within
this standard. Substituting <type:…[,ref:…]> with each alternative creates the class type that the template
defines. The specific type alternatives provided in the template identify the more commonly used signal
classes; once the template is defined, any type or reference can be used.

The format for the template header is as follows:

 ClassName<type:typeName[||typeName]*[,ref:typeName[||typeName]*]>

Where no explicit types are provided, the default type is Voltage, and the default reference type (ref) is
Time.

For example, Sinusoid<type:Voltage||Current||Power> defines the following classes, where each class
supports the Sinusoid interface, through the IDL definition:

a) Sinusoid (Voltage) full type: Sinusoid (Voltage, Time)

b) Sinusoid (Current) full type: Sinusoid (Current, Time)

c) Sinusoid (Power) full type: Sinusoid (Power, Time)

NOTE 1—Alternatives are separated by the double-bar characters (||).

NOTE 2—This template convention is adopted in the remainder of this standard.

7. TSF layer

The TSF layer describes how BSCs are combined into more complex signals and packaged for reuse in
TSF libraries.

The TSF layer also provides a packaging mechanism for grouping signal models into library elements.
These libraries are constructed from individual TSF classes where each class defines an interface, a signal
model, and textual description. A TSF library will generally be a collection of domain-specific signal
definitions.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 13 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

All TSF classes shall exist in an XML TSF library conforming to Annex I. Additional support
documentation and interface files may also be provided.

7.1 TSF classes

A TSF IDL library shall be defined in terms of an IDL library module, will contain an entry for each TSF
class within the library domain, and shall be derived from the XML TSF library.

A TSF class shall be defined with a valid XML TSF element utilizing the attribute model and description
elements.

A TSF class model shall be described only as a static signal model and may contain elements from the
following:

 BSCs

 Other TSF classes

 Reference to the TSF class being defined

A TSF class’s signal description utilizing a TSF component is identical to a signal description incorporating
the complete TSF static signal model. As such, the following statements are generally true:

 A TSF component output is available only when its Gate (see Annex B) event is on.

 A TSF component restarts its operation when its Sync (see Annex B) event arrives.

TSFs provide the extendibility mechanism that allows the user community to create additional signal class
definitions.

There is no difference between a TSF class built from BSCs only and a TSF class built from BSCs and/or
other existing TSF classes. The resultant signal from a TSF class is determined by the operation of all its
components down to the lowest level (i.e., BSCs).

When a TSF signal model makes references to itself, it creates a recursive signal model definition. In this
case, the TSF is regarded as a signal transform, where each iteration is providing a more accurate signal.
The actual number of iterations required is reflected by the accuracy of the signal required or uncertainty of
the measurement. To be a proper signal model definition, the TSF signal transform should be convergent.

Use of self-referencing models that contain a reference to themselves and are not convergent (e.g., RS232)
is deprecated and maintained for support of the earlier edition of this standard. Such TSF definitions should
now be defined by an external reference (see 7.3).

7.2 TSF signals defined by a model

Each signal described in a TSF may have the following information:

 Title, which indicates the syntax of the TSF class name.

 Definition of the signal.

 Model diagram, which shows the component parts of the signal and their relationship. This diagram
is provided to give a convenient pictorial representation of the signal model. In the event of any

BS IEC 62529:2012

 IEC 62529:2012
 – 14 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

conflict between the model diagram and the model description table, the model description table
takes precedence.

 Interface properties table listing the TSF interface properties.

 Notes as needed for any additional explanations.

 Model description table, which lists the component parts of the signal and their relationship. Each
element in the model is supported by a definition in the BSC.

 Equations as needed to define the operation of the model.

 Rules as needed relating to the operation of the model.

7.2.1 Interface properties table

The interface properties table shall comprise the following five columns:

 Description. The descriptive name of the attribute.

 Name. The syntactical name of the attribute as defined in the BSC.

 Type. The attribute type as defined in the BSC. If the type is given as physical, the actual type shall
be chosen from the list provided with the signal title. If more than one attribute has the type given
as physical, then all attributes shall be of the same type.

 Default. If a value is provided, the default is the value that the attribute will take if the attribute is
not specifically defined. If no default value is given, then the user shall provide a value.

 Range. If a range is given, it indicates the valid range for the attribute. The attribute value must fall
within this range.

Table 2 shows an interface property table for a sample signal (in this example, AC_SIGNAL). It indicates
that the user should provide the physical type, amplitude, and frequency as a minimum. The physical type
is usually determined from the units given with the value; for example, an amplitude of 10 V indicates that
the physical type is Voltage. If no DC Offset or initial phase angle is defined, each attribute will assume the
default values given in the table. Note that the DC Offset is of the same type as the AC Signal amplitude.

Table 2 —Example of TSF interface property table

Description Name Type Default Range
AC Signal amplitude ac_ampl Physical — —
DC Offset dc_offset Physical 0 —
AC Signal frequency freq Frequency — —
AC Signal phase angle phase PlaneAngle 0 rad 0 – 2π rad

An attribute of a TSF class that is subsequently not used in the signal model description cannot be used to
change or control the signal. It may be used to describe the capabilities required from the signal; for
example, if an attribute Distortion Max 3% were added to the interface, it would mean that distortion must
be less than (or equal to) 3%. As such, all such capability attributes are optional.

7.2.2 Model description table

The model description table describes the signal model using a network list format. The model description
table shall comprise the following six columns:

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 15 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 Name. The given name of the BSC or TSF within the model.

 Type. The type of the BSC or TSF.

 Terminal. The terminal names of the BSC or TSF, usually in the order of outputs followed by
inputs.

 Inputs. The signal or attribute that is connected to the terminal listed in the “Terminal” column.

 Output. The output(s) of the BSC or TSF. Some BSC or TSF signal outputs will be inputs to other
BSCs or TSF signals within the model, and at least one will be the output from the model.

 Formula. An optional mathematical definition (or constant value) of the function or input. Where
the formula references another attribute from within the TSF model, the formula value should be
evaluated every time the reference value changes. The implicit translation from one type to another
shall be the natural translation between the types supported by the expression handler defined.

Table 3 shows a signal model for AC_SIGNAL. A BSC of type Sinusoid (named AC Component) is
summed with a BCS of type Constant (named DC Offset) to create the AC_SIGNAL.

Table 3 —Example of TSF model description table

Name Type Terminal Inputs Output Formula
AC Signal Sum Signal [Out] — AC_SIGNAL —

Signal [In] DC Offset — —
Signal [In] AC Component — —

AC Component Sinusoid Signal [Out] — AC Signal —
amplitude ac_ampl — —
frequency freq — —
phase phase — —

DC Offset Constant Signal [Out] — AC Signal —
amplitude dc_offset — —

7.2.3 TSF figures

Each TSF figure provides a pictorial description of the model description and interface properties.
These figures give an intuitive representation of a signal model, which is based on the BSC diagram
(see Figure B.1). They do not infer the use of any specific signal resources. If the TSF figure is not
consistent with the model description table or the interface properties table, then the tables take precedence.
The external interfaces and properties are illustrated in the same manner as for an individual BSC (see
Figure B.1). The internal structure shows how BSCs and other TSF components are combined to provide
the required signal. See Annex E and Annex F for examples of TSF figures.

7.2.4 Other properties

A TSF may also have additional properties that are not used directly in the TSF model. They may be used
to describe qualitative properties such as capability attributes, which provide additional information about a
signal (to help select an appropriate instrument) but do not modify the signal.

TSFs may have two attributes that have significance only within a TSF library:

BS IEC 62529:2012

 IEC 62529:2012
 – 16 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 Hidden, which indicates that the TSF is available for use only by other TSFs within the library, i.e.,
it is hidden from use and cannot be used directly outside the library. To hide a TSF, set the Hidden
attribute to true.

 Group, which provides the facility to indicate that a set of TSFs is part of a single group. TSFs are
considered to be in the same group if their Group attributes have the same name. Subgroups can be
introduced by using concatenated group names separated by a colon (:), e.g., “group1:subgroupA.”

All attributes used within a TSF shall have their Type defined. In the event that the Type of an attribute is
left undefined, it shall be assumed to of Type xs:string.

7.3 TSF signals defined by an external reference

A TSF may be defined by an external reference such as an internationally recognized standard. If this
method is used to define a TSF, the reference must be complete and explicit with a full source reference.

Any attribute names used must be defined in the external reference or fully described in terms of elements
in the external reference.

8. Test procedure language (TPL)

The TPL (see Annex H) provides a mechanism for users who want to document test requirements in a
textual format. The use of the TPL to write test requirements is analogous to using ATLAS inasmuch as the
TPL uses stylized English signal statements to describe tests and to manipulate signals. It differs from using
ATLAS in that it does not provide a fully defined programming language. Instead, STD allows users to
adopt their own preferred programming language in which the signal statements and the underlying
semantics of tests can be written.

8.1 Goals of the TPL

The goals of the TPL are as follows:

a) Its keywords have meanings that are normally accepted by the worldwide testing community.

b) It is an effective means for communicating test information relating to the testing of a UUT
between an originator of a test requirement and an implementer of a test requirement.

c) Test requirements written according to the TPL rules shall be portable to implementations on
different designs of test equipment that have the same testing capability no matter how it is
controlled.

8.2 Elements of the TPL

The TPL requires two elements:

a) Signal statements, which are used to configure, manipulate, control, and measure signals.

b) Carrier language, which is a programming language in which the signal statements can be written,
sequenced, observed, and generally supported.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 17 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

8.3 Use of the TPL

To produce test requirements using the TPL, users shall embed the test statements in their preferred carrier
language.

Users must recognize that there must be some translation mechanism to convert from this neutral format of
the signal statements into their preferred carrier language format before the test statements can be compiled
and executed.

Use of a translator to convert the neutral representation of the test statements into the carrier language
format offers certain benefits in that parameter type checking and semantics checks can be conducted prior
to test execution.

9. Maximizing test platform independence

The use of this standard allows signal definitions to be created without reference to their final application.
This approach in turn facilitates the definition of test requirements that provide the ability to achieve test
application interchangeability across different test platforms. This best practice is encapsulated in Annex K,
where a set of rules that should be followed when developing test applications is defined.

BS IEC 62529:2012

 IEC 62529:2012
 – 18 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex A

(normative)

Signal modeling language (SML)

A.1 Use of the SML

In general, unless a user needs to generate new keywords for the test methodology, there is no requirement
for a user to refer to the SML in order to generate test requirements for a unit under test (UUT).
Occasionally, a user may need to refer to the SML either for the mathematical justification or simulation of
some signal construct or for the introduction of a new keyword to cover some new test application that the
test methodology does not embrace. In the latter instance, a user will need to refer to the SML in order to
ensure that any new keyword that is introduced into the test methodology is coherent with the existing
predefined keywords. The purpose of this step would be to submit a proposal for future releases to the
standard.

For the convenience of using processing software suites that are freely available without any restrictions to
generate the signal diagrams, a derived version of the functional programming language Haskell [B7] has
been adopted.

NOTE—The blocks of SML code defined in this annex are preceded and followed by a blank line. Each line is
continuous starting at the “>” symbol. Code often appears to flow onto a second or subsequent line due to the restricted
line length of a published standard. When the code is used with a Haskel compiler, the lines should be reinstated as
continuous starting at the “>” symbol. Care should be taken to ensure that the “>” (start of line) symbol is not confused
with the “->” symbol.

A.2 Introduction

This annex describes how the SML can define the signal characteristics, signal measurements, and signal
conditions to meet particular applications. A SML signal model is a mathematical definition of the signal
and its properties. The definition represents the functioning of a signal entity for both its use and reuse. It
provides a formal definition of the syntax and semantics of predefined signal types. An execution
mechanism may be provided for simulating a modeled signal by plotting it against its definition domain
and measuring its various properties.

This annex provides and builds upon the following:

 Definitions for the basic signal components (BSCs)

 Definitions for the combining mechanism for piecewise continuous signals and others

As a convention, the reserved words for the SML entities are written in italics in the format descriptions.

Functional programming consists of building definitions that are subsequently used to evaluate expressions.
Expressions represent questions that evaluate to answers or values, generally through symbolic substitution,
using rules or functions that represent the definitions, all of which obey normal mathematical principles.

Values are partitioned into organized collections called types. Examples of predefined types are Integer and
Float. All type names shall start with a capital letter in the format descriptions. The double colon symbol
(::) is used to define the type of a function or expression.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 19 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Example:

pi :: Float — means pi is of type Float
pi = 3.14159
succ :: Int -> Int — function succ that takes an Int value and returns an Int
value
succ n = n+1

User types can be defined using the keyword data that introduces the name of the type and the type values
by using a type constructor. All type constructor names shall start with a capital letter in the format
descriptions.

 Example:

data Resistance = OHM Float | KOHM Float | MOHM Float

In other words, a value of type Resistance is written using one of the three type constructor keywords,
OHM, KOHM, MOHM, followed by a value of type Float, e.g., 5 kΩ is written KOHM 5.0.

Type classes can be defined using the keyword class that introduces the name of the type class and the
allowed functions that operate on any type belonging to this type class. All type class names shall start with
a capital letter in the format descriptions. The type class definition can also constrain the types that are
allowed to belong to the type class by ensuring that they belong to other type classes.

Example:

class (Ord a, Show a) => Physical a where …

In other words, a type class Physical is defined so that only types that belong to the type classes Ord and
Show may belong to the new type class Physical. The language word “where” starts the scope of the
remaining definition.

A type definition uses the keyword “instance” to declare itself a member of a particular type class.

Example:

instance Physical Resistance where …

A.3 Physical types

All physical types are held in the module Physical:

>module Physical where

Table A.1 defines the physical types used within the SML and the units involved. The column headers of
the units indicate the exponent of 10 that is used for the unit; in other words, if that unit is used, the basic
degree is multiplied by 10 raised to that exponent. The first unit in each list is the basic unit, i.e., the unit in
terms of which other units are defined.

All of the type names in Table A.1 may appear in type signatures that give the type of a signal. Each of the
unit names may be used with a floating-point number or expression to create a physical constant. The form
in this case is (<unit_name> <expression>), where the expression is given in normal mathematical notation.

BS IEC 62529:2012

 IEC 62529:2012
 – 20 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

The specification in this clause (i.e., A.3) does not include a complete definition of operations on values of
a physical type. Operations are conducted on normal floating-point types and then converted into physical
quantities as necessary. Conversion of a physical value into a floating-point value is accomplished using
the following form:

>class (Ord a, Show a) => Physical a where
> fromPhysical:: a -> Float

Floating-point values may be converted to physical values by prefixing them with one of the units in
Table A.1. In some cases, the appropriate unit is not clear (e.g., in a very general signal creation method).
In these cases, a general routine is used to convert the floating-point value into a physical value whose type
is determined from the context. This conversion is accomplished by the following form:

> toPhysical:: Float -> a

All physical types are defined with a data declaration and the instance mapping fromPhysical and
toPhysical and shall also be instances of classes Eq and Ord implementing (==) and (<=) functions, using
the fromPhysical function, e.g., OHM 1000 == KOHM 1 and OHM 1100 >= KOHM 1.

In Table A.1 and Table A.2, the physical types are declared in the “SML type” column, and the alternative
constructor names are provided in the other SML columns. Standard physical conversions may need to be
used when multiple units are used.

Examples:

>data PlaneAngle = RAD Float | MRAD Float| URAD Float |
> DEG Float |
> REV Float deriving (Show)
>instance Physical PlaneAngle where
> fromPhysical (RAD x) = x
> fromPhysical (MRAD x) = x * 1.0e-3
> fromPhysical (URAD x) = x * 1.0e-6
> fromPhysical (DEG x) = x * (pi/180)
> fromPhysical (REV x) = x * (2*pi)
> toPhysical x = RAD x

>instance Eq PlaneAngle where
> x == y = (fromPhysical x) == (fromPhysical y)
>instance Ord PlaneAngle where
> x <= y = (fromPhysical x) <= (fromPhysical y)

>data Resistance = OHM Float | KOHM Float| MOHM Float deriving (Show)
>instance Physical Resistance where
> fromPhysical (OHM x) = x
> fromPhysical (KOHM x) = x * 1000
> fromPhysical (MOHM x) = x * 1000000
> toPhysical x = OHM x

>instance Eq Resistance where
> x == y = (fromPhysical x) == (fromPhysical y)
>instance Ord Resistance where
> x <= y = (fromPhysical x) <= (fromPhysical y)

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 21 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table A.1—SML physical types and their units

SML type Unit Symbol 100
SML

103
SML

106
SML

109
SML

10-3
SML

10-6
SML

10-9
SML

10-12
SML

PlaneAngle radian rad RAD — — — MRAD URAD — —
degree ° DEG — — — — — — —
revolution — REV — — — — — — —

SolidAngle steradian sr SR — — — MSR — — —
Capacitance farad F FD — — — — UFD NFD PFD
Charge coulomb C C KC — — — UC NC —
Conductance siemens S S — — — — — — —
Current ampere A A KA — — MA UA NA —
Distance meter m M KM — — MM UM NM —

inch in IN — — — — — — —
foot ft FT — — — — — — —
stat. mile mi SMI — — — — — — —
naut.mile nmi NMI — — — — — — —

Energy joule J J KJ — — MJ — — —
electronvolt eV EV KEV MEV — — — — —

MagneticFlux weber Wb WB — — — MWB — — —
MagneticFluxDensity tesla T T — — — MT UT — —
Force newton N N KN — — MN UN — —
Frequency hertz Hz HZ KHZ MHZ GHZ — — — —
Illuminance lux lx LX — — — — — — —
Inductance henry H HEN — — — MH UH NH PH
Luminance candela per

square meter
cd/m2 NT — — — — — — —

LuminousFlux lumen lm LM — — — — — — —
LuminousIntensity candela cd CD — — — — — — —
Mass kilogram kg KG — — — G MG UG —
Power watt W W KW — — MW UW — —
Pressure pascal Pa PA KPA — — MPA UPA — —

millibar mbar MB — — — — — — —
Resistance ohm Ω OHM KOHM MOHM — — — — —
Temperature kelvin K KEL — — — — — — —

deg. Celsius °C DEGC — — — — — — —
deg.
Fahrenheit

°F DEGF — — — — — — —

Time second s SEC — — — MSEC USEC NSEC —
minute min MIN — — — — — — —
hour h HR — — — — — — —

Voltage volt V V KV — — MV UV — —
Volume liter L LITER — — — ML — — —

BS IEC 62529:2012

 IEC 62529:2012
 – 22 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table A.2 provides two further special physical types that are provided to support the SML.

Table A.2—Special physical types and their units

SML type Unit Symbol 100
SML

103
SML

106
SML

109
SML

10-3
SML

10-6
SML

10-9
SML

10-12
SML

BurstLength cycle — CYCLE — — — — — — —
pulse — PULSE — — — — — — —

RatioInOut decibel dB DB — — — — — — —

A.4 Signal definitions

All SML primitive signal definitions are held in the module Pure and make use of the previous module
Physical and the Haskell system modules Complex and FFT.

>module Pure where
>import FFT
>import Complex
>import Random
>import Physical
>infixr 7 |>

Any datatype can declare itself as a signal by declaring itself an instance of the class Signal.

>class Signal s where
> mapSignal:: (Physical a, Physical b) => (s a b) -> a -> b
> mapSigList:: (Physical a, Physical b) => (s a b) -> [a] -> [b]
> toSig:: (Physical a, Physical b) => (s a b) -> SignalRep a b
> isInactive:: (Physical a, Physical b) => (s a b)-> a -> Bool
> isOff:: (Physical a, Physical b) => (s a b)-> a -> Bool
> isZ:: (Physical a, Physical b) => (s a b)-> a -> Bool
> isX:: (Physical a, Physical b) => (s a b)-> a -> Bool
> isL:: (Physical a, Physical b) => (s a b)-> a -> Bool
> isH:: (Physical a, Physical b) => (s a b)-> a -> Bool
> mapSignal = mapSignal . toSig
> mapSigList = map . mapSignal
> toSig = FunctionRep . mapSignal
> isInactive = isInactive . toSig
> isOff = isOff . toSig
> isZ s t = (isInactive s t) && (isOff s t)
> isX s t = not (isInactive s t) && (isOff s t)
> isL s t = (isInactive s t) && not (isOff s t)
> isH s t = not (isInactive s t) && not (isOff s t)

An instance of a signal can be observed at a specific point in its domain; in other words, the instance
effectively calls the function associated with the signal by providing an argument to the function. This
capability is referred to as mapping the signal onto a specific point and has the following form:

mapSignal <signal_name> <independent_value>

A common signal representation is used to define all signals. A signal representation can be represented
any of the following:

 By a function.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 23 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 As piecewise continuous windows made up of other signal representations.

 By the value not present, as in an inActive event, and detected through the use of the isInactive
method. This represents a signal whose event state is inactive.

 By the signal not being present and detected through the use of the isOff method. This represents a
signal in the tri-state or Z state.

>data SignalRep a b =
> ZRep |
> XRep |
> NullRep |
> FunctionRep (a -> b) |
> PieceContRep (PieceCont a b)

A signal representation is an instance of the class Signal and an instance of class Calculus, which provides
function integration and differention methods.

>instance Signal SignalRep where
> mapSignal ZRep = \t -> toPhysical (-0.0)
> mapSignal XRep = \t -> toPhysical 0.0
> mapSignal NullRep = \t -> toPhysical (-0.0)
> mapSignal (FunctionRep f) = f
> mapSignal (PieceContRep f) = mapSignal f
> mapSigList (FunctionRep f) = map f
> mapSigList (PieceContRep f) = mapSigList f
> toSig = id
> isInactive ZRep _ = True
> isInactive NullRep _ = True
> isInactive (PieceContRep f) t = isInactive f t
> isInactive _ _ = False
> isOff ZRep _ = True
> isOff XRep _ = True
> isOff (PieceContRep f) t = isOff f t
> isOff _ _ = False

>class Calculus a where
> i_dx :: Float -> a -> a
> d_dx :: Float -> a -> a
>
>instance (Physical a, Physical b) => Calculus (SignalRep a b) where
> i_dx dx ZRep = ZRep
> i_dx dx XRep = XRep
> i_dx dx NullRep = NullRep
> i_dx dx s = FunctionRep (\x -> toPhysical $ dx * (sum $ map fromPhysical $
> mapSigList s $ map toPhysical [0,dx..fromPhysical x]))
> d_dx dx ZRep = ZRep
> d_dx dx XRep = XRep
> d_dx dx NullRep = NullRep
> d_dx dx s = FunctionRep (\x -> toPhysical $
> (fromPhysical (mapSignal s x) – fromPhysical (mapSignal s
> (toPhysical((fromPhysical x)+dx)))) / dx)

A new signal definition is created by either defining a function that returns a signal representation (e.g.,
SignalRep a b) or creating a new data class that supports the signal class interface. When defining a new
signal, the name may be used twice in the definition:

 First, to give the type of the independent and dependent variables of the signal. This use is optional
and can often be inferred from the use of the parameters in the signal definition.

 Second, to define the signal itself, using the mechanisms provided for basic signal definitions.

BS IEC 62529:2012

 IEC 62529:2012
 – 24 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

SML signals represent single channel, or scalar, signals. Multichannel signals, or vector signals, can be
constructed by using the Haskell array [] or Tuple () collection classes.

A.5 Pure signals

The SML provides a number of mathematically pure signal definitions, which represent the behavior of
Active and On signals without any representation of noise, distortion, or spurious phenomena. The user can
take these signals and build more complex signals with them using the construction techniques. These pure
signals are divided and presented as signals that are nonperiodic (i.e., do not have a given period or
frequency) and signals that are periodic (i.e., have a given period or frequency).

A.5.1 Nonperiodic signals

The signals presented in this subclause have no implicit period. They identify specific, one-time events or
functions that do not repeat themselves.

A.5.1.1 Constant

A constant signal retains its given level for all values of its independent variable. It has the following form:

>constant:: (Physical a, Physical b) => b -> SignalRep a b
>constant level = FunctionRep (\t -> level)

A.5.1.2 Linear

A linear signal forms a line within a plane. The line is defined by its slope and intercept. The equation is the
standard y = mx+ b. It has the following form:

>linear:: (Physical a, Physical b) => Float -> b -> SignalRep a b
>linear m b =
> FunctionRep (\x -> toPhysical (m*(fromPhysical x) + (fromPhysical b)))

A.5.1.3 Random

A random signal consists of an unbounded number of random levels between zero and one. It takes two
parameters: an integer seed and a sampling interval, which is of the same type as the independent variable.
The same random signal is given for the same seed; the seed enables deterministic testing. It has the
following form:

>rand:: Integer -> [Float]
>rand i = randoms (mkStdGen (fromInteger i))
>
>random:: (Physical a, Physical b) => Integer -> a -> SignalRep a b
>random seed sample_interval = let
> waveform:: (Physical a, Physical b) => a -> [b] -> SignalRep a b
> waveform samp ampls =
> let stepSlope y y' =
> ((fromPhysical y') - (fromPhysical y))/(fromPhysical samp)
> makeWin (v,v') = Window LocalZero (TimeEvent (fromPhysical samp))

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 25 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

> (linear (stepSlope v v') v)
> points = cycle ampls
> in pieceRep (Windows (map makeWin (zip points (tail points))))
> in waveform sample_interval (map toPhysical (rand seed))

A.5.1.4 Exponential

An exponential is a damping factor, which is equivalent to the following function:

e - t/τ

where

t is the time interval
τ is the damping factor.

An exponential allows any signal to be damped over a given time, according to a floating-point damping
factor:

>expc:: (Physical a, Physical b) => Float -> SignalRep a b
>expc damp = FunctionRep (\t->toPhysical (exp (-((fromPhysical t)*damp))))

A.5.2 Periodic signals

The signals defined in A.5.2.1 and A.5.2.2 have either a period or a frequency assigned to them. In other
words, they repeat their values for some fixed value of their independent variable.

A.5.2.1 Sinusoid

A sinusoid is the familiar sine relationship. It takes an amplitude, a frequency, and a phase angle. The
amplitude has the type of the dependent variable, the frequency is of type Frequency, and the phase angle is
a PlaneAngle. The result is given as follows:

A * sin(ωt+ θ)

where

A is the amplitude
ω is the frequency (multiplied by 2π)
θ is the phase angle

It has the following form:

>sine:: (Physical a, Physical b) =>
> b -> Frequency -> PlaneAngle -> SignalRep a b
>sine mag omeg phase =
> FunctionRep (\x -> toPhysical ((fromPhysical mag)*
> (sin(2*pi*(fromPhysical omeg)*(fromPhysical x) +
> (fromPhysical phase)))))

BS IEC 62529:2012

 IEC 62529:2012
 – 26 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

A sinusoid is a simpler form of a more complex function, whose amplitude, phase angle, and frequency are
functions rather than scalars. This has the same format as that above:

>sineFunc::(Physical a, Physical b)=>
> SignalRep a b->SignalRep a b->SignalRep a b->SignalRep a b
>sineFunc mag omeg phase =
> FunctionRep (\x-> toPhysical((fromPhysical (mapSignal mag x))*
> (sin(2*pi*(fromPhysical (mapSignal omeg x))*(fromPhysical x)
> + (fromPhysical (mapSignal phase x))))))

where

the type of all three signals is from the independent to the dependent type

A.5.2.2 Waveform

A waveform is defined by a sampling interval and a list of values. The waveform cycles through those
values sequentially and infinitely, starting from zero. The width of each window is the same, and each
window consists of a line segment.

A waveform has the following form:

>waveform:: (Physical a, Physical b) => a -> [b] -> SignalRep a b
>waveform samp lev =
> let s = fromPhysical samp
> stepSlope y y' = ((fromPhysical y') - (fromPhysical y)) / s
> makeWin (v,v') = Window LocalZero (TimeEvent s)(linear(stepSlope v v') v)
> points = cycle lev
> in pieceRep (Windows (map makeWin (zip points (tail points))))

A.6 Pure signal-combining mechanisms

Clause A.5 established a number of ways to create signals, and this clause (i.e., A.6) presents some
mechanisms of combining signals together. Each mechanism will be handled separately.

A.6.1 Piecewise continuous signals

A piecewise continuous signal is made up of a number of windows, each with its own signal defined within
the window. Window boundaries are defined by events.

A.6.1.1 Window events

An event marks the transition from one window to another. An event can be an amount of time either
relative or absolute (i.e., a time event or fixed event), a function of another signal (i.e., function event), the
moment when another signal becomes active (i.e., active event), or a fixed number of event occurrences
(i.e., a burst event). Each type of event has a distinct form.

>data (Physical a, Physical b) => Event a b=

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 27 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

a) A time event is either a specified relative period of time or a fixed absolute point in time. The
window lasts for the duration of time given within the immediate scope of the outer signal. It has
the following form:

> TimeEvent Float |
> FixedEvent Float |

Although the type of event is called a time event, it may be of any physical type, thus, the use of the
floating-point expression.

b) A function event is when the argument of this function is a function that, in turn, takes a signal and
produces a boolean result. It takes the following form:

> FunctionEvent (Float -> Bool) |

c) An active event is when a signal representation transitions from a ZRep or NullRep representation
to a non-ZRep or non-NullRep representation, i.e., isInactive transitions to False. It takes the
following form:

> ActiveEvent (SignalRep a b) |

d) A burst event is triggered by a given number of triggers of another defined event. It takes the
following form:

> BurstEvent Int (Event a b)

A user may use the following inf expression with TimeEvent to specify an infinite period:

>inf = (1/0)::Float

A user may determine the absolute time (or the value of the independent variable) when a given event
occurs by the following expressions:

>timeOccurs:: (Physical a, Physical b) => (Event a b) -> a
>timeOccurs e = toPhysical (eventOccurs e 0.0)

>eventOccurs:: (Physical a, Physical b)=>(Event a b) -> Float -> Float
>eventOccurs (TimeEvent t) x = x+t
>eventOccurs (FixedEvent t) x = if (t>x) then t
> else error ((show x) ++ ">" ++ (show t))
>eventOccurs (FunctionEvent f) x = stepEval f x
>eventOccurs (BurstEvent i e) x =
> if i == 1 then
> eventOccurs e x
> else
> eventOccurs (BurstEvent (i-1) e) st
> where st = eventOccurs e x
>eventOccurs (ActiveEvent ges) x = let {
> ;isInactive NullRep = True
> ;isInactive ZRep = True
> ;isInactive XRep = False
> ;isInactive = False
> ;active True st x w@((Window z e NullRep):ws) = active False st x w
> ;active True st x w@((Window z e ZRep):ws) = active False st x w
> ;active True 0.0 x _ = 1.0e-38 -- must not be zero (0.0)

BS IEC 62529:2012

 IEC 62529:2012
 – 28 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

> ;active True st x _ = st
> ;active False st x [] = inf
> ;active False st x ((Window z e s):ws) = let {
> ;et = eventOccurs e st
> } in active ((isInactive s)&&(et>x)) et x ws
> }in active (0.0>=x) 0.0 x (functionWindows ges)

>stepEval:: (Float -> Bool) -> Float -> Float
>stepEval f x = if not (f x) && f x' then x' else stepEval f x'
> where x' = x + epsilon x

>epsilon:: Float -> Float
>epsilon x | x == inf = x
> | otherwise = encodeFloat (a+1) b - x where (a,b)=decodeFloat x
>epsilon x = let eps = abs (x/1000) in if (1.0e-5 < eps || eps == 0.0)
> then 1.0e-5 else eps

The boolean function above may be any sort of function that takes physical value and produces a boolean
value. As an example, the transition functions are given below. The transition functions take a transition
point, a signal, and a time (or value of the type of the independent variable of the signal) at which to
perform the test; and they produce the value true if the signal has crossed that value since the last sample
and the value false otherwise. The function hilo produces true on a falling edge, and the function lohi
produces true on a rising edge. The transition cannot be detected prior to time zero (e.g., 0.0). The forms of
these functions are as follows:

hilo <transition_point> <signal_name> <test_point>
lohi <transition_point> <signal_name> <test-point>

A.6.1.2 Windows

A window is specified by an event, which gives the width of the window, and a function, which specifies
the value of the signal within the window.

There is an additional complication when determining the signal value within a window. In some cases
(e.g., the normal use of a time window), the beginning of the window is to be regarded as time 0.0 for the
purposes of evaluating the signal. In other cases (e.g., selecting between two different signals at given
points on a time line), it may be required to evaluate the signal against the global time zero (i.e., the time
zero of the outer piecewise continuous signal). Therefore, a flag is included that determines the zero against
the event defining the value of the signal within that window.

The form of a window definition is, therefore, as follows:

>data FunctionWindow a b = Window ZeroIndicator (Event a b) (SignalRep a b)

A ZeroIndicator flag is one of two identifiers, LocalZero or GlobalZero, as follows:

>data ZeroIndicator = LocalZero | GlobalZero deriving (Eq, Show)

A helper functionWindows is provided to extract any FunctionWindow component from a SignalRep:

>functionWindows::(Physical a, Physical b) =>
> (SignalRep a b) -> [FunctionWindow a b]
>functionWindows (PieceContRep (Windows ws)) = ws
>functionWindows s = [Window LocalZero (TimeEvent inf) s]

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 29 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

The splice function combines multiple FunctionWindows by splicing them into a single FunctionWindow
with each segment bounded by the next event and having their SignalRep determined by the first
parameter:

>splice :: (Physical a, Physical b)=>
> (SignalRep a b -> SignalRep a b -> SignalRep a b) ->
> [FunctionWindow a b] -> [FunctionWindow a b] -> Float -> [FunctionWindow a b]
>splice f [] [] x = []
>splice f ((w@(Window z e s)):wl) [] x =
> (Window z e (f s ZRep)): (splice f wl [] x)
>splice f [] ((w@(Window z e s)):wl) x =
> (Window z e (f ZRep s)): (splice f [] wl x)
>splice f ((w@(Window z e s)):wl) ((w'@(Window z' e' s')):wl') x = let {
> ;et = eventOccurs e x
> ;nt = et-et'
> ;win = Window z e (f s s')
> ;dw = Window z (TimeEvent nt) s
> ;et' = eventOccurs e' x
> ;nt'= et'-et
> ;win'= Window z' e' (f s s')
> ;dw' = Window z' (TimeEvent nt') s'
> } in if abs(nt)<epsilon et then win : (splice f wl wl' et) else
> if et<et' then win : (splice f wl (dw':wl') et)
> else win': (splice f (dw:wl) wl' et')

The default behavior of conditioners is described by the helper function stdConditioner. When the input of
the conditioner is not active, no operation occurs.

>stdConditioner::(Physical a, Physical b) =>
> (SignalRep a b -> SignalRep a b) ->
> [FunctionWindow a b] -> [FunctionWindow a b]
>stdConditioner fn (fw@(Window z e ZRep):fws) =
> (Window z e ZRep): stdConditioner fn fws
>stdConditioner fn (fw@(Window z e NullRep):fws)= fw: stdConditioner fn fws
>stdConditioner fn (fw@(Window z e XRep):fws)= fw: stdConditioner fn fws
>stdConditioner fn ((Window z e (PieceContRep(Windows fws'))):fws) =
> (Window z e (PieceContRep (Windows (stdConditioner fn fws')))):
> stdConditioner fn fws
>stdConditioner fn ((Window z e s):fws) =
> (Window z e (fn s)): stdConditioner fn fws

A.6.1.3 Piecewise continuous functions

A piecewise continuous function is represented by the PieceCont datatype, is built from windows, and is an
instance of a signal. The function getWindow is available to retrieve the local time and first window where
the window event happens after the required time.

>getWindow:: (Physical a, Physical b) =>
> Float -> Float -> [FunctionWindow a b] ->
> (Float, FunctionWindow a b, [FunctionWindow a b])
>getWindow st t [] = (t, Window LocalZero (TimeEvent (2*t)) ZRep, [])
>getWindow st t (w:wl) = if t < et then (t', w, wl)
> else getWindow et t wl
> where et = eventOccurs e st
> (Window z e s) = w
> t' = if z == LocalZero then t-st else t
>
>data PieceCont a b = Windows [FunctionWindow a b]
>instance Signal PieceCont where
> mapSignal (Windows []) t = mapSignal ZRep t

BS IEC 62529:2012

 IEC 62529:2012
 – 30 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

> mapSignal (Windows wl) t = (mapSignal s) (toPhysical t')
> where (t', (Window z e s), wl') = getWindow 0.0 (fromPhysical t) wl
> toSig = pieceRep
> isInactive (Windows []) t = True
> isInactive (Windows wl) t = (isInactive s) (toPhysical t')
> where (t', (Window z e s), wl') = getWindow 0.0 (fromPhysical t) wl

The operator for combining Windows is |>. A window that has no duration and is completely empty is
called nullWindow.

>nullWindow = Windows []
>(|>)::(Physical a, Physical b) =>
> FunctionWindow a b->PieceCont a b->PieceCont a b
>(|>) w (Windows wl) = Windows (w:wl)

This operator, as well as the nullWindow, allows the specification of the piecewise continuous signal. The
form of a piecewise continuous signal is, therefore, as follows:

[cycleWindows (] <window> << |> <window> >> |> nullWindow [)]

The preceding piecewise continuous signal, cycleWindows, is used when the piecewise continuous
function is intended to repeat infinitely for all time; otherwise, after the last window, the signal value
returns to zero. Of course, the closing parenthesis is needed only if the signal specification is preceded by
cycleWindows and the opening parenthesis.

>cycleWindows:: (Physical a, Physical b) => PieceCont a b -> PieceCont a b
>cycleWindows (Windows wl) = Windows (cycle wl)

A similar form is used when a set of windows is to be repeated N times:

[repNWindows (] <count> <window> << |> <window> >> |> nullWindow [)]

where count represents the number of times the windows are to be replicated.

>repNWindows:: (Physical a, Physical b) => Int -> PieceCont a b -> PieceCont a b
>repNWindows i (Windows wl) = let
> repN::(Physical a, Physical b)=>
> Int -> [FunctionWindow a b] -> [FunctionWindow a b]
> repN 0 _ = []
> repN x ls = ls ++ (repN (x-1) ls)
> in Windows (repN i wl)

The function pieceRep is used as a generator for normalized, or flattened, windows within piecewise
continuous signals and is used in preference to the constructor PieceContRep to allow for optimization of
windows behavior

>pieceRep:: (Physical a, Physical b) => PieceCont a b -> SignalRep a b
>pieceRep (Windows wl) = PieceContRep (Windows wl)

or an optimized version

 pieceRep (Windows wl) = PieceContRep (Windows (flattenWindows 0.0 wl))

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 31 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

A.6.2 Sum and Diff

Another mechanism of making signals from other signals is to sum or diff them together. This mechanism
is identified by simply naming the signals to be summed, in the following form:

>sumSig, diffSig:: (Physical a, Physical b, Signal s, Signal s') =>
> (s a b) -> (s' a b) -> SignalRep a b
>sumSig f f' =
> pieceRep $ Windows $ splice sigState
> (functionWindows (toSig f)) (functionWindows (toSig f')) 0.0
> where
> sigState s ZRep = s
> sigState ZRep s = s
> sigState s NullRep = s
> sigState NullRep s = s
> sigState s XRep = s
> sigState XRep s = s
> sigState s s' =
> let s1 t = fromPhysical (mapSignal s t)
> s2 t = fromPhysical (mapSignal s' t)
> in FunctionRep (\t -> toPhysical ((s1 t) + (s2 t)))
>diffSig f f' =
> pieceRep $ Windows $ splice sigState
> (functionWindows (toSig f)) (functionWindows (toSig f')) 0.0
> where
> sigState s ZRep = s
> sigState ZRep s = s
> sigState s NullRep = s
> sigState NullRep s = s
> sigState s XRep = s
> sigState XRep s = s
> sigState s s' =
> let s1 t = fromPhysical (mapSignal s t)
> s2 t = fromPhysical (mapSignal s' t)
> in FunctionRep (\t -> toPhysical ((s1 t) - (s2 t)))

An entire list of signals may be summed with a function of the following form:

>sumSigList, diffSigList:: (Physical a, Physical b, Signal s) =>
> [s a b] -> SignalRep a b
>sumSigList [] = ZRep
>sumSigList ls = foldl1 sumSig (map toSig ls)
>diffSigList [] = ZRep
>diffSigList ls = foldl1 diffSig (map toSig ls)

A.6.3 Product

Two signals may be multiplied together via an operation of the following form:

>mulSig:: (Physical a, Physical b, Signal s, Signal s') =>
> (s a b) -> (s' a b) -> SignalRep a b
>mulSig f f' =
> pieceRep $ Windows $ splice sigState
> (functionWindows (toSig f)) (functionWindows (toSig f')) 0.0
> where
> sigState s ZRep = s
> sigState ZRep s = s
> sigState s@NullRep _ = s
> sigState _ s@NullRep = s
> sigState s@XRep _ = s
> sigState _ s@XRep = s

BS IEC 62529:2012

 IEC 62529:2012
 – 32 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

> sigState s s' =
> let f1 t = fromPhysical (mapSignal s t)
> f2 t = fromPhysical (mapSignal s' t)
> in FunctionRep (\t -> toPhysical ((f1 t) * (f2 t)))

A.7 Pure function transformations

Transformations take a signal and transform it, e.g., converting it from the time domain to the frequency
domain. These transformations are pure in the sense that they are defined here in English.

A.7.1 Fourier transform

The Fourier transform converts time domain signals to frequency domain signals. It is, therefore, more
restricted than other signal combination mechanisms. It takes a number of samples (which are always
rounded up to the nearest power of two), the amount of time over which the signal will be sampled, and the
signal to be converted. It has the following form:

>fourTrans:: (Physical a, Physical a', Physical b)=>
> Int -> a -> SignalRep a b -> SignalRep a' b
>fourTrans sam t f =
> let
> waveform:: (Physical a, Physical b) => a -> [b] -> SignalRep a b
> waveform samp ampls =
> let stepSlope y y' = (/) ((fromPhysical y') - (fromPhysical y))
> (fromPhysical samp)
> makeWin (v,v') = Window LocalZero (TimeEvent (fromPhysical samp))
> (linear (stepSlope v v') v)
> points = ampls ++ (cycle [(toPhysical 0.0)])
> in pieceRep (Windows (map makeWin (zip points (tail points))))
> s = 2 ^ ((truncate (logBase 2 ((fromInteger (toInteger sam)) - 1.0))) + 1)
> si = toPhysical (1.0 / (fromPhysical t))
> trl = sampleCount (toPhysical 0.0) t s f
> mc x = (fromPhysical x) :+ 0.0
> til = map mc trl
> fil = fft til
> frl = map magnitude fil
> in waveform si (map toPhysical frl)

where the functions fft and fftinv are imported from the module FFT. The function fft provides the complex
coefficients of a Fourier transform of a sample, and the function fftinv provides the complex coefficients of
the original sample, as follows:

fft, fftinv:: [Complex Float] -> [Complex Float]

NOTE—The way by which SML defines the Fourier transform inherently utilizes a sampling technique. This technique
is not rigorously identical to the Fourier transform, but tends towards the true transform as the number of samples is
increased and when the time over which the samples are taken is the period of the signal.

A.8 Measuring, limiting, and sampling signals

The signals produced may be checked and their attributes measured. Two levels of checking are provided: a
check upon the signal parameters and a check upon the signal itself. In addition to these checks, a number
of measurements can be applied to the signals. Signals may also be sampled to return a list of values upon
which functions may be defined.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 33 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Signal measurements are made on samplings of the signal over values of the independent variable. In other
words, a window shall be specified and either an interval or the number of samples shall be given, just as
with the sampling functions. The user may use the sampling functions given above as inputs into the
measurement functions.

Measurements are performed on samplings of a signal. These samplings return a list of tuples consisting of
signal values (extracted using the Haskell function fst) and independent values (extracted using the Haskell
function snd).

A.8.1 Confining parameters to a limit

A parameter of any physical type may be limited to a particular range. In other words, if the given value is
lower than the low value of the range, the parameter is made equal to that low value. If the parameter is
greater than the high value of the range, the value is made equal to that parameter. No error is signaled.

The form of the limiting function is as follows:

limit <low_value> <high_value> <parameter_value>

>limit:: Physical a => a -> a -> a -> a
>limit low high val = let
> rlow = fromPhysical low
> rhigh = fromPhysical high
> rval = fromPhysical val
> in if rval <= rlow then low
> else if rhigh <= rval then high
> else val

A.8.2 Sampling signals

Signals are always sampled within a window, given as a low and a high value of the same type as the
independent variable of the signal. Given this window and the signal, there are two ways to specify how the
signals are to be sampled:

a) The user can specify the number of points (i.e., signal value, independent variable) to be drawn
from within the window:

>pointsCount:: (Physical a, Physical b, Signal s) =>
> a -> a -> Int -> s a b -> [(b, a)]
>pointsCount low high count sig = let
> rlow = fromPhysical low
> rhigh = fromPhysical high
> toff = (rhigh - rlow) / ((fromIntegral count) - 1)
> roff = toff - (toff / (2 * (fromIntegral count)))
> creList low high off = if low <= high then
> (low : creList (low + off) high off)
> else []
> appSig t = (mapSignal sig (toPhysical t), toPhysical t)
> in map appSig (creList rlow rhigh roff)

b) The user can also specify the number of samples (i.e., signal value) to be drawn from within the
window:

>sampleCount::(Physical a, Physical b, Signal s) =>
> a -> a -> Int -> s a b -> [b]

BS IEC 62529:2012

 IEC 62529:2012
 – 34 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

>sampleCount low high count sig = map fst (pointsCount low high count sig)

NOTE—Substitute function snd for function fst to return the independent value.

A.9 Digital signals

A digital signal is a signal where information is represented in one of two values, which are sometimes
called by names such as true and false, low and high, 1 and 0, etc. This representation, however, is
complicated by the necessity to represent aspects of the behavior of digital signals within the electronic
devices that operate on them.

A digital signal is an abstract representation of the values that are encountered in engineering design; these
enumeration values are defined more precisely in A.9.1 through A.9.4.

Digital signals are unique in that their values do not take on physical values; rather, they take on
enumeration values that represent physical values. Definitions must be provided of what it means to operate
on digital signals and what it means to convert a digital signal into an analog signal.

A.9.1 Defining Digital

>module Digital where

>import Physical
>import List
>import Pure
>import Char

The definitions of the digital values that will be used are as follows:

 X represents the fact that the signal is in transition and, therefore, cannot be said to be at either
value.

 Z represents the fact that the digital signal is providing very little current and will sink very little
current. It represents a signal at high impedance.

 L corresponds to false or 0; it translates to 0 in a control signal (but see below).

 H corresponds to true or 1; it translates to 1 in a control signal (but see below).

>data Digital = X | Z | L | H deriving (Eq, Show)

Several digital operations are defined for digital values, using an asterisk or the letter d to distinguish them
from standard boolean functions:

 notd is the digital function not.

 &* is the digital function and.

 |* is the digital function or.

 !* is the digital function xor (equivalent to not equals).

 =* is the digital equality (i.e., equals).

 +* is the equivalent to states provided by Sum.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 35 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 ** is the equivalent to states provided by Prod.

>class DigitalOpers a where
> (&*),(|*),(!*), (=*), (+*), (**):: a -> a -> a
> notd:: a -> a

>instance DigitalOpers Digital where
> notd x = case x of { L->H; H->L; X->X; Z->Z }
> Z &* Z = x
> _ &* L = L
> x &* y = case x of { Z->y; X->y; H->x; L->x }
> x |* y = notd ((notd x) &* (notd y))
> Z !* y = y
> x !* Z = x
> x !* y = (x|*y) &* notd(x&*y)
> x =* y = notd((notd x) !* (notd y))
> Z +* y = y
> H +* _ = H
> x +* y = case y of { Z->x; X->y; H->y; L->x;}
> x ** y = notd ((notd x) +* (notd y))

A.9.2 Defining DigitalSignal

A digital signal is specified as a time (which represents the transition period of the digital signal) and a list
of digital values (i.e., Digital). A digital signal also supports the digital operation.

The definition for a digital signal is as follows:

>data DigitalSignal = Dig Float [Digital] deriving (Eq, Show)
>instance DigitalOpers DigitalSignal where
> d1@(Dig t1 l1) &* d2@(Dig t2 l2) =
> let doAnd (x,y) = x &* y
> t = if t1 == t2 then t1 else
> error "Attempting to AND two signals with different times"
> in Dig t (map doAnd (zip l1 l2))
> d1@(Dig t1 l1) |* d2@(Dig t2 l2) =
> let doOr (x,y) = x |* y
> t = if t1 == t2 then t1 else
> error "Attempting to OR two signals with different times"
> in Dig t (map doOr (zip l1 l2))
> notd (Dig t dl) = Dig t (map notd dl)
> d1@(Dig t1 l1) !* d2@(Dig t2 l2) =
> let doXor (x,y) = x !* y
> t = if t1 == t2 then t1 else
> error "Attempting to XOR two signals with different times"
> in Dig t (map doXor (zip l1 l2))
> d1@(Dig t1 l1) =* d2@(Dig t2 l2) =
> let doCompare (x,y) = x =* y
> t = if t1 == t2 then t1 else
> error "Attempting to COMPARE two signals with different times"
> in Dig t (map doCompare (zip l1 l2))
> d1@(Dig t1 l1) +* d2@(Dig t2 l2) =
> let doSum (x,y) = x +* y
> t = if t1 == t2 then t1 else
> error "Attempting to COMPARE two signals with different times"
> in Dig t (map doSum (zip l1 l2))
> d1@(Dig t1 l1) ** d2@(Dig t2 l2) =
> let doProd (x,y) = x Digital.** y
> t = if t1 == t2 then t1 else
> error "Attempting to COMPARE two signals with different times"
> in Dig t (map doProd (zip l1 l2))

BS IEC 62529:2012

 IEC 62529:2012
 – 36 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

The conversion functions digitalString and digitalList are provided to help turn digital strings into digital
arrays suitable for Serial and Parallel data.

Examples:

digitalString "HL; LLX, ; H" ==> [H,L,L,L,X,H]
digitalList "HL; LLX, ; H" ==> [[H,L,Z,H],[L,L,Z,Z],[Z,X,Z,Z]].

>digitalString:: String -> [Digital]
>digitalString xs = map char2dig (filter (ignoreChars) xs) where
> ignoreChars c = filter (==c) "LHXZ10" /= []
> char2dig 'L' = L
> char2dig 'H' = H
> char2dig 'X' = X
> char2dig 'Z' = Z
> char2dig '0' = L
> char2dig '1' = H
>
>digitalList :: String -> [[Digital]]
>digitalList xs = transposeZ (map digitalString $ split xs) where
> split "" = []
> split s = a : split (drop 1 b) where (a, b) = break (\c->c==';'||c==',') s
> transposeZ xxs = let
> len = maximum (map length xxs)
> in take len (transpose (map (\xs->xs++cycle[Z]) xxs))
>

Digital signals can be generated using the function str2dig that allows digital strings containing the
characters H, L, Z, and X and whitespace to be converted into digital signals.

>str2dig:: Float -> String -> DigitalSignal
>str2dig t s = Dig t (digitalString s)

A.9.3 Conversion routines

Conversion routines convert from analog control signals to digital signals and vice versa. Digital signals
can be combined with other digital signals, but need to be converted in order for them to be used with other
SML signals. An analog control signal is an analog signal that uses the threshold low and high values and
where the no signal value is used to detect tri-state Z values.

Two conversion routines are defined:

 analog to digital (a2d)

 digital to analog (d2a)

The conversion routines use physical threshold values to convert to and from low and high states.

The format of the conversion from analog signals to digital signals is as follows:

a2d <low_threshold> <high_threshold> <sample_rate> <analog_signal> <

Digital signals have distinct states, whereas their analog values are arbitrary, depending on the logic family
thresholds:

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 37 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 The Z digital state represents a high impedance signal with little or no current and is converted
from the no signal, NullRep, SignalRep.

 The H digital state represents a logic high and is converted from values equal to or greater than the
high threshold value.

 The L digital state represents a logic low and is converted from values equal to or less than the low
threshold value.

 The X digital state represents all other values, i.e., values within the low-high thresholds.

NOTE—The description assumes that the high threshold is greater than the low threshold.

The signal has two thresholds; between the two thresholds, the X value is used. The representation ZRep
signifies the presence of a Z; it is controlling in the sense that if there is no signal, then no current flows and
it does not matter what the voltage level is. The sample rate simply gives the rate at which analog samples
are taken and digital outputs produced.

>a2d::(Physical a, Physical b, Signal s) =>
> b -> b -> Float -> (s a b) -> DigitalSignal
>a2d lowth highth sampRate s =
> let lt = fromPhysical lowth
> ht = fromPhysical highth
> mt = (ht+lt)/2
> dt = (ht-lt)/2
> h = if dt<0 then L else H
> sr = sampRate
> val:: Float -> Digital
> val x = let dv = fromPhysical (mapSignal s (toPhysical x)) - mt
> in if isInactive s (toPhysical x) then Z
> else if abs dv < abs dt then X
> else if dv > 0 then h else (notd h)
> sl x = x : sl (x + sr)
> in Dig sampRate (map val (sl 0.0))

The format of the conversion from digital to analog signal is as follows:

d2a <low_threshold > <high_threshold > <digital_signal>

The digital-to-analog conversion provides an analog signal as follows:

 A value of Z maintains the previous digital value.

 A value of X produces a tri-state gated Off digital signal.

 A value of L produces a low threshold analog value.

 A value of H produces a high threshold analog value.

In addition, when the signal goes to X, the level of the voltage signal tends to “float” as follows:

>d2a::(Physical a, Physical b) =>
> b -> b -> DigitalSignal -> (SignalRep a b)
>d2a lowth highth s@(Dig clock ds) =
> let
> win s = Window LocalZero (TimeEvent clock) s
> makewin Z = win ZRep
> makewin X = win XRep
> makewin H = win (constant highth)
> makewin L = win (constant lowth)
> makewin' (d:Z:ds) = (makewin d) : (makewin' (d:ds))

BS IEC 62529:2012

 IEC 62529:2012
 – 38 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

> makewin' ds@(d:[]) = (makewin d) : (makewin' ds)
> makewin' [] = makewin' (Z:[])
> makewin' (d:ds) = (makewin d): (makewin' ds)
> in pieceRep (Windows (makewin' ds))

A.9.4 Patterns

Digital signals are often used in sets that represent related signals; for example, a set of 32 digital signals
can represent a single, changing integer. Specifying sets of such digital signals is inconvenient using the
form given above. In addition, such sets of digital signals usually share a common clock so that repeated
specification of the time parameter is redundant.

A pattern is a convenient mechanism for specifying a number of parallel digital signals. It specifies the
clock time once and then gives the digital values as a number of strings. An example of a parallel digital
string utilizing whitespace is as follows:

Pattern (fromPhysical (USEC 1)) "HLHL LLLL, LHLH HHHH, HHHH LLLL"

The definition for a pattern is as follows:

>data Pattern = Pattern Float String deriving (Eq, Show)

Given a pattern, it may be converted into a list of digital signals:

>pat2diglist:: Pattern -> [DigitalSignal]
>pat2diglist (Pattern t xs) = map (Dig t) (digitalList xs)

A.10 Basic component SML

The BSC SML is defined in the module BSC

>module BSC where
>import Complex
>import FFT
>import Bits
>import List

making use of the previously defined types Physical, Pure, and Digital (see A.3, A.5, A.6, A.7, and A.9,
respectively)

>import Pure
>import Digital
>import Physical

by the following SML BSC definitions: Source, Conditioner, EventFunction, Sensor, Digital, and
Connection.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 39 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

>data BSC a b =
>-- Source
>---Non Periodic
> Constant {amplitude::b} |
> Step {amplitude::b , startTime::a} |
> SingleTrapezoid {amplitude::b,
> startTime::a, riseTime::a, pulseWidth::a, fallTime::a} |
> Noise {amplitude::b, seed::Integer, freq::Frequency} |
> SingleRamp {amplitude::b, riseTime::a, startTime::a} |
>---Periodic
> Sinusoid {amplitude::b, frequency::Frequency, phase::PlaneAngle} |
> Trapezoid {amplitude::b,
> period::a, riseTime::a, pulseWidth::a, fallTime::a} |
> Ramp {amplitude::b, period::a, riseTime::a} |
> Triangle {amplitude::b, period::a, dutyCycle::Float} |
> SquareWave {amplitude::b, period::a, dutyCycle::Float} |
> WaveformRamp {amplitude::b, samplingInt::a, points::[Float]} |
> WaveformStep {amplitude::b, samplingInt::a, points::[Float]} |
>--Conditioner
>---Filter
> BandPass {centerFrequency::Float, frequencyBand::Float,
> gain::Float, rollOff::Float, passBandRipple::Float,
> stopBandRipple::Float, interval::Float,
> samples::Int, signal::(BSC a b)} |
> LowPass {passband::Float, gain::Float, rollOff::Float,
> passBandRipple::Float, stopBandRipple::Float,
> interval::Float, samples::Int, signal::(BSC a b)} |
> HighPass {passband::Float, gain::Float, rollOff::Float,
> passBandRipple::Float, stopBandRipple::Float,
> interval::Float, samples::Int, signal::(BSC a b)} |
> Notch {centerFrequency::Float, frequencyBand::Float,
> gain::Float, rollOff::Float, passBandRipple::Float,
> stopBandRipple::Float, interval::Float,
> samples::Int, signal::(BSC a b)} |
>---Combiner
> Sum {signals::[(BSC a b)]} |
> Product {signals::[(BSC a b)]} |
> Diff {signals::[(BSC a b)]} |
>---Modulator
> FM {carAmpP::b,
> carFreq::Float, freqDev::Float, signal::(BSC a b)} |
> AM {modIndex::Float,
> carrier::(BSC a b), signal::(BSC a b)} |
> PM {carAmpP::b,
> carFreq::Float, phaseDev::Float, signal::(BSC a b)} |
>---Transformation
> SignalDelay {acceleration::Float,
> delay::Float, rate::Float, signal::(BSC a b)} |
> Exponential {dampingFactor::Float, signal::(BSC a b)} |
> E {signal::(BSC a b)} |
> Ln {signal::(BSC a b)} |
> Negate {signal::(BSC a b)} |
> Inverse {signal::(BSC a b)} |
> PulseTrain {pulses::[(Float, Float, Float)],
> repetition::Int, signal::(BSC a b)} |
> Attenuator {gain::Float, signal::(BSC a b)} |
> Load {resistance::Resistance,
> reactance::Resistance, signal::(BSC a b)} |
> Limit {lim::Float, signal::(BSC a b)} |
> FFT {samples::Int, sampleInterval::a, signal::(BSC a b)} |
>--Event Function
>---Event Source
> Clock {clockRate::Frequency} |
> TimedEvent {delay::Float,
> duration::Float, fPeriod::Float, repetition::Int} |
> PulsedEvent {pulses::[(Float, Float, Float)], repetition::Int} |
>---EventConditioner
> EventedEvent {events::[(BSC a b)]} |
> EventCount {count::Int, event::(BSC a b)} |
> ProbabilityEvent {seed::Integer,

BS IEC 62529:2012

 IEC 62529:2012
 – 40 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

> propability::Float, event::(BSC a b)} |
> NotEvent {event::(BSC a b)} |
>----Logical
> OrEvent {events::[(BSC a b)]} |
> XOrEvent {events::[(BSC a b)]} |
> AndEvent {events::[(BSC a b)]} |
>--Sensor
> Counter {readings::[(a,b)]} |
> Interval {readings::[(a,b)]} |
> Instantaneous {readings::[(a,b)]} |
> RMS {readings::[(a,b)]} |
> Average {readings::[(a,b)]} |
> PeakToPeak {readings::[(a,b)]} |
> Peak {readings::[(a,b)]} |
> PeakPos {readings::[(a,b)]} |
> PeakNeg {readings::[(a,b)]} |
> MaxInstantaneous {readings::[(a,b)]} |
> MinInstantaneous {readings::[(a,b)]} |
>-- Measure
> Decode {datatype::String, encoding::String} |
>--Control
> SelectIf {selector::(BSC a b), signals::[(BSC a b)]} |
> SelectCase {mask::Int, selectors::[(BSC a b)],
> signals::[(BSC a b)]} |
>--Digital
> Encode {datas::String,
> width::Int, repetition::Int, datatype::String, encoding::String,
> signal::(BSC a b), channel::Int} |
> SerialDigital {datas::String, period::a,
> logic_H_value::b, logic_L_value::b, pulseClass::String} |
> ParallelDigital {datas::String, period::a,
> logic_H_value::b, logic_L_value::b, pulseClass::String,
> channel::Int} |
> Connection {channelWidth::Int, signals::[(BSC a b)], channel::Int} |
> TwoWire {hi::String, lo::String, channelWidth::Int,
> signals::[(BSC a b)], channel::Int} |
> TwoWireComp {true::String, comp::String, channelWidth::Int,
> signals::[(BSC a b)], channel::Int} |
> ThreeWireComp {true::String, comp::String, lo::String, channelWidth::Int,
> signals::[(BSC a b)], channel::Int} |
> SinglePhase {a::String, n::String, channelWidth::Int,
> signals::[(BSC a b)], channel::Int} |
> TwoPhase {a::String, b::String, n::String, channelWidth::Int,
> signals::[(BSC a b)], channel::Int} |
> ThreePhaseDelta {a::String, b::String, c::String, channelWidth::Int,
> signals::[(BSC a b)], channel::Int} |
> ThreePhaseWye {a::String, b::String, c::String, n::String,
> channelWidth::Int, signals::[(BSC a b)], channel::Int} |
> ThreePhaseSynchro {x::String, y::String, z::String, channelWidth::Int,
> signals::[(BSC a b)], channel::Int} |
> FourWireResolver {s1::String, s2::String, s3::String, s4::String,
> channelWidth::Int, signals::[(BSC a b)], channel::Int} |
> SynchroResolver {r1::String, r2::String, r3::String, r4::String,
> channelWidth::Int, signals::[(BSC a b)], channel::Int} |
> Series {via::String, channelWidth::Int,
> signals::[(BSC a b)], channel::Int} |
> FourWire {hi::String, lo::String, hiRef::String, loRef::String,
> channelWidth::Int, signals::[(BSC a b)], channel::Int} |
> NonElectrical {to::String, from::String, channelWidth::Int,
> signals::[(BSC a b)], channel::Int} |
> Channels {channelNames::String, channelWidth::Int,
> signals::[(BSC a b)], channel::Int} |
> DigitalBus {pins::String, channelWidth::Int,
> signals::[(BSC a b)], channel::Int}
>-- deriving Show

>instance Signal BSC where
>-- Source
>---Non Periodic
> toSig (Constant amplitude) = bscConstant amplitude
> toSig (Step amplitude startTime) = bscStep amplitude startTime

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 41 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

> toSig (SingleTrapezoid
> amplitude startTime riseTime pulseWidth fallTime) =
> bscSingleTrapezoid amplitude startTime riseTime pulseWidth fallTime
> toSig (Noise amplitude seed freq) = bscNoise amplitude seed freq
> toSig (SingleRamp amplitude riseTime startTime) =
> bscSingleRamp amplitude riseTime startTime
>---Periodic
> toSig (Sinusoid amplitude frequency phase) =
> bscSinusoid amplitude frequency phase
> toSig (Trapezoid amplitude period riseTime pulseWidth fallTime) =
> bscTrapezoid amplitude period riseTime pulseWidth fallTime
> toSig (Ramp amplitude period riseTime) =
> bscRamp amplitude period riseTime
> toSig (Triangle amplitude period dutyCycle) =
> bscTriangle amplitude period dutyCycle
> toSig (SquareWave amplitude period dutyCycle) =
> bscSquareWave amplitude period dutyCycle
> toSig (WaveformRamp amplitude samplingInt points) =
> bscWaveformRamp amplitude samplingInt points
> toSig (WaveformStep amplitude samplingInt points) =
> bscWaveformStep amplitude samplingInt points
>--Conditioner
>---Filter
> toSig (BandPass centerFrequency frequencyBand
> gain rollOff passBandRipple stopBandRipple
> interval samples signal) =
> bscBandPass centerFrequency frequencyBand
> gain rollOff passBandRipple stopBandRipple
> interval samples signal
> toSig (LowPass passband
> gain rollOff passBandRipple stopBandRipple
> interval samples signal) =
> bscLowPass passband
> gain rollOff passBandRipple stopBandRipple
> interval samples signal
> toSig (HighPass passband
> gain rollOff passBandRipple stopBandRipple
> interval samples signal) =
> bscHighPass passband
> gain rollOff passBandRipple stopBandRipple
> interval samples signal
> toSig (Notch centerFrequency frequencyBand
> gain rollOff passBandRipple stopBandRipple
> interval samples signal) =
> bscNotch centerFrequency frequencyBand
> gain rollOff passBandRipple stopBandRipple
> interval samples signal
>---Combiner
> toSig (Sum signals) = bscSum signals
> toSig (Product signals) = bscProduct signals
> toSig (Diff signals) = bscDiff signals
>---Modulator
> toSig (FM carAmpP carFreq freqDev signal) =
> bscFM carAmpP carFreq freqDev signal
> toSig (AM modIndex carrier signal) = bscAM modIndex carrier signal
> toSig (PM carAmpP carFreq phaseDev signal) =
> bscPM carAmpP carFreq phaseDev signal
>---Transformation
> toSig (SignalDelay acceleration delay rate signal) =
> bscSignalDelay acceleration delay rate signal
> toSig (Exponential dampingFactor signal) =
> bscExponential dampingFactor signal
> toSig (E signal) = bscE signal
> toSig (Ln signal) = bscLn signal
> toSig (Negate signal) = bscNegate signal
> toSig (Inverse signal) = bscInverse signal
> toSig (PulseTrain pulses repetition signal) =
> bscPulseTrain pulses repetition signal
> toSig (Attenuator gain signal) = bscAttenuator gain signal
> toSig (Load resistance reactance signal) =
> bscLoad resistance reactance signal

BS IEC 62529:2012

 IEC 62529:2012
 – 42 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

> toSig (Limit lim signal) = bscLimit lim signal
> toSig (FFT samples sampleInterval signal) =
> bscFFT samples sampleInterval signal
>--Event Function
>---EventSource
> toSig (Clock clockRate) = bscClock clockRate
> toSig (TimedEvent delay duration period repetition) =
> bscTimedEvent delay duration period repetition
> toSig (PulsedEvent pulses repetition) = bscPulsedEvent pulses repetition
>---EventConditioner
> toSig (EventedEvent events) = bscEventedEvent events
> toSig (EventCount count event) = bscEventCount count event
> toSig (ProbabilityEvent seed propability event) =
> bscProbabilityEvent seed propability event
> toSig (NotEvent event) = bscNotEvent event
>----Logical
> toSig (OrEvent events) = bscOrEvent events
> toSig (XOrEvent events) = bscXOrEvent events
> toSig (AndEvent events) = bscAndEvent events
>----Sensors
>----Control
> toSig (SelectIf selector signals) = bscSelectIf selector signals
> toSig (SelectCase mask selectors signals) =
> bscSelectCase mask selectors signals
>----Digital
> toSig (Encode datas width repetition datatype encoding signal channel) =
> (bscEncode datas width repetition datatype encoding signal) !! channel
> toSig (SerialDigital
> datas period logic_H_value logic_L_value pulseClass) =
> bscSerialDigital datas period logic_H_value logic_L_value pulseClass
> toSig (ParallelDigital
> datas period logic_H_value logic_L_value pulseClass channel) =
> (bscParallelDigital datas period logic_H_value logic_L_value
> pulseClass) !! channel
>----Connections
> toSig (TwoWire hi lo channelWidth signals channel) =
> (bscTwoWire hi lo channelWidth signals) !! channel
> toSig (TwoWireComp true comp channelWidth signals channel) =
> (bscTwoWireComp true comp channelWidth signals) !! channel
> toSig (ThreeWireComp true comp lo channelWidth signals channel) =
> (bscThreeWireComp true comp lo channelWidth signals) !! channel
> toSig (SinglePhase a n channelWidth signals channel) =
> (bscSinglePhase a n channelWidth signals) !! channel
> toSig (TwoPhase a b n channelWidth signals channel) =
> (bscTwoPhase a b n channelWidth signals) !! channel
> toSig (ThreePhaseDelta a b c channelWidth signals channel) =
> (bscThreePhaseDelta a b c channelWidth signals) !! channel
> toSig (ThreePhaseWye a b c n channelWidth signals channel) =
> (bscThreePhaseWye a b c n channelWidth signals) !! channel
> toSig (ThreePhaseSynchro x y z channelWidth signals channel) =
> (bscThreePhaseSynchro x y z channelWidth signals) !! channel
> toSig (FourWireResolver s1 s2 s3 s4 channelWidth signals channel) =
> (bscFourWireResolver s1 s2 s3 s4 channelWidth signals) !! channel
> toSig (SynchroResolver s1 s2 s3 s4 channelWidth signals channel) =
> (bscSynchroResolver s1 s2 s3 s4 channelWidth signals) !! channel
> toSig (Series via channelWidth signals channel) =
> (bscSeries via channelWidth signals) !! channel
> toSig (FourWire hi lo hiRef loRef channelWidth signals channel) =
> (bscFourWire hi lo hiRef loRef channelWidth signals) !! channel
> toSig (NonElectrical to from channelWidth signals channel) =
> (bscNonElectrical to from channelWidth signals) !! channel
> toSig (DigitalBus pins channelWidth signals channel) =
> (bscDigitalBus pins channelWidth signals) !! channel
> toSig (Channels channelNames channelWidth signals channel) =
> (bscChannels channelNames channelWidth signals) !! channel
>----Section Ends

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 43 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

A.10.1 Source ::SignalFunction

A.10.1.1 NonPeriodic ::Source

A.10.1.1.1 Constant ::NonPeriodic

>bscConstant::(Physical a, Physical b) => b -> SignalRep a b
>bscConstant =
> (\amplitude -> constant amplitude)

A.10.1.1.2 Step ::NonPeriodic

>bscStep::(Physical a, Physical b) => b -> a -> SignalRep a b
>bscStep =
> (\amplitude startTime -> --Step amplitude startTime
> let st = fromPhysical startTime
> zero = constant (toPhysical 0.0)
> lvl = constant amplitude
> wins = Window LocalZero (TimeEvent st) zero |>
> Window LocalZero (TimeEvent inf) lvl |>
> nullWindow
> in pieceRep wins
>)

A.10.1.1.3 SingleTrapezoid ::NonPeriodic

>bscSingleTrapezoid::(Physical a, Physical b) => b->a->a->a->a->SignalRep a b
>bscSingleTrapezoid =
> (\amplitude startTime riseTime pulseWidth fallTime ->let
> startTime' = fromPhysical startTime
> riseTime' = fromPhysical riseTime
> pulseWidth' = fromPhysical pulseWidth
> fallTime' = fromPhysical fallTime
> wins = Window LocalZero (TimeEvent startTime') (constant (toPhysical 0)) |>
> Window LocalZero (TimeEvent riseTime')
> (linear ((fromPhysical amplitude)/riseTime') (toPhysical 0)) |>
> Window LocalZero (TimeEvent pulseWidth') (constant amplitude) |>
> Window LocalZero (TimeEvent fallTime')
> (linear (-(fromPhysical amplitude)/fallTime') amplitude) |>
> Window LocalZero (TimeEvent inf) (constant (toPhysical 0)) |>
> nullWindow
> in pieceRep wins
>)

A.10.1.1.4 Noise ::NonPeriodic

>bscNoise::(Physical a, Physical b) => b->Integer->Frequency->SignalRep a b
>bscNoise =
> ((\amplitude seed freq ->
> let pfive = constant (toPhysical (- 0.5))
> amp = constant (toPhysical (2.0 * (fromPhysical amplitude)))
> per = toPhysical (1.0 / (fromPhysical freq))
> in mulSig amp (sumSig pfive (random seed per))

BS IEC 62529:2012

 IEC 62529:2012
 – 44 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

>)::(Physical a, Physical b)=>(b -> Integer -> Frequency -> (SignalRep a b)))

A.10.1.1.5 SingleRamp ::NonPeriodic

>bscSingleRamp::(Physical a, Physical b) => b->a->a->SignalRep a b
>bscSingleRamp =
> (\amplitude riseTime startTime ->let {
> ;wins = Window LocalZero (TimeEvent startTime') (constant (toPhysical 0)) |>
> Window LocalZero (TimeEvent riseTime')
> (linear (amplitude'/riseTime') (toPhysical 0)) |>
> Window LocalZero (TimeEvent inf) (constant amplitude) |>
> nullWindow
> ;amplitude' = fromPhysical amplitude
> ;startTime' = fromPhysical startTime
> ;riseTime' = fromPhysical riseTime
> } in pieceRep wins
>)

A.10.1.2 Periodic ::Source

A.10.1.2.1 Sinusoid ::Periodic

>bscSinusoid::(Physical a, Physical b) => b->Frequency->PlaneAngle->SignalRep a b
>bscSinusoid =
> (\amplitude frequency phase ->
> sine amplitude frequency phase
>)

A.10.1.2.2 Trapezoid ::Periodic

>bscTrapezoid::(Physical a, Physical b) => b->a->a->a->a->SignalRep a b
>bscTrapezoid =
> (\amplitude period riseTime pulseWidth fallTime -> let
> period' = fromPhysical period
> riseTime' = fromPhysical riseTime
> pulseWidth' = fromPhysical pulseWidth
> fallTime' = fromPhysical fallTime
> trapezoid = pieceRep $
> Window LocalZero (TimeEvent 0.0) (ZRep) |>
> Window LocalZero (TimeEvent riseTime')
> (linear ((fromPhysical amplitude)/riseTime') (toPhysical 0)) |>
> Window LocalZero (TimeEvent pulseWidth') (constant amplitude) |>
> Window LocalZero (TimeEvent fallTime')
> (linear (-(fromPhysical amplitude)/fallTime') amplitude) |>
> Window LocalZero (TimeEvent (period'-(riseTime'+pulseWidth'+fallTime')))
> (constant (toPhysical 0)) |>
> nullWindow
> in pieceRep $ cycleWindows $
> Window LocalZero (TimeEvent period') trapezoid |> nullWindow
>)

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 45 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

A.10.1.2.3 Ramp ::Periodic

>bscRamp::(Physical a, Physical b) => b->a->a->SignalRep a b
>bscRamp =
> (\amplitude period riseTime ->
> let per = fromPhysical period
> rt = fromPhysical riseTime
> v = fromPhysical amplitude
> rsl = (v / rt)
> fsl = (- v /(per - rt))
> wins = Window LocalZero (TimeEvent rt) (linear rsl (toPhysical 0.0)) |>
> Window LocalZero (TimeEvent (per - rt)) (linear fsl amplitude) |>
> nullWindow
> ramp = pieceRep wins
> in pieceRep $ cycleWindows $
> Window LocalZero (TimeEvent per) ramp |> nullWindow
>)

A.10.1.2.4 Triangle ::Periodic

>bscTriangle::(Physical a, Physical b) => b->a->Float->SignalRep a b
>bscTriangle =
> (\amplitude period dutyCycle-> --Triangle {period=period, level=amplitude}
> let per = fromPhysical period
> v = fromPhysical amplitude
> qper = per *dutyCycle / 2.0
> sl = (v / qper)
> nsl = 2.0* (-v) / (per - 2.0*qper)
> wins = Window LocalZero (TimeEvent qper)
> (linear sl (toPhysical 0.0)) |>
> Window LocalZero (TimeEvent (per - 2.0*qper))
> (linear nsl amplitude) |>
> Window LocalZero (TimeEvent qper)
> (linear sl (toPhysical (- v))) |>
> nullWindow
> in pieceRep (cycleWindows wins)
>)

A.10.1.2.5 SquareWave ::Periodic

>bscSquareWave::(Physical a, Physical b) => b->a->Float->SignalRep a b
>bscSquareWave =
> (\amplitude period dutyCycle -> --Square {period=period, level=amplitude}
> let per = fromPhysical period
> lvl = fromPhysical amplitude
> trans = per * dutyCycle
> slvl = constant amplitude
> nslvl = constant (toPhysical (- lvl))
> wins = Window LocalZero (TimeEvent trans) slvl |>
> Window LocalZero (TimeEvent (per-trans)) nslvl |>
> nullWindow
> in pieceRep (cycleWindows wins)
>)

BS IEC 62529:2012

 IEC 62529:2012
 – 46 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

A.10.1.2.6 WaveformRamp ::Periodic

>bscWaveformRamp::(Physical a, Physical b) => b->a->[Float]->SignalRep a b
>bscWaveformRamp =
> (\amplitude samplingInt points ->
> let pts = map ((*) (fromPhysical amplitude)) points in
> waveform samplingInt (map toPhysical pts)
>)

A.10.1.2.7 WaveformStep ::Periodic

>bscWaveformStep::(Physical a, Physical b) => b->a->[Float]->SignalRep a b
>bscWaveformStep =
> (\amplitude samplingInt points ->
> let pts = map ((*) (fromPhysical amplitude)) points in
> FunctionRep (\t->cycle (map toPhysical pts) !!
> floor (fromPhysical t / (fromPhysical samplingInt)))
>)

A.10.2 Conditioner ::SignalFunction

A.10.2.1 Filter ::Conditioner

A.10.2.1.1 BandPass ::Filter

>bscBandPass::(Physical a, Physical b, Signal s) =>
> Float->Float->Float-> Float->Float->Float->Float->Int->s a b->SignalRep a b
>bscBandPass =
> (\centerFrequency frequencyBand gain
> rollOff passBandRipple stopBandRipple interval samples signal -> let { t =
> toPhysical (interval);s=samples
> ;cf = centerFrequency; fb = frequencyBand
> ;x = truncate((cf-fb/2)*(fromPhysical t))
> ;y = truncate((cf+fb/2)*(fromPhysical t))
> ;z = cycle [0:+0]
> ;o = cycle [1:+0]
> ;mask = take (x) z ++ take (y-x+1) o ++ take (s-2*y-1) z
> ++ take (y-x+1) o ++ take (x) z
>--Remember only good for 0.5 sample freq
>--The top freq half is need to get good response. add padding to middle
> ;times = zipWith (*)
> ;til = sampleCount (toPhysical 0.0) t s signal
> ;fil = fft $ map (\x->(fromPhysical x):+0.0) til
> ;frl = map realPart $ fftinv $ if x*2<s then mask`times` fil
> else take s z
> } in waveform (toPhysical ((fromPhysical t)/(fromIntegral s)))
> (map toPhysical frl)
>)

A.10.2.1.2 LowPass ::Filter

>bscLowPass::(Physical a, Physical b, Signal s) =>
> Float-> Float-> Float-> Float->Float-> Float->Int->s a b->SignalRep a b

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 47 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

>bscLowPass =
> (\passband gain
> rollOff passBandRipple stopBandRipple interval samples signal ->let { t =
> toPhysical (interval);s=samples
> ;x = truncate(passband*(fromPhysical t))
> ;z = cycle [0:+0]
>--Remember only good for 0.5 sample freq
>--The top freq half is need to get good response. add padding to middle
> ;til = sampleCount (toPhysical 0.0) t s signal
> ;fil = fft $ map (\x->(fromPhysical x):+0.0) til
> ;frl = map realPart $ fftinv $ if x*2<s
> then (take (1+x) fil) ++ (take (s-x*2-1) z) ++ (drop (s-x) fil)
> else fil
> } in waveform (toPhysical ((fromPhysical t)/(fromIntegral s)))
> (map toPhysical frl)
>)

A.10.2.1.3 HighPass ::Filter

>bscHighPass::(Physical a, Physical b, Signal s) =>
> Float-> Float-> Float-> Float->Float-> Float->Int->s a b->SignalRep a b
>bscHighPass =
> (\passband gain
> rollOff passBandRipple stopBandRipple interval samples signal -> let { t =
> toPhysical interval;s=samples
> ;x = truncate(passband*(fromPhysical t))
> ;z = cycle [0:+0]
>--Remember only good for 0.5 sample freq
>--The top freq half is need to get good response. add padding to middle
> ;til = sampleCount (toPhysical 0.0) t s signal
> ;fil = fft $ map (\x->(fromPhysical x):+0.0) til
> ;frl = map realPart $ fftinv $ if x*2<s
> then (take (1+x) z) ++ drop (1+x) (take (s-x) fil) ++ (take (x) z)
> else take s z
> } in waveform (toPhysical ((fromPhysical t)/(fromIntegral s)))
> (map toPhysical frl)
>)

A.10.2.1.4 Notch ::Filter

>bscNotch::(Physical a, Physical b, Signal s) =>
> Float->Float-> Float-> Float-> Float->Float-> Float->Int->s a b->SignalRep a b
>bscNotch =
> (\centerFrequency frequencyBand gain
> rollOff passBandRipple stopBandRipple interval samples signal -> let { t =
> toPhysical (interval);s=samples
> ;cf = centerFrequency; fb = frequencyBand
> ;x = truncate((cf-fb/2)*(fromPhysical t))
> ;y = truncate((cf+fb/2)*(fromPhysical t))
> ;z = cycle [0:+0]
> ;o = cycle [1:+0]
> ;mask = take (x) o ++ take (y-x+1) z ++ take (s-2*y-1) o
> ++ take (y-x+1) z ++ take (x) o
>--Remember only good for 0.5 sample freq
>--The top freq half is need to get good response. add padding to middle
> ;times = zipWith (*)
> ;til = sampleCount (toPhysical 0.0) t s signal
> ;fil = fft $ map (\x->(fromPhysical x):+0.0) til
> ;frl = map realPart $ fftinv $ if x*2<s then mask`times` fil
> else take s z
> } in waveform (toPhysical ((fromPhysical t)/(fromIntegral s)))
> (map toPhysical frl)
>)

BS IEC 62529:2012

 IEC 62529:2012
 – 48 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

A.10.2.2 Combiner ::Conditioner

A.10.2.2.1 Sum ::Combiner

>bscSum::(Signal s, Physical a, Physical b) => [s a b]->SignalRep a b
>bscSum =
> (\signals -> foldl1 sumSig ((map toSig signals)++[ZRep]))

A.10.2.2.2 Product ::Combiner

>bscProduct::(Signal s, Physical a, Physical b) => [s a b]->SignalRep a b
>bscProduct =
> (\signals -> foldl1 mulSig ((map toSig signals)++[ZRep]))

A.10.2.2.3 Diff ::Combiner

>bscDiff::(Signal s, Physical a, Physical b) => [s a b]->SignalRep a b
>bscDiff =
> (\signals -> foldl1 diffSig ((map toSig signals)++[ZRep]))

A.10.2.3 Modulator ::Conditioner

A.10.2.3.1 FM ::Modulator

>bscFM::(Signal s, Physical a, Physical b) =>
> b->Float->Float-> (s a b)->SignalRep a b
>bscFM =
> (\carAmpP carFreq freqDev signal->
> let {
> ; phsfnc = mulSig (constant (toPhysical (freqDev*2*pi)))
> (i_dx (1/(16*carFreq)) $ toSig signal)
> ; freqFn = constant (toPhysical carFreq)
> ; fm = sineFunc (constant carAmpP) freqFn phsfnc
> } in fm
>)

A.10.2.3.2 AM ::Modulator

>bscAM::(Physical a, Physical b, Signal s, Signal s') => Float->(s a b)->(s' a b)-
>SignalRep a b
>bscAM =
> (\modIndex carrier signal ->
> let one = constant (toPhysical 1.0)
> ;modsig = mulSig (constant (toPhysical modIndex)) signal
> in mulSig carrier (sumSig one modsig)
>)

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 49 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

A.10.2.3.3 PM ::Modulator

>bscPM::(Physical a, Physical b, Signal s) =>
> b->Float->Float-> (s a b)->SignalRep a b
>bscPM =
> (\carAmpP carFreq phaseDev signal ->
> let {phsfnc = mulSig (constant (toPhysical phaseDev)) signal
> ; freqFn = constant (toPhysical carFreq)
> ; pm = sineFunc (constant carAmpP) freqFn phsfnc
> } in toSig pm
>)

A.10.2.4 Transformation ::Conditioner

A.10.2.4.1 SignalDelay ::Transformation

>bscSignalDelay::(Signal s, Physical a, Physical b) =>
> Float->Float->Float->s a b->SignalRep a b
>bscSignalDelay =
> (\acceleration delay rate signal -> let {
> ;dt t = delay + rate*t + acceleration*t*t/2
> ;t' t = max 0 (t-(dt t))
> ;delaySigInit s =
> FunctionRep (\t ->mapSignal s (toPhysical (t' (fromPhysical t))))
>
>-- The above function creats a functional signal delay but does not maintain the
>-- states. The code below maintains states for models where time does not go
>-- negative. Currently user needs to select simulation model best suited to their
>-- Use case
>
> ;delaySigInit s = pieceRep $ Windows $
>
 (Window LocalZero (TimeEvent (t'' 0)) ZRep) :
> delayWin 0.0 (functionWindows s)
>
> ;delaySig _ ZRep = ZRep
> ;delaySig _ XRep = XRep
> ;delaySig _ NullRep = NullRep
> ;delaySig gt (FunctionRep fn) =
> FunctionRep (\t ->fn (toPhysical (kt gt (fromPhysical t))))
> ;delaySig _ (PieceContRep (Windows xs))=PieceContRep$Windows$ delayWin 0.0 xs
> ;st t = t - delay - rate*t - acceleration*t*t/2
> ;kt gt t = st ((t'' gt)+t) - gt
>
> ;delayWin gt ((Window z e s):xs) =
> (Window z (TimeEvent ((t'' (ec e gt))-(t'' gt))) (delaySig gt s)):
> (delayWin (ec e gt) xs)
> ;delayWin gt [] = []
>
> ;sqe c 0 0 t = 0
> ;sqe c b 0 t = -c/b
> ;sqe c b a t = (-b + (sqrt ((b*b-4*a*c))))/(2*a)
> ;t'' inf = inf
> ;t'' t = max 0 (sqe (-delay-t) (1.0-rate) (-acceleration/2.0) t)
> ;ec e gt = eventOccurs e gt
> } in delaySigInit $ toSig signal)

BS IEC 62529:2012

 IEC 62529:2012
 – 50 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

A.10.2.4.2 Exponential ::Transformation

>bscExponential::(Physical a, Physical b, Signal s) => Float ->
> s a b->SignalRep a b
>bscExponential =
> (\dampingFactor signal-> mulSig (expc (dampingFactor)) signal)

A.10.2.4.3 E ::Transformation

>bscE::(Physical a, Physical b, Signal s) => s a b->SignalRep a b
>bscE =
> (\f ->
> let f1 t = fromPhysical (mapSignal f t)
> in FunctionRep (\t -> toPhysical (exp (f1 t)))
>)

A.10.2.4.4 Ln ::Transformation

>bscLn::(Physical a, Physical b, Signal s) => s a b->SignalRep a b
>bscLn =
> (\f ->
> let f1 t = fromPhysical (mapSignal f t)
> in FunctionRep (\t -> toPhysical (log (f1 t)))
>)

A.10.2.4.5 Negate ::Transformation

>bscNegate::(Physical a, Physical b, Signal s) => s a b->SignalRep a b
>bscNegate =
> (\signal -> diffSigList [signal, signal, signal])

A.10.2.4.6 Inverse ::Transformation

>bscInverse::(Physical a, Physical b, Signal s) => s a b->SignalRep a b
>bscInverse =
> (\f ->
> let f1 t = fromPhysical (mapSignal f t)
> in FunctionRep (\t -> toPhysical (1.0 / (f1 t)))
>)

A.10.2.4.7 PulseTrain ::Transformation

>bscPulseTrain::(Physical a, Physical b, Signal s) =>
> [(Float, Float, Float)] -> Int -> s a b->SignalRep a b
>bscPulseTrain =
> (\pulses repetition ->let
> {
> rpt = let

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 51 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

> {
> pt ps= let
> {
> pulse (a, b, c) = let
> {
> zero = constant (toPhysical 0.0)
> ;level = constant(toPhysical c)
> ;wins = Window LocalZero (TimeEvent a) zero |>
> Window LocalZero (TimeEvent (b)) level |>
> nullWindow
> }
> in pieceRep (wins)
> }
> in sumSigList(map pulse ps)
>
> ;width (a, b, _) = a + b
> ;maxWidth ps = foldl (\v p->max v (width p)) 0 ps
>
> ;win2 ps= Window LocalZero (TimeEvent (maxWidth ps)) (pt ps) |>
> nullWindow
> ;repN 0 [] = nullWindow
> ;repN 0 pts = cycleWindows (win2 pts)
> ;repN rep pts = repNWindows rep (win2 pts)
> }
> in pieceRep(repN repetition pulses)
> }
> in mulSig rpt)

A.10.2.4.8 Attenuator ::Transformation

>bscAttenuator::(Physical a, Physical b, Signal s) => Float ->
> s a b -> SignalRep a b
>bscAttenuator =
> (\gain -> mulSig (constant (toPhysical gain)))

A.10.2.4.9 Load ::Transformation

>bscLoad::(Physical a, Physical b, Signal s) =>
> Resistance -> Resistance -> s a b -> SignalRep a b
>bscLoad _ _ =
> id

A.10.2.4.10 Limit ::Transformation

>bscLimit::(Physical a, Physical b, Signal s) => Float -> s a b -> SignalRep a b
>bscLimit =
> (\lim sig -> FunctionRep (\t->limit (toPhysical (-lim))
> (toPhysical lim) (mapSignal sig t)))

A.10.2.4.11 FFT ::Transformation

>bscFFT::(Physical a, Physical a', Physical b, Signal s) =>
> Int -> a -> s a b -> SignalRep a' b
>bscFFT =

BS IEC 62529:2012

 IEC 62529:2012
 – 52 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

> (\samples interval signal ->
> fourTrans samples interval (toSig (mulSig (constant (toPhysical 2)) signal)))

A.10.3 EventFunction ::SignalFunction

A.10.3.1 EventSource ::EventFunction

A.10.3.1.1 Clock ::EventSource

>bscClock::(Physical a, Physical b) => Frequency -> SignalRep a b
>bscClock =
> (\clock_rate->
> let {
> ;per = 0.5 / (fromPhysical clock_rate)
> ;one = constant (toPhysical 1.0)
> ;zer = NullRep
> ;wins = Window GlobalZero (TimeEvent per) one |>
> Window GlobalZero (TimeEvent per) zer |>
> nullWindow
> }in pieceRep (cycleWindows wins))

A.10.3.1.2 TimedEvent ::EventSource

>bscTimedEvent::(Physical a, Physical b) =>
> Float -> Float-> Float -> Int -> SignalRep a b
>bscTimedEvent =
> (\delay duration period repetition -> let {
> ;one = constant (toPhysical 1)
> ;zero = NullRep
> ;repNX 0 0 ls = cycleWindows ls
> ;repNX delay 0 ls = Window GlobalZero (TimeEvent delay) zero |>
> cycleWindows ls
> ;repNX 0 x ls = repNWindows x ls
> ;repNX delay x ls = Window GlobalZero (TimeEvent delay) zero |>
> repNWindows x ls
> } in pieceRep (repNX delay repetition
> (Window GlobalZero (TimeEvent duration) one |>
> Window GlobalZero (TimeEvent (period-duration)) zero |>
> nullWindow))
>)

A.10.3.1.3 PulsedEvent ::EventSource

>bscPulsedEvent::(Physical a, Physical b) =>
> [(Float, Float, Float)]-> Int -> SignalRep a b
>bscPulsedEvent =
> (\pulses repetition -> let {
> pt ps = let
> {
> pulse (a, b) = let
> {
> zero = NullRep
> ;sig = constant (toPhysical 1)
> ;funcwins = Window GlobalZero (TimeEvent (a)) zero :

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 53 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

> Window GlobalZero (TimeEvent (b)) sig :
> []
> } in funcwins
> ;xOr ZRep s = s
> ;xOr s ZRep = s
> ;xOr NullRep s = s
> ;xOr s _ = s
> ;sumEvnts a b = splice xOr a b 0.0
> }
> in Windows $ foldl1 sumEvnts (map pulse ps)
> ;repN 0 [] = nullWindow
> ;repN 0 ps = cycleWindows (pt ps)
> ;repN rep ps = repNWindows rep (pt ps)
> } in pieceRep(repN repetition pulses))

A.10.3.2 EventConditioner ::EventFunction

A.10.3.2.1 EventedEvent :: EventConditioner

>bscEventedEvent::(Signal s, Physical a, Physical b) => [s a b]-> SignalRep a b
>bscEventedEvent =
> (\events -> let{
> ;one = constant (toPhysical 1)
> ;ebe e d = let
> {
> ;enable = e
> ;disable = d
> ;wins = Window GlobalZero (ActiveEvent enable) NullRep |>
> Window GlobalZero (ActiveEvent disable) one |>
> nullWindow
> }
> in pieceRep $ cycleWindows wins
> ;sglEvt e = let
> {
> ;wins = Window GlobalZero (ActiveEvent (toSig e)) NullRep |>
> Window GlobalZero (TimeEvent inf) one |> nullWindow
> }
> in pieceRep $ wins
> } in case (map toSig events) of
> (e:[]) -> sglEvt e
> (es) -> foldl1 ebe es)

A.10.3.2.2 EventCount ::EventConditioner

>bscEventCount::(Physical a, Physical b, Signal s) =>
> Int -> s a b -> SignalRep a b
>bscEventCount =
> (\count event -> let {
> ;ec [] _ = [Window GlobalZero (TimeEvent inf) ZRep]
> ;ec ((w@(Window z e ZRep)):wl) x = w:ec wl x
> ;ec ((w@(Window z e NullRep)):wl) x = w:ec wl x
> ;ec ((w@(Window z e s)):wl) x = if (x<=0) then w:ec wl (x+count)
> else (Window z e NullRep):ec wl (x-1)
> } in pieceRep $ Windows $ ec (functionWindows (toSig event)) count
>)

BS IEC 62529:2012

 IEC 62529:2012
 – 54 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

A.10.3.2.3 ProbabilityEvent ::EventConditioner

>bscProbabilityEvent::(Physical a,
> Physical b, Signal s) => Integer -> Float -> s a b -> SignalRep a b
>bscProbabilityEvent =
> (\seed propability event -> let {
> ;pbe [] _ _ _ = [Window GlobalZero (TimeEvent inf) ZRep]
> ;pbe ((w@(Window z e ZRep)):wl) xs _ _ = w:pbe wl xs True True
> ;pbe ((w@(Window z e NullRep)):wl) xs _ _ = w:pbe wl xs True True
> ;pbe ws (x:xl) True _ = pbe ws xl False (x<=propability)
> ;pbe ((w@(Window z e s)):wl) xs False notNull =
> (if notNull then w else (Window z e NullRep)):pbe wl xs False notNull
> } in pieceRep $ Windows $
> pbe (functionWindows (toSig event)) (rand seed) True True
>)

A.10.3.2.4 NotEvent ::EventConditioner

>bscNotEvent::(Physical a, Physical b, Signal s) => s a b -> SignalRep a b
>bscNotEvent =
> (\event ->
> let {
> ;xNot ZRep _ = ZRep
> ;xNot XRep _ = XRep
> ;xNot NullRep _ = constant (toPhysical 1.0)
> ;xNot _ _ = NullRep
> } in pieceRep $ Windows $
> (\a b->splice xNot a b 0.0) (functionWindows (toSig event)) []
>)

A.10.3.2.5 Logical ::EventConditioner

A.10.3.2.5.1 OrEvent ::Logical

>bscOrEvent::(Signal s, Physical a, Physical b) => [s a b] -> SignalRep a b
>bscOrEvent =
> (\events ->
> let {
> ;xOr s ZRep = s
> ;xOr ZRep s = s
> ;xOr s XRep = s
> ;xOr XRep s = s
> ;xOr NullRep s = s
> ;xOr s _ = s
> } in pieceRep $ Windows $
> foldl1 (\a b->splice xOr a b 0.0) (map functionWindows, toSig) events)
>)

A.10.3.2.5.2 XOrEvent ::Logical

>bscXOrEvent::(Signal s, Physical a, Physical b) => [s a b] -> SignalRep a b
>bscXOrEvent =
> (\events ->
> let {
> ;xXOr s ZRep = s

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 55 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

> ;xXOr ZRep s = s
> ;xXOr s@XRep XRep = s
> ;xXOr XRep _ = NullRep
> ;xXOr _ XRep = NullRep
> ;xXOr s NullRep = s
> ;xXOr NullRep s = s
> ;xXOr _ _ = NullRep
> } in pieceRep $ Windows $
> foldl1 (\a b-> splice xXOr a b 0.0) (map (functionWindows. toSig) events)
>)

A.10.3.2.5.3 AndEvent ::Logical

>bscAndEvent::(Signal s, Physical a, Physical b) => [s a b] -> SignalRep a b
>bscAndEvent =
> (\events ->
> let {
> ;xAnd s ZRep = s
> ;xAnd ZRep s = s
> ;xAnd s@NullRep _ = s
> ;xAnd _ s@NullRep = s
> ;xAnd s XRep = s
> ;xAnd XRep s = s
> ;xAnd s _ = s
> } in pieceRep $ Windows $
> foldl1 (\a b->splice xAnd a b 0.0) (map (functionWindows, toSig) events)
>)

A.10.4 Sensor ::SignalFunction

A.10.4.1 Counter ::Sensor

>bscCounter:: (Physical a)=> [a] -> Int
>bscCounter =
> \points -> length points
>bscCounter':: (Physical a)=> [a] -> Int
>bscCounter' =
> \points -> length points

A.10.4.2 Interval ::Sensor

>bscInterval:: (Physical a, Physical b)=> [(a, b)] -> b
>bscInterval =
> \points->snd (head points)
>bscInterval':: (Physical a, Physical b)=> [(a, b)] -> b
>bscInterval' =
> \points->toPhysical $
> (fromPhysical(snd (last points))) - (fromPhysical(snd (head points)))

BS IEC 62529:2012

 IEC 62529:2012
 – 56 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

A.10.4.3 Instantaneous ::Sensor

>bscInstantaneous:: (Physical a, Physical b)=> [(a, b)] -> a
>bscInstantaneous =
> \points -> fst (head points)
>bscInstantaneous':: (Physical a, Physical b)=> [(a, b)] -> b
>bscInstantaneous' =
> \points -> snd (head points)

A.10.4.4 RMS ::Sensor

>bscRMS:: (Physical a, Physical b)=> [(a, b)] -> a
>bscRMS =
> \points -> toPhysical $ sqrt $ (foldl (+) 0 $ map
> ((\x->x*x).fromPhysical.fst) points) / fromIntegral (length points)
>bscRMS':: (Physical a, Physical b)=> [(a, b)] -> b
>bscRMS' =
> \points -> toPhysical $ sqrt $ (foldl (+) 0 $ map
> ((\x->x*x).fromPhysical.snd) points) / fromIntegral (length points)

A.10.4.5 Average ::Sensor

>bscAverage:: (Physical a, Physical b)=> [(a, b)] -> a
>bscAverage =
> \points -> toPhysical $
> (foldl (+) 0 (map (fromPhysical.fst) points)) / fromIntegral (length points)
>bscAverage':: (Physical a, Physical b)=> [(a, b)] -> b
>bscAverage' =
> \points -> toPhysical $
> (foldl (+) 0 (map (fromPhysical.snd) points)) / fromIntegral (length points)

A.10.4.6 PeakToPeak ::Sensor

>bscPeakToPeak:: (Physical a, Physical b)=> [(a, b)] -> a
>bscPeakToPeak =
> \points -> let {
> ;h = fromPhysical.fst $ maximum points
> ;l = fromPhysical.fst $ minimum points
> } in toPhysical $ h - l
>bscPeakToPeak':: (Physical a, Physical b)=> [(a, b)] -> b
>bscPeakToPeak' =
> \points -> let {
> ;h = fromPhysical.snd $ maximum points
> ;l = fromPhysical.snd $ minimum points
> } in toPhysical $ h - l

A.10.4.7 Peak ::Sensor

>bscPeak:: (Physical a, Physical b)=> [(a, b)] -> a
>bscPeak =
> \points -> let {
> ;peakNeg = fromPhysical (bscPeakNeg points)

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 57 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

> ;peakPos = fromPhysical (bscPeakPos points)
> } in if abs peakNeg < abs peakPos
> then bscPeakPos points
> else bscPeakNeg points
>bscPeak':: (Physical a, Physical b)=> [(a, b)] -> b
>bscPeak' =
> \points -> let {
> ;peakNeg = fromPhysical (bscPeakNeg points)
> ;peakPos = fromPhysical (bscPeakPos points)
> } in if abs peakNeg < abs peakPos
> then bscPeakPos' points
> else bscPeakNeg' points

A.10.4.8 PeakPos ::Sensor

>bscPeakPos:: (Physical a, Physical b)=> [(a, b)] -> a
>bscPeakPos =
> \points -> toPhysical $
> (fromPhysical (bscMaxInstantaneous points)) - (fromPhysical (bscAverage points))
>bscPeakPos':: (Physical a, Physical b)=> [(a, b)] -> b
>bscPeakPos' =
> \points -> toPhysical $ (fromPhysical
> (bscMaxInstantaneous' points)) - (fromPhysical (bscAverage' points))

A.10.4.9 PeakNeg ::Sensor

>bscPeakNeg:: (Physical a, Physical b)=> [(a, b)] -> a
>bscPeakNeg =
> \points -> toPhysical $
> (fromPhysical (bscMinInstantaneous points)) - (fromPhysical (bscAverage points))
>bscPeakNeg':: (Physical a, Physical b)=> [(a, b)] -> b
>bscPeakNeg' =
> \points -> toPhysical $ (fromPhysical
> (bscMinInstantaneous' points)) - (fromPhysical (bscAverage' points))

A.10.4.10 MaxInstantaneous ::Sensor

>bscMaxInstantaneous:: (Physical a, Physical b)=> [(a, b)] -> a
>bscMaxInstantaneous =
> \points -> fst $ maximum points
>bscMaxInstantaneous':: (Physical a, Physical b)=> [(a, b)] -> b
>bscMaxInstantaneous' =
> \points -> snd $ maximum points

A.10.4.11 MinInstantaneous ::Sensor

>bscMinInstantaneous:: (Physical a, Physical b)=> [(a, b)] -> a
>bscMinInstantaneous =
> \points -> fst $ minimum points
>bscMinInstantaneous':: (Physical a, Physical b)=> [(a, b)] -> b
>bscMinInstantaneous' =
> \points -> snd $ minimum points

BS IEC 62529:2012

 IEC 62529:2012
 – 58 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

A.10.4.12 Measure ::Sensor

>-- Implements ONLY specific Physical BSC Generic Measurement attributes
>bscMeasure::(Physical a, Physical b, Physical c)=>
> String -> c -> (BSC a b) -> c
>bscMeasure "amplitude" nominal signal =
> toPhysical (fromPhysical (BSC.amplitude signal))
>bscMeasure "fallTime" nominal signal =
> toPhysical (fromPhysical (BSC.fallTime signal))
>bscMeasure "freq" nominal signal = toPhysical (fromPhysical (BSC.freq signal))
>bscMeasure "frequency" nominal signal =
> toPhysical (fromPhysical (BSC.frequency signal))
>bscMeasure "period" nominal signal =
> toPhysical (fromPhysical (BSC.period signal))
>bscMeasure "phase" nominal signal = toPhysical (fromPhysical (BSC.phase signal))
>bscMeasure "pulseWidth" nominal signal =
> toPhysical (fromPhysical (BSC.pulseWidth signal))
>bscMeasure "riseTime" nominal signal =
> toPhysical (fromPhysical (BSC.riseTime signal))
>bscMeasure "startTime" nominal signal =
> toPhysical (fromPhysical (BSC.startTime signal))
>-- Users Add as necessary

A.10.4.13 Decode::Sensor

>-- Implements ONLY specific BSC Encoder / Decoder
>bscDecode::(Physical a, Physical b)=>
> String -> String -> (BSC a b) -> String
>bscDecode _ _ (Encode datas width repetition datatype encoding signal channel) =
> datas

A.10.5 Control ::SignalFunction

A.10.5.1 SelectIf ::Control

>bscSelectIf::(Physical a, Physical b, Signal s, Signal s')=>
> (s a b) -> [(s' a b)] -> SignalRep a b
>bscSelectIf selector inputs = let {
> ; makewin s k ((w@(Window z e _)):wl) [] = (Window z e s): makewin s k wl []
> ; makewin s k [] (i:is) =
> (Window GlobalZero (TimeEvent inf) s): makewin s k [] (i:is)
> ; makewin s k ((w@(Window z e ZRep)):wl) (i:is) =
> (Window GlobalZero e s): makewin s k wl (i:is)
> ; makewin s k ((w@(Window z e XRep)):wl) is = w:makewin XRep k wl is
> ; makewin s False ((w@(Window z e NullRep)):wl) (i:is) =
> (Window GlobalZero e (toSig i)): makewin (toSig i) False wl (i:is)
> ; makewin s True ((w@(Window z e NullRep)):wl) (i':i:is) =
> (Window GlobalZero e (toSig i)): makewin (toSig i) False wl (i:is)
> ; makewin s False ((w@(Window z e _)):wl) (i':i:is) =
> (Window GlobalZero e (toSig i)): makewin (toSig i) True wl (i:is)
> ; makewin s True ((w@(Window z e _)):wl) (i:is) =
> (Window GlobalZero e (toSig i)): makewin (toSig i) True wl (i:is)
> } in pieceRep $ Windows $
> makewin ZRep False (functionWindows (toSig selector)) $ cycle inputs

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 59 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

A.10.5.2 SelectCase ::Control

>--Simple mapping ignoring input states
>bscSelectCase::(Physical a, Physical b, Signal s', Signal s)=>
> Int -> [(s a b)] -> [(s a b)] -> SignalRep a b
>bscSelectCase mask selectors inputs = let {
> ; inputs' = (map toSig inputs) ++ cycle [ZRep]
> ; toNum x y = if y then 2*x+1 else 2*x
> ; active t = foldl toNum 0 $
> reverse $ map (\s -> not $ isInactive s t) selectors
> ; mask1 = if mask==0 then (-1) else mask
> } in FunctionRep (\t->mapSignal (inputs'!!(mask .&. active t)) t)

A.10.5.3 Encode ::Control

>bscEncode::(Physical a, Physical b, Signal s)=>
> String -> Int -> Int -> String -> String ->
> (s a b) -> [SignalRep a b]
>bscEncode datas width repetition datatype encoding signal = [ZRep]
>
>bscEncodeDigital::(Physical a, Physical b, Signal s)=>
> [[Digital]] -> Int -> Int -> String ->
> (s a b) -> [SignalRep a b]
>bscEncodeDigital datas width repetition encoding signal = let
> makeDigSignal Z = ZRep
> makeDigSignal X = XRep
> makeDigSignal L = NullRep
> makeDigSignal H = constant (toPhysical 1)
> makeSigWindows digit =
 Window GlobalZero (ActiveEvent (toSig signal)) (makeDigSignal digit)
> makeSignals digits = pieceRep $ Windows $
> Window GlobalZero (ActiveEvent (toSig signal)) ZRep:
> map makeSigWindows digits
> in map makeSignals datas
>
>bscEncodeBits::(Bits n, Physical a, Physical b, Signal s)=>
> [n] -> Int -> Int -> String ->
> (s a b) -> [SignalRep a b]
>bscEncodeBits datas width repetition encoding signal = let
> makeSigWindows nBit n = Window GlobalZero (ActiveEvent (toSig signal)) $
> if (testBit n nBit) then constant (toPhysical 1) else NullRep
> makeSignals nBit = pieceRep $ Windows $
> Window GlobalZero (ActiveEvent (toSig signal)) ZRep:
> map (makeSigWindows nBit) datas
> in map makeSignals [0..bitSize (head datas)-1]

A.10.5.4 Channels ::Control

>bscChannels channelNames channelWidth =
> id.map toSig

BS IEC 62529:2012

 IEC 62529:2012
 – 60 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

A.10.6 Digital ::SignalFunction

A.10.6.1 SerialDigital ::Digital

>bscSerialDigital::(Physical a, Physical b)=>
> String -> a -> b -> b -> String -> SignalRep a b
>bscSerialDigital =
> (\datas period logic_H_value logic_L_value pulseClass ->
> d2a logic_H_value logic_L_value (str2dig (fromPhysical period) datas))

A.10.6.2 ParallelDigital ::Digital

>bscParallelDigital::(Physical a, Physical b)=>
> String -> a -> b -> b -> String -> [SignalRep a b]
>bscParallelDigital =
> (\datas period logic_H_value logic_L_value pulseClass ->
> map (d2a logic_H_value logic_L_value)
> (pat2diglist $ Pattern (fromPhysical period) datas))

A.10.7 Connection ::SignalFunction

A.10.7.1 TwoWire ::Connection

>bscTwoWire hi lo channelWidth =
> (\xs -> let {
> ;f s@(s':[]) = s
> ;f [] = error "No Channels (hi)defined"
> ;f (x:xs) = error "Too many channels"
> } in f $ map toSig xs
>)

A.10.7.2 TwoWireComp ::Connection

>bscTwoWireComp true comp channelWidth =
> (\xs -> let {
> ;f s@(s':[]) = s
> ;f [] = error "No Channel (true) defined"
> ;f (x:xs) = error "Too many channels"
> } in f $ map toSig xs
>)

A.10.7.3 ThreeWireComp ::Connection

>bscThreeWireComp true comp lo channelWidth =
> (\xs -> let {
> ;f s@(s':s'':[]) = s
> ;f [] = error "No Channels (true,comp)defined"
> ;f (s:[]) = error "No channel (comp) defined"
> ;f (x:xs) = error "Too many channels"

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 61 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

> } in f $ map toSig xs
>)

A.10.7.4 SinglePhase ::Connection

>bscSinglePhase a n channelWidth =
> (\xs -> let {
> ;f s@(s':[]) =s
> ;f [] = error "No Channel (n) defined"
> ;f (x:xs) = error "Too many channels"
> } in f $ map toSig xs
>)

A.10.7.5 TwoPhase ::Connection

>bscTwoPhase a b n channelWidth =
> (\xs -> let {
> ;f s@(s':s'':[]) = s
> ;f [] = error "No Channels (a,b) defined"
> ;f (s:[]) = error "No channel (b) defined"
> ;f (x:xs) = error "Too many channels"
> } in f $ map toSig xs
>)

A.10.7.6 ThreePhaseDelta ::Connection

>bscThreePhaseDelta a b c channelWidth =
> (\xs -> let {
> ;f s@(s':s'':s''':[]) = s
> ;f [] = error "No Channels (a,b,c) defined"
> ;f (s:[]) = error "No channels (b,c)defined"
> ;f (s:s':[]) = error "No channel (c) defined"
> ;f (x:xs) = error "Too many channels"
> } in f $ map toSig xs
>)

A.10.7.7 ThreePhaseWye ::Connection

>bscThreePhaseWye a b c n channelWidth =
> (\xs -> let {
> ;f s@(s':s'':s''':[]) = s
> ;f [] = error "No Channels (a,b,c) defined"
> ;f (s:[]) = error "No channels (b,c) defined"
> ;f (s:s':[]) = error "No channels (c) defined"
> ;f (x:xs) = error "Too many channels"
> } in f $ map toSig xs
>)

BS IEC 62529:2012

 IEC 62529:2012
 – 62 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

A.10.7.8 ThreePhaseSynchro ::Connection

>bscThreePhaseSynchro x y z channelWidth =
> (\xs -> let {
> ;f s@(s':s'':s''':[]) = s
> ;f [] = error "No Channels (x,y,x) defined"
> ;f (s:[]) = error "No channels (y,z)defined"
> ;f (s:s':[]) = error "No channel (z) defined"
> ;f (x:xs) = error "Too many channels"
> } in f $ map toSig xs
>)

A.10.7.9 FourWireResolver ::Connection

>bscFourWireResolver s1 s2 s3 s4 channelWidth =
> (\xs -> let {
> ;f s@(s':s'':s''':s'''':[]) = s
> ;f [] = error "No Channels (s1,s2,s3,s4) defined"
> ;f (s:[]) = error "No channels (s2,s3,s4)defined"
> ;f (s:s':[]) = error "No channels (s3,s4) defined"
> ;f (s:s':s'':[]) = error "No channels (s4) defined"
> ;f (x:xs) = error "Too many channels"
> } in f $ map toSig xs
>)

A.10.7.10 SynchroResolver ::Connection

>bscSynchroResolver r1 r2 r3 r4 channelWidth_ =
> (\xs -> let {
> ;f s@(s':s'':s''':s'''':[]) = s
> ;f [] = error "No Channels (r1,r2,r3,r4) defined"
> ;f (s:[]) = error "No channels (r2,r3,r4)defined"
> ;f (s:s':[]) = error "No channels (r3,r4) defined"
> ;f (s:s':s'':[]) = error "No channels (r4) defined"
> ;f (x:xs) = error "Too many channels"
> } in f $ map toSig xs
>)

A.10.7.11 Series ::Connection

>bscSeries via channelWidth =
> (\xs -> let {
> ;f s@(s':[]) = s
> ;f [] = error "No Channels (via) defined"
> ;f (x:xs) = error "Too many channels"
> } in f $ map toSig xs
>)

A.10.7.12 FourWire ::Connection

>bscFourWire hi lo hiRef loRef channelWidth =
> (\xs -> let {

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 63 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

> ;f s@(s':s'':s''':s'''':[]) = s
> ;f [] = error "No Channels (hi,lo,hiRef,loRef) defined"
> ;f (s:[]) = error "No channels (lo,hiRef,loRef)defined"
> ;f (s:s':[]) = error "No channels (hiRef,loRef) defined"
> ;f (s:s':s'':[]) = error "No channels (loRef) defined"
> ;f (x:xs) = error "Too many channels"
> } in f $ map toSig xs
>)

A.10.7.13 NonElectrical ::Connection

>bscNonElectrical to from channelWidth =
> (\xs -> let {
> ;f s@(s':[]) = s
> ;f [] = error "No Channel (to) defined"
> ;f (x:xs) = error "Too many channels"
> } in f $ map toSig xs
>)

A.10.7.14 DigitalBus ::Connection

>bscDigitalBus pins channelWidth =
> id.map toSig

A.11 Fast Fourier analysis support

In A.7.1, the need is discussed for a FFT module exporting type Complex Float and functions fft and fftinv.
The following is provided as a default implementation, but may be substituted by more efficient
alternatives.

> module FFT
> (ComplexF, fft, fftinv)
> where

> import Complex--1.3
> import List(transpose)--1.3

> type ComplexF = Complex Float

> rootsOfUnity:: Int -> [ComplexF]
> rootsOfUnity n = zipWith (:+) (map cos (thetas n))
> (map sin (thetas n))

> thetas:: Int -> [Float]
> thetas n = [(2*pi/fromIntegral n)*fromIntegral k | k<-[0 .. n-1]]

> fft:: [ComplexF] ->
> [ComplexF] -- Warning: works only for n=2^km, time=O(n log(n)) algorithm
> fft xs = map((1/(fromIntegral n))*) (ffth xs us) where
> us = map conjugate (rootsOfUnity n)
> n = length xs

> fftinv:: [ComplexF] ->
> [ComplexF] -- Warning: works only for n=2^km, time=O(n log(n)) algorithm
> fftinv xs = ffth xs us where
> us = rootsOfUnity n
> n = length xs

BS IEC 62529:2012

 IEC 62529:2012
 – 64 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

> ffth:: [ComplexF] -> [ComplexF] -> [ComplexF]
> ffth xs us
> | n>1 = (cycle fftEvn) `plus`
> (us `times` (cycle fftOdd))
> | n==1 = xs
> where
> fftEvn = ffth (evns xs) uEvns
> fftOdd = ffth (odds xs) uEvns
> uEvns = evns us
> evns = everyNth 2
> odds = everyNth 2 . tail
> n = length xs
> everyNth n = (map head).(takeWhile (/=[])).(iterate (drop n))
> plus = zipWith (+)
> times = zipWith (*)

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 65 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex B

(normative)

Basic signal components (BSC) layer

B.1 BSC layer base classes

The base classes shown in Table B.1 are used to define BSC class properties (see 6.1).

Table B.1—Signal function base classes

Base class Description
SignalFunction The base class of all BSCs
Signal Allows BSCs to exchange information
PulseDefns Defines a group of pulses
Physical Real, dimensioned signal values

B.2 BSC subclasses

The BSC classes are derived from the SignalFunction base class as subclasses, where each level is a
further derivation from the base class. The hierarchical structure of the base class and subclasses is
illustrated in Table B.2, in which a column has been included to indicate the attributes associated with each
BSC class.

NOTE—The use of boldface denotes a class, subclass, or attribute in the text of this annex.

Table B.2—BSC subclasses (derived from SignalFunction base class)

Subclasses Attributes
1st level 2nd level 3rd/4th level

Source — — —
NonPeriodic — —

Constant amplitude
Step amplitude

startTime
SingleTrapezoid amplitude

startTime
riseTime
pulseWidth
fallTime

Noise amplitude
seed
frequency

SingleRamp amplitude
riseTime
startTime

Periodic — —
Sinusoid amplitude

frequency
phase

BS IEC 62529:2012

 IEC 62529:2012
 – 66 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table B.2—BSC subclasses (derived from SignalFunction base class)
(continued)

Subclasses Attributes 1st level 2nd level 3rd/4th level
 Trapezoid amplitude

period
riseTime
pulseWidth
fallTime

Ramp amplitude
period
riseTime

Triangle amplitude
period
dutyCycle

SquareWave amplitude
period
dutyCycle

WaveformRamp amplitude
period
samplingInterval
points

WaveformStep amplitude
period
samplingInterval
points

Conditioner — — —
Filter — —

BandPass centerFrequency
frequencyBand
gain
rollOff
passBandRipple
stopBandRipple

LowPass cutoff
gain
rollOff
passBandRipple
stopBandRipple

HighPass cutoff
gain
rollOff
passBandRipple
stopBandRipple

Notch centerFrequency
frequencyBand
gain
rollOff
passBandRipple
stopBandRipple

Combiner — —
Sum —
Product —
Diff —

Modulator — —
FM amplitude

carrierFrequency
frequencyDeviation

AM modIndex
Carrier

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 67 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table B.2—BSC subclasses (derived from SignalFunction base class)
(continued)

Subclasses Attributes 1st level 2nd level 3rd/4th level
PM amplitude

carrierFrequency
phaseDeviation

Transformation — —
SignalDelay acceleration

delay
rate

Exponential dampingFactor
E —
Ln —
Negate —
Inverse —
PulseTrain pulses

repetition
Attenuator gain
Load resistance

reactance
Limit limit
FFT samples

interval
EventFunction — — —

EventSource — —
Clock clockRate
TimedEvent delay

duration
period
repetition

PulsedEvent pulses
repetition

EventConditioner — —
EventedEvent —
EventCount count
ProbabilityEvent seed

probability
NotEvent —
Logical — —

OrEvent —
XOrEvent —
AndEvent —

Sensor — — measuredVariable
measurement
measurements
samples
count
gateTime
nominal
condition
GO
NOGO
HI
LO
UL
LL
As

BS IEC 62529:2012

 IEC 62529:2012
 – 68 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table B.2—BSC subclasses (derived from SignalFunction base class)
(continued)

Subclasses Attributes 1st level 2nd level 3rd/4th level
Counter — —
Interval — —
Instantaneous — —
RMS — —
Average — —
PeakToPeak — —
Peak — —
PeakPos — —
PeakNeg — —
MaxInstantaneous — —
MinInstantaneous — —
Measure — attribute
Decode — datatype

encoding
Control — — —

SelectIf — Selector
SelectCase — Selector

mask
Encode — data

width
repetition
datatype
encoding

Channels — channelNames
Digital — — —

SerialDigital — data
period
logic_H_value
logic_L_value
pulseClass

ParallelDigital — data
period
logic_H_value
logic_L_value
pulseClass

Connection — — channelWidth
TwoWire — (channelWidth = 1)

hi
lo

TwoWireComp — (channelWidth = 1)
true
comp

ThreeWireComp — (channelWidth = 1)
true
comp
lo

SinglePhase — (channelWidth = 1)
a
n

TwoPhase — (channelWidth = 2)
a
b
n

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 69 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table B.2—BSC subclasses (derived from SignalFunction base class)
(continued)

Subclasses Attributes 1st level 2nd level 3rd/4th level
ThreePhaseDelta — (channelWidth = 3)

a
b
c

ThreePhaseWye — (channelWidth = 3)
a
b
c
n

ThreePhaseSynchro — (channelWidth = 3)
x
y
z

FourWireResolver — (channelWidth = 2)
s1
s2
s3
s4

SynchroResolver — (channelWidth = 2)
r1
r2
r3
r4

Series — (channelWidth = 1)
via

FourWire — (channelWidth = 1)
hi
lo
hiRef
loRef

NonElectrical — (channelWidth = 1)
to
from

DigitalBus — (channelWidth = 0)
pins

B.3 Description of a BSC

Clause B.3 describes the generic characteristics of BSCs without stating the detail of the physical
characteristics of any particular signal. This approach provides the prototype for all signal building blocks
without supplying details or methods.

B.3.1 Diagrammatic representation of a BSC

Figure B.1 represents a generalized form of a BSC and shows all possible interfaces and properties.

BS IEC 62529:2012

 IEC 62529:2012
 – 70 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Attributes

Values

Out

Conn

In

Sync

Gate

ClassName

SignalName

Figure B.1—BSC diagram

In Figure B.1, the following naming conventions are used.

a) ClassName is the name of the class that the template represents, e.g., Constant.

b) SignalName is the name of the specific signal being modeled, e.g., dcSignal.

B.3.2 BSC attributes

A BSC describes specific signal characteristics described through their attributes. BSCs can be grouped
together into models, called signal models, to describe complex signals. A signal model comprises a group
of interconnected BSCs that describes one or more signals. BSCs are interconnected through their signal
properties of In, Out, Sync, Gate, or Conn. Control of a signal, defined by such a signal model, is
achieved through the use of the Signal interface obtained through the Out property, commonly called the
Out Signal interface.

The BSCs describe their behavior in term of their Signal properties and attributes. For testing purposes,
what happens with signals at the UUT or test interface is of ultimate interest. When a signal is defined by a
BSC model and passes through a Connection subclass or when a signal is associated with a specific pin
name (e.g., pinsIn), it becomes such a signal. It may be described in terms such as physical signal or real
signal; however, these items are nothing more than the signals used to perform the testing of the test
subject. The corollary of this statement is that the items described as Signal are in some way virtual and
become a physical entity that can be used for testing only when they are connected to something. The effect
of this distinction in the following text is that it describes what would happen if the Signal was connected
to the test subject as well as what the internal signals need to do. As a convention, the term Signal (in
boldface) refers to the BSC Signal whereas the term signal (in normal typeface) refers to the physical entity
that is used to interact with the test subject.

A BSC has the following common properties for Signal interfaces:

a) Out—of type Signal and represents the signal interface(s) of the BSC, through which the signal
can be controlled

b) In—of type reference(s) to Signal(s)

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 71 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

c) Sync—of type reference to Signal

d) Gate—of type reference to Signal

e) Conn—of type reference(s) to Signal(s)

f) pinsIn—of type pinString

g) pinsOut—of type pinString

h) pinsSync—of type pinString

i) pinsGate—of type pinString

In addition to these common properties, a BSC may also have attributes, which are used to define the signal
characteristics of the output signal, and values, which represent measurable characteristics of any input
signals.

The state of any BSC is affected by both the state of its inputs and by its Out Signal interface. This state
affects any Out signal that the BSC defines, and this scope in turn can affect other connected BSCs. This
state control is designed to allow a collection of BSCs in a signal model to be controlled together as a
single entity (see Annex C for further description).

The BSC’s In property consists of signal inputs that the BSC uses. Where multiple In signals are defined
for BSCs such as Sum, Diff, Product, Or, And, Xor, and EventedEvent, the behavior of a BSC
with multiple In signals shall be the same as multiple, dual-input BSCs chained together with their output
being the first input of the next BSC and with their second input being the next input signal as shown in
Figure B.2.

BSC X
In(1) BSC X

In(2) In(1) BSC X

In(2)

In(2)

In(1) BSC X

In(2)

In(1)

In(3)

In(4)

Figure B.2—Multiple inputs semantics

Signals may comprise one or more signal channels. A BSC’s behavior is described in terms of single
channel inputs. A BSC’s behavior for multichannel input can be inferred by applying the single channel
behavior to each input channel. Where signals contain multiple inputs, all inputs are coerced into a multiple
channel signal by the following rules:

a) If the input signal has a single channel, this channel is repeated multiple times, equal to the number
of channels in the signal with the most channels.

BS IEC 62529:2012

 IEC 62529:2012
 – 72 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

b) If the input signal has multiple channels, additional tri-state signals channels may be added to the
end so that the total number of channels for that signal equal the number of channels in the signal
with the most channels.

The action of the BSC is then applied to each corresponding set of single channel inputs.

Examples:

Attenuating a ThreePhaseWye signal attenuates each channel of the ThreePhaseWye signal.

Summing a three-phase signal (A) with a two-phase signal (B) would result in the following:

 First phase of A and B being summed and output

 Second phase of A and B being summed and output

 Third phase of A being summed with tri-state, i.e., third phase of A is output

Where a BSC is defined for use with a single In signal, e.g., Not, Filter. The use of multiple inputs is
considered to be a single input containing multiple channels.

The BSC uses the Sync property to initiate its operation. When the Sync’s Signal first becomes active, the
BSC starts its operation. When the Sync’s Signal subsequently becomes active again, the BSC restarts its
operation. As an example for a Source, the signal becomes phase-locked on the event; for a Sensor, it
rearms the measurement. (See subclass descriptions in B.3.5 for more examples.)

The BSC uses the Gate property to control its operation. When the Gate’s Signal is active, the BSC is
operating; and when the Gate’s Signal is not active, the BSC is not operating. As an example for a Source,
this action would be outputting a signal or not outputting a signal value (tri-state). For a Sensor, this action
would be taking a measurement or not taking a measurement. For a Connection, the action would be
becoming connected or disconnected (open circuit). (See subclass descriptions in B.3.5 for more examples).

A multichannelled signal used as an input to Sync or Gate is considered inactive when all its channels are
in the No Signal (Z) state.

The Conn property allows a user to specify connectivity of BSCs without any implied activation, which is
implicit with the In property. Conn is used for a dynamic model, where the user wants to show
connectivity of signals without any implied activation. All BSCs connected solely through the Conn
property exist in separate time frames and have no implicit synchronization between them. The
Conn reference is an alternative to using the In reference. Unlike a connection made through a Conn
reference, a BSC’s behavior is affected by any In connection. All In signal’s states are monitored, and the
In signal is controlled by the BSC.

Properties that relate directly to the independent variable take the name appropriate to the usecase, e.g.,
riseTime for a Ramp is the time interval taken for the signal to rise. In addition, a property of type Time is
regarded as the independent variable and as such should always match the type of the independent variable
as provided by the RefType.

Example:

 Step (Voltage, Frequency) startTime="100 kHz" (white noise with a low pass filter of 100 kHz)

B.3.3 Types of BSCs

The type of a BSC can be one of the following:

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 73 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

a) Typeless—A typeless BSC represents signals, such as events, and can be combined with any other
signal of any type.

b) Abstract—An abstract BSC can have a different type from its inputs and can represent either an
event stream or an abstract signal. For example, the type of the sensor Average may be Voltage;
however, its values do not represent any real signal, but rather a stream of measured values.

c) Generic—A generic BSC is one that inherits its type from its inputs. For example, the type of the
conditioner Sum is the type of the signals being summed together. Generic types can generally be
used only when their input types are all of the same physical type.

d) Physical—A physical BSC defines the type of a signal, e.g., a voltage signal, defined with respect
to time.

The complete type of a physical BSC is expressed by post-fixing the BSC name with its physical type and
reference type, separated by commas and set within parentheses ().

Example:

 Constant (Voltage, Time)

Where no types are provided in the signal definition, either explicitly or through a unit of a Physical
attribute, the default type is Voltage and the default reference type is Time. Where a Physical attribute
mapping in Table B.4 exists (such as between Time and Frequency or between Power and Voltage), the
type shall be the default type after the mapping has been applied, as illustrated by the following examples:

 <Sinusoidal amplitude="2 mW".../> is a (Voltage, Time) signal

 <Constant amplitude="1 MOhm" .../> is a (Resistance, Time) signal

 <SquareWave amplitude="2 mW" period="1 MHz" .../> is a (Voltage, Time) signal

 <Step refType="Frequency" startTime="1 MHz" .../> is a (Voltage, Frequency) signal

 Constant (Power) is equivalent to Constant (Power, Time).

 Constant is equivalent to Constant(Voltage) and Constant (Voltage, Time).

 Constant amplitude="1 kOhm" is equivalent to type Constant (Resistance, Time)

To express a signal whose reference type is not the default type, the complete type definition shall be used.

Example:

 WaveFormStep (Voltage, Frequency) sampleInterval="1 kHz"

NOTE—It is possible to express a signal using any BSC with any specified reference type. Care must be taken to
ensure that any defined signal is valid and realizable in the context of the environment in which it is used.

B.3.4 BSC attribute default values

Every BSC described in this annex is provided with a default value for each of its attributes. In some cases,
the default value provided is meaningful in that it may be a reasonable value in many situations where the
BSC is used. For example, a sinusoid has a default value for phase of zero, and this value will be correct in
many instances.

BS IEC 62529:2012

 IEC 62529:2012
 – 74 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

This situation will not be true for many of the default values. Using the same example of a sinusoid, it may
be seen that the default value for frequency is 1 Hz. In most cases, this value is unlikely to be appropriate.
The user shall check that the correct value is provided for each use of a BSC.

NOTE—Although the default value is specified, the uncertainty is not. Therefore, although a value is defined, the
uncertainty or “how accurate the required signal needs to be” is not defined. In the case of sinusoid phase, any phase
will do.

B.3.5 SignalFunction subclass descriptions

B.3.5.1 Subclass description: Source

A Source is used to produce a signal that is based on the value of its attributes. A Source must create an
Out Signal interface and generally possess at least one attribute; Source supports both Gate and Sync
events. A Source does not possess values. Sources possess, but do not use, any In signals.

The type of a Source shall be specified; and unless otherwise stated, the default type of a source is voltage
with respect to time (Voltage, Time).

B.3.5.2 Subclass description: Conditioner

A Conditioner combines and conditions one or more input signals into an associated output signal, based
on its attribute values. A Conditioner must have at least one In signal and will create an Out Signal
interface. It supports Gate and Sync events, may possess attributes, but does not possess values.

The type of a Conditioner, unless otherwise stated, is generic.

Where a Conditioner contains multiple inputs, the Conditioner is operational when the first input signal
becomes active (see Annex C) and remains operational while any input signal is active.

B.3.5.3 Subclass description: EventFunction

The EventFunction class is the base class for EventSources and EventConditioners. EventSources
define events while EventConditioners allow event definitions to be modified based on the action of other
events and signals. An EventFunction must create an Out Signal interface and may possess attributes. It
may have In signals, will support Gate and Sync events, but does not possess values.

The type of an EventFunction is typeless unless otherwise stated.

NOTE—The output of an EventFunction that uses a Gate event has the semantics of a tri-state signal (digital Z value).
This has the same effect as an Inactive signal when applied to a Gate or Sync, or no signal when applied as an input.

Events can originate from either signals or other events.

B.3.5.4 Subclass description: Sensor

A Sensor observes the In signal and generates values for the specified characteristic of that signal. A
Sensor must have an In signal and provide a measurement value. It supports Gate and Sync events and
creates an Out event signal when the measurement is made or the condition is met.

The type of a Sensor, unless otherwise stated, is abstract.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 75 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Sensors are used to monitor signals and to take measurement values. In all cases, their resultant signals are
streamed as abstract signals that contain both event and value information.

B.3.5.5 Subclass description: Control

A Control class allows various signals to be combined or sequenced together and controlled by the signal
state. This capability allows a signal model to describe the different signals required in responses to events
or digital signals.

The type of a Control, unless otherwise stated, is generic.

A Control may have Out properties and may possess attributes. It may have In properties, will support
Gate and Sync events, but does not possess values.

B.3.5.6 Subclass description: Digital

A Digital is used to produce an analog control signal that represents digital information that is based on the
value of its attributes. A Digital must create an Out Signal interface and generally possess at least one
attribute; Digital supports both Gate and Sync events. A Digital does not possess values. Digital uses the
In signals as an external clock overriding any internal digital clock.

The type of a Digital, unless otherwise stated, is Voltage.

B.3.5.7 Subclass description: Connection

A Connection represents a collection of pins, through which the In signals pass or from which any Out
signals flow through channels. A Connection has both In and Out signals and supports Gate, Sync, and
attributes identifying the names of the pins through which the signals pass. A Connection does not possess
any values.

An implementer may wish to indicate that a signal is hot-switched or cold-switched by gating a connection
BSC before or after the signal appears on its input. However, the implementer should be aware that the
standard does not define how the signal is created or connected. A valid implementation may not use
switching at all. All that is required is that the signal described is applied to the UUT at the appropriate
time.

The type of a Connection, unless otherwise stated, is typeless.

The principal purpose of a Connection is to identify the names of the pins, such as PL1-1, associated with
the channels through which the physical signal must flow. A signal is considered an external quantity only
where it passes through a Connection. Any signal phase information is lost between different Connections
but maintained within channels of a single Connection.

The use of pinsIn, pinsOut, pinsSync, and pinsGate is incompatible with any Connection and is,
therefore, strongly deprecated.

Table B.3 shows an overview of the other derived Connection classes and their associated pin attribute
names.

BS IEC 62529:2012

 IEC 62529:2012
 – 76 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table B.3—Connection classes

Connection class Description Pin attribute names
TwoWire Two wire hi, lo
TwoWireComp Two-wire complement true, comp
ThreeWireComp Three-wire complement true, comp, lo
SinglePhase Single phase a, n
TwoPhase Two phase a, b, n
ThreePhaseDelta Three-phase delta a, b, c
ThreePhaseWye Three-phase wye a, b, c, n
ThreePhaseSynchro Three-phase synchro x, y, z
FourWireResolver Four wire resolver s1, s2, s3, s4
SynchroResolver Synchro-resolver r1, r2, r3, r4
Series Series Via
FourWire Four wire hi, lo, hiRef, loRef
NonElectrical Nonelectrical to, from
DigitalBus Data, address, or control bus Pins

B.3.5.8 Connection subclass attributes

The attribute type for most connection class attributes is <pinString>. This character string may represent
one or more UUT pins. A UUT pin name shall not contain a whitespace character; thus the whitespace
characters represents a delimiter between multiple UUT pin names.

A single pin attribute containing more than one UUT pin name indicates multiple instances of the
connection class where each connection has one set of pin attributes with a single UUT pin for each
attribute. This has the effect of simplifying the process of listing connections and pins for any given signal.

B.4 Physical class

B.4.1 General

The Physical base class (see Table B.1) is used to describe real physical values. It has a value, an
associated dimension described by its units, and an uncertainty. Its value may be constrained. All physical
types, e.g., time, voltage, are derived from the Physical class. These derived Physical classes can also offer
other interfaces, e.g., a Period may be expressed as both Frequency and Time.

B.4.2 Properties

A Physical value comprises the following elements:

a) Quantities

b) Ranges

c) Load

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 77 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Quantities can be either basic quantities or uncertain quantities. A quantity represents dimensioned values
containing a qualifier magnitude and an associated unit with prefix, e.g., "pk_pk 10 mV". An uncertainty
quantity extends the basic quantity and associates uncertainty (errlmts), resolution (res), and confidence
(conf) values with the quantity, e.g., "pk_pk 10 mV errlmt +- 5% res 1 uV conf 99.96%". Multiple errlmt
and res values can be provided, in which case they are added together, e.g., "errlmt 5% errlmt 1 uV". If
multiple confidence values are provided for a quantity, the least confidence value is assumed.

Ranges can be either single values (range) or bounded pairs using (range, to). The value of a range is
defined using a quantity description, but without reference to a qualifier, e.g., "range 1 V to 5 V". The
range defines the expected values of the signal attributes and the default characteristics of the physical
value when it is within that range, e.g., "range 1 V to 5 V errlmt 5% res 1 uV" implies that a value between
1 V and 5 V will have an uncertainty and resolution given by "errlmt 5% res 1 uV".

Load (load) represents the basic quantity value to be applied when converting between different units, e.g.,
voltage and power. The load is a single value and is associated with the Physical class.

B.4.2.1 Format

The string format of the physical value is described as follows:

physical := [qualifiedQuantity]* loading [rangingInformation]*
qualifiedQuantity:= qualifier anyQuantity
qualifier := trms|pk_pk|pk|pk_pos|pk_neg|av|inst|inst_max|inst_min
anyQuantity := quantity|uncertainQuantity
quantity:= <numeric expression> <unit>
uncertainQuantity := quantity ((errorlimit [confidence]} |
resolution)*
errorlimit := (errlmt +quantity –quantity)|
 ([errlmt](±|+-) quantity)
resolution:= res quantity
confidence:= conf quantity
rangingInformation := (range anyQuantity [(to|:) quantity]*) |
 ([range](MAX|MIN) quantity)
loading = load quantity

where

 All the occurrences of <unit> must belong to the same quantity (see Table B.4) or, where specified,
may be expressed as a ratio quantity.

 The <unit> is made up of the <Unit Symbols> and optionally one of any associated <Metric
Prefixes> or <Binary Prefixes>. The unit shall not be omitted unless the quantity is dimensionless.

 The errlmt is always expressed as a relative range to the value either as a ratio or as plus and/or
minus a fixed amount (e.g., “10 V ± 10 mV” or “10 V ± 0.1%”) and represents the uncertainty of
the value.

 The res property is always held as an absolute value, identifying the granularity of the value.

 The conf property is always held as an absolute value, as a ratio, and represents the level of
confidence associated with the uncertainty (errlmt).

 The load property is always held as an absolute value.

 The range property is always held as absolute values, identifying the range of values that may be
used, e.g., “10 V range 11 V to 9 V.” The value syntax allows for relative range values to be

BS IEC 62529:2012

 IEC 62529:2012
 – 78 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

specified (e.g., “10 V range ± 1 V” or “10 V range 1%”) where these values are converted to
absolute values.

 The asterisk symbol (*) indicates that there may be zero or more occurrences of the preceding
element.

Multiple properties such as errlmt, res, and conf are associated with the current quantity or range. The first
occurrence of errlmt, res, and conf defines the default value that will be used if not explicitly specified.

The syntax allows for a string containing a keyword followed by a value, any number of times. The format
defined provides the expected or recommended structure for a physical value. Although the standard
defines the meaning of any physical value string, adhering to the specified format provides clarity in the
meaning and precludes the possibility of unintentional errors caused by unusual string formats.

A Physical class object value does not have to be written with any dimensional quantity. The units are
taken from the unit property that shall be initialized to the default attribute type.

The value property assigns the complete physical value as a whole. Any missing property values imply that
the value is not of interest, and any resource selection will not consider the missing property. Changing
property values do not affect other property values, except where there is a need to ensure consistency of
dimensions. Specifying an uncertainty of zero implies that any resource selection will choose the best
resource available.

For relative values, a single-ended, positive or negative, uncertainty value is interpreted as a double-ended
value unless both positive and negative values are specified. For example, “300 mV errlmt 10 mV” is
interpreted as “300 mV ± 10 mV,” which is the same as “300 mV errlmt +10 mV –10 mV.” Similarly,
“300 mV errlmt +10 mV” is also interpreted as “300 mV ± 10 mV,” which is the same as “300 mV errlmt
+10 mV –10 mV” and “300 mV errlmt –10 mV.” If different positive and negative values are required,
they shall be specifically stated, even if one of the values is zero, e.g., “300 mV errlmt +10 mV –0 mV.”

The qualified quantity of the physical quantity also carries any attribute qualifier, such as pk_pk (e.g.,
pk_pk 5V).

The errlmt and range properties refer to the value including the qualifier. For example, in a value such as
“av 65 mV range MAX 100 mV,” the MAX 100 mV refers to the maximum average value, not the
maximum instantaneous value.

When assigning physical types to each other, the complete value of the referenced physical type is
transferred, e.g., “pk_pos –8 V errlmt ± 5% res 0.1 uV range –10 V to –5 V.”

B.4.2.2 Use of qualifier

A qualifier is defined to be one of the following:

a) trms (true root mean square)

b) pk_pk (peak-peak)

c) pk (peak)

d) pk_pos (positive peak)

e) pk_neg (negative peak)

f) av (average)

g) inst (instantaneous)

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 79 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

h) inst_max (instantaneous maximum value)

i) inst_min (instantaneous minimum value)

The way in which the default qualifier may be determined from the signal attribute is illustrated in the
following example:

<Average nominal="100 V" />

This is equivalent to the following:

<Average nominal="av 100 V" />
<Measure nominal="av 100 V" />

In a case where the qualifier cannot be determined by the context, it is assumed to be inst, as in the
following:

<amplitude="45 V" />

B.4.2.3 Use of resolution

The inclusion of a resolution property (res) describes the expected granularity of the value, but does not
change or constrain the model. The use of the resolution property is intended for, but not restricted to, the
simplification of the process of resource selection for signals and measurements, where the resolution value
identifies the smallest amount of signal change that can reliably be obtained.

B.4.2.4 Use of errlmt and level of confidence

The uncertainty property (errlmt) describes the permissible uncertainty of the value. For measurements,
this is often referred to as expanded uncertainty, which is obtained by the combined standard uncertainty by
a coverage factor. The inclusion of a confidence property (conf) describes the expected level of confidence
associated with the expanded uncertainty of the value, but does not change or constrain the model.5

B.4.2.5 Use of range

The inclusion of a range does not change or constrain the model. The range property (range) describes the
range of values that the attribute is expected to take over the life of the signal. For example, the value “10 V
range MAX 12 V” indicates that the amplitude is 10 V and that during the life of this signal, the amplitude
may vary and is expected to take values up to 12 V.

If the specified magnitude is outside of the given range, then that magnitude takes precedence and is not
constrained within the range. It is equivalent to providing two ranges, one at the spot value and one at the
given range. For example, the value “12 V range MAX 10 V” indicates that the amplitude is 12 V and that
during the life of this signal, the amplitude may vary and may be expected to take values up to 10 V.

A complete Physical value may include multiple ranges, and these ranges may have different error limits.
In this case, the order of range, errlmt, and res properties does have significance. An errlmt that precedes
any range or res properties is global in scope and applies to any amplitude value unless otherwise defined.
An errlmt or res following a range applies only to amplitude values in that range.

5 For additional information on level of confidence of expanded uncertainty, refer to NIST Technical Note 1297.

BS IEC 62529:2012

 IEC 62529:2012
 – 80 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

These multiple ranges can be extracted by enumerating through the Physical class range property and
extracting each entry’s Physical components.

Example:

range 1V to 10V errlmt 0.1% range 15V to 30V errlmt 0.2V

This example describes two ranges: 1 V to 10 V with errlmt ± 0.1% and 15 V to 30 V with errlmt ± 0.2 V.

Where overlapping ranges are specified, the smaller uncertainty applies to amplitude values in the
overlapping region.

Example:

errlmt +-1V range 0V to 12V errlmt +-0.1% range MAX 30V errlmt +-0.2V

This example indicates that, in the range 0 V to 12 V, the uncertainty is ± 0.1%; between 12 V and 30 V,
the uncertainty is ± 0.2 V; and for all other values (less than 0 V and greater than 30 V), the uncertainty is
± 1 V.

Where the overlapping region has the same uncertainty but different errlmt values, the range with the
lower magnitude is assumed.

Example:

range 1 V to 10 V errlmt +0.1 V -0.2 V range 5 V to 20 V errlmt +0.2 V
0.1 V

In this example, the range between 0 V and 10 V has an uncertainty of +0.1 V -0.2 V, the range between
10 V and 20 V has an uncertainty of +0.2 V 0.1 V, and no uncertainty is specified for values outside of
those ranges.

B.4.3 Permissible physical types and their units

Table B.4 lists the allowed quantities, physical types, unit symbols, and their units.

Table B.4—Physical types

Quantity Physical type Unit SI unit
Unit symbol

(See
NOTES 1, 2)

Other
mappings
and notes

Acceleration Acceleration meter per second
squared

Derived m/s2 —

Admittance Admittance — — — See NOTE 3
Amount of
information

AmountOfInformation bita — b See NOTES
4, 5 bytea — B

Amount of
substance

AmountOfSubstance mole Base mol —

Angular
acceleration

AngularAcceleration radian per second
squared

Derived rad/s2 —

Angular velocity AngularSpeed radian per second Derived rad/s Frequency
Area Area square meter Derived m2 —

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 81 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table B.4—Physical types (continued)

Quantity Physical type Unit SI unit
Unit symbol

(See
NOTES 1, 2)

Other
mappings
and notes

Capacitance Capacitance farad Derived F —
Concentration Concentration mole per cubic meter Derived mol/m3 —
Current density CurrentDensity ampere per square

meter
Derived A/m2 —

Dynamic
viscosity

DynamicViscosity pascal second Derived Pa•s —

Electric charge Charge coulomb Derived C —
Electric charge
density

ElectricChargeDensity coulomb per cubic
meter

Derived C/m3 —

Electric
conductance

Conductance siemens Derived S Resistance
See NOTE 3

Electric current Current ampere Base A —
Electric field
strength

ElectricFieldStrength volt per meter, Derived V/m See NOTE 6
newton per coulomb Derived N/C

Electric flux
density

ElectricFluxDensity coulomb per square
meter

Derived C/m2 —

Electric potential
difference

Voltage volt Derived V Power (where
load is
specified by
the load
property)

Electric resistance Resistance ohm Derived Ohm Admittance
See NOTES
3, 7

Electromotive
force

Voltage volt Derived V Power (where
load is
specified by
the load
property)

Energy Energy joule Derived J See NOTE 4
electronvolt In use eV

Energy density EnergyDensity joule per cubic meter Derived J/m3 —
Entropy Entropy joule per kelvin Derived J/K —
Exposure Exposure coulomb per kilogram Derived C/kg —
Force Force newton Derived N —
Frequency Frequency hertz Derived Hz Time
Heat Heat joule Derived J —
Heat capacity HeatCapacity joule per kelvin Derived J/K —
Heat flux density HeatFluxDensity watt per square meter Derived W/m2 —
Illuminance Illuminance lux Derived lx —
Impedance Impedance — — — See NOTES

3, 7
Inductance Inductance henry Derived H —
Irradiance Irradiance watt per square meter Derived W/m2 —
Kinematic
viscosity

KinematicViscosity square meter per
second

Derived m2/s —

BS IEC 62529:2012

 IEC 62529:2012
 – 82 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table B.4—Physical types (continued)

Quantity Physical type Unit SI unit
Unit symbol

(See
NOTES 1, 2)

Other
mappings
and notes

Length Distance meter Base m See NOTES
4, 8 inch — in

foot — ft
mile (statute) — mi
nautical mile In use nmi

Luminance Luminance candela per square
meter

Derived cd/m2 The use of nit
is deprecated

Luminous flux LuminousFlux lumen Derived lm —
Luminous
intensity

LuminousIntensity candela Base cd —

Magnetic field
strength

MagneticFieldStrength ampere per meter Derived A/m —

Magnetic flux MagneticFlux weber Derived Wb —
Magnetic flux
density

MagneticFluxDensity tesla Derived T —

Mass Mass kilogram kg (Base) g See NOTE 9
Mass density MassDensity kilogram per square

meter
Derived kg/m2 —

Mass Flow MassFlow kilogram per second Derived kg/s —
Molar energy MolarEnergy joule per mole Derived J/mol —
Molar entropy MolarEntropy joule per mole kelvin Derived J/(mol•K) —
Molar heat
capacity

MolarHeatCapacity joule per mole kelvin Derived J/(mol•K) —

Moment of force MomentOfForce newton meter Derived N•m —
Moment of inertia MomentOfInertia kilogram meter

squared
Derived kg•m2 —

Momentum Momentum kilogram meter per
second

Derived kg•m/s —

Permeability Permeability henry per meter Derived H/m —
Permittivity Permittivity farad per meter Derived F/m —
Plane angle PlaneAngle radian Derived rad See NOTES

4, 10 degree In use °, deg
Power Power watt Derived W Voltage (is

specified by
the load
property)
Also see
NOTE 11

decibel wattb — dBW, dB(1 W)
decibel milliwattb — dBm, dB(1

mW)

Power density PowerDensity watt per square meter Derived W/m2 —
Pressure Pressure pascal Derived Pa See NOTES

4, 12 millibar In use mbar
Radiance Radiance watt per square meter

steradian
Derived W/(m2•sr) —

Radiant intensity RadiantIntensity watt per steradian Derived W/sr —

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 83 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table B.4—Physical types (continued)

Quantity Physical type Unit SI unit
Unit symbol

(See
NOTES 1, 2)

Other
mappings
and notes

Ratio Ratio decibela — dB See NOTES
13, 14 percenta — %, pc

octave — octave
decade — decade

Reactance Reactance ohm Derived Ohm Susceptance
Also see
NOTES 3, 7

Solid angle SolidAngle steradian Derived sr —
Specific energy SpecificEnergy joule per kilogram Derived J/kg —
Specific entropy SpecificEntropy joule per kilogram

kelvin
Derived J/(kg•K) —

Specific heat
capacity

SpecificHeatCapacity joule per kilogram
kelvin

Derived J/(kg•K) —

Specific volume SpecificVolume cubic meter per
kilogram

Derived m3/kg —

Speed Speed meter per second Derived m/s See NOTES
4, 8 mile per hour — mi/h

knot In use nmi/h, kn
kilometer per hour — km/h

Surface tension SurfaceTension newton per meter Derived N/m —
Susceptance Susceptance siemens Derived S Reactance

Also see
NOTE 3

Thermal
conductivity

ThermalConductivity watt per meter kelvin Derived W/(m•K)

Thermodynamic
temperature

Temperature kelvinb Base K See NOTES
8, 15 degree Celsius Derived °C, degC

degree Fahrenheit — °F, degF
Time Time secondc Base s See NOTE 4

minuteb In use min
hourb In use h
dayb In use d
yearb In use y

Volume Volume cubic meter Derived m3 See NOTE 4
liter In use L

Volume flow VolumeFlow liter per second Derived L/s —

NOTE 1—It is preferred practice to leave one space between the numeric value and the unit symbol when defining a value.
(See NOTE 7 below).

NOTE 2—The preferred symbol for the power of 2 (i.e.,2) may be replaced by the symbol 2 where the character set does
not allow the 2 symbol, e.g., W/m2 may be written as W/m2. The symbol for the power of 2 (2) is an ASCII character.
Similarly, the preferred symbol for the power of 3 (i.e., 3) may be replaced by the symbol 3. The symbol for the power of 3
(3) is not an ASCII character.

NOTE 3—Following electrical engineering convention, the term resistance is used to mean the real part of impedance, and
the term reactance is used to mean the imaginary part of impedance. Similarly, conductance and susceptance are the real

BS IEC 62529:2012

 IEC 62529:2012
 – 84 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table B.4—Physical types (continued)

Quantity Physical type Unit SI unit
Unit symbol

(See
NOTES 1, 2)

Other
mappings
and notes

and imaginary parts of admittance. Impedance and admittance are not currently supported as complex types. The terms
impedance and admittance are reserved for future use as physical type names.

NOTE 4—For convenience, certain non-SI units are acceptable for use with SI.

NOTE 5—The units for amount of information, b and B, may be used with both metric and binary prefixes. Care should be
exercised to ensure that any prefix used is the correct one, e.g., 10 MiB is not the same as 10 MB.

NOTE 6—Certain derived units have special names and symbols. For convenience, derived units are often expressed in
terms of other derived units. There are frequently alternative ways to express a derived unit using other derived units (e.g.,
electric field strength).

NOTE 7—The preferred symbol for the ohm (i.e., Ω) is normally replaced by the term Ohm where the character set does
not allow Greek letters. By custom, this convention is normally used in test requirements. The ohm symbol (Ω) is not an
ASCII character.

NOTE 8—A limited number of other (non-SI) units have been included. These units were in customary use in some test
requirements and have been included for purposes of compatibility.

NOTE 9—For historical reasons, although the SI unit of mass is the kilogram (kg), the SI prefixes are attached to the gram
(g).

NOTE 10—When the degree symbol (°) is used for degrees of plane angle, the symbol is normally placed adjacent to the
number, e.g., 45°. When a degree of plane angle symbol is required to follow a variable, it is recommended that the symbol
deg be used, e.g., bearing deg. Using the degree symbol (°) with a variable may give rise to confusion if it were placed
adjacent to the variable name.

NOTE 11—These units of power are equivalent to a level (in decibels) above a reference power of 1 W (in the case of
dBW) or 1 mW (in the case of dBm). These equivalents are included to support legacy test requirements. New test
requirements should be written with the reference level in parentheses following the ratio unit. For example, 7 dBm should
be written as 7 dB (1 mW).

NOTE 12—The use of the bar as a unit of pressure is strongly discouraged. The use of the millibar (mbar) is retained for
limited use in meteorology (i.e., for barometric pressure). The value 1 mbar is equal to 100 Pa.

NOTE 13—Ratio is not a quantity. It has been included in this table due to its customary use in test requirements, e.g., as
in the case of the specification of amplifier gain. In addition to the unit symbols (dB, %, and pc) shown, ratio values may
be dimensionless. The unit symbol pc is included for carrier language implementations that do not support the percent
symbol (%).

NOTE 14—Following customary use in electrical engineering, the terms octave and decade are used as units of ratio for
the particular cases of 2:1 and 10:1, respectively. The unit to which the ratio refers is determined by the context, e.g., when
used with filters, the term octave refers to a ratio in frequencies of 2:1.

NOTE 15—The preferred symbols for the degree Celsius (i.e., ºC) and the degree Fahrenheit (i.e., ºF) may be replaced by
the symbols degC and degF where the character set does not allow the degree symbol (º). The degree symbol (°) is an
ASCII character.
aIn this standard, a bit (b) is a basic unit of measurement of information storage in computer science. It represents a
binary unit, which can denote a value of 1 or 0. The byte (B) is an ordered, contiguous collection of 8 bits.
bThese units are not used with the SI prefixes.
cThis unit is not used with the SI prefixes representing positive powers.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 85 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

B.4.4 Unit prefixes

A unit symbol may be prefixed by one of the metric prefixes from Table B.5.

The µ symbol is not supported by some carrier languages. In those cases, it is permissible to use u.

Table B.5—Metric prefixes

Prefix Name Value Comments
y yocto 10-24 —
z zepto 10-21 —
a atto 10-18 —
f femto 10-15 —
p pico 10-12 —
n nano 10-9 —
µ, u micro 10-6 See NOTE 1
m milli 10-3 —
c centi 10-2 See NOTE 2
d deci 10-1 See NOTE 2
h hecto 10+2 See NOTE 2
k kilo 10+3 —
M mega 10+6 —
G giga 10+9 —
T tera 10+12 —
P peta 10+15 —
E exa 10+18 —
Z zetta 10+21 —
Y yotta 10+24 —
NOTE 1—The preferred symbol for the prefix micro (i.e., µ) is
normally replaced by the symbol u where the character set does not
allow Greek letters. By custom, this convention is often used in test
requirements.

NOTE 2—By custom, the prefixes for units used in test
requirements representing powers of less than 3 (or –3) are not used
in test requirements (except for decibel, dB, which is used
exclusively).

B.4.5 Unit prefixes for binary multiples

This standard provides for the use of binary prefixes, which may be used with the symbols for amount of
information (b and B). The binary prefixes are listed in Table B.6.

BS IEC 62529:2012

 IEC 62529:2012
 – 86 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table B.6—Binary prefixes

Prefix Name Value Example
Ki kibi 210 1 KiB = 1.024 kB
Mi mebi 220 1 MiB = 1.048576 MB
Gi gibi 230 1 GiB = 1.073741824 GB
Ti tebi 240 1 TiB = 1.099511627776 TB
Pi pebi 250 1 PiB = 1.125899906842624 PB
Ei exbi 260 1 EiB = 1.152921504606846976 EB
NOTE—These prefixes are defined in IEEE Std 1541™-2002 [B15].

B.4.6 Runtime properties

The properties of a Physical class are described as follows:

a) value <string>(default) contains the full textual description (e.g., “trms 3 V errlmt 100 mV range
1 V to 10 V”).

b) magnitude <real> is the value of the physical type, e.g., 3.0.

c) unit <string> is the read-only unit symbol of the value, e.g., V, Hz, A.

d) withUnit (unit <string>) <Physical> returns a reference to this Physical, with the specified unit,
e.g., dBm.

e) qualifier <enum> provides different ways of observing the value and contains one of the
following:

1) trms (true root mean square)

2) pk_pk (peak-peak)

3) pk (peak)

4) pk_pos (positive peak)

5) pk_neg (negative peak)

6) av (average)

7) inst (instantaneous)

8) inst_max (instantaneous maximum value)

9) inst_min (instantaneous minimum value).

f) errlmt <enum:UL,LL>

1) magnitude <real> is the value of the UL or LL error limit, e.g., 0.10.

2) units <enum> is the unit symbol of the UL or LL error limit, e.g., pc.

g) res

1) magnitude <real> is the value of the resolution, e.g., 25.

2) units <string> is the unit symbol of the resolution, e.g., uV.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 87 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

h) conf

1) magnitude <real> is the value of the level of confidence associated with the uncertainty
(errlmt), e.g., 95.

2) units <string> is the unit symbol of the level of confidence, e.g., pc or %.

i) load

1) magnitude <real> is the value of the load to be used for translation to and from power, e.g.,
50.

2) units <string> is the unit symbol of the load, e.g., Ohm.

j) range <enum:MAX,MIN>

1) magnitude <real> is the value of the maximum or minimum range, e.g., 10.

2) units <string> is the unit symbol of the maximum or minimum range, e.g., V.

The value property is the default property of the Physical class and is internally parsed to complete the
magnitude, unit, qualifier, errlmt, res, conf, load, and range properties. Explicitly changing any
Physical class properties will also change the default value property.

As the default unit of a Physical property or attribute is determined by the type of the SignalFunction to
which it belongs, withUnit is provided to obtain a Physical reference with alternative units. For example,
the statement—mySin.amplitude.withUnits("dBm").magnitude = 15.849—provides the magnitude in dBm,
whereas the base unit for power is watt (W). The unit of the base property or attribute is not changed.

The Physical class represents a collection class and supports the standard methods and properties Add,
Count, Item, Remove and _NewEnum. The object returned as an item of the collection supports also the
Physcial interface.

NOTE—The enumeration value for the units property never contains the metric prefix, e.g., 300 mV, and has SI
magnitude 0.3 and unit V. The default value for the qualifier is determined by the associated signal attribute.

B.5 PulseDefns class

The PulseDefns base class (see Table B.1) is used to define BSC signal properties that consist of a set of
pulses. The PulseDefns is a collection of pulse definitions can be enumerated through.

All pulses defined with the PulseDefns class start from the same time frame (i.e., T(0)). All BSCs that use
PulseDefns superimpose each pulse on top on each other to obtain a complete PulseDefns. See Figure B.3.

BS IEC 62529:2012

 IEC 62529:2012
 – 88 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Pulse 1

Pulse 2

Pulse 3

Pulse 4

Combined Pulse
Definition

T(0)

Figure B.3—Pulses using PulseDefns

The complete value of the PulseDefns can be defined by using a list of individual PulseDefn (as defined
by the string format in B.5.1)

Runtime Properties

 _NewEnum returns an object that supports IEnumVARIANT. This property is not visible to users,
but allows native languages to iterate through the PulseDefns using the For,Each mechanism.

 item (index VARIANT) is of type PulseDefn. An individual pulse definition is retrieved using the
item property, using a numeric index (0-indexed), or using the name of pulse.

 count is of type Long; number of PulseDefns in the collection.

 value is of type String [i.e., a string list of all the pulses, e.g., “(1ms, 0.5ms, 1) (30us, 2ms, 1)”].

Runtime Methods

 Add (name string) is of type PulseDefn and adds a PulseDefn identified by name. If name is not
unique to PulseDefns, the Add method retrieves the existing PulseDefn.

 Remove (index VARIANT) removes the index PulseDefn from the collection. If index does not
exist, the Remove method returns.

B.5.1 PulseDefn class

The PulseDefn class defines an individual pulse.

The string format of the complete value of the PulseDefn class is defined as follows:

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 89 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

'('<numeric expression> <unit> ',' <numeric expression> <unit> ','
<numeric expression> [pc|%] ')'

—All the occurrences of <unit> must belong to the same quantity (see Table B.4). In most cases, these
will be units of time.

—The <unit> is made up of the <Unit Symbols> and optionally one of any associated <Metric Prefixes>
or <Binary Prefixes). The unit shall not be omitted unless the quantity is dimensionless.

Runtime Properties

 value is of type String (i.e., a string containing the pulse, e.g., “(30 us, 2 ms, 1)”).

 start <Physical> is the point where the pulse occurs. (default 0 s)

 pulseWidth <Physical> is the duration of the pulse. (default 0 s)

 levelFactor <Ratio> is the multiplication factor that the pulse applies to an input signal.
 (default 1.0)

 name is of type String and is the name of the pulse. The name can be used to extract a specific
PulseDefn from a collecton of pulses (PulseDefns).

B.6 SignalFunction class

All BSCs originate from classes derived from the SignalFunction base class (see Table B.1). The
SignalFunction class is described as a pure virtual class as it can only be used to derive classes rather than
to create test objects.

Properties

 Out is of type Signal.

 In [(at=0)] is of type reference to Signal.

 Sync is of type reference to Signal.

 Gate is of type reference to Signal.

 Conn[(at=0)] is of type reference to Signal.

 pinsIn is of type pinString.

 pinsOut is of type pinString.

 pinsSync is of type pinString.

 pinsGate is of type pinString.

The In and Conn properties may both contain multiple signals.

The extensible markup language (XML) defines SignalFunction property channels as a list of input
channel identifiers (numbers or names), e.g., channels="1 3 5 4". Negative channel numbers can be used to
exclude channels, e.g., channels="-1". The parameter values 0 or "" implies all signal channels.

The Out Signal is an interface to a Signal object that the SignalFunction creates as part of its function.
The behavior between the output Signal and the SignalFunction is private and depends entirely on the
behavior of the SignalFunction.

BS IEC 62529:2012

 IEC 62529:2012
 – 90 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

The pinsIn, pinsOut, pinsSync, and pinsGate properties provide the means to connect at the level of the
signal without reference to a separate connection class. Although these properties are inherited by all STD
classes and subclasses, their use with connection classes should be avoided (see B.3.5.7).

Using the pinsIn, pinsOut, pinsSync, and pinsGate properties to connect to a signal is restricted to the
two-wire (hi, lo) style of connection, e.g., they cannot be used where true, comp, phase, or neutral pin types
are required. Refer to B.6.7 for a definition of pinString.

Subclauses B.6.1 through B.6.7 describe all of the BSCs available to the standard covering Sources,
Conditioners, Sensors, EventFunctions, Control, Digital, and Connections. The description generally
takes the form of describing the signal in terms of generating a signal. However, a signal description in the
form of a signal model can equally be used as a means of measuring a signal characteristic attribute or
signal simulation. The signal descriptions defined by this standard describe the signal, but do not define
how the signals are to be used.

Where the following descriptions use the SignalFunction template, their type is shown as Physical. The
BSC can describe any signal based on any physical type listed in Table B.4. Each BSC defines an interface
plus the names of the objects that support those interfaces, e.g., Constant(Voltage,Time) supports the
Constant type interface (see Annex D).

NOTE—All BSC behavior to Gate and Sync events is as described in B.3 unless explicitly changed in the following
text. In general, this behavior is consistent across all BSCs and avoids special meanings being invented for these terms.

See C.2.3.3 for description of runtime properties.

B.6.1 Source ::SignalFunction

a) Definition—Sources are the only BSCs from where signals can originate.

b) Attributes—Not applicable

c) Description—A Source produces a signal based on its attribute values. The signal is continuously
provided, unless gated off, and can be restarted by use of the Sync event. Once started, a Source
generates the signal until explicitly turned off through the Out Signal interface.

B.6.1.1 NonPeriodic ::Source

a) Definition—NonPeriodic signals have no implicit period. They identify signals that do not repeat
themselves.

b) Attributes—Not applicable

c) Description—NonPeriodic Sources are continuous signals, where their final value may be
constant, but they do not have a period. A NonPeriodic Source represents a transient or single
transition, which is repeated on the arrival of each Sync event.

B.6.1.1.1 Constant<type: Physical> ::NonPeriodic

a) Definition—A Constant signal retains its given level. See Figure B.4.

b) Attributes

amplitude <Physical>—the level of the signal (default = 0)

c) Description

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 91 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.4—Constant (amplitude=1 V)

B.6.1.1.2 Step<type: Physical> ::NonPeriodic

a) Definition—A Step signal makes a transition from zero to a given level. See Figure B.5.

b) Attributes

amplitude <Physical>—final value of Step signal (default = 0)

startTime <Time>—definition of when the step transition starts (default = 0.5 s)

c) Description—A Step signal has two properties: the start time of the transition and the final
amplitude level. The step transition is regarded as instantaneous. Before start time, the value is 0;
after start time, the value is the amplitude.

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.5—Step (amplitude=1 V, startTime=0.5 s)

B.6.1.1.3 SingleTrapezoid<type: Physical> ::NonPeriodic

a) Definition—A SingleTrapezoid is a NonPeriodic signal defined by the geometric trapezoid shape.
See Figure B.6.

b) Attributes

amplitude <Physical>—value of pulse amplitude (default = 0)

startTime <Time>—time at which trapezoid starts relative to it initialization (default = 0 s)

BS IEC 62529:2012

 IEC 62529:2012
 – 92 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

riseTime <Time>—time taken to reach amplitude (default = 0.25 s)

pulseWidth <Time>—time that trapezoid is stable at amplitude (default = 0.5 s)

fallTime <Time>—time taken to fall back to quiescent state (default = 0.25 s)

c) Description—A SingleTrapezoid may have zero values for any of its properties. The trapezoid is
regarded as its geometric shape.

Its properties are defined by its amplitude and the times that bound each signal segment of start
time, rise time, pulse width, and fall time.

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.6—SingleTrapezoid (amplitude=1 V)

B.6.1.1.4 Noise ::NonPeriodic

a) Definition—Noise may be considered as unwanted disturbances superimposed upon a useful signal,
which tend to obscure the signal’s information content. Noise may be genuinely random (as in
white noise) or may be pseudorandom. Noise occurs across a range of frequencies and can be
characterized by amplitude; it may take the form of a Sensor or Source signal. Pseudorandom noise
is only of interest as a Source signal. In addition to amplitude, it also allows a frequency and an
optional seed to be defined. See Figure B.7.

b) Attributes

amplitude <Physical>—the peak noise amplitude (default = 0)

seed <int>—used for pseudorandom noise (default = 0)

frequency <Frequency>—upper bound frequency bandwidth for transient disturbances
 (default = 50 Hz)

c) Description—Noise is the term most frequently applied to the limiting case where the number of
transient disturbances per unit time is large.

Noise has amplitude, frequency, and seed as parameters, of the type of the dependent variable, and
has a recurring pattern as determined by the generating algorithms and the seed. These parameters
define the mean frequency and amplitude of the transient disturbances.

The pseudorandom effect applies only to multiple sequences of the same implementation, and
different implementations will give different pseudorandom values. A seed value of 0 implies true
random noise. Therefore, it could be generated from a thermal noise generator and is not
necessarily repeatable.

The frequency attribute provides the bandwidth of the frequency spectrum of the noise. The use of
zero (0 Hz) implies noise is independent of frequencies, i.e., white noise.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 93 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

V

Time

-0.1
-0.2
-0.3
-0.4
-0.5

0.0
0.1
0.2
0.3
0.4
0.5

Figure B.7—Noise (seed=1, amplitude=0.5 V, frequency=50 Hz)

B.6.1.1.5 SingleRamp<type: Physical> ::NonPeriodic

a) Definition—A SingleRamp represents a linear transition from 0 to the defined amplitude level
during a defined time period. See Figure B.8.

b) Attributes

amplitude <Physical>—final value of ramp signal (default = 0)

riseTime <Time>—time for signal to reach final value (default = 1 s)

startTime <Time>—defines when the step transition starts (default = 0 s)

c) Description—A SingleRamp takes the form of a linear signal with the transition time defining the
event window of that signal. The slope of the linear signal is defined by the difference between the
amplitudes divided by the transition time. In a high-to-low transition, the gradient is negative; and
in a low-to-high transition, the gradient is positive.

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.8—SingleRamp (amplitude=1 V, riseTime=1 s)

B.6.1.2 Periodic ::Source

a) Definition—Periodic signals are signals in which the amplitude value (a dependent variable)
changes as a periodic function of time (an independent variable). These signals have an implicit
period and frequency.

BS IEC 62529:2012

 IEC 62529:2012
 – 94 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

b) Attributes—Not applicable

c) Description—The behavior of any Periodic signal defined with a period is that of a single signal
that is being synchronized with a clock event equivalent to the period. Therefore, each signal
restarts from its initial start time at the start of each period. Periodic signals are equivalent to
synchronized NonPeriodic signals.

B.6.1.2.1 Sinusoid<type: Physical> ::Periodic

a) Definition—A Sinusoid is a signal where the amplitude of the dependent variable is given by the
formula in Equation (B.1):

e = Asin(ωt+φ) (B.1)

where
A is the amplitude
ω is 2π × frequency
ϕ is the initial phase angle

b) Attributes

amplitude <Physical>—amplitude (default = 0)

frequency <Frequency>—frequency (default = 1 Hz)

phase <PlaneAngle>—initial phase angle (default = 0 rad)

c) Description—Sinusoid has amplitude, frequency, and phase as parameters. The amplitude has the
type of the dependent variable, the frequency is of type Frequency, and the initial phase angle is a
PlaneAngle. See Figure B.9.

V

Time

-0.2
-0.4
-0.6
-0.8
-1.0

0.0
0.2
0.4
0.6
0.8
1.0

Figure B.9—Sinusoid (amplitude=1 V, frequency=30 Hz)

B.6.1.2.2 Trapezoid<type: Physical> ::Periodic

a) Definition—A Trapezoid is a Periodic signal that sequentially repeats the SingleTrapezoid. The
period is defined by the duration of the SingleTrapezoid. All event times are referenced to local
time, which is reset at the start of each pulse. See Figure B.10.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 95 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

b) Attributes

amplitude <Physical>—value of pulse amplitude (default = 0)

period <Time>—time in which the signal repeats itself (default = 1 s)

riseTime <Time>—time taken to reach amplitude (default = 0.25 s)

pulseWidth <Time>—time that Trapezoid is stable at amplitude (default = 0.5 s)

fallTime <Time>—time taken to fall back to quiescent state (default = 0.25 s)

c) Description—A Trapezoid signal represents the trapezoidal geometric shape. The continuous
signal always starts on the rising edge, and the trapezoid is repeated every period even if the
trapezoid has not been completed.

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.10—Trapezoid (amplitude=1 V, pulseWidth=0.5 s)

B.6.1.2.3 Ramp<type: Physical> ::Periodic

a) Definition—A Ramp signal is a Periodic signal whose instantaneous value follows a linear
transition from zero to the defined amplitude during the riseTime and back to zero during the
remainder of the period. In the case that the period is less than the riseTime, the linear transition
from zero will stop when the period is reached. See Figure B.11.

b) Attributes

amplitude <Physical>—final level of the signal (default = 0)

period <Time>—time in which signal repeats itself (default = 1 s)

riseTime <Time>—rise time of Ramp signal (default = 1 s)

c) Description

BS IEC 62529:2012

 IEC 62529:2012
 – 96 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.11—Ramp (amplitude=1 V)

B.6.1.2.4 Triangle<type: Physical> ::Periodic

a) Definition—A Triangle signal is a Periodic signal whose instantaneous value varies linearly and
equally about 0. Duty cycle is a ratio between the time for which it increases to its positive value
and the time for which it decreases to its negative value. Its parameters are defined by its
amplitude, period, and duty cycle. See Figure B.12.

b) Attributes

amplitude <Physical>—maximum amplitude level of the signal (default = 0)

period <Time>—time in which signal repeats itself (default = 1 s)

dutyCycle <Ratio>—ratio between time taken to increase from its minimum to its maximum value
and the time for one period (default = 50%)

c) Description—Triangle has amplitude and period as parameters. The amplitude has the type of the
dependent variable; the period is of type Time.

NOTE—The value of the attribute dutyCycle is a ratio, which can include values outside of the range of 0% to 100%
(i.e., 0 to 1). The use of values outside of the range of 0% to 100% may have unintended effects upon the signal.

V

Time

-0.2
-0.4
-0.6
-0.8
-1.0

0.0
0.2
0.4
0.6
0.8
1.0

Figure B.12—Triangle (amplitude=1 V)

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 97 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

B.6.1.2.5 SquareWave<type: Physical> ::Periodic

a) Definition—A SquareWave is a Periodic signal whose amplitude (a dependent variable)
alternately assumes one of two fixed values of amplitude. The amplitudes are equal to about 0,
which is the reference base line. Duty cycle is a ratio between the time for which it remains at its
positive value and the time for which it remains at its negative value. Its parameters are defined by
its amplitude, period, and duty cycle. See Figure B.13.

b) Attributes

amplitude <Physical>—amplitude of signal (default = 0)

period <Time>—period of signal (default = 1 s)

dutyCycle <Ratio>— ratio between time at its positive value and the time for one period
 (default = 50%)

c) Description—SquareWave has amplitude and period as parameters. The amplitude has the type
of the dependent variable; the period is of type Time.

NOTE—The value of the attribute dutyCycle is a ratio, which can include values outside of the range of 0% to 100%
(i.e., 0 to 1). The use of values outside of the range of 0% to 100% may have unintended effects upon the signal.

V

Time

-0.2
-0.4
-0.6
-0.8
-1.0

0.0
0.2
0.4
0.6
0.8
1.0

Figure B.13—SquareWave (amplitude=1 V)

B.6.1.2.6 WaveformRamp<type: Physical> ::Periodic

a) Definition—A WaveformRamp is defined by a sampling interval and a list of values. The
WaveformRamp cycles through those values sequentially and infinitely, starting from 0. The
width of each window is the same, and each window consists of a Ramp signal. See Figure B.14.

b) Attributes

amplitude <Physical>—amplitude of the output signal where the level factor (in points) is 1
 (default = 1)

period <Time>—the time between each sequence (default = 1 s)

samplingInterval <Time>—the time between successive (points) outputs (default = 0 s)

points <list_double>—level factor of each waveform sample (default = empty)

If the attribute samplingInterval is 0, the complete waveform described by the points is repeated
per period. Otherwise, the period is calculated as (sampleInterval × number of points). Assigning
a nonzero period value sets samplingInterval to 0.

BS IEC 62529:2012

 IEC 62529:2012
 – 98 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

c) Description—WaveformRamp takes the form of a sequence of linear signals with the sampling
interval defining the event window. The slope of the linear signal is defined by the difference
between the previous point and the current point divided by the sampling interval. In a high-to-low
transition, the slope is negative; and in a low-to-high transition, the slope is positive. The offset is
defined by the previous point. WaveformRamp cycles through the points sequentially and
continuously.

V

Time
0

1

2

3

4

5

Figure B.14—WaveformRamp (points=[0, 1, 3, 2, 4, 5, 2, 1], period=1 s)

B.6.1.2.7 WaveformStep<type: Physical> ::Periodic

a) Definition—A WaveformStep is defined by a sampling interval and a list of values. The
WaveformStep cycles through those values sequentially and infinitely, starting from 0. The width
of each window is the same, and each window consists of a line segment (i.e., a step signal). See
Figure B.15.

b) Attributes

amplitude <Physical>—amplitude of the output signal where the level factor (in points) is 1
 (default = 1)

period <Time>—the time between each sequence (default = 1 s)

samplingInterval <Time>—the time between successive (points) outputs (default = 0 s)

points <list_double>—level factor of each waveform sample (default = empty)

If the attribute samplingInterval is 0, the complete waveform described by the points is repeated
per period. Otherwise, the period is calculated as (sampleInterval × number of points). Assigning
a nonzero period value sets samplingInterval to 0.

c) Description—WaveformStep takes the form of a sequence of constant signals. The level of the
constant signal is defined by the points, and a transition in level occurs at each increment of the
sampling interval. WaveformStep cycles through the points sequentially and continuously.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 99 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

V

Time
0

1

2

3

4

5

Figure B.15—WaveformStep (points=[0, 1, 3, 2, 4, 5, 2, 1], period=1 s)

B.6.2 Conditioner ::SignalFunction

a) Definition—Conditioners take one or more signal inputs and transform them to other signals or, as
do Product or Sum, take multiple input signals and operate on these to produce a single signal
output.

b) Attributes—Not applicable

c) Description—Conditioners act on signals, e.g., Sources, but not on events (e.g., EventFunctions).
Conditioners can be restarted using the Sync property and/or when the input signals become
active. Restarting a BSC is where its behavior reverts back to when it first started, i.e., time=0

B.6.2.1 Filter ::Conditioner

a) Definition—A Filter is a Conditioner that passes a defined set of frequencies from an input signal
to produce an output signal.

b) Attributes—Not applicable

c) Description—Filters have attributes that allow a basic filter shape to be defined. If no values are
provided for gain, rolloff, passBandRipple, and stopbandRipple, the Filters default to pure filters
with instantaneous frequency cutoff across their bandwidths.

B.6.2.1.1 BandPass ::Filter

a) Definition—A BandPass filter passes frequencies within the pass band from an input signal and
filters out all frequencies outside of the band. The BandPass filter is a symmetrical filter in which
the rollOff values for the highpass and lowpass transition slopes are equal and opposite. The
BandPass filter illustrated in Figure B.16 represents a perfect bandpass filter.

b) Attributes

centerFrequency <Frequency>—center frequency of the filter’s band (default = 0 Hz)

frequencyBand <Frequency>—bandwidth of filter; zero implies narrowest band (default = 0 Hz)

gain <Ratio>—ratio defining the scaling factor for the signal in the pass band (default = 0 dB)

rollOff <Ratio>—the rate at which the amplitude of the output signal will alter over frequency
 (default = 0)

BS IEC 62529:2012

 IEC 62529:2012
 – 100 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

passBandRipple <Ratio>—the maximum allowable variation in the amplitude of the passband
signal (default = 0 dB)

stopBandRipple <Ratio>—the maximum allowable variation in the amplitude of the stopband
signal (default = 0 dB)

The values for passBandRipple and stopBandRipple are given as a proportion of the value of the
In signal after any change imparted by the gain attribute.

The value for rollOff may be given with units of dB/decade or dB/octave in line with customary
practice. A value of 0 indicates a pure filter, as defined below, in which case the values for
passBandRipple and stopBandRipple have no meaning.

c) Description—In the case of the pure filter, the output (eout) is given as defined in Equation (B.2)
and Equation (B.3).

eout = ein for f ≥ (fc–fbw/2) and f ≤ (fc+fbw/2) (B.2)

eout = 0 for f < (fc–fbw/2) and f > (fc+fbw/2) (B.3)

where
ein is the input
f is the frequency of the input signal
fc is the center frequency
fbw is the absolute value of the frequency band

V

Time

-0.2

-0.4

-0.6

0.0

0.2

0.4

0.6

0.8

1.0

Figure B.16—BandPass (response of Filter to TrapezoidVoltage)

B.6.2.1.2 LowPass ::Filter

a) Definition—The LowPass filter suppresses all frequencies above the cutoff frequency.
Frequencies below the cutoff frequency are passed to the output signal. The LowPass filter
illustrated in Figure B.17 represents a perfect step filter.

b) Attributes

cutoff <Frequency>—cutoff frequency of the filter; zero implies dc only passed (default = 0 Hz)

gain <Ratio>—ratio defining the scaling factor for the signal in the pass band (default = 0 dB)

rollOff <Ratio>—the rate at which the amplitude of the output signal will alter over frequency
 (default = 0)

passBandRipple <Ratio>—the maximum allowable variation in the amplitude of the passband
signal (default = 0 dB)

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 101 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

stopBandRipple <Ratio>—the maximum allowable variation in the amplitude of the stopband
signal (default = 0 dB)

The values for passBandRipple and stopBandRipple are given as a proportion of the value of the
In signal after any change imparted by the gain attribute.

The value for rollOff may be given with units of dB/decade or dB/octave in line with customary
practice. Only a single value for magnitude is required. A value of 0 indicates a pure filter, as
defined below, in which case the values for passBandRipple and stopBandRipple have no
meaning.

c) Description—In the case of the pure filter, the output (eout) is given as defined in Equation (B.4)
and Equation (B.5).

eout = ein for f ≤ fc (B.4)

eout = 0 for f > fc (B.5)

where
ein is the input
f is the frequency of the input signal
fc is the absolute value of the cutoff frequency

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.17—LowPass (response of Filter to TrapezoidVoltage)

B.6.2.1.3 HighPass ::Filter

a) Definition—The HighPass filter suppresses all frequencies below the cutoff frequency. All
frequencies above and including the cutoff frequency are passed (with equal gain) to the
output signal. The HighPass filter illustrated in Figure B.18 represents a perfect step filter. See
Figure B.18.

b) Attributes

cutoff <Frequency>—start frequency of the filter; zero implies ac coupled (default = 0 Hz)

gain <Ratio>—ratio defining the scaling factor for the signal in the pass band (default = 0 dB)

rollOff <Ratio>—the rate at which the amplitude of the output signal will alter over frequency
 (default = 0)

passBandRipple <Ratio>—the maximum allowable variation in the amplitude of the passband
signal (default = 0 dB)

BS IEC 62529:2012

 IEC 62529:2012
 – 102 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

stopBandRipple <Ratio>—the maximum allowable variation in the amplitude of the stopband
signal (default = 0 dB)

The values for passBandRipple and stopBandRipple are given as a proportion of the value of the
In signal after any change imparted by the gain attribute.

The value for rollOff may be given with units of dB/decade or dB/octave in line with customary
practice. Only a single value for magnitude is required. A value of 0 indicates a pure filter, as
defined below, in which case the values for passBandRipple and stopBandRipple have no
meaning.

c) Description—In the case of the pure filter, the output (eout) is given as defined in Equation (B.6)
and Equation (B.7).

eout = ein for f > fc (B.6)

eout = 0 for f ≤ fc (B.7)

where
ein is the input
f is the frequency of the input signal
fc is the absolute value of the cutoff frequency

V

Time

-0.2

-0.4

-0.6

0.0

0.2

0.4

0.6

0.8

1.0

Figure B.18—HighPass (response of Filter to TrapezoidVoltage)

B.6.2.1.4 Notch ::Filter

a) Definition—A Notch filter blocks frequencies within the pass band from an input signal and passes
all frequencies outside of the band. The Notch is a symmetrical filter in which the rollOff values
for the highpass and lowpass transition slopes are equal and opposite. The Notch filter illustrated in
Figure B.19 represents a perfect notch (bandstop) filter.

b) Attributes

centerFrequency <Frequency>—center frequency of the Filter’s notch (default = 0 Hz)

frequencyBand <Frequency>—stop band of Filter; zero implies minimum band (default = 0 Hz)

gain <Ratio>—ratio defining the scaling factor for the signal in the pass band (default = 0 dB)

rollOff <Ratio>—the rate at which the amplitude of the output signal will alter over frequency
 (default = 0)

passBandRipple <Ratio>—the maximum allowable variation in the amplitude of the passband
signal (default = 0 dB)

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 103 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

stopBandRipple <Ratio>—the maximum allowable variation in the amplitude of the stopband
signal (default = 0 dB)

The values for passBandRipple and stopBandRipple are given as a proportion of the value of the
In signal after any change imparted by the gain attribute.

The value for rollOff may be given with units of dB/decade or dB/octave in line with customary
practice. Only a single value for magnitude is required. A value of 0 indicates a pure filter, as
defined below, in which case the values for passBandRipple and stopBandRipple have no
meaning.

c) Description—In the case of the pure filter, the output (eout) is given as defined in Equation (B.8)
and Equation (B.9).

eout = ein for f ≤ (fc–fbw/2) and f ≥ (fc+fbw/2) (B.8)

eout = 0 for f > (fc–fbw/2) and f < (fc+fbw/2) (B.9)

where
ein is the input
f is the frequency of the input signal
fc is the center frequency
fbw is the absolute value of the frequency band

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.19—Notch (response of Filter to TrapezoidVoltage)

B.6.2.2 Combiner ::Conditioner

a) Definition—Combiners take multiple input signals and combine them into a single output signal.

b) Attributes—Not applicable

c) Description

B.6.2.2.1 Sum ::Combiner

a) Definition—Sum makes signals from other signals by summing them together.

b) Attributes—Not applicable

c) Description—Figure B.20 shows the sum of two sinusoidal signals, one with an amplitude of 1 V
and a frequency of 30 Hz and the other with an amplitude of 1 V and a frequency of 960 Hz.

BS IEC 62529:2012

 IEC 62529:2012
 – 104 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

V

Time

-0.5

-1.0

-1.5

-2.0

0.0

0.5

1.0

1.5

2.0

Figure B.20—Sum

B.6.2.2.2 Product ::Combiner

a) Definition—Product makes signals from other signals by multiplying them together.

b) Attributes—Not applicable

c) Description—Figure B.21 shows the product of two sinusoidal signals, one with an amplitude of
1 V and a frequency of 30 Hz and the other with an amplitude of 1 V and a frequency of 960 Hz).

V

Time

-0.2
-0.4
-0.6
-0.8
-1.0

0.0
0.2
0.4
0.6
0.8
1.0

Figure B.21—Product

B.6.2.2.3 Diff ::Combiner

a) Definition—Diff makes a signal from other signals by subtracting the second and subsequent
signals from the first signal.

b) Attributes—Not applicable

c) Description—Figure B.22 shows the difference between two sinusoidal signals, one with an
amplitude of 1 V and a frequency of 30 Hz and the other with an amplitude of 1 V and a frequency
of 960 Hz.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 105 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

V

Time

-0.5

-1.0

-1.5

-2.0

0.0

0.5

1.0

1.5

2.0

Figure B.22—Diff

B.6.2.3 Modulator ::Conditioner

a) Definition—Modulator provides facilities to create a modulated signal where the modulation is
proportional to the input signal.

b) Attributes—Not applicable

c) Description—Where there is no In signal (or the In signal is Gated Off (tri-state)), the Out
represents the carrier signal without modulation.

B.6.2.3.1 FM<type: Physical> ::Modulator

a) Definition—FM is a modulator where the instantaneous frequency of the sinusoidal carrier varies
with the amplitude of the modulating input signal.

b) Attributes

amplitude <Physical>—peak amplitude of sinusoidal carrier wave (default = 1 V)

carrierFrequency <Frequency>—frequency of sinusoidal carrier wave (default = 1 kHz)

frequencyDeviation <Frequency>—frequency deviation (default = 100 Hz)

c) Description—The instantaneous frequency of a signal is defined as rate of change of φ (dφ/dt). For
FM, the general solution is given as defined in Equation (B.10):

e = Ecsin(dω/dt) (B.10)

where
dφ/dt = fc + frequencyDeviation × m(t).

the general solution for dφ/dt = fc + frequencyDeviation × m(t) is given as
 φct + frequencyDeviation (∫0-2π m(t)dt)

and
Ec is the carrier amplitude (unmodulated)
φ is the phase angle
m(t) is the modulating signal
dφ/dt is the instantaneous frequency
fc is carrier frequency

BS IEC 62529:2012

 IEC 62529:2012
 – 106 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

∫0-2π is the integral

As an example, the output for a FM-modulated cosine waveform is given by Equation (B.11):

e = Ecsin(ωct + mfsinωmt) (B.11)

where
ωc is 2πfc
ωm is 2π × modulating frequency
mf deviation ratio (≡ modulation index)

In order that the output signal has the defined deviation ratio, this BSC requires that the amplitude
of the modulating input signal has a value of 1 (unity).

Figure B.23 shows frequency modulation where the carrier has a frequency of 960 Hz with an
amplitude of 1 V and the modulating signal has a frequency of 30 Hz.

V

Time

-0.2
-0.4
-0.6
-0.8
-1.0

0.0
0.2
0.4
0.6
0.8
1.0

Figure B.23—FM

B.6.2.3.2 AM ::Modulator

a) Definition—AM is a modulator where the amplitude of the carrier varies with the amplitude of the
modulating input signal.

b) Attributes

modIndex <ratio>—modulation index (depth of modulation) (default = 0.3)

Carrier <SignalFunction>—sinusoidal signal to be modulated

c) Description—The formula for AM signal is given in Equation (B.12):

e = Ec(1+modIndex m(t))sinωct (B.12)

where
Ec is the carrier amplitude (unmodulated)
m(t) is the modulating signal
ωc is 2π × carrier frequency

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 107 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

As an example, the output for an AM-modulated sinusoid signal is given by Equation (B.13):

e = Ec(1+masinωmt)sinωct (B.13)

where
Ec is the carrier amplitude (unmodulated)
ma is the depth of modulation (≡ modulation index)
ωm is 2π × modulating frequency
ωc is 2π × carrier frequency

In order that the output signal has the defined modulation index, the BSC requires that the
amplitude of the modulating input signal has a value of 1 (unity).

Figure B.24 shows amplitude modulation where the carrier has a frequency of 960 Hz with an
amplitude of 1 V and the modulating signal has a frequency of 30 Hz.

V

Time

-0.5

-1.0

-1.5

0.0

0.5

1.0

1.5

Figure B.24—AM

B.6.2.3.3 PM<type: Physical> ::Modulator

a) Definition—PM is a modulator where the phase of the sinusoidal carrier varies with the amplitude
of the modulating input signal.

b) Attributes

amplitude <Physical>—amplitude of sinusoidal carrier wave (default = 1 V)

carrierFrequency <Frequency>—frequency of sinusoidal carrier wave (default = 1 kHz)

phaseDeviation <PlaneAngle>—phase deviation (default = π/4 rad)

c) Description—The formula for a PM signal is given in Equation (B.14):

e = Ecsin(ωct+phaseDeviation m(t)) (B.14)

where
Ec is the carrier amplitude (unmodulated)
ωm is 2π × modulating frequency
m(t) is the modulating signal

BS IEC 62529:2012

 IEC 62529:2012
 – 108 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

As an example, the output PM-modulated cosine signal is given by Equation (B.15):

e = Ec sin (ωct + φd cos ωmt) (B.15)

where
Ec is the carrier amplitude (unmodulated)
ωc is 2π × carrier frequency
φd is phase deviation (≡ modulation index)
ωm is 2π × modulating frequency

In order that the output signal has the correct phase deviation, the BSC requires that the amplitude
of the modulating input signal has a value of 1 (unity).

Figure B.25 shows phase modulation where the carrier has a frequency of 960 Hz with an
amplitude of 1 V and the modulating signal has a frequency of 30 Hz.

V

Time

-0.2
-0.4
-0.6
-0.8
-1.0

0.0
0.2
0.4
0.6
0.8
1.0

Figure B.25—PM

B.6.2.4 Transformation ::Conditioner

a) Definition—Transformation takes a signal and transforms it (e.g., converting it from the time
domain to the frequency domain).

b) Attributes—Not applicable

c) Description

B.6.2.4.1 SignalDelay ::Transformation

a) Definition—With SignalDelay, the In signal is delayed to become the Out signal, where the delay
is defined by an initial fixed delay and where the delay may change over time.

b) Attributes

acceleration <Frequency>—the rate at which the rate will alter over time (default = 0 s-1)

delay <Time>—the fixed delay that signal will be delayed (default = 0 s)

rate <Ratio>—the rate at which the delay will alter over time (default = 0)

c) Description—SignalDelay can be applied to both signals and events. The SignalDelay can be used
for two distinct operations on the input signal:

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 109 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

1) Delay signals (delay)

2) Change the time base (rate, acceleration)

Both these operations can be combined into a single SignalDelay.

The delay at time t (td) between the input and output is calculated from the initialization time (t0) as
defined in Equation (B.16):

td = SignalDelay = Delay + (Rate x t) + (Acceleration x t2/2) (B.16)

When the signal delay time (td) is greater than the current time (t), signal delay presents a null
output signal.

A signal delay time that is negative refers to events that will happen in the future. This value is a
valid signal specification and represents a change in the time base of the signal. For example, a rate
of 1 has the effect of doubling the frequency (i.e., halving the period) of any input signal.

Example:

An example of SignalDelay is radar, the delay for a signal to travel to a moving target, where all
properties are defined with respect to distance (meters) and the speed of light (meters/second).

The delay for a signal to travel to a moving target is defined as follows:

— Delay is the fixed delay (due to distance from target to the observer), m/(m/s)=s.

— Rate is the velocity at which the target is moving away from the observer,
(m/s)/(m/s)=dimensionless.

— Acceleration is the rate at which the velocity of the target (from the observer) is changing,
(m/s2)/(m/s)=s-1.

Using the SignalDelay for radar defines both the radar pulse delay for the target plus any Doppler
effect, due to the target movement, through changes to the signal time base.

Figure B.26 shows the effect of a SignalDelay on a waveform ramp. In this example, the delay is
0.1 s, the acceleration is –0.1 s-1, and the rate is –0.1.

V

Time
0

1

2

3

4

5

Figure B.26—SignalDelay

B.6.2.4.2 Exponential ::Transformation

a) Definition—Exponential is a transformation that multiplies the input signal with a coefficient that
decays exponentially over time. See Figure B.27.

BS IEC 62529:2012

 IEC 62529:2012
 – 110 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

b) Attributes

dampingFactor <double>—value of damping factor (default = 1.0)

c) Description—Any signal may be damped over a given time, according to a floating-point damping
factor. An Exponential is determined by the damping factor, using the expression e-t/τ, where τ is
equal to the damping factor.

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.27—Exponential (constant amplitude = 1 V)

B.6.2.4.3 E ::Transformation

a) Definition—E is an exponential operation on a signal. See Figure B.28.

b) Attributes—Not applicable

c) Description—The output of the signal may be expressed by Equation (B.17):

y = ex (B.17)

where
y is the signal output
x is the signal input

NOTE—In Equation (B.17), the symbol e refers to the mathematical constant, the base of the natural
logarithm. The equation could also have been expressed as y=exp(x).

V

Time
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure B.28—E (constant amplitude = 1 V)

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 111 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

B.6.2.4.4 Ln ::Transformation

a) Definition—Ln is a natural logarithmic (inverse exponential) operation on a signal. See
Figure B.29.

b) Attributes—Not applicable

c) Description—The output of the signal may be expressed by Equation (B.18):

y = ln(x) (B.18)

where
y is the signal output
x is the signal input

V

Time
0.0

0.5

1.0

1.5

2.0

2.5

3.0

V

Time
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure B.29—Ln (constant amplitude = 3 V)

B.6.2.4.5 Negate ::Transformation

a) Definition—Negate modifies a signal so that its amplitude is the negative of the In signal
amplitude. See Figure B.30.

b) Attributes—Not applicable

c) Description—The output of the signal may be expressed by Equation (B.19):

y = -x (B.19)

where
y is the signal output
x is the signal input

BS IEC 62529:2012

 IEC 62529:2012
 – 112 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

V

Time

-0.2
-0.4
-0.6
-0.8
-1.0

0.0
0.2
0.4
0.6
0.8
1.0

Figure B.30—Negate (constant amplitude = 1 V)

B.6.2.4.6 Inverse ::Transformation

a) Definition—Inverse is the mathematical reciprocal of a signal. See Figure B.31.

b) Attributes—Not applicable

c) Description—The output of the signal may be expressed by Equation (B.20):

y = 1/x (B.20)

where
y is the signal output
x is the signal input

NOTE—The value of y is indeterminate when the value of x is 0.

V

Time
0.0

0.5

1.0

1.5

Figure B.31—Inverse (constant amplitude = 1 V)

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 113 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

B.6.2.4.7 PulseTrain ::Transformation

a) Definition—PulseTrain creates a train of pulses of the In signal by multiplying the input signal
with the amplitude of the pulses.

b) Attributes

pulses <PulseDefns>—a list defining the shape of the pulses to be created

repetition <int>—the number of times the list of pulses is output; zero indicates that the sequence
is repeated indefinitely (default = 0)

c) Description—Figure B.32 shows the creation of a PulseTrain where the In signal is a sinusoid of
amplitude 1 V with a frequency of 30 Hz and the pulses are defined by the PulseDefns [(0.2, 0.5,
0.5), (0.4, 0.3, 0.5)]. The default repetition value of 0 is assumed.

V

Time

-0.2
-0.4
-0.6
-0.8
-1.0

0.0
0.2
0.4
0.6
0.8
1.0

Figure B.32—PulseTrain

B.6.2.4.8 Attenuator ::Transformation

a) Definition—Attenuator scales the amplitude (a dependent variable) of the In signal and allows
both the increase and decrease of the signal. See Figure B.33.

b) Attributes

gain <Ratio>—ratio defining the scaling factor for the signal (default = 1)

c) Description—The output of the signal may be expressed by Equation (B.21):

y = mx (B.21)

where
y is the signal output
x is the signal input
m is the gain

NOTE—If the value of gain is negative, a dc signal will also be negated, and an ac signal will acquire a 180°
phase shift.

BS IEC 62529:2012

 IEC 62529:2012
 – 114 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

V

Time
0.0

0.5

1.0

1.5

Figure B.33—Attenuator (gain = 1.5, constant amplitude = 1 V)

B.6.2.4.9 Load ::Transformation

a) Definition—Load provides an impedance to load a signal. See Figure B.34.

b) Attributes

resistance <Resistance>—the impedance (in ohms) of the resistive part of the load
 (default = 0 Ω)

reactance <Reactance>—the impedance (in ohms) of the reactive part of the load
 (default = 0 Ω)

c) Description—Load provides an impedance, defined in terms of resistance and reactance, which can
load a signal.

The Load does not modify a signal but is used to indicate an impedance required to ensure the
correct operation of a signal at its point of connection. It is not to be used as a circuit element, in
which case a Constant of type Impedance may be used.

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.34—Load (resistance=50 Ω, constant amplitude=1 V)

B.6.2.4.10 Limit<type: Physical> ::Transformation

a) Definition—Limit restricts the values of the signal to ± the limit value.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 115 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

b) Attributes

limit <Physical>—the absolute value of the maximum or minimum signal (default = 1)

c) Description—Limit has a generic type. Therefore, using a Limit(Voltage) on a voltage signal
limits the signal voltage. Using a Limit(Current) on a voltage signal restricts the voltage to limit
the current using the equation V=IR. Using Limit(Power) restricts the voltage to limit the power
using the expression I.V.

Figure B.35 shows the effect of a limit of 0.90 V on a sinusoid of amplitude 1 V and frequency
30 Hz.

V

Time

-0.2
-0.4
-0.6
-0.8
-1.0

0.0
0.2
0.4
0.6
0.8
1.0

Figure B.35—Limit

B.6.2.4.11 FFT ::Transformation (Deprecated, see note)

a) Definition—FFT (i.e., Fourier transform) characterizes time domain signals in the frequency
domain. It is more restricted than the other BSC signal combination mechanisms. It uses a number
of samples (which is rounded up to the nearest power of 2), the time over which the signal will be
sampled, and the signal to be converted.

b) Attributes

samples <int>—number of samples to be used (before rounding) (default = 1023)

interval <Time>—time to sample signal (default = 1 s)

c) Description—The number of samples used is always the next power of 2.

FFT converts time to frequency domain signals, useful for measuring frequency characteristics or
performing signal analysis. The FFT returns the magnitude of the value of the signal within each
frequency band, where the frequency band is defined by 1/interval, and the axis defined from 0 Hz
to the Nyquist frequency defined by half of the sampling frequency (samples/(2 × interval)).

FFT loses any signal phase information because it provides only real values and does not provide
any complex components.
NOTE—The use of the FFT as a transform is deprecated, as it is no longer considered to be a transformation
of a signal, but a method of providing the characteristics of a signal in the frequency domain. Signal
transformation is inherent in the standard for related physical types and reference types (see B.3.3).

Figure B.36 shows the FFT of a phase-modulated signal where the carrier has a frequency of
960 Hz with an amplitude of 1 V and the modulating signal has a frequency of 30 Hz.

BS IEC 62529:2012

 IEC 62529:2012
 – 116 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

V

Frequency
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.36—FFT of PM signal

B.6.3 EventFunction ::SignalFunction

a) Definition—An EventFunction creates and manipulates events. Events are signals without value
information, where the important information is when they become active and inactive.

b) Attributes—Not applicable

c) Description—A signal can be used as an event, but an event cannot be used as a signal. In general,
EventFunctions can be combined to create complex events that are used to synchronize or gate
other BSCs.

B.6.3.1 EventSource ::EventFunction

a) Definition—EventSources generate events.

b) Attributes—Not applicable

c) Description

B.6.3.1.1 Clock ::EventSource

a) Definition—Clock generates an event at regular intervals. Each event is active for the first half of
the clock period. See Figure B.37.

b) Attributes

clockRate <Frequency>—frequency of the clock (default = 1 Hz)

c) Description

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 117 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.37—Clock (clockRate = 20 Hz)

B.6.3.1.2 TimedEvent ::EventSource

a) Definition—TimedEvent generates an Out event at regular intervals. Each event is active for a
specific duration. If the duration is longer than the event interval, the Out event is signaled active at
each interval, but never becomes paused. See Figure B.38.

b) Attributes

delay <Time>—the delay time before the first event will be start (default = 0 s)

duration <Time>—the duration for which each event is active (default = 1 s)

period <Time>—the time interval between the start of each successive event (default = 1 s)

repetition <int>—the number of events to be output; zero indicates that events are generated
indefinitely (default = 0)

c) Description

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.38—TimedEvent (delay = 0.1 s, duration = 0.7 s)

B.6.3.1.3 PulsedEvent ::EventSource

a) Definition—PulsedEvent generates an Out event in the form of a sequence of timing pulses
primarily intended for use in generating Source signals. The sequence consists of a train of N
pulses (where N may be any integer greater than 0). Where N is greater than 1, the pulses may be of

BS IEC 62529:2012

 IEC 62529:2012
 – 118 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

unequal duration and spacing. The pulse train may be either output once or repeated infinitely and
continuously for a periodic timing sequence. See Figure B.39.

b) Attributes

pulses <PulseDefns>—a list defining the shape of the pulses to be created

repetition <int>—the number of times the list of pulses is output; zero indicates that the sequence
is repeated indefinitely (default = 0)

c) Description—Changes in state (e.g., pulse start and stop) are specified from t = 0. Cycling is
facilitated by resetting the time (t) to 0.

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.39—PulsedEvent (pulses = (0.3, 0.7, 1))

B.6.3.2 EventConditioner ::EventFunction

a) Definition—EventConditioner takes a signal or event and outputs the event when the event
conditions occur. EventConditioner allows events to be created and modified, based on the action
of the events and signals.

b) Attributes—Not applicable

c) Description

B.6.3.2.1 EventedEvent ::EventConditioner

a) Definition—EventedEvent conditioner allows events to be combined to produce complex event
streams.

b) Attributes—Not applicable

c) Description—EventedEvent uses multiple inputs to successively enable and disable its own
output. The first input (In(at=1)) is regarded as the enable event; subsequent inputs are regarded as
disable inputs.

The output is enabled (i.e., active) when the input goes active.

If a second input is assigned, the output is disabled (i.e., inactive) when the second input goes
active. The output is then enabled (i.e., active) when the first input goes active again, and so forth.

If multiple inputs are assigned, the behavior is determined by cascading the inputs through multiple
EventedEvent pairs.

Figure B.40 shows an event stream as created by the combination of two clocks, one with a clock
rate of 20 Hz and the other with a clock rate of 15 Hz.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 119 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.40—EventedEvent

B.6.3.2.2 EventCount ::EventConditioner

a) Definition—EventCount filters out input events to only allow every count input event. See
Figure B.41.

b) Attributes

count <int>—identifies the number of events that must occur before a event is generated
 (default = 0)

c) Description—The EventCount counts events and produces an event when count events are
received. The EventCount acts as an event divider in which the divider is dependent on the value
of the count property.

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.41—EventCount (count = 1)

B.6.3.2.3 ProbabilityEvent ::EventConditioner

a) Definition—ProbabilityEvent conditioner generates an event stream based upon the event stream
present at the In event. It will replicate the same timing information, but will randomly suppress In
pulses. Conceptually, the ProbabilityEvent comprises a random number generator and a
comparator. At each event, the comparator compares the random number with the value of the
attribute probability to determine whether to generate an event in the Out event stream. A seed is
included so that the user can reliably reproduce test results. See Figure B.42.

BS IEC 62529:2012

 IEC 62529:2012
 – 120 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

b) Attributes

seed <int>—for pseudorandom probabilities (default = 0)

probability <Ratio>—value for comparison with random number (default = 50%)

c) Description—ProbabilityEvent filters out a proportion of input events. The number it lets through
is determined by the probability event. The bigger the ratio, the more events pass through; the
lower the ratio, the more events are filtered out. ProbabilityEvent filters out complete active
sections regardless of their length.
NOTE—The value of probability is a ratio, which can include values outside of the range of 0% to 100%
(i.e., 0 to 1). The use of values outside of the range of 0% to 100% may have unintended effects upon the
signal.

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.42—ProbabilityEvent

B.6.3.2.4 NotEvent ::EventConditioner

a) Definition—The NotEvent conditioner is active when the In signal is not active. See Figure B.43.

b) Attributes—Not applicable

c) Description

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.43—NotEvent

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 121 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

B.6.3.2.5 Logical ::EventConditioner

a) Definition—Logical event conditioners take multiple input event streams and combine them into a
single event stream.

b) Attributes—Not applicable

c) Description

B.6.3.2.5.1 OrEvent ::Logical

a) Definition—OrEvent is active when any In events are active.

b) Attributes—Not applicable

c) Description—Figure B.44 shows an event stream as created by the combination of two clocks, one
with a clock rate of 15 Hz and the other with a clock rate of 20 Hz.

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.44—OrEvent

B.6.3.2.5.2 XOrEvent ::Logical

a) Definition—XOrEvent is active when an odd number of In events is active.

b) Attributes—Not applicable

c) Description—Figure B.45 shows an event stream as created by the combination of two clocks, one
with a clock rate of 15 Hz and the other with a clock rate of 20 Hz.

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.45—XOrEvent

BS IEC 62529:2012

 IEC 62529:2012
 – 122 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

B.6.3.2.5.3 AndEvent ::Logical

a) Definition—AndEvent is active when all In events are active.

b) Attributes—Not applicable

c) Description—Figure B.46 shows an event stream as created by the combination of two clocks, one
with a clock rate of 15 Hz and the other with a clock rate of 20 Hz.

V

Time
0.0

0.2

0.4

0.6

0.8

1.0

Figure B.46—AndEvent

B.6.4 Sensor ::SignalFunction

a) Definition—Sensors allow signal characteristics to be measured, monitored, and compared. A
Sensor takes an input signal and generates measurement values. Any Sensor can be applied to any
signal; however, the resultant value only has meaning when applied to the correct type of signal.

b) Attributes

measuredVariable <enumMeasuredVariable>—whether the measurement made is of the
dependent or independent variable.

measurement <any attribute type>—read-only, most recent value(s) measured.

measurements <any attribute type)>—read-only, multi dimensional array of measurements made.

samples <int>—number of consecutive measurements to be made; zero indicates no measurement
is to be taken and indicates the Sensor is acting as a monitor only. (default = 1)

count < int >—read-only number of measurements currently made.

gateTime <double>—continuous range of independent variable (Time) over which measurement is
made.

nominal <Physical>—primary value against which any condition is checked; can be either an
absolute value (e.g., 5 V) or a ratio value (e.g., 50%) representing the percentage value between the
low-peak and high-peak values as defined in IEEE Std 181™.

condition <enumCondition>—test made between measurement and nominal value.
 (default = NONE)

GO <int>—read-only variable indicating the number of measurement that passed; if no
measurement is taken, GO is zero.

NOGO <int>—read-only variable indicating the number of measurements that failed; if no
measurement is taken, NOGO is zero.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 123 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

HI <int>—read-only variable indicating the number of measurement with high status; if no
measurement is taken, HI is zero.

LO <int>—read-only variable indicating the number of measurement with low status; if no
measurement is taken, LO is zero.

UL <Physical>—upper limit value against which condition is checked.

LL <Physical>—lower limit value against which condition is checked.

As <SignalFunction>—reference to a Signal representing a signal model of the expected input
signal.

c) Description—Sensors are used to measure physical characteristics of signals, which can then be
read back through measurement(s) values. Sensors are primarily used to take measurements such
as root mean square (rms) or average. The output abstract signal value of the Sensor is primarily
the last measurement(s) or the current monitored value. When the inputs contain multiple channels,
each measurement represents an array, where each array item is a measured value for each channel
and where measurements is the collection of these measured arrays.

The Sensor generates an output value that is held in the attributes measurement and
measurements. By combining various Sensors into a signal model, the compound physical
characteristics of a signal can be defined, e.g., signal-to-noise ratio or average rms value.

A Sensor can take multiple measurements. The number of measurements required is defined by the
attribute samples. A value of zero indicates that the measurement values are never required and the
Sensor is a monitor only. The number of measurements currently taken is held in the read-only
attribute count. In measurement mode, the Out abstract signal of the Sensor is active after all of
the measurement(s) have been taken and has the value of the last measurement made. In Monitor
mode, the Out signal of a Sensor is active while the monitor condition is being met and has the
current monitored value, e.g., rms or average value.

The condition and nominal value can also be used to define the window over which the
measurement is taken. For example, take 10 peak measurements (samples) when the input signal
value is GT (condition) trms 100mV (nominal), as defined by IEEE Std 181.

The attribute gateTime defines the explicit measurement window over which the signal is
monitored or the measurement is taken. If the value of gateTime is zero (0.0), the measurement
window is implementation dependent. If the value of gateTime is negative (<0.0), the measurement
window is the width of the event on the Gate.

If no Gate event is provided, the measurement value is evaluated whenever the input signal
becomes active. When a Gate event is provided, the measurement value is evaluated whenever the
Gate event becomes active, provided the input signal is active. Measurements continue to be taken
until the number in attribute samples have been taken, where each measurement is taken after the
gate time elapses and, if a Gate is allocated, whenever the Gate signal arrives.

Each Sync event restarts the measurement operation from the beginning so that the Sync event
clears the count, (count = 0) and resets the measurement.

A Sensor is operational only while it is taking measurements. When the number of measurements
in the attribute samples has been made, the Sensor calls Change (see Annex C) on the input signal.
A monitor where the attribute samples is zero never implicitly calls Change on the input.

The attribute measuredVariable may contain one of the enumerated values DEPENDENT or
INDEPENDENT.

The attribute condition may contain one of the enumerated values NONE, GT, GE, LE, LT, EQ, or
NE.

The GO, NOGO, HI, and LO variables are set or updated by one of the following (in order of
precedence):

BS IEC 62529:2012

 IEC 62529:2012
 – 124 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

1) As a result of a comparison between a measured value (or series of measured values) and the
specified limits (UL and LL).

2) As a result of an equivalence comparison between a measured value (or series of measured
values) and the nominal value.

3) As a result of an equivalence comparison between a measured value (or series of measured
values) and the value of the appropriate property in the As signal.

NOTE—A sensor will output an Active Event at any time that the value of the monitored signal satisfies the
condition with respect to the nominal value.

B.6.4.1 Counter ::Sensor

a) Definition—For all Sensors, every time a measurement is taken, the attribute count is incremented.
Counter is a Sensor that counts when a measurement would be taken, but does not take any specific
measurement.

b) Attributes—Not applicable

c) Description
NOTE—When measuring the independent variable, the measurement value is the same as for the dependent
variable.

B.6.4.2 Interval ::Sensor

a) Definition—Interval measures the interval between the In/Sync event going active and the Gate
event going active.

b) Attributes—Not applicable

c) Description—The measurement is taken only when the In event is active and Gate event goes
active. The counter is set to 0 every time the In or Sync signal becomes active.

If no Gate is present (i.e., unassigned), the interval is measured between consecutive In events
going active (e.g., period). If the Gate event is present (i.e., allocated), the interval is recorded
when the Gate event becomes active. The measurement is reset when the In event goes active.

The Sync event clears the count (count = 0) and resets the measurement.

The previous revision of this standard used the name TimeInterval for this BSC. The name is
changed to reflect the fact that the measurement may be referenced to any valid independent
variable. This standard also supports the name TimeInterval, but the use of the name is deprecated.
NOTE—The independent measurement value corresponds to the width of the active signal being monitored.
Therefore, if no Gate is assigned, the value is the width of the Active state of the In signal.

B.6.4.3 Instantaneous<type: Physical> ::Sensor

a) Definition—Instantaneous measures the amplitude (i.e., value) of the signal in the dimension
“type” at specified instances in time.

b) Attributes—Not applicable

c) Description—The instantaneous type value of the signal with respect to the independent variable
(e.g., time) is returned. The signal is not sampled over a gate time or Gate. The Gate is used only
to indicate when the Instantaneous measurement should be made.

NOTE—When measuring the independent variable, the measurement value is the value of the independent
variable at the instant that the measurement was taken.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 125 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Figure B.47 shows the instantaneous value of the sum of two signals: a sinusoid with an amplitude
of 1 V and a frequency of 1 Hz and a constant with an amplitude of 1.5 V.

V

Time
0.0

0.5

1.0

1.5

2.0

2.5

Figure B.47—Instantaneous

B.6.4.4 RMS<type: Physical> ::Sensor

a) Definition—RMS measures the root-mean-square (rms) value of a signal.

b) Attributes—Not applicable

c) Description—The default rms gate time should be a whole number of periods of the input signal to
achieve maximum accuracy.
NOTE—When measuring the independent variable, the measurement value is the RMS value of the
independent variable while the measurement was taken.

Figure B.48 shows the rms value of the sum of two signals: a sinusoid with an amplitude 1 V and a
frequency of 1 Hz and a constant with an amplitude of 1.5 V.

V

Time
0.0

0.5

1.0

1.5

2.0

2.5

Figure B.48—RMS

B.6.4.5 Average<type: Physical> ::Sensor

a) Definition—Average is the arithmetic mean of all the signal values during the gate time.

b) Attributes—Not applicable

c) Description—The default average gate time should be a whole number of periods of the input
signal to achieve maximum accuracy.

BS IEC 62529:2012

 IEC 62529:2012
 – 126 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

NOTE—When measuring the independent variable, the measurement value is the average of the independent
variable while the measurement was taken, e.g., average time when measurement was made, or center
frequency of the bandwidth.

Figure B.49 shows the average value of the sum of two signals: a sinusoid with an amplitude of 1 V
and a frequency of 1 Hz and a constant with an amplitude of 1.5 V.

V

Time
0.0

0.5

1.0

1.5

2.0

2.5

Figure B.49—Average

B.6.4.6 PeakToPeak<type: Physical> ::Sensor

a) Definition—PeakToPeak is the difference between the highest value and the lowest value during
the gate time.

b) Attributes—Not applicable

c) Description
NOTE—When measuring the independent variable, the measurement value is the difference in the values of
the independent variable when the (last) maximum and the (first) minimum values of the dependent variable
occurred.

Figure B.50 shows the peak-to-peak value of the sum of two signals: a sinusoid with an amplitude
of 1 V and a frequency of 1 Hz and a constant with an amplitude of 1.5 V.

V

Time
0.0

0.5

1.0

1.5

2.0

2.5

Figure B.50—PeakToPeak

B.6.4.7 Peak<type: Physical> ::Sensor

a) Definition—Peak is the measured value that is furthest away from the mean value.

b) Attributes—Not applicable

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 127 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

c) Description—Peak returns either the PeakNeg or PeakPos, whichever has the largest absolute
value.
NOTE—When measuring the independent variable, the measurement value is the difference in the values of
the independent variable when the (last) peak and the average (center) values of the dependent variable
occurred, e.g., how far the peak is from the center.

Figure B.52 shows the peak value of the sum of two signals: a sinusoid with an amplitude of 1 V
and a frequency of 1 Hz and a constant with an amplitude of 1.5 V.

V

Time
0.0

0.5

1.0

1.5

2.0

2.5

Figure B.51—Peak

B.6.4.8 PeakPos<type: Physical> ::Sensor

a) Definition—PeakPos is the value obtained by subtracting the mean value from the maximum
measurement of the signal during the gate time.

b) Attributes—Not applicable

c) Description
NOTE—When measuring the independent variable, the measurement value is the difference in the values of
the independent variable when the (last) peak and the average (center) values of the dependent variable
occurred, e.g., how far the peak is from the center.

Figure B.52 shows the positive peak value of the sum of two signals: a sinusoid with an amplitude
of 1 V and a frequency of 1 Hz and a constant with an amplitude of 1.5 V.

V

Time
0.0

0.5

1.0

1.5

2.0

2.5

Figure B.52—PeakPos

BS IEC 62529:2012

 IEC 62529:2012
 – 128 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

B.6.4.9 PeakNeg<type: Physical> ::Sensor

a) Definition—PeakNeg measurement is the value obtained by subtracting the mean value from the
minimum measurement of the signal during the gate time.

b) Attributes—Not applicable

c) Description
NOTE—When measuring the independent variable, the measurement value is the difference in the values of
the independent variable when the average (center) and the (last) minimum values of the dependent variable
occurred, e.g., how far the peak negative point is from the center.

Figure B.53 shows the peak negative value of the sum of two signals: a sinusoid with an amplitude
of 1 V and a frequency of 1 Hz and a constant with an amplitude of 1.5 V.

V

Time

-0.5

-1.0

0.0

0.5

1.0

1.5

2.0

2.5

Figure B.53—PeakNeg

B.6.4.10 MaxInstantaneous<type: Physical> ::Sensor

a) Definition—MaxInstantaneous measurement is the maximum measurement of the signal during
the gate time.

b) Attributes—Not applicable

c) Description
NOTE—When measuring the independent variable, the measurement value is the value of the independent
variable at the instant that the maximum peak occurred.

Figure B.54 shows the maximum instantaneous value of the sum of two signals: a sinusoid with an
amplitude of 1 V and a frequency of 1 Hz and a constant with an amplitude of 1.5 V.

V

Time
0.0

0.5

1.0

1.5

2.0

2.5

Figure B.54—MaxInstantaneous

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 129 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

B.6.4.11 MinInstantaneous<type: Physical> ::Sensor

a) Definition—MinInstantaneous measurement is the minimum measurement of the signal during
the gate time.

b) Attributes—Not applicable

c) Description
NOTE—When measuring the independent variable, the measurement value is the value of the independent
variable at the instant that the minimum peak occurred.

Figure B.55 shows the minimum instantaneous value of the sum of two signals: a sinusoid with an
amplitude of 1 V and a frequency of 1 Hz and a constant with an amplitude of 1.5 V.

V

Time
0.0

0.5

1.0

1.5

2.0

2.5

Figure B.55—MinInstantaneous

B.6.4.12 Measure ::Sensor

a) Definition—The Measure BSC measures any control attribute, as opposed to a capability attribute,
of a BSC or TSF, or input signal value of a BSC or TSF.

b) Attributes

attribute <string>—Attribute of the signal that is to be measured, e.g., car_ampl or In.

c) Description—This subclass provides the ability to measure any attribute for any TSF or BSC. The
Signal and properties referenced by As and attribute are used to indicate the measurement
required. The method of measurement is not defined by this standard.

The Measure BSC conceptually compares the actual input signal against all possible allowed
reference signals and selects a resultant reference signal that provides the best match. The returned
values are the corresponding values of the identified resultant reference signal. The best match is
defined as the minimum rms value of the difference between the actual input signal and the
reference signal defined by As.

The attribute property can be represented by one or more of four distinct cases:

1) Not present or empty

2) Control attribute name, e.g., amplitude

3) Input attribute name, e.g., In

4) Non-Control attribute such as value or Capability, e.g., measurement

BS IEC 62529:2012

 IEC 62529:2012
 – 130 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

If no attribute property is defined, the value returned is the minimum rms difference between the
reference source signal and the input signal. This is equivalent to the signal’s standard deviation
error from the reference signal.

When the attribute properties represent a control attribute of a source or condition signal, the
measurement method is chosen so that the measurement is the value of the attribute that provides
the best match.

When attribute properties represent an input signal name, the Out abstract Signal represents the
input signal that, when applied to the Reference signal, best matches the input signal being
observed; this provides an inverse transform function. Any measurements made are made on that
waveform.

For example, when the As signal represents a conditioner, this has the equivalent effect of applying
an inverse conditioner to the input signal. For example, the following two models are equivalent,
but only because of the behavior of Negate, i.e., Inverse(Negate) = Negate:

— <Measure As="Negate" In="…" />

— <Measure In="InverseNegate" /><Negate name="InverseNegate" In="…" />

When attribute properties represent a NonControl attribute name such as a value or Capability,
e.g., measurement, that value or Capability shall be returned based on the actual input signal.

The attribute property, if provided, shall be the name of a property of the reference signal defined
by As.

If the As property is not specified, the attribute property is ignored, and the Measure BSC
measures the value indicated by the nominal value as illustrated by the following examples:

<Measure nominal="5 V" /> implies <Instantaneous nominal="5 V" />
<Measure nominal="trms 10 V" /> implies <RMS nominal="trms 10 V" />
<Measure nominal="av 5 V" /> implies <Average nominal="av 5 V" />
<Measure nominal="pk_pk 5 V" /> implies <PeakToPeak nominal="pk_pk 5 V" />
<Measure nominal="pk 5 V" /> implies <Peak nominal="pk 5 V" />
<Measure nominal="pk_pos 5 V" /> implies <PeakPos nominal="pk_pos 5 V" />
<Measure nominal="pk_neg 5 V" /> implies <PeakNeg nominal="pk_neg 5 V" />
<Measure nominal="inst_max 5 V" /> implies <InstantaneousMax nominal="inst_max 5 V" />
<Measure nominal="inst_min 5 V" /> implies <InstantaneousMin nominal="inst_min 5 V" />

These examples are considered to have an implied As referenced to a corresponding Intrinsic
measurement type, e.g., <Measure nominal="trms 10 V" As="rmsSig"/> (where "rmsSig" is the
name of an RMS sensor). Where As is included in an expression, the signal referenced by the As
defines the specific measurement type, e.g., the expression <Measure nominal="pk_pk 10 V"
As="rmsSig" /> defines a measurement to calculate the peak-to-peak value of the rmsSig
measurement. This facility is intended for use with multiple measurements and is best described by
using an example. Consider the following:
<RMS name="rmsSig" samples="5">
<Measure nominal="pk_pk 10 V" As="rmsSig" samples="3">

This multiple measurement provides a set of three results (samples="3") in which the peak-to-peak
value of a set of five rms measurements (<RMS name="rmsSig" samples="5">) is calculated.

The As property is used in a different way in an intrinsic measurement (such as RMS) from in a
generic measurement (such as Measure). In intrinsic measurements, it is used to identify the type
of signal being measured, whereas in generic measurements, the reference signal is used as part of
the measurement of the attribute or signal with the least rms error deviation. The following
examples show the effect of including an As property:

<Measure nominal="trms 10 mV" .../> measures the trms of the signal.
<Measure nominal="trms 10 mV" As="SquareWaveSig" .../> measures the trms of the deviation

of the input signal from a signal named SquareWaveSig.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 131 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

<RMS As="SquareWaveSig" .../> measures the trms of an input signal that is expected to be the
same as a signal named SquareWaveSig.

NOTE—SquareWaveSig is defining a square wave signal and takes the form <SquareWave
name="SquareWaveSig" ampl="trms 10 mV" .../>.

The following examples show the use of As in several measurements with different qualifiers. In
these examples, the As refers to the type of signal expected. In practice, the name of a signal would
be used that described a signal of that type:

<Measure As="Sinusoid" attribute="amplitude" /> calculates the amplitude of a sinusoidal wave
with the least rms error from the input waveform.

<Measure As="Sinusoid" /> provides the “error aberration” between the input waveform and the
defined As signal.

<Measure As="SQUARE_WAVE" nominal="trms"/> returns the value of the rms error.
<Measure As="SQUARE_WAVE" nominal="inst"/> returns the instantaneous error value.
<Measure As="SQUARE_WAVE" nominal=“inst” samples="1000"/> returns an array of

instantaneous error values. If the error is subtracted from the input, the result is the
reference waveform.

<Measure As="SQUARE_WAVE" nominal="av"/> returns the average error value.
<Measure As="SQUARE_WAVE" nominal="pk"/> returns the peak error value.
<Measure As="SQUARE_WAVE" nominal="pk_pk"/> returns the peak-to-peak error value.

Where the reference signal (defined by As) utilizes ranges to constrain the allowed value of its
attributes, the generic Measure will consider only results that are within the ranges of possible
signals associated with the constrained attributes, and only these signals will be compared in
determining the least rms value in arriving at a measurement value.

B.6.4.13 Decode ::Sensor

a) Definition—Decode converts a stream of bits represented by events into data information via bit
values.

Active, Digital H → 1

Inactive, Digital L → 0

The TriSate/Digital Z is not measured

b) Attributes

datatype <string>—The measurement’s resultant variant’s datatype. (default = 0)

encoding <string>—Character set used. This attribute allows alternative character set mappings
and code pages to be applied. (default = UTF-8)

c) Description—Decode measures the digital stream and converts it via a stream of bits into a
required (type). Each measurement is collected in the measurements property and the last value
read is available through the measurement attribute. The UL, LL, or nominal value can be used
where the physical value will be initially converted to measurement type prior to any comparison.

If the default encoding (UTF-8) is selected and the data are type string (BSTR), the characters will
be represented as UNICODE across the runtime call and will be dependent on the encoding of the
XML document for XML static models.

B.6.5 Control ::SignalFunction

a) Definition—Control is a class of signal that modifies the signal model depending on the Select
value. The Control inputs (In) represent the various signal alternatives available, which are
selected in turn as the selector changes; and, if no Gate is provided, an output corresponding to the

BS IEC 62529:2012

 IEC 62529:2012
 – 132 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

selected input is produced. If a Gate is provided, the output is produced only when the Gate event
becomes Active.
NOTE—The multi-input behavior differs from the default described in B.3.2.

b) Attributes—Not applicable

c) Description

B.6.5.1 SelectIf ::Control

a) Definition—SelectIf converts a single channel event stream into a physical signal.

b) Attributes

Selector <Signal>—the digital event stream.

c) Description—SelectIf cycles through its In signals starting from In(1) on each subsequent change
of the selector event state between Low and High. If the selector enters the X state (tri-state), the
output is gated off. If the selector enters the Z state (no signal), the previous output continues. Once
started, the initial state of selector is considered Inactive, and the initial signal selected for output is
In(1). Prior to starting, the output is considered to be in the ZRep (No Signal) state.

As an example, when there are two Inputs, the selector event state Inactive corresponds to In(1),
and Active corresponds to In(2).

B.6.5.2 SelectCase ::Control

a) Definition—SelectCase converts a multichannel digital stream into a physical signal.

b) Attributes

Selector <Signal>—the digital event stream.

mask <int>—selector channel mask; identifies which channels of the selector shall be used to
select the input. The value can be expressed as a decimal number (e.g., 13) or a hexadecimal
number (e.g., 0xC) to identify the binary pattern , e.g., “1101” selects channels 1, 3 & 4. A value
of 0 implies all channels. (default = –1)

c) Description—SelectCase selects the Input that corresponds to the masked Selector value
(Active/Inactive state). The mask is converted into a bit mask and applied (as an And function)
over the Selector digital stream, where channel 1 is LSB. The resulting pattern is converted to a
one based index to select the corresponding input signal.

When the resultant Selector value exceeds the number of inputs, a Z state (tri-state) output signal is
provided. When the selector channel is Active, it is considered '1' and Inactive is considered '0'.

B.6.5.3 Encode ::Control

a) Definition—Encode provides a basic digital signal as a stream of bits derived from the data
information, where the bit value 0 is represented by the event state InActive or digital L and bit
value 1 is represented by the event state Active or digital H. The tri-state/Digital Z/gated Off are all
identical and cannot generally be deduced from the data information.

b) Attributes

data <any>—The information to be streamed, or the URI identifying location of information. The
type of the <any> defines the datatype. When using XML descriptions, the attribute datatype shall
be used to define a valid datatype.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 133 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

width <int>—The number of output channels. Zero indicates that the number of outputs is the
minimum required to represents a complete data symbol. (default = 0)

repetition <int>—the number of times the data is output. Zero indicates that the sequence is
repeated indefinitely. (default = 1)

datatype <string>—Used in the XML to define the base type of the data. (default = "")

encoding <string>—Character set used. This attribute allows alternative character set mappings
and code pages to be applied. (default = UTF-8)

c) Description—Encode allows any data representation to be packaged and streamed as a sequence of
parallel bits. It turns messages such as “Hello World” into a bit stream represented by events where
the event state represents the individual bit state. Since the width attribute does not necessarily need
to match the data information type, the data are converted into a stream of bits and each bit
assigned to consecutive channels so that channel 1 is the LSB and the channel number
corresponding to the channelWidth is the MSB. In this way, the following are equivalent:

data="11010100" datatype="xs:boolean"
data="HHLHLHLL" type="digitalString"
data="C4" type="hex"
data="212" type="byte"
data="Ä" type="char"
encoding="Windows Western"

Table B.7 shows the different bit streams that the same block of data provides depending on the
values selected for the width and repetition attributes.

Table B.7—Bit streams for the same data with different attributes

Attributes Channel Bit stream
data = "11010100"
width = "4"
repetition = "2"

1 (LSB) 0101 →
2 1010 →
3 0101 →
4 (MSB) 0101 →

data = "11010100"
width = "8"
repetition = "2"

1 (LSB) 00 →
2 00 →
3 11 →
4 00 →
5 11 →
6 00 →
7 11 →
8 (MSB) 11 →

data = "11010100"
width = "2"

1 (LSB) 0111 →
2 (MSB) 0001 →

data = "11010100"
width = 3
repetition = "3"

1 (LSB) 00101110 →
2 01110001 →
3 (MSB) 10001011 →

data = "11010100"
width = "3"

1 (LSB) Z10 →
2 001 →
3 (MSB) 011 →

Each pattern is delivered when In goes Active (1,H). If the input becomes tri-state (Gated Off), the
output is Gated off.

BS IEC 62529:2012

 IEC 62529:2012
 – 134 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Digital signals are unique in that their values do not take on physical values; rather, they take on
event states that can be converted into physical values.

B.6.5.4 Channels ::Control

a) Definition—Channels combines multiple signals into a single multiple channel signal.

b) Attribute

channelNames <pinString>—list of channel names associated with the channels.

NOTE 1— The channel name follows the same syntax as UUT pin names, but is chosen by the user for
convenience and is not necessarily related to real UUT pin names, e.g., names may be chosen to indicate
function such as “Reset” or “Enable.”

NOTE 2— If a channel name is selected that is the same as a UUT pin name, the UUT pin name takes
precedence, and the channel then refers to that pin name.

c) Description—Channels combines each channel of its input signal into a linear set of channels,
optionally identified by the attribute channels to form a multiple channel output. All signal phase
information is maintained.

Gating off turns all output channels to the Z state. Prior to the first Sync, there is no value on any
channel (Null). Subsequent Syncs have no effect.

B.6.6 Digital ::SignalFunction

a) Definition—Digital is a class of signal that represents one of two values (which are sometimes
called by names such as true and false, low and high, 1 and 0, etc.) and which can be gated off into
a tri-state. A digital signal is a collection of one or more event signals, which can be converted into
a range of physical signals.

b) Attributes—Not applicable

c) Description—Digital may have a number of representations. This standard defines two: digital
signal and control signal. A digital signal is an abstract representation of the values that are
encountered in engineering design; these values are defined more precisely in B.6.5.1 and B.6.5.2.
A control signal is an analog signal whose value varies between low and high thresholds. Control
signals are useful for translating to various logic families.

Digital signals are unique in that their values do not take on physical values; rather, they take on
enumeration values that represent physical values.

B.6.6.1 SerialDigital<type: Physical> ::Digital

a) Definition—SerialDigital provides a (digital) control signal. These signals may take the form of a
low signal, a high signal, or no signal (i.e., high impedance). They are defined by the characters L,
H, Z, and X (“do not care”) in a character string.

b) Attributes

data <digitalString>—string containing characters H, L, Z, which identify digital state, or X as a
“do not care” mask.

period <Time>—internal digital clock rate.

logic_H_value <Physical>—analog logic high (or logic 1).

logic_L_value <Physical>—analog logic low (or logic 0).

pulseClass <enumPulseClass>—pulse class type. (default = NRZ)

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 135 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

c) Description—The characters represent the digital signals as follows:

H logic high (or logic 1)

1 logic high (or logic 1)

L logic low (or logic 0)

0 logic low (or logic 0)

Z high impedance (absence of logic signal)

X unknown or indeterminate logic level

, delimiter between blocks

; delimiter between blocks

The digitalString comprises a list of digital characters separated with delimiters. Each comma ',' or
semicolon ';' is treated as a delimiter between blocks.

The digitalString may also include whitespace characters (namely, space, new-line, carriage-return,
line-feed, and tab). These whitespace characters are available for formatting purposes to make the
data more readable. They are ignored when the digitalString is processed.

Where an external clock is provided at In, this becomes the clock used as the digital clock rate. The
internal clock defined by the period attribute is not used.

The attribute pulseClass may take one of the following pulse class types:

NRZ nonreturn to zero

RZ return to zero

R1 return to one

RZPulse Pulse return to zero

BiPLevel Bi-phase Level

BiPMark Bi-phase Mark pulse 0

BiPSpace Bi-phase Space pulse 1

Figure B.56 illustrates the various pulse class types that may be used with the pulseClass attribute.
At the top of the diagram is the digital data stream that is conveyed by the signal in each pulse
class, i.e., the pattern "HLHHLLHL" or "10110010".

BS IEC 62529:2012

 IEC 62529:2012
 – 136 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

a

a

a

a

a

a

a

0

0

0

0

0

0

0

Digital data stream

NRZ

RZ

BiPLevel

BiPSpace

BiPMark

RZPulse

clock

(a)

(b)

(e)

(g)

(f)

(d)

1(H) 1(H) 1(H) 1(H) 0(L)0(L)0(L)0(L)

a

0
R1(c)

Figure B.56—Pulse class types used with the attribute pulseClass

The values on the left of the diagram indicate the amplitude that the physical signal takes while
transmitting the data. In the simplest case, NRZ or nonreturn to zero, the nonzero amplitude
represents a logic one or High, and the zero amplitude represents a logic 0 or Low. Other pulse
classes involve amplitude transitions or have both positive.

Figure B.57 shows a serial digital sequence where data = "HLLHHLHZZHL" is sent at a digital
clock rate of 20 Hz. The sequence is synchronized and repeated periodically.

Si
gn

al

0

1

Time
Figure B.57—SerialDigital

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 137 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

B.6.6.2 ParallelDigital<type: Physical> ::Digital

a) Definition—ParallelDigital provides parallel streams of [digital] control signals. These signals
may take the form of a low signal, a high signal, or no signal (i.e., high impedance). They are
represented by the characters L, H, Z, and X in an array of character strings. The output is
multichanneled, and the number of channels is defined by the width of digital statements.

b) Attributes

data <digitalString>—each string String containing characters H, L, Z, which identify digital state,
or X as a “do not care” mask.

period <Time>—internal digital clock rate.

logic_H_value <Physical>—analog logic high (or logic 1).

logic_L_value <Physical>—analog logic low (or logic 0).

pulseClass <enumPulseClass>—pulse class type. (default = NRZ)

c) Description—The characters represent the digital signals as follows:

H logic high (or logic 1)

1 logic high (or logic 1)

L logic low (or logic 0)

0 logic low (or logic 0)

Z high impedance (absence of logic signal)

X unknown or indeterminate logic level

, delimiter between blocks

; delimiter between blocks

The digitalString comprises a list of digital characters separated with delimiters. Each comma ',' or
semicolon ';' is treated as a delimiter between blocks. Each block represents a separate parallel step.

The digitalString may also include whitespace characters (namely, space, new-line, carriage-return,
line-feed, and tab). These whitespace characters are available for formatting purposes to make the
data more readable. They are ignored when the digitalString is processed.

Where an external clock is provided at In, this becomes the clock used as the digital clock rate. The
period attribute is not used.

The attribute pulseClass may take one of the following pulse class types:

NRZ nonreturn to zero

RZ return to zero

R1 return to one

RZPulse Pulse return to zero

BiPLevel Bi-phase Level

BiPMark Bi-phase Mark pulse 0

BiPSpace Bi-phase Space pulse 1

See B.6.6.1 for a description of the pulse class types.

Figure B.58 shows a parallel digital sequence where data = "[HLHLZH, LHLHHL, LLHHLZ]" is
sent with a period of 30 µs.

BS IEC 62529:2012

 IEC 62529:2012
 – 138 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Si
gn

al
s

0

1

0

1

0

1

0

1

0

1

0

1

Time
Figure B.58—ParallelDigital

B.6.7 Connection ::SignalFunction

a) Definition—Connection is the base class that collects signals into multiple channels.

b) Attributes

channelWidth <int>—maximum number of channels to be connected. (default = 0, unbounded)

c) Description—Connections collect signal channels and allow them to be mapped onto real pins
such as UUT pins. Connection subclasses are used to attach real pins names.

Unless otherwise stated, pin attributes may contain multiple pin names. This technique is analogous
to using multiple Connections, each with a single pin name.

In the following connection definitions, the attribute value <pinString> is defined as follows:

A pinString may comprise one or more pin names or an expression that provides one or more pin
names.

A pin name shall be a contiguous string of characters that may include alphanumeric, hyphen, and
underscore characters. Pin names may not include a comma, semicolon, or whitespace character
(namely, space, new-line, carriage-return, line-feed, and tab).

Multiple pin names are delimited by one or more whitespace, comma, or semicolon characters.
NOTE—For the DigitalBus pins attribute, a comma or semicolon is used as a channel delimiter (see
B.6.7.14).

B.6.7.1 TwoWire ::Connection

a) Definition—TwoWire is a two-wire connection in which the hi terminal represents the hot, or live,
side of a circuit and the lo terminal represents the cold, or return, side of the circuit.

b) Attributes

channelWidth = 1

hi <pinString>

lo <pinString>

c) Description

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 139 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

B.6.7.2 TwoWireComp ::Connection

a) Definition—TwoWireComp is a two-wire connection in which the true terminal represents the true
signal for a differential digital signal and the comp terminal represents the complement signal for
the differential digital signal.

b) Attributes

channelWidth = 1

true <pinString>

comp <pinString>

c) Description

B.6.7.3 ThreeWireComp ::Connection

a) Definition—ThreeWireComp is a three-wire connection in which the true terminal represents the
true signal for a differential digital signal, the comp terminal represents the complement signal for
the differential digital signal, and the lo terminal represents a ground, or screen, connection.

b) Attributes

channelWidth = 1

true <pinString>

comp <pinString>

lo<pinString>

c) Description

B.6.7.4 SinglePhase ::Connection

a) Definition—SinglePhase is a two-wire connection in which terminal a represents the live
connection to one phase of a one-phase (or more) circuit and the terminal n represents the neutral
connection to the circuit.

b) Attributes

channelWidth = 1

a <pinString>

n <pinString>

c) Description

B.6.7.5 TwoPhase ::Connection

a) Definition—TwoPhase is a three-wire connection in which terminal a represents the live
connection to one phase of a two-phase (or more) circuit, terminal b represents the live connection
to the second phase of a two-phase (or more) circuit, and terminal n represents the neutral
connection to the circuit.

b) Attributes

channelWidth = 2

a <pinString>

BS IEC 62529:2012

 IEC 62529:2012
 – 140 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

b <pinString>

n <pinString>

c) Description

B.6.7.6 ThreePhaseDelta ::Connection

a) Definition—ThreePhaseDelta is a three-wire connection in which terminal a represents the live
connection to one phase of a three-phase circuit, terminal b represents the live connection to the
second phase of a three-phase circuit, and terminal c represents the live connection to the third
phase of a three-phase circuit. There is no neutral connection to the circuit.

b) Attributes

channelWidth = 3

a <pinString>

b <pinString>

c <pinString>

c) Description

B.6.7.7 ThreePhaseWye ::Connection

a) Definition—ThreePhaseWye is a four-wire connection in which terminal a represents the live
connection to one phase of a three-phase circuit, terminal b represents the live connection to the
second phase of a three-phase circuit, terminal c represents the live connection to the third phase of
a three-phase circuit, and terminal n represents the neutral connection to the circuit.

b) Attributes

channelWidth = 3

a <pinString>

b <pinString>

c <pinString>

n <pinString>

c) Description

B.6.7.8 ThreePhaseSynchro ::Connection

a) Definition—ThreePhaseSyncro is a three-wire connection for use with the three-stator outputs of a
Synchro.

b) Attributes

channelWidth = 3

x <pinString>

y <pinString>

z <pinString>

c) Description—Terminals x, y, and z represent the stator terminals S1, S2, and S3. The stator is
connected in a delta format, and the output voltages are developed between x and y, y and z, and x
and z.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 141 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

B.6.7.9 FourWireResolver ::Connection

a) Definition—FourWireResolver is a four-wire connection for use with the four-stator terminals of
a Resolver.

b) Attributes

channelWidth = 2

s1 <pinString>

s2 <pinString>

s3 <pinString>

s4 <pinString>

c) Description—Terminals s1 and s3 are used for the sine output, and terminals s2 and s4 are used for
the cosine output.

B.6.7.10 SynchroResolver ::Connection

a) Definition—SynchroResolver consists of up to four connections for use with the rotor terminals of
a Synchro or Resolver.

b) Attributes

channelWidth = 1 or 2 (default = 2)

r1 <pinString>

r2 <pinString>

r3 <pinString>

r4 <pinString>

c) Description—In many applications, only two terminals (i.e., r1 and r2) are required for the R1 and
R2 excitation connections of a Synchro or a Resolver unit.

B.6.7.11 Series ::Connection

a) Definition—A Series connection via is used when only one connection is required at the test
subject.

b) Attributes

channelWidth = 1

via <pinString>

c) Description—This connection is used for series signals (such as the application or measurement of
current) where only one terminal is connected to the test subject.

B.6.7.12 FourWire ::Connection

a) Definition—FourWire is a four-wire connection in which the hi terminal represents the hot, or
live, side of a circuit; the lo terminal represents the cold, or return, side of the circuit; hiRef
represents a terminal for a reference associated with the hi terminal; and the loRef represents a
terminal for a reference associated with the lo terminal.

BS IEC 62529:2012

 IEC 62529:2012
 – 142 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

b) Attributes

channelWidth = 1

hi <pinString>

lo <pinString>

hiRef <pinString>

loRef <pinString>

c) Description—This connector is intended for use where the UUT requires four pins for what is
effectively a two-wire type of connection, e.g., the UUT has power connections with sense
terminals that must be identified separately from the force terminals.

B.6.7.13 NonElectrical ::Connection

a) Definition—NonElectrical is a connection for use with nonelectrical signals (such as the
connection of fluids and gasses).

b) Attributes

channelWidth = 1

to <pinString>

from <pinString>

c) Description—The terminals to and from are both used where a fluid flows to and from the test
subject. Either terminal may be used on its own if the fluid passes only one way (to or from the test
subject).

B.6.7.14 DigitalBus ::Connection

a) Definition—DigitalBus is a connection comprising one or more terminals. One terminal is used for
each simultaneous (i.e., parallel) digital data channel.

b) Attributes

pins <pinString>—List of pin names associated with the digital channels.

c) Description—The number of parallel connections is specified by the <channelWidth> of the
signal. Each pin name is associated with its corresponding channel. Ground or signal return
connections may be added after the active channel pins. The last ground pin will be used to return
any remaining channels without a specified signal return pin. If no return pin is specified, a
common return is assumed.

Each channel is delimited by a single comma or semicolon character, e.g., for a two channel system
(channelWidth = 2), the pinString “PL1-1, PL1-2 SK1-2, GND” indicates that channel 1 uses
connection pin PL1-1, channel 2 uses connection pins PL1-1 and SK1-2, and the common return
pin is GND.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 143 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex C

(normative)

Dynamic signal descriptions

C.1 Introduction

This annex describes the dynamic interactions of basic signal components (BSCs) in signal models and test
signal framework (TSF) components and what happens when they are programmed in any native carrier
language through their control interface.

Signal descriptions can use both static and dynamic signal definitions. This standard defines all actions
available through the control interface, using the interface definition language (IDL), and provides actions
that are deterministic. In order to provide a consistency to dynamic signal descriptions, the following
concepts are introduced:

a) A signal model defines a signal.

b) Signal models have a single state. The state attributed to the signal model is always the state of its
output Signal.

c) Signal models synchronized by different events represent signals that exist in different time frames.

To allow future implementers the maximum scope, the interactions are described only with reference
to Signal state changes (i.e., events) and method calls (i.e., actions). Any carrier program attempting to use
Signal state changes to synchronize will be in-deterministic because the actual software notification
of the Signal state change is guaranteed to happen only after the event.

In order that multiple BSCs can describe a single signal without ambiguity, this standard defines the
interactions between the SignalFunction and Signal objects. A signal model consisting of more than one
component describes one signal, e.g., a damped sinusoid signal has sinusoidal and “exponential decay”
components, but is only one signal. Because the damped sinusoid example defines one signal, the notion of
having one of its components running without the other cannot happen. The problem is that, in a dynamic
signal model, the user can start either component, that is, start the sinusoidal component or the exponential
decay component. Rather than attempt to forbid certain control actions, this standard defines its dynamic
behavior so that all cases are semantically described. This standard specifies that starting any component
within a signal model will start the whole signal model and, therefore, enable the signal.

Starting different components may lead to transient differences even though the stable signals will be the
same.

This standard describes dynamic behavior by describing what happens to individual components when
events and actions happen. This approach provides a very low level view of the components’ interaction,
but does not provide an overall description; such big-picture descriptions have to be inferred on a case-by-
case basis. This approach allows the standard to be used to describe more complex and varied scenarios
without considering each action sequence in detail. On the down side, there may be many scenarios that are
undesirable or meaningless to a test system, e.g., having a signal that goes nowhere. In these cases, this
standard does not ensure such signals have a useful purpose, but does at least provide behavior that is
deterministic.

Unlike static signals, dynamic signal descriptions can have their signal model definitions changed, e.g.,
changing an attribute value or being connected to another signal model. These changes are buffered up and

BS IEC 62529:2012

 IEC 62529:2012
 – 144 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

become the signal’s next settings; the signal holds the next set of signal characteristic until the signal is
requested to change. At that point, all the changes for the pending settings are applied together, and the
signal has its new characteristics. Any subsequent changes become the next settings, and so on.

C.2 Basic classes

C.2.1 ResourceManager

ResourceManagers are resource managers that are used to create either single signal objects or signal
models, using the Require method, for use within a native carrier program.

The ResourceManager is the only directly createable class object specified by this standard. The minimum
number of ResourceManagers that a valid system can have is one.

The use of different ResourceManagers within a native carrier program allows concurrent support of
different test environments, e.g., an intermix of ResourceManagers that represent simulation environment
and automatic test equipment (ATE) subsystem environments all within the same test program.

C.2.1.1 Runtime method

Require (SignalDescriptor [,UniqueId])—The Require method provides the signal components or signal
component models.

a) SignalDescriptor is a string with one of the following:

1) The name of a signal class, optionally followed by a comma separated attribute value pair

2) An extensible markup language (XML) static signal model description as prescribed in
Annex I

3) An XML element derived from the SignalFunctionType defined in Annex I

4) A URL that references a static signal model description as prescribed in Annex I

b) UniqueId is an optional VARIANT value providing a unique signal identifier that may be used
internally by the underlying implementation.

C.2.1.2 Comments

The SignalDescriptor is text string that is either a name corresponding to the BSC type or an XML
description conforming to Annex I for XML signal schema description. Examples of valid signal
description for a constant voltage are as follows:

 "Constant"

 "Constant(Voltage)"

 "Constant(Voltage, Time)"

 "<Signal out='dc'> <Constant name='dc' amplitude='2V+5%'/></Signal>"

 "<Constant name='dc' amplitude='2V+5%'/>"

 "Constant amplitude 2V+5%"

 "file://lookhere.xml"

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 145 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Example 1—signal class name

Set myAM = Std.Require("AM_SIGNAL")
 myAM.car_ampl = "100kHz"
 myAM.car_freq = "1V"
 myAM.mod_freq = "660Hz"
 myAM.mod_ampl = "0.5V"

Example 2—XML static signal model description

Set myAM = Std.Require(
 "<Signal out=amSig>" &
 "<AM_SIGNAL name=amSig" &
 "car_ampl='1V' car_freq='100kHz' mod_freq='660Hz' mod_ampl='0.5V'/>"
 & "</Signal>")

The UniqueId is reserved for implementations, e.g., used by a test procedure language (TPL) processor to
help its runtime system determine which resource is best to supply the signal. It allows helper information
to be held in a common way.

C.2.2 Signal

The Signal class provides a control interface for all signals and events described by BSCs. This control
interface is used by BSCs to describe signal models and to control input signals. Because TSFs are built up
using BSCs, the same rules apply equally to TSFs.

C.2.2.1 Runtime properties

state—The state property reflects the state of the signal or event being described by the associated signal
model. The state property of the Signal interface is a read-only, bindable, and “edit request” property and
cannot be changed directly through the Signal’s control interface. The values that the state property can
take are as follows:

Stopped—The Stopped state indicates that the signal is in a generalized reset condition, i.e., no
signal activity is present. Thus a Stopped Signal can represent either no signal at all or a signal
from an allocated resource that has not been activated or triggered. All Signals initiate to the
Stopped state.

Paused—The Paused signal is waiting to be triggered into the Running state by an external event.
A Paused signal does not yet exist, but all the necessary resources have been acquired and prepared
and are awaiting the final on or go event.

Running—The Running signal is active and exists as a signal or gated event stream. A Running
Signal is measurable and available for use.

Channels—Provides a collection of individual channels, where each channel supports the Signal interface.

C.2.2.2 Runtime methods

Stop([timeout=0])—The Stop method resets, disconnects, or turns off any Paused or Running Signal and
thereby frees any associated signal resources. Following a successful Stop, the state of the Signal will
become Stopped.

BS IEC 62529:2012

 IEC 62529:2012
 – 146 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Run([timeout=0])—The Run method sets up, starts, connects, or turns on a Stopped signal. Following a
successful Run, the state of the Signal is Paused and subsequently becomes Running. The Run method on
an Running or Paused Signal will reinitialize the Signal to its value at time t = 0.

Change([timeout=0])—The Change method initiates the Signal to its next setting. If no further settings
are pending, Change() indicates that the current Signal is finished and no longer needed. This knowledge
allows the source BSCs to change the signal to the next available setup. If no further signal conditions are
available, Change() resets the signal to the Stopped state.

The timeout value indicates the minimum time in milliseconds that the method call will wait for the Signal
to enter the expected Signal state. If the signal enters the expected state, the method returns the IDL
HRESULT success code S_OK (0x00000000L). If the signal does not enter the expected state, the method
returns the IDL HRESULT success code S_FALSE (0x00000001L).

A method called with a timeout value of zero is asynchronous.

NOTE—A timeout shall not be included in a signal definition. Waiting for a UUT response is part of test definition and
waiting for an instrument response is a system function.

C.2.2.3 Comments

The Signal class is provided to define interactions between different BSCs and between BSCs and test
programs. The way that BSCs use and create Signals is local to the implementation and defined by the
common interfaces. These interactions are characterized in two ways:

a) Notification of changes through Signal state changes

b) Requests for Signals to alter through Signal method calls

An event represents information at a discrete point in time. It has no time duration and as such represents a
time singularity. An event is when a Signal’s state changes.

A signal is based on an event and has characteristics that are additional to any event information. A signal
represents a real physical entity, e.g., the current flowing through a wire. Any signal can be used as an
event to initiate some activity.

It is important not to confuse the terms Running and active. A Signal or an Event may be active only while
it is Running. This is best illustrated with examples. Consider a Clock BSC with its output connected to the
input of a NotEvent BSC. While the BSCs are Running, the output of the Clock is alternately active and
inactive, while the output of the NotEvent is alternately inactive and active, i.e., one is active while the
other is inactive (see Figure C.1).

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 147 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Figure C.1—Illustration of Events changing between active and inactive

Consider a simple Signal producing a sinusoidal output, which is being gated on and off via its Gate input.
The Signal will be Running and active continuously, but at the output there will be a Signal or no Signal
according to the state of the Gate input (see Figure C.2).

Figure C.2—Effect of a Gate Event on a Signal

BS IEC 62529:2012

 IEC 62529:2012
 – 148 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

In general, a Signal is regarded as active when it enters the Running state, while an Event is active when it
is Running and its operational state is active.

The Sync reference considers the event occurrence when the Sync Signal becomes active.

The Gate reference considers the event gated active while the Gate Signal is in the active state.

The state property of a Signal may reflect the actual state of the physical event such as Stopped, Paused, or
Running. Provided that both the source and all sinks of the signal can be implemented in hardware, then
the state property of the Signal does not have to reflect the physical Paused and Running states.

The Signal interface also provides an enumeration interface so that a native code program can enumerate
through all of a Signal’s allocated BSCs.

Example:

For Each sf in SinusoidWave.Out
 'sf is an allocated Basic Signal Component
Next

The Signal ‘Channels’ property provides an enumeration interface so that a native code program can
enumerate through all of a Signal’s individual channels. The channels property is empty if the signal is not
multichannel.

Example:

For Each s in SinusoidWave.Out.Channels
 's is a Signal representing a single channel
 's.Count=0
Next

Individual channels signals can be named provided they have been identified by use of the Channels BSC,
e.g., threePhase.Item(“a”).

C.2.2.4 State diagram

Methods and states are interdependent. Calling a method indicates an intention for a state to change. See
Figure C.3.

Stopped

Paused

Running

Stop()

Stop()

Stop()

Run()

Run()
Change() Run()

Change()

Change()

start event

Figure C.3—Signal state changes

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 149 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

For example, when calling the Run method, the state of a Signal may never become Running if the Sync
event never becomes active. The reason is that Run() tells the BSC associated with a Signal that a Running
signal state is required. This knowledge in turn causes the BSC to call Run() on all its inputs and then on
all its input events and returns with the Signal in the Paused or Running state. When the method returns
with the Signal in the Paused state, the BSC is waiting for some internal event to become active. When this
expected event becomes active, the signal becomes Running. Run() does not cause a Signal state to
become Running, but it indicates that a Running signal is required.

All methods are asynchronous. A native test program, therefore, needs to monitor the Signal state or use a
timeout value in the method call to determine when the signal has become Running.

C.2.3 SignalFunctions

The SignalFunction operation is controlled both through its Out Signal interface methods and the state of
any In, Gate, and Sync Signals and provides a two-way control mechanism.

The general behavior of a BSC is that the Out Signal state reflects the In Signal reference state.

 When the input Signal state is Stopped, the output Signal state is Stopped.

 When the input Signal state is Paused, the output Signal state is Paused.

 When the input Signal state is Running, the output Signal state is either Running or, if a Sync
reference is assigned, Paused awaiting a Sync event to become active.

All BSCs have two input event references called Sync and Gate. These events affect the behavior of a BSC
as follows:

 Sync unassigned—restarted when the In Signal enters the Running state.

 Sync assigned—restarted when the Sync event becomes active while an In Signal is Running.

 Gate unassigned—is operational while the In Signal is in the Running state.

 Gate assigned—is operational while the Gate and In event is in the Running state so that the
signal’s characteristics are available only while the Gate event is gated active.

When a BSC or signal restarts, it repeats its operation from time zero.

Any of the method calls, Stop(), Change(), or Run(), made on the Out Signal interface of the BSC will
affect the BSC behavior. The BSC will in turn make similar calls on its input and event Signal references
as follows:

Stop—The Out Signal proceeds to the Stopped state, and the BSC calls the Stop method of all of
its assigned In, Gate, and Sync Signals.

Run—The Out Signal proceeds to the Paused state, and the BSC calls Run() on all its assigned In
Signals and then calls Run() on any assigned Gate and Sync Signals. This sequence allows any
signal model to start by calling the Run method to act upon any on the signal interfaces.

Change—This method causes the Signal’s associated BSC to go on to its next internal function
settings and calls Change() on all its input Signals.

BS IEC 62529:2012

 IEC 62529:2012
 – 150 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

A BSC may have pending settings that represent different signal characteristics. These characteristics may
have been changes to signal attributes or built-in Control changes. Calling the Change or Run method will
cause the BSC to change its signal characteristics.

C.2.3.1 Signal state diagram

As well as the methods affecting the state of a signal, the In and Sync Signal of a SignalFunction may
also change the state of the BSC’s Out Signal. In Figure C.4, the => symbol should be read as “enters the
state,” e.g., In => Paused is read as “In enters the state Paused.”

Stopped

Paused

Running

In=>Stopped

In=>Stopped

In=>Paused

In=>Paused

In==Running
Sync=>Active

Figure C.4—In (Event) state changes

If a Sync event is unassigned and the BSC’s Signal becomes Paused, then the Signal represents a
continuous signal, and the Signal immediately becomes Running. If a Sync event is assigned, it represents
a synchronized signal, and the Signal becomes Paused and is then driven Running when the Sync event
becomes active.

When a Signal proceeds to a state, it enters each state in turn, e.g., Running -> Paused -> Stopped.

C.2.3.2 Comments

The behavior of all BSCs is governed by the following rules:

 When any BSC is not directly referenced, i.e., nobody is using the BSC, it will be immediately
destroyed.

 When a BSC is destroyed and prior to its destruction, any Out Signals of the BSCs have the Stop
method called, and the BSC waits until they have all become Stopped. In Signals of the BSCs are
unassigned, and the Change method is called if all BSCs have finished with that Signal.

 When all assigned BSCs have finished with an In Signal, the Change method of the In Signal is
called.

 When the output Signal is Running and a BSCs properties are altered, these properties represent its
next signal settings that will take effect when the Out Signal Change method is next called.

 If the Sync reference is unassigned, the Out Signal shall enter Running from Paused immediately.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 151 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 If the Sync reference is assigned, then the Out Signal shall enter Running from Paused when the
Sync event becomes active. If the Sync event becomes active again while the Out Signal is
Running, then the Out Signal is synchronized to this Sync event, i.e., it starts again from time zero
(T0). Once Running, the Out Signal state is not affected by the Sync state.

 Once the Out Signal is Running, the BSCs are operational only while the Gate reference event is
active (gated on). In other words, once triggered, the Out Signal enters the Running state, but the
signal is present only while the Gate event is gated on.

 When the Out Signal enters the Paused state from the Stopped state, it acquires any necessary
resources and prepares the signal ready for output.

 When the Out Signal enters Running from Paused, the real signal is activated, and the output
Signal state becomes Running.

 When the Out Signal enters Paused from Running, the real signal is deactivated, and the output
Signal state becomes Paused.

 When the Out Signal enters Stopped from Paused, the resources are unprepared and released.

 If an attribute does not have a value available and has no default value, the SignalFunction waits in
the paused state until a value is available.

The Conn property allows a user to specify connectivity of BSCs without any implied activation, which is
implicit with the In property. Conn is used for a dynamic model, where the user wants to show
connectivity of signals without any implied activation. All BSCs connected solely through the Conn
property exist in separate time frame and have no implicit synchronization between them.

The SignalFunction also provides an enumeration interface so that a native code program can enumerate
through all of the contained SignalFunctions of the signal model. BSCs and TSFs contain no accessable
SignalFunctions. This feature returns signalModels only within anonymous TSFs or user-defined signal
models.

Example:

For Each sf in mySig
 sf.name 'sf is a SignalFunction within the mySig model
Next

C.2.3.3 Runtime properties

 Out is of type Signal.

 In [(at=0)] is of type reference to Signal.

 Sync is of type reference to Signal.

 Gate is of type reference to Signal.

 Conn[(at=0)] is of type reference to Signal.

 pinsIn is of type pinString.

 pinsOut is of type pinString.

 pinsSync is of type pinString.

 pinsGate is of type pinString.

BS IEC 62529:2012

 IEC 62529:2012
 – 152 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

The parameter “at” can be used to identify which signal input is being referenced, e.g., In(1).

The Signal Function enumerating subitem SignalFunctions support the Count and Item properties, for
example, in an anonymous TSF.

C.3 Dynamic signal goals and use cases

The use of BSC or TSF components within the system is identical. This standard does not differentiate
between the behavior of BSC and TSF components.

Using a TSF component within a user signal model is identical to using the internal signal model definition
of the TSF within the same model. This equivalence means that packaging a signal model in a TSF does
not change the behavior of the signal model.

Calling Run() on any Signal component of a signal model will activate every Signal within the model so
that the whole signal model including any Gate/Sync events becomes Running.

Calling Change() on any Signal component of a signal model does not cause Sync/Gate events to be
initiated.

The Run, Change, and Stop methods may return before the Signal state has changed. The time at which
the signal returns may be synchronized with the signal state change by using the timeout.

There is no implied phase relationship across a Connection object. If a connection object connects two
signal models, then the signal models exist in two separate time frames.

An event synchronizing a TSF component has the effect of synchronizing all internal TSF signal model
components.

An event gating a TSF component has the effect of gating the TSF output signal model components.

When two subsignal models exist in different time frames, activating the first signal model does not call
Run() on the event of the second signal model.

The Run method makes sure that Run() is called on all inputs and Gate and Sync events.

The Change method calls Change() on all inputs, but does not affect any Gate or Sync events.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 153 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex D

(normative)

Interface definition language (IDL) basic components

D.1 Introduction

The referenced IDL provides the common interface description for all the basic components described
within this standard. The use of this IDL allows test programs written in native carrier languages to use a
common interface and successfully use basic signal components (BSCs) regardless of which carrier
environment is use, provided it supports IDL. The IDL can be compiled into a type library to support
implementations of BSCs. All implementations should use the same IDL to provide compatibility between
native carrier language test programs and different BSC implementations.

The IDL defines the types, interfaces, classes, methods, properties, and attributes used to support BSCs
described in this standard.

NOTE—Annex D is a normative annex in that it provides the normative descriptions for the BSCs in IDL. Inclusion of
this annex as normative does not mean that the BSCs may not be described in other interface languages.

D.2 IDL BSC library

The IDL BSC library is maintained at http://standards.ieee.org/downloads/1641/1641-2010/.

BS IEC 62529:2012

http://standards.ieee.org/downloads/1641/1641-2010/

 IEC 62529:2012
 – 154 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex E

(informative)

Test signal framework (TSF) for C/ATLAS

E.1 Introduction

This annex provides an example TSF representing many of the signals defined in IEEE Std 716-1995 [B12]
for the Common/Abbreviated Test Language for All Systems (C/ATLAS). It is provided so that a user may
create test requirements (using this standard) equivalent to the requirements written using the C/ATLAS
standard.

Not every signal (noun) and attribute (noun modifier) described in the C/ATLAS standard is covered by an
equivalent in STD. If a user requires a signal or attribute not described in this annex, that signal may be
created using the basic signal components (BSCs).

A diagram is provided with each signal to illustrate graphically the relationship between the BSCs and
interface attributes that make up the signal. In order to reduce the amount of information included in each
diagram, inputs to BSCs that are at zero or the default values are omitted.

E.2 TSF library definition in extensible markup language (XML)

Where examples are given, their static signal description is provided in XML. The information provided in
Annex I, together with the detailed description of each TSF model in this annex, may be used to create the
example TSF library for C/ATLAS that conforms to the XML Schema document defined in Annex I.

A complete XML instance document conforming to the requirements of this standard may be obtained from
http://standards.ieee.org/downloads/1641/1641-2010/.

E.3 Interface definition language (IDL) for the TSF for C/ATLAS

E.3.1 Introduction

The IDL referenced in E.3.2 provides the common interface description for all the TSF models for the
C/ATLAS example described within this annex. The use of this IDL allows test programs written in native
carrier languages to use a common interface and successfully use TSF components regardless of which
carrier environment is used, provided it supports IDL. The IDL can be compiled into a type library to
support implementations of TSF for C/ATLAS components. All implementations that use these TSFs
should use the same IDL to provide compatibility between native carrier language test programs and
different BSC implementations.

The IDL defines the types, interfaces, classes, methods, properties, and attributes used to support BSCs
described in this standard.

Where additional TSFs have been created for other test domains, they will require a new IDL library so that
that they can be used by multiple programming environments. In such cases, the style and layout shown in
the IDL referenced in E.3.2 can be used.

BS IEC 62529:2012

http://standards.ieee.org/downloads/1641/1641-2010/

IEC 62529:2012
IEEE Std 1641-2010 – 155 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

The IDL for the C/ATLAS TSF library is derived from the corresponding XML library.

E.3.2 IDL for the TSF for C/ATLAS library

The IDL for the example ATLAS TSF library is maintained at http://standards.ieee.org/downloads/1641/
1641-2010/.

E.4 AC_SIGNAL<type: Current|| Power|| Voltage>

E.4.1 Definition

A sinusoidal time-varying electrical signal. See Figure E.1.

AC_
Component

Sinusoid

DC_Offset

Constant

AC_Signal

Sum

AC_SIGNAL

ac_ampl freq phase dc_offset

Figure E.1—TSF AC_SIGNAL

E.4.2 Interface properties

See Table E.1 for details of the TSF AC_SIGNAL interface.

Table E.1—TSF AC_SIGNAL interface

Description Name Type Default Range
AC Signal amplitude ac_ampl Physical — —
DC Offset dc_offset Physical 0 —
AC Signal frequency freq Frequency — —
AC Signal phase angle phase PlaneAngle 0 rad 0 – 2π rad

E.4.3 Notes

There are no special notes for this TSF.

BS IEC 62529:2012

http://standards.ieee.org/downloads/1641/1641-2010/
http://standards.ieee.org/downloads/1641/1641-2010/

 IEC 62529:2012
 – 156 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.4.4 Model description

See Table E.2 for details of the TSF AC_SIGNAL model.

Table E.2— TSF AC_SIGNAL model

Name Type Terminal Inputs Output Formula
AC_Signal

Sum

Signal [Out] — AC_SIGNAL —
Signal [In] DC_Offset — —
Signal [In] AC_Component — —

AC_Component

Sinusoid

Signal [Out] — AC Signal —
amplitude ac_ampl — —
frequency freq — —
phase phase — —

DC_Offset Constant Signal [Out] — AC Signal —
amplitude dc_offset — —

E.4.5 Rules

For this signal, the allowable types are Voltage, Current, and Power. All types must be consistent. Thus for
example, if ac signal amplitude is specified in volts, then the dc offset must also be specified in volts.

E.4.6 Example

See Figure E.2 for an example of AC_SIGNAL.

XML Static Signal Description:

<AC_SIGNAL ac_ampl="1 V" dc_offset="0.5 V" freq="1000 Hz" />

Signal

-0.5

0.0

0.5

1.0

1.5

Figure E.2—AC_SIGNAL example

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 157 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.5 AM_SIGNAL

E.5.1 Definition

A continuous sinusoidal wave (carrier) whose amplitude is varied as a function of the instantaneous value
of a second wave (modulating). See Figure E.3.

AM_SIGNAL

car_ampl car_freq mod_freq mod_ampl mod_depth

AM

AM_Signal

Sinusoid

Modulation

Sinusoid

Carrier

Figure E.3—TSF AM_SIGNAL

E.5.2 Interface properties

See Table E.3 for details of the TSF AM_SIGNAL interface.

Table E.3—TSF AM_SIGNAL interface

Description Name Type Default Range
Carrier amplitude car_ampl Voltage — —
Carrier frequency car_freq Frequency — —
Modulation frequency mod_freq Frequency — —
Depth of modulation mod_depth Ratio — 0 – 1
Modulation amplitude mod_ampl Voltage 1 V —

E.5.3 Notes

There are no special notes for this TSF.

E.5.4 Model description

See Table E.4 for details of the TSF AM_SIGNAL model.

BS IEC 62529:2012

 IEC 62529:2012
 – 158 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table E.4—TSF AM_SIGNAL model

Name Type Terminal Inputs Output Formula
AM_Signal

AM

Signal [Out] — AM_SIGNAL —
modIndex mod_depth — —
Carrier [In] Carrier — —
Signal [In] Modulation — —

Carrier

Sinusoid

Signal [Out] — AM_Signal —
amplitude car_ampl — —
frequency car_freq — —
phase — — 0 rad

Modulation

Sinusoid

Signal [Out] — AM_Signal —
amplitude mod_ampl — —
frequency mod_freq — —
phase — — 0 rad

E.5.5 Rules

The output is given by the following equation:

e = Ec(1+maEmsin(ωmt))sin(ωct) (E.1)

where

Ec is the carrier amplitude (unmodulated)
Em is the modulation amplitude
ma is the depth of modulation (≡ modulation index)
ωm is 2π × modulating frequency
ωc is 2π × carrier frequency

E.5.6 Example

See Figure E.4 for an example of AM_SIGNAL.

XML Static Signal Description:

<AM_SIGNAL car_ampl="1 V" car_freq="40 kHz" mod_freq="1 kHz" />

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 159 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Signal

-0.5

-1.0

-1.5

-2.0

0.0

0.5

1.0

1.5

2.0

Figure E.4—AM_SIGNAL example

E.6 DC_SIGNAL<type: Voltage|| Current|| Power>

E.6.1 Definition

An unvarying electrical signal with an optional ac component. Figure E.5.

DC_SIGNAL

dc_ampl ac_ampl freq phase

SUM

DC_Signal

Sinusoid

DC_AC_
Component

Constant

DC_Level

Figure E.5—TSF DC_SIGNAL

BS IEC 62529:2012

 IEC 62529:2012
 – 160 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.6.2 Interface properties

See Table E.5 for details of the TSF DC_SIGNAL interface.

Table E.5—TSF DC_SIGNAL interface

Description Name Type Default Range
DC level dc_ampl Physical — —
AC Component amplitude ac_ampl Physical 0 —
AC Component frequency freq Frequency 0 Hz —
AC Component phase angle phase PlaneAngle 0 rad 0 – 2π rad

E.6.3 Notes

There are no special notes for this TSF.

E.6.4 Model description

See Table E.6 for details of the TSF DC_SIGNAL model.

Table E.6—TSF DC_SIGNAL model

Name Type Terminal Inputs Output Formula
DC_Signal

Sum

Signal [Out] — DC_SIGNAL —
Signal [In] DC_Level — —
Signal [In] AC_Component — —

DC_Level

Constant

Signal [Out] — DC_Signal —
amplitude dc_ampl — —

DC_AC_Component

Sinusoid

Signal [Out] — DC_Signal —
amplitude ac_ampl — —
frequency freq — —
phase phase — —

E.6.5 Rules

For this signal, the allowable types are Voltage, Current, and Power. All types must be consistent. Thus for
example, if dc level is specified in volts, then the ac component amplitude must also be specified in volts.

E.6.6 Example

See Figure E.6 for an example of DC_SIGNAL.

XML Static Signal Description:

<DC_SIGNAL name="DC_SIGNAL7" ac_ampl="0.03" dc_ampl="1" freq="50" />

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 161 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Signal

0.0

0.5

1.0

1.5

Figure E.6—DC_SIGNAL example

E.7 DIGITAL_PARALLEL

E.7.1 Definition

A parallel digital source that creates a digital logic signal in which the physical values for logic 1, logic 0,
and high impedance data values are determined by the logic threshold values specified. See Figure E.7.

DIGITAL_PARALLELParallelDigital

Digital_Stream

da
ta

_v
al

ue

lo
gi

c_
on

e_
va

lu
e

lo
gi

c_
ze

ro
_v

al
ue

cl
oc

k_
pe

rio
d

Figure E.7—TSF DIGITAL_PARALLEL

E.7.2 Interface properties

See Table E.7 for details of the TSF DIGITAL_PARALLEL interface.

BS IEC 62529:2012

 IEC 62529:2012
 – 162 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table E.7—TSF DIGITAL_PARALLEL interface

Description Name Type Default Range
Data value data_value digitalString — H|L|Z|X
Clock period clock_period Time — —
Logic One level logic_one_value Voltage — —
Logic Zero level logic_zero_value Voltage — —

E.7.3 Notes

The width of the signal (and hence the minimum associated connection width) is implied by the number of
logic elements in each array element.

The default condition for clock period (clock_period = 0) denotes infinite time for static digital data.

E.7.4 Model description

See Table E.8 for details of the TSF DIGITAL_PARALLEL model.

Table E.8—TSF DIGITAL_PARALLEL model

Name Type Terminal Inputs Output Formula
Digital_Stream

ParallelDigital

Signal [Out] DIGITAL_PARALLEL —
data data_value — —
period clock_period — —
logic_H_value logic_one_value — —
logic_L_value logic_zero_value — —

E.7.5 Rules

A high impedance is generated when the digital signal value character is Z, i.e., no digital signal is present.

A logic 1 (output voltage is equal to logic_one_value) is generated when the digital signal value character
is H.

A logic 0 (output voltage is equal to logic_zero_value) is generated when the digital signal value character
is L.

An unknown value cannot be generated by the digital source model. When the digital signal value character
is X, the model may generate a logic 1 or a logic 0.

The output values are held at the defined levels for the duration of the clock_period.

For this signal, the data values are transmitted via the parallel connections. Data received via these
connections will be available when the signal is used in a measurement.

E.7.6 Example

See Figure E.8 for an example of DIGITAL_PARALLEL.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 163 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

XML Static Signal Description:

<DIGITAL_PARALLEL data_value=’"HLHL","LLHL","HHLH"’ clock_period="1 us"
/>

Si
gn

al
s

0

1

0

1
0

1

0

1

Time
Figure E.8—DIGITAL_PARALLEL example

E.8 DIGITAL_SERIAL

E.8.1 Definition

A serial digital source that creates a digital logic signal in which the physical values for logic 1, logic 0, and
high impedance data values are determined by the logic threshold values specified. See Figure E.9.

DIGITAL_SERIALSerialDigital

Serial_Stream

da
ta

_v
al

ue

lo
gi

c_
on

e_
va

lu
e

lo
gi

c_
ze

ro
_v

al
ue

cl
oc

k_
pe

rio
d

Figure E.9—TSF DIGITAL_SERIAL

BS IEC 62529:2012

 IEC 62529:2012
 – 164 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.8.2 Interface properties

See Table E.9 for details of the TSF DIGITAL_SERIAL interface.

Table E.9—TSF DIGITAL_SERIAL interface

Description Name Type Default Range
Data value data_value digitalString — H|L|Z|X
Clock period clock_period Time — —
Logic One level logic_one_value Voltage — —
Logic Zero level logic_zero_value Voltage — —

E.8.3 Notes

The default condition for clock period (clock_period = 0) denotes infinite time for static digital data.

The serial TSF deals only with serial data where the data value is conveyed as the value of the signal rather
than any transition of the signal.

E.8.4 Model description

See Table E.10 for details of the TSF DIGITAL_SERIAL model.

Table E.10—TSF DIGITAL_SERIAL model

Name Type Terminal Inputs Output Formula
Serial_Stream

SerialDigital

Signal [Out] DIGITAL_SERIAL —
data data_value — —
period clock_period — —
logic_H_value logic_one_value — —
logic_L_value logic_zero_value — —

E.8.5 Rules

A high impedance is generated when the digital signal value character is Z, i.e., no digital signal present.

A logic 1 (output voltage is equal to logic_one_value) is generated when the digital signal value character
is H.

A logic 0 (output voltage is equal to logic_zero_value) is generated when the digital signal value character
is L.

An unknown value cannot be generated by the digital source model. When the digital signal value character
is X, the model may generate a logic 1 or a logic 0.

The output values are held at the defined levels for the duration of the clock_period.

For this signal, the data value supplied is transmitted via the serial connections. Data received via the serial
connections will be available when the signal is used in a measurement.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 165 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.8.6 Example

See Figure E.10 for an example of DIGITAL_SERIAL.

XML Static Signal Description:

<DIGITAL_SERIAL data_value="LZHLHHLLHHHLLZL" clock_period="1 us"
logic_one_value=”3.6 V” logic_zero_value=”-2.6 V” />

-0.5

-1.0

-1.5

-2.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure E.10—DIGITAL_SERIAL example

E.9 DIGITAL_TEST

E.9.1 Definition

The digital test TSF uses both stimulus and response data together with the appropriate clock information
to perform a bidirectional digital test. See Figure E.11.

DIGITAL_TEST

ParallelDigital

DT_Source

dt
_S

tim
_H

_v
al

ue

dt
_S

tim
_L

-v
al

ue

dt
_p

er
io

d

ParallelDigital

DT_Sense

Measure

DT_Digital_
Measure

dt
_d

at
a

dt
_R

es
p_

H
_v

al
ue

dt
_R

es
p_

L_
va

lu
e

As

Figure E.11—TSF DIGITAL_TEST

BS IEC 62529:2012

 IEC 62529:2012
 – 166 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.9.2 Interface properties

See Table E.11 for details of the TSF DIGITAL_TEST interface.

Table E.11—TSF DIGITAL_TEST interface

Description Name Type Default Range
Clock Period dt_Period Time — —
Logic One level dt_Stim_H_value Physical — —
Logic Zero level dt_Stim_L_value Physical — —
Logic One level dt_Resp_H_value Physical — —
Logic Zero level dt_Resp_L_value Physical — —
Logic Data dt_Data digitalString — H|L|Z|X|h|l|z|x

E.9.3 Notes

When using the DIGITAL_TEST TSF, the stimulus and response logic levels should be provided, together
with the digital clock period to define the characteristics of the signal waveform.

The default conditions for this TSF have no significance other than to provide an example of its use.

Stimulus data is defined using the following syntax:

 H for High or logic 1

 L for Low or logic 0.

 Z for Tri-state or high impedance.

 X for unspecified, usually implemented using the Z state.

Response data are defined using the following syntax:

 h for High or logic 1

 l for Low or logic 0.

 Z for Tri-state or high impedance.

 X for “do not care,” i.e., the value is not measured.

The DIGITAL_TEST TSF deals only with data where the data value is conveyed as the value of the signal
rather than any transition of the signal.

E.9.4 Model description

See Table E.12 for details of the TSF DIGITAL_TEST model.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 167 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table E.12—TSF DIGITAL_TEST model

Name Type Terminal Inputs Output Formula
DT_Source ParallelDigital Signal [Out] — DIGITAL_TEST —

data dt_Data — —
period dt_Period — —
logic_H_value dt_Stim_H_value — —
logic_L_value dt_Stim_L_value — —

DT_Sense

ParallelDigital

Signal [Out] — DT_Digital_Measure —
data — — —
period dt_Period — —
logic_H_value dt_Resp_H_value — —
logic_L_value dt_Resp_L_value — —

DT_Digital_Measure

Measure [Out] — — —
measuredVariable — — —
measurement — — —
measurements — — —
sample — — —
count — — —
gateTime — — —
nominal — — —
condition — — —
GO — — —
NOGO — — —
HI — — —
LO — — —
UL — — —
LL — — —
Signal [As] DT_Sense — —
Signal [In] DIGITAL_TEST — —

E.9.5 Rules

A high impedance is generated when the digital signal value character is Z, i.e., no digital signal present.

A logic 1 (output voltage is equal to logic_one_value) is generated when the digital signal value character
is H.

A logic 0 (output voltage is equal to logic_zero_value) is generated when the digital signal value character
is L.

An unknown value cannot be generated by the digital source model. When the digital signal value character
is X, the model may generate a high impedance, a logic 1 or a logic 0.

The output values are held at the defined levels for the duration of the clock_period.

For this signal, the data value supplied is transmitted via the bidirectional connections. Data received via
the bidirectional connections will be available when the signal is used in a measurement.

BS IEC 62529:2012

 IEC 62529:2012
 – 168 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.9.6 Example

See Figure E.12 for an example of DIGITAL_TEST.

XML Static Signal Description:

<DIGITAL_TEST dt_data="HLLLLHlh, LLZHhlxx, HLzzHZZH" dt_period="1 us"
dt_Stim_H_value="5.0 V" dt_Stim_L_value="0.0 V" dt_Resp_H_value="3.5 V"
dt_Resp_L_value="0.5 V"/>

Si
gn

al
s

0 1 2 3 4Time

Figure E.12—DIGITAL_TEST example

E.10 DME_INTERROGATION

E.10.1 Definition

A radio aid-to-air navigation that provides distance information by measuring the time of transmission from
an interrogator to a transponder and return. See Figure E.13.

The distance measuring equipment (DME) system is composed of a transponder in the ground base unit
and an interrogator in the airborne unit. The interrogator on the aircraft emits a pulse signal that, once
received by the DME transponder on the ground, starts a response sequence that sends a return pulse signal
on a different (paired) channel to the aircraft. The aircraft equipment receives the response from the ground
station, computes the elapsed time between interrogation and response, subtracts 50 µs (to cover ground
station processing time), and divides the result by 2. This result is then displayed on the DME indicator.

The DME operates on the ultra high frequency (UHF) band in the range of 962 MHz to 1213 MHz with a
step of 1 MHz. The frequencies used by the interrogator are between 1025 MHz and 1150 MHz, and the
transponder on the ground replies using two set frequencies: the first from 962 MHz to 1024 MHz and the
second from 1151 MHz to 1213 MHz. The number of available frequencies is 252; therefore, there are
126 available channels. Each channel has 2 frequencies: one for interrogation and the other for the response
from the ground station. On each pair of frequencies, the difference between the interrogator frequency and
the response frequency is always of 63 MHz. For the channels between 1 and 63, the interrogator frequency
is 63 MHz higher than the response frequency; and for channels from 63 to 126, the response frequency is
63 MHz higher than the interrogator frequency.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 169 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

DME_INTERROGATION

int_rate car_ampl int_freq

Pulse Train

DME_
Interrogation

Sinusoid

Int_Carrier

TimedEvent

Int_Event

duration = 20 µs repetition = 1

pulses =
(0 µs, 3.5 µs, 1),

(15.5 µs, 3.5 µs, 1)

Figure E.13—TSF DME_INTERROGATION

E.10.2 Interface properties

See Table E.13 for details of the TSF DME_INTERROGATION interface.

Table E.13—TSF DME_INTERROGATION interface

Description Name Type Default Range
Carrier amplitude car_ampl Voltage — —
Interrogator
frequency

int_freq Frequency 1025 MHz 1025 MHz – 1150 MHz

Interrogation rate int_rate Frequency 27 Hz 27 Hz | 150 Hz

E.10.3 Notes

This model has limited functionality. It does not provide for the variation of some of the parameters (such
as the pulse timing and level). The model may be modified by the user to include such parameters in the
interface properties.

E.10.4 Model description

See Table E.14 for details of the TSF DME_INTERROGATON model.

BS IEC 62529:2012

 IEC 62529:2012
 – 170 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table E.14—TSF DME_INTERROGATION model

Name Type Terminal Inputs Output Formula
DME_Interrogation

PulseTrain

Signal [Out] — DME_
INTERROGATION

—

pulses — — (0 µs , 3.5 µs, 1),
(15.5 µs, 3.5 µs, 1)

repetition — — 1
Signal [In] Int_Carrier — —
Sync[In] Int_Event — —

Int_Carrier

Sinusoid

Signal [Out] — DME_Interrogation —
amplitude car_ampl — —
frequency int_freq — —
phase — — 0 rad

Int_Event

TimedEvent

Event [Out] — DME_Interrogation —
delay — — 0 s
duration — — 20 µs
period — — (1/int_rate)
repetition — — 0

E.10.5 Rules

There are no special rules for this TSF.

E.10.6 Example

See Figure E.14 for an example of DME_INTERROGATION.

XML Static Signal Description:

<DME_INTERROGATION name="DME_INTERROGATION6" int_freq="1050 MHz"
int_rate="150 Hz" />

-0.2

-0.4

-0.6

-0.8

-1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure E.14—DME_INTERROGATION example

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 171 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.11 DME_RESPONSE

E.11.1 Definition

A radio aid-to-air navigation that provides distance information by measuring the time of transmission from
an interrogator to a transponder and return. See Figure E.15.

The DME system is composed of a transponder in the ground base unit and an interrogator in the airborne
unit. The interrogator on the aircraft emits a pulse signal that, once received by the DME transponder on
the ground, starts a response sequence that sends a return pulse signal on a different (paired) channel to the
aircraft. The aircraft equipment receives the answer from the ground station, computes the elapsed time
between interrogation and response, subtracts 50 µs (to cover ground station processing time), and divides
the result by 2. This result is then displayed on the DME indicator.

The DME operates on the UHF band in the range of 962 MHz to 1213 MHz with a step of 1 MHz. The
frequencies used by the interrogator are between 1025 MHz and 1150 MHz, and the transponder on the
ground replies using two set frequencies: the first from 962 MHz to 1024 MHz and the second from
1151 MHz to 1213 MHz. The number of available frequencies is 252; therefore, there are 126 available
channels. Each channel has 2 frequencies: one for interrogation and the other for the response from the
ground station. On each pair of frequencies, the difference between the interrogator frequency and the
response frequency is always of 63 MHz. For the channels between 1 and 63, the interrogator frequency is
63 MHz higher than the response frequency; and for channels from 63 to 126, the response frequency is
63 MHz higher than the interrogator frequency.

DME_RESPONSEPulse Train

Response_
Train

SignalDelay

DME_P2_
Detect

TimedEvent

Resp_Event_A

duration = 20 µs

repetition = 1

pulses =
(0 µs, 3.5 µs,1),

(15.5 µs, 3.5 µs, 1)

SignalDelay

DME_
Response

SignalDelay

Response_
Delay

Sinusoid

Resp_Carrier

period = 37 µs

AndEvent

DME_Pulse_
Detect

RMS

Interrogation_
Event_

Window

nominal = 0.1

gateTime = 10 ns

ProbabilityEvent

Resp_Event_B

OrEvent

Resp_Event_
Train

dme_Interrogation

delay = 15.5 µs

probability = 10%

delay = 50 µs

ca
r_

am
pl

re
sp

_f
re

q

ra
ng

e

ra
te

ac
cn

Figure E.15—TSF DME_RESPONSE

BS IEC 62529:2012

 IEC 62529:2012
 – 172 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.11.2 Interface properties

See Table E.15 for details of the TSF DME_RESPONSE interface.

Table E.15—TSF DME_RESPONSE interface

Description Name Type Default Range
Carrier amplitude car_ampl Voltage — —
Transponder frequency resp_freq Frequency 962 MHz 962 MHz – 1213 MHz
Slant range range Distance 0 m —
Range rate rate Speed 0 m/s —
Rate of change of Range Rate accn Acceleration 0 m/s2 —
DME Interrogation signal dme_Interrogation SignalFunction — —

E.11.3 Notes

Slant range of DME is dependent on aircraft height, transponder location and its associated environment,
and geographical topography. Maximum range in ARINC 568 [B1] is quoted as up to 300 nmi (550 km) up
to an altitude of 75 000 ft (23 000 m). The delay range quoted will allow for a transponder transmission
range of approximately 400 nmi (740 km) and its lower value is 0 nmi (0 km), the default 50 µs usually
allowed from receipt of an interrogator signal to the transponder response within the transponder itself.
These values must not be exceeded.

This model has limited functionality. It does not provide for the variation of some of the parameters (such
as the pulse timing and level). The model may be modified by the user to include such parameters in the
interface properties.

E.11.4 Model description

See Table E.16 for details of the DME_RESPONSE model.

Table E.16—TSF DME_RESPONSE model

Name Type Terminal Inputs Output Formula
DME_Response

SignalDelay

Signal [Out] — DME_RESPONSE
acceleration — — (accn*2/3.0e8)
delay — — (range*2/3.0e8)
rate — — (rate*2/3.0e8)
Signal [In] Response_Delay — —

Response_Delay

SignalDelay

Signal [Out] — DME_Response —
 — — —
acceleration — — 0 Hz
delay — — 50 µs
rate — — 0%
Signal [In] Response_Train — —

Response_Train

PulseTrain

Signal [Out] — Response_Delay —
pulses — — (0 µs , 3.5 µs, 1),

(15.5 µs, 3.5 µs, 1)
repetition — — 1
Signal [In] Resp_Carrier — —
Sync[In] Resp_Event_Train — —

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 173 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table E.16—TSF DME_RESPONSE model (continued)

Name Type Terminal Inputs Output Formula
Resp_Carrier Sinusoid Signal [Out] — Response_Train —

amplitude car_ampl — —
frequency resp_freq — —
phase — — 0 rad

Resp_Event_Train OrEvent Event [Out] — Response_Train —
Signal [In] Resp_Event_B — —
Signal [In] DME_Pulse_Detect — —

Resp_Event_B ProbabilityEven
t

Event [Out] — Resp_Event_Train —
seed — — 0
probability — — 10%
Signal [In] Resp_Event_A — —

DME_Pulse_Detect AndEvent Event [Out] — Resp_Event_Train —
Signal [In] DME_P2_Detect — —
Signal [In] Interrogation_Event

_Window
— —

Resp_Event_A

TimedEvent

Event [Out] — Resp_Event_B —
delay — — 0 s
duration — — 20 µs
period — — 37 µs
repetition — — 0

DME_P2_Detect

SignalDelay

Signal [Out] — DME_Pulse_Detect —
acceleration — — 0 Hz
delay — — 15.5 µs
rate — — 0%
Signal [In] Interrogation_Event

_Window
— —

Interrogation_Event
_Window

RMS

[Out] — DME_Pulse_Detect
, DME_P2_Detect

—

measuredVari
able

— — —

measurement — — —
measurements — — —
sample — — —
count — — —
gateTime — — 1.0e-8
nominal — — 0.1
condition — — GE
GO — — —
NOGO — — —
HI — — —
LO — — —
UL — — —
LL — — —
Signal [As] — — —
Signal [In] dme_Interrogation — —

BS IEC 62529:2012

 IEC 62529:2012
 – 174 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.11.5 Rules

There are no special rules for this TSF.

E.11.6 Example

See Figure E.16 for an example of DME_RESPONSE.

XML Static Signal Description:

<DME_RESPONSE name="DME_RESPONSE5" range="2 nmi" rate="600 kt"
In="DME_INTERROGATION6"/>
<DME_INTERROGATION name="DME_INTERROGATION6"
int_freq="1050 MHz" int_rate="150 Hz" />

-0.2

-0.4

-0.6

-0.8

-1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure E.16—DME_RESPONSE example

E.12 FM_SIGNAL<type: Voltage|| Power|| Current>

E.12.1 Definition

A continuous sinusoidal (carrier) wave generated when the frequency of one wave is varied in accordance
with the amplitude of another (modulating) wave (modulating). See Figure E.17.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 175 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

FM_SIGNAL

mod_freq mod_ampl

FM

FM_Signal

Sinusoid

Modulating_
Signal

ca
r_

fre
q

ca
r_

am
pl

fre
q_

de
v

Figure E.17—TSF FM_SIGNAL

E.12.2 Interface properties

See Table E.17 for details of the TSF FM_SIGNAL interface.

Table E.17—TSF FM_SIGNAL interface

Description Name Type Default Range
Carrier amplitude car_ampl Physical — —
Carrier frequency car_freq Frequency — —
Frequency deviation freq_dev Frequency — —
Modulation frequency mod_freq Frequency — —
Modulation amplitude mod_ampl Physical 1 —

E.12.3 Notes

There are no special notes for this TSF.

E.12.4 Model description

See Table E.18 for details of the TSF FM_SIGNAL model.

BS IEC 62529:2012

 IEC 62529:2012
 – 176 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table E.18—TSF FM_SIGNAL model

Name Type Terminal Inputs Output Formula
FM_Signal

FM

Signal [Out] — FM_SIGNAL —
amplitude car_ampl — —
carrierFrequency car_freq — —
frequencyDeviation freq_dev — —
Signal [In] Modulating_Signal — —

Modulating_Signal

Sinusoid

Signal [Out] — FM_Signal —
amplitude mod_ampl — —
frequency mod_freq — —
phase — — 0 rad

E.12.5 Rules

The output is given by Equation (E.2) and Equation (E.3).

e = Ecsin(ωct+mfsin(ωmt)) (E.2)

mf = kf(Εm/ωm) (E.3)

where

Ec is the carrier amplitude (unmodulated)
Em is the modulation amplitude
ωc is 2π × carrier frequency
mf deviation ratio (≡ modulation index)
ωm is 2π × modulating frequency
kf is the frequency deviation

E.12.6 Example

See Figure E.18 for an example of FM_SIGNAL.

XML Static Signal Description:

<FM_SIGNAL name="FM_SIGNAL9" car_freq="100kHz"
freq_dev="10kHz"mod_freq="1200Hz" />

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 177 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Signal

-0.2

-0.4

-0.6

-0.8

-1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure E.18—FM_SIGNAL example

E.13 ILS_GLIDE_SLOPE<type: Voltage|| Power>

E.13.1 Definition

The vertical guidance portion of an instrument landing system (ILS).

At present, 40 glide slope channels exist with 150 kHz channel separation in the frequency range from
328.6 MHz to 335.4 MHz. The carrier is amplitude-modulated at 90 Hz and 150 Hz in a spatial pattern,
with the 90 Hz modulation predominant when the airplane is above the glide path, and the 150 Hz
modulation predominant if the airplane is below the glide path. The glide slope signal is achieved by
transmitting two beams with equal offset about the correct glide slope angle. The upper beam is modulated
to a depth of 40% with a 90 Hz tone, and the lower beam is modulated to a depth of 40% with a 150 Hz
tone. The carrier of both beams is phase-locked so that any receiver will treat them as a single-carrier signal
with two modulating tones. If the aircraft is positioned off the glide slope, the ILS receiver will detect one
signal as stronger than the other. As a result, the demodulated amplitude (or apparent depth of modulation)
of one tone will be greater than the tone of the other. If the receiver is exactly on the glide slope, it will
receive a radio frequency (RF) carrier where the 90 Hz and 150 Hz modulation depths appear exactly the
same. The greater the deviation from the glide slope, the greater will be the difference in amplitude of the
tones. Figure E.19.

BS IEC 62529:2012

 IEC 62529:2012
 – 178 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

ILS_GUIDE_SLOPE
Sinusoid

Glide_90Hz_
Tone

amplitude = 1 V

Sum

Glide_Slope

Sinusoid

Glide_Slope_
Carrier

freq = 90 Hz

Attenuator

Glide_Slope_
Hi

Sinusoid

Glide_150Hz_
Tone

amplitude = 1 V

freq = 150 Hz

AM

Glide_90_Hz_
Modulated_

Signal

mod_index = 0.4

ca
r_

am
pl

ca
r_

fre
q

on
ef

ift
y_

le
ve

l

AM

Glide_150_Hz
Modulated

Signal

mod_index = 0.4

Attenuator

Glide_Slope_
Lo

ni
ne

ty
_l

ev
el

Figure E.19—TSF ILS_GLIDE_SLOPE

E.13.2 Interface properties

See Table E.19 for details of the TSF ILS_GLIDE_SLOPE interface.

Table E.19—TSF ILS_GLIDE_SLOPE interface

Description Name Type Default Range
Carrier amplitude car_ampl Physical 2 mV —
Frequency car_freq Frequency 328.6 MHz 328.6 MHz – 335.4 MHz
150 Hz attenuation depth onefifty_level Ratio 1 0 – 1
90 Hz attenuation depth ninety_level Ratio 1 0 – 1

E.13.3 Notes

This model has limited functionality. It does not provide for the variation of some of the parameters (such
as the tone frequencies). The model may be modified by the user to include such parameters in the interface
properties.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 179 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.13.4 Model description

See Table E.20 for details of the TSF ILS_GLIDE_SLOPE model.

Table E.20—TSF ILS_GLIDE_SLOPE model

Name Type Terminal Inputs Output Formula
Glide_Slope

Sum

Signal
[Out]

— ILS_GLIDE_SL
OPE

—

Signal
[In]

Glide_Slope_Lo — —

Signal
[In]

Glide_Slope_Hi — —

Glide_Slope_Hi

Attenuator

Signal
[Out]

— Glide_Slope —

gain ninety_level — —
Signal
[In]

Glide_90_Hz_Modulated_
Signal

— —

Glide_Slope_Lo

Attenuator

Signal
[Out]

— GlideSlope —

gain onefifty_level — —
Signal
[In]

Glide_150_Hz_Modulated
_Signal

— —

Glide_90_Hz_Modulated_
Signal

AM

Signal
[Out]

— Glide_Slope_Hi —

modIndex — — 0.4
Carrier
[In]

Glide_Slope_Carrier — —

Signal
[In]

Glide_90Hz_Tone — —

Glide_150_Hz_Modulated
_Signal

AM

Signal
[Out]

— Glide_Slope_Lo —

modIndex — — 0.4
Carrier
[In]

Glide_Slope_Carrier — —

Signal
[In]

Glide_150Hz_ Tone — —

Glide_Slope_Carrier

Sinusoid

Signal
[Out]

— Glide_150_Hz_M
odulated_Signal,
Glide_90_Hz_Mo
dulated_Signal

—

amplitude car_ampl — —
frequency car_freq — —
phase — — —
0 rad — — —

Glide_90Hz_Tone

Sinusoid

Signal
[Out]

— Glide_90_Hz_Mo
dulated_Signal

—

amplitude — — 1 (see
NOTE)

frequency — — 90 Hz
phase — — 0 rad

Glide_150Hz_Tone

Sinusoid

Signal
[Out]

— Glide_150_Hz_M
odulated_Signal

—

amplitude — — 1 (see
NOTE)

frequency — — 150 Hz
phase — — 0 rad

NOTE—The BSC requires a unity value for the amplitude of the modulating signal.

BS IEC 62529:2012

 IEC 62529:2012
 – 180 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.13.5 Rules

For this signal, the allowable types for carrier amplitudes are Voltage and Power.

E.13.6 Example

See Figure E.20 for an example of ILS_GLIDE_SLOPE.

XML Static Signal Description:

<ILS_GLIDE_SLOPE name="ILS_GLIDE_SLOPE7" onefifty_level="1.1"
ninety_level="0.9" />

Signal

-0.001

-0.002

-0.003

-0.004

-0.005

-0.006

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Figure E.20—ILS_GLIDE_SLOPE example

E.14 ILS_LOCALIZER<type: Power|| Voltage>

E.14.1 Definition

The localizer is the lateral guidance portion of the ILS, giving azimuth guidance with reference to the
runway center line. It operates using the same principles as the glide slope, but with 40 channels in the very
high frequency (VHF) band of 108.0 MHz to 112.0 MHz. Each localizer channel is paired with a glide
slope channel. The carrier is modulated with 90 Hz and 150 Hz tones in a spatial pattern that makes the
90 Hz tone predominant when the aircraft is to the left of the course and the 150 Hz tone predominant when
the aircraft is to the right of the course. The localizer carrier contains a Morse code signal identifying the
runway and approach direction and also may carry a ground-to-air communication channel. See Figure
E.21.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 181 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

ILS_LOCALIZER
Sinusoid

ILS_90Hz_
Tone

amplitude = 1 V

Sum

ILS_Localizer

Sinusoid

Localizer_
Carrier

freq = 90 Hz

Attenuator

Localizer_L

Sinusoid

ILS_150Hz_
Tone

amplitude = 1 V

freq = 150 Hz

AM

ILS_90Hz_
Modulated_

Signal

mod_index = 0.4

ca
r_

am
pl

ca
r_

fre
q

on
ef

ift
y_

le
ve

l

AM

ILS_150Hz_
Modulated_

Signal

mod_index = 0.4

Attenuator

Localizer_R

ni
ne

ty
_l

ev
el

Figure E.21—TSF ILS_LOCALIZER

E.14.2 Interface properties

See Table E.21 for details of the TSF ILS_LOCALIZER interface.

Table E.21—TSF ILS_LOCALIZER interface

Description Name Type Default Range
Carrier amplitude car_ampl Physical 2 mW —
Carrier frequency car_freq Frequency 108.1 MHz 108.1 MHz –111.9

MHz
150 Hz attenuation depth onefifty_level Ratio 1 0 – 1
90 Hz attenuation depth ninety_level Ratio 1 0 – 1

E.14.3 Notes

This model represents a limited implementation of the signal. It represents only the two-tone directional
signal and does not allow for inclusion of coded information. It does not provide for the variation of some
of the parameters (such as the tone frequencies). The model may be modified by the user to include such
parameters in the interface properties.

BS IEC 62529:2012

 IEC 62529:2012
 – 182 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.14.4 Model description

See Table E.22 for details of the TSF ILS_LOCALIZER model.

Table E.22—TSF ILS_LOCALIZER model

Name Type Terminal Inputs Output Formula
ILS_Localizer

Sum

Signal
[Out]

— ILS_LOCALIZER —

Signal
[In]

Localizer_R — —

Signal
[In]

Localizer_L — —

Localizer_R

Attenuator

Signal
[Out]

— ILS_Localizer —

gain onefifty_level — —
Signal
[In]

ILS_150Hz_Modulated
_Signal

— —

Localizer_L

Attenuator

Signal
[Out]

— ILS_Localizer —

gain ninety_level — —
Signal
[In]

ILS_90Hz_Modulated_
Signal

— —

ILS_150Hz_Modulated
_Signal

AM

Signal
[Out]

— Localizer_R —

modIndex — — 0.2
Carrier
[In]

Localizer_Carrier — —

Signal
[In]

ILS_150Hz_Tone — —

ILS_90Hz_Modulated_
Signal

AM

Signal
[Out]

— Localizer_L —

modIndex — — 0.2
Carrier
[In]

Localizer_Carrier — —

Signal
[In]

ILS_90Hz_Tone — —

ILS_150Hz_Tone

Sinusoid

Signal
[Out]

— ILS_150Hz_Modulated
_Signal

—

amplitude — — 1 (see
note)

frequency — — 150 Hz
phase — — 0 rad

ILS_90Hz_Tone

Sinusoid

Signal
[Out]

— ILS_90Hz_Modulated_
Signal

—

amplitude — — 1 (see
note)

frequency — — 90 Hz
phase — — 0 rad

Localizer_Carrier

Sinusoid

Signal
[Out]

— ILS_90Hz_Modulated_
Signal,

—

amplitude car_ampl — —
frequency car_freq — —
phase — — 0 rad

NOTE—The BSC requires a unity value for the amplitude of the modulating signal.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 183 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.14.5 Rules

For this signal, the allowable types for carrier amplitudes are Voltage and Power.

E.14.6 Example

See Figure E.22 for an example of ILS_LOCALIZER.

XML Static Signal Description:

<ILS_LOCALIZER name="ILS_LOCALIZER6" ninety_level="0.9"
 onefifty_level="1.1" />

Signal

-0.001

-0.002

-0.003

-0.004

-0.005

0.000

0.001

0.002

0.003

0.004

0.005

Figure E.22—ILS_LOCALIZER example

E.15 ILS_MARKER

E.15.1 Definition

Two or three marker beacons operate at 75 MHz to give a range with reference to the touchdown point. The
outer marker is modulated with a 400 Hz tone to a depth of 95%. It is located 3½ nmi to 6 nmi (6 km to
11 km) from the end of the runway where the glide slope intersects the procedure turn altitude ± 15 m
(50 ft) vertically. It radiates a fan-shaped pattern vertically and normal to the localizer and activates a
marker receiver when the aircraft passes through.

The middle marker is a second fan-shaped marker similar to the outer marker. It is located approximately
0.5 nmi to 0.8 nmi (1 km to 1.5 km) from the ILS approach end of the runway and modulated at 1300 Hz.
The inner marker, when used for category II approaches, intercepts the glide path at about the 100 ft (30 m)
height to mark the overshoot decision point (if the runway is still not visible). The marker is recognized by
its 3000 Hz modulation. Category II approaches allow operation down to 100 ft (30 m) and 1300 ft (400 m)
visibility. See Figure E.23.

BS IEC 62529:2012

 IEC 62529:2012
 – 184 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

ILS_MARKER

car_ampl marker_freq

AM

Marker_
Signal

Sinusoid

Marker_Tone

Sinusoid

Marker_
Carrier

amplitude = 1 V

modIndex = 0.95

car_freq = 75 MHz

Figure E.23—TSF ILS_MARKER

E.15.2 Interface properties

See Table E.23 for details of the TSF ILS_MARKER interface.

Table E.23—TSF ILS_MARKER interface

Description Name Type Default Range
Marker frequency marker_freq Frequency 400 Hz 400 Hz | 1.3 kHz | 3 kHz
Carrier amplitude car_ampl Power 2 mW —

E.15.3 Notes

This model represents a limited implementation of the signal. It does not provide for the variation of some
of the parameters (such as the carrier frequency). The model may be modified by the user to include such
parameters in the interface properties.

E.15.4 Model description

See Table E.24 for details of the TSF ILS_MARKER model.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 185 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table E.24—TSF ILS_MARKER model

Name Type Terminal Inputs Output Formula
Marker_Signal

AM

Signal [Out] — ILS_MARKER —
modIndex — — 0.95
Carrier [In] Marker_Carrier — —
Signal [In] Marker_Tone — —

Marker_Carrier

Sinusoid

Signal [Out] — Marker_Signal —
amplitude car_ampl — —
frequency — — 75 MHz
phase — — 0 rad

Marker_Tone

Sinusoid

Signal [Out] — Marker_Signal —
amplitude — — 1 (see NOTE)
frequency marker_freq — —
phase — — 0 rad

NOTE—The BSC requires a unity value for the amplitude of the modulating signal.

E.15.5 Rules

For this signal, the carrier amplitudes can be expressed only in terms of power.

E.15.6 Example

See Figure E.24 for an example of ILS_MARKER.

XML Static Signal Description:

<ILS_MARKER name="ILS_MARKER5" />

Signal

-0.001

-0.002

-0.003

-0.004

0.000

0.001

0.002

0.003

0.004

Figure E.24—ILS_MARKER example

BS IEC 62529:2012

 IEC 62529:2012
 – 186 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.16 PM_SIGNAL

E.16.1 Definition

A continuous sinusoidal wave (carrier) whose phase is varied in accordance with the amplitude of another
wave. See Figure E.25.

FM_SIGNAL

mod_freq mod_ampl

FM

FM_Signal

Sinusoid

Modulating_
Signal

ca
r_

fre
q

ca
r_

am
pl

fre
q_

de
v

Figure E.25—TSF PM_SIGNAL

E.16.2 Interface properties

See Table E.25 for details of the TSF PM_SIGNAL interface.

Table E.25—TSF PM_SIGNAL interface

Description Name Type Default Range
Carrier amplitude car_ampl Voltage — —
Carrier frequency car_freq Frequency — —
Phase deviation phase_dev PlaneAngle — —
Modulation frequency mod_freq Frequency — —
Modulation amplitude mod_ampl Voltage 1 V —

E.16.3 Notes

There are no special notes for this TSF.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 187 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.16.4 Model description

See Table E.26 for details of the TSF PM_SIGNAL model.

Table E.26—TSF PM_SIGNAL model

Name Type Terminal Inputs Output Formula
PM_Signal

PM

Signal [Out] — PM_SIGNAL —
amplitude car_ampl — —
carrierFrequency car_freq — —
phaseDeviation phase_dev — —
Signal [In] PModulating_Signal — —

PModulating_Signal

Sinusoid

Signal [Out] — PM_Signal —
amplitude mod_ampl — —
frequency mod_freq — —
phase — — 0 rad

E.16.5 Rules

The output is given by Equation (E.4) and Equation (E.5).

e = Ecsin(ωct+kpEmsin(ωmt)) (E.4)

mf = kf(Εm/ωm) (E.5)

where

Ec is the carrier amplitude (unmodulated)
Em is the modulation amplitude
ωc is 2π × carrier frequency
ωm is 2π × modulating frequency
kp is the phase deviation

E.16.6 Example

See Figure E.26 for an example of PM_SIGNAL.

XML Static Signal Description:

<PM_SIGNAL name="PM_SIGNAL9" phase_dev="(pi*8)" car_ampl="1 V"
car_freq="100 kHz" mod_freq="1240 Hz" />

BS IEC 62529:2012

 IEC 62529:2012
 – 188 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Signal

-0.2

-0.4

-0.6

-0.8

-1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure E.26—PM_SIGNAL example

E.17 PULSED_AC_SIGNAL<type: Current|| Power|| Voltage>

E.17.1 Definition

A signal characterized by short duration periods of (sinusoidal) ac electrical potential. See Figure E.27.

PULSED_AC_SIGNAL

ac_ampl freq dc_offset

SUM

Pulsed_
AC_Signal

Constant

PAC_
DC_Offset

Sinusoid

PAC_AC_
Component

p_
de

la
y

TimedEvent

Pulse

p_
du

ra
tio

n

pr
f

p_
re

pe
tit

io
n

Figure E.27—TSF PULSED_AC_SIGNAL

E.17.2 Interface properties

See Table E.27 for details of the TSF PULSED_AC_SIGNAL interface.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 189 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table E.27—TSF PULSED_AC_SIGNAL interface

Description Name Type Default Range
AC Signal amplitude ac_ampl Physical — —
AC Signal frequency freq Frequency — —
DC Offset dc_offset Physical 0 —
Initial delay p_delay Time 0 s —
Pulse width p_duration Time — —
Pulse repetition frequency prf Frequency — —
Number of pulses p_repetition int 0 —

E.17.3 Notes

Default condition (where p_repetition = 0) is for continuously repeating pulses.

This model represents a pulsed ac signal with a permanent dc offset. An alternative model may be created
where only the pulses have a dc offset.

E.17.4 Model description

See Table E.28 for details of the TSF PULSED_AC_SIGNAL model.

Table E.28—TSF PULSED_AC_SIGNAL model

Name Type Terminal Inputs Output Formula
Pulsed_AC_Signal

Sum

Signal
[Out]

— PULSED_AC_SIGNAL —

Signal [In] PAC_DC_Offset — —
Signal [In] PAC_AC_Component — —

PAC_AC_Component

Sinusoid

Signal
[Out]

— Pulsed_AC_Signal —

amplitude ac_ampl — —
frequency freq — —
phase — 0 rad
Gate [In] Pulse — —

PAC_DC_Offset

Constant

Signal
[Out]

— Pulsed_AC_Signal —

amplitude dc_offset — —
Pulse

TimedEvent

Event
[Out]

— PAC_AC-Component —

delay p_delay — —
duration p_duration — —
period — — 1/prf
repetition p_repetition — —

E.17.5 Rules

For this signal, the allowable types are Voltage, Current, and Power. All types must be consistent. Thus, for
example, if the ac signal amplitude is specified in volts, then the dc offset must also be specified in volts.

BS IEC 62529:2012

 IEC 62529:2012
 – 190 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.17.6 Example

See Figure E.28 for an example of PULSED_AC_SIGNAL.

XML Static Signal Description:

<PULSED_AC_SIGNAL name="PULSED_AC_SIGNAL11" dc_offset="0.5 V"
p_delay="7 ms" p_duration="3 ms" p_period="5 ms" p_repetition="10" />

Signal

-0.5

0.0

0.5

1.0

1.5

Figure E.28—PULSED_AC_SIGNAL example

E.18 PULSED_AC_TRAIN<type: Voltage|| Current|| Power>

E.18.1 Definition

A signal characterized by a train of pulses of sinusoidal electrical ac activity with different durations and
amplitudes. See Figure E.29.

PULSED_AC_TRAIN

ac_ampl freq pulse_train dc_offset

SUM

Pulsed_
AC_Train

Constant

PACT_DC_
Offset

PulseTrain

Pulsed_AC

repetition = 1

Sinusoid

PACT_AC_
Component

Figure E.29—TSF PULSED_AC_TRAIN

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 191 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.18.2 Interface properties

See Table E.29 for details of the TSF PULSED_AC_TRAIN interface.

Table E.29—TSF PULSED_AC_TRAIN interface

Description Name Type Default Range
AC amplitude ac_ampl Physical — —
AC frequency freq Frequency — —
DC Offset dc_offset Physical 0 —
Pulse train pulse_train PulseDefns — —

E.18.3 Notes

This model represents a pulsed ac train with a permanent dc offset. An alternative model may be created
where only the pulses have a dc offset.

E.18.4 Model description

See Table E.30 for details of the TSF PULSED_AC_TRAIN model.

Table E.30—TSF PULSED_AC_TRAIN model

Name Type Terminal Inputs Output Formula
Pulsed_AC_Train

Sum

Signal
[Out]

— PULSED_AC_TRAIN —

Signal [In] Pulsed_AC — —
Signal [In] PACT_DC_Offset — —

Pulsed_AC

PulseTrain

Signal
[Out]

— Pulsed_AC_Train —

pulses pulse_train — —
repetition — — 1
Signal [In] PACT_AC_Component — —

PACT_DC_Offset

Constant

Signal
[Out]

— Pulsed_AC_Train —

amplitude dc_offset — —
PACT_AC_Component

Sinusoid

Signal
[Out]

— Pulsed_AC —

amplitude ac_ampl — —
frequency freq — —
phase — — 0 rad

E.18.5 Rules

For this signal, the allowable types are Voltage, Current, and Power. All types must be consistent. Thus, for
example, if ac amplitude is specified in volts, then the dc offset must also be specified in volts.

BS IEC 62529:2012

 IEC 62529:2012
 – 192 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.18.6 Example

See Figure E.30 for an example of PULSED_AC_TRAIN.

XML Static Signal Description:

<PULSED_AC_TRAIN name="PULSED_AC_TRAIN9" dc_offset="1.1 V" freq="150
Hz" pulse_train="(0.1,0.125,1), (0.2,0.125,1)" />

Signal

-1

0

1

2

3

4

Figure E.30—PULSED_AC_TRAIN example

E.19 PULSED_DC_SIGNAL<type: Voltage|| Current|| Power>

E.19.1 Definition

A signal characterized by a train of pulses of electrical dc activity with different durations and amplitudes
with an optional ac component. See Figure E.31.

PULSED_DC_SIGNAL

dc_ampl ac_ampl freq

SUM

Pulsed_
DC_Signal

Sinusoid

PDC_AC_
Component

Constant

PDC_
DC_Level

p_
de

la
y

TimedEvent

PDC_Pulse

p_
du

ra
tio

n

pr
f

p_
re

pe
tit

io
n

Figure E.31—TSF PULSED_DC_SIGNAL

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 193 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.19.2 Interface properties

See Table E.31 for details of the TSF PULSED_DC_SIGNAL interface.

Table E.31—TSF PULSED_DC_SIGNAL interface

Description Name Type Default Range
DC level dc_ampl Physical — —

AC Component amplitude ac_ampl Physical 0 —
AC Component frequency freq Frequency 0 Hz —
Delay before first pulse p_delay Time 0 s —
Pulse width p_duration Time — —
Pulse repetition frequency prf Frequency — —
Number of pulses p_repetition int 0 —

E.19.3 Notes

Default condition (where p_repetition = 0) is for continuously repeating pulses.

This model represents a pulsed dc signal with a permanent ac component (ripple). An alternative model
may be created where only the pulses have an ac component.

E.19.4 Model description

See Table E.32 for details of the TSF PULSED_DC_SIGNAL model.

Table E.32—TSF PULSED_DC_SIGNAL model

Name Type Terminal Inputs Output Formula
Pulsed_DC_Signal

Sum

Signal
[Out]

— PULSED_DC_SIGNAL —

Signal [In] PDC_DC_Level — —
Signal [In] PDC_AC_Component — —

PDC_DC_Level

Constant

Signal
[Out]

— Pulsed_DC_Signal —

amplitude dc_ampl — —
Gate[In] PDC_Pulse — —

PDC_AC_Component

Sinusoid

Signal
[Out]

— Pulsed_DC_Signal —

amplitude ac_ampl — —
frequency freq — —
phase — 0 rad

PDC_Pulse

TimedEvent

Event
[Out]

— PDC_DC_Level —

delay p_delay — —
duration p_duration — —
period — — 1/prf
repetition p_repetition — —

E.19.5 Rules

For this signal, the allowable types are Voltage, Current, and Power. All types must be consistent. Thus, for
example, if a dc level is specified in volts, then the ac component amplitude must also be specified in volts.

BS IEC 62529:2012

 IEC 62529:2012
 – 194 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.19.6 Example

See Figure E.32 for an example of PULSED_DC_SIGNAL.

XML Static Signal Description:

<PULSED_DC_SIGNAL name="PULSED_DC_SIGNAL11" ac_ampl="0.2" dc_ampl="1"
freq="1 kHz" p_delay="0.02" p_duration="6 ms" p_period="10 ms"
p_repetition="5" />

Signal

-0.5

0.0

0.5

1.0

1.5

Figure E.32—PULSED_DC_SIGNAL example

E.20 PULSED_DC_TRAIN<type: Voltage|| Current|| Power>

E.20.1 Definition

A signal characterized by a train of different, short-duration periods of dc electrical activity. See
Figure E.33.

PULSED_DC_TRAIN

dc_ampl pulse_train ac_ampl freq

SUM

Pulsed_
DC_Train

Sinusoid

PDCT_AC_
Component

PulseTrain

PDCT_
Pulsed_DC

repetition = 1

Constant

PDCT_
DC_ Level

Figure E.33—TSF PULSED_DC_TRAIN

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 195 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.20.2 Interface properties

See Table E.33 for details of the TSF PULSED_DC_TRAIN interface.

Table E.33—TSF PULSED_DC_TRAIN interface

Description Name Type Default Range
DC level dc_ampl Physical — —
Pulse train pulse_train PulseDefns — —
AC Component amplitude ac_ampl Physical 0 —
AC Component frequency freq Frequency 0 Hz —

E.20.3 Notes

For this signal, the allowable types are Voltage, Current, and Power. All types must be consistent. Thus, for
example, if dc level is specified in volts, then the ac component amplitude must also be specified in volts.

This model represents a pulsed dc train with a permanent ac component (ripple). An alternative model may
be created where only the pulses) have an ac component.

E.20.4 Model description

See Table E.34 for details of the TSF PULSED_DC_TRAIN model.

Table E.34—TSF PULSED_DC_TRAIN model

Name Type Terminal Inputs Output Formula
Pulsed_DC_Train

Sum

Signal
[Out]

— PULSED_DC_TRAI
N

—

Signal [In] PDCT_Pulsed_DC — —
Signal [In] PDCT_AC_Component — —

PDCT_Pulsed_DC

PulseTrain

Signal
[Out]

— Pulsed_DC_Train —

pulses pulse_train — —
repetition — 1
Signal [In] PDCT_DCLevel — —

PDCT_AC_Componen
t

Sinusoid

Signal
[Out]

— Pulsed_DC_Train —

amplitude ac_ampl — —
frequency freq — —
phase — — 0 rad

PDCT_DC_Level Constant Signal
[Out]

— PDCT_Pulsed_DC —

amplitude dc_ampl — —

E.20.5 Rules

There are no special rules for this TSF.

BS IEC 62529:2012

 IEC 62529:2012
 – 196 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.20.6 Example

See Figure E.33 for an example of PULSED_DC_TRAIN.

XML Static Signal Description:

<PULSED_DC_TRAIN name="PULSED_DC_TRAIN6" ac_ampl="100 mV" freq="1 kHz"
pulse_train="(0.1,0.125,1), (0.2,0.125,1)" />

Signal

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

Figure E.34—PULSED_DC_TRAIN example

E.21 RADAR_RX_SIGNAL

E.21.1 Definition

An appropriate delayed signal response to an input radar signal. See Figure E.35.

RADAR_RX_SIGNAL

reply_eff atten

Attenuator

Car_Pulse

ProbabilityEvent

Suppressed_
Event_Train

co
nd

iti
on

 =
 G

E

RMS

Event_Train

SignalDelay

Radar_RX_
Signal

ra
ng

e

ra
ng

e_
ra

te

ra
ng

e_
ac

cn

radar_TX_Signal no
m

in
al

 =
 0

.1

ga
te

Ti
m

e
=

10
 n

s

Figure E.35—TSF RADAR_RX_SIGNAL

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 197 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.21.2 Interface properties

See Table E.35 for details of the TSF RADAR_RX_SIGNAL interface.

Table E.35—TSF RADAR_RX_SIGNAL interface

Description Name Type Default Range
Attenuation atten Ratio 1 —
Range of simulated target range Distance — —
Rate of change of rate change range_accn Acceleration 0 —
Rate of change of target range range_rate Speed 0 —
Proportion of Tx pulses returned reply_eff Ratio 100% 0 – 100%
Transmitted Radar Signal radar_TX_Signal SignalFunction — —

E.21.3 Notes

This annex describes a transmitted signal as a reference. Thus, the TSF library provides a description for
both the transmitted (i.e., Radar_TX_Signal) and received (i.e., Radar_RX_Signal) signals.

The Radar_RX_Signal takes an input radar signal and delays the signal response. In addition, the signal
does not respond to all transmitted radar pulses (a feature that gives rise to a reply efficiency).

To achieve reply efficiency, the Radar_RX_Signal must detect the incoming radar pulses and suppress
some individual pulses. To detect a radar pulse, an RMS monitor is used with a selected gate time. This
monitoring provides an event while the continuous rms value is greater than a nominal threshold value. The
RMS monitor is used solely to detect a signal.

The default values for range_rate and range_accn (i.e., range_rate = 0 and range_accn = 0) represent a
stationary target.

E.21.4 Model description

See Table E.36 for details of the TSF RADAR_RX_SIGNAL model.

Table E.36—TSF RADAR_RX_SIGNAL model

Name Type Terminal Inputs Output Formula
Radar_RX_Signal

SignalDelay

Signal [Out] — RADAR_RX_SIGN
AL

—

acceleration — — (range_accn
*2/3.0e8)

delay — — (range
*2/3.0e8)

rate — — (range_rate
*2/3.0e8)

Signal [In] Car_Pulse — —
Car_Pulse

Attenuator

Signal [Out] — Radar_RX_Signal —
gain atten — —
Signal [In] radar_TX_Signal — —
Gate[In] Suppressed_Event

_Train
— —

BS IEC 62529:2012

 IEC 62529:2012
 – 198 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table E.36—TSF RADAR_RX_SIGNAL model (continued)

Name Type Terminal Inputs Output Formula
Suppressed_Event_
Train

ProbabilityEvent

Event [Out] — Car_Pulse —
seed — — 0
probability reply_eff — —
Signal [In] Event_Train — —

Event_Train

RMS

[Out] — Suppressed_Event_
Train

—

measuredVari
able

— — —

measurement — — —
measurements — — —
sample — — —
count — — —
gateTime — — 1.0e-8
nominal — — 0.1
condition — — GE
GO — — —
NOGO — — —
HI — — —
LO — — —
UL — — —
LL — — —
Signal [As] — — —
Signal [In] radar_TX_Signal — —

E.21.5 Rules

For this signal, the allowable types are Voltage, Current, and Power. However, for this signal, the type is
determined by the RADAR_TX_SIGNAL to which it is referenced.

E.21.6 Example

See Figure E.36 for an example of RADAR_RX_SIGNAL.

XML Static Signal Description:

<RADAR_RX_SIGNAL name="RADAR_RX_SIGNAL2" atten="0.6" range="2 nmi"
range_rate="650 kt" In="RADAR_TX_SIGNAL10"/>
<RADAR_TX_SIGNAL name="RADAR_TX_SIGNAL10" ampl="1" delay="0"
duration="10 us" freq="100 MHz" period="120 us" />

-0.2

-0.4

-0.6

-0.8

-1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure E.36—RADAR_RX_SIGNAL example

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 199 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.22 RADAR_TX_SIGNAL<type: Current|| Voltage|| Power>

E.22.1 Definition

A pulsed ac signal used as a reference for received radar signals (i.e., Radar_RX_Signal). See Figure E.37.

RADAR_TX_SIGNAL

ampl freq

Sinusoid

Radar_TX_
Signal

de
la

y

TimedEvent

RTX_
Event_Train

du
ra

tio
n

pr
f

re
pe

tit
io

n

Figure E.37—TSF RADAR_TX_SIGNAL

E.22.2 Interface properties

See Table E.37 for details of the TSF RADAR_TX_SIGNAL interface.

Table E.37—TSF RADAR_TX_SIGNAL interface

Description Name Type Default Range
Tx signal amplitude ampl Physical — —
Tx signal frequency freq Frequency — —
Initial delay delay Time 0 s —
Pulse duration duration Time — —
Pulse repetition frequency prf Frequency — —
Number of pulses repetition int 0 —

E.22.3 Notes

Default condition (where repetition = 0) is for continuously repeating pulses.

E.22.4 Model description

See Table E.38 for details of the TSF RADAR_TX_SIGNAL model.

BS IEC 62529:2012

 IEC 62529:2012
 – 200 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table E.38—TSF RADAR_TX_SIGNAL model

Name Type Terminal Inputs Output Formula
RADAR_TX_Signal

Sinusoid

Signal [Out] — RADAR_TX_SIGNAL —
amplitude ampl — —
frequency freq — —
phase — — 0 rad
Gate[In] RTX_Event_Train — —

RTX_Event_Train

TimedEvent

Event [Out] — RADAR_TX_Signal —
delay delay — —
duration duration — —
period — — 1/prf
repetition repetition — —

E.22.5 Rules

For this signal, the allowable types are Voltage, Current, and Power.

E.22.6 Example

See Figure E.38 for an example of RADAR_TX_SIGNAL.

XML Static Signal Description:

<RADAR_TX_SIGNAL name="RADAR_TX_SIGNAL10" ampl="1" delay="0"
duration="10 us" freq="100 MHz" prf="120 us" />

Signal

-0.2

-0.4

-0.6

-0.8

-1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure E.38—RADAR_TX_SIGNAL example

E.23 RAMP_SIGNAL<type: Voltage|| Current|| Power>

E.23.1 Definition

A periodic wave whose instantaneous value varies alternately and linearly between two specified values
(i.e., initial and alternate). See Figure E.39.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 201 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Ramp_
Component

Ramp

Ramp_
DC_Offset

Constant

Ramp_Signal

Sum

RAMP_SIGNAL

ampl period rise_time dc_offset

Figure E.39—TSF RAMP_SIGNAL

E.23.2 Interface properties

See Table E.39 for details of the TSF RAMP_SIGNAL interface.

Table E.39—TSF RAMP_SIGNAL interface

Description Name Type Default Range
Ramp signal amplitude ampl Physical — —
DC Offset dc_offset Physical 0 —
Ramp signal period period Time — —
Ramp signal time to rise rise_time Time — —

E.23.3 Notes

There are no special notes for this TSF.

E.23.4 Model description

See Table E.40 for details of the TSF RAMP_SIGNAL model.

Table E.40—TSF RAMP_SIGNAL model

Name Type Terminal Inputs Output Formula
Ramp_Signal

Sum

Signal [Out] — RAMP_SIGNAL —
Signal [In] Ramp_Component — —
Signal [In] Ramp_DC_Offset — —

Ramp_Component

Ramp

Signal [Out] — Ramp_Signal —
amplitude ampl — —
period period — —
riseTime rise_time — —

Ramp-_DC_Offset Constant Signal [Out] — Ramp_Signal —
amplitude dc_offset — —

BS IEC 62529:2012

 IEC 62529:2012
 – 202 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.23.5 Rules

For this signal, the allowable types are Voltage, Current, and Power. All types must be consistent. Thus, for
example, if the ramp signal amplitude is specified in volts, then the dc offset must also be specified in volts.

E.23.6 Example

See Figure E.40 for an example of RAMP_SIGNAL.

XML Static Signal Description:

<RAMP_SIGNAL name="RAMP_SIGNAL7" dc_offset="0.5 V" period="1 kHz"
rise_time="1 ms" />

Signal

0.0

0.5

1.0

1.5

Figure E.40—RAMP_SIGNAL example

E.24 RANDOM_NOISE

E.24.1 Definition

Transient disturbances occurring unpredictably, except in a statistical sense. See Figure E.41.

Noise

Noise

ampl freq seed

RANDOM_NOISE

Figure E.41—TSF RANDOM_NOISE

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 203 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.24.2 Interface properties

See Table E.41 for details of the TSF RANDOM_NOISE interface.

Table E.41—TSF RANDOM_NOISE interface

Description Name Type Default Range
Noise signal amplitude ampl Physical — —
Pseudo random noise frequency freq Frequency 0 —
Pseudo random noise seed seed int 0 —

E.24.3 Notes

The default for random noise is white noise (characterized by a flat frequency spectrum in the frequency
range of interest). White noise needs only noise signal amplitude to be defined.

For repeatable pseudorandom noise, both the frequency upper bound and seed need to be specified.
Specifying the frequency upper bound provides noise in the frequency band bounded by the freq value. If
no seed is specified, this signal may not be repeatable.

E.24.4 Model description

See Table E.42 for details of the TSF RANDOM_NOISE model.

Table E.42—TSF RANDOM_NOISE model

Name Type Terminal Inputs Output Formula
Noise

Noise

Signal [Out] — RANDOM_NOISE —
amplitude ampl — —
seed seed — —
frequency freq — —

E.24.5 Rules

For this signal, the allowable types are Voltage and Power.

E.24.6 Example

See Figure E.42 for an example of RANDOM_NOISE.

XML Static Signal Description:

<RANDOM_NOISE ampl="100 mV" freq="500 Hz" seed="0" />

BS IEC 62529:2012

 IEC 62529:2012
 – 204 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Signal

-0.02

-0.04

-0.06

-0.08

-0.10

0.00

0.02

0.04

0.06

0.08

0.10

Figure E.42—RANDOM_NOISE example

E.25 RESOLVER

E.25.1 Definition

Two ac sine wave voltages whose relationships of amplitude represent the rotation of a shaft position of an
electromechanical transducer. See Figure E.43.

FourWireResolver

Four_Wire_
Resolver

Product

S2

Sinusoid

Field2

Product

S1

Sinusoid

Field1

Sinusoid

Rotor

ze
ro

_i
nd

ex

am
pl

fre
q

an
gl

e

an
gl

e_
ra

te

tra
ns

_r
at

io

RESOLVER

channelWidth = 2

angle

angle + π/2

Figure E.43—TSF RESOLVER

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 205 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.25.2 Interface properties

See Table E.43 for details of the TSF RESOLVER interface.

Table E.43—TSF RESOLVER interface

Description Name Type Default Range
Shaft angle angle PlaneAngle 0 —
Reference amplitude ampl Voltage 26 V 26 V-119 V
Reference frequency freq Frequency 400 Hz 30 Hz – 54 kHz
Zero index zero_index PlaneAngle 0 rad 0 – 2π rad
Shaft angle rate angle_rate Frequency 0 Hz —
Transformer Ratio trans_ratio Ratio 1 —

E.25.3 Notes

This model does not consider the effects of angular velocity of the rotor and the quadrature voltages
generated in the secondaries.

E.25.4 Model description

See Table E.44 for details of the TSF RESOLVER model.

Table E.44—TSF RESOLVER model

Name Type Terminal Inputs Output Formula
Four_Wire_Resolver

FourWireResolver

Signal [Out] — RESOLVER —
channelWidth — — 2
Signal [In] S1 — —
Signal [In] S2 — —

S1

Product

Signal [Out] — Four_Wire_Resolver —
Signal [In] Rotor — —
Signal [In] Field1 — —

S2

Product

Signal [Out] — Four_Wire_Resolver —
Signal [In] Rotor — —
Signal [In] Field2 — —

Rotor

Sinusoid

Signal [Out] — S1 S2 —
amplitude ampl — —
frequency freq — —
phase zero_index — —

Field1

Sinusoid

Signal [Out] — S1 —
amplitude — — trans_ratio
frequency — — (angle_rate)
phase angle — —

Field2

Sinusoid

Signal [Out] — S1 —
amplitude — — trans_ratio
frequency — — (angle_rate)
phase — — angle+ π/2

BS IEC 62529:2012

 IEC 62529:2012
 – 206 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.25.5 Rules

The outputs of the resolver secondaries are given by Equation (E.6) (for sine) and either Equation (E.7) or
Equation (E.8) (for cosine).

Sine output

es1 = KErsinθ sin(2πfrt+φ) (E.6)

Cosine output

es2 = KErcosθ sin(2πfrt+φ) (E.7)

or

es2 = KErsin(θ+π/2)sin(2πfrt+φ) (E.8)

where

K is the transformer ratio (trans_ratio), assuming K to be the same for both secondaries
Er is the reference amplitude in the primary (ampl)
θ is angular displacement of the rotor (angle)
fr is the reference frequency of the signal in the primary (freq)
ϕ is the zero index position of the rotor (zero_index)

Thus, the operation of the resolver may be modeled as the product of two signals for each output:

Sine output

es1 = (Ersin(2πfrt+φ)) × (Ksinθ) (E.9)

Cosine output

es2 = (Ersin(2πfrt+φ)) × (Ksin(θ+π/2)) (E.10)

E.25.6 Example

See Figure E.44 for an example of RESOLVER.

XML Static Signal Description:

<RESOLVER name="RESOLVER9" angle_rate="5 Hz" freq="100 Hz" />

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 207 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

-5

-10

-15

-20

-25

-30

0

5

10

15

20

25

30

Figure E.44—RESOLVER example

E.26 RS_232

E.26.1 Definition

A serial databus signal that transmits and receives strings of characters and operates according to TIA-232
[B19].

E.26.2 Interface properties

See Table E.45 for details of the TSF RS_232 interface.

Table E.45—TSF RS_232 interface

Description Name Type Default Range
Data Word data_word string
Baud Rate baud_rate int 9600 75| 110| 134| 150| 300| 600| 1200| 1800| 2400| 4800|

7200| 9600| 14400| 19200| 38400| 57600| 115200
Data Bits data_bits int 8 4| 5| 6| 7| 8
Parity parity enumeration None Even| Odd| None| Mark| Space
Stop Bits stop_bits enumeration 1 1| 1.5| 2
Flow Control flow_control enumeration None None| Hardware| Xon-Xoff
NOTE—The range of values for baud_rate and data_bits is for information only. Any value may be used with this
model.

E.26.3 Notes

When using the TSF RS_232 model, only the active data connection (and its ground) are considered, i.e.,
the connections hi and lo may be used. Some or all of the other control connections required by the
TIA-232 specification may need to physically connected, but are not considered by this TSF.

BS IEC 62529:2012

 IEC 62529:2012
 – 208 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.26.4 Model description

See Table E.46 for details of the TSF RS_232 model.

Table E.46—TSF RS_232 model

Name Type Terminal Inputs Output Formula
TIA_EIA_232

TIA/EIA-232

Signal [Out] — RS_232 —
baud_rate baud_rate — —
data_bits data_bits — —
parity parity — —
stop_bits stop_bits — —
flow_control flow_control — —
data_word data_word — —

E.26.5 Rules

For this signal, the data word supplied is transmitted via the serial bus connections according to the rules
specified in TIA-232 [B19]. Data received via the serial bus connections will be available when the signal
is used in a measurement.

E.27 SQUARE_WAVE<type: Current|| Voltage|| Power>

E.27.1 Definition

A periodic wave that alternately assumes one of two fixed values of amplitude for equal lengths of time.
See Figure E.45.

Square_
Wave_

Component

SquareWave

Square_
DC_ Offset

Constant

Square_Wave

Sum

SQUARE_WAVE

ampl period dc_offset

du
ty

C
yc

le
=

50
%

Figure E.45—TSF SQUARE_WAVE

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 209 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.27.2 Interface properties

See Table E.47 for details of the TSF SQUARE_WAVE interface.

Table E.47—TSF SQUARE_WAVE interface

Description Name Type Default Range
Square wave amplitude ampl Physical — —
Square wave period period Time — —
DC offset dc_offset Physical 0 —

E.27.3 Notes

There are no special notes for this TSF.

E.27.4 Model description

See Table E.48 for details of the TSF SQUARE_WAVE model.

Table E.48—TSF SQUARE_WAVE model

Name Type Terminal Inputs Output Formula
Square_Wave

Sum

Signal
[Out]

— SQUARE_WAVE —

Signal
[In]

Square_Wave_Component — —

Signal
[In]

Square_DC_Offset — —

Square_Wave_Component

SquareWave

Signal
[Out]

— Square_Wave —

amplitude ampl — —
period period — —
dutyCycle — — 50%

Square_DC_Offset

Constant

Signal
[Out]

— Square_Wave —

amplitude dc_offset — —

E.27.5 Rules

For this signal, the allowable types are Voltage, Current, and Power. All types must be consistent. Thus, for
example, if the square wave amplitude is specified in volts, then the dc offset must also be specified in
volts.

E.27.6 Example

See Figure E.46 for an example of SQUARE_WAVE.

XML Static Signal Description:

<SQUARE_WAVE name="SQUARE_WAVE6" ampl="1" dc_offset="500 mV" period="10
us" />

BS IEC 62529:2012

 IEC 62529:2012
 – 210 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Signal

-0.5

0.0

0.5

1.0

1.5

Figure E.46—SQUARE_WAVE example

E.28 SSR_INTERROGATION<type: Voltage|| Current|| Power>

E.28.1 Definition

Secondary surveillance radar (SSR) provides information to supplement the information obtained from a
primary radar. Governing documents for civilian air traffic control (ATC) are ARINC 572 [B2] and
ARINC 711-10 [B4] and for the military’s identification, friend or foe, (IFF) system, STANAG 4193
[B18]. An aircraft on-board transponder will sense an interrogation from a ground (or airborne) station on a
specific frequency (i.e., 1030 MHz) and will respond with coded signals on another frequency (i.e.,
1090 MHz). See Figure E.47.

SSR_INTERROGATION

ampl

Sinusoid

SSR_Carrier

freq = 1030 MHz

sl
s_

le
ve

l

sl
s_

de
v

p3
_l

ev
el

p3
_s

ta
rt

PulseTrain

PulseTrain

m
od

e

repetition = 1

conversion to SSR pulses

Figure E.47—TSF SSR_INTERROGATION

E.28.2 Interface properties

See Table E.49 for details of the TSF SSR_INTERROGATION interface.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 211 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table E.49—TSF SSR_INTERROGATION interface

Description Name Type Default Range
P1 amplitude ampl Physical — —
Interrogation mode mode enumeration 1 1 | 2 | 3 | A | B | C | D
P3 start time p3_start Time 3us 3 µs | 5 µs | 8 µs | 17 µs | 21 µs | 25 µs
P3 level p3_level Ratio 1 —
SLS deviation sls_dev Time 0 µs —
SLS level sls_level Ratio 1 —

E.28.3 Notes

The interrogation signal comprises three pulses, called P1, P2, and P3. See Table E.50. The normal spacing
between P1 and P2 is 2 µs. Normal spacing between P1 and P3 depends on the choice of mode.

While interrogators will repeat the interrogation sequence approximately every 2 ms and are capable of
interlacing several modes alternately (most commonly 3-A and C, known as Mode 3-C), the model is set up
for a single interrogation and thus allows each mode to be interrogated individually to verify the correct
response.

The interface allows for the indirect programming of the pulse information. The pulse attributes are not
directly entered as an array. The interface is used to select various SSR-specific parameters, which are then
converted by the interface into the appropriate pulse definitions.

Table E.50—SSR_INTERROGATION pulse descriptions

Pulse Start time (µs) Pulse width (µs) Level factor
P1 0 0.8 1
P2 2 + SLS Deviation 0.8 SLS Level
P3 Mode 1 3

Mode 2 5
Mode 3 8
Mode A 8
Mode B 17
Mode C 21
Mode D 25

0.8 P3 Level

The output is given by the following equation:

SSR_pulses = (0 µs, 0.8 µs, 1),
({0.000002+sls_dev}, 0. 8 µs, {sls_level}),
({p3_start}, 0.8 µs, {p3_level})

where

sls_dev is the SLS deviation from the interface properties
sls_level is the SLS level from the interface properties
p3_start is the P3 start time as defined by the interrogation mode (see Table E.51)
p3_level is the P3 level from the interface properties

Table E.51—Pulse P3 start times

BS IEC 62529:2012

 IEC 62529:2012
 – 212 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Interrogation mode
(mode)

P3 start time (p3_start)
(µs)

1 3
2 5
3 8
A 8
B 17
C 21
D 25

E.28.4 Model description

See Table E.52 for details of the TSF SSR_INTERROGATION model.

Table E.52—TSF SSR_INTERROGATION model

Name Type Terminal Inputs Output Formula
PulseTrain

PulseTrain

Signal [Out] — SSR_INTERROGATION
pulses — — SSR_pulses

See equation
repetition — — 1
Signal [In] SSR_Carrier — —

SSR_Carrier

Sinusoid

Signal [Out] — PulseTrain —
amplitude ampl — —
frequency — — 1030 MHz
phase — — 0 rad

E.28.5 Rules

For this signal, the allowable types are Voltage, Current, and Power.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 213 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.28.6 Example

See Figure E.48 for an example of SSR_INTERROGATION.

XML Static Signal Description:

<SSR_INTERROGATION name="SSR_INTERROGATION3" mode="3" p3_start="8 us"
p3_level="2" />

-0.2

-0.4

-0.6

-0.8

-1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure E.48—SSR_INTERROGATION example

E.29 SSR_RESPONSE<type: Voltage|| Current|| Power>

E.29.1 Definition

The transponder response to a valid SSR interrogation. It consists of an encoded pulse train. Each pulse
train consists of a number of data pulses. The number and position of these data pulses (after the start
pulse) are determined by the mode selected. There are 16 pulse positions in the pulse train; however,
the code or (height) information carried by the response will determine which pulses are present. See
Figure E.49.

BS IEC 62529:2012

 IEC 62529:2012
 – 214 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

PulseTrain

Pulse_Train_
Response

Sinusoid

Responder_
carrier_frequency

Signal Delay

SSR_Response_
Delay

AndEvent

SSR_Mode_
Detect

SignalDelay

P3_Detect

ssr_interrogation

SSR_RESPONSE

RMS

SSR_Detect

SignalDelay

P2_Detect

delay = 3µs

p3_start ampl pulses

freq = 1090 MHz

repetition = 1

ga
te

Ti
m

e
=

10
 n

s

no
m

in
al

 =
 0

.1

co
nd

iti
on

 =
 G

E

Figure E.49—TSF SSR_RESPONSE

E.29.2 Interface properties

See Table E.53 for details of the TSF SSR_RESPONSE interface.

Table E.53—TSF SSR_RESPONSE interface

Description Name Type Default Range
Carrier amplitude Ampl Physical — —
P3 pulse start time p3_start Time 3 us 3 µs | 5 µs | 8 µs | 17 µs |

21 µs | 25 µs
SSR Response pulse train Pulses PulseDefns [] —
Transmitted Interrogation signal ssr_Interrogation SignalFunction — —

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 215 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.29.3 Notes

The response is initiated 3 µs after the third pulse of a valid interrogation is received.

The parameters of the array of pulses are defined in Table E.54. Pulse F1 and pulse F2 must be present.
Pulse X is not currently used and should be omitted. Other pulses may be specified as required.

Table E.54—SSR_RESPONSE pulse descriptions

Pulse Start_Time
(µs)

Pulse_Width
(µs) Level_Factor

F1 0 0.45 1
C1 1.45 0.45 1
A1 2.9 0.45 1
C2 4.35 0.45 1
A2 5.8 0.45 1
C4 7.25 0.45 1
A4 8.7 0.45 1
X 10.15 0.45 1
B1 11.6 0.45 1
D1 13.05 0.45 1
B2 14.5 0.45 1
D2 15.95 0.45 1
B4 17.4 0.45 1
D4 18.85 0.45 1
F2 20.3 0.45 1
P1 24.65 0.45 1

E.29.4 Model description

See Table E.55 for details of the TSF SSR_RESPONSE model.

Table E.55—TSF SSR_RESPONSE model

Name Type Terminal Inputs Output Formula
Pulse_Train_Response

PulseTrain

Signal [Out] — SSR_RESPONSE —
 — — —
pulses pulses — —
repetition — — 1
Signal [In] Responder_carrier

_frequency
— —

Sync [In] SSR_Response_
Delay

— —

Responder_carrier_
frequency

Sinusoid

Signal [Out] — Pulse_Train_Response —
amplitude ampl — —
frequency — — 1090

MHz
phase — — 0 rad

BS IEC 62529:2012

 IEC 62529:2012
 – 216 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table E.55—TSF SSR_RESPONSE model (continued)

Name Type Terminal Inputs Output Formula
SSR_Response_Delay

SignalDelay

Signal [Out] — Pulse_Train_Response —
 — — —
acceleration — — 0 Hz
delay — — 3 µs
rate — — 0%
Signal [In] SSR)Mode_Detect — —

SSR_Mode_Detect

AndEvent

Event [Out] — SSR_Response_Delay —
Signal [In] SSR_Detect — —
Signal [In] P2_Detect — —
Signal [In] P3_Detect — —

P3_Detect

SignalDelay

Signal [Out] — SSR_Mode_Detect —
acceleration — — 0 Hz
delay p3_start — —
rate — — 0%
Signal [In] SSR_Detect — —

P2_Detect

SignalDelay

Signal [Out] — SSR_Mode_Detect —
acceleration — — 0 Hz
delay — — p3_start -

2.0e-6
rate — — 0%
Signal [In] SSR_Detect — —

SSR_Detect

RMS

[Out] — SSR_Mode_Detect,
P2_Detect, P3_Detect

—

measuredVari
able

— — —

measurement — — —
measurements — — —
sample — — —
count — — —
gateTime — — 10.0e-9 s
nominal — — 0.1
condition — — GE
GO — — —
NOGO — — —
HI — — —
LO — — —
UL — — —
LL — — —
Signal [As] — — —
Signal [In] ssr_interrogation — —

E.29.5 Rules

For this signal, the allowable types are Voltage, Current, and Power. The type selected must agree with the
type of the SSR_INTERROGATION signal that triggers the SSR_RESPONSE.

E.29.6 Example

See Figure E.50 for an example of SSR_RESPONSE.

XML Static Signal Description:

<SSR_RESPONSE name="SSR_RESPONSE4" p3_start="8 us"
pulses="(0,0.00000045,1), (0.00000145,0.00000045,1),

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 217 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

(0.0000029,0.00000045,1), (0.00000435,0.00000045,1),
(0.0000058,0.00000045,1), (0.00000725,0.00000045,1),
(0.0000087,0.00000045,1), (0.00001015,0.00000045,1),
(0.0000116,0.00000045,1), (0.00001305,0.00000045,1),
(0.0000145,0.00000045,1), (0.00001595,0.00000045,1),
(0.0000174,0.00000045,1), (0.00001885,0.00000045,1),
(0.0000203,0.00000045,1), (0.00002465,0.00000045,1)"
In="SSR_INTERROGATION3"/>
<SSR_INTERROGATION name="SSR_INTERROGATION3" mode="3" p3_start="8 us"
p3_level="2" />

-0.5

-1.0

-1.5

-2.0

0.0

0.5

1.0

1.5

2.0

Figure E.50—SSR_RESPONSE example

E.30 STEP_SIGNAL

E.30.1 Definition

A change of dc electrical potential from one level to another, either positive or negative. See Figure E.51.

Step_
Component

Step

Step_Signal

Sum

Step_
DC_Offset

Constant

STEP_SIGNAL

ampl start_time dc_offset

Figure E.51—TSF STEP_SIGNAL

BS IEC 62529:2012

 IEC 62529:2012
 – 218 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.30.2 Interface properties

See Table E.56 for details of the TSF STEP_SIGNAL interface.

Table E.56—TSF STEP_SIGNAL interface

Description Name Type Default Range
Step size ampl Voltage — —
DC Offset dc_offset Voltage 0 V —
Step time start_time Time — —

E.30.3 Notes

There are no special notes for this TSF.

E.30.4 Model description

See Table E.57 for details of the TSF STEP_SIGNAL model.

Table E.57—TSF STEP_SIGNAL model

Name Type Terminal Inputs Output Formula
Step_Signal

Sum

Signal [Out] — STEP_SIGNAL —
Signal [In] Step — —
Signal [In] Step_DC_Offset — —

Step_Component

Step

Signal [Out] — Step_Signal —
amplitude ampl — —
startTime start_time — —

Step_DC_Offset Constant Signal [Out] — Step_Signal —
amplitude dc_offset —

E.30.5 Rules

There are no special rules for this TSF.

E.30.6 Example

See Figure E.52 for an example of STEP_SIGNAL.

XML Static Signal Description:

<STEP_SIGNAL name="STEP_SIGNAL4" ampl="1 V" dc_offset="1 V"
start_time="0.5 s" />

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 219 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Signal

0.0

0.5

1.0

1.5

2.0

Figure E.52—STEP_SIGNAL example

E.31 SUP_CAR_SIGNAL

E.31.1 Definition

An amplitude-modulated signal in which the carrier is suppressed. See Figure E.53.

SUPP_CAR_SIGNAL

car_ampl car_freq mod_freq mod_depth

AM

SUP_
AM_ Signal

Negate

SUP_
Inverted_Carrier

Sinusoid

SUP_Carrier
Sum

Suppressed_
Carrier_Signal

Sinusoid

SUP_Modulation

amplitude = 1V

Figure E.53—TSF SUP_CAR_SIGNAL

E.31.2 Interface properties

See Table E.58 for details of the TSF SUP_CAR_SIGNAL interface.

BS IEC 62529:2012

 IEC 62529:2012
 – 220 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table E.58—TSF SUP_CAR_SIGNAL interface

Description Name Type Default Range
Carrier amplitude car_ampl Voltage — —
Carrier frequency car_freq Frequency — —
Modulation frequency mod_freq Frequency — —
Depth of modulation mod_depth Ratio — —

E.31.3 Notes

There are no special notes for this TSF.

E.31.4 Model description

See Table E.59 for details of the TSF SUP_CAR_SIGNAL model.

Table E.59—TSF SUP_CAR_SIGNAL model

Name Type Terminal Inputs Output Formula
Suppressed_Carrier_
Signal

Sum

Signal
[Out]

— SUP_CAR_SIGNAL —

Signal [In] SUP_Inverted
Carrier

— —

Signal [In] SUP_AM_Signal — —
SUP_Inverted_Carrier

Negate

Signal
[Out]

— Suppressed_Carrier_
Signal

—

Signal [In] SUP_Carrier — —
SUP_AM_Signal

AM

Signal
[Out]

— Suppressed_Carrier_
Signal

—

modIndex mod_depth — —
Carrier [In] SUP_Carrier — —
Signal [In] SUP_Modulation — —

SUP_Modulation

Sinusoid

Signal
[Out]

— SUP_AM_Signal —

amplitude — — 1 V (see
NOTE)

frequency mod_freq — —
phase — — 0 rad

SUP_Carrier

Sinusoid

Signal
[Out]

— SUP_Inverted_Carrier
, SUP_AM_Signal

—

amplitude car_ampl — —
frequency car_freq — —
phase — — 0 rad

NOTE—The BSC requires a unity value for the amplitude of the modulating signal.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 221 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.31.5 Rules

The output is defined by Equation (E.11).

e = (EmEc/2)cos(ωc+ωm)t+(EmEc/2)cos(ωc-ωm)t (E.11)

where

Em is the modulation signal amplitude
Ec is the carrier amplitude (unmodulated)
ωm is 2π × modulating frequency
ωc is 2π × carrier frequency

E.31.6 Example

See Figure E.54 for an example of SUP_CAR_SIGNAL.

XML Static Signal Description:

<SUP_CAR_SIGNAL name="SUP_CAR_SIGNAL8" car_ampl="1" car_freq="10 kHz"
mod_freq="1 kHz" mod_index="0.3" />

Signal

-0.05

-0.10

-0.15

-0.20

-0.25

-0.30

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure E.54—SUP_CAR_SIGNAL example

E.32 SYNCHRO

E.32.1 Definition

Three ac sinusoid voltages whose relationships of amplitude represent the rotational shaft position of an
electromechanical transducer. See Figure E.55.

BS IEC 62529:2012

 IEC 62529:2012
 – 222 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

ThreePhaseSynchro

ThreePhaseSynchro_
Output

Product

TPS_S2

Sinusoid

TPS_Field2

Product

TPS_S1

Sinusoid

TPS_Field1

Sinusoid

TPS_Rotor

ze
ro

_i
nd

ex

am
pl

fre
q

an
gl

e

an
gl

e_
ra

te

tra
ns

_r
at

io

SYNCHRO

channelWidth = 3

Product

TPS_S3

Sinusoid

TPS_Field3

angle – (2π/3)

angle + (2π/3)

angle

Figure E.55—TSF SYNCHRO

E.32.2 Interface properties

See Table E.60 for details of the TSF SYNCHRO interface.

Table E.60—TSF SYNCHRO interface

Description Name Type Default Range
Shaft angle angle PlaneAngle 0 —
Reference amplitude ampl Voltage 26 V 26 V – 119 V
Reference frequency freq Frequency 400 Hz 30 Hz – 54 kHz
Zero index zero_index PlaneAngle 0 rad 0 – 2π rad
Shaft angle rate angle_rate Frequency 0 Hz —
Transformer ratio trans_ratio Ratio 1 —

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 223 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.32.3 Notes

This model does not consider the effects of angular velocity of the rotor and the quadrature voltages
generated in the stator windings.

E.32.4 Model description

See Table E.61 for details of the TSF SYNCHRO model.

Table E.61—TSF SYNCHRO model

Name Type Terminal Inputs Output Formula
ThreePhaseSyncro_
Output

ThreePhaseSyncro

Signal [Out] — SYNCHRO —
channelWidth — — 3
Signal [In] TPS_S1 — —
Signal [In] TPS_S2 — —
Signal [In] TPS_S3 — —

TPS_S1

Product

Signal [Out] — ThreePhaseSyncro_Output —
Signal [In] TPS_Field1 — —
Signal [In] TPS_Rotor — —

TPS_S2

Product

Signal [Out] — ThreePhaseSyncro_Output —
Signal [In] TPS_Field2 — —
Signal [In] TPS_Rotor — —

TPS_S3

Product

Signal [Out] — ThreePhaseSyncro_Output —
Signal [In] TPS_Field3 — —
Signal [In] TPS_Rotor — —

TPS_Field1

Sinusoid

Signal [Out] — S1 —
amplitude trans_ratio — —
frequency angle_rate — —
phase — — angle -

(2π /3)
TPS_Field2

Sinusoid

Signal [Out] — TPS_S2 —
amplitude trans_ratio — —
frequency angle_rate — —
phase angle — —

TPS_Field3

Sinusoid

Signal [Out] — TPS_S3 —
amplitude trans_ratio — —
frequency angle_rate — —
phase — — angle +

(2π/3)
TPS_Rotor

Sinusoid

Signal [Out] — TPS_S2, TPS_S1, TPS_S3 —
amplitude ampl — —
frequency freq — —
phase zero_index — —

BS IEC 62529:2012

 IEC 62529:2012
 – 224 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.32.5 Rules

The outputs of the synchro stator windings are given by Equation (E.12), Equation (E.13), and
Equation (E.14).

S1

Es1 = KErsin(θ-2Π/3)sin(2πfrt+φ) (E.12)

S2

Es2 = KErsinθ sin(2πfrt+φ) (E.13)

S3

Es2 = KErsin(θ+2π/3)sin(2πfrt+φ) (E.14)

where

K is the transformer ratio (trans_ratio), assuming K to be the same for all stator windings
Er is the reference amplitude in the primary (ampl)
θ is angular displacement of the rotor (angle)
fr is the reference frequency of the signal in the primary (freq)
ϕ is the zero index position of the rotor (zero_index)

Thus, the operation of the synchro may be modeled as the product of two signals for each output:

S1

Es1 = (Ersin(2πfrt+φ)) × (Ksin(θ-2π/3) (E.15)

S2

Es2 = (Ersin(2πfrt+φ)) × (Ksin(θ)) (E.16)

S3

Es3 = (Ersin(2πfrt+φ)) × (Ksin(θ+2π/3)) (E.17)

E.32.6 Example

See Figure E.56 for an example of SYNCHRO.

XML Static Signal Description:

<SYNCHRO name="SYNCHRO5" angle_rate="5" freq="20 Hz" />

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 225 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Signal

-0.2

-0.4

-0.6

-0.8

-1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure E.56—SYNCHRO example

E.33 TACAN

E.33.1 Definition

Tactical air navigation (TACAN) is a complete UHF polar coordinate navigation system using pulse
techniques. The function operates identically as a DME, and the bearing function is derived by rotating the
ground transponder antenna to obtain a rotating multilobe pattern for coarse and fine bearing information,
as defined in MIL-STD-291B [B16]. See Figure E.57.

The model defines a subset of the TACAN X signal concerned with bearing, rather than the complete
signal, as test requirements dealing with TACAN distance can be refined using the DME model.

The transponder emits RF pulses that are amplitude-modulated to provide bearing information. The
amplitude modulation is produced by rotating a parasitic reflector array about the antenna radiating
element. The array consists of one 15 Hz and nine 135 Hz reflectors. As the pattern from the 15 Hz
reflector passes through the magnetic east azimuth, a main reference burst (MRB) is transmitted. As the
pattern from the 135 Hz reflectors passes through east, an auxiliary reference burst (ARB) is transmitted,
except when the pattern is coincident with the 15 Hz pattern. This sequence produces a total of one MRB
and eight ARB bursts per antenna rotation. The airborne receiving equipment determines the aircraft
bearing from the ground station by measuring elapsed time, first, from the MRB to the 0º phase of the
15 Hz component and, second, from the ARB to 0º of the 135 Hz component.

The TACAN beacon also generates a two- or three-letter Morse identification signal every 37.5 s.

BS IEC 62529:2012

 IEC 62529:2012
 – 226 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

bearing car_ampl freq mod_index

PulseTrain

TACAN_
Response_Train

AM

Tacan_
Modulated_

Carrier

Sinusoid

Tacan_Carrier

Sinusoid

Tacan_135Hz_
Modulation

Sinusiod

Tacan_15Hz_
Modulation

Sum

Tacan_
Modulation

TimedEvent

MRB_Gate

TimedEvent

ARB_Gate

OrEvent

RB_Gate

OrEvent

Tacan_
Event_Train

NotEvent

RB_Mask

TimedEvent

Random_
Event_A

ProbabilityEvent

Random_
Event_B

TimedEvent

Reference_Burst

TACAN

pulses =
(0 µs, 3.5 µs, 1),

(15.5 µs, 3.5 µs,1)

fre
q

=
13

5
M

H
z

fre
q

=
15

 M
H

z

am
pl

itu
de

 =
 0

.5
 V

am
pl

itu
de

 =
 0

.5
 V

pe
rio

d
=

15
 H

z

du
ra

tio
n

=
60

0
µs

pe
rio

d
=

13
5

H
z

du
ra

tio
n

=
30

0
µs

pe
rio

d
=

37
 µ

s

du
ra

tio
n

=
20

 µ
s

pe
rio

d
=

37
 µ

s

du
ra

tio
n

=
20

 µ
s

probability = 10%

Figure E.57—TSF TACAN

E.33.2 Interface properties

See Table E.62 for details of the TSF TACAN interface.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 227 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table E.62—TSF TACAN interface

Description Name Type Default Range
Transponder frequency freq Frequency 962 MHz 962 MHz – 1213 MHz
Modulation index mod_index Ratio 0.3 0 – 1
Magnetic bearing bearing PlaneAngle 0° 0° – 360°
Carrier amplitude car_ampl Voltage — —

E.33.3 Notes

The transponder generates 2700 pulse pairs per second, but with a jittered pulse repetition frequency (PRF).

The rotating antenna modulates this signal at 15 Hz and 135 Hz using the same principles as the variable
phase in a VHF omnidirectional range (VOR) signal.

The MRB and ARB comprise 12 and 6 equally spaced pulse pairs, respectively. Spacing has been assumed
to be 30 s in the model. MRB and ARB pulse trains take priority over interrogator and randomly generated
pulse pairs; therefore, the model suppresses these pulse pairs at the appropriate time.

This model is a limited implementation to provide the basic TACAN signal. Many properties have been
included as fixed parameters and have not been made externally accessible to the user. Some parameters,
such as the beacon identification signal (comprising two or three Morse letters) and speed (i.e., variable
pulse width and spacing) have not been addressed in model

E.33.4 Model description

See Table E.63 for details of the TSF TACAN model.

Table E.63—TSF TACAN model

Name Type Terminal Inputs Output Formula
TACAN_Response_
Train

PulseTrain

Signal
[Out]

— TACAN —

pulses — — (0 µs,
3.5 µs, 1),
(15.5 µs,
3.5 µs, 1)

repetition — — 0
Signal [In] Tacan_Modulated

_Carrier
— —

Gate [In] Tacan_Event_
Train

— —

Tacan_Modulated_
Carrier

AM

Signal
[Out]

— Tacan_Response_
Train

—

modIndex mod_index — —
Carrier [In] Tacan_Carrier — —
Signal [In] Tacan_Modulation — —

Tacan_Event_Train

OrEvent

Event
[Out]

— Tacan_Response_
Train

—

Signal [In] Random_Event_B — —
Signal [In] Reference_Burst — —

BS IEC 62529:2012

 IEC 62529:2012
 – 228 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table E.63—TSF TACAN model (continued)

Name Type Terminal Inputs Output Formula
Tacan_Modulation

Sum

Signal
[Out]

— Tacan_Modulated_
Carrier

—

Signal [In] Tacan_135Hz_
Modulation

— —

Signal [In] Tacan_15Hz_
Modulation

— —

Reference_Burst

TimedEvent

Event
[Out]

— Tacan_Event_Train —

delay — — 10 µs
duration — — 20 µs
period — — 50 µs
repetition — — 0
Gate [In] RB_Gate — —

Random_Event_B

ProbabilityEvent

Event
[Out]

— Tacan_Event_Train —

seed — — 0
probability — — 10% (reply

efficiency)
Signal [In] Random_Event_A — —
Gate[In] RB_Mask — —

Tacan_Carrier

Sinusoid

Signal
[Out]

— Tacan_Modulated_
Carrier

—

amplitude car_ampl — —
frequency freq — —
phase — — 0 rad

Random_Event_A

TimedEvent

Event
[Out]

— Random_Event_B —

delay — — 0 s
duration — — 20 µs
period — — 37 µs
repetition — — 0

Tacan_15Hz_
Modulation

Sinusoid

Signal
[Out]

— Tacan_Modulation —

amplitude — — 0.5 V
frequency — — 15 Hz
phase bearing —

Tacan_135Hz_
Modulation

Sinusoid

Signal
[Out]

— Tacan_Modulation —

amplitude — — 0.5 V
frequency — — 135 Hz
phase bearing — —

RB_Mask

NotEvent

Event
[Out]

— Random_Event_B —

Signal [In] RB_Gate — —
RB_Gate

OrEvent

Event
[Out]

— RB_Mask,
Reference_Burst

—

Signal [In] ARB_Gate — —
Signal [In] MRB_Gate — —

MRB_Gate

TimedEvent

Event
[Out]

— RB_Gate —

delay — — 0 s
duration — — 600 µs
period — — 15 Hz
repetition — — 0

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 229 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table E.63—TSF TACAN model (continued)

Name Type Terminal Inputs Output Formula
ARB_Gate

TimedEvent

Event
[Out]

— RB_Gate —

delay — — 0 s
duration — — 300 µs
period — — 135 Hz
repetition — — 0

E.33.5 Rules

There are no special rules for this TSF.

E.33.6 Example

See Figure E.58 for an example of TACAN.

XML Static Signal Description:

<TACAN name="TACAN2" />

Signal

-0.5

-1.0

-1.5

0.0

0.5

1.0

1.5

Figure E.58—TACAN example

E.34 TRIANGULAR_WAVE_SIGNAL<type: Voltage|| Current|| Power>

E.34.1 Definition

A periodic wave whose instantaneous value varies alternately and linearly between two specified values
(i.e., initial and alternate). The interval required to transit from the initial value to the alternate value is
equal to the interval to transition from the alternate value to the initial value. See Figure E.59.

BS IEC 62529:2012

 IEC 62529:2012
 – 230 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Triangular_
Wave

Triangle

Triangle_
DC_Offset

Constant

Triangular Wave
Signal

Sum

TRIANGULAR_WAVE_SIGNAL

ampl period dc_offset

dutyCycle
= 50%

Figure E.59—TSF TRIANGULAR_WAVE_SIGNAL

E.34.2 Interface properties

See Table E.64 for details of the TSF TRIANGULAR_WAVE_SIGNAL interface.

Table E.64—TSF TRIANGULAR_WAVE_SIGNAL interface

Description Name Type Default Range
Triangular wave signal amplitude ampl Physical — —
Triangular wave signal period period Time — —
DC offset dc_offset Physical 0 —

E.34.3 Notes

There are no special notes for this TSF.

E.34.4 Model description

See Table E.65 for details of the TSF TRIANGULAR_WAVE_SIGNAL model.

Table E.65—TSF TRIANGULAR_WAVE_SIGNAL model

Name Type Terminal Inputs Output Formula
Triangular_Wave_Sign
al

Sum

Signal [Out] — TRIANGULAR_WAVE_
SIGNAL

—

Signal [In] Triangle_DC_Offset — —
Signal [In] Triangular_Wave — —

Triangular_Wave

Triangle

Signal [Out] — Triangular_Wave_Signal —
amplitude ampl — —
period period — —
dutyCycle — — 50%

Triangle_DC_Offset Constan
t

Signal [Out] — Triangular_Wave_Signal —
amplitude dc_offset — —

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 231 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.34.5 Rules

For this signal, the allowable types are Voltage, Current, and Power. All types must be consistent. Thus, for
example, if the triangular wave signal amplitude is specified in volts, then the dc offset must also be
specified in volts.

E.34.6 Example

See Figure E.60 for an example of TRIANGULAR_WAVE_SIGNAL.

XML Static Signal Description:

<TRIANGULAR_WAVE_SIGNAL name="TRIANGULAR_WAVE_SIGNAL6" ampl="1"
dc_offset="250 mV" period="0.001 s" />

Signal

-0.5

-1.0

0.0

0.5

1.0

1.5

Figure E.60—TRIANGULAR_WAVE_SIGNAL example

E.35 VOR

E.35.1 Definition

VHF omnidirectional range (VOR) is a system combining ground and airborne equipment to provide
bearing to or from a ground station, as defined in ARINC 579-2 [B3]. See Figure E.61. The VOR radiates a
RF carrier in the band of 108.0 MHz to 117.975 MHz, with which are associated two separate 30 Hz
modulations. The phase of one of these modulations is independent of the point of observation (i.e.,
reference phase). The phase of the other modulation (variable phase) is such that, at a point of observation,
it differs from the reference phase by an angle equal to the bearing of the point of observation with respect
to the VOR. The two separate modulations consist of the following:

 A subcarrier of 9960 Hz, frequency-modulated at 30 Hz, modulating the carrier to a nominal depth
of 30%. This 30 Hz component is fixed independently of the azimuth and is termed the reference
phase.

 A 30 Hz component, modulating the carrier to a nominal depth of 30%. This 30 Hz component is
caused by a rotating antenna that produces a change in phase with azimuth and is termed the
variable phase.

BS IEC 62529:2012

 IEC 62529:2012
 – 232 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Sinusoid

Var_Tone

SUM

VOR_Signal

AM

Reference_
Phase

AM

Variable_
Phase

FM

Modulated_
Subcarrier

Sinusoid

Ref_Tone

Sinusoid

VOR_Carrier

VOR

car_ampl car_freq phase

fre
q

=
30

 H
z

am
pl

=
1

V

fre
q

=
30

 H
z

am
pl

=
1

V

ca
r_

fre
q

=
99

60
 H

z

am
pl

=
1

V

fre
q_

de
v

=
48

0
H

z

modIndex = 0.3

modIndex = 0.3

Figure E.61—TSF VOR

E.35.2 Interface properties

See Table E.66 for details of the TSF VOR interface.

Table E.66—TSF VOR interface

Description Name Type Default Range
Carrier amplitude car_ampl Voltage 2 mV —
Carrier frequency car_freq Frequency 107.975 MHz 107.975 MHz – 117.975 MHz
Radial bearing phase PlaneAngle 90° 0° – 360°

E.35.3 Notes

This model has limited functionality. It does not provide for the variation of some of the parameters (such
as the tone frequencies). The model may be modified by the user to include such parameters in the interface
properties.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 233 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.35.4 Model description

See Table E.67 for details of the TSF VOR model.

Table E.67—TSF VOR model

Name Type Terminal Inputs Output Formula
VOR_Signal

Sum

Signal [Out] —— VOR —
Signal [In] Reference_Phase —
Signal [In] Variable_Phase —

Reference_Phase

AM

Signal [Out] — VOR —
modIndex — — 0.3
Carrier [In] VOR_Carrier — —
Signal [In] Modulated_

Subcarrier
— —

Variable_Phase

AM

Signal [Out] — VOR —
modIndex — — 0.3
Carrier [In] VOR_Carrier — —
Signal [In] Var_Tone — —

VOR_Carrier

Sinusoid

Signal [Out] — Reference_Phase,
Variable_Phase

—

amplitude car-ampl — car_ampl/2
frequency car_freq — —
phase — — 0°

Modulated_
Subcarrier

FM

Signal [Out] — Reference_Phase —
amplitude — — 1 V (see NOTE)
carrierFrequency — — 9960 Hz
frequencyDeviation — — 480 Hz
Signal [In] Ref_Tone — —

Var_Tone

Sinusoid

Signal [Out] — Variable_Phase —
amplitude — — 1 V (see NOTE)
frequency — — 30 Hz
phase phase — —

Ref_Tone

Sinusoid

Signal [Out] — Modulated_
Subcarrier

—

amplitude — — 1 V (see NOTE)
frequency — — 30 Hz
phase — — 0

NOTE—The BSC requires a unity value for the amplitude of the modulating signal.

E.35.5 Rules

There are no special rules for this TSF.

BS IEC 62529:2012

 IEC 62529:2012
 – 234 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

E.35.6 Example

See Figure E.62 for an example of VOR.

XML Static Signal Description:

<VOR name="VOR7" />

Signal

-0.001

-0.002

-0.003

-0.004

-0.005

-0.006

0.000

0.001

0.002

0.003

0.004

0.005

Figure E.62—VOR example

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 235 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex F

(informative)

Test signal framework (TSF) library for digital pulse classes

F.1 Introduction

This annex provides a TSF library representing several digital pulse class signals. It illustrates the use of
the digital stream basic signal components (BSCs) to create typical digital signals using different pulse
classes. An example of a TSF to reference digital files using the Digital Test Interchange Format (DTIF)
standard (i.e., IEEE Std 1445™-1998 [B14]) is also provided.

F.2 TSF library definition in extensible markup language (XML)

Where examples are given, their static signal description is provided in XML. The information provided in
Annex I, together with the detailed description of each TSF model in this annex, may be used to create the
example TSF library for the digital pulse classes that conforms to the XML Schema document defined in
Annex I.

A complete XML instance document conforming to the requirements of this standard may be obtained from
http://standards.ieee.org/downloads/1641/1641-2010/.

F.3 Graphical models of TSFs

A diagram is provided with each signal to illustrate graphically the relationship between the BSCs and
interface attributes that make up the signal. In order to reduce the amount of information included in each
diagram, inputs to BSCs that are at zero or the default values are omitted.

F.4 Pulse class family of TSFs

The Pulse Class TSFs are designed to be used with an event stream. The Encode BSC is used, which
provides a basic digital signal as a stream of bits derived from the data information. A Pulse Class TSF may
then be used to turn the digital stream into a real physical signal. Similarly, Decode is used to allow
incoming digital signals to be measured and compared to the expected values.

F.4.1 Pulse classes

Figure F.1 illustrates the various pulse classes that are covered by TSFs in this annex. At the top of the
diagram is the digital data stream that is conveyed by the signal in each pulse class, i.e., the pattern
"HLHHLLHL" or "10110010".

BS IEC 62529:2012

http://standards.ieee.org/downloads/1641/1641-2010/

 IEC 62529:2012
 – 236 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

a

a

a

a

a

a

a

a

-a

0

0

0

0

0

0

0

0

Digital data stream

BasicNRZ

BasicRZ

BiPLevel

BiPSpace

BiPMark

RZBipolar

RZPulse

AMI

clock

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

a

-a

0

1(H) 1(H) 1(H) 1(H) 0(L)0(L)0(L)0(L)

Figure F.1—Digital pulse classes

The values on the left of the diagram indicate the amplitude that the physical signal takes while transmitting
the data. In the simplest case, Basic NRZ or basic nonreturn to zero, the nonzero amplitude represents a
logic one or High, and the zero amplitude represents a logic 0 or Low. Other pulse classes involve
amplitude transitions or have both positive and negative amplitudes within the signal. This is explained
further in each specific TSF example.

Many of the TSFs in this annex produce the same pulse class waveform as the pulse class attribute types
defined for use with the digital BSCs (see Annex B). The following table shows the equivalence between
the BSC pulse class attributes types and the digital TSFs in this annex.

BSC pulse class
attribute types Equivalent digital TSF Description

NRZ BasicNRZ Nonreturn to zero
RZ BasicRZ Return to zero
R1 — Return to one
RZPulse RZPulse Pulse return to zero
BiPLevel BiPLevel Bi-phase level
BiPMark BiPMark Bi-phase mark (pulse 0)
BiPSpace BiPSpace BiPhase space (pulse 1)

This annex include two TSF models, RZBipolar (return to zero bipolar) and AMI (alternate mark
invertion), which are not available as BSC pulse class types.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 237 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

F.4.2 BasicNRZ

F.4.2.1 Definition

A pulse class in which the digital data is carried by two physical signal levels (most often two voltage
levels), in which one level represents a logic one or High and the other represents a logic zero or Low.

See Figure F.1 for a typical waveform and Figure F.2 for a graphical model of the TSF.

BasicNRZ

Constant

BNRZ_Logic_Lo

SelectIf

BNRZ_SelectIf

lo
gi

c_
L_

va
lu

e

Selector

Constant

BNRZ_Logic_Hi

lo
gi

c_
H

_v
al

ue

In

bnrz_data
In

Figure F.2—TSF BasicNRZ

F.4.2.2 Interface properties

See Table F.1 for details of the TSF BasicNRZ interface.

Table F.1—TSF BasicNRZ interface

Description Name Type Default Range
Logic High Value logic_H_value Physical — —
Logic Low Value logic_L_value Physical — —
Digital Stream Input bnrz_data SignalFunction — —

F.4.2.3 Notes

There are no special notes for this TSF.

BS IEC 62529:2012

 IEC 62529:2012
 – 238 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

F.4.2.4 Model description

See Table F.2 for details of the TSF BasicNRZ model.

Table F.2—TSF BasicNRZ model

Name Type Terminal Inputs Output Formula
BNRZ_SelectIf

SelectIf

Signal [Out] — BasicNRZ —
Selector bnrz_data — —
Signal [In] BNRZ_Logic_Lo — —
Signal [In] BNRZ_Logic_Hi — —

BNRZ_Logic_Hi Constant Signal [Out] — BNRZ_SelectIf —
amplitude logic_H_value — —

BNRZ_Logic_Lo Constant Signal [Out] — BNRZ_SelectIf —
amplitude logic_L_value — —

F.4.2.5 Rules

There are no special rules for this TSF.

F.4.3 BasicRZ

F.4.3.1 Definition

A pulse class in which each bit period is subdivided into two subperiods. The binary data is carried in the
first subperiod. A logic one or High is carried by a pulse of one amplitude, and the logic zero or Low is
carried by a pulse of a different amplitude. The second subperiod contains a “no pulse” condition, which is
at the same level as the logic zero amplitude.

See Figure F.1 for a typical waveform and Figure F.3 for a graphical model of the TSF.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 239 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

BasicRZ

Constant

BRZ_Logic_Lo

SelectIf

BRZ_SelectIf

lo
gi

c_
L_

va
lu

e

Selector

Constant

BRZ_Logic_Hi

lo
gi

c_
H

_v
al

ue

AndEvent

BRZ_masked

In
In

brz_data

brz_clock
In

brz_clock

Figure F.3—TSF BasicRZ

F.4.3.2 Interface properties

See Table F.3 for details of the TSF BasicRZ interface.

Table F.3—TSF BasicRZ interface

Description Name Type Default Range
Logic High Value logic_H_value Physical — —
Logic Low Value logic_L_value Physical — —
Input Clock brz_clock SignalFunction — —
Digital Stream Input brz_data (In) SignalFunction — —

F.4.3.3 Notes

The Input Clock must have the same period as the data rate from the digital stream.

F.4.3.4 Model description

See Table F.4 for details of the TSF BasicRZ model.

BS IEC 62529:2012

 IEC 62529:2012
 – 240 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table F.4—TSF BasicRZ model

Name Type Terminal Inputs Output Formula
BRZ_SelectIf

SelectIf

Signal [Out] — BasicRZ —
Selector BRZ_Masked — —
Signal [In] BRZ_Logic_Lo — —
Signal [In] BRZ_Logic_Hi — —

BRZ_Masked AndEvent

Signal [Out] — BRZ_SelectIf —
Signal [In] brz_clock — —
Signal [In] brz_data — —

BRZ_Logic_Hi Constant Signal [Out] — BRZ_SelectIf —
amplitude logic_H_value — —

BRZ_Logic_Lo Constant Signal [Out] — BRZ_SelectIf —
amplitude logic_L_value — —

F.4.3.5 Rules

There are no special rules for this TSF.

F.4.4 BiPLevel

F.4.4.1 Definition

A pulse class in which each bit period is subdivided into two subperiods. The binary data is carried by the
transition of the signal level during each bit period, i.e., the amplitude is at one level during the first
subperiod and at another level during the second subperiod.

A logic one or High is carried by two subperiods in which the first is at the high amplitude level and the
second subperiod is at the low (zero) amplitude. A logic zero or Low is carried by two subperiods in which
the first is at the low (zero) amplitude level and the second subperiod is at the high amplitude.

See Figure F.1 for a typical waveform and Figure F.4 for a graphical model of the TSF.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 241 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

BiPLevel

Constant

BiPL_Logic_Lo

SelectIf

BiPL_Logic

lo
gi

c_
L_

va
lu

e

Selector

Constant

BiPL_Logic_Hi

lo
gi

c_
H

_v
al

ue

NotEvent

BiPL_N_Clockbipl_clock

In

In

bipl_clock

In

bipl_data

SelectIf

BiPL_SelectIf

Selector

Figure F.4—TSF BiPLevel

F.4.4.2 Interface properties

See Table F.5 for details of the TSF BiPLevel interface.

Table F.5—TSF BiPLevel interface

Description Name Type Default Range
Logic High Value logic_H_value Physical — —
Logic Low Value logic_L_value Physical — —
Input Clock bipl_clock SignalFunction — —
Digital Stream Input bipl_data (In) SignalFunction — —

F.4.4.3 Notes

The Input Clock must have the same period as the data rate from the digital stream.

F.4.4.4 Model description

See Table F.6 for details of the TSF BiPLevel model.

BS IEC 62529:2012

 IEC 62529:2012
 – 242 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table F.6—TSF BiPLevel model

Name Type Terminal Inputs Output Formula
BiPL_SelectIf

SelectIf

Signal [Out] — BiPLevel —
Selector BiPL_Logic — —
Signal [In] BRZ_Logic_Hi — —
Signal [In] BRZ_Logic_Lo — —

BiPL_Logic SelectIf

Signal [Out] — BiPL_SelectIf —
Selector bipl_data — —
Signal [In] BiPL_N_Clock — —
Signal [In] bipl_clock — —

BiPL_Logic_Hi Constant Signal [Out] — BiPL_SelectIf —
amplitude logic_H_value — —

BiPL_Logic_Lo Constant Signal [Out] — BiPL_SelectIf —
amplitude logic_L_value — —

BiPL_N_Clock Not_Event Signal_Out — BiPL_Logic —
Signal[In] bipl_clock — —

F.4.4.5 Rules

There are no special rules for this TSF.

F.4.5 BiPSpace

F.4.5.1 Definition

A pulse class in which each bit period is subdivided into two subperiods. A transition occurs at the start of
each full bit period. The logic one or High is represented by a second transition at the start of the second
subperiod. The logic zero or Low has no second transition, and the level remains unchanged for the whole
period.

See Figure F.1 for a typical waveform and Figure F.5 for a graphical model of the TSF.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 243 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

BiPSpace

Constant

BiPS_Logic_Lo

EventedEvent

BiPS_Digital_
Stream

lo
gi

c_
L_

va
lu

e

Constant

BiPS_Logic_Hi

lo
gi

c_
H

_v
al

ue

NotEvent

BiPS_N_Data

bips_clock_x2

In

In

bips_clock_x2

In

bips_data

SelectIf

BiPS_Select

Selector

bips_clock
In

bips_clock

AndEvent

BiPS_Zero_
Data

AndEvent

BiPS_One_
Data OrEvent

BiPS_S_Data

OrEvent

BiPS_S_Data2

Enable

Disable

Figure F.5—TSF BiPSpace

F.4.5.2 Interface properties

See Table F.7 for details of the TSF BiPSpace interface.

Table F.7—TSF BiPSpace interface

Description Name Type Default Range
Logic High Value logic_H_value Physical — —
Logic Low Value logic_L_value Physical — —
Input Clock bips_clock SignalFunction — —
Input Double Clock bips_clock_x2 SignalFunction — —
Digital Stream Input bips_data (In) SignalFunction — —

F.4.5.3 Notes

The Input Clock must have the same period as the data rate from the digital stream. The Input Double
Clock must have a period of exactly half the period of the Input Clock.

BS IEC 62529:2012

 IEC 62529:2012
 – 244 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

F.4.5.4 Model description

See Table F.8 for details of the TSF BiPSpace model.

Table F.8—TSF BiPSpace model

Name Type Terminal Inputs Output Formula
BiPS_Select

SelectIf

Signal [Out] — BiPSpace —
Selector BiPS_Digital_Stream — —
Signal [In] BiPS_Logic_Lo — —
Signal [In] BiPS_Logic_Hi — —

BiPS_Digital_Stream EventedEvent

Signal [Out] — BiPS_Select —
Signal [In] BiPS_S_Data — —
Signal [In] BiPS_S_Data2 — —

BiPS_Logic_Hi Constant Signal [Out] — BiPS_Select —
amplitude logic_H_value — —

BiPS_Logic_Lo Constant Signal [Out] — BiPS_Select —
amplitude logic_L_value — —

BiPS_S_Data2 OrEvent Signal [Out] — BiPS_Digital_Stream —
Signal [In] BiPS_S_Data — —

BiPS_S_Data OrEvent Signal [Out] — BiPS_Digital_Stream,
BiPS_S_Data2

—

Signal [In] BiPS_One_Data — —
Signal [In] BiPS_Zero_Data — —

BiPS_Zero_Data AndEvent Signal [Out] — BiPS_S_Data —
Signal [In] BiPS_N_Data — —
Signal [In] bips_clock — —

BiPS_One_Data AndEvent Signal [Out] — BiPS_S_Data —
Signal [In] bips_data — —
Signal [In] bips_clock_x2 — —

BiPS_N_Data NotEvent Signal [Out] — BiPS_Zero_Data —
Signal [In] bips_data — —

F.4.5.5 Rules

There are no special rules for this TSF.

F.4.6 BiPMark

F.4.6.1 Definition

A pulse class in which each bit period is subdivided into two subperiods. A transition occurs at the start of
each full bit period. The logic zero or Low is represented by a second transition at the start of the second
subperiod. The logic one or High has no second transition, and the level remains unchanged for the whole
period.

See Figure F.1 for a typical waveform and Figure F.7 for a graphical model of the TSF.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 245 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

BiPMark

Constant

BiPM_Logic_Lo

EventedEvent

BiPM_Digital
_Stream

lo
gi

c_
L_

va
lu

e

Constant

BiPM_Logic_Hi

lo
gi

c_
H

_v
al

ue

NotEvent

BiPM_N_Data

bipm_clock

In

In

bipm_clock

In

bipm_data

SelectIf

BiPM_Select

Selector

bipm_clock_x2
In

bipm_clock_
x2

AndEvent

BiPM_Zero_
Data

AndEvent

BiPM_One_
Data OrEvent

BiPM_S_Data

OrEvent

BiPM_S_Data2

Enable

Disable

Figure F.6—TSF BiPMark

F.4.6.2 Interface properties

See Table F.9 for details of the TSF BiPMark interface.

Table F.9—TSF BiPMark interface

Description Name Type Default Range
Logic High Value logic_H_value Physical — —
Logic Low Value logic_L_value Physical — —
Input Clock bipm_clock SignalFunction — —
Input Double Clock bipm_clock_x2 SignalFunction — —
Digital Stream Input bipm_data (In) SignalFunction — —

F.4.6.3 Notes

The Input Clock must have the same period as the data rate from the digital stream. The Input Double
Clock must have a period of exactly half the period of the Input Clock.

BS IEC 62529:2012

 IEC 62529:2012
 – 246 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

F.4.6.4 Model description

See Table F.10 for details of the TSF BiPMark model.

Table F.10—TSF BiPMark model

Name Type Terminal Inputs Output Formula
BiPM_Select

SelectIf

Signal [Out] — BiPMark —
Selector BiPM_Digital_Strea

m
— —

Signal [In] BiPM_Logic_Lo — —
Signal [In] BiPM_Logic_Hi — —

BiPM_Digital_Stream EventedEven
t

Signal [Out] — BiPM_Select —
Signal [In] BiPM_S_Data — —
Signal [In] BiPM_S_Data2 — —

BiPM_Logic_Hi Constant Signal [Out] — BiPM_Select —
amplitude logic_H_value — —

BiPM_Logic_Lo Constant Signal [Out] — BiPM_Select —
amplitude logic_L_value — —

BiPM_S_Data2 OrEvent Signal [Out] — BiPM_Digital_Stream —
Signal [In] BiPM_S_Data — —

BiPM_S_Data OrEvent Signal [Out] — BiPM_Digital_Stream,
BiPM_S_Data2

—

Signal [In] BiPM_One_Data — —
Signal [In] BiPM_Zero_Data — —

BiPM_Zero_Data AndEvent Signal [Out] — BiPM_S_Data —
Signal [In] BiPM_N_Data — —
Signal [In] bipm_clock_x2 — —

BiPM_One_Data AndEvent Signal [Out] — BiPM_S_Data —
Signal [In] bipm_clock — —
Signal [In] bipm_data — —

BiPS_N_Data NotEvent Signal [Out] — BiPS_Zero_Data —
 Signal [In] bipm_data — —

F.4.6.5 Rules

There are no special rules for this TSF.

F.4.7 RZBipolar

F.4.7.1 Definition

A pulse class in which each bit period is subdivided into two subperiods. Three signal levels are used, and
each bit is represented by the level during the first subperiod. The logic one or High is represented by the
first subperiod at a specified amplitude followed by the second subperiod at zero amplitude. The logic zero
or Low is represented by the first subperiod at second (normally negative) amplitude followed by the
second subperiod at zero amplitude.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 247 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

See Figure F.1 for a typical waveform and Figure F.7 for a graphical model of the TSF.

RZBipolar

Constant

RZB_Logic_Lo

lo
gi

c_
L_

va
lu

e

lo
gi

c_
H

_v
al

ue

NotEvent

RZB_N_Data

rzb_clock

In

In

rzb_clock

In

rzb_data

SelectIf

RZB_SelectIf1

Selector

AndEvent

RZB_Zero_
Data

AndEvent

RZB_One_
Data

Sum

RZB_Select
SelectIf

RZB_SelectIf2

Selector

Constant

RZB_Zero

Constant

RZB_Logic_Hi

0 V

Figure F.7—TSF RZBipolar

F.4.7.2 Interface properties

See Table F.11 for details of the TSF RZBipolar interface.

Table F.11—TSF RZBipolar interface

Description Name Type Default Range
Logic High Value logic_H_value Physical — —
Logic Low Value logic_L_value Physical — —
Input Clock rzb_clock SignalFunction — —
Digital Stream Input rzb_data (In) SignalFunction — —

F.4.7.3 Notes

The Input Clock must have the same period as the data rate from the digital stream.

BS IEC 62529:2012

 IEC 62529:2012
 – 248 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

F.4.7.4 Model description

See Table F.12 for details of the TSF RZBipolar model.

Table F.12—TSF RZBipolar model

Name Type Terminal Inputs Output Formula
RZB_Select Sum Signal [Out] — RZBipolar —

Signal [In] RZB_SelectIf_1 — —
Signal [In] RZB_SelectIf_2 — —

RZB_SelectIf_2

SelectIf

Signal [Out] — RZB_Select —
Selector RZB_Zero_Data — —
Signal [In] RZB_Zero — —
Signal [In] RZB_Logic_Lo — —

RZB_SelectIf_1

SelectIf

Signal [Out] — RZB_Select —
Selector RZB_One_Data — —
Signal [In] RZB_Zero — —
Signal [In] RZB_Logic_Hi — —

RZB_Zero_Data AndEvent Signal [Out] — RZB_SelectIf_2 —
Signal [In] RZB_N_Data — —
 rzb_clock — —

RZB_One_Data AndEvent Signal [Out] — RZB_SelectIf_1 —
Signal [In] rzb_clock — —
Signal [In] rzb_data — —

RZB_Logic_Hi Constant Signal [Out] — RZB_SelectIf_1 —
amplitude logic_H_value — —

RZB_Logic_Lo Constant Signal [Out] — RZB_SelectIf_2 —
amplitude logic_L_value — —

RZB_Zero Constant Signal [Out] — RZB_SelectIf_1,
RZB_SelectIf_2

—

amplitude 0 — —
RZB_N_Data NotEvent Signal [Out] — BiPS_Zero_Data —

Signal [In] rzb_data — —

F.4.7.5 Rules

There are no special rules for this TSF.

F.4.8 RZPulse

F.4.8.1 Definition

This pulse class is very similar to BasicRZ as described in F.4.3, but with a duty cycle of 25%.

See Figure F.1 for a typical waveform and Figure F.8 for a graphical model of the TSF.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 249 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

RZPulse

Constant

RZP_Logic_Lo

SelectIf

RZP_SelectIf

lo
gi

c_
L_

va
lu

e

Selector

Constant

RZP_Logic_Hi
lo

gi
c_

H
_v

al
ue

AndEvent

RZP_maskedrzp_clock_x2

In

In

rzp_clock_x2

In

rzp_data

rzp_clock
In

rzp_clock

Figure F.8—TSF RZPulse

F.4.8.2 Interface properties

See Table F.13 for details of the TSF RZPulse interface.

Table F.13—TSF RZPulse interface

Description Name Type Default Range
Logic High Value logic_H_value Physical — —
Logic Low Value logic_L_value Physical — —
Input Clock rzp_clock SignalFunction — —
Input Double Clock rzp_clock_x2 SignalFunction — —
Digital Stream Input rzp_data (In) SignalFunction — —

F.4.8.3 Notes

The Input Clock must have the same period as the data rate from the digital stream. The Input Double
Clock must have a period of exactly half the period of the Input Clock.

BS IEC 62529:2012

 IEC 62529:2012
 – 250 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

F.4.8.4 Model description

See Table F.14 for details of the TSF RZPulse model.

Table F.14—TSF RZPulse model

Name Type Terminal Inputs Output Formula
RZP_SelectIf

SelectIf

Signal [Out] — RZPulse —
Selector RZP_Masked — —
Signal [In] RZP_Logic_Lo — —
Signal [In] RZP_Logic_Hi — —

RZP_Masked AndEvent Signal [Out] — RZP_SelectIf —
Signal [In] rzp_clock — —
Signal [In] rzp_clock_x2 — —
Signal [In] rzp_data — —

RZP_Logic_Hi Constant Signal [Out] — RZP_SelectIf —

amplitude logic_H_value — —
RZP_Logic_Lo Constant Signal [Out] — RZP_SelectIf —

amplitude logic_L_value — —

F.4.8.5 Rules

There are no special rules for this TSF.

F.4.9 AMI

F.4.9.1 Definition

The alternate mark inversion (AMI) pulse class requires three amplitude levels be defined. In this TSF,
only two of the amplitudes are specified as the inverted logic one or High level is assumed to be of the
same amplitude as the noninverted logic one or High but with the opposite sign. The logic one amplitudes
are offset from the amplitude specified for the logic zero or Low.

See Figure F.1 for a typical waveform and Figure F.9 for a graphical model of the TSF.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 251 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

AMI

Constant

AMI_Logic_Lo

lo
gi

c_
L_

va
lu

e

lo
gi

c_
H

_v
al

ue

In
In

ami_data

OrEvent

AMI_Data_2

OrEvent

AMI_Data_1

Sum

AMI_Select

SelectIf

AMI_One_Select

Selector

Negate

AMI_N_Logic_Hi

Constant

AMI_Logic_Hi

EventedEvent

AMI_Digital_
Stream

OrEvent

AMI_Ones_Gate

ami_clock
In

ami_clock

Figure F.9—TSF AMI

F.4.9.2 Interface properties

See Table F.15 for details of the TSF AMI interface.

Table F.15—TSF AMI interface

Description Name Type Default Range
Logic High Value logic_H_value Physical — —
Logic Low Value logic_L_value Physical — —
Input Clock ami_clock SignalFunction — —
Digital Stream Input ami_data (In) SignalFunction — —

F.4.9.3 Notes

There are no special notes for this TSF.

BS IEC 62529:2012

 IEC 62529:2012
 – 252 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

F.4.9.4 Model description

See Table F.16 for details of the TSF AMI model.

Table F.16—TSF AMI model

Name Type Terminal Inputs Output Formula
AMI_Select Sum Signal [Out] — AMI —

Signal [In] AMI_One_Select — —
Signal [In] AMI_Logic_Lo — —

AMI_Logic_Lo Constant Signal [Out] — AMI_Select —
amplitude logic_L_value — —

AMI_One_Select

SelectIf

Signal [Out] — AMI_Select —
Selector AMI_Digital_Stream — —
Signal [In] AMI_N_Logic_Hi — —
Signal [In] AMI_Logic_Hi — —
Gate [In] AMI_Data_1 — —

AMI_Digital_Stream EventedEvent Signal [Out] — AMI_One_Select —
Signal [In] AMI_Data_1 — —
Signal [In] AMI_Data_2 — —

AMI_N_Logic_Hi Negate Signal [Out] — AMI_One_Select —
Signal [In] AMI_Logic_Hi — —

AMI_Logic_Hi Constant Signal [Out] — AMI_N_Logic_Hi —
amplitude logic_H_value — —

AMI_Data_2 OrEvent Signal [Out] — AMI_Digital_Stream —
Signal [In] ami_data — —

AMI_Data_1 OrEvent Signal [Out] — AMI_Digital_Stream,
AMI_One_Select

—

Signal [In] ami_data — —

F.4.9.5 Rules

There are no special rules for this TSF.

F.5 DTIF

F.5.1 Definition

The DTIF TSF represents a simple TSF and contains only the “location” of the DTIF files and a definition
of how they will be used. This TSF allows for the generation of a complete digital signal stream containing
all the digital patterns and necessary timing information.

This TSF provides support for digital data files defined in IEEE Std 1445–1998 [B14].

See Figure F.10 for a graphical model of the TSF.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 253 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

DTIF
DTIF

DTIF_Out

ru
n_

m
od

e

pa
th

Figure F.10—TSF DTIF

F.5.2 Interface properties

See Table F.17 for details of the TSF DTIF interface.

Table F.17—TSF DTIF interface

Description Name Type Default Range
Path to data file path string C:\TPS\UUT\DTIF
Run mode run_mode enumeration Go_Nogo Go_Nogo |

Fault_Dictionary |
Guided_Probe |
GP_FD

F.5.3 Notes

The output from the DTIF TSF represents the complete digital signal for all channels. The method of using
a DTIF TSF would be as follows:

 Add a Pulse Class to convert digital stream into the logic logic levels.

 Add a Digital Pins connector to identify the unit under test (UUT) pins used for the signals.

F.5.4 Model description

See Table F.18 for details of the TSF DTIF model.

Table F.18—TSF DTIF model

Name Type Terminal Inputs Output Formula
DTIF_Out

DTIF

Signal [Out] — DTIF —
path path — —
run_mode run_mode — —

F.5.5 Rules

There are no special rules for this TSF.

BS IEC 62529:2012

 IEC 62529:2012
 – 254 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex G

(normative)

Carrier language requirements

G.1 Carrier language requirements

This annex describes the envelope of requirements for a suitable carrier language for the signal and test
definition (STD) methodology. The requirements address data definition, data processing, and control
structures. Test requirements using carrier language facilities outside of the requirements defined herein
may result in test requirements that are not portable to other carrier languages.

G.1.1 General requirements

The carrier language will run on a host system (in a compiled form if necessary). It may be supported by an
operating system (according to the requirements of the carrier language and host system). Test statements
written in the carrier language will control the test instrumentation, which may be part of or connected to
the host system, directly or indirectly.

G.1.2 Human interface and communication

The carrier language shall be able to communicate with the operator via the host system in order that a test
requirement may pass instructions for manual interventions. It shall provide support so that the operator
shall be able to provide the input required by the test requirement (e.g., serial numbers, identifiers). The
human interface may be provided via an operating system.

G.2 Interface definition language (IDL)

The carrier language shall support the IDL as defined in the Distributed Computing Environment (DCE)
Specifications [B5].

G.3 Datatypes

The carrier language shall provide either a set of datatypes or a set of language constructs to establish,
label, and identify datatypes. Any datatype shall be accessible at the outer structural level where it is
established and at any inner nested structural level.

The datatypes defined in G.3 shall support the datatypes defined in the IDL. Table G.1 shows the
relationship between the datatypes required, their IDL names, and the carrier language datatype that
supports them.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 255 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table G.1—Datatypes used in STD

Name used in STD Reference IDL mapping Supported by XML
(See NOTE)

any Datatypes VARIANT #any
boolean Boolean datatype VARIANT_BOOL std:boolean
digitalString Digital datatype BSTR std:digitalString
double Real datatype IEEE

Std 754™-2008
[B13] (binary64
format)

double std:double

enumCondition Enumeration
datatype

enumCondition std:enumCondition

enumMeasuredVariabl
e

Enumeration
datatype

enumMeasuredVariable std:enumMeasuredVariable

enumPulseClass Enumeration
datatype

enumPulseClass std:enumPulseClass

int Integer datatype
-231 to –(231-1)

long std:int

list_ Physical See Annex B SAFEARRAY(Physical) std:list_ Physical
list_any Datatypes & Array

datatype
SAFEARRAY(VARIANT) std:list_any

list_boolean Boolean datatype &
Array datatype

SAFEARRAY(VARIANT_BOOL) std:list_boolean

list_double Real datatype &
Array datatype

SAFEARRAY(double) std:list_double

list_int Integer datatype &
Array datatype

SAFEARRAY(long) std:list_int

list_string ASCII datatype &
Array datatype

SAFEARRAY(BSTR) std:list_string

Physicala see Annex B Physical std:Physical
pinString Connector pin

datatype
BSTR std: pinString

PulseDefn See Annex B PulseDefn std:PulseDefn
PulseDefns See Annex B PulseDefns std:PulseDefns
string ASCII datatype BSTR std:string
<enumerationList> User defined list of

enumeration values
long xs:string

NOTE—The namespace prefix “std” used in the “Supported by XML” column represents the namespace of the STD
basic signal component (BSC) extensible markup language (XML) Schema.
aThe numeric value of any physical type shall be supported by the real datatype (double).

G.3.1 Enumeration datatype

To establish, label, and identify sets of enumerated data.

Annex B lists the various predefined enumeration datatypes used by this standard.

The user may define and label an enumeration datatype, which includes a list of specified enumeration
values. Each enumeration value may comprise a string of one or more characters.

The enumeration value is then referenced (in the IDL interface) as an integer value corresponding to its
position in the enumeration list.

BS IEC 62529:2012

 IEC 62529:2012
 – 256 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

G.3.2 Integer datatype

To establish, label, and identify decimal integer numbers. A decimal integer number is written as a string of
characters beginning with an optional plus or minus sign, followed by one or more digits (0 through 9).

The coded representation of the int type data shall be in the range of at least –2 147 483 648 to
+2 147 483 647 (i.e., supported by a minimum of 32 bits).

G.3.3 Real datatype

G.3.3.1 General

To establish, label, and identify decimal numbers. Numbers may be written in a fixed point or floating
point format. IEEE Std 754-2008 [B13] defines the recommended formats for storing numbers used as real
datatypes.

For single-precision real numbers, the minimum precision of the coded representation of real data shall be
at least 6 significant digits over a magnitude range of ± (1-2-24)×2128, which is approximately equal to
± 3.4028235×1038 (IEEE 754 format binary32).

For double-precision real numbers, the precision of the coded representation of real data shall be at least
15 significant digits over a magnitude range of ± ((1-(1/2)53)21024, which is approximately equal to
± 1.7976931348623157×10308 (IEEE 754 format binary64).

G.3.3.2 Fixed-point number

A decimal fixed-point number is written as a string of characters beginning with an optional plus or minus
sign, followed by one or more digits (0 through 9), optionally followed by a decimal point and one or more
digits (0 through 9).

G.3.3.3 Decimal floating-point number

A decimal floating point number is written in the form ±n.mE±p, where n, m, and p are numerical strings
consisting of one or more digits (0 through 9).

G.3.4 Character datatype

To establish, label, and identify one ASCII 8-bit character or a string of ASCII 8-bit characters.

To establish, label, and identify one ASCII 16-bit character or a string of ASCII 16-bit characters.

G.3.5 Boolean datatype

To establish, label, and identify the data values TRUE or FALSE.

G.3.6 Digital datatype

To establish, label, and identify digital data.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 257 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Characters are used to represent the digital signals as follows:

 H logic high (or logic 1)

 h logic high (or logic 1)

 1 logic high (or logic 1)

 L logic low (or logic 0)

 l logic low (or logic 0)

 0 logic low (or logic 0)

 Z high impedance (absence of logic signal)

 X unknown or indeterminate logic level

 , delimiter between blocks

 ; delimiter between blocks

Full details of use with BSCs are provided in Annex B.

The lowercase h (high) and l (low) characters are available for use with Response data. Care must be
exercised so that the lowercase L (l) is not confused with the numeric character 1. When Stimulus and
Response data are included in the same context, it is recommended that the numeric characters (0 and 1) are
not used.

G.3.7 Connector pin datatype

To establish, label, and identify physical connector pins. These pins are normally the unit under test (UUT)
pins.

A pin name shall be a contiguous string of characters, which may include alphanumeric, hyphen, and
underscore characters. Pin names may not include a comma, semicolon, or whitespace character (namely,
space, new-line, carriage-return, line-feed, and tab).

Multiple pin names are delimited by one or more whitespace, comma, or semicolon characters.

Full details are provided in Annex B.

G.3.8 File datatype

To establish, label, and identify a collection of data items. Each data item has a position in the file.

The distance between two subsequent data items is one space. A file may not be nested within another file.

G.3.9 Array datatype

To establish, label, and identify either a one-dimensional or a multidimensional ordered collection of data
elements of the same type. An array can have any number of dimensions that are identified by indices that
are bounded by upper and lower limits. All the elements in an array shall be addressed by their indices.

BS IEC 62529:2012

 IEC 62529:2012
 – 258 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

G.3.10 Record datatype

To establish, label, and identify a collection of data elements that need not be of the same type or structure.
Individual fields in a record shall be addressable by a name. Any type except “file” may be specified.

G.3.11 Variables and constants

To establish, label, and identify variables and constants. A unique datatype shall be assigned to an
established variable or constant. A facility for initializing variables shall be provided.

Any created variable or constant shall be accessible at the structural level where it is established and at any
inner nested structural level.

G.3.12 XML datatypes supported by this standard

Table G.2 provides a list of W3C XML datatypes supported by this standard. These are listed together with
the IDL name and the variant type name.

Table G.2—XML datatypes supported by STD

XSD (Soap) Type IDL Variant type
xs:anyURI BSTR VT_BSTR
xs:base64Binary SAFEARRAY (unsigned char) VT_ARRAY| VT_UI1
xs:boolean VARIANT_BOOL VT_BOOL
xs:byte short VT_I2
xs:date DATE VT_DATE
xs:dateTime DATE VT_DATE
xs:decimal DECIMAL VT_DECIMAL
xs:double double VT_R8
xs:duration BSTR VT_BSTR
xs:ENTITIES BSTR VT_BSTR
xs:ENTITY BSTR VT_BSTR
xs:float float VT_R4
xs:gDay BSTR VT_BSTR
xs:gMonthDay BSTR VT_BSTR
xs:gYear BSTR VT_BSTR
xs:gYearMonth BSTR VT_BSTR
xs:hexBinary BSTR VT_BSTR
xs:ID BSTR VT_BSTR
xs:IDREF BSTR VT_BSTR
xs:IDREFS BSTR VT_BSTR
xs:int long VT_I4
xs:integer DECIMAL VT_DECIMAL
xs:language BSTR VT_BSTR
xs:long DECIMAL VT_DECIMAL
xs:gMmonth BSTR VT_BSTR
xs:Name BSTR VT_BSTR

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 259 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table G.2—XML datatypes supported by STD (continued)

XSD (Soap) Type IDL Variant type
xs:NCName BSTR VT_BSTR
xs:negativeInteger DECIMAL VT_DECIMAL
xs:NMTOKEN BSTR VT_BSTR
xs:NMTOKENS BSTR VT_BSTR
xs:nonNegativeInteger DECIMAL VT_DECIMAL
xs:nonPositiveInteger DECIMAL VT_DECIMAL
xs:normalizedString BSTR VT_BSTR
xs:NOTATION BSTR VT_BSTR
xs:positiveInteger DECIMAL VT_DECIMAL
xs:QName BSTR VT_BSTR
xs:short short VT_I2
xs:string BSTR VT_BSTR
xs:time DATE VT_DATE
xs:token BSTR VT_BSTR
xs:unsignedByte unsigned char VT_UI1
xs:unsignedInt DECIMAL VT_DECIMAL
xs:unsignedLong DECIMAL VT_DECIMAL
xs:unsignedShort int VT_UI4

G.4 Data-processing requirements

To provide data-processing statements having the capability to assign a value to a variable, to perform
calculations on values, and to make comparisons of values. The data-processing requirements are further
defined in G.4.1 through G.4.10.

G.4.1 Data manipulation

To do one of the following:

 To assign a value to a variable

 To evaluate an expression on the right side of an assignment statement and then assign the value of
an expression to the variable on the left side

One or more evaluations and assignments may be made.

G.4.2 Arithmetic operators

To perform arithmetic operations on arguments in an expression.

The following arithmetic operators shall be provided:

a) Addition

b) Subtraction

c) Multiplication

BS IEC 62529:2012

 IEC 62529:2012
 – 260 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

d) Floating-point division

e) Exponentiation

f) Modulo (result remainder)

g) Integer division

h) Unary addition

i) Unary subtraction

G.4.3 Relational operators

To perform relational operations on arguments in an expression. The result of a relational operation shall
be of boolean datatype.

The following relational operators shall be provided:

a) Equal to

b) Not equal to

c) Greater than

d) Less than

e) Greater than or equal to

f) Less than or equal to

G.4.4 Logical operators

To perform logical operations on one or more arguments of either a bit or boolean datatype in an
expression. The result of a logical operation on a boolean datatype shall be a boolean datatype.

The following logical operators shall be provided:

a) Logical NOT

b) Logical exclusive OR

c) Logical AND

d) Logical OR

e) Bitwise exclusive OR

f) Bitwise AND

g) Bitwise OR

h) Ones complement (bitwise NOT).

G.4.5 Other operators

The following additional operators shall be provided:

a) Concatenation of (two or more) character strings

b) Concatenation of (two or more) bit strings

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 261 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

G.4.6 Mathematical functions

To provide mathematical functions that operate on integer and real datatypes.

Functions shall be provided to perform the following:

a) Compute the integer part of a real datatype number.

b) Round an argument to the nearest integer.

c) Truncate an argument to an integer.

d) Compute an absolute value.

e) Compute a sine.

f) Compute a cosine.

g) Compute a tangent.

h) Compute an arctangent (in degrees and radians).

i) Compute an arcsine (in degrees and radians).

j) Compute an arccosine (in degrees and radians).

k) Compute a natural logarithm.

l) Compute a common logarithm.

m) Compute an antilogarithm.

n) Compute an exponential function (e to a power of x).

o) Compute a square root.

p) Compute a hypotenuse of a right triangle.

q) Compute a Bessel function.

r) Return the larger (maximum) of two numbers.

s) Return the smaller (minimum) of two numbers.

t) Add two binary numbers.

u) Subtract two binary numbers.

v) Multiply two binary numbers.

w) Divide two binary numbers.

x) Generate cyclic redundancy check (CRC) characters.

y) Check CRC characters.

z) Compute Fourier transforms.

G.4.7 File-handling functions

To provide functions that operate with files on the host system.

Functions shall be provided to perform the following:

a) Create a file.

b) Delete a file.

BS IEC 62529:2012

 IEC 62529:2012
 – 262 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

c) Read from a file.

d) Write to a file.

e) Test to determine whether a file exists (returns a result of true or false).

f) Test for the end of a file (returns a result of true or false).

g) Obtain the size of a file, i.e., the number of records within a file (returns an integer value).

G.4.8 Type conversion functions

To provide functions that convert one datatype to another.

Functions shall be provided to perform the following:

a) Convert an integer datatype into a character string.

b) Convert a real datatype into a character string.

c) Convert a character string (containing numeric characters) to integer.

d) Convert a character string (containing numeric characters) to real.

e) Convert a character into a bit string.

f) Convert a bit string into a character.

g) Convert a character to the integer value of an ASCII character code.

h) Convert the integer value of an ASCII character code to a character.

G.4.9 String-related functions

To provide functions that operate on either bit strings or character strings.

Functions shall be provided to perform the following string manipulations and tests:

a) Determine the length of a string, i.e., returns the length of a character string or a bit string (returns
an integer value).

b) Determine the location of a string within another string, i.e., determines the position of the first
occurrence of a string within another string (returns an integer value).

c) Determine the number of occurrences of a string within another string (returns an integer value).

d) Copy a substring from a string, i.e., copy a substring determined by its start position and length
from another string.

e) Delete a substring from a string, i.e., delete a substring determined by its start position and length
from another string.

f) Insert a substring into another string, i.e., insert a substring into another string at a defined start
position.

g) Rotate a bit string, i.e., rotate the contents of a bit string to the left or right.

h) Shift a bit string, i.e., shift the contents of a bit string to the left or right.

i) Test for an alphanumeric character, i.e., determine whether a character within a character string is
alphanumeric.

j) Test for an alpha character, i.e., determine whether a character within a character string is alpha
(returns a result of true or false).

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 263 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

k) Test for a control character, i.e., determine whether a character within a character string is numeric
(returns a result of true or false).

l) Check for even parity, i.e., determine whether the parity of a bit string is even (returns a result of
true or false).

m) Check for odd parity, i.e., determine whether the parity of a bit string is odd (returns a result of true
or false).

G.4.10 Other functions

To provide the following additional functions:

a) Date (returns the current date from the host system)

b) Time (returns the current time from the host system)

G.5 Control structures

The carrier language shall provide the control structures defined in G.5.1 through G.5.5.

G.5.1 If

To branch between two segments of clearly delimited code dependent upon the condition of an expression.

It shall be possible to nest the IF control structure.

G.5.2 Else

To provide optional branching to segments of clearly delimited code. It is used in conjunction with an IF
control structure.

G.5.3 Case

To branch to one or more segments of clearly delimited code dependent upon the evaluation of an
expression. Each code segment shall be executed sequentially unless a break is encountered. A break
directs the program control to the end of the case structure. A default section is mandatory.

G.5.4 For

To allow the repetitive execution of a segment of procedural statements, to establish the bounds of the
segment, and to identify a control variable that will be assigned a value prior to each iteration of the
segment.

There shall be two forms of the FOR control structure as follows:

a) List Form, for which the control variable is a list of values

b) Sequence Form, for which the control variable is a range of values

BS IEC 62529:2012

 IEC 62529:2012
 – 264 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

G.5.5 While

To identify the logical condition under which a segment of procedural code is to be interactively performed
while a specified condition is valid within the boundaries of the segment of code.

There shall be two forms of the WHILE control structure as follows:

a) When the condition is evaluated at the start of a segment of code and there are zero or more
iterations

b) When the condition is evaluated at the end of the segment of code and there is at least one iteration

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 265 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex H

(normative)

Test procedure language (TPL)

H.1 TPL layer

The TPL layer provides a mechanism for users who want to specify test requirements in a textual format
and provides a subset of the more traditional behavior expected from signals for test purposes.

H.2 Elements of the TPL

The TPL comprises three elements:

a) Signal statements that are used to configure, manipulate, control, and measure signals

b) A carrier language that is a programming language in which the signals statements can be written,
sequenced, observed, and generally supported

c) Global variable flags, e.g., GO/NOGO

H.3 Structure of test requirements

A test requirement written using the TPL can include the following elements:

a) Pragmas, such as native language includes, defines, and signal and test definition (STD) imports

b) User declarations of variables and functions

c) Program flow statements

d) User-defined function calls

e) Input-output statements

f) TPL signal statements

H.4 Carrier language

The carrier language may be any programming language. It provides data definition, processing, and
control structures in which the signal statements of the TPL may be written, embedded and compiled, or
translated.

To facilitate portability of test requirements between different carrier languages without extensive manual
recoding, a test requirement shall not include any carrier language constructs beyond the constructs
identified in the carrier language requirements detailed in Annex G.

H.5 Signal statements

The signal statements can be used to specify the signal test operations to be conducted on a unit under test
(UUT).

BS IEC 62529:2012

 IEC 62529:2012
 – 266 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

H.5.1 Definition of signal statements

Signal statement definitions have the following components:

a) Description, i.e., a formal textual description of the signal statement

b) Language neutral representation, i.e., shows the syntax and semantics of test statements, including
test statement name and formal parameter list

c) Mapping information, i.e., specifies the functionality of the test statement. A simple pseudocode
notation has been adopted as the language for describing the functionality of the test statement and
how it relates to the basic signal components (BSCs) and test signal framework (TSF) signals.

The mapping component will be used by test requirement authors to describe the processing carried out by
the signal statement. For system implementers, it specifies the mapping of STD test statements onto the
methods and attributes of BSCs and TSF signals.

H.5.2 Structure of signal statements

Test program language statements are focused on single actions. Single action test statements describe a
critical testing action that cannot be further subdivided with respect to the UUT. These statements are used
to describe sources, sensors, events, test actions, and test comparisons.

Each test statement follows a similar format, although each has its own specific syntax and includes
differences due to the particular requirements of the test statement. In general terms, the structure of each
statement is as follows:

a) Each TPL statement starts with a keyword defining the function of the statement, such as setup,
connect, or enable.

b) Normally, signal information is then given to describe the signal that is to be applied, measured, or
otherwise referenced. The signal information normally comprises the <TSFClass>, followed by one
or more Attribute-Value groups. The Attribute-Value group comprises a <TSFClass attribute>, an
optional <Qualifier>, and a <Value>. The <TSFClass attribute> shall be valid for the <TSFClass>.
The <Value> contains the numeric value of the attribute (which may be in the form of a variable or
a literal) and may also include the dimension, tolerance, and range information. The optional
<Qualifier> indicates how the attribute is observed. If no <Qualifier> is specified, then true root
mean square (trms) is assumed.

c) If required, optional synchronization and gating information can be added. Keywords sync and gate
are used to reference objects defined in other TPL statements.

d) A user-defined object name is then given to the signal or action.

H.5.3 Syntax of signal statements

The syntax employed in the formal description definitions is as follows:

 Bold indicates a TPL keyword or symbol (see note after this list).

 < > (angle brackets) denote a user-supplied name or literal, e.g., <name>.

 { } (braces) indicate a group.

 [] (brackets) indicate an optional field or element.

 | (vertical bar) indicates that the elements on each side of the bar are alternatives.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 267 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 * (asterisk) indicates that the previous element is repeated 0 or more times.

 + (plus symbol) indicates that the previous element is repeated 1 or more times.

 , (comma) is used as a parameter separator.

 ; (semicolon) is used as a statement terminator.

NOTE—Where a TPL symbol could be confused with a syntax symbol, the TPL symbol is in bold and underscored.
Hence, if a brace is used as a TPL symbol, it is defined as {. The symbol is written in the TPL without the underscore.

H.6 Mapping of test statements to carrier language

Each test statement definition includes a mapping to the carrier language. As the carrier language may vary
with different implementations, the mapping uses a pseudolanguage.

The following program words are used in the language mapping:

 Declare … as indicates a class declaration.

 Assign indicates an assignment statement in which an object is assigned to a variable.

 Comment indicates a (nonexecutable) comment statement.

 No language word indicates an assignment statement in which a value is assigned to a variable.

For example, in VisualBasic the words Declare, as, Assign, and Comment would be replaced by "Dim",
"As", "Set" and "'", respectively.

The syntax employed in the language mapping is similar to that used in the formal description definitions:

 Bold indicates a keyword.

 < > (angle brackets) denote a user-supplied name or string, e.g., <name>.

 { } (braces) indicate a group.

 [] (brackets) indicate an optional field or element.

 | (vertical bar) indicates that the elements on each side of the bar are alternatives.

 * (asterisk) indicates that the previous element is repeated 0 or more times.

 + (plus symbol) indicates that the previous element is repeated 1 or more times.

Throughout this annex, the use of a ResourceManager object named STD is used. It is assumed that this
object was previously declared and instantiated as a ResourceManager object in the carrier language.

H.7 Test statement definitions

TPL statements are focused on single actions. Single action test statements describe a critical testing action
that cannot be further subdivided with respect to the UUT. In the following statement definitions, the
keywords are in bold for the sake of clarity. It is not necessary to use bold in a TPL requirement.

BS IEC 62529:2012

 IEC 62529:2012
 – 268 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

H.7.1 Setup statements

Setup is used to describe (but not create or invoke) events, sources, and sensors.

H.7.1.1 Setup source statement

The setup statement for a source describes a signal to be applied to a UUT.

H.7.1.1.1 Formal description

Setup <TSFClass> {<TSFClass attribute>[<Qualifier>]<Value>}
 {,<TSFClass attribute>[<Qualifier>]<Value>}*
[sync to <EventSyncName>]
[gate {with <EventGateName>}|{from <EventFromName> to <EventToName>}]
[as [<identifier>]] source <SourceSignalName>;

where

<EventSyncName>, <EventGateName>, <EventFromName>, and <EventToName> are previously
defined event names.

[as [<identifier>]] source associates an arbitrary user-supplied object name <SourceSignalName> with
the signal definition and a user-defined identifier used by the Require method.

NOTE—An appropriate {<TSFClass attribute>[<Qualifier>]<Value>} group shall be supplied for every attribute that
does not have a valid default value.

H.7.1.1.2 Language mapping

Declare <SourceSignalName> as <TSFClass>
Assign <SourceSignalName> = STD.Require("<TSFClass>"[,<identifier>])
 {<SourceSignalName>.<attribute>="<Qualifier> <Value>"}+
[Assign <SourceSignalName>.Sync = <EventSyncName>]
[{Assign <SourceSignalName>.Gate = <EventGateName>}
|{Assign <SourceSignalName>.Gate = {STD.Require("EventedEvent")
 Assign <SourceSignalName>.Gate.Enable = <EventFromName>
 Assign <SourceSignalName>.Gate.Disable = <EventToName>}]

H.7.1.2 Setup sensor statement

The setup statement for a sensor describes a signal to be monitored or measured.

H.7.1.2.1 Formal description

Setup <TSFClass><TSFClass measure_attribute> [<mQualifier>] [mValue]
 {,<TSFClass attribute>[<Qualifier>]<Value>}*
[sync to <EventSyncName>]
[gate {with <EventGateName>}|{from <EventFromName> to <EventToName>}]
[as [<identifier>]] sensor <SensorSignalName>;

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 269 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

where

<EventSyncName>, <EventGateName>, <EventFromName>, and <EventToName> are previously
defined event names.

[as [<identifier>]] sensor associates an arbitrary user-supplied object name <SensorSignalName> with
the signal definition and a user-defined identifier used by the Require method.

NOTE 1—The <TSFClass measure_attribute> to be measured may be any valid controllable TSFClass attribute for the
specified <TSFClass>.

NOTE 2—The <TSFClass measure_attribute> is the attribute to be measured (i.e., the measured attribute) and has no
<Value> specified. Subsequent <TSFClass Attribute>s (Attribute-Value groups) provide additional signal description
information.

H.7.1.2.2 Language mapping

Declare <SensorSignalName> as Measure
Assign <SensorSignalName> = STD.Require("Measure" [,<identifier>])
 <SensorSignalName>.attribute="<measure_attribute>"
Assign <SensorSignalName>.As = STD.Require("<TSFClass>")
 [<SensorSignalName>.As.<measure-attribute>="<mQualifier> <mValue>"]
 {<SensorSignalName>.As.<attribute>="<Qualifier> <Value>"}+
[Assign <SensorSignalName>.Sync = <EvntSyncName>]
[{Assign <SensorSignalName>.Gate = <EventGateName>}
|{Assign <SensorSignalName>.Gate = {STD.Require("EventedEvent")
Assign <SensorSignalName>.Gate.Enable = <EventFromName>
Assign <SensorSignalName>.Gate.Disable = <EventToName>}]

H.7.1.3 Setup sensor statement (for undefined signal)

The setup statement for a sensor for an undefined signal describes a qualifier to be monitored or measured.

H.7.1.3.1 Formal description

Setup [Undefined_Signal] <Attribute>[<Qualifier>][<Errlmt>][<Range>]
[sync to <EventSyncName>]
[gate {with <EventGateName>}|{from <EventFromName> to <EventToName>}]
[as [<identifier>]] sensor <SensorSignalName>;

where

<Attribute> is the physical type being observed by the monitor.
<EventSyncName>, <EventGateName>, <EventFromName>, and <EventToName> are previously

defined event names.
[as [<identifier>]] sensor associates an arbitrary user-supplied object name <SensorSignalName> with

the signal definition and a user-defined identifier used by the Require method.

Table H.1 shows the qualifiers that may be used with each (electrical) attribute. If the attribute cannot be
measured as a trms value, then a valid qualifier shall be supplied.

BS IEC 62529:2012

 IEC 62529:2012
 – 270 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table H.1—Attributes and qualifiers for use with an undefined (electrical) signal

Attribute Valid qualifiers
Voltage inst, av, pk, trms, pk_pk
Current inst, av, pk, trms, pk_pk
Power inst, av, pk, trms
Frequency inst, av, pk,
Resistance inst
Capacitance inst
Conductance inst
Inductance inst
Reactance inst
Susceptance inst

H.7.1.3.2 Language mapping

Declare <SensorSignalName> as <SensorFunction>
Assign <SensorSignalName> = STD.Require("<SensorFunction>"
[,<identifier>])
[Assign <SensorSignalName>.Sync = <EvntSyncName>]
[{Assign <SensorSignalName>.Gate = <EventGateName>}
|{Assign <SensorSignalName>.Gate = {STD.Require("EventedEvent")
 Assign <SensorSignalName>.Gate.Enable = <EventFromName>
 Assign <SensorSignalName>.Gate.Disable = <EventToName>}]

where

<SensorFunction> is described as <SensorType>(<Attribute>) where <Attribute> is an valid physical
type and <SensorType> is mapped as

a) inst Instantaneous(<Type>)

b) trms RMS(<Type>)

c) pk Peak(<Type>)

d) pk_pk PeakToPeak(<Type>)

e) pk_pos PeakPos(<Type>)

f) pk_neg PeakNeg (<Type>)

g) av Average(<Type>)

h) inst_max MaxInstantaneous(<Type>)

i) inst_min MinInstantaneous (<Type>)

H.7.1.4 Setup signal-based event statement

The setup statement for a signal-based event describes a signal to be monitored to generate an event when
the specified conditions are satisfied.

H.7.1.4.1 Formal description

Setup <Attribute>[<Qualifier>] <condition> <Value>
[sync to <EventSyncName>]

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 271 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

[gate {with <EventGateName>}|{from <EventFromName> to <EventToName>}]
[as [<identifier>]] event <EventName>;

where

[as [<identifier>]] event associates an arbitrary user-supplied name <EventName> with the event
definition and a user-defined identifier used by the Require method.

<Attribute> is the physical type being observed by the monitor.
<Qualifier>s are defined in Table H.1.
<condition> is one of {GT|LT}
 where

 GT indicates that the monitored signal must be greater than the specified value in order to satisfy
the condition and generate the event.

 LT indicates that the monitored signal must be less than the specified value in order to satisfy the
condition and generate the event.

<EventSyncName>, <EventGateName>, <EventFromName>, and <EventToName> are previously
defined event names.

During the period that the signal-based-event is enabled, an event will occur at the instant that the specified
signal condition is satisfied. An event will occur each time the signal condition is satisfied (following the
condition becoming unsatisfied) until the event is disabled.

An associated event interval will occur between the condition becoming satisfied and the condition
becoming unsatisfied.

The event <EventName> may, therefore, be used for synchronization and for gating.

H.7.1.4.2 Language mapping

Declare <EventName> as <SensorFunction>
Assign <EventName> = STD.Require("<SensorFunction>")
 <EventName>.condition=<condition>
 <EventName>.Nominal=<Value>
[Assign <EventName>.Sync = <EvntSyncName>]
[{Assign <EventName>.Gate = <EventGateName>}
|{Assign <EventName>.Gate = {STD.Require("EventedEvent")
 Assign <EventName>.Gate.Enable = <EventFromName>
 Assign <EventName>.Gate.Disable = <EventToName>}]

where

<SensorFunction> is described as <SensorType>(<Attribute>) where <Attribute> is an valid physical
type and <SensorType> is mapped as

a) inst Instantaneous(<Type>)

b) trms RMS(<Type>)

c) pk Peak(<Type>)

d) pk_pk PeakToPeak(<Type>)

e) pk_pos PeakPos(<Type>)

f) pk_neg PeakNeg (<Type>)

g) av Average(<Type>)

BS IEC 62529:2012

 IEC 62529:2012
 – 272 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

h) inst_max MaxInstantaneous(<Type>)

i) inst_min MinInstantaneous (<Type>)

H.7.1.5 Setup event-based event statement

The setup statement for an event-based event describes an event when the monitored events are present.

H.7.1.5.1 Formal description

Setup from <EventFrom> to <EventTo>
[sync to <EventSyncName>]
[gate {with <EventGateName>}|{from <EventFromName> to <EventToName>}]
[as [<identifier>]] event <EventName>;

where

 [as [<identifier>]] event associates an arbitrary user-supplied name <EventName> with the event
definition and a user-defined identifier used by the Require method.

<EventFrom> and <EventTo> are previously defined event names.
<EventSyncName>, <EventGateName>, <EventFromName>, and <EventToName> are previously

defined event names.

During the period that the event-based-event is enabled, an event will occur at the instant that the
<EventFrom> occurs. Subsequently, an event will occur each time the <EventFrom> occurs following an
<EventTo> until the event is disabled.

An associated event interval will occur between the <EventFrom> event and the <EventTo> event.

The event <EventName> may, therefore, be used for synchronization and for gating.

H.7.1.5.2 Language mapping

Declare <EventName> as EventedEvent
Assign <EventName> = STD.Require("EventedEvent")
Assign <EventName>.Enable=<EventFrom>
Assign <EventName>.Disable=<EventTo>
[Assign <EventName>.Sync = <EvntSyncName>]
[{Assign <EventName>.Gate = <EventGateName>}
|{Assign <EventName>.Gate = {STD.Require("EventedEvent")
 Assign <EventName>.Gate.Enable = <EventFromName>
 Assign <EventName>.Gate.Disable = <EventToName>}]

H.7.1.6 Setup time-based event statement

The setup statement for a time-based event describes an event when the specified time conditions are
satisfied.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 273 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

H.7.1.6.1 Formal description

Setup [after <TimeValue Delay>] [for <TimeValue Duration>]
 every <TimeValue Period> [<Integer Repetition> times]
[sync to <EventSyncName>]
[gate {with <EventGateName>}|{from <EventFromName> to <EventToName>}]
[as [<identifier>]] event <EventName>;

where

 [as [<identifier>]] event associates an arbitrary user-supplied name <EventName> with the event
definition and a user-defined identifier used by the Require method.

<TimeValue Delay>, <TimeValue Duration>, and <TimeValue Period> are <Value>s in which the
<UnitSymbol> shall be a valid time interval symbol.

<Integer> is an expression that evaluates to a positive integer value.
<EventSyncName>, <EventGateName>, <EventFromName>, and <EventToName> are previously

defined event names.

During the period that the time-based-event is enabled, an event will occur at the instant that the initial
after time value expires. Subsequent events will occur with a period equal to the time defined following the
every keyword until the event is disabled. The optional <Integer Repetition> times field defines the
number of events to be generated. Omitting this field causes events to be generated continuously until the
event is disabled.

The optional for <TimeValue_Duration> field defines the duration of the associated event interval. If this
field is omitted, the event interval period will be undefined and should not be used for gating.

The event <EventName> may be used for synchronization and for gating if the event interval period is
defined.

H.7.1.6.2 Language mapping

Declare <EventName> as TimedEvent
Assign <EventName> = STD.Require("TimedEvent")
 [<EventName>.delay="<TimeValue Delay>"]
 [<EventName>.duration ="<TimeValue Duration >"]
 <EventName>.period="<TimeValue Period>"
 [<EventName>.repetition="<TimeValue Repetition>"]
[Assign <EventName>.Sync = <EvntSyncName>]
[{Assign <EventName>.Gate = <EventGateName>}
|{Assign <EventName>.Gate = {STD.Require("EventedEvent")
 Assign <EventName>.Gate.Enable = <EventFromName>
 Assign <EventName>.Gate.Disable = <EventToName>}]

H.7.1.7 Setup clock statement

The setup statement for a clock describes a stream of events at the specified frequency.

H.7.1.7.1 Formal description

Setup <frequency>|<period>
[sync to <EventSyncName>]
[gate {with <EventGateName>}|{from <EventFromName> to <EventToName>}]

BS IEC 62529:2012

 IEC 62529:2012
 – 274 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

[as [<identifier>]] clock <ClockName>;

where

 [as [<identifier>]] clock associates an arbitrary user-supplied name <ClockName> with the clock
definition and a user-defined identifier used by the Require method.

<frequency> is a <Value> in which the <UnitSymbol> shall be a valid frequency symbol.
<period> is a <Value> in which the <UnitSymbol> shall be a valid time interval symbol.
<EventSyncName>, <EventGateName>, <EventFromName>, and <EventToName> are previously

defined event names.

While the clock is enabled, an event will occur with the frequency specified or a frequency derived from
the period specified until the event is disabled.

An associated event interval will occur starting at the event with a duration equal to half the period.

H.7.1.7.2 Language mapping

Declare <ClockName> as Clock
Assign <EventName> = STD.Require("Clock")
 <EventName>.clockRate="<period>"
[Assign <EventName>.Sync = <EvntSyncName>]
[{Assign <EventName>.Gate = <EventGateName>}
|{Assign <EventName>.Gate = {STD.Require("EventedEvent")
 Assign <EventName>.Gate.Enable = <EventFromName>
 Assign <EventName>.Gate.Disable = <EventToName>}]

H.7.1.8 Setup time interval measurement statement

The setup statement for a time interval measurement describes a requirement to measure the time between
two events.

H.7.1.8.1 Formal description

Setup Interval [<Errlmt>] [<Range>]
[sync to <EventSyncName>]
[gate] from <EventFromName> [to <EventToName>]
[as [<identifier>]] interval <IntervalName>;

where

[as [<identifier>]] interval associates an arbitrary user-supplied name <IntervalName> with the interval
measurement sensor definition and a user-defined identifier used by the Require method.

<EventSyncName>, <EventFromName>, and <EventToName> are previously defined event names.

This statement facilitates the measurement of the interval between two different events or, if the to
<EventTo> field is omitted, between subsequent occurrences of the <EventFrom> event.

H.7.1.8.2 Language mapping

Declare <IntervalName> as Interval
Assign <IntervalName> = STD.Require("Interval")

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 275 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Assign <IntervalName>.In = <EventFromName>.Out
[Assign <IntervalName>.Gate = <EventToName>.Out]
[Assign <IntervalName>.Sync = <EventSyncName>]

H.7.1.9 Setup event counter statement

The setup statement for an event counter describes a requirement to monitor an event stream and to count
the number of events.

H.7.1.9.1 Formal description

Setup Events [<Errlmt>] [<Range>]
 of <Event>
[sync to <EventSyncName>]
[gate {with <EventGateName>}|{from <EventFromName> to <EventToName>}]
[as [<identifier>]] counter <CounterName>;

where

 [as [<identifier>]] counter associates an arbitrary user-supplied name <CounterName> with the event
counter definition and a user-defined identifier used by the Require method.

The < UnitSymbol> in <Errlmt> and <Range> (if used) shall be a null symbol.
<Event> is a previously defined <EventName>.
<EventSyncName>, <EventGateName>, <EventFromName>, and <EventToName> are previously

defined event names.

This statement facilitates the count of the number of events (in an event stream) while the counter
<CounterName> is enabled.

H.7.1.9.2 Language mapping

Declare <CounterName> as Counter
Assign <CounterName> = STD.Require("Counter")
Assign <CounterName>.In = <Event>.Out
[Assign <CounterName>.Sync = <EvntSyncName>]
[{Assign <CounterName>.Gate = <EventGateName>}
|{Assign <CounterName>.Gate = {STD.Require("EventedEvent")
 Assign <CounterName>.Gate.Enable = <EventFromName>
 Assign <CounterName>.Gate.Disable = <EventToName>}]

H.7.1.10 Setup signal statement

The setup statement for a signal describes a requirement to provide a user-defined signal.

H.7.1.10.1 Formal description

Setup <XMLSignalDescription>
[sync to <EventSyncName>]
[gate {with <EventGateName>}|{from <EventFromName> to <EventToName>}]
 [as [<identifier>]] <SignalName>;

BS IEC 62529:2012

 IEC 62529:2012
 – 276 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

where

 [as [<identifier>]] associates an arbitrary user-supplied object name <SignalName> with the signal
definition and a user-defined identifier used by the Require method.

<XMLSignalDescription> can be a valid extensible markup language (XML) signal description, a string
literal containing the URL to a valid signal description or a string variable containing the XML
signal description.

<EventSyncName>, <EventGateName>, <EventFromName>, and <EventToName> are previously
defined event names.

NOTE 1—The use of a string variable is deprecated.

NOTE 2—If the signal requires the value of carrier language parameters to be used, the names of the Carrierl Language
parameters may be used within an attribute expression, e.g., ampl='{param1}'. Alternatively, the attributes can be
assigned the parameter value following the TPL Setup statement using the Carrier Language equivalent statement, e.g.,
mySig.Item("carrier").ampl=param1.

H.7.1.10.2 Language mapping

Declare <SignalName> as SignalFunction
Assign SignalName> = STD.Require(<XMLSignalDescription>
[,<identifier>])
[Assign <SignalName>.Sync = <EvntSyncName>]
[{Assign <SignalName>.Gate = <EventGateName>}
|{Assign <SignalName>.Gate = {STD.Require("EventedEvent")
 Assign <SignalName.Gate.Enable = <EventFromName>
 Assign <SignalName.Gate.Disable = <EventToName>}]

H.7.1.10.3 Examples

H.7.1.10.3.1 Using XML Signal description

Setup <Signal Out='c'>
 <Constant name='c' amplitude='{dAmpl} V range 0 V to 100 V
 errlmt +-0.01 V' />
 </Signal>
as s1;

H.7.1.10.3.2 Using a URL

Setup
"http://grouper.ieee.org/groups/scc20/ATML/Demonstrations/Signals/Noisy
_Sinusoid.xml"
as s1;

H.7.2 Reset statement

The reset statement resets and releases a previous setup signal requirement.

H.7.2.1 Formal description

Reset { <SignalName>|<EventName>|ConnectionName>

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 277 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 |<ClockName>|<IntervalName>|<CounterName>
 {,<SignalName>|<EventName>|ConnectionName>
 |<ClockName>|<IntervalName>|<CounterName>}* }|all
[timeout <TimeOutValue>];

where

<TimeOutValue> is an integer value (in milliseconds) representing the maximum time the system should
allow for the signal to reset.

NOTE 1—The optional all keyword indicates that all setup signal requirements are to be released.

NOTE 2—If the optional timeout field is not used, the implementation-specific standard timeout value will be assumed.

H.7.2.2 Language mapping

<Name>.Out.Stop [<TimeOutValue>]
Assign <Name> = Nothing

If the keyword all is used, the implementation shall enumerate through all signal names performing the
operations in H.7.2.1.

H.7.3 Connect statement

Connect is used to invoke sources and sensors and to connect them to the UUT.

H.7.3.1 Connect source signal statement

The connect statement for a source signal invokes the signal and connects it to the specified UUT pins.

H.7.3.1.1 Formal description

Connect <SourceSignalName>[<ConnectionClass>] to
 {<ConnectionClassPinName> <Pin>[{,<Pin>}*]}+
[timeout <TimeOutValue>]
[gate {with <EventGateName>}|{from <EventFromName> to <EventToName>}]
[[as [<identifier>]] connection <ConnectionName>];

where

[as [<identifier>]] connection associates an arbitrary user-supplied name <ConnectionName> with the
connection definition and a user-defined identifier used by the Require method.

<ConnectionClass> is a valid connection class name, e.g., TwoWire, ThreePhaseDelta.
<ConnectionClassPinName> is a valid connection class pin name, e.g., hi, lo.
<Pin> is the UUT pin identifier or special pin name, e.g., Common, Earth.
<EventGateName>, <EventFromName>, and <EventToName> are previously defined event names.

NOTE 1—The optional <ConnectionName> allows the same signal to be connected to different pins at different times.

NOTE 2—The optional <ConnectionClass> is required only if there may be ambiguity about the meaning of
<ConnectionClassPinName>s, e.g., between three-phase wye or delta where A, B, and C are both used. The underlying
translation mechanism shall determine the <ConnectionClass> from <Pin> names, if a <ConnectionClass> is not
supplied in the statement.

BS IEC 62529:2012

 IEC 62529:2012
 – 278 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

NOTE 3—If the optional Gate field is included, the event or clock is enabled at the instant the event occurs; and the
signal will be removed at the end of the event interval period.

NOTE 4—If a connection is gated, this may be used to indicate thatthe signal is being hot-switched. If the connection is
not gated, this may indicate that the signal path is made prior to the signal being initiated and is, therefore, cold-
switched. However, the standard does not define how the signal is created or connected, but describes the signal itself
and where it has to be connected. A valid implementation may not use switching at all.

H.7.3.1.2 Language mapping

Declare <ConnectionName> as <ConnectionClass>
Assign <ConnectionName> = STD.Require("<ConnectionClass>")
 {<ConnectionName>.<ConnectionClassPinName> = <Pin>}+
Assign <ConnectionName>.In = <SourceSignalName>.Out
[{Assign <ConnectionName>.Gate = <EventGateName>}
|{Assign <ConnectionName>.Gate = STD.Require("EventedEvent")
 Assign <ConnectionName>.Gate.Enable = <EventFromName>
 Assign <ConnectionName>.Gate.Disable = <EventToName>}]
<ConnectionName>.Out.Run [<TimeOutValue>]

H.7.3.2 Connect sensor signal statement

The connect statement for a sensor signal connects the signal monitor to the UUT pins on which the signal
is to be measured and initiates a measurement.

H.7.3.2.1 Formal description

Connect {<ConnectionClassPinName> <Pin>[{,<Pin>}*]}+ to
 <SensorSignalName>[<ConnectionClass>]
[timeout <TimeOutValue>]
 [gate {with <EventGateName>}|{from <EventFromName> to <EventToName>}]
 [[as [<identifier>]] connection <ConnectionName>];

where

 [as [<identifier>]] connection associates an arbitrary user supplied name, <ConnectionName>, with the
connection definition and a user-defined identifier used by the Require method.

<ConnectionClass> is a valid connection class name, e.g., TwoWire, ThreePhaseDelta.
<ConnectionClassPinName> is a valid connection class pin name, e.g., hi, lo.
<Pin> is the UUT pin identifier or special pin names, e.g., Common, Earth.
<EventGateName>, <EventFromName> and <EventToName> are previously defined event names.
<SensorSignalName> is a previously defined object from a setup sensor statement, following the sensor

keyword.

NOTE 1—The optional <ConnectionName> allows the same signal to be connected to different pins at different times.

NOTE 2—The optional <ConnectionClass> is required only if there may be ambiguity about the meaning of
<ConnectionClassPinName>s, for example, between three-phase wye or delta where A, B, and C are used. The
underlying translation mechanism shall determine the <ConnectionClass> from <Pin> names, if a <ConnectionClass>
is not supplied in the statement.

H.7.3.2.2 Language mapping

Declare <connectionName> as <ConnectionClass>
Assign <ConnectionName> = STD.Require("<ConnectionClass>")

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 279 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 {<ConnectionName>.<ConnectionClassPinName> = <Pin>}+
Assign <SensorSignalName>.In = <ConnectionName>.Out
[{Assign <ConnectionName>.Gate = <EventGateName>}
|{Assign <ConnectionName>.Gate = STD.Require("EventedEvent"
 Assign <ConnectionName>.Gate.Enable = <EventFromName>
 Assign <ConnectionName>.Gate.Disable = <EventToName>}]
<ConnectionName>.Out.Run [<TimeOutValue>]

H.7.3.3 Connect pin to pin statement

The connect pin to pin statement connects UUT pins together or to named pins.

H.7.3.3.1 Formal description

Connect <Pin> and < Pin >[{,<Pin>}*]
[timeout <TimeOutValue>]
[gate {with <EventGateName>}|{from <EventFromName> to <EventToName>}]
[as [<identifier>]] connection <ConnectionName>;

where

 [as [<identifier>]] connection associates an arbitrary user-supplied name, <ConnectionName>, with the
connection definition and a user-defined identifier used by the Require method.

<Pin> is the UUT pin identifier or special pin names, e.g., Common, Earth.
<EventGateName>, <EventFromName> and <EventToName> are previously defined event names.

H.7.3.3.2 Language mapping

Declare <connectionName> as <ConnectionClass>*
Assign <ConnectionName> = STD.Require("<ConnectionClass>")*
 {<ConnectionName>.<ConnectionClassPinName> = <Pin>}+
Assign <ConnectionName#1>.In = <ConnectionName#2>.Out
[{Assign <ConnectionName>.Gate = <EventGateName>}
|{Assign <ConnectionName>.Gate = STD.Require("EventedEvent"
 Assign <ConnectionName>.Gate.Enable = <EventFromName>
 Assign <ConnectionName>.Gate.Disable = <EventToName>}]
<ConnectionName>.Out.Run [<TimeOutValue>]

H.7.4 Disconnect statement

The disconnect statement removes the signal at the specified connections. It does not release the
<SignalName>; therefore, the same signal does not have to be described many times with identical setup
statements. A <ConnectionName> will be released.

H.7.4.1 Formal description

Disconnect {<SignalName>|<ConnectionName>}|all
[timeout <TimeOutValue>];

NOTE—The optional all keyword indicates that all connected resources are disconnected.

BS IEC 62529:2012

 IEC 62529:2012
 – 280 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

H.7.4.2 Language mapping

<ConnectionName>.Out.Stop [<TimeOutValue>]
Assign <ConnectionName>.In = Nothing
Assign <ConnectionName> = Nothing

Or

<SignalName>.Out.Stop [<TimeOutValue>]
For Each conn in <SignalName>.Out
 Assign conn.In = Nothing
Next

If the keyword all is used, the implementation shall enumerate through all connections as described in
H.7.4.1.

H.7.5 Enable statement

The enable statement causes the specified requirement to be enabled so that the events may be monitored or
generated as appropriate.

H.7.5.1 Enable statement (general case)

The general case enable statement applies to all enabled requirements except the signal-based event.

H.7.5.1.1 Formal description

Enable <EventName>|<ClockName>|<IntervalName>|<CounterName>
 {,<EventName>|<ClockName>|<IntervalName>|<CounterName>}*
[timeout <TimeOutValue>]
[sync to <EventSyncName>]
[gate {with <EventGateName>}|{from <EventFromName> to <EventToName>}];

where

<EventName> is a previously defined event except a signal-based event.
<ClockName> is any previously defined clock.
<IntervalName> is any previously defined interval measurement sensor.
<CounterName> is any previously defined counter.
<EventSyncName>, <EventGateName>, <EventFromName> and <EventToName> are previously

defined event names.
<TimeOutValue> is an integer value (in milliseconds) representing the maximum time the system should

allow for the signal to be enabled.

NOTE 1—If the optional Sync or Gate fields are included, the event or clock is enabled at the instant the event occurs.

NOTE 2—In the case of a Gate field, the signal will be removed at the end of the event interval period.

NOTE 3—If the optional Timeout field is not used, the implementation-specific standard timeout value will be
assumed.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 281 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

H.7.5.1.2 Language mapping

 [Assign <Name>.Sync = <EventSyncName>]
[{Assign <Name>.Gate = <EventGateName>}
|{Assign <Name>.Gate = STD.Require("EventedEvent")
 Assign <Name>.Gate.Enable = <EventFromName>
 Assign <Name>.Gate.Disable = <EventToName>}]
<Name>.Out.Run [<TimeOutValue>]

where

<Name> is one of <EventName>|<ClockName>|<IntervalName>|<CounterName>.

H.7.5.2 Enable signal-based event statement

The enable statement for the signal-based event connects the signal monitor to the specified pins and
enables the event generator.

H.7.5.2.1 Formal description

Enable <EventName> on
 {<ConnectionClassPinName> <Pin>[{,<Pin>}*]}+
[timeout <TimeOutValue>]
[sync to <EventSyncName>]
[gate {with <EventGateName>}|{from <EventFromName> to <EventToName>}];

where

<EventName> is a previously defined signal-based event.
<ConnectionClassPinName> is a valid connection class pin name, e.g., hi, lo.
<Pin> is the UUT pin identifier or special pin names, e.g., Common, Earth.
<EventSyncName>, <EventGateName>, <EventFromName> and <EventToName> are previously

defined event names.
<TimeOutValue> is an integer value (in milliseconds) representing the maximum time the system should

allow for the signal to be enabled.

NOTE—If the optional Timeout field is not used, the implementation-specific standard timeout value will be assumed.

H.7.5.2.2 Language mapping

[Assign <EventName>.Sync = <EventSyncName>]
[{Assign <EventName>.Gate = <EventGateName>]}
|{Assign <EventName>.Gate = STD.Require("EventedEvent")
 Assign <EventName>.Gate.Enable = <EventFromName>
 Assign <EventName>.Gate.Disable = <EventToName>}]
Assign cnx = STD.Require("<ConnectionClass>")
Assign <EventName>.In = cnx.Out
 {Cnx.<ConnectionClassPinName> = "<Pin>"}+
Assign cnx=Nothing
<EventName>.Out.Run [<TimeOutValue>]

BS IEC 62529:2012

 IEC 62529:2012
 – 282 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

H.7.6 Disable statement

H.7.6.1 Formal description

Disable {<EventName>|<ClockName>|<IntervalName>|<CounterName>}|all
[timeout <TimeOutValue>];

where

<EventName> is any previously enabled event.
<ClockName> is any previously enabled clock.
<IntervalName> is any previously enabled interval measurement sensor.
<CounterName> is any previously enabled counter.

NOTE—The optional all keyword indicates that all enabled resources are disabled.

H.7.6.2 Language mapping

<Name>.Out.Stop [<TimeOutValue>]

where

<Name> is one of <EventName>|<ClockName>|<IntervalName>|<CounterName>.

If the keyword all is used, the implementation shall enumerate through all events performing the operations
in H.7.6.1.

H.7.7 Read statement

Read initiates a further measurement and then returns into <Variable> the measured <TSFClassAttribute>
of a setup and connected <SensorSignalName>.

H.7.7.1 Formal description

Read [(<samples>)]<SensorSignalName>|<IntervalName>|<CounterName>
into <Variable>
[timeout <TimeOutValue>]
[sync to <EventSyncName>]
[gate {with <EventGateName>}|{from <EventFromName> to <EventToName>}];

where

<Variable> is a previously declared valid carrier language variable used to store the measured value.
<EventSyncName>, <EventGateName>, <EventFromName> and <EventToName> are previously

defined event names.
<TimeOutValue> is an integer value (in milliseconds) representing the maximum time the system should

allow for the signal to be read.

NOTE 1—If the optional Sync or Gate fields are included, the event or clock is enabled at the instant the event occurs.

NOTE 2—In the case of a Gate field, the signal will be removed at the end of the event interval period.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 283 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

NOTE 3—If the measured attribute has multiple properties or multiple sets of properties, the <Variable> into which the
values are to be saved shall be a previously declared valid carrier language array variable.

NOTE 4—If the optional Timeout field is not used, the implementation-specific standard timeout value will be
assumed.

H.7.7.2 Language mapping

[<SensorSignalName>.samples = <samples>]
[Assign <SensorSignalName>.Sync = <EventSyncName>]
[{Assign <SensorSignalName>.Gate = <EventGateName>}
|{Assign <SensorSignalName>.Gate = STD.Require("EventedEvent")
 Assign <SensorSignalName>.Gate.Enable = <EventFromName>
 Assign <SensorSignalName>.Gate.Disable = <EventToName>}]
<SensorSignalName>.Out.Run [<TimeOutValue>]
...wait for measurement
Assign <Variable> = <SensorSignalName>.measurement(s)

H.7.8 Change statement

Change adjusts the <NumericValue> of one or more <TSFClassAttribute>s of <SourceSignalName>
identified by previous setup signal statements.

H.7.8.1 Formal description

Change <SourceSignalName>
{<TCFClassAttribute>[<Qualifier>]<Value>|{<Variable>[<UnitSymbol>]}}+
[timeout <TimeOutValue>]
[sync to <EventSyncName>]
[gate {with <EventGateName>}|{from <EventFromName> to <EventToName>}];

where

<Qualifier> must remain the same as defined in the setup statement for the <SourceSignalName>.
<UnitSymbol> must remain the same as defined in the setup statement for the <SourceSignalName>.
<Value> must remain the same as defined in the setup statement for the <SourceSignalName> except

that the <NumericValue> may change.
<EventSyncName>, <EventGateName>, <EventFromName> and <EventToName> are previously

defined event names
<TimeOutValue> is an integer value (in milliseconds) representing the maximum time the system should

allow for the signal to change.

NOTE 1—If the optional Sync or Gate fields are included, the event or clock is enabled at the instant the event occurs.

NOTE 2—In the case of a Gate field, the signal will be removed at the end of the event interval period.

NOTE 3—If the optional Timeout field is not used, the implementation-specific standard timeout value will be
assumed.

H.7.8.2 Language mapping

(<SourceSignalName>.<TCFClassAttribute>="<Modifer> <Value>"|Variable)+
[Assign < SourceSignalName>.Sync = <EventSyncName>]
[{Assign <SourceSignalName>.Gate = <EventGateName>}
|{Assign <SourceSignalName>.Gate = STD.Require("EventedEvent")

BS IEC 62529:2012

 IEC 62529:2012
 – 284 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 Assign <SourceSignalName>.Gate.Enable = <EventFromName>
 Assign <SourceSignalName>.Gate.Disable = <EventToName>}]
<SourceSignalName>.Out.Change [<TimeOutValue>]

H.7.9 Compare statement

The TPL requires that the carrier language supports a set of system global boolean variables that represent
test result status flags. These boolean flags are identified as GO, NOGO, HI, and LO, but must not be
confused with the integer variables of the same name that belong to each measurement BSC.

The compare statement compares the value of <SensorSignalName> with the contents of the <Evaluation
Field> and sets the system flags GO, NOGO, HI, and LO. The measurement read-only variables are not
changed by this action.

H.7.9.1 Formal description

Compare <SensorSignalName> <Evaluation Field>;

where

<SensorSignalName> is a previously declared sensor for which a connect or read statement has been
executed.

<Evaluation Field> is defined in H.7.9.1.1.

H.7.9.1.1 <Evaluation Field>

The syntax of the <Evaluation Field> is as follows:

{UL <NumericValue>[<UnitSymbol>] LL <NumericValue>[<UnitSymbol>]}|
{LL <NumericValue>[<UnitSymbol>] UL <NumericValue>[<UnitSymbol>]}|
{> <NumericValue>[<UnitSymbol>]}|{>= <NumericValue>[<UnitSymbol>]}|
{< <NumericValue>[<UnitSymbol>]}|{<= <NumericValue>[<UnitSymbol>]}|
{= <NumericValue>[<UnitSymbol>]}|{<> <NumericValue>[<UnitSymbol>]}

RULE—<NumericValue> shall be of the same physical type and units as the measured attribute in the
<SensorSignalName>.

NOTE 1—The optional <UnitSymbol> is not required to achieve a valid evaluation (see the above rule), but may be
used to create clearer test requirements.

NOTE 2—The measured attribute is saved in the variable associated with the <SensorSignalName> in the last read
statement executed.

H.7.9.1.2 GO, NOGO, HI, and LO flags

Given the possible values of the measured attribute attr and <NumericValue>(s) x and y, the measurement
flags are set as follows:

Compare attr UL x LL y attr > x HI and NOGO
 x ≥ attr ≥ y GO
 attr < y LO and NOGO

Compare attr > x attr > x GO
 attr ≤ x LO and NOGO

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 285 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Compare attr ≥ x attr ≥ x GO
 attr < x LO and NOGO

Compare attr < x attr < x GO
 attr ≥ x HI and NOGO

Compare attr ≤ x attr ≤ x GO
 attr > x HI and NOGO

Compare attr = x attr = x GO
 attr <> x NOGO

Compare attr <> x attr = x NOGO
 attr <> x GO

NOTE—These flags are updated after every measurement and, therefore, contain the results of only the last
measurement taken.

H.7.9.2 Language mapping

Carrier language global GO, NOGO, HI, LO flags are set by this action.

H.7.10 Wait_For statement

The wait_for statement pauses execution for the specified <TimeValue>.

H.7.10.1 Formal description

Wait_For <TimeValue>

where

<TimeValue> is a <Value> in which the <UnitSymbol> shall be a valid time interval symbol.

H.7.10.2 Language mapping

The language mapping for a wait_for statement is implementation dependent; it waits for a time greater
than the <TimeValue> shown in the following example:

Sleep <TimeValue>

H.8 Elements used in test statement definitions

H.8.1 <TSFClass>

The <TSFClass> is selected from either a BSC or TSF class name. Associated with the <TSFClass> is a
<type>, which comprises the dependent and independent variables. To provide a full definition of the signal
class, this information would be given in the following form:

<TSFClass> := <BSCClassName>|<TSFClassName> [(<dependent variable>
[,<independent variable>)]]

BS IEC 62529:2012

 IEC 62529:2012
 – 286 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

To simplify the preparation of test requirements, providing this information explicitly is not necessary if it
can be determined implicitly from the TPL statement or if there is a default.

H.8.1.1 Dependent variable

Every signal has a default for the dependent variable (usually voltage), and several show other optional
types (usually current and power). These dependent variables have been determined to be the most
common valid types for the technology under consideration. This statement does not exclude the use of
other dependent variables with the <TSFClass>.

The dependent variable may be determined from the <UnitSymbol> within the associated <Value>.

If no <UnitSymbol> is provided, then the default dependent variable is assumed unless explicitly defined.

H.8.1.2 Independent variable

The default independent variable is time. Therefore, unless the independent variable is to be some other
variable, such as frequency, it need not be stated.

If the independent variable is to be provided explicitly, the dependent variable shall also be provided even
if it is the default.

H.8.2 Attribute-Value groups

Attribute-Value groups appear in most TPL statements and may include a qualifier as shown in the
following example:

<TSFClass attribute> [<Qualifier>] <Value>

H.8.2.1 <TSFClass attribute>

The <TSFClass attribute> shall be a valid property name for the <TSFClass>.

H.8.2.2 <Qualifier>

The optional <Qualifier> refers to the different ways of observing the <TSFClass attribute> and may be
one of the following:

 trms – true root mean square value

 pk_pk – peak-peak value

 pk – peak value (see NOTE immediately after this list)

 pk_pos – positive peak value (see NOTE immediately after this list)

 pk_neg – negative peak value (see NOTE immediately after this list)

 av – average value

 inst – instantaneous value

 inst_max – maximum instantaneous value

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 287 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 inst_min – minimum instantaneous value

NOTE—When qualifiers pk, pk_pos, and pk_neg are used in sensor statements, they normally give a value equal to
1/2 the pk_pk value. This result is due to the limitation of measurement techniques.

Figure H.1 shows the amplitude of a signal varying with time and illustrates the <Qualifier>s as applying to
that signal.

av

pk_pos

pk_neg

pk_pk

inst_min

inst_max

trms

TSFClass Attribute Qualifiers

0

0.5

1

1.5

2

2.5

3

time

am
pl

av

pk_pos

pk_neg

pk_pk

inst_min

inst_max

trms

Figure H.1—Attribute qualifiers

H.8.2.3 <Value>

<Value> indicates the numeric value of the attribute together with the units of measure and any associated
error limit and range information.

The syntax for <Value> is as follows:

<NumericExpression> [<UnitSymbol>] [<Errlmt>] [<Range>]

where

<NumericExpression> is an expression that evaluates to a valid <NumericValue>.
<NumericValue> is the numeric value of the physical type either in a variable (e.g., a previously

declared carrier language variable) or as a literal (e.g., 3.0, 0.263, 293).
<UnitSymbol> is the symbol for the units of the numeric value (e.g., mV MHz, µs).
<Errlmt> is the required accuracy of the stimulus or measurement.
<Range> is the range of values that the stimulus is expected to provide or the sensor is expected to

measure.

BS IEC 62529:2012

 IEC 62529:2012
 – 288 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

NOTE 1—If the optional<UnitSymbol> is omitted, then the value is assumed to be in the units without any metric
prefix. If the value may take more than one unit, then the unit is assumed to be the first listed in Table H.2, i.e., the
preferred SI unit.

NOTE 2—If the optional <UnitSymbol> is used, it is recommended that the <UnitSymbol> should be the same
throughout the <Value> string.

The syntax for <Errlmt> is as follows:

errlmt [±|+-|+|-]<NumericValue>[<UnitSymbol>]
[{-|:|to} <NumericValue>[<UnitSymbol>]]

where

<NumericValue> is always provided as an absolute/(positive) quantity.

The syntax for <Range> is as follows:

{range [+|-]<NumericValue>[<UnitSymbol>]
 to [+|-]<NumericValue>[<UnitSymbol>]}
|{range MAX|MIN <NumericValue> [<UnitSymbol>]}

H.8.2.4 Permissible quantities, units, and unit symbols

Refer to Table B.4 (in Annex B) for a definitive list of the quantities that may be used in the TPL together
with units and their unit symbols. This table also defines the mapping of the quantities to their physical
types. Table B.5 and Table B.6 (in Annex B) list the optional metric and binary prefixes that may be used
with the unit symbols.

H.9 Attributes with multiple properties

H.9.1 Entering literal data

Several TSF attributes require the entry of a set of multiple properties. Moreover, it may be necessary to
enter more than one set of properties. For example, the PULSED_AC_TRAIN signal requires the attribute
pulse_train to be entered as a series of pulses, and each pulse requires the properties start_time,
pulse_width, and level-factor to be specified.

H.9.1.1 General case – multiple properties

The Attribute-Value group (used in source-type statements) becomes an Attribute-Properties-Values group
where the attribute may have a series of properties, each with its own <Qualifier> and <Value>. The
information for an attribute with a set of multiple properties would be entered as shown in H.9.1.1.1.

H.9.1.1.1 Attribute-Properties-Values group syntax (single set)

<TSFClass attribute> {<Property>[<Qualifier>]<Value>
 {,<Property>[<Qualifier>]<Value>}*}

This information may be shown in an alternative format as follows to illustrate the language mapping:

<TSFClass attribute> {<Property1><Value1>

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 289 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 [,<Property2><Value2>
 [,<Property3><Value3>
 ...]]}

H.9.1.1.2 Language mapping

<SourceSignalName>.attribute.property1 = "<Value1>"
[<SourceSignalName>.attribute.property2 = "<Value2>"
[<SourceSignalName>.attribute.property3 = "<Value3>"
 ...]]

H.9.1.2 General case – multiple sets

The Attribute-Properties-Values group information for a series of more than one set of multiple properties
is an array of groups and would be entered as shown in H.9.1.2.1.

H.9.1.2.1 Attribute-Properties-Values group syntax (multiple sets)

<TSFClass attribute> [{<Property>[<Qualifier>]<Value>
 {,<Property>[<Qualifier>]<Value>}*}
 {,{<Property>[<Qualifier>]<Value>
 {,<Property>[<Qualifier>]<Value>}*}}*]

This information may be shown in an alternative format as follows to illustrate the language mapping:

<TSFClass attribute>
 [{<Property1><Value1>[,<Property2><Value2>[,<Property3><Value3>]]},
 {<Property1><Value1>[,<Property2><Value2>[,<Property3><Value3>]]},
 {<Property1><Value1>[,<Property2><Value2>[,<Property3><Value3>]]}]
 ...

H.9.1.2.2 Language mapping

 <SourceSignalName>.attribute.Add(1).property1 = "<Value1>(1)"
[<SourceSignalName>.attribute.Item(1).property2 = "<Value2>(1)"
[<SourceSignalName>.attribute.Item(1).property3 = "<Value3>(1)"]]
 <SourceSignalName>.attribute.Add(2).property1 = "<Value1>(2)"
[<SourceSignalName>.attribute.Item(2).property2 = "<Value2>(2)"
[<SourceSignalName>.attribute.Item(2).property3 = "<Value3>(2)"]]
 <SourceSignalName>.attribute.Add(3).property1 = "<Value1>(3)"
[<SourceSignalName>.attribute.Item(3).property2 = "<Value2>(3)"
[<SourceSignalName>.attribute.Item(3).property3 = "<Value3>(3)"]]

H.9.1.3 Examples (using pulses)

In the case of the PULSED_AC_TRAIN signal, the attribute pulse_train may include a series of pulses,
each with up to three properties. The information would be presented in the following format:

pulse_train
 [{start_time 0 µs, pulse_width 8 µs, level_factor 1},
 {start_time 20 µs, pulse_width 5 µs, level_factor 1.1},
 {start_time 30 µs, pulse_width 10 µs, level_factor 1.2},
 {start_time 45 µs, pulse_width 4 µs, level_factor 0.95}]

BS IEC 62529:2012

 IEC 62529:2012
 – 290 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

This information maps to the following:

Sig.pulse_train.Add(1).start_time = "0us"
Sig.pulse_train.Item(1).pulse_width = "8us"
Sig.pulse_train.Item(1).level_factor = 1
Sig.pulse_train.Add(2).start_time = "20us"
Sig.pulse_train.Item(2).pulse_width = "5us"
Sig.pulse_train.Item(2).level_factor = 1.1
Sig.pulse_train.Add(3).start_time = "30us"
Sig.pulse_train.Item(3).pulse_width = "10us"
Sig.pulse_train.Item(3).level_factor = 1.2
Sig.pulse_train.Add(4).start_time = "45us"
Sig.pulse_train.Item(4).pulse_width = "4us"
Sig.pulse_train.Item(4).level_factor = 0.95

The <Value> associated with each property may include the optional <UnitSymbol>, <Errlmt>, and
<Range> information. Also, the <NumericExpression> may be provided by a variable. This situation is
illustrated in the following example:

pulse_train
 [{start_time Start1 µs errlmt ± Lmt % range 0 µs to 50 µs,
 pulse_width Pw1 µs errlmt ±1 µs, level_factor Factr1},
 {start_time Start2 µs errlmt ± Lmt % range 0 µs to 50 µs,
 pulse_width Pw2 µs errlmt ±1 µs, level_factor Factr2},
 {start_time Start3 µs errlmt ± Lmt % range 0 µs to 50 µs,
 pulse_width Pw3 µs errlmt ±1 µs, level_factor Factr3},
 {start_time Start4 µs errlmt ± Lmt % range 0 µs to 50 µs,
 pulse_width Pw4 µs errlmt ±1 µs, level_factor Factr4}]

where

Start1, Start2, Start3, and Start4 are real variables containing the value of the start_time.
Lmt is a real variable containing the error limit value for the start_time.
Pw1, Pw2, Pw3, and Pw4 are real variables containing the values of pulse_width.
Factr1, Factr2, Factr3, and Factr4 are real variables containing the values of the level_factor.

NOTE—Expressions may be used instead of variables, but must be enclosed in braces, e.g., {}.

H.9.2 Using arrays of data

Data may be provided in an array for convenience. The array will be defined in the carrier language. The
elements of the array may then be used to provide numeric values for a property.

For example, it may be convenient to provide data for a series of pulses in an array. A shorthand method is
required to extract the data from the array. This method requires the use of the keywords for each ... in
together with an array index variable.

This method may be illustrated as follows:

pulse_train
 [for each x in puls
 {start_time puls[x].startTime µs
 errlmt ± Lmt % range 0 µs to 50 µs,
 pulse_width puls[x].pulseWidth µs errlmt ±1 µs,
 level_factor 1}]

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 291 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

where

puls is an array containing the start time and pulse width for a number of pulses.
Lmt is a real variable containing the error limit value for the start_time.
level_factor has a constant value (1).

This information maps to the following:

for each x in puls
 pulse_train.Add(x).start_time = puls[x].startTime
 pulse_train.Item(x).pulse_width = puls[x].pulseWidth
 pulse_train.Item(x).level_factor = 1
next

H.9.3 Acquiring sensor data

When a measured attribute has multiple properties or more than one set of properties, it is necessary to
provide a suitable array variable in the read statement to store all the acquired data. The variable may need
to be a one- or two-dimensional array depending on the number of attribute properties and the number of
sets of attributes to be saved. The array may be storing values for multiple properties with different units.
Hence, the <UnitSymbol> is not used with any read statement where the variable “into” is an array, and
each result will then be saved in the base unit of the property.

The <Qualifier>, <Errlmt>, and <Range> of each property to be acquired may be defined with the
measured attribute in the associated define sensor statement.

H.9.3.1 Measured attribute syntax

<TSFClass attribute>(<Property>[<Qualifier>][<Errlmt>][<Range>]
 {,<Property>[<Qualifier>][<Errlmt>][<Range>]}*

H.9.3.2 Example of multiple sets of a single property

Setup PULSED_AC_TRAIN pulse_train (pulse_width errlmt ±2 µs)
as sensor MeasuredPulses;
.
.
Read (8) MeasuredPulses into PulseArray;

where

PulseArray is a one-dimensional (i.e., real) array that will be populated with a series of values equivalent
to the pulse-width of each successive pulse in the measured signal.

NOTE—If the signal has more pulses than there are elements in the array, then the results for the remaining pulses will
be discarded.

H.9.3.3 Example of a single set of multiple properties

Setup PULSED_AC_TRAIN pulse_train
 (start_time range 0 µs to 300 µs errlmt ±0.5 µs,

BS IEC 62529:2012

 IEC 62529:2012
 – 292 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 pulse_width errlmt ±1 µs,
 level_factor)
as sensor PulseSensor;
.
.
Read PulseSensor into PulseData;

where

PulseData is a one-dimensional (i.e., real) array that will be populated with a series of values equivalent
to the start_time, pulse-width, and the level_factor of the (first) pulse in the measured signal.

NOTE—If the signal has more than one pulse, then the results for the second and subsequent pulses will be discarded.

H.9.3.4 Example of multiple sets of multiple properties

Setup PULSED_AC_TRAIN pulse_train
 (start_time errlmt ±0.5 µs,
 pulse_width range 0 µs to 15 µs errlmt ±0.2 µs,
 level_factor)
as sensor PulseStream;
.
.
Read PulseStream into StreamArray;

where

StreamArray is a two-dimensional (i.e, real) array that will be populated with a series of values
equivalent to the start_time, pulse-width, and level_factor of each successive pulse in the
measured signal.

NOTE 1—If the signal has more pulses than there are rows in the array, then the results for the remaining pulses will
be discarded.

NOTE 2—If the signal has more properties than there are columns in the array, then the results for the remaining
properties will be discarded.

H.10 Transferring data in digital signals

Digital signals include a data_value attribute that holds the data representing the digital pattern being
passed. It may be required to pass more than one set of data, i.e., a series of patterns may be transmitted (or
received) to (or from) the UUT. The size of the pattern of data depends on the width of the parallel word
(for parallel digital signals) or the word_length (for serial digital signals).

H.10.1 Representation of digital data

Digital data are represented by the characters H, L, Z, and X where

 X represents an unknown state or undefined level.

 Z represents a high impedance state (no signal).

 L represents a logic low (or logic 0).

 H represents a logic high (or logic 1).

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 293 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 , is used as a delimiter between blocks.

 ; is used as a delimiter between blocks.

NOTE—The meaning of the X state varies according to whether the X is being transmitted, received, or used as a
comparison. When being transmitted (or sourced), it indicates that the output is undefined and the test equipment may
transmit an H, L, or Z state. When being received (or sensed), it indicates that the received signal is at an indeterminate
level (i.e., it is between an L and an H state and not a Z, L, or H). When being used as a comparison, the X indicates
that the value being compared is irrelevant (i.e., a “do not care”).

A digital pattern may be of any number of digital characters. A single pattern is represented by a single
literal character-string, a single character-string variable, or a single element of a character-string array.
This pattern applies at the point at which the literal or variable is used in a TPL digital statement. Partial
strings may be manipulated within the carrier language prior to being transmitted by a digital source or
after being acquired by a digital sensor.

H.10.2 Transmitting digital data using digital sources

Digital source signals are defined using the TPL setup source statement in the same way that any analogue
signal is defined. Many of the digital source attributes are analogue in nature and are, therefore, treated as
analogue signal attributes. Only one attribute requires special consideration: the digital data attribute
(data_value) that carries the digital information.

H.10.2.1 Attribute–Value group for digital data

<Value> for digital data takes a special form. In place of the <NumericExpression>, there is a
<PatternExpression>, which represents digital data in a character string format. <UnitSymbol>, <Errlmt>,
and <Range> are not required or included for digital data.

Hence, the Attribute-Value group for digital source data (i.e., for the data_value attribute) takes the
following special form:

data_value <PatternExpression>

where

data_value is defined in the TSF entries for digital sources.
<PatternExpression> is a set of digital data provided as literal data or in a predefined carrier language

variable or array variable.

NOTE—Attribute-Value groups for analogue (i.e., nondigital data) attributes in the digital TSF entries follow the
normal syntax.

H.10.2.2 Literal representation of digital patterns

Literal data may be provided for a single digital pattern or a series of digital patterns. Formal descriptions
are provided for both a single pattern and a series of patterns.

H.10.2.2.1 Attribute-Value group syntax for single literal pattern

data_value [{X|Z|L|H}+]

BS IEC 62529:2012

 IEC 62529:2012
 – 294 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

where

X represents an unknown state or undefined level.
Z represents a high impedance state.
L represents a logic low (or logic 0).
H represents a logic high (or logic 1).
, is used as a delimiter between blocks.
; is used as a delimiter between blocks.

NOTE—A digital literal string may also contain whitespace characters (namely, space, new-line, cariage-return, line-
feed, and tab). These whitespace characters are available for formating purposes to make the data more readable. They
are ignored when the digital string is processed.

H.10.2.2.2 Attribute-Value group syntax for series of literal patterns

data_value [{X|Z|L|H}+{{,|;}{X|Z|L|H}+}*]

where

X represents an unknown state or undefined level.
Z represents a high impedance state.
L represents a logic low (or logic 0).
H represents a logic high (or logic 1).
, is used as a delimiter between blocks.
; is used as a delimiter between blocks.

NOTE—A digital literal string may also contain whitespace characters (namely, space, new-line, cariage-return, line-
feed and tab). These whitespace characters are available for formating purposes to make the data more readable. They
are ignored when the digital string is processed.

H.10.2.2.3 Example of literal representation of digital patterns

This example shows a literal data_value with four patterns of 8 bits.

data_value
 [HHLLHLHL,
 HHLLHLHH,
 HHLLHHLL,
 HHLLZZZZ]

H.10.2.3 Representation of digital patterns in arrays

Digital testing usually requires the provision of multiple sets of patterns. These data are most easily
provided via an array (of text) in which each element contains a single digital pattern. It is only necessary
to provide the name of the array and the number of elements (within that array) of relevant data. If only a
single pattern is to be provided, it may be provided in a string variable.

H.10.2.3.1 Attribute-Value group syntax for arrays and variables

data_value {<ArrayName>}|<VariableName>

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 295 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

where

<ArrayName> is a one-dimensional character-string array with an element for each pattern to be passed.
Each of the n elements contains the digital pattern for a single data_value word.

<VariableName> is a user-defined character-string variable containing the digital pattern for a single
data_value word.

H.10.2.3.2 Example of digital patterns presented in an array

This example shows a data_value with the digital data provided in an array DigiData. The number of bits is
determined by other information provided with the setup statement.

data_value DigiData

where

DigiData is a one-dimensional character-string array that will be populated with a series of character
strings representing the digital data to be transmitted. Each element in the array represents one
digital pattern.

A pattern will be transmitted for each element in the array.

H.10.3 Acquiring digital sensor data

Digital sensor signals are defined using the TPL setup sensor statement in the same way that any analogue
signal is defined. Many of the digital sensor attributes are analogue in nature and are, therefore, treated as
analogue signal attributes. Only one attribute requires special consideration: the digital data attribute
(data_value) that receives the digital information.

It is necessary to provide a suitable variable in the read statement to store all the acquired data. The variable
may need to be a simple character-string variable or a one-dimensional array depending on the number of
digital patterns to be saved. In the case of the digital data attribute (data_value), it would be inappropriate
to include a <UnitSymbol> in the read statement.

H.10.3.1 Measured attribute for digital data

The measured attribute for digital data does not require <Qualifier>, <Errlmt>, or <Range>; and these
elements shall not be included.

Hence, the measured attribute for digital data (i.e., the attribute data_value) stands alone in the setup sensor
statement.

H.10.3.2 Example of acquisition of digital data

Setup DIGITAL_PARALLEL data_value
as sensor DigiSensor;
.
.
Read DigiSensor into DataArray;

BS IEC 62529:2012

 IEC 62529:2012
 – 296 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

where

DataArray is a one-dimensional character-string array that will be populated with the series of patterns
received by the digital sensor DigiSensor.

NOTE—If the digital signal has more patterns than there are elements in the array, then the remaining patterns will be
discarded.

H.10.4 Bidirectional digital signals

Bidirectional digital signals may be considered to be two separate actions, i.e., the transmission of digital
data and the acquisition of digital sensor data on the same bus or set of connections.

H.10.4.1 Transmitting digital data on a bidirectional bus

In order to prevent any bus/data clashes, the programmer shall ensure that digital source data are sent at the
correct time. This requirement may be achieved by appropriate timing control.

H.10.4.2 Sensing digital data on a bidirectional bus

Digital data may be sensed at any time. It is, therefore, both possible and valid to sense data being
transmitted by the test equipment in addition to data being received from the UUT.

H.11 Creating test requirements

The user creates a test requirement by describing the test signals, measurements, and comparisons required
to test a UUT using signal statements. The program flow is described in the carrier language of the user’s
choice. This flexibility enables the user to create a test requirement with sequential tests, tests in loops,
result dependent tests, optional tests, diagnostic tests, etc.

Any variables used in the signal statements will be declared and/or defined according to the rules of the
chosen carrier language. The variable names used in the signal statements will have to comply with the
naming rules of that carrier language. It is good practice to select variable names that are meaningful and
will also be suitable for use with any or most carrier languages. This approach will facilitate the conversion
of a test requirement from one carrier language to another, should this be required in the future.

H.11.1 Creating test statements

A test statement is created from the formal description by substituting the appropriate TSF information and
user-defined names. The keywords and symbols are copied unchanged. In the statement definitions, the
keywords and symbols are in bold for the sake of clarity. It is not necessary to use bold in a TPL
requirement.

H.11.1.1 Sample test statement from formal description

To illustrate how a signal statement is created from the formal description, the following example shows a
setup source statement:

‘<TPL>
Setup DC_SIGNAL ampl DC-Power-Value V errlmt ±0.08 V range 0 V to 12 V

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 297 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

 gate with PowerSupplyEnable
 as source DC_POWER;
‘</TPL>

This statement is derived from the formal description of setup source and is repeated here:

Setup <TSFClass> {<TSFClass attribute>[<Qualifier>]<Value>}
 {,<TSFClass attribute>[<Qualifier>]<Value>}*
[sync to <EventSyncName>]
[gate {with <EventGateName>}|{from <EventFromName> to <EventToName>}]
[as [<identifier>]] source <SourceSignalName>;

The derivation of the setup source signal statement from the formal description is shown in Table H.2.

Table H.2—Relationship between formal description and typical signal statement

Formal description element Signal statement Comment
Setup Setup keyword
<TSFClass> DC_SIGNAL from TSF
[<Qualifier>] — optional — not used in this example
<TSFClass attribute> Ampl from TSF
<Value> (expands into:) — see separate definition

<NumericExpression> DC-Power-Value user-defined variable
[<UnitSymbol>] V from table K.2
[<Errlmt>] errlmt ± 0.08 V see separate definition
[<Range>] range 0 V to 12 V see separate definition

gate with gate with keywords
<EventGateName> PowerSupplyEnable user-defined object (in separate TPL statement)
[as [<identifier>]] source as source keywords
<SourceSignalName> DC_POWER user-defined object name
; ; key symbol

The user-defined variable DC-Power-Value shall be a valid carrier language variable and will have been
defined in the program before being referenced in the signal statement. The user-supplied object
PowerSupplyEnable will have been previously defined in an appropriate setup statement.

H.11.1.2 Language mapping

The language mapping section shows the mapping to the carrier language of that particular TPL statement.
It is assumed that a preprocessor will be used to convert all the signal statements into the correct, equivalent
carrier language statements.

Mapping the sample signal statement in H.11.1.1 to the carrier language gives the following:

Declare DC_POWER as DC_SIGNAL
Assign DC_POWER = STD.Require("DC_SIGNAL")
 DC_POWER.ampl = "trms" & DC-Power-Value & "V errlmt ±0.08 V" &
 "range 0 V to 12 V "
Assign DC_POWER.Gate = PowerSupplyEnable

BS IEC 62529:2012

 IEC 62529:2012
 – 298 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

H.11.2 Use of gate in signal statements

In order to give the maximum flexibility to test requirement developers, Gate fields are available in many
of the signal statement types. In the case of a sensor, for example, it is possible to link a measurement to a
gate event in the setup statement, the connect statement, and the read statement. A gate event linked to any
of the statements will gate the signal (or, in the example, the read). It is not necessary to reference the same
gate event in each of the statements, although doing so will not necessarily cause an incorrect result.

It is possible to refer to different gate events in more than one of the statements, and this reference may
well be justified in the context of the test requirement. Care should be exercised when making such a
reference, as a signal (or, in the sensor example, a successful read) will occur only if all the referenced
events overlap. There must be a period when all the gate events are active at the same time for the signal to
occur.

H.12 Delimiting TPL statements

In most cases, TPL statements will be unique within the carrier language. Where the choice of carrier
language results in TPL statements not being unique, the TPL statements can be delimited from the carrier
language using the optional delimiter statements described in this clause.

In order to clearly identify TPL statements when they are embedded within a carrier language test
requirement, it is necessary to introduce a block of one or more TPL statements with an introductory
character group. This step also minimizes the parsing that has to be done to identify a TPL statement should
the TPL have elements identical with carrier language keywords.

The TPL statements may or may not be comments within the carrier language; therefore, the identifier used
must be suitable for incorporation with different methods of delimiting comments.

H.12.1 Introducing a group of one or more TPL statements

The standard carrier language comment identifier <comment symbol>, followed by the characters
"<TPL>", is used to introduce TPL statements.

<comment symbol><TPL>

For example, for typical carrier languages the TPL introductory character group would be as follows:

 '<TPL> for Visual Basic

 //<TPL> for C/C++ and Java

 /*<TPL> for C/C++ and Java

Provided that at least one space follows the introductory character group, additional commentary may be
included in the same comment. If additional commentary is added, then the comment shall be terminated
prior to the start of the first TPL statement.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 299 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

H.12.2 Indicating end of group of TPL statements

The two methods of indicating the end of a group of TPL statements depend upon whether the TPL
statements appear as comments within the carrier language. Both these methods use the characters
"</TPL>".

H.12.2.1 TPL statements appearing within comment

Where the TPL statements appear within a multi-line comment, the characters "</TPL>" shall appear after
the TPL statements and before the standard carrier language end-of-comment identifier.

For example, the characters "</TPL>" occurring before the symbol "*/" would indicate the end of the TPL
statement group in C.

H.12.2.2 TPL statements not appearing as comments

Where the TPL statements do not appear as comments, the standard carrier language comment identifier
<comment symbol>, followed by the characters "<TPL/>", is used to indicate the end of the TPL group.

<comment symbol></TPL>

For example, for typical carrier languages, the character group indicating the end of a TPL statement group
would be as follows:

 '</TPL> for Visual Basic

 //</TPL> for C/C++ and Java

 /*</TPL> for C/C++ and Java, where the TPL does not appear as a comment.

BS IEC 62529:2012

 IEC 62529:2012
 – 300 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex I

(normative)

Extensible markup language (XML) signal descriptions

I.1 Introduction

Signals can be defined through an XML document conforming to the XML Schema definitions (XSDs) in
this standard. This allows static signals to be defined in XML that may be validated against the XSD
described in I.2.

Should the reader not have a general understanding of XML Schemas or XML terminology, a XML
Schema Tutorial [B6] is available on the World Wide Web. This tutorial will help with the general
understanding of the contents of this annex.

An example of such a XML signal describing a suppressed carrier signal is as follows:

<?xml version="1.0"?>
<!--encoding="UTF-8"-->
<std:Signal name="suppressedCarrier" Out="Diff3"
 xmlns:std="urn:IEEE-1641:2010:STDBSC"
 xmlns:l1=”urn:IEEE-1641:2010:STDTSFLIB”
 xmlns:exp=”urn:IEEE-1641:2010:STDEXP” >
 <std:Sinusoid name="cs" amplitude="5V" frequency="10kHz"/>
 <std: TSF xsi:type=”l1:AC_SIGNAL” name="ms" ac_ampl="1V"
freq="1kHz"/>
 <std:AM name="AM5" Carrier="cs" In="ms"/>
 <std:Diff name="Diff3" In="AM5 cs"/>
</std:Signal>

User-defined TSFs can be used within a Signal definition using one of the extension mechanism provided.
In all cases, the TSF ComplexType or TSF Element shall be derived from the abstract SignalFuntionType
or one of its derived types, and reference made to the XML Schema target namespace describing the TSF
XML interfaces:

a) Use the generic <TSF…> element and specify the type of the TSF using the xsi:type fields.

b) Use a specific TSF Element defined in user-defined namespace.

The values of attributes specified within the signal model shall be one of the following:

 Constant values

 Attribute variables defined under the <interface> tag

 Formulae and equations contained within braces "{}", e.g., amplitude="{2/3.0e8*accn}"

 Formulae and equations associated with a attribute name matching the SignalFunction’s attribute
name, but declared in the STDExpression namespace, e.g., exp:amplitude="2/3.0e8*accn"

Unless otherwise defined, the expression shall be assumed to conform to the signal modeling language
(SML) definitions (see Annex A).

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 301 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

A 'script' reference may be specified to indicate which Script Engine should be used to evaluate the
expression. This script engine must be clearly identified and freely available.

An attribute may be added for a specific occurrence as shown in the following example:

<WaveformStep scriptEngine="Haskell ScriptEngine" points="{take 12
primes}" >
<Sinusoidal scriptEngine="VB Script Language" exp:phase="atan(1.3)" >

The global attribute “std scriptEngine” may be used. The rule is that the default engine supports the SML
definitions until overwritten by a new value. This new value remains in place for the current scope until
overwritten by a new value. This is shown in the following example:

<TSFLibrary std:scriptEngine="Haskell ScriptEngine" >
 <TSF std:scriptEngine="VB Script Language" >
 <Model std:scriptEngine="Perl Script Language">
 </Model>
 </TSF>
 <TSF std:scriptEngine="J Script Language" >
 </TSF>
</TSFLibrary>

This annex references the XML Schema document (W3C) to which any XSD shall adhere, where each
element name is any of the basic signal component (BSC) names or test signal framework (TSF) elements
adhering to this standard.

I.2 XSD for BSCs

I.2.1 Root (or document)

There is exactly one element, called the root or document element, of which no part appears in the content
of any other element. This root element serves as the parent for all other elements of the BSC schema
(STDBSC).

The STDBSC schema root element is defined as follows:

Name Set to
Encoding UTF-8
Included Schema None
Imported Schema None
Target Namespace urn:IEEE-1641:2010:STDBSC
STDExpression Namespace urn:IEEE-1641:2010:STDEXP
Version 1.14
XML Schema Namespace Reference a

Root Element Signal
Global attributes minInclusive

maxInclusive
a The namespace reference URL is http://www.w3.org/2001/XMLSchema.

BS IEC 62529:2012

 IEC 62529:2012
 – 302 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

I.2.2 Remainder of BSC schema document

The remainder of this schema document may be constructed from the information provided in Annex B.

I.2.3 Complete predefined schema document

A complete XML Schema document conforming to the requirements of this standard may be obtained from
http://standards.ieee.org/downloads/1641/1641.2010.

I.3 XSD for TSFs

I.3.1 Introduction

The exchange of TSF information across systems should be accomplished through XML. This standard
defines the XML format that a TSF description shall take and provides a reference to an example TSF
library in XML.

This annex provides a brief description of the information carried by the XML and defines a TSF XML
Schema (STDTSF).

I.3.2 TSF XML Schema

Clause I.3 defines the elements and attributes of the XML Schema that shall be used when defining new
TSF classes within a TSF library. Conformance to the schema enables the transfer of TSFs across different
automatic test equipment (ATE) platforms. To achieve this transfer, the XML carries four types of
information:

 Library information

 TSF information

 Interface information

 Model information

The XML tags that carry the above information are defined in I.3.2.1 through I.3.2.5. Utilization examples
may be found in the XML TSF library for C/ATLAS described in Annex E.

I.3.2.1 Library information (<TSFLibrary> tag)

All TSF libraries are declared within a <TSFLibrary> root node and contain the library name, the library
unique identifier, and the library version. An optional library description can also be provided to indicate
the domain of the library. A detailed description of each element is provided in the following list:

a) The attribute name provides the name of the TSF library, as a sequence of alphanumeric characters.

b) The attribute uuid provides a unique GUID (128-bit unique identifier) for the TSF library. The
format for the uuid string shall be {xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}, where x is a
hexadecimal character [0-9,A-F].

c) The optional attribute version holds a version identifying the version of the TSF library.

BS IEC 62529:2012

http://standards.ieee.org/downloads/1641/1641.2010

IEC 62529:2012
IEEE Std 1641-2010 – 303 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

d) The optional tag <description> provides a placeholder for a library description.

I.3.2.2 TSF information (<TSF> tag)

Each TSF class element starts with the <TSF> keyword and contains the following tag elements and
attributes:

 Interface

 Model

 Description

I.3.2.3 Interface information (<interface> tag)

The <interface> tag defines the XML format used to transmit TSF signals to the require method and the test
procedure language (TPL) setup statement, using the XML notation, for example:

<AC_SIGNAL name="mySig" dc_offset="10.2V range 5V to 25V" freq="660Hz
+- 5%" />

The <interface> tag is mandatory and shall contain an XSD that conforms to the W3 XSD from the
http://www.w3.org/2001/XMLSchema namespace.

In order to provide a consistent look and feel for XML signal definitions and to facilitate tool support, the
style of the XSD for the TSF class should follow the specification from I.2 and the guidelines below:

a) The tag name for xs:element identifies the TSF class name. An optional xs:ComplexType, which
extends a type derived from SignalFunctionType, may be defined with the same tag name. If such a
xs:CompexType is defined, the xsElement shall reference the xs:ComplexType as its type.

b) An xs:annotation is recommended to provide the definition for the TSF class.

c) XML attributes shall represent the TSF class attributes.

1) The xs:name attribute defines the name of the TSF class attribute.

2) The xs:type attribute indicates the type of the TSF class attribute and shall correspond to a
datatype defined in the XMLSignal schema (Annex I) or in the XML Schema specification
(http://www.w3.org/2001/XMLSchema).

3) The xs:default attribute indicates the default value of the TSF class attribute.

4) Attributes may be assigned read-only expressions or formula associated with the TSF model
values by using a global attribute “default” from the STDExpression namespace, e.g., <xs
attribute … exp:default="s1.measurement/2" /.

5) Attributes may be Mandated, Optional, or Prohibated (runtime read-only attribute).

d) The <xs:simpleType> tag can be used instead of the xs:type tag described in item c)2), e.g., to
restrict an existing datatype.

e) The xs:annotation tag is recommended to be used on each attribute definition to provide a
description of the TSF class attribute.

f) The TSF shall be based on a Type derived from the SignalFunctionType Complex type.

g) The type std:SIGNALREF(S) shall be used where a reference to a type from the BSC or another
TSF appears. The attribute name for a reference to another SignalFunction shall start with a
capitalized letter, e.g., Carrier.

BS IEC 62529:2012

 IEC 62529:2012
 – 304 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

h) The order of XML attribute definitions shall be identical to the order of corresponding properties in
the TSF class interface definition language (IDL).

i) Additional constraints can be added to attributes derived from type physical, by using the STDBSC
Global attributes minInclusive and maxInsclusive in place of the W3C XSD minInclusive and
maxInclusive elements, e.g., <xs:restriction base="PlaneAngle" std:minInclusive="0"
std:maxInclusive="2*pi rad"/>.

I.3.2.4 Model information (<model> tag)

The <model> tag defines the signal model information. It shall adhere to the XML signal schema definition
(see Annex I).

The values of attributes specified within the signal model shall be one of the following:

 Constant values

 Attributes defined under the <interface> tag

 Formulae and equations contained within braces "{}", e.g., acceleration="{2/3.0e8*accn}"

 Formulae and equations associated with a attribute name matching the SignalFunction’s attribute
name, but declared in the STDExpression namespace, e.g., exp:amplitude="2/3.0e8*accn"

I.3.2.5 Description information (<description> tag)

The <description> tag contains the full description of the TSF XML class, over and above the interface
TSF class annotation. The description can be free format XML. It is recommended that it contains XML-
compliant HTML text, optionally grouped under top-level headers. In the following example, “rules” is
such a top-level header:

<rules> <p class=”MsoNormal”> rule 1 must be
used</p></rules>

I.3.3 XML Schema

There is exactly one element, called the root or document element, of which no part appears in the content
of any other element. This root element serves as the parent for all other elements of the STDTSF schema.

The STDTSF schema root element is defined as follows:

Name Set to
Encoding UTF-8
Included Schema None
Imported Schema Namespace urn:IEEE-1641:2010:STDBSC
Target Namespace urn:IEEE-1641:2010:STDTSF
STDExpression Namespace urn:IEEE-1641:2010:STDEXP
Version 2.01
XML Schema Namespace Reference a
Root Element TSFLibrary
a The namespace reference URL is: http://www.w3.org/2001/XMLSchema.

The definitive version of this schema may be obtained from http://standards.ieee.org/downloads/1641/
1641-2010/.

BS IEC 62529:2012

http://standards.ieee.org/downloads/1641/1641-2010/
http://standards.ieee.org/downloads/1641/1641-2010/

IEC 62529:2012
IEEE Std 1641-2010 – 305 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

The schema described here is provided to help the user relate the descriptions of the tags in I.3.2.1 through
I.3.2.5 with the TSF schema.

I.3.3.1 Element TSFLibrary

Properties: content complex

TSFLibrary represents the IEEE 1641 interchangeable Signal Model Library.

I.3.3.1.1 Attributes

TSFLibrary contains the following attributes:

Name Type Description Use Default
name xs:NCName required
uuid tsf:Uuid required
version xs:string optional
targetNamespace xs:anyURI optional

I.3.3.1.2 Child elements

TSFLibrary contains the following child elements:

Name Type Description Use
description tsf:descriptionType optional
TSF tsf:TSFType optional

I.3.3.1.3 Constraints

TSFLibrary contains the following unique identity constraints:

Name Selector Field
Unique_TSF_names * @name Unique_TSF_names
Unique_uuids .|tsf:* @uuid Unique_uuids

I.3.3.2 Element TSFLibrary/description

TSFLibrary/description is of complex type tsf:descriptionType (see I.3.2.5).

I.3.3.3 element TSFLibrary/TSF

TSFLibrary/TSF is of complex type tsf:TSFType.

BS IEC 62529:2012

 IEC 62529:2012
 – 306 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

I.3.3.3.1 Attributes

TSFType contains the following attributes:

Name Type Description Use Default
name xs:NCName required
uuid tsf:Uuid required
couuid tsf:Uuid optional
hidden xs:boolean optional false
group xs:string optional

I.3.3.3.2 Child elements

TSFType contains the following child elements:

Name Type Description Use
Interface required
Model required
Description tsf:descriptionType optional

I.3.3.4 Element TSFType/interface

Properties: content complex

Also see I.3.2.3

I.3.3.4.1 Attributes

TSFLibrary/TSF/interface contains no attributes.

I.3.3.4.2 Elements

TSFLibrary/TSF/interface contains the following child element:

Name Type Description Use
xs:schema xs:openAttrs Any XMLSchema definition can be used whose elements

attributes types map onto a 1641 type
required

I.3.3.5 Element TSFType/model

Properties: content complex

Also see I.3.2.4

I.3.3.5.1 Attributes

TSFLibrary/TSF/model contains no attributes.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 307 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

I.3.3.5.2 Child elements

TSFLibrary/TSF/model contains the following child elements:

Name Type Description Use
Standard xs:anyURI required
std:Signal xs:openAttrs required

I.3.3.6 Element TSFType/model/standard

TSFType/model/standard is of type extension of xs:anyURI.

I.3.3.6.1 Attributes

TSFLibrary/TSF/model contains the following attributes:

Name Type Description Use Default
Title xs:string
Number xs:string

I.3.3.6.2 Elements

TSFLibrary/TSF/model contains no child elements.

I.3.3.7 Element TSFType/model/Signal

TSFLibrary/TSF/model/Signal is described in I.2.

I.3.3.8 Simple type Uuid

The simpleType Uuid is defined as follows:

Type: restriction of xs:normalizedString

Pattern: [A-Fa-f0-9]{32}|(\{|\()?[A-Fa-f0-9]{8}-([A-Fa-f0-9]{4}-){3}[A-Fa-f0-9]{12}(\}|\))?

Used by attributes: TSFType/@couuid, TSFLibrary/@uuid and TSFType/@uuid

Each TSFLibrary and TSF within a document shall have a unique ID.

BS IEC 62529:2012

 IEC 62529:2012
 – 308 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex J

(informative)

Support for ATLAS nouns and modifiers

J.1 Signal and test definition (STD) support for ATLAS signals

IEEE Std 716-1995 [B12] describes signals using nouns and noun modifiers. STD provides support for the
Abbreviated Test Language for All Systems (ATLAS) (and any other test description language) using basic
signal components (BSCs) and the signal modeling language (SML). Any ATLAS noun may be modeled
using the facilities in STD. Annex E of this standard provides examples for most of the nouns listed in
IEEE Std 716-1995.

A major difference between STD and ATLAS is the ability in STD to define a signal rigorously, whereas in
ATLAS some definitions are open to interpretation. For this reason, it is not possible to provide a definitive
STD model for each ATLAS noun. An ATLAS noun is represented by a test signal framework (TSF), but
the concept of a noun modifier does not exist in STD.

This annex lists all the nouns and most of the noun modifiers defined in IEEE Std 716-1995 and indicates
how they are supported by STD. It is the responsibility of the user to ensure that any TSF model used to
represent an ATLAS noun is an accurate reflection of the signal required.

It is recommended that the name chosen for a TSF model be the same as the name used by the ATLAS
noun. Similarly, the name used for a TSF interface property should be the same as that of the equivalent
ATLAS noun modifier (if relevant). Should a new name be required, reference should be made to The
IEEE Standards Dictionary: Glossary or Terms & Definitions6 or the IEC Multilingual Dictionary of
Electricity, Electronic and Telecommunications [B8].

J.2 STD support for ATLAS nouns

Table J.1 provides a list of nouns specified in IEEE Std 716-1995 [B12] and shows the nouns that are
illustrated by an example in Annex E. Each example in Annex E is not necessarily a full implementation of
the signal and does not necessarily include all the modifiers definable in the Common/Abbreviated Test
Language for All Systems (C/ATLAS).

Any noun not illustrated by an example is indicated by a comment or the name of the supporting BSC in
the “Comment” column. Further explanation is given in the note specified in the “Reference” column.

6 The IEEE Standards Dictionary: Glossary of Terms & Definitions is available at http://shop.ieee.org/.

BS IEC 62529:2012

http://shop.ieee.org/

IEC 62529:2012
IEEE Std 1641-2010 – 309 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table J.1—Support for C/ATLAS nouns

C/ATLAS noun Equivalent TSF Signal(s) Comment or BSC(s) Reference
AC SIGNAL AC_SIGNAL — —
ADF — Not illustrated See NOTE 1
AM SIGNAL AM_SIGNAL — —
AMBIENT CONDITIONS — Not illustrated See NOTE 2
ATC SSR_INTERROGATION,

SSR_RESPONSE
— See NOTE 3

COMMON — Not required See NOTE 4
COMPLEX SIGNAL — Not required See NOTE 5
DC SIGNAL DC_SIGNAL — —
DISPLACEMENT — BSC: Constant (Distance) See NOTE 6
DME DME_INTERROGATION,

DME_RESPONSE
— See NOTE 3

DOPPLER — Not illustrated See NOTE 1
EARTH — Not required See NOTE 4
EM FIELD — Not illustrated See NOTE 1
EVENTS — Not required See NOTE 7
FLUID SIGNAL — Not illustrated See NOTE 1
FM SIGNAL FM_SIGNAL — —
HEAT — BSC: Constant (Temperature) See NOTES 6

& 8
IFF SSR_INTERROGATION,

SSR_RESPONSE
— See NOTE 3

ILS ILS_GLIDE_SLOPE,
ILS_LOCALIZER, ILS_MARKER

— See NOTE 3

IMPEDANCE — Not illustrated See NOTE 1
LIGHT — Not illustrated See NOTE 1
LOGIC CONTROL DIGITAL_PARALLEL,

DIGITAL_SERIAL
— See NOTE 3

LOGIC DATA DIGITAL_PARALLEL,
DIGITAL_SERIAL

— See NOTE 3

LOGIC LOAD — Not required See NOTE 9
LOGIC REFERENCE DIGITAL_PARALLEL,

DIGITAL_SERIAL
— See NOTE 3

MANOMETRIC — Not illustrated See NOTE 1
PAM — Specifically omitted See NOTE 10
PM SIGNAL PM_SIGNAL — —
PULSED AC PULSED_AC_SIGNAL — —
PULSED AC TRAIN PULSED_AC_TRAIN — —
PULSED DC PULSED_DC — —
PULSED DC TRAIN PULSED_DC_TRAIN — —
PULSED DOPPLER — Not illustrated See NOTE 1
RADAR SIGNAL RADAR_RX_SIGNAL,

RADAR_TX_SIGNAL
— See NOTE 3

RAMP SIGNAL RAMP_SIGNAL — —
RANDOM NOISE RANDOM_NOISE — —

BS IEC 62529:2012

 IEC 62529:2012
 – 310 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table J.1—Support for C/ATLAS nouns (continued)

C/ATLAS noun Equivalent TSF Signal(s) Comment or BSC(s) Reference
RESOLVER RESOLVER — —
ROTATION — Not illustrated See NOTE 1
SHORT — Not required See NOTE 4
SQUARE WAVE SQUARE_WAVE — —
STEP SIGNAL STEP_SIGNAL — —
SUP CAR SIGNAL SUP_CAR_SIGNAL — —
SYNCHRO SYNCHRO — —
TACAN TACAN — —
TIME INTERVAL — BSC: Interval See NOTE 6
TRIANGULAR WAVE
SIGNAL

TRIANGULAR_WAVE_SIGNAL — —

TURBINE ENGINE DATA — Specifically omitted See NOTE 11
VIBRATION — Not illustrated See NOTE 1
VOR VOR
WAVEFORM — BSCs: WaveformRamp,

WaveformStep
See NOTE 6

NOTE 1—This signal is not represented by an example in Annex E. However, this signal can be created using other TSF signals
and BSCs in STD. Note that it is good practice to use the same name when creating an STD signal to represent an ATLAS noun.

NOTE 2—AMBIENT CONDITIONS is a C/ATLAS noun used to collect a group of dissimilar parameters. These parameters
are not all used when applying an atmospheric signal to a UUT (e.g., in an environmental chamber). Some of the parameters
should be associated with electrical signals applied to the UUT, not the atmospheric signal.

NOTE 3—This noun is represented by more than one STD signal. The STD signals more accurately represent the signals
covered by the C/ATLAS noun.

NOTE 4—This noun represents a specialized connection or connections. This standard allows any terminals to be connected to
any other terminals or valid connection point, but does not predefine or pre-name connection sets.

NOTE 5—This noun is an C/ATLAS-specific method of combining signals to create more complicated signals. It is not required
in STD. The combination of signals to form further signals is a core capability of STD.

NOTE 6—This noun is directly supported by the BSC(s) shown and is, therefore, not illustrated by a TSF signal.

NOTE 7—This noun does not require an STD equivalent signal, as the concept of events is handled in a different manner in
STD.

NOTE 8—In C/ATLAS, the noun HEAT is used to represent the application or measurement of constant temperature, not the
application or measurement of heat.

NOTE 9—This noun does not provide any specific signal information.

NOTE 10—The noun PAM was specifically omitted from the STD list of equivalent signals because the C/ATLAS noun PAM
does not represent the signal usually associated with pulse amplitude modulation (PAM). However, the C/ATLAS signal PAM
and the signals more normally described as pulse amplitude modulation can be created using other TSF signals and BSCs.

NOTE 11—This noun was specifically omitted from the STD list of equivalent signals, as it is a specialized noun with limited
use. Note that this omission does not prevent such a signal from being described using STD.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 311 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

J.3 STD support for C/ATLAS noun modifiers

Table J.2 provides a list of the noun modifiers defined in IEEE Std 716-1995 [B12] together with
information showing how these noun modifiers are supported in STD. There is no direct equivalence
between an C/ATLAS noun modifier and a BSC subclass attribute. The ATLAS noun modifiers are used to
provide additional information about a signal, i.e., whether that information is

 Directly related to a signal attribute,

 Relating to measurement technique,

 Of a general nature, or

 Alluding to a nonspecific signal parameter.

The user must decide which attributes are required as TSF interface properties (unlike ATLAS, in which
each noun is provided with a set of valid noun modifiers).

Noun modifiers used only by the nouns listed as “Not required” or “Specifically omitted” have not been
included in the table. This omission does not prevent such noun modifiers from being described using STD.

STD requires a rigorous definition of a signal; therefore, in many cases, the effect described by an ATLAS
noun modifier will need to be described in STD by a combination of BSCs.

In some cases, the noun modifier is directly supported by a BSC SignalFunction subclass. If this situation is
not the case, the “Supporting relationship” column indicates how the noun modifier is supported by STD by
the inclusion of one of the following:

 Combination—This modifier does not map to a single subclass attribute. It requires a combination
of signals to generate the effect being described by the ATLAS modifier.

 Technique—This modifier does not map to a single subclass attribute. It requires a technique that
may involve further signal processing and one or more measurements, which are then used to
acquire the desired result.

 Reference—This modifier provides reference information. This information is used in a calculation
before a signal is applied (or after a parameter has been measured). It does not directly contain any
signal information.

 Information only—This modifier provides information only. This information may be of use when
building a TSF signal, but does not directly contain any signal information.

 Instrument control—This modifier provides information for instrument control and is outside of the
scope of STD.

 Specific instance—This modifier provides information about a specific instance of an attribute.

 Limit—This modifier indicates a limiting value. It is supported by the range attributes MAX or
MIN.

 Physical Type—This modifier corresponds to an amplitude of the appropriate physical type. It may
apply to one of many subclasses. The “Comment” column shows the physical type as defined in
Annex B.

BS IEC 62529:2012

 IEC 62529:2012
 – 312 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table J.2—Support for C/ATLAS noun modifiers

C/ATLAS noun modifier BSC class/subclass BSC attribute Supporting
relationship Comment

AC-COMP Sinusoid amplitude — —
AC-COMP-FREQ Sinusoid frequency — —
AGE-RATE — — Combination,

Technique
—

ALT Constant amplitude — —
ALT-RATE SignalDelay rate — —
AM-COMP Sinusoid amplitude — —
AM-SHIFT — — Combination,

Technique
—

AMPL-MOD AM modIndex — —
ANGLE Constant amplitude — —
ANGLE-ACCEL SignalDelay acceleration — —
ANGLE-RATE SignalDelay rate — —
ANT-SPEED-DEV — — Combination,

Technique
—

ATMOS — — Combination —
ATTEN Attenuator gain — —
BANDWIDTH Bandpass,

Notch
frequencyBand — See Note 1

BAROMETRIC-PRESS Constant amplitude — —
BIT-RATE SerialData period — —
BURST PulseDefns — Combination —
BURST-DROOP PulseDefns — Technique See Note 2
BURST-REP-RATE PulseDefns — Technique See Note 2
CAP Constant amplitude — —
CAR-AMPL Sinusoid amplitude — —
CAR-FREQ Sinusoid frequency — —
CAR-HARMONICS — — Combination,

Technique
—

CAR-PHASE Sinusoid phase — —
CAR-RESID Sinusoid amplitude — —
CHANNEL — — Information only —
COMPL Constant amplitude — —
CONDUCTANCE Constant amplitude Physical Type Conductance
COUNT Counter n/a — —
CREST-FACTOR — — Technique —
CURRENT Constant amplitude — —
CURRENT-LMT Constant amplitude Limit —
CURRENT-ONE Constant amplitude — —
CURRENT-QUIES Constant amplitude — —
CURRENT-ZERO Constant amplitude — —
CW-LEVEL Constant amplitude — —
DBL-INT — — Combination —

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 313 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table J.2—Support for C/ATLAS noun modifiers (continued)

C/ATLAS noun modifier BSC class/subclass BSC attribute Supporting
relationship Comment

DC-OFFSET Constant amplitude — —
DDM — — Combination —
DEBRIS-COUNT — — Combination —
DEBRIS-SIZE — — Combination —
DELAY SignalDelay delay — —
DEWPOINT Constant amplitude — —
DISS-FACTOR — — Combination,

Technique
—

DISTANCE — amplitude Physical type Distance
DISTORTION — — Technique —
DOMINANT-MOD-SIG — — Combination —
DOPPLER-BANDWIDTH — — Combination —
DOPPLER-FREQ — — Combination —
DOPPLER-SHIFT — — Technique
DROOP — — Combination,

Technique

DUTY-CYCLE SquareWave,
Triangle

dutyCycle —

EFF — — Combination,
Technique

EFFICACY — — Combination,
Technique

FALL-TIME Trapezoid,
SingleTrapezoid

fallTime —

FIELD-STRENGTH — amplitude Physical Type ElectricalFieldStrength
FLUID-TYPE — — Information only
FLUX-DENS — amplitude Physical Type MagneticFluxDensity
FM-COMP FM frequencyDeviation —
FORCE Constant amplitude —
FREQ Sinusoid

Modulator
Filter

frequency
carrierFrequency
centerFrequency

—

FREQ-DEV — — Combination,
Technique

FREQ-ONE Sinusoid frequency —
FREQ-QUIES Sinusoid frequency —
FREQ-ZERO Sinusoid frequency —
FREQ PAIRING — — Combination
FREQ-WINDOW — — Limit
GLIDE-SLOPE — — Information only See Annex E TSF –

ILS_GLIDE_SLOPE
HARM-***-PHASE Sinusoid phase Technique
HARM-***-POWER Sinusoid amplitude Technique
HARM-***-VOLTAGE Sinusoid amplitude Technique

BS IEC 62529:2012

 IEC 62529:2012
 – 314 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table J.2—Support for C/ATLAS noun modifiers (continued)

C/ATLAS noun modifier BSC class/subclass BSC attribute Supporting
relationship Comment

HARMONICS Sinusoid amplitude Combination,
Technique

HI-MOD-FREQ Sinusoid amplitude Specific instance
HUMIDITY — — Combination,

Technique

IAS — — Combination,
Technique

IAS also maps to pressure

IDENT-SIG — — Information only
IDENT-SIG-EP — — Information only
IDENT-SIG-FREQ Sinusoid frequency —
IDENT-SIG-MOD AM modIndex —
ILLUM — amplitude Physical Type Luminance
IND — amplitude Physical Type Inductance
INT-JITTER — — Combination,

Technique

INT-RATE — — Combination,
Technique

LO-MOD-FREQ — — Specific Instance
LOCALIZER — — — See Annex E TSF –

ILS_LOCALIZER
LUM-FLUX — amplitude Physical Type LuminousFlux
LUM-INT — amplitude Physical Type LuminousIntensity
LUM-TEMP — — Combination,

Technique

LUMINANCE — — Physical Type Luminance
MAG-BEARING — — Combination,

Technique

MAG-BEARING-RATE — — Combination,
Technique

MARKER-BEACON — — Information only
MASS-FLOW — amplitude Physical Type MassFlow
MASK — — Reference
MEAN-MOD — — Technique
MOD-AMPL AM, FM, PM In —
MOD-DIST — — Technique
MOD-FREQ AM, FM, PM In —
MOD-OFFSET Constant amplitude —
MOD-PHASE Sinusoid phase —
MODE — — Information only
NEG-EDGE — — Information only
NEG-SLOPE — — Information only
NOISE Noise — —
NOISE-AMPL-DENS — — Combination,

Technique

NOISE-PWR-DENS — — Combination,
Technique

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 315 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table J.2—Support for C/ATLAS noun modifiers (continued)

C/ATLAS noun modifier BSC class/subclass BSC attribute Supporting
relationship Comment

NON-HARMONICS — — Technique
NON-LIN — — Combination,

Technique

OPER-TEMP — amplitude Physical Type Temperature
OVERSHOOT — — Combination,

Technique

P-AMPL Peak (Sensor) — —
P3-DEV PulseDefns — —
P3-LEVEL PulseDefns — —
PAIR-DROOP PulseDefns — Technique See Note 2
PAIR-SPACING PulseDefns — Technique See Note 2
PEAK-DEGEN — — Combination,

Technique

PERIOD Periodic,
TimedEvent

period —

PHASE-ANGLE Sinusoid phase —
PHASE-DEV PM phaseDeviation —
PHASE-JIT — — Combination,

Technique

PHASE-SHIFT — — Combination,
Technique

POS-EDGE — — Information only
POS-SLOPE — — Information only
POWER — amplitude Physical Type Power
POWER-DIFF — — Combination,

Technique

POWER-SOURCE — — Instrument control
PRESHOOT — — Combination,

Technique

PRESS-A — — Combination,
Technique

PRESS-G — — Combination,
Technique

PRESS-OSC-AMP — — Combination
PRESS-OSC-FREQ — — Combination
PRESS-RATE — — Information only
PRF TimedEvent period — prf maps to period
PULSE-CLASS — — Information only
PULSE-IDENT — — Information only
PULSE-POSN PulseDefn start —
PULSE-SPECT — — Technique
PULSE-SPEC-THRESHOLD — — Reference
PULSE-WIDTH PulseDefn pulseWidth —
PULSES-INCL — — Information only
PULSES-EXCL — — Information only

BS IEC 62529:2012

 IEC 62529:2012
 – 316 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table J.2—Support for C/ATLAS noun modifiers (continued)

C/ATLAS noun modifier BSC class/subclass BSC attribute Supporting
relationship Comment

PWR-LMT — — Information only
Q — — Combination,

Technique

QUAD — — Combination,
Technique

RADIAL — — Technique
RADIAL-RATE — — Technique
RANGE-PULSE-DEV — — Combination
RANGE-PULSE-ECHO — — Technique
REACTANCE Load reactance Physical Type Reactance
REF-FREQ Sinusoid frequency Specific Instance
REF-INERTIAL — — Information only
REF-PHASE-FREQ Sinusoid frequency Reference
REF-POWER — amplitude Reference
REF-PULSES — — Reference
REF-UUT — — Information only
REF-VOLT — — Reference
REF-WORD-LENGTH — — Information only
REL-BEARING — — Combination,

Technique

REL-BEARING-RATE — — Combination,
Technique

RELATIVE-HUMIDITY — — Combination,
Technique

RELATIVE-WIND — amplitude Physical Type PlaneAngle
REPLY-EFF ProbabilityEvent probability —
RES Load amplitude Physical Type Resistance
RESP — — Information only
RINGING — — Combination,

Technique

RISE-TIME Trapezoid,
SingleTrapezoid

riseTime —

ROUNDING — — Combination,
Technique

SAMPLE — — Information only
SAMPLE-SPACING — — Technique
SAMPLE-TIME — — Technique
SAMPLE-WIDTH — — Information
SETTLE-TIME — — Technique
SKEW-TIME — — Combination,

Technique

SLANT-RANGE Constant amplitude —
SLANT-RANGE-ACCEL — — Technique
SLANT-RANGE-RATE — — Combination,

Technique

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 317 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table J.2—Support for C/ATLAS noun modifiers (continued)

C/ATLAS noun modifier BSC class/subclass BSC attribute Supporting
relationship Comment

SLEW-RATE — — Combination,
Technique

SLS-DEV — — Combination
SLS-LEVEL — — Combination
SPACING PulseDefns — Technique See Note 2
SPEC-GRAVITY — — Combination,

Technique

SPEC-TEMP — amplitude Physical Type Temperature
SQTR-DIST — — Combination
SQTR-RATE — — Combination,

Technique

STIM — — Information only
SUB-CAR-FREQ Sinusoid frequency Specific instance
SUB-CAR-MOD — — Technique
SUSCEPTANCE Load susceptance Physical Type Susceptance
SWR — — Technique
TARGET-RANGE Constant amplitude —
TARGET-RANGE-ACCEL — — Combination
TARGET-RANGE-RATE — — Combination
TAS — — Combination,

Technique

TEMP — amplitude Physical Type Temperature
TEMP-COEFF-CAP — — Combination,

Technique
See Note 3

TEMP-COEFF-CURRENT — — Combination,
Technique

See Note 3

TEMP-COEFF-IND — — Combination,
Technique

See Note 3

TEMP-COEFF-REACT — — Combination,
Technique

See Note 3

TEMP-COEFF-RES — — Combination,
Technique

See Note 3

TEMP-COEFF-VOLT — — Combination,
Technique

See Note 3

THREE-PHASE-DELTA ThreePhaseDelta not applicable Combination,
Technique

THREE-PHASE-WYE ThreePhaseWye not applicable Combination,
Technique

TIME — amplitude Physical Type Time
TIME-ASYM — — Combination,

Technique

TIME-JIT — — Combination,
Technique

TORQUE — amplitude Physical Type MomentOfForce
TRANS-ONE — — Information only
TRANS-PERIOD — — Information only

BS IEC 62529:2012

 IEC 62529:2012
 – 318 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Table J.2—Support for C/ATLAS noun modifiers (continued)

C/ATLAS noun modifier BSC class/subclass BSC attribute Supporting
relationship Comment

TRANS-ZERO — — Information only
TRIG Constant amplitude —
TRUE Constant amplitude —
TYPE — — Information only
UNDERSHOOT — — Combination,

Technique

VALUE SerialDigital,
ParallelDigital

data — See Note 4

VAR-PHASE-FREQ Sinusoid frequency Specific Instance
VAR-PHASE-MOD — — Technique
VIBRATION-ACCEL SignalDelay acceleration —
VIBRATION-AMPL Sinusoid amplitude —
VIBRATION-RATE SignalDelay rate —
VOLT-LMT — — Information only
VOLTAGE — amp[litude Physical Type Voltage
VOLTAGE-ONE Constant amplitude —
VOLTAGE-QUIES Constant amplitude —
VOLTAGE-ZERO Constant amplitude —
VOLTAGE-RAMPED WaveformRamp — Information only
VOLTAGE-STEPPED WaveformStep — Information only
VOLUME-FLOW — amplitude Physical Type VolumeFlow
WAVE-LENGTH Sinusoid frequency — Maps to frequency
WIND-SPEED — amplitude Physical Type Speed
WORD-LENGTH — — Information only
WORD-RATE ParallelDigital period —
ZERO-INDEX Constant amplitude Specific instance
NOTE 1—This modifier is also used to indicate the difference between the upper and lower frequencies of a frequency
selective circuit, i.e., it may also be considered a technique.

NOTE 2—This modifier may be represented using PulseDefns for stimulus signals, but requires a measurement technique to
acquire the desired result when assessing response signals.

NOTE 3—This modifier is misplaced with the C/ATLAS noun AMBIENT CONDITIONS. The temperature coefficient
referenced has an effect on a different noun (such as AC SIGNAL, DC SIGNAL, or IMPEDANCE).

NOTE 4—This modifier represents data numerically as a decimal integer or as a (binary, octal, or hexadecimal) digital
number. The SerialDigital or ParallelDigital attribute “data” is a string containing one or more of the characters H, L, X,
and Z.

J.3.1 Example of noun modifier supported by combination of BSCs

The modifier HARMONICS is used to indicate the application of harmonic distortion to a signal. To
represent this effect using STD requires the addition of one or more harmonic sinusoids to be added to the
fundamental signal.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 319 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

J.3.2 Example of noun modifier supported by a technique

The modifier NON-HARMONICS is used to indicate the measurement of nonharmonic distortion in a
signal. To represent this effect using STD requires the separation of the nonharmonic signal(s) from the
original signal. A filter may be used to achieve this separation. The nonharmonic signal(s) may then be
measured. The C/ATLAS modifier FREQ-WINDOW may be used to provide related information about the
expected frequencies of the nonharmonically related signal.

J.4 Support for C/ATLAS extensions

IEEE Std 716-1995 [B12] includes a facility for extending C/ATLAS nouns and noun modifiers. These
extensions are supported in the same way as predefined nouns and noun modifiers. The names selected for
STD TSF models and TSF interface properties should be common engineering terms, with reference made
to The IEEE Standards Dictionary wherever possible.

IEEE Std 716-1995 requires that each extension be supported by a textual definition or reference to an
external specification. STD relies on the supporting BSCs and TSF model to provide a definition of the
required signal. However, it is good practice to provide the textual definition or reference with the STD
equivalent of an C/ATLAS extension.

BS IEC 62529:2012

 IEC 62529:2012
 – 320 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex K

(informative)

Guide for maximizing test platform independence and test application
interchangeability

K.1 Introduction

The use of this standard allows for a wide range of signal definitions without reference to their final
application. This annex identifies the guiding principles and best practice that should be applied when using
or defining signals, for the purposes of capturing test requirements and the development of test applications
to support the testing of units under test (UUTs). The objective is to define test requirements that provide
the ability to achieve test application interchangeability across different test platforms.

This best practice is encapsulated in a set of six rules that should be followed when developing test
applications and against which test requirements may be audited. An extensible markup language (XML)
Schema that encapsulates these rules may be created to allow test requirements to be validated against these
rules.

K.2 Guiding principles

The following guiding principles should be adhered to when describing test requirements for
implementation across multiple platforms:

 Test requirement information shall be complete and explicit.

 Test requirement information shall not be described in a manner that relates how a test platform
will accomplish a requirement.

 Test requirement information shall not be described in a manner that relates knowledge of test
system implementation.

K.3 Best practice rules

K.3.1 Static signal definitions

K.3.1.1 Rule 1

Test requirements shall use static signal definitions.

K.3.1.2 Commentary

All signals used as part of a test requirement shall be defined as static signals model using basic signal
components (BSCs) or test signal frameworks (TSFs).

Where test requirement are defined as dynamic signals, there is an implied control sequence within the
native programming language that could have a negative impact on test requirements rehostability.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 321 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

K.3.2 UUT signal location

K.3.2.1 Rule 2

Test requirements shall contain only the UUT signal location.

K.3.2.2 Commentary

The location identified shall always be the endpoint intended for the signal.

Most often this location will be a UUT connector with pin identifiers. There are situations where a location
may be another resource’s input port or an environmental endpoint. The identifier shall be chosen so that
the endpoint is clearly discernable. Note that any resource referenced must also be defined in terms that do
not reflect any specific implementation.

All signals used as parts of test requirements should be terminated at one end by a BSC belonging to the
Connector class. The pin names used should reflect the UUT location where the signals are sensed,
sourced, or monitored.

K.3.3 Signal synchronization

K.3.3.1 Rule 3

Test requirements shall identify any signal synchronization required.

K.3.3.2 Commentary

Where a test requirement requires signals to and from the UUT to be synchronized, the test requirement
shall explicitly define what synchronization is needed.

Synchronization should be achieved using the events mechanism within this standard together with the
Sync and Gate ports to describe the intrasignal timing dependencies.

Where a test requirement requires multiple synchronized signals (such as I & Q channels), these should be
defined explicitly.

Multiple synchronized signals should be achieved by using the inherent synchronization provided within
the standard for signals within the same time frame.

K.3.4 Signal triggering and UUT events

K.3.4.1 Rule 4

Test requirements shall define any signal triggering in relation to UUT events.

BS IEC 62529:2012

 IEC 62529:2012
 – 322 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

K.3.4.2 Commentary

All signal triggering expressed in a test requirement shall indicate a relationship only to UUT signals or
other test requirements and not to test platform resource implementation.

This triggering is achieved by using conditioners and monitors to trigger on specific UUT signal events.

K.3.5 Prerequisite signals

K.3.5.1 Rule 5

Test requirements shall identify any prerequisite signals required.

K.3.5.2 Commentary

Where a test requirement requires other signals to be active, the test requirement should explicitly reference
these signals together with any timing constraints.

Prerequisite signals can be other test requirements, provided that, prior to the test requirement being
activated, the prerequisite signals or test requirements are available. When a signal is requested and it has
no external event dependency, that signal is available at the point that the signal returns.

K.3.6 Environmental characteristics

K.3.6.1 Rule 6

Test requirements shall include any environmental characteristics required.

K.3.6.2 Commentary

When a UUT operation is dependent upon a specific environmental characteristics being met, such as a
50 Ω impedance network, the test requirement shall include this characteristic as part of the test
requirement within the signal definitions.

The use of signal conditioning, such as path loads, should be specified as part of the signal definition used
in the test requirement. This provides a constraint on any resource or method of implementation if it is
necessary for the successful operation of the UUT test.

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 323 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex L

(informative)

Bibliography

[B1] ARINC 568, Distance Measuring Equipment (DME).7

[B2] ARINC 572, Mark 2 Air Traffic Control Transponder.

[B3] ARINC 579-2, Airborne VOR Receiver.

[B4] ARINC 711-10, Mark 2 Airborne VOR ILS Receiver.

[B5] Distributed Computing Environment (DCE) Specifications, The Open Group.

[B6] eXtensible Markup Language (XML) 1.0 (Fourth Edition). World Wide Web Consortium
Recommendation 16 August 2006. Available from World Wide Web: http://www.w3.org/TR/2006/REC-
xml-20060816.

[B7] Haskell 98 Report: A Non-strict, Purely Functional Language.

[B8] IEC Multilingual Dictionary of Electricity, Electronic and Telecommunications.8

[B9] IEEE/ANSI SI 10™, American National Standard for Use of the International System of Units (SI):
The Modern Metric System.9, 10

[B10] IEEE Std 181™, IEEE Standard on Transitions, Pulses, and Related Waveforms.

[B11] IEEE Std 260.1™, IEEE Standard Letter Symbols for Units of Measurement (SI Units, Customary
InchPound Units, and Certain Other Units)

[B12] IEEE Std 716™-1995, Standard Test Language for All Systems—Common/Abbreviated Test
Language for All Systems (C/ATLAS).

[B13] IEEE Std 754™–2008, IEEE Standard for Floating-Point Arithmetic

[B14] IEEE Std 1445™–1998, IEEE Standard for Digital Test Interchange Format,

[B15] IEEE Std 1541™–2002, IEEE Standard for Prefixes for Binary Multiples.

[B16] MIL-STD-291B, Standard Tactical Air Navigation (TACAN) Signal.11

[B17] NIST Technical Note 1297, Guidelines for Evaluating and Expressing the Uncertainty of NIST
Measurement Results.12

[B18] STANAG 4193, NATO Standard Agreement Technical Characteristics of IFF Mk XA and Mk XII
Interrogators and Transponders.13

7 ARINC publications are available from ARINC Research Corporation, Document Section, 2551 Riva Rd., Annapolis, MD 21401.
8 IEC pubs are available from the sales department of the International Electrotechnical Commission, Case Postal 131, 3, Rue de
Varembé, CH-1211, Genève 20, Switzerland/Suisse (http://www.iec.ch). IEC publications are also available from the Sales
Department, American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA
(http://www.ansi.org).
9 IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards.ieee.org/).
10 The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
11 MIL publications are available from Customer Service, Defense Printing Service, 700 Robbins Ave., Bldg. 4D, Philadelphia, PA
19111-5094.
12 NIST publications are available from http://physics.nist.gov/Pubs/
13 STANAG publications are available from the NATO Standardization Agency at (nsa@hq.nato.int).

BS IEC 62529:2012

http://standards.ieee.org/

 IEC 62529:2012
 – 324 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

[B19] TIA-232, Interface between Data Terminal Equipment (DTE) and Data Circuit Terminating
Equipment (DCE) employing serial binary data interchange.14

[B20] Webster’s New Collegiate Dictionary. Springfield, MA: Merriam-Webster, Inc.

14 TIA publications are available from Global Engineering Documents, 15 Inverness Way East, Englewood, CO 80112, USA
(http://global.ihs.com).

BS IEC 62529:2012

IEC 62529:2012
IEEE Std 1641-2010 – 325 –

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Annex M

(informative)

IEEE List of Participants

At the time this standard was submitted to the IEEE-SA Standards Board for approval, the Test and ATS
Description Subcommittee had the following membership:

Ashley M. B. Hulme, Co-Chair
Ion A. Neag, Co-Chair

Malcolm Brown
Matt Cornish
Dave Droste
James Dumster
Keith Ellis
Brit Frank
Thomas Gauntner
Scott Gearhart
George Geathers
Anthony Geneva
William Gerstein
José González-Pascual

Chris Gorringe
Cristophe Grard
Michelle Harris
David Heck
Bob Horton
Anand Jain
Mark Kaufman
Dexter Kennedy
Arthur Larsson
Teresa Lopes
Robert McGarvey
Scott Misha

Mukund Modi
Leslie Orlidge
Hugh Pritchett
Michael Rutledge
Howard Savage
Michel Schieber
Michael Seavey
John Sheppard
Joseph Stanco
Michael Stora
Ronald Taylor
Timothy Wilmering

The following members of the individual balloting committee voted on this standard. Balloters may have
voted for approval, disapproval, or abstention.

Anthony Lee Alwardt
Christopher Biernacki
Martin J. Bishop
Malcom Brown
Keith Chow
James Dumser
Heiko Ehrenberg
William Frank
Thomas Gauntner
Scott Gearhart
Jose Gonzalez
Chris Gorringe
Arnold Greenspan
Randall Groves
Werner Hoelzl

Ashley M. B. Hulme
Anand Jain
Yuri Khersonsky
Teresa Lopes
William Lumpkins
G. Luri
Edward McCall
Robert McGarvey
Gary Michel
Scott Misha
Mukund Modi
Jeffrey Moore
Ion A. Neag
Jay Nemeth-Johannes

Michael S. Newman
David Nichols
Leslie Orlidge
Ulrich Pohl
Peter Richardson
Bartien Sayogo
Mike Seavey
Gil Shultz
Joseph Stanco
Walter Struppler
Ronald Taylor
Jonathan Tucker
Stephen Webb
Oren Yuen
Janusz Zalewski

When the IEEE-SA Standards Board approved this standard on 17 June 2010, it had the following
membership:

Robert M. Grow, Chair
Richard H. Hulett, Vice Chair

Steve M. Mills, Past Chair
Judith Gorman, Secretary

Karen Bartleson
Victor Berman
Ted Burse

Clint Chaplin
Andy Drozd
Alexander Gelman

Jim Hughes

Young Kyun Kim

BS IEC 62529:2012

 IEC 62529:2012
 – 326 – IEEE Std 1641-2010

Published by IEC under license from IEEE. © 2010 IEEE. All rights reserved.

Joseph L. Koepfinger*
John Kulick
David J. Law
Hung Ling
Oleg Logvinov

Ted Olsen

Ronald C. Petersen
Thomas Prevost
Jon Walter Rosdahl

Sam Sciacca
Mike Seavey
Curtis Siller
Don Wright

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Satish Aggarwal, NRC Representative
Richard DeBlasio, DOE Representative
Michael Janezic, NIST Representative

Don Messina

IEEE Standards Program Manager, Document Development

Soo Kim
IEEE Standards Program Manager, Technical Program Development

BS IEC 62529:2012

This page deliberately left blank

BSI is the independent national body responsible for preparing British Standards and other
standards-related publications, information and services. It presents the UK view on standards in
Europe and at the international level.

BSI is incorporated by Royal Charter. British Standards and other standardisation products are
published by BSI Standards Limited.

British Standards Institution (BSI)

raising standards worldwide™

BSI

389 Chiswick High Road London W4 4AL UK

Tel +44 (0)20 8996 9001
Fax +44 (0)20 8996 7001
www.bsigroup.com/standards

Revisions
British Standards and PASs are periodically updated by amendment or
revision. Users of British Standards and PASs should make sure that they
possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and
services. We would be grateful if anyone finding an inaccuracy or ambiguity
while using British Standards would inform the Secretary of the technical
committee responsible, the identity of which can be found on the inside front
cover. Similary for PASs, please notify BSI Customer Services.

Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001

BSI offers BSI Subscribing Members an individual updating service called
PLUS which ensures that subscribers automatically receive the latest editions
of British Standards and PASs.

Tel: +44 (0)20 8996 7669 Fax: +44 (0)20 8996 7001
Email: plus@bsigroup.com

Buying standards
You may buy PDF and hard copy versions of standards directly using a
credit card from the BSI Shop on the website www.bsigroup.com/shop.
In addition all orders for BSI, international and foreign standards publications
can be addressed to BSI Customer Services.

Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001
Email: orders@bsigroup.com

In response to orders for international standards, BSI will supply the British
Standard implementation of the relevant international standard, unless
otherwise requested.

Information on standards
BSI provides a wide range of information on national, European
and international standards through its Knowledge Centre.

Tel: +44 (0)20 8996 7004 Fax: +44 (0)20 8996 7005
Email: knowledgecentre@bsigroup.com

BSI Subscribing Members are kept up to date with standards developments
and receive substantial discounts on the purchase price
of standards. For details of these and other benefits contact Membership
Administration.

Tel: +44 (0)20 8996 7002 Fax: +44 (0)20 8996 7001
Email: membership@bsigroup.com

Information regarding online access to British Standards and PASs
via British Standards Online can be found at
www.bsigroup.com/BSOL
Further information about British Standards is available on the BSI website
at www.bsi-group.com/standards

Copyright
All the data, software and documentation set out in all British Standards and
other BSI publications are the property of and copyrighted by BSI, or some
person or entity that own copyright in the information used (such as the
international standardisation bodies) has formally licensed such information
to BSI for commerical publication and use. Except as permitted under the
Copyright, Designs and Patents Act 1988 no extract may be reproduced,
stored in a retrieval system or transmitted in any form or by any means –
electronic, photocopying, recording or otherwise – without prior written
permission from BSI. This does not preclude the free use, in the course of
implementing the standard, of necessary details such as symbols, and size,
type or grade designations. If these details are to be used for any other
purpose than implementation then the prior written permission of BSI must
be obtained. Details and advice can be obtained from the Copyright &
Licensing Department.

Tel: +44 (0)20 8996 7070
Email: copyright@bsigroup.com

	30266927-VOR.pdf
	CONTENTS
	FOREWORD
	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Application
	1.4 Annexes

	2. Definitions, abbreviations, and acronyms
	2.1 Definitions
	2.2 Abbreviations and acronyms

	3. Structure of this standard
	3.1 Layers
	3.2 Signal Modeling Language (SML) layer
	3.3 BSC layer
	3.4 TSF layer
	3.5 Test requirement layer
	3.6 Using the layers

	4. Signals and SignalFunctions
	4.1 Introduction
	4.2 Physical signal states
	4.3 Event states
	4.4 Digital stream states

	5. SML layer
	6. BSC layer
	6.1 BSC layer base classes
	6.2 General description of BSCs
	6.3 SignalFunction template

	7. TSF layer
	7.1 TSF classes
	7.2 TSF signals defined by a model
	7.3 TSF signals defined by an external reference

	8. Test procedure language (TPL)
	8.1 Goals of the TPL
	8.2 Elements of the TPL
	8.3 Use of the TPL

	9. Maximizing test platform independence
	Annex A (normative) Signal modeling language (SML)
	A.1 Use of the SML
	A.2 Introduction
	A.3 Physical types
	A.4 Signal definitions
	A.5 Pure signals
	A.6 Pure signal-combining mechanisms
	A.7 Pure function transformations
	A.8 Measuring, limiting, and sampling signals
	A.9 Digital signals
	A.10 Basic component SML
	A.11 Fast Fourier analysis support

	Annex B (normative) Basic signal components (BSC) layer
	B.1 BSC layer base classes
	B.2 BSC subclasses
	B.3 Description of a BSC
	B.4 Physical class
	B.5 PulseDefns class
	B.6 SignalFunction class

	Annex C (normative) Dynamic signal descriptions
	C.1 Introduction
	C.2 Basic classes
	C.3 Dynamic signal goals and use cases

	Annex D (normative) Interface definition language (IDL) basic components
	D.1 Introduction
	D.2 IDL BSC library

	Annex E (informative) Test signal framework (TSF) for C/ATLAS
	E.1 Introduction
	E.2 TSF library definition in extensible markup language (XML)
	E.3 Interface definition language (IDL) for the TSF for C/ATLAS
	E.4 AC_SIGNAL<type: Current|| Power|| Voltage>
	E.5 AM_SIGNAL
	E.6 DC_SIGNAL<type: Voltage|| Current|| Power>
	E.7 DIGITAL_PARALLEL
	E.8 DIGITAL_SERIAL
	E.9 DIGITAL_TEST
	E.10 DME_INTERROGATION
	E.11 DME_RESPONSE
	E.12 FM_SIGNAL<type: Voltage|| Power|| Current>
	E.13 ILS_GLIDE_SLOPE<type: Voltage|| Power>
	E.14 ILS_LOCALIZER<type: Power|| Voltage>
	E.15 ILS_MARKER
	E.16 PM_SIGNAL
	E.17 PULSED_AC_SIGNAL<type: Current|| Power|| Voltage>
	E.18 PULSED_AC_TRAIN<type: Voltage|| Current|| Power>
	E.19 PULSED_DC_SIGNAL<type: Voltage|| Current|| Power>
	E.20 PULSED_DC_TRAIN<type: Voltage|| Current|| Power>
	E.21 RADAR_RX_SIGNAL
	E.22 RADAR_TX_SIGNAL<type: Current|| Voltage|| Power>
	E.23 RAMP_SIGNAL<type: Voltage|| Current|| Power>
	E.24 RANDOM_NOISE
	E.25 RESOLVER
	E.26 RS_232
	E.27 SQUARE_WAVE<type: Current|| Voltage|| Power>
	E.28 SSR_INTERROGATION<type: Voltage|| Current|| Power>
	E.29 SSR_RESPONSE<type: Voltage|| Current|| Power>
	E.30 STEP_SIGNAL
	E.31 SUP_CAR_SIGNAL
	E.32 SYNCHRO
	E.33 TACAN
	E.34 TRIANGULAR_WAVE_SIGNAL<type: Voltage|| Current|| Power>
	E.35 VOR

	Annex F (informative) Test signal framework (TSF) library for digital pulse classes
	F.1 Introduction
	F.2 TSF library definition in extensible markup language (XML)
	F.3 Graphical models of TSFs
	F.4 Pulse class family of TSFs
	F.5 DTIF

	Annex G (normative) Carrier language requirements
	G.1 Carrier language requirements
	G.2 Interface definition language (IDL)
	G.3 Datatypes
	G.4 Data-processing requirements
	G.5 Control structures

	Annex H (normative) Test procedure language (TPL)
	H.1 TPL layer
	H.2 Elements of the TPL
	H.3 Structure of test requirements
	H.4 Carrier language
	H.5 Signal statements
	H.6 Mapping of test statements to carrier language
	H.7 Test statement definitions
	H.8 Elements used in test statement definitions
	H.9 Attributes with multiple properties
	H.10 Transferring data in digital signals
	H.11 Creating test requirements
	H.12 Delimiting TPL statements

	Annex I (normative) Extensible markup language (XML) signal descriptions
	I.1 Introduction
	I.2 XSD for BSCs
	I.3 XSD for TSFs

	Annex J (informative) Support for ATLAS nouns and modifiers
	J.1 Signal and test definition (STD) support for ATLAS signals
	J.2 STD support for ATLAS nouns
	J.3 STD support for C/ATLAS noun modifiers
	J.4 Support for C/ATLAS extensions

	Annex K (informative) Guide for maximizing test platform independence and test application interchangeability
	K.1 Introduction
	K.2 Guiding principles
	K.3 Best practice rules

	Annex L (informative) Bibliography
	Annex M (informative) IEEE List of Participants

