BS IEC 61435:2013 # **BSI Standards Publication** Nuclear instrumentation — High-purity germanium crystals for radiation detectors — Measurement methods of basic characteristics BS IEC 61435:2013 BRITISH STANDARD #### **National foreword** This British Standard is the UK implementation of IEC 61435:2013. The UK participation in its preparation was entrusted to Technical Committee NCE/2, Radiation protection and measurement. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2013. Published by BSI Standards Limited 2013 ISBN 978 0 580 76224 6 ICS 27.120 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 August 2013. Amendments issued since publication Date Text affected **IEC 61435** Edition 2.0 2013-08 # INTERNATIONAL STANDARD Nuclear instrumentation – High-purity germanium crystals for radiation detectors – Measurement methods of basic characteristics INTERNATIONAL ELECTROTECHNICAL COMMISSION PRICE CODE V ICS 27.120 ISBN 978-2-8322-1033-8 Warning! Make sure that you obtained this publication from an authorized distributor. # CONTENTS | FOI | REWO | DRD | | 4 | |-----|--|--|---|----| | INT | RODI | JCTION | L | 6 | | 1 | Scop | e and o | bject | 7 | | 2 | | Normative references | | | | 3 | Terms, definitions, symbols and abbreviations | | | | | Ü | 3.1 | • | | | | | 3.2 | Symbols and abbreviations | | | | | 0.2 | 3.2.1 | Symbols | | | | | 3.2.2 | Abbreviations | | | | 3.3 | Quanti | ties and units | | | 4 | Meas | | nt of net electrically-active impurity concentrations | | | | 4.1 | Sample preparation for Van der Pauw measurements | | | | | | 4.1.1 | General | | | | | 4.1.2 | Equipment | | | | | 4.1.3 | Dimensions and provisions for contacts | | | | | 4.1.4 | Etching | | | | 4.2 | Measu | rements of (N _A – N _D) | | | | | 4.2.1 | General | | | | | 4.2.2 | Equipment | 13 | | | | 4.2.3 | Measurements of resistivity | 14 | | | | 4.2.4 | Measurements of Hall coefficient | 14 | | | | 4.2.5 | Calculation of $(N_A - N_D)$ from resistivity | 15 | | | | 4.2.6 | Calculation of drift mobility from a Van der Pauw measurement | 15 | | | | 4.2.7 | Computation of $(N_A - N_D)$ from R_H | 16 | | | | 4.2.8 | Spatial dependence of $(N_A - N_D)$ | 17 | | | | 4.2.9 | Axial variations in $(N_A - N_D)$ | 18 | | 5 | Deep level transient spectroscopy for the determination of impurity-centre concentration | | | 18 | | | 5.1 General | | al | 18 | | | 5.2 | | | 18 | | | 5.3 | | e selection and preparation for DLTS | | | | 5.4 | Measu | rements for the determination of impurity-centre concentration | 19 | | | | 5.4.1 | General | 19 | | | | 5.4.2 | DLTS signal as a function of temperature | 21 | | | | 5.4.3 | Calculation of $(N_A - N_D)$ | 21 | | | | 5.4.4 | Corrections for equivalent circuit effects | 21 | | | | 5.4.5 | Corrections for high trap concentrations and for voltage pulse height | | | | | 5.4.6 | $ rac{\Delta V_{ m C}}{V_{ m p}}$ technique for measuring $N_{ m T}$ | 23 | | | 5.5 | 5.5 Majority-carrier deep levels in p-type HPGe | | 24 | | | 5.6 | - | ty-carrier deep levels in n-type HPGe | | | | 5.7 | 5.7 Report | | | | 6 | Crystallographic properties | | | 26 | | | 6.1 | 6.1 General | | | | | 6.2 | 3.2 Crystallographic orientation | | | | | 6.3 | | | | # 61435 © IEC:2013(E) | | 6.3.1 | General | 26 | |------------|---------------------------------------|---|----| | | 6.3.2 | Preferential etching | 26 | | | 6.3.3 | Etching methods | 27 | | | 6.3.4 | Etch-pit density | | | | 6.3.5 | Lineage | | | | 6.3.6 | Mosaic | | | 6.4 | | | | | | • | tive) The Hall factor for n-type and p-type HPGe | | | | | | | | Annex B | (informa | tive) Function $f\left(\frac{R_{AB,CD}}{R_{BC,DA}}\right)$ versus $\frac{R_{AB,CD}}{R_{BC,DA}}$ | 30 | | | | $\binom{R_{BC,DA}}{}$ | | | Bibliograp | ohy | | 31 | | | | | | | Figure 1 - | – Sampl | es | 12 | | Figure 2 - | – Examp | ples of sample shapes | 18 | | | | waveforms and gate timing | | | | | | | | Figure 4 | $-\frac{\Delta V_{\rm C}}{V_{\rm D}}$ | vaveforms | 24 | | | P | | | | | | factor for n-type HPGe | | | Figure A. | 2 – Hall | factor for p-type HPGe | 29 | | | | R_{ABCD} R_{ABCD} | | | Figure B. | 1 – Fun | ction $f\left(\frac{R_{AB,CD}}{R_{BC,DA}}\right)$ versus $\frac{R_{AB,CD}}{R_{BC,DA}}$ [21] | 30 | | | | (50,511) | | | | | | | | Table 1 _ | Maiorit | v-carrier deen levels in n-tyne HPGe | 25 | #### INTERNATIONAL ELECTROTECHNICAL COMMISSION # NUCLEAR INSTRUMENTATION – HIGH-PURITY GERMANIUM CRYSTALS FOR RADIATION DETECTORS – MEASUREMENT METHODS OF BASIC CHARACTERISTICS #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 61435 has been prepared by IEC technical committee 45: Nuclear instrumentation. This second edition cancels and replaces the first edition published in 1996 and constitutes a technical revision. The main technical changes with regard to the previous edition are as follows: - Review the existing requirements. - Update the terminology and definitions. The text of this standard is based on the following documents: | FDIS | Report on voting | | |-------------|------------------|--| | 45/754/FDIS | 45/760/RVD | | Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table. This publication has been drafted in accordance with the ISO/IEC Directives, Part 2. The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be - · reconfirmed, - withdrawn, - replaced by a revised edition, or - amended. A bilingual version of this publication may be issued at a later date. #### INTRODUCTION Detector manufacturers demand numerical data that can be used to predict the performance of a detector having approximately coaxial geometry. However, because of the many variations in the physical characteristics, the completed detector performance cannot be fully predicted from measurements of the crystal manufacturer. This standard defines terminology and test methods for determining basic crystal parameters such as net electrically active impurity concentrations,
deep-level impurity-centre concentration and crystallographic quality of crystals. Production of germanium crystals of the necessary size and defined purity for high-purity germanium (HPGe) detectors for detection of ionizing radiation has special problems in characterization resulting from the high resistivity of the material (~10 k Ω ·cm at 77 K), from the degree of impurity compensation, and from difficulties in suitably describing the impurity distribution in the large volume that may form a single device. Existing standards do not cover these problems. One of the most important characteristics of HPGe is the net electrically active impurity concentration $(N_{\rm A}-N_{\rm D})$ because it determines the depletion voltage required for an operating detector. The usual practice has been to determine $(N_{\rm A}-N_{\rm D})$, with the sign indicating n-type or p-type, on the basis of transport measurements using the Van der Pauw method [1]¹ on lamellar samples immersed in liquid nitrogen (LN). In this technique, $(N_{\mathsf{A}}-N_{\mathsf{D}})$ can be computed either from the resistivity or from the Hall coefficient. These in turn are obtained from a series of electrical measurements made on the sample. ¹ Numbers in square brackets refer to the Bibliography. # NUCLEAR INSTRUMENTATION – HIGH-PURITY GERMANIUM CRYSTALS FOR RADIATION DETECTORS – MEASUREMENT METHODS OF BASIC CHARACTERISTICS ### 1 Scope and object This International Standard is applicable to high-purity germanium crystals used for radiation detectors for gamma-rays and X-rays. Such germanium is monocrystalline and has a net concentration of fewer than 10^{11} electrically active impurity centers per cm³, usually of the order of 10^{10} cm⁻³. This International Standard specifies terminology and test methods for measurements of basic characteristics of high-purity germanium crystals. These characteristics are net electrically active impurity concentrations (hereinafter $(N_{\mathsf{A}} - N_{\mathsf{D}})$), deep-level impurity-centre concentration and crystallographic quality of crystals. These test methods are not mandatory but have found general use in the industry and provide verifiable and desired information to the detector manufacturer. Test methods for completed assembled germanium detectors are given in IEC 60973 and IEC 60759. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 600050-393:2003, International Electrotechnical Vocabulary (IEV) – Part 393: Nuclear instrumentation – Physical phenomena and basic concepts IEC 60050-394:2007, International Electrotechnical Vocabulary (IEV) – Part 394: Nuclear instrumentation – Instruments, systems, equipment, and detectors IEC 60050-521:2002, International Electrotechnical Vocabulary (IEV) – Part 521: Semiconductor devices and integrated circuits #### 3 Terms, definitions, symbols and abbreviations #### 3.1 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### 3.1.1 ### semiconductor substance whose total conductivity due to charge carriers of both signs is normally in the range between that of conductors and insulators and in which the charge carrier density can be changed by external means Note 1 to entry: The term semiconductor generally applies where the charge carriers are electrons or holes. [SOURCE: IEC 60050-521:2002, 521-02-01] 61435 © IEC:2013(E) [SOURCE: IEC 60050-394:2007, 394-28-33] #### 3.1.2 #### high purity semiconductor detector semiconductor detector using a high purity (e.g. high resistivity) semiconductor material [SOURCE: IEC 60050-394:2007, 394-28-14] #### 3.1.3 #### Hall effect production in a conductor or in a semiconductor of an electric field strength proportional to the vector product of the current density and the magnetic flux density [SOURCE: IEC 60050-521:2002, 521-09-01] #### 3.1.4 ### Hall mobility product of the Hall coefficient and the electric conductivity [SOURCE: IEC 60050-521:2002, 521-09-02] #### 3.1.5 #### Hall coefficient coefficient of proportionality R_H in the Hall effect quantitative relation: $$\vec{E}_{\mathsf{H}} = R_{\mathsf{H}} (\vec{J} \times \vec{B})$$ \vec{E}_{H} is the resulting transverse electric field strength; J is the current density; \vec{B} is the magnetic flux density. Note 1 to entry: The sign of the majority carrier charge can usually be inferred from the sign of the Hall coefficient. [SOURCE: IEC 60050-521:2002, 521-09-02] #### 3.1.6 #### mobility #### drift mobility of a charge carrier quantity equal to the quotient of the modulus of the mean velocity of a charge carrier in the direction of an electric field by the modulus of the field strength [SOURCE: IEC 60050-521:2002, 521-02-58] #### 3.1.7 #### impurity foreign atoms or either an excess or a deficiency of atoms with respect to the stochiometric composition of a compound semiconductor [SOURCE: IEC 60050-521:2002, 521-02-04] #### 3.1.8 #### resistivity inverse of the conductivity when this inverse exists [SOURCE: IEC 60050-121:1998, 121-12-04] # 3.2 Symbols and abbreviations # 3.2.1 Symbols Frequently used symbols are defined below; infrequently used symbols are defined in the text. | A | diode area, expressed in cm ² ; | | | |--|--|--|--| | B | magnetic flux density, expressed in teslas (T); | | | | C | capacitance, expressed in farads (F); | | | | C_{d} | capacitance of the depleted region in a diode; | | | | C_{d} | | | | | | | | | | C_{f} | capacitance at voltage $V_{\rm r}$; | | | | C_{m} | the capacitance of parallel equivalent circuit; | | | | D_{s} | the series circuit dissipation factor, | | | | D | Sample thickness, expressed in centimetres (cm); | | | | е | electron charge, $1,60 \times 10^{-19}$ coulombs (C); | | | | e_{r} | carrier emission rate from a localized electronic level, expressed in s ⁻¹ ; | | | | E | energy associated with an electronic level in the band gap; | | | | F | frequency, expressed in hertz (Hz); | | | | f | is a factor dependent on ratio $\frac{R_{\rm AB,CD}}{R_{\rm BC,DA}}$; | | | | K | Boltzmann constant, $8,617 \times 10^{-5} \text{ eV} \cdot \text{K}^{-1}$; | | | | $(N_{A} - N_{D})^*$ | net electrically active impurity concentration per cm ³ ; | | | | N_{T} deep-level impurity-centre concentration per cm ³ ; | | | | | N_{B} | net concentration of all shallower levels; | | | | m | slope of the $C^{-2}(V)$ plot, in (pF) $^{-2}\cdot V^{-1}$; | | | | Q | charge, expressed in coulombs (C); | | | | r_{H} | Hall factor; | | | | R | resistance, expressed in ohms (Ω) ; | | | | R_{H} | Hall coefficient, expressed in cm ³ ⋅C ⁻¹ ; | | | | R_{p} | leakage resistance in parallel with the depleted region; | | | | R _s | the series resistance of the sample, which includes the resistance of the undepleted region and of the contacts; | | | | P | resistivity, expressed in $\Omega \cdot cm$; | | | | T | temperature, expressed in kelvins (K); | | | | T | time, expressed in seconds (s); | | | | τ | emission time, expressed in seconds (s); | | | | $ au_{max}$ | the rate window at the peak temperature T_{max} ; | | | | Q r _H R R R _p R _s P T τ | charge, expressed in coulombs (C); Hall factor; resistance, expressed in ohms (Ω) ; Hall coefficient, expressed in cm $^3 \cdot$ C $^{-1}$; leakage resistance in parallel with the depleted region; the series resistance of the sample, which includes the resistance of the undepleted region and of the contacts; resistivity, expressed in $\Omega \cdot$ cm; temperature, expressed in kelvins (K); time, expressed in seconds (s); emission time, expressed in seconds (s); | | | The sign of the quantity indicates the type of carrier (n or p). Where only the magnitude is required, the expression will appear as $|N_A - N_D|$. | $ au_{ m r}$ | the relaxation time of a carrier; | |----------------|--| | (τ_r^2) | average square of relaxation time; | | μ | drift mobility, expressed in cm ² V ⁻¹ s ⁻¹ ; | | μ_{H} | Hall mobility, expressed in cm ² V ⁻¹ s ⁻¹ ; | | μ_{n} | electron mobility in a semiconductor crystal, expressed in cm ² V ⁻¹ s ⁻¹ ; | | μ_{p} | hole mobility in a semiconductor crystal, expressed in cm ² V ⁻¹ s ⁻¹ ; | | V | voltage; | | V_{bi} | built-in potential of the diode; | | V_{p} | filling pulse, expressed in volts (V); | | V_{r} | quiescent reverse bias, expressed in volts (V); | | W_{p} | duration of the filling pulse, expressed in seconds (s); | | () | average value; | | ΔC_{d} | the capacitance transient amplitude; | | ΔV_{C} | the increase the reverse bias $V_{\rm r}$ needed for rising minimal capacitance to the final value. | #### 3.2.2 Abbreviations | DC | direct current; | |------|------------------------------------| | DLTS | deep-level transient spectroscopy; | | HPGe | high-purity germanium; | | LN | liquid nitrogen. | # 3.3 Quantities and units In the present standard, units of the International System (SI) are used. The definitions of radiation quantities are given in IEC 60050-393, IEC 60050-394 and IEC 60050-521. Nevertheless, the
following non SI units may also be used: - for energy: electron-volts (eV); - for time: minutes (min); - for volume: litres (I); - for temperature: kelvins (K); - for thickness: centimetres (cm), millimetres (mm). Multiples and submultiples of SI units will be used, when practicable, according to the SI system. # 4 Measurement of net electrically-active impurity concentrations # 4.1 Sample preparation for Van der Pauw measurements #### 4.1.1 General Accuracy in the determination of $(N_{\rm A}-N_{\rm D})$ is critically dependent on sample preparation, which shall be carried out with great care. 61435 © IEC:2013(E) The size and shape of a sample upon which measurements will be made depends on the exact purpose of the test, but some characteristics are common to all samples: - a) samples shall be lamellar, with the shortest linear dimension along a face being at least three times greater than the thickness; - b) from the standpoint of measurement theory, samples may be square, rectangular, or circular; geometric perfection is not required; - c) surface roughness and strains (such as those caused by lapping) shall be removed by polish etching; - d) four contacts shall be attached, usually on the corners of square samples, or at 90° spacing on circular samples. With regard to etching, the surface type (n or p) and the surface stability usually are determined by the details of the wet-chemical processing and depend on ambient conditions. Surface type and uniformity may be affected by improper handling. Carriers that accumulate at the surface may contribute to conduction; if the surface is inverted, depletion will reduce the effective sample thickness. The purer the sample, the more important those effects become. For very pure material (impurity net concentration of approximately $10^{10}~{\rm cm}^{-3}$), specialized etch and quench procedures may be required to achieve consistently satisfactory results, particularly for n-type material. #### 4.1.2 Equipment The equipment for sample preparation shall be: - a) a string saw or diamond-blade saw; - b) supplies of semiconductor-grade reagents and access to a vented laboratory hood and sink; - c) the surfaces of the sample shall be etched in a way that ensures acid contact on all surfaces; a beaker with a waffled bottom is useful for this purpose. The size of the beaker is important because self-heating occurs during the etching process. If the beaker is too large, the reaction will proceed too slowly and a wasteful amount of reagent will be necessary; if too small, the reaction will proceed too violently. The optimum size is slightly wider than the sample and deep enough to allow the etchant to extend 1 cm to 2 cm above the surface of the sample. #### 4.1.3 Dimensions and provisions for contacts Samples may be cut and fashioned with a string or diamond-blade saw. The minimum lateral dimension of a sample used for determining $(N_{\mathsf{A}}-N_{\mathsf{D}})$ shall exceed three times the sample thicknesses. For small samples, the preferable forms are squares (or rectangles) with side from 1 cm to 2 cm. If contacts are made at the corners (that is preferred) the corners shall be beveled the minimum amount necessary for stable physical contact (~1 mm bevels; see Figure 1a). For circular samples, contacts should be made 90° apart around the perimeter, again minimizing contact width. Nicks (indentations) may be cut into the slice at the points where the contacts are to be made (see Figure 1b). The samples shall be etched before applying contacts. Material comprising the contacts is listed in the last step of each of the etching procedures. | Туре | $\Delta(V_{\mathbf{C}} - V_{\mathbf{A}})$ | |------|---| | р | > 0 | | n | < 0 | #### Key B magnetic field $\Delta(V_{C} - V_{A})$ voltage difference between A and C Figure 1a - Square Figure 1b - Circular Figure 1 - Samples #### 4.1.4 Etching #### 4.1.4.1 General Three possible chemical procedures for sample preparation are listed below: A, B, and C. Procedure A is preferred, but the use of procedure B avoids mixing acid with methanol and presents fewer environmental problems. These procedures are used for the most accurate prediction of the characteristics of completed detectors. Semiconductor-grade reagents shall be used. #### 4.1.4.2 Procedure A - a) Clean the sample with methanol or deionized water to remove residual contact metal or other impurities. Allow to dry. - b) Prepare chemical polish etch: three parts ${\rm HNO_3}$ (70 % by weight) to one part HF (49 % by weight). - c) If the sample already has a polished surface, etch for 45 s while agitating lightly. The etchant should change from clear to a light green colour and should exhibit light bubble formation. If the sample has a sawed or lapped surface, etch for 3 min, agitating lightly or until a vigorous boiling-like reaction begins. - d) Quench rapidly with semiconductor-grade methanol. Rinse rapidly and thoroughly in methanol without exposing the sample to air long enough for it to dry. Residual methanol should be thoroughly decanted from the beaker after the last rinse. - e) Handling only with clean tweezers, dry the sample with a stream of clean dry nitrogen gas. - f) At room temperature, apply four contacts with a eutectic mixture of either Ga-In or Hg-In. The sample is now ready for measurement. #### 4.1.4.3 Procedure B - a) Clean the sample with methanol or deionized water to remove residual contact metal or other impurities. Allow to dry. - b) Prepare chemical polishing etch: two parts HNO_3 (70 % by weight) to one part HF (49 % by weight). - c) Etch for 30 s after the mixture begins to react vigorously (intense brown colour, large bubbles, and brown nitric oxide fumes). The sample shall be agitated during the reaction to ensure homogeneous etching. - d) Slowly quench the reaction with deionized water (1 l/min to 2,5 l/min) from 15 s to 30 s. The sample shall not be exposed to air. - e) Thoroughly clean the sample by flushing with deionized water for 1 min. - f) Remove the sample with tweezers and immerse in methanol for 1 min. - g) Handling only with clean tweezers, dry the sample with filter paper or with a stream of clean dry nitrogen gas. - h) At room temperature, apply four contacts with a eutectic mixture of either Ga-In or Hg-In. The sample is now ready for measurement. #### 4.1.4.4 Procedure C - a) Clean the sample with methanol or deionized water to remove residual contact metal or other impurities. Allow to dry. - b) Prepare a stock solution of chemical polishing etch: seven parts HNO_3 (70 % by weight), one part fuming HNO_3 , two parts HF (49 % by weight). Let age for at least one day. - c) For already etched samples, tilt slowly back and forth for 1 min or for lapped samples tilt for 2 min. - d) Quench the polishing solution with large quantities of fresh semiconductor-grade methanol. - e) Rinse with methanol from a spray bottle. - f) Handling only with clean tweezers, dry the sample with a stream of clean dry nitrogen gas. - g) At room temperature, apply four contacts with a eutectic mixture of Ga-In. The sample is now ready for measurement. # 4.2 Measurements of $(N_A - N_D)$ #### 4.2.1 General Measurements are carried out on a square sample with four contacts, A through D (see Figure 1a; note that the contacts are labeled in counterclockwise order). Measurements for determination of resistivity (ρ) and Hall coefficient ($R_{\rm H}$) shall be made and recorded in one continuous session. The measurements shall be repeated twice with reversed current and the current increased by a factor of 10. The purpose of the reversals and current increase is to uncover faults in the measuring instruments or in the preparation of the samples (see 4.2.3.2). ### 4.2.2 Equipment The equipment for measurements of $(N_A - N_D)$ shall be: - a) a suitable container for immersing the sample in LN during the measurement; - b) a DC source; - c) a voltmeter with an input resistance preferably more than 10 M Ω ; - d) a calibrated, reversible magnetic field source with a magnetic flux density (B) \geq 0,01 T and uniformity to \pm 5 % over the area of the sample; e) appropriate electrical switching facilities. #### 4.2.3 Measurements of resistivity #### 4.2.3.1 Order of measurement - a) Immerse the sample in LN and wait for temperature equilibration before recording data. - b) Drive the current into contact A and out of B (I_{AB}) while measuring and recording the voltage difference (V_{CD}) and polarity between C and D. Define $R_{AB,CD}$ as $$[R_{\mathsf{AB},\mathsf{CD}}] = \frac{|V_{\mathsf{CD}}|}{I_{\mathsf{AB}}}$$ c) Drive the current into contact B and out of C ($I_{\rm BC}$) while measuring and recording the voltage difference and polarity between D and A ($V_{\rm AD}$). Define $R_{\rm BC,DA}$ as $$[R_{\rm BC,DA}] = \frac{|V_{\rm DA}|}{I_{\rm BC}}$$ d) Repeat with the reversed current and with the current increased by a factor of 10. #### 4.2.3.2 Computation of resistivity The resistivity ρ can be obtained from formula (1): $$\rho = \frac{\pi d}{\ln 2} \left(\frac{R_{\text{AB,CD}} + R_{\text{BC,DA}}}{2} \right) \cdot f \tag{1}$$ where d is the sample thickness, expressed in cm; $$R_{AB,CD}$$ is defined as $[R_{AB,CD}]_{B=0} = \frac{V_{CD}}{I_{AB}}$ with the magnetic field turned off (see Figure 1); $$f$$ is a factor shown in function $f\left(\frac{R_{AB,CD}}{R_{BC,DA}}\right)$ versus $\frac{R_{AB,CD}}{R_{BC,DA}}$ (see Annex B). The quantities $R_{\text{AB,CD}}$, $R_{\text{BC,DA}}$, and Δ $R_{\text{BD,AC}}$ shall not have a variation more than \pm 5 % upon current reversal, magnetic field reversal, or increasing the current by a factor of 10 (the last artifact may be caused by using a voltmeter with insufficiently high input resistance). Also, the preceding quantities shall not have a variation more than \pm 2 % over a 5 min period. If the preceding conditions are not met,
the sample shall be reconditioned (re-etched, new contacts applied) and the measurements repeated. ### 4.2.4 Measurements of Hall coefficient #### 4.2.4.1 General The procedure for obtaining the value of $R_{\rm H}$ is similar to the preceding one, but a different sequence of contacts shall be used. Also, these values shall be obtained with and without a magnetic field applied. The field, when applied, shall be perpendicular to the plane of the sample and shall be monitored during the measurements to be sure that the variation is ± 2 %. # 4.2.4.2 Order of measurement a) with the magnetic field off, drive current into contact B and out of D while measuring and recording the voltage difference between A and C ($[R_{BD,AC}]_{B=0}$); 61435 © IEC:2013(E) - b) repeat step a) but with the magnetic field on. Note value of $[R_{BD,AC}]_{B=B}$; - c) repeat steps a) and b) with the reversed current, and again with the current increased by a factor of 10. #### 4.2.4.3 Computation of the Hall coefficient The Hall coefficient R_H in units of cm³·C⁻¹ can be obtained from formula (2): $$R_{\mathsf{H}} = \frac{d}{B} \left\{ \left[R_{\mathsf{BD},\mathsf{AC}} \right]_{\mathsf{B}=\mathsf{B}} - \left[R_{\mathsf{BD},\mathsf{AC}} \right]_{\mathsf{B}=\mathsf{0}} \right\} \tag{2}$$ where d is the sample thickness in cm; B is magnetic flux density, expressed in teslas (T); $[R_{\rm BD,\ AC}]_{\rm B=B}$ is the resistance $R_{\rm BD,\ AC}$ in Ω with the magnetic field turned on; $[R_{\rm BD,\ AC}]_{\rm B=0}$ is the resistance $R_{\rm BD,\ AC}$ in Ω with the magnetic field turned off. The required polarity of the magnetic field is shown in Figure 1a where $R_{\rm H}$ is positive in p-type material and is negative for n-type material. # 4.2.5 Calculation of $(N_A - N_D)$ from resistivity The quantity $(N_A - N_D)$ is obtained from: $$(N_{\mathsf{A}} - N_{\mathsf{D}}) = \frac{1}{\rho \cdot e \cdot \mu_{(n \ or \ p)}} \tag{3}$$ where ρ is the resistivity (see formula (1)); e is the electron charge, 1.6×10^{-19} C; μ is the drift mobility associated with the carrier type of the sample $\,$ n or p according to whether: R_H is negative or positive, respectively where in this standard: $$\mu_n = 36\ 000\ \text{cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$$ (4) $$\mu_p = 42\ 000\ \text{cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$$ (5) The preceding drift mobilities for HPGe at 77 K are not universally agreed upon. If magnetic field reversal and current reversal do not produce a consistent sign for $R_{\rm H}$, or if the reversals produce values of $R_{\rm BD,AC}$ that differ by more than \pm 25 %, a type shall not be assigned using this technique. If $\mu \leq 10^4~{\rm cm^2 \cdot V^{-1} \cdot s^{-1}}$ (as calculated in 4.2.6), the sign of the Hall coefficient shall not be used for specifying type. #### 4.2.6 Calculation of drift mobility from a Van der Pauw measurement The data necessary to calculate drift mobility (μ) independently for each sample can be obtained from the Van der Pauw method [1]. The Hall mobility is defined by formula (6): $$\mu_{\mathsf{H}} = \frac{\left| R_{\mathsf{H}} \right|}{\rho} \tag{6}$$ where $|R_{\rm H}|$ is the absolute value of the Hall coefficient in cm³·C⁻¹; ρ is the resistivity (obtained from formula (1)). The Hall mobility is related to the drift mobility by formula (7): $$\mu = \frac{\mu_{\mathsf{H}}}{r_{\mathsf{H}}} \tag{7}$$ where $\mu_{\rm H}$ is Hall mobility obtained from formula (6); $r_{\rm H}$ is a Hall factor (~ 1) (see Annex A). Values of μ obtained from Van der Pauw data may be lower than true values for several reasons: - a) poor contacts; - b) the effects of surface charge; - c) macroscopic non-uniformity; - d) microscopic inhomogeneities. Low drift mobility caused by d) results from local shallow fluctuations in potential that impede carrier flow at electric fields less than 1 $V \cdot cm^{-1}$. Neutral impurity scattering may also reduce mobility, but this is an unusual problem in HPGe. Low drift mobilities do not forecast lower carrier velocity at the high fields used in detector operation (~1 kV· cm⁻¹), but they do present practical problems in determining $(N_{\rm A}-N_{\rm D})$. Although this standard is restricted to material with $\mu > 25~000~{\rm cm^2 \cdot V^{-1} \cdot s^{-1}}$ at 77 K (see 4.2.8.4), it should not be inferred that material with lower μ is unsuitable for nuclear detectors. For such material, determination of $(N_{\rm A}-N_{\rm D})$ shall proceed along lines different from those specified herein. NOTE Low values of mobility that persist through repeated etching and contacting of the sample may be taken as an indication of sample inhomogeneity. # 4.2.7 Computation of $(N_A - N_D)$ from R_H The quantity $(N_A - N_D)$ can be obtained from formula (8): $$(N_{\mathsf{A}} - N_{\mathsf{D}}) = r_{\mathsf{H}} / e \cdot R_{\mathsf{H}} \tag{8}$$ where $r_{\rm H}$ is a Hall factor; e is the electron charge, 1.6×10^{-19} C; R_{H} is the Hall coefficient. NOTE The sign of $(N_A - N_D)$ is the same as the sign of R_H . For germanium at 77 K, this limit can be achieved only at magnetic field strengths beyond those conveniently available: $B \ge 10$ T. At lower field strengths, $$r_{\mathsf{H}} = (\tau_{\mathsf{r}}^2)/(\tau_{\mathsf{r}})^2 \tag{9}$$ for an ideal semiconductor, where τ_r is the relaxation time of a carrier and () indicates averaging over occupied states, (τ_r^2) is average square of relaxation time. In HPGe, τ_r depends on the details of the band structure of the carrier and on the scattering mechanisms. Also, r_H is different for n-type and p-type HPGe (see Annex A). # 4.2.8 Spatial dependence of $(N_A - N_D)$ #### 4.2.8.1 **General** If the volume of an HPGe detector is much bigger than the volume of the Van der Pauw sample (as is usually the case), it is important to determine the axial and radial variations of $(N_{\rm A}-N_{\rm D})$. Nonplanar growth interfaces, radial irregularities in microscopic growth rate, and diffusion from or towards the surface may cause $\Delta(N_{\rm A}-N_{\rm D})$. Axial variations are caused by the non-unity distribution coefficients of the residual impurities. There are also inhomogeneities having sizes from 10 μ m to 100 μ m due to the microscopic growth rate dependence of the effective distribution coefficient. These inhomogeneities or striations are correlated with the rotation rate of the ingot during crystal growth or are induced by thermal fluctuations during the growth period. The inhomogeneities may cause low measured mobilities near p-n transitions in compensated samples. # 4.2.8.2 Radial variations in $(N_A - N_D)$ For the analysis presented herein, it is assumed that $(N_{\rm A}-N_{\rm D})$ is a linear function of radius, and that the average $(N_{\rm A}-N_{\rm D})$ of interest, designated herein as $(N_{\rm A}-N_{\rm D})$, is the arithmetic mean of the measurements made at the centre and edge of a whole crystal. The radial variation $\Delta(N_{\rm A}-N_{\rm D})_{\rm rad}$ in a slice of crystal is defined by formula (10): $$\Delta (N_{A} - N_{D})_{rad} = (N_{A} - N_{D})_{edge} - (N_{A} - N_{D})_{centre}$$ (10) The following three techniques are acceptable for determining the radial variations. #### 4.2.8.3 Effective mobility technique The effective mobility technique of crystal measurement is used when μ , given by formula (7), is within \pm 10 % of the theoretical values. The measured value of $(N_{\rm A}-N_{\rm D})$, as given by formula (8), may be considered as the true value if the variation $\Delta(N_{\rm A}-N_{\rm D})$ is less than \pm 15 %. #### 4.2.8.4 Cloverleaf technique Cloverleaf shape of sample may be used if the Van der Pauw measurement on a sample produces a value of $\mu > 25~000~\text{cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$ (see Annex A). Such samples may be machined to produce notches between the contacts extending inward by at least half the radius of the sample (an example of such a form is shown in Figure 2a. Then sample shall be re-etched and re-measured (see 4.2.5). In the new geometry, only the central area significantly contributes to the measurement result. In these instance formulas (11) and (12) apply: $$((N_A - N_D)) = (N_A - N_D)_{\text{slice}}$$ (11) $$\Delta(N_{\mathsf{A}} - N_{\mathsf{D}})_{\mathsf{rad}} = 2[(N_{\mathsf{A}} - N_{\mathsf{D}})_{\mathsf{slice}} - (N_{\mathsf{A}} - N_{\mathsf{D}})_{\mathsf{cloverleaf}}] \tag{12}$$ #### 4.2.8.5 Dice technique A slice also may be analyzed by taking small disks or squares from the edge and centre (examples of such forms are shown in Figure 2 (b, c). The maximum lateral dimension of those pieces shall be less than 1/4th the diameter of the sample. The edge sample should be within 1 mm of the periphery. In this case, $\mu > 25~000~\text{cm}^2\text{-V}^{-1}\cdot\text{s}^{-1}$, formula (13) applies: $$((N_{A} - N_{D})) = ((N_{A} - N_{D})_{edge} + (N_{A} - N_{D})_{centre})/2$$ (13) and $\Delta (N_{\rm A}-N_{\rm D})_{\rm rad}$ is given by formula (10). Note that the radial variation is positive for acceptor concentration increasing or donor concentration decreasing outward along a radius. Figure 2a Figure 2 - Examples of sample shapes #### 4.2.9 Axial variations in $(N_A - N_D)$ Axial variations are obtained by measuring $(N_A - N_D)$ on slices at different axial locations. With a slice intended for a planar detector (the diameter exceeds the length), $(N_A - N_D)$ is obtained from whole-slice measurements. For a piece intended for a coaxial detector (the diameter approximately equals to the length), measurements of $(N_{\rm A}-N_{\rm D})$ and $\Delta(N_{\rm A}-N_{\rm D})$ shall be made on slices adjacent to each end of the crystal. For sections of an as-grown crystal which is long enough to produce several coaxial detectors, interpolation is required from measurements made on slices from the two ends. ### Deep level transient
spectroscopy for the determination of impurity-centre concentration #### 5.1 General When HPGe is fabricated into a nuclear radiation detector, electrically active defects may occur at levels deep enough to prevent trapped carriers from being re-emitted in a relatively short time compared with the shaping time of the linear amplifier. The effect may cause peak broadening and tailing to occur in recorded spectra. In this standard, a deep level is one considered to have an emission rate less than $10^6 \, s^{-1}$ at 77 K. Capacitance transient measuring techniques, particularly DLTS or Lang's method [2] have proved useful in identifying and quantifying several harmful deep acceptor levels. #### 5.2 **Equipment for DLTS method** The equipment for the Lang method shall be: a) a capacitance meter capable of measuring from 1 pF to 100 pF with \pm 2 % precision. A three-terminal instrument is required to guard against the effects of stray capacitance from the sample contacts to the surroundings. The instrument shall allow the application to the sample of a sustained DC bias of at least 10 V, and the instrument shall respond with a rise time much less than the smallest emission time constant to be measured. Also, a mean limiting the large transient during the filling pulse $V_{\rm p}$ may be required. A capacitance bridge is not recommended because of its slow response time and inferior signal-to-noise ratio; - a pulse generator capable of changing the bias voltage from one level to a different one, with a switching time much less than the smallest emission time constant to be measured. It may be necessary to connect an additional voltage source in series with the pulse generator in order to extend the range of reverse bias; - c) a double boxcar integrator (or equivalent) with adjustable gate duration, two separately controllable gate delay times, and adjustable sampling time; - d) a recording system capable of digitally or continuously measuring the difference in capacitance between the two gate delay times as a function of temperature; - e) an oscilloscope that allows measurement of the gate delay times and observation of the capacitance transient; - f) a cryostat in which the sample temperature can be varied from 15 K to 220 K; - g) a thermometry system that allows measurements of sample temperature within \pm 0,5 K while the temperature is varying. The measurements described here are based on the boxcar-integrator method of Lang [2], but several other valid and acceptable instrumentation schemes may be used. # 5.3 Sample selection and preparation for DLTS The size of the sample and its location in the as-grown crystal are critically important because deep-level concentrations may have strong radial and axial gradients [4]. For DLTS characterization of an HPGe crystal which is to be made into a coaxial detector, the following selection procedure is specified: for p-type, a sample shall be taken from a slice adjacent to the seed end; for n-type, from a slice adjacent to the tail end. The sample shall be located midway between the "flats" formed during crystal growth, and its edge shall be \pm 2 mm of the slice's perimeter. If the sample is square, it shall be about 6 mm on a side; if a disc, the diameter shall be about 6 mm. To determine $(N_A - N_D)$, Van der Pauw measurements shall be made (see Clause 4) prior to junction formation in the sample. The junction may be formed by any technique that provides rectification: diffusion, implantation or metallization. To prevent diffusion of Cu-related centres into the sample, processing temperatures shall be kept below 550 K, and the thermal processing time shall be less than 2 h. Uncontacted surfaces shall be etched immediately before measurement as a precaution against unwanted surface effects. #### 5.4 Measurements for the determination of impurity-centre concentration #### 5.4.1 General In DLTS, the diode is held at a quiescent reverse-bias voltage $V_{\rm r}$. At that voltage, the diode will exhibit a capacitance $C_{\rm f}$. Then, a voltage pulse $V_{\rm p}$ is applied that reduces the bias, thereby introducing majority carriers into a region previously depleted. At the end of the pulse (when the voltage returns to $V_{\rm r}$, the majority carrier levels that were filled cause the diode to exhibit a capacitance $C_{\rm i}$, but those levels immediately begin emptying, and the capacitance returns exponentially to its original value $C_{\rm f}$. This change is analyzed with a double boxcar averager that produces a signal proportional to $C(t_2) - C(t_1)$, which is the difference between the capacitance at time t_1 and the capacitance at time t_2 [2]. This change is the DLTS signal that is shown in Figure 3. In DLTS, $C(t_2) - C(t_1)$ is plotted as function of temperature. $C(t_2) - C(t_1)$ depends on the carrier emission rate e_r , which increases strongly with temperature. The DLTS signal from a particular level is a maximum at a unique temperature (see 5.4.2) for which the emission time $\tau = e_r^{-1}$ meets the condition of formula (14) [2]. $$\tau_{\text{max}} = \frac{(t_2 - t_1)}{\ln(t_2 - t_1)} \tag{14}$$ where t_{max} is the rate window at the peak temperature T_{max} ; t_1 and t_2 refer to the times shown in Figure 3. Figure 3 – DLTS waveforms and gate timing There is a difficulty with DLTS of HPGe: at low values of $(N_{\rm A}-N_{\rm D})$, the resistance of undepleted germanium may be not only high, but also a strongly increasing function of temperature over the range of interest from 15 K to 220 K. Depending on $(N_{\rm A}-N_{\rm D})$, sample thickness, bias, frequency of the capacitance-measuring circuit, and temperature, the resistance may be comparable to the capacitive reactance, particularly above 100 K. The foregoing affects the spectrometer sensitivity and the reliability of peak identification. Corrections for equivalent circuit effects are presented in 5.4.4. Occasionally, extended defects are also observed in DLTS of HPGe [3], [4], but quantitative interpretation of the data is unclear because there is no generally accepted model for electronic occupation of states associated with them. For this reason, the characterization of extended defects by DLTS is not included in this standard. The examination of minority-carrier deep levels requires the injection of minority carriers. Since saturation of these is difficult to obtain and demonstrate, the method is more qualitative than quantitative. Such tests will not be dealt with in this standard. # 5.4.2 DLTS signal as a function of temperature The temperature of the sample shall be varied at a rate less than 0,1 K·s⁻¹ while recording the DLTS signal. The results shall be graphed. To obtain the level parameters: factor $K_{\rm n}$ and activation energy $\Delta E_{\rm n}$ in Table 1, several DLTS temperature scans are required in which the gate separation time (t_2-t_1) is varied while the ratio t_2/t_1 is held constant. Typically, (t_2-t_1) is from 0,5 ms to 10 ms while the ratio $t_2/t_1\approx 5$. # 5.4.3 Calculation of $(N_A - N_D)$ The temperature shall be stabilized below the lowest temperature DLTS peak appearing in the spectrum from 10 K to 20 K to ensure freeze-out of all deep-level carriers. It shall be verified that the sample is undepleted at $V_{\rm r}$. For an abrupt junction with a flat-band surface near the edge of the junction, a least-squares fit of $C^{-2}(V)$ shall approximate a straight line with a slope m that may then be used to estimate the concentration ($N_{\rm A}-N_{\rm D}$) from formula (15): $$(N_{\mathsf{A}} - N_{\mathsf{D}}) = \frac{8,86 \times 10^6}{A^2 m} \tag{15}$$ where $(N_A - N_D)$ is in units of cm⁻³; A is the diode area, in cm²; m is the slope of the $C^{-2}(V)$ plot, in $(pF)^{-2} \cdot V^{-1}$. The commonly used rectifying contact for p-type HPGe is made by lithium diffusion, resulting in a poor approximation to an abrupt junction. Surface states at the edges of the sample also contribute distortions, as do stray capacitances, non-uniform impurity distributions, and other effects. The use of formula (15) assumes that the space charge region terminates abruptly. This will not be true if more than one majority level is present and may not be justified in extremely pure materials at higher temperatures. Because of these difficulties, the C^{-2} versus V curve shall be used only to check the qualitative behavior of the diode; the concentration of shallow levels shall be obtained from a Van der Pauw measurement (see 4.2.5). The concentration obtained from formula (15) (by taking the $C^{-2}(V)$ slope at $V_{\rm f}$) shall be within \pm 20 % of that deduced from the Van der Pauw measurement; corrections shall be made for the concentration of levels that are ionized in thermal equilibrium at the temperature of that measurement, but which are frozen out during the lower temperature $C^{-2}(V)$ measurement. #### 5.4.4 Corrections for equivalent circuit effects A simplified equivalent circuit that is appropriate for DLTS measurements of HPGe samples [5], [6] consists of three components that can be ascribed to the depleted and non-depleted regions of the sample: - a) The capacitance of the depleted region, $C_{\rm d}$, is the component of interest in DLTS measurements. It depends on the applied voltage, $(N_{\rm A}-N_{\rm D})$ in the depletion region, the thickness of the depleted region, and the area of the contacts. - b) The leakage resistance in parallel with the depleted region, R_p , usually is so high in good material operating at cryogenic temperatures that its effect can be neglected. - c) The series resistance of the sample, $R_{\rm S}$, (includes the resistance of the undepleted region and of the contacts), if present, affects the determination of $C_{\rm d}$. If $R_{\rm S}$ is due predominantly to the contacts, reworking them may reduce the resistance to a level not requiring corrections. If
$R_{\rm S}$ is due predominantly to the resistance of the undepleted region of the diode, it often is possible to test the sample in a temperature range where $R_{\rm S}$ is too low to 61435 © IEC:2013(E) require corrections. Corrections are discussed below for situations where they cannot be avoided. Capacitance meters used in the semiconductor industry are three-terminal devices; the samples are connected to the meter through shielded cables. The shields act as guard electrodes to prevent the desired depletion-region capacitance from being affected by the capacitance from the sample contacts to the surroundings. Capacitance can be read directly from a panel-mounted voltmeter, and there is an output connector that allows the capacitance signal $V_{\rm C}$ to be observed on an oscilloscope. The operating frequency ($f\approx 1$ MHz) is chosen by the manufacturer of the meter to give a good signal-to-noise ratio. That frequency also has the attribute of making the series time constant of the sample considerably less than $(2\pi f)^{-1}$ and the parallel time constant considerably greater than $(2\pi f)^{-1}$. The meter sees the equivalent of a capacitance and resistance in parallel [5] across its input terminals. Because the true circuit is that of a series time constant $R_{\rm s}C_{\rm d}$, it was suggested [5] that in measurements where the capacitance does not change with time formula (16) can be used to compute the capacitance of the depleted region $(C_{\rm d})$ from the measured parallel capacitance: $$C_{d} = C_{m} (1 + D_{s}^{2}) \tag{16}$$ where $C_{\rm m}$ is the measured parallel equivalent capacitance; $D_{\rm S}$ is the dissipation factor of the sample with series resistance $(R_{\rm S})$ and the angular velocity (ω) $$D_s = \omega R_s C_d$$ where $\omega = 2\pi f$ f is frequency. To determine the value of $D_{\rm S}$ at a particular operating temperature, a temperature plot of C (T) shall be made for the sample. A plateau can be expected somewhere in the range from 20 K to 100 K, indicating that $D_{\rm S}$ has been reduced to considerably less than 1 and that $C_{\rm m}$ equals $C_{\rm d}$. If the DLTS peak falls on the plateau, no corrections are necessary, but if it is off the plateau on the high temperature side, $C_{\rm m}$ will decrease. $D_{\rm S}$ can then be inferred from formula (16). This scheme assumes that the contact resistance is low compared with the resistance of the undepleted region of the diode and that the change in capacitance due to the emptying of deep levels is small compared with the correction term in formula (16). In DLTS measurements involving capacitance changes, the relative change in series capacitance can be obtained from the measured relative change in parallel capacitance by applying the correction [5], [6] given in formula (17). This correction is valid in the case of small signal, $\Delta C_{\rm m} < 0.2~C_{\rm m}$. $$\frac{\Delta C_{\rm d}}{C_{\rm d}} = \frac{\Delta C_{\rm m}}{C_{\rm m}} \exp\left[\frac{1 + D_s^2}{1 - D_s^2}\right] \tag{17}$$ where $\frac{\Delta C_d}{C_d}$ is the corrected fractional change in capacitance of the depleted region; $\frac{\Delta C_{\rm m}}{C_{\rm m}}$ is the measured fractional change in parallel equivalent capacitance. There is a singularity in formula (17) when $D_{\rm S}$ = 1.The formula shall not be used if $D_{\rm S}$ > 0,8. The correction is unnecessary if $D_{\rm S}$ < 0,2. # 5.4.5 Corrections for high trap concentrations and for voltage pulse height The calculated deep-level concentration $N_{\rm T}$ shall also be corrected for high trap concentrations and for the height of the voltage pulse. In the classical method [5], formula (18) is applied. A quicker method is given in 5.4.6. $$N_{\mathsf{T}} = N_{\mathsf{B}} \times \frac{\Delta C_{\mathsf{d}}}{C_{\mathsf{d}}} \times \frac{2 - \frac{\Delta C_{\mathsf{d}}}{C_{\mathsf{d}}}}{\left(1 - \frac{\Delta C_{\mathsf{d}}}{C_{\mathsf{d}}}\right)^{2}} \times \frac{V_{\mathsf{r}} + V_{\mathsf{b}\mathsf{i}}}{V_{\mathsf{p}}} \tag{18}$$ where $N_{\rm B}$ is the net concentration of all shallower levels derived from a Van der Pauw measurement at 77 K and DLTS analysis; $V_{\rm bi}$ is the built-in potential of the diode (a value of 0,5 V may be assumed). # 5.4.6 $\frac{\Delta V_{\rm C}}{V_{\rm D}}$ technique for measuring $N_{\rm T}$ This alternative technique [7] is used for determining the relative high deep-level concentrations in high-resistivity material after qualitative analysis for DLTS. It has the merit that overt capacitance measurements are not required (although the capacitance meter shall remain part of the set-up). Also, no corrections are needed for high trap concentrations, series-resistance effects, or voltage pulse height, and inaccuracy of the capacitance meter does not affect the result. The procedure is as follows: - a) with the oscilloscope connected to the output of the capacitance meter, obtain an entire capacitance transient waveform on the oscilloscope screen as described in this clause. The exponentially increasing portion of the waveform should resemble the upper one in Figure 4; - b) record the height of the filling pulse $V_{\rm p}$; - c) note the vertical position of the encircled point 1, which corresponds to the initial capacitance C_i ; - d) increase the reverse bias $V_{\rm r}$ by an amount $\Delta V_{\rm c}$ such that the signal corresponding to the final capacitance $C'_{\rm f}$ at the encircled point 2 is at the same vertical level as point 1, and record the $\Delta V_{\rm c}$ necessary to establish this condition. Care shall be taken to ensure that the bias does not completely deplete the diode at $C_{\rm i}$ or $C'_{\rm i}$. If that occurs, a smaller initial bias voltage shall be chosen; - e) compute N_T from formula (19): $$N_{\mathsf{T}} = \frac{\Delta V_{\mathsf{C}}}{V_{\mathsf{p}}} N_{\mathsf{B}} \tag{19}$$ where $\Delta V_{\rm C}$ $\,$ is the increase the reverse bias $V_{\rm F}$ needed for rising minimal capacitance to the final value # 5.5 Majority-carrier deep levels in p-type HPGe Majority deep levels that have been reported in p-type HPGe are listed in Table 1 with the identifications suggested by the authors. Because the capture cross-sections of the defects differ, the concentration of each defect (or the upper limit of the concentration) shall be reported. The first ionization levels of Cu and Cu- H_{χ} are listed, but are not considered as trapping for the purpose of this standard. If interferences do not exist, these ionization levels shall be used to determine the concentration of the centre. Deep levels observed but not listed in Table 1 may be identified by the level parameters $K_{\rm n}$ and $\Delta E_{\rm n}$, or more simply by the emission rate ($e_{\rm r}$) at a particular temperature (see the formula for $e_{\rm r}$ below). Figure 4 – $\frac{\Delta V_{\rm C}}{V_{\rm p}}$ waveforms Table 1 - Majority-carrier deep levels in p-type HPGe | Impurity centre* | lonization level** | $K_{\rm n}$ (10 ⁷ ·K ⁻² · s ⁻¹) | ⊿E _n
meV | Reference | |-------------------|--------------------|---|------------------------|-----------| | Cu _S | 0/- | 6,0 | 37 | [10] | | Cu-H | 0/- | 8,6 | 62 | [10] | | V ₂ -H | ? | 6,2 | 71 | [8] | | Cu-H-Li | ? | 21,8 | 160 | [10] | | Cu-H | -/2- | 4,5 | 185 | [8] | | Cu _s | -/2- | 146 | 322 | [8] | NOTE 1 $-e_r = K_n T^2 \exp(-\Delta E_n / kT)$ where e_r is the emission rate, $K_{\rm n}$ and $\Delta E_{\rm n}$ are parameters of the level n, k is Boltzmann's constant, T is temperature, K. NOTE 2 It may be assumed that the Cu-H_{x} (0/-) level and all shallower levels are ionized when thermal equilibrium is established at 77 K, #### where - * Cu_s refers to substitutional copper, - ** 0/- refers to (neutral)/(singly ionized) before/after hole emission, - -/2- refers to (singly)/(doubly ionized) before/after hole emission. It shall be verified that previously unpublished defect levels really are bulk effects – rather than surface effects or contact-related phenomena – by measuring the magnitude of the DLTS signal as a function of pulse height $V_{\rm p}$ at the same $V_{\rm r}$. For a uniformly distributed bulk defect, there is a linear relationship between the magnitude of the DLTS signal and $V_{\rm p}$. It shall be verified that the emission from the level is exponential. The methods of either references [3] or [4] shall be used. It also shall be verified that capture by such a level is exponential. This shall be done by observing the strength of the DLTS signal or ΔC ($W_{\rm p}$), where $W_{\rm p}$ is the duration of the filling pulse. For an isolated defect level, there exists emission time (τ_c) such that signal strength complies with formula (20): $$\frac{\left[\Delta C_{\rm d}\right]_{(W_{\rm p}=\infty)} - \left[\Delta C_{\rm d}\right]_{(W_{\rm p})}}{\left[\Delta C_{\rm d}\right]_{(W_{\rm p}=\infty)}} = \exp\left(-W_{\rm p} / \tau_{\rm C}\right)$$ (20) where $\triangle C_d$ is the capacitance transient amplitude. # 5.6 Majority-carrier deep levels in n-type HPGe Majority-carrier deep levels reported in n-type high-purity germanium exhibit broader peaks than expected for single isolated-defect levels [11]; in some cases capture kinetics similar to those observed in plastically deformed samples were reported [12]. As indicated previously, this standard does not address DLTS of extended defects. Isolated-defect trapping levels shall be characterized and reported in the same manner as in p-type material. Also, both exponential emission from and exponential capture by such levels shall be demonstrated. #### 5.7 Report If the measurement technique is different from that of Lang [2] the results shall be preceded by a description of the method that was used. In all cases, the operating frequency of the capacitance bridge or meter shall be stated. If the Lang method is used, the value
of $\tau_{\rm max}$ shall be stated as well. Observed levels that can be quantified according to this standard shall be tabulated with their concentrations. Upper limits on the concentration at the centres listed in Table 1, which are not observed, may be deduced from the minimal detectable capacitance transient at the appropriate temperature. If a DLTS peak is observed but cannot be quantified (e.g. because of high $D_{\rm S}$) the reason shall be stated. # 6 Crystallographic properties #### 6.1 General There have been many reports concerning the effects of crystallographic defects on detector performance. It is noteworthy that absolute crystalline perfection usually is undesirable because as-grown dislocation-free germanium contains an unacceptably high concentration of electrically active vacancy-related point defects [13]. However, dislocations themselves may possess electrical activity due to any of several mechanisms (which of those are important is presently unclear). The effect of dislocations on charge collection has received attention [13], [14], [15], [16], [17] and in one study the DLTS peaks could be related to the type of dislocation [18]. For adequate charge collection in particular detector geometries, references [14] and [17] cite upper limits on etch-pit density. However, since the type of dislocation and its electrical activity appear to depend strongly on growth conditions [15], [16] these limits cannot be assumed universally applicable. Complete crystallographic information is never available, and if it were, the state of knowledge in this field is such that device properties cannot be predicted from these data. However, there is legitimate interest from the device standpoint in some general crystallographic properties as discussed below. For example, apart from dislocations, certain types of large-scale crystallographic defects (twin planes, grain boundaries, and some lineage) frequently generate excess leakage current. # 6.2 Crystallographic orientation Crystalline germanium has a diamond structure, and the crystallographic orientation is referred to as the conventional unit cube. Electronic-transport, mechanical, and etching characteristics are generally anisotropic. The crystallographic orientation shall be determined either optically or by X-ray diffraction. Useful guidance in using those techniques is found in [18], which contains semiconductor single-crystal descriptions of both optical and X-ray diffraction orientation. It is accepted practice to assume the axial orientation of the crystal from the previously measured axial orientation of the seed, providing that no twins or grain boundaries are present in the crystal. #### 6.3 Sample preparation #### 6.3.1 General The as-grown ingot shall be visually examined in strong light for twin planes or grain boundaries. Sections of the crystal displaying either feature are not considered to be monocrystalline. Slices for etch-pit evaluation shall all be cut adjacent to the tail end of the piece being characterized and normal to the growth direction unless other positions are specified by the user. #### 6.3.2 Preferential etching Crystallographic perfection is most conveniently assessed by preferential etching techniques that produce pits at the intersection of a dislocation with the surface being etched. The procedure consists of: 61435 © IEC:2013(E) - a) mechanical preparation; - b) polish etching; - c) preferential etching; - d) examination under an optical microscope; - e) tabulation of results. Characteristics and limitations of this technique are discussed in [19]. #### 6.3.3 Etching methods Polish etching shall be performed using one of the etching techniques described in 4.1.4. The chemically polished slice shall then be immersed in a special etch bath long enough to develop dislocation etch pits, usually for about 90 s. Dislocation etch pits are characterized by pointed bottoms. The following special etch bath shall be used: - a) dislocation etch (111) - Dissolve 8 g AgNO₃ in 160 ml water, then add 80 ml HNO₃ (70 % by weight) and 160 ml HF(49 % by weight). Do not use until 15 min after mixing. Discard after 4 h; - b) dislocation etch (100) - Dissolve 25 g $Cu(NO_3)_2 \cdot 3H_2O$ in 500 ml water, then add 250 ml HNO_3 (70 % by weight) and 500 ml HF (49 % by weight). Store in polyethylene or polypropylene bottle; - c) dislocation etch (110) - Dissolve 12 g KOH and 8 g K₃Fe(CN)₆ in 100 ml water. Discard after 4 h. CAUTION The preceding etchants deposit metal ions; if not removed, they may adversely affect a device made from the material. #### 6.3.4 Etch-pit density It is recognized that the etch-pit distribution may be non-uniform; therefore no procedure is prescribed for selecting the regions to be counted. However, it is recommended that dislocations be counted in at least three different 1 mm \times 1 mm areas located at the centre, edge, and a radially intermediate location on the slice. If this is done, at least 150 etch pits shall be counted per slice, if this many exist. #### 6.3.5 Lineage Dislocation etch pits sometimes are organized into lines representing small-angle grain boundaries in the crystal. Those patterns are called "lineage" and can be characterized by the spacing between dislocation etch pits and the total length of the structure, measured in terms of the slice radius. By definition, the etch-pit spacing for lineage shall be less than 40 μ m. #### 6.3.6 Mosaic A mosaic is a curled lineage structure with line-spacing greater than 1 per 1 mm. #### 6.4 Report A statement characterizing the crystallography of a piece of HPGe shall include: - a) the axial orientation of the piece. This is also the orientation of the slice used for the evaluation of dislocations unless otherwise stipulated; - b) a statement indicating whether the piece is monocrystalline (no twin planes or grain boundaries) or polycrystalline; - c) the presence of lineage, regions of etch pit density greater than four times average, dislocation-free areas larger than 2 mm in diameter, and mosaic structures; - d) the average etch pit density and the total number of etch pits counted. # Annex A (informative) # The Hall factor for n-type and p-type HPGe # A.1 The Hall factor for n-type HPGe For n-type HPGe at 77 K, $r_{\rm H}$ approaches 0,83 as B approaches zero for all magnetic field orientations [8]. For finite B, $r_{\rm H}$ depends both on the direction of the B vector and the induced Hall electric field vector with respect to the crystallographic axes; this dependence is due to the strong anisotropy of the ellipsoidal constant-energy surfaces in the conduction band of germanium. For B < 0.1 T, $r_{\rm H}$ may be taken as 0,83. For B > 0.1 T, $r_{\rm H}$ shall be corrected for magnetic field strength taking into account the crystallographic orientation of the sample. This correction is given in Figure A.1 for two orientations [8]. Figure A.1 - Hall factor for n-type HPGe # A.2 The Hall factor for p-type HPGe Because constant-energy surfaces in the valence bands are much less anisotropic than in the conduction band, the dependence of $r_{\rm H}$ on the orientation is small enough to be neglected in p-type germanium. A more significant effect results from the degeneracy of the fast- and slowhole bands at low energies. The effect of the fast holes — approximately 4,5 % of the hole concentration — is to raise $r_{\rm H}$ substantially at low fields [9]. The factor r_H for p-type HPGe is plotted as a function of magnetic field strength in Figure A.2. Figure A.2 – Hall factor for p-type HPGe # Annex B (informative) Function $$f\left(\frac{R_{\text{AB,CD}}}{R_{\text{BC,DA}}}\right)$$ versus $\frac{R_{\text{AB,CD}}}{R_{\text{BC,DA}}}$ The graph of the correction function $f\left(\frac{R_{\rm AB,CD}}{R_{\rm BC,DA}}\right)$ versus $\frac{R_{\rm AB,CD}}{R_{\rm BC,DA}}$, calculated by formula (1), is shown in Figure B.1. The graph shows that f varies slightly, while the ratio $\frac{R_{\rm AB,CD}}{R_{\rm BC,DA}}$ varies by several orders of magnitude. Figure B.1 – Function $f\left(\frac{R_{\text{AB,CD}}}{R_{\text{BC,DA}}}\right)$ versus $\frac{R_{\text{AB,CD}}}{R_{\text{BC,DA}}}$ [21] # Bibliography - [1] L. J. Van der Pauw, *Philips Res. Rep.* 13, 1 (1958) - [2] D. V. Lang, J. Appl. Phys. 45, 3022 (1974) - [3] W. R. Thurber, R. A. Forman, and W. E. Phillips, J. Appl. Phys. 53, (1982) - [4] P. C. Manglesdorf, Jr., J. Appl. Phys. 30, 442 (1959) - [5] E. Simoen, P. Clauws, M. Lamon and J. Vennik, Phys. D, *J. Appl. Phys.* 18, 2041 (1985) - [6] A. Broniatowski and J. Bourgoin, *Phys. Rev. Lett.* 48, 424 (1982) - [7] Larry Darken, *IEEE Trans.Nucl.Sci.*41, №.1, 343(1994) - [8] H. Miyazawa and H. Maeda, J. Phys. Soc. Japan 15, 1924 (1960) - [9] A. C. Beer and R. K. Williardson, *Phys. Rev.* 110, 1286 (1958) - [10] S. P. Swierkowski, J. H. Yee, G. A. Armantrout and R. Wichner, *J. Appl. Phys.* 45, 3949 (1974) - [11] E. E. Haller, P. P. Li, G.S. Hubbard, and W. L. Hansen, *IEEE Trans. Nucl. Sci.* NS-26, No. 1, 265 (1979) - [12] E. Simoen, P. Clauws and J. Vennik, Solid State Commun. 54, 1025 (1985) - [13] E. E. Haller, G. S. Hubbard, W. L. Hansen, and A. Seeger, *Inst. Phys. Conf. Ser.* 31, 309 (1977) - [14] P. A. Glasow and E. E. Haller, *IEEE Trans. Nucl. Sci.* NS-23, No. 1, 92(1976) - [15] G. S. Hubbard, E. E. Haller, and W. L. Hansen, *IEEE Trans. Nucl. Sci.* NS-26, No. 1, 303 (1979) - [16] G. S. Hubbard and E. E. Haller, *J. Electron. Mater.* 9, 51 (1980) - [17] M. Van Sande, L. Van Goethem, L. De Laet, and H. Guislain, *J. Appl. Phys.* 40, 257 (1986) - [18] Standard Method for Determining the Orientation of a Semiconductive Single Crystal, ASTM F26-84 - [19] Standard Test Method for Crystallographic Perfection of Germanium by Preferential Etch Techniques, ASTM F389-84 - [20] A. Blondeel and P. Clauws, J. Appl. Phys. 86, 2 (1999) - [21] L.P. Pavlov, *Measurement methods of semiconductor material characteristics* 2nd edition, Moscow: High school, 1987
239 c. - [22] IEC 60050-121:1998, International Electrotechnical Vocabulary (IEV) Part 121: Electromagnetism [23] IEC 60759:1983, Standard test procedures for semiconductor X-ray energy spectrometers Amendment 1:1991 [24] IEC 60973:1989, Test procedures for germanium gamma-ray detectors # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. # Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com # Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com