BS 2HR 4:2010

BSI Standards Publication

AEROSPACE SERIES

Specification for nickelchromium-cobalt-aluminiummolybdenum-titanium heat-resisting alloy billets, bars, forgings and parts (Nickel base, Cr 15, Co 14.2, Al 5, Mo 4, Ti 4)

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

BS 2HR 4:2010 BRITISH STANDARD

Publishing and copyright information

The BSI copyright notice displayed in this document indicates when the document was last issued.

© BSI 2010

ISBN 978 0 580 67042 8

ICS 49.025.99

The following BSI references relate to the work on this standard: Committee reference ACE/61 Draft for comment 09/30199931 DC

Publication history

First published April 1972 Second (present) edition, January 2010

Amendments issued since publication

Date Text affected

Copyright British Standards Institution Provided by IHS under license with BSI - Uncontrolled Copy No reproduction or networking permitted without license from IHS BRITISH STANDARD BS 2HR 4:2010

Contents

Foreword ii

- **1** Scope *1*
- 2 Normative references 1
- **3** Technical requirements *1*

Bibliography 8

List of tables

Table 1 – Technical requirements for nickel-chromium-cobaltaluminium-molybdenum-titanium heat-resisting alloy bars and extruded sections for machining 2

Table 2 – Technical requirements for nickel-chromium-cobaltaluminium-molybdenum-titanium heat-resisting alloy billets and bars for forging 4

Table 3 – Technical requirements for nickel-chromium-cobaltaluminium-molybdenum-titanium heat-resisting alloy forgings 6

Summary of pages

This document comprises a front cover, an inside front cover, pages i to ii, pages 1 to 8, an inside back cover and a back cover.

Foreword

Publishing information

This British Standard is published by BSI and came into effect on 31 January 2010. It was prepared by Panel ACE/61/-/48, Heat resisting alloys, under the authority of Technical Committee ACE/61, Metallic materials for aerospace purposes. A list of organizations represented on this committee can be obtained on request to its secretary.

Supersession

This standard supersedes BS HR 4:1972, which is withdrawn.

Information about this document

This is a full revision of BS HR 4. The principal change from the previous edition is that the requirements are stated in tabular format in accordance with EN 4500-1 and EN 4500-3.

Hazard warnings

WARNING. This British Standard calls for the use of substances and/or procedures that can be injurious to health if adequate precautions are not taken. It refers only to technical suitability and does not absolve the user from legal obligations relating to health and safety at any stage.

Use of this document

It has been assumed in the preparation of this British Standard that the execution of its provisions will be entrusted to appropriately qualified and experienced people, for whose use it has been produced.

Presentational conventions

The provisions of this standard are presented in roman (i.e. upright) type. Its requirements are expressed in sentences in which the principal auxiliary verb is "shall".

Commentary, explanation and general informative material is presented in smaller italic type, and does not constitute a normative element.

Contractual and legal considerations

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard cannot confer immunity from legal obligations.

BRITISH STANDARD BS 2HR 4:2010

1 Scope

This British Standard specifies requirements for nickel-chromium-cobalt-aluminium-molybdenum-titanium heat-resisting alloy supplied in the following forms, and as parts.

- a) Bars and extruded sections for machining: solution treated, designation HR 4A.
- b) Billets and bars for forging: hot or cold worked and subsequently machined or ground, designation HR 4B.
- c) Forgings: solution treated, designation HR 4C.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

BS HR 100, Procedure for inspection, testing and acceptance of wrought heat-resisting alloys

3 Technical requirements

3.1 Material to this standard shall conform to Table 1, Table 2 and Table 3.

NOTE The format and symbols used in Table 1, Table 2 and Table 3 are derived from EN 4500-1 and EN 4500-3.

- **3.2** Parts finally heat-treated after machining shall conform to Section **1** and Section **8** of BS HR 100.
- 3.3 Parts shall be supplied in the solution treated condition.

Technical requirements for nickel-chromium-cobalt-aluminium-molybdenum-titanium heat-resisting alloy bars and extruded sections for machining

1	Material designati	on						BS HR 4				
2	Chemical 1)	Element	t	С	Si	Mn	S	Ag	Al	В	Bi	Со
	composition 1) %	Min.		0.12	_	_	_	_	4.5	0.010	_	13.0
		Max.		0.20	1.0	1.0	0.015	5 ppm	5.5	0.025	1 ppm	15.5
		Element	t	Cr	Cu	Fe	Мо	Pb	Ti	Zr	N	li
		Min.		14.0	_	_	3.0	_	3.5	_	Base	
		Max.		16.0	0.2	1.0	5.0	15 ppm	4.5	0.15	Базе	
3	Method of melting	9				vacuum o flux rer		nd cast in	air or inc	duction m	elted, va	cuum
4.1	Form			Bars and extruded sections for machining (HR 4A)								
4.2	Method of production			Extruded								
4.3	Limit dimension(s) mm		_									
5	Technical specification			Sections 1 and 2 of BS HR 100								

6.1	Delivery condition	Solution treated
	Heat treatment	θ = (1 190 ±10) °C / t = 1.5 h / FC 2 °C to 3 °C per min average (limit 1 °C to 5 °C per minute) to 1 000 °C / AC
6.2	Delivery condition code	U
7	Use condition	Delivery condition
	Heat treatment	_

Characteristics

8.1	Test sample(s)				See Section 2 of BS HR 100
8.2	Tes	st piece(s)			See Section 2 of BS HR 100
8.3	He	at treatment			Use condition
9	Di	mensions concer	ned	mm	_
10	Th ea	ickness of claddi ch face	ng on	%	
11	Di	rection of test pi	ece		L
12		Temperature	θ	°C	_
13		Proof stress	R _{p0.2}	MPa	_
14	Т	Strength	R _m	MPa	_
15		Elongation	Α	%	_
16		Reduction of area	Z	%	
17	На	rdness			_
18	Sh	ear strength	R _c	MPa	_
19	Ве	nding	κ	_	_
20	lm	pact strength			_
21		Temperature	θ	°C	980
22		Time		h	$t_R \geqslant 60$
23		Stress	σ_{a}	MPa	_
24	C	Elongation	a	%	_
25		Rupture stress	σ_{R}	MPa	116
26		Elongation at rupture	А	%	
27	No	tes (see line 98)			1)

BRITISH STANDARD

Table 1 Technical requirements for nickel-chromium-cobalt-aluminium-molybdenum-titanium heat-resisting alloy bars and extruded sections for machining (continued)

44	External defects	_	See Section 2 of BS HR 100
51	Macrostructure	_	See Section 2 of BS HR 100
61	Internal defects		See Section 2 of BS HR 100
95	Marking	_	See Section 2 of BS HR 100
96	Dimensional inspection	_	See Section 2 of BS HR 100
98	Notes	_	¹⁾ The chemical composition shall be so controlled as to limit the formation of Sigma phase. The $N_{\rm V}$ limits shall be agreed between the manufacturer and the purchaser.

1	Material designati	ion			BS HR 4							
2	Chemical	Element	:	С	Si	Mn	S	Ag	Al	В	Bi	Со
	composition 1) %	Min.	Min.		_	_	_	_	4.5	0.010	_	13.0
		Max.		0.20	1.0	1.0	0.015	5 ppm	5.5	0.025	1 ppm	15.5
		Element	:	Cr	Cu	Fe	Мо	Pb	Ti	Zr	N	li
		Min.		14.0	_	_	3.0	_	3.5	_	Base	
		Max.		16.0	0.2	1.0	5.0	15 ppm	4.5	0.15	base	
3	Method of melting	g				vacuum o flux rei		nd cast in	air or ind	duction m	nelted, va	cuum
4.1	Form			Billets ar	Billets and bars for forging (HR 4B)							
4.2	Method of production			_								
4.3	Limit dimension(s) mm		_									
5	Technical specification			Sections	1 and 3 c	of BS HR 1	00					

6.1	Delivery condition	Hot or cold worked and subsequently machined or ground ²⁾
	Heat treatment	_
6.2	Delivery condition code	F
7	Use condition	Delivery condition
	Heat treatment	_

Characteristics

8.1	Tes	st sample(s)			See Section 3 of BS HR 100				
8.2	Tes	st piece(s)			See Section 3 of BS HR 100				
8.3	Не	at treatment			Delivery condition	Reference (see line 29)			
9	Dir	mensions concer	ned	mm	_				
10		ickness of claddi ch face	ng on	%	_				
11	Dir	rection of test pi	ece		_	L			
12		Temperature	θ	°C	_				
13		Proof stress	R _{p0.2}	MPa	_				
14	Т	Strength	R _m	MPa	_				
15	Elongation	Α	%	_					
16	Reduction o area		Z	%	_				
17	На	rdness			_				
18	Sh	ear strength	R_c	MPa	_				
19	Ве	nding	κ	_	_				
20	lm	pact strength			_				
21		Temperature	θ	°C	_	980			
22		Time		h	_	t _R ≥ 60			
23		Stress	σ_{a}	MPa	_				
24	С	Elongation	a	%	_				
25	1	Rupture stress	σ_{R}	MPa	_	116			
26		Elongation at A % rupture		%	_				
27	No	tes (see line 98)			1), 2)				

BRITISH STANDARD BS 2HR 4:2010

Table 2 Technical requirements for nickel-chromium-cobalt-aluminium-molybdenum-titanium heat-resisting alloy billets and bars for forging (continued)

29	Reference heat treatment		Solution treated
29	Reference neat treatment		
			θ = (1 190 ±10) °C / t = 1.5 h / FC 2 °C to 3 °C per min average (limit 1 °C to 5 °C per minute) to 1 000 °C / AC
44	External defects	_	See Section 3 of BS HR 100
51	Macrostructure	_	See Section 3 of BS HR 100
61	Internal defects	_	See Section 3 of BS HR 100
95	Marking	_	See Section 3 of BS HR 100
96	Dimensional inspection	_	See Section 3 of BS HR 100
98	Notes	_	$^{1)}$ The chemical composition shall be so controlled as to limit the formation of Sigma phase. The N_{ν} limits shall be agreed between the manufacturer and the purchaser.
			2) Material of other than round section may be supplied in the descaled condition.
			and the second s

Technical requirements for nickel-chromium-cobalt-aluminium-molybdenum-titanium heat-resisting alloy forgings

1	Material designati	on						BS HR 4				
2	Chemical	Element	:	С	Si	Mn	S	Ag	Al	В	Bi	Co
	composition 1) %	Min.		0.12	_	_	_	_	4.5	0.010	_	13.0
		Max.		0.20	1.0	1.0	0.015	5 ppm	5.5	0.025	1 ppm	15.5
		Element	:	Cr	Cu	Fe	Мо	Pb	Ti	Zr	ı	Ji
		Min.		14.0	_	_	3.0	_	3.5	_	Base	
		Max.		16.0	0.2	1.0	5.0	15 ppm	4.5	0.15		
3	Method of melting	9				vacuum o flux rer		nd cast in	air or inc	duction m	nelted, va	cuum
4.1	Form			Forgings	Forgings (HR 4C)							
4.2	Method of production			Forged from HR 4B stock								
4.3	Limit dimension(s) mm			_								
5	Technical specification			Sections 1 and 4 of BS HR 100								

6.1	Delivery condition	Solution treated
	Heat treatment	θ = (1 190 ±10) °C / t = 1.5 h / FC 2 °C to 3 °C per min average (limit 1 °C to 5 °C per minute) to 1000 °C / AC
6.2	Delivery condition code	U
7	Use condition	Delivery condition
	Heat treatment	_

Characteristics

8.1	Test sample(s)				See Section 4 of BS HR 100
8.2	Tes	st piece(s)			See Section 4 of BS HR 100
8.3	Не	at treatment			Use condition
9	Dir	mensions concer	ned	mm	_
10	Th ea	ickness of claddi ch face	ng on	%	
11	Dir	rection of test pi	ece	,	L
12		Temperature	θ	°C	_
13		Proof stress	R _{p0.2}	MPa	_
14	т	Strength	R _m	MPa	_
15		Elongation	Α	%	_
16		Reduction of area	Z	%	
17	На	rdness			_
18	Sh	ear strength	R_c	MPa	_
19	Ве	nding	κ	_	
20	lm	pact strength			_
21		Temperature	θ	°C	980
22		Time		h	t _R ≥ 60
23		Stress	σ_{a}	MPa	_
24	С	Elongation	а	%	_
25		Rupture stress	σ_{R}	MPa	116
26		Elongation at A % rupture		%	_
27	No	tes (see line 98)			1)

BRITISH STANDARD

Table 3 Technical requirements for nickel-chromium-cobalt-aluminium-molybdenum-titanium heat-resisting alloy forgings (continued)

34	Grain size	_	See Section 4 of BS HR 100
44	External defects	<u> </u>	See Section 4 of BS HR 100
51	Macrostructure (grain flow)	_	See Section 4 of BS HR 100
61	Internal defects	_	See Section 4 of BS HR 100
95	Marking	_	See Section 4 of BS HR 100
96	Dimensional inspection		See Section 4 of BS HR 100
98	Notes	_	1) The chemical composition shall be so controlled as to limit the formation
			of Sigma phase. The N_v limits shall be agreed between the manufacturer and the purchaser.

Bibliography

Standards publications

For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 4500-1, Metallic materials – Rules for the drafting and presentation of material standards – Part 1: General rules 1)

EN 4500-3, Metallic materials – Rules for the drafting and presentation of material standards – Part 3: Specific rules for heat-resisting alloys 1)

Published as ASD-STAN Prestandard at the date of publication of this standard.

British Standards Institution (BSI)

BSI is the independent national body responsible for preparing British Standards and other standards-related publications, information and services. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover.

Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001

BSI offers Members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards.

Tel: +44 (0)20 8996 7669 Fax: +44 (0)20 8996 7001 Email: plus@bsigroup.com

Buying standards

You may buy PDF and hard copy versions of standards directly using a credit card from the BSI Shop on the website **www.bsigroup.com/shop.** In addition all orders for BSI, international and foreign standards publications can be addressed to BSI Customer Services.

Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001 Email: orders@bsigroup.com

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and international standards through its Knowledge Centre.

Tel: +44 (0)20 8996 7004 Fax: +44 (0)20 8996 7005 Email: knowledgecentre@bsigroup.com

Various BSI electronic information services are also available which give details on all its products and services.

Tel: +44 (0)20 8996 7111 Fax: +44 (0)20 8996 7048 Email: info@bsigroup.com

BSI Subscribing Members are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration

Tel: +44 (0)20 8996 7002 Fax: +44 (0)20 8996 7001 Email: membership@bsigroup.com

Information regarding online access to British Standards via British Standards Online can be found at **www.bsigroup.com/BSOL**

Further information about BSI is available on the BSI website at **www.bsi-group.com/standards**

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. This does not preclude the free use, in the course of implementing the standard of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained. Details and advice can be obtained from the Copyright & Licensing Manager.

Tel: +44 (0)20 8996 7070 Email: copyright@bsigroup.com

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

Tel +44 (0)20 8996 9001 Fax +44 (0)20 8996 7001 www.bsigroup.com/standards

