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Foreword 

The text of document 7/629/FDIS, future edition 1 of IEC 62567, prepared by IEC/TC 7 "Overhead 
electrical conductors" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC 
as EN 62567:2013. 
 
The following dates are fixed: 

• latest date by which the document has to be 
implemented at national level by 
publication of an identical national 
standard or by endorsement 

(dop) 2014-07-17 

• latest date by which the national 
standards conflicting with the 
document have to be withdrawn 

(dow) 2016-10-17 

 
 
Attention is drawn to the possibility that some of the elements of this document may be the subject of 
patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such 
patent rights. 
 

Endorsement notice 

The text of the International Standard IEC 62567:2013 was approved by CENELEC as a European 
Standard without any modification. 
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Annex ZA  
(normative) 

 
Normative references to international publications 

with their corresponding European publications 
 
The following documents, in whole or in part, are normatively referenced in this document and are 
indispensable for its application. For dated references, only the edition cited applies. For undated 
references, the latest edition of the referenced document (including any amendments) applies.  
  
NOTE   When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD 
applies.  
 
Publication Year Title EN/HD Year 
  

IEC 60050-466 1990 International electrotechnical vocabulary 
(IEV) -  
Chapter 466: Overhead lines 

- - 

 

  

IEEE Std. 563 1978 IEEE Guide on conductor self-damping 
measurements 

- - 
 

  

IEEE Std. 664 1993 IEEE Guide for laboratory measurement of 
the power dissipation characteristics of 
aeolian vibration dampers for single 
conductors 

- - 
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INTRODUCTION 

Conductor self-damping is a physical characteristic of the conductor that defines its capacity 
to dissipate energy internally while vibrating. For conventional stranded conductors, energy 
dissipation can be attributed partly to inelastic effects within the body of the wires (hysteresis 
damping at the molecular level) but mostly to frictional damping, due to small relative 
movements between overlapping individual wires, as the conductor flexes with the vibration 
wave shape. 

Self-damping capacity is an important characteristic of the conductors for overhead 
transmission lines. This parameter is a principal factor in determining the response of a 
conductor to alternating forces induced by the wind. 

As the conductor self-damping is generally not specified by the manufacturer, it can be 
determined through measurements performed on a laboratory test span. Semi-empirical 
methods to estimate the self-damping parameters of untested conventional stranded 
conductors are also available but often lead to different results. Further, a great variety of new 
conductor types is increasingly used on transmission lines and some of them may have self-
damping characteristics and mechanisms different from the conventional stranded conductors. 

A “Guide on conductor self-damping measurements” was prepared jointly in the past by the 
IEEE Task Force on Conductor Vibration and CIGRE SC22 WG01, to promote uniformity in 
measuring procedures. The Guide was published by IEEE as Std. 563-1978 and also by 
CIGRE in Electra n°62-1979. 

Three main methods are recognized in the above documents and divided into two main 
categories which are usually referred to as the "forced vibration" and ''free vibration" methods. 

The first forced vibration method is the “Power [Test] Method” in which the conductor is forced 
into resonant vibrations, at a number of tunable harmonics, and the total power dissipated by 
the vibrating conductor is measured at the point of attachment to the shaker. 

The second forced vibration method, known as the “Standing Wave Method” or more precisely 
“Inverse Standing Wave Ratio [Test] Method” (ISWR), determines the power dissipation 
characteristics of a conductor by the measurement of antinodal and nodal amplitudes on the 
span, for a number of tunable harmonics. 

The free vibration method named “Decay [Test] Method” determines the power dissipation 
characteristics of a conductor by measuring, at a number of tunable harmonics, the decay rate 
of the free motion amplitude following a period of forced vibration.  

Several laboratories around the world have performed conductor self-damping measurements 
in accordance with the above mentioned Guide. However, large disparities in self-damping 
predictions have been found among the results supplied by the various laboratories. The 
causes of these disparities have been identified into five main points: 

1) The different test methods adopted for the self-damping measurements. 
2) The different span end conditions set up in the various test laboratories (rigid clamps, 

flexure members, etc.) 
3) The different types of connection between the shaker and the conductor (rigid or flexible) 

and the different location of the power input point along the span. 
4) The different conductor conditioning before the test (creep, running in, etc.) 
5) The different manufacturing processes of the conductor.  
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OVERHEAD LINES – METHODS FOR TESTING SELF-DAMPING  
CHARACTERISTICS OF CONDUCTORS 

 
 
 

1 Scope 

The scope of this Standard is to provide test procedures based on the above-mentioned 
documents and devoted to minimize the causes of discrepancy between test results, taking 
into consideration the large experience accumulated in the last 30 years by numerous test 
engineers and available in literature, including a CIGRE Technical Brochure specifically 
referring to this standard (see Bibliography). 

This Standard describes the current methodologies, including apparatus, procedures and 
accuracies, for the measurement of conductor self-damping and for the data reduction formats. 
In addition, some basic guidance is also provided to inform the potential user of a given 
method's strengths and weaknesses. 

The methodologies and procedures incorporated in this Standard are applicable only to 
testing on indoor laboratory spans.  

2 Normative references 

The following documents, in whole or in part, are normatively referenced in this document and 
are indispensable for its application. For dated references, only the edition cited applies. For 
undated references, the latest edition of the referenced document (including any 
amendments) applies. 

IEC 60050-466:1990, International Electrotechnical Vocabulary. Chapter 466: Overhead lines 

IEEE Std. 563-1978, IEEE Guide on conductor self-damping measurements 

IEEE Std. 664-1993, IEEE Guide for laboratory measurement of the power dissipation 
characteristics of aeolian vibration dampers for single conductors 

3 Terms and definitions  

For the purpose of this International Standard, the definitions of the International 
Electrotechnical Vocabulary (IEV) apply, in particular IEC 60050-466. Those which differ or do 
not appear in the IEV are given below.  

3.1  
conductor self-damping:  
the self-damping of a conductor subjected to a tensile load T is defined by the power Pc 
dissipated per unit length by the conductor vibrating in a natural mode, with a loop length λ/2, 
an antinode displacement amplitude Y0 and a frequency f 

3.2  
node 
in a vibrating conductor, nodes are the points in which the vibration amplitude is the smallest 

3.3  
anti-node 
in a vibrating conductor, anti-nodes are the points in which the vibration amplitude is the 
greatest 
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4 Symbols and units 

A forcing point transverse acceleration, single amplitude  m/s2 

an vibration amplitude at the nth node mm  

D,d diameter of the conductor m 

δ logarithmic decrement    

Ediss total energy dissipated by the vibrating conductor Joule 

Ekin total kinetic energy of the vibrating conductor Joule 

F single amplitude exciting force  N 

f vibration frequency Hz 

h non dimensional viscous damping coefficient   

L free length of the test span m 

λ wavelength m 

λ/2 loop length m 

m conductor mass per unit length kg/m 

n number of vibrating loops in the span   

nc number of vibration cycles   

nkj number of loops between loop k and loop j   

P power dissipated by the conductor           mW 

Pc power dissipated by the conductor per unit length mW/m 

P j power dissipated by the conductor, measured at loop j mW 

Pk power dissipated by the conductor, measured at loop k mW 

θa phase angle between force and acceleration deg 

θd phase angle between force and displacement deg 

θv  phase angle between force and velocity deg  

S j Inverse standing wave ratio (ISWR) at loop j   

Sk Inverse standing wave ratio (ISWR) at loop k   

Sn Inverse standing wave ratio (ISWR) at the nth loop  

T conductor tension  N  

V forcing point transverse velocity, single amplitude m/s 

Vn vibration velocity at the nth antinode – peak value m/s 

ω circular frequency rad 

Ya single antinode amplitude at the first decay cycle mm 

Yf vibration single amplitude at the driving point  mm 

Yn vibration single amplitude at the nth antinode  mm 

Yo vibration single amplitude at antinode mm 
Yz  single antinode amplitude at the last decay cycle mm 

 characteristic impedance of the conductor N s/m 

 

5 Test span arrangements 

5.1 General 

The laboratory test spans for conductor self-damping measurements are generally built indoor 
in still air areas where the variation of ambient temperature is minimal or can be suitably 
controlled. Ambient temperature variations up to 0,2 °C/h are considered acceptable.   

Tm
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The free span length L should preferably be at least ten times longer than the longest loop 
length used in the tests. For consistent results, a span length greater than 40m is 
recommended but satisfactory results can be obtained with spans in the range of 30m. For 
shorter spans, the influence of the termination losses and the distribution of the tensile load 
between the conductor strands may be critical. 

The test span shall be strung between two massive blocks with a weight not lower than 10 per 
cent of the ultimate tensile strength of the largest conductor to be tested. Each block should 
be a single piece, generally made of steel reinforced concrete, and preferably be common or 
solidly connected with the concrete floor. The stiffness of these blocks should be as high as 
possible in order to minimize the losses and provide the maximum reflexion of the waves. 

An example of laboratory test span layout is shown in Figure 1.  

 IEC   2187/13  

Figure 1 – Test span for conductor self-damping measurements 

5.2 Span terminations 

The test span should have the capability of maintaining a constant conductor tension. 
Hydraulic and pneumatic cylinders, springs, threaded bars and pivotal balance beams have 
been used successfully.  

A rigid non-articulating square faced clamp similar to that shown in Figure 2 shall be used to 
minimize energy dissipation by the termination fixture. An example of a typical termination 
design is also provided in Figure 3 of IEEE Std. 563-1978. Terminating fixtures and rigid 
clamps shall be of sufficient stiffness to ensure that energy losses do not occur beyond the 
extremities of the free span. 

Rigid end clamps (also called heavy clamps), equal to or up to ten times longer than the 
conductor diameters and with groove diameters not exceeding by more than 0,25 mm the 
diameter of the conductor, have given good results. Generally, the clamp groove is 
dimensioned for the biggest conductor to be tested and a set of sleeves is made available to 
accommodate smaller conductor diameters.  

The rigid clamps shall not be used to maintain tension on the span. However, the rigid 
clamps, once closed, will retain some load. Consequently, the tension devices cannot fully 
control the conductor tension. Subsequent adjustments, if necessary, shall be performed only 
after releasing the rigid clamps.  

It is very important to have a good alignment between tension clamps and rigid clamps in the 
horizontal direction. In the vertical direction, in order to eliminate the static bending of 
conductor at the rigid clamp departure, it may be necessary to incline the rigid clamps 
following the catenary angle. This practice, when necessary, would avoid any change in 
tensile load when closing or opening the clamps. 
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Figure 2 – Rigid clamp 

On a laboratory test span, normally, the wave shape of the end loops differs from the shape of 
the free loops and the end loop dissipation is greater than free loop dissipation. As the energy 
dissipation of the conductor is, to a first approximation, proportional to the square of its 
curvature, it is easy to explain the large dissipation of energy near the end of the span. The 
effect is more noticeable at low frequencies where the end loops constitute a higher 
proportion of the total number of loops. It further restricts the usefulness of very short indoor 
test spans. 

Preference should be given to a test arrangement which would minimize energy dissipation at 
the span end terminations. If there is uncertainty about this, the energy should be assessed 
and eventually accounted for, unless using the ISWR method. 

The termination losses may be minimized by terminating the conductor by a flexure member, 
such as a wide, flat bar of sufficient strength to accommodate the span tension but also 
flexible enough in the vertical direction to allow it to bend readily and to avoid bending the 
conductor through a sharp radius of curvature where it would normally enter the clamp. This 
procedure has the undesirable effect, though, of including the end termination in the test span. 
An example of flexible cantilever is provided in Figure 4 of IEEE Std. 563-1978. 

5.3 Shaker and vibration control system 

The vibration exciter used for these tests is generally an electro-dynamic shaker (Figure 3). 
Hydraulic actuators are also used.  

Modal shakers having light armature and linear bearings can be used to excite resonance 
modes of the conductor with minimal distortion of the natural mode shape and to produce 
virtually zero stiffness and zero damping in the direction of the movement. 

The shaker shall be able to provide a suitable sinusoidal force to the test span. The 
alternating movement provided by the shaker shall be simple harmonic with a distortion level 
of less than 5 %. 

Vibration amplitude and frequency shall be controllable to an accuracy of ± 2 % and frequency 
shall be stable within 0,001 Hz. 
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IEC   2189/13  

Figure 3 – Electro-dynamic shaker 

The use of computers and dedicated software for the shaker control and for the data 
acquisition, reduction and elaboration is considered as a normal practice. 

An example of the layout for the conductor self-damping measurements, fully equipped to 
perform the conductor self-damping measurements with the methods outlined in this standard, 
is shown in Figure 4. 

BS EN 62567:2013



 – 12 – 62567 © IEC:2013 

 

 IEC   2190/13  

Figure 4 – Layout of a test stand for conductor self-damping measurements 

5.4 Location of the shaker 

The most used position of the shaker is within one of the end loops of the span, but not 
necessarily at an anti-node. This location also makes it possible to excite greater amplitudes 
than the maximum travel of the shaker even if a rigid connection between the shaker and the 
conductor is used.  

The near end location makes it possible to excite odd numbers of loops, as well as even. 
Although some span symmetry may be lost due to the presence of the shaker, a centre free 
loop will be present for the odd loop excitations. This often makes it possible to conduct 
amplitude measurements within the centre loop without being forced to relocate the 
transducer for each frequency investigated. 

The shaker should be located at a distance from the rigid clamp which is less than the 
calculated loop length of the span at the highest test frequency.   This will ensure that whole 
loops will not be forced to occur between the shaker and the nearest span extremity, because 
this may cause erroneous test results. It is preferably to identify a location of the shaker that 
can be maintained unchanged for the whole test on one conductor. A wide range of conductor 
sizes has been tested with the shaker at a fixed distance from the end clamp of 0,8 to 1,2 m. 

5.5 Connection between the shaker and the conductor under test 

5.5.1 General 

In the artificial excitation of the indoor test span, the armature of the shaker can be connected 
to the test span either rigidly or by the use of a flexible connection. In any case, the fixture 
shall be as light as possible in order to avoid the introduction of unwanted inertial forces and 
to prevent that, at the higher frequencies, the force needed to vibrate that mass plus the 
shaker armature will be beyond the capability of the shaker system.  
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To avoid distortion of the mode shape in the conductor vibration, the clamp mass must be as 
low as possible and, in resonance conditions, the phase between force and acceleration, at 
the driving point, must be as close as possible to 90 °. In this case, the force applied by the 
shaker has its minimum and equals the damping force. For angles different from 90 °, inertia 
and elastic components are also present and can give rise to distortions. 

The shaker connection shall be instrumented for force and vibration level measurements. The 
latter is generally made using accelerometers but also velocity transducers and displacement 
transducer can be used. 

5.5.2 Rigid connection 

Rigidly fixing the shaker to the conductor (Figure 5) has a tendency to create distortion in the 
standing wave vibration. Care should be taken when establishing span resonance to minimize 
this effect. 

 
IEC   2191/13  

Figure 5 – Example of rigid connection  

Using a rigid connection, the vibration exciter becomes a part of the system being measured; 
if the mass of the moving system within the shaker is high, conductor distortion is induced in 
that portion of the span where the shaker is attached.  

This changes the length of the loop to which the shaker is attached and is indicative of 
localized inertial and damping effects. The effect of attaching the shaker to the conductor 
should not change the loop length in which the attachment is made by more than 10 %. An 
attached mass of less than 20 % of the mass per unit length of the conductor is normally 
satisfactory. However, this can only be achieved using modal shakers or adopting a flexible 
connection as described in the following paragraph. Otherwise, the ISWR method, that is not 
sensitive to localized effects at the shaker as well as in end loops, should be used.  
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5.5.3 Flexible connection 

Spring steel bands are often used to reduce distortion of the loop where the shaker is 
attached and to allow different conductor amplitudes at the drive point than the amplitude of 
the shaker. Suitable flexibility should be present in all directions in order to: 

1) uncouple the shaker from the conductor so that possible misalignment between the centre 
of the shaker table and the point of attachment of the conductor can be accommodated 
and will not risk to damage  the shaker armature;   

2) prevent the shaker table from being driven by the conductor in resonant conditions where 
conductor vibration amplitude can be higher than the shaker amplitude; 

3) avoid the introduction of additional inertial and damping effects due to the shaker 
armature and conductor attachment.  

The stiffness of the springs in the excitation direction should be empirically determined in 
accordance with the conductor stiffness and mass. The spring should be soft enough to 
uncouple the conductor from the shaker but still able to transmit to the conductor enough 
force to excite vibration at the required amplitude.  

An example of a flexible connection equipped with force and acceleration transducers is 
shown in Figure 6. 

 

Accelerometer 

Conductor clamp 

Load cell 

Spring steel bands 

IEC   2192/13  

Figure 6 – Example of flexible connection  

5.6 Transducers and measuring devices 

5.6.1 Type of transducers 

The following transducers are used for the self-damping measurements: 

A. Load cells: to measure the force transmitted by the shaker to the conductor. 
B. Accelerometers, velocity transducers and displacement transducers: to measure the level 

of vibration. 

In addition, strain gauges are sometimes used to control the tension of the individual wires of 
the outer layer and temperature probes may be used for monitoring the ambient and/or 
conductor temperature.   

There is no limitation or preference regarding the working principle of the transducers, 
providing their mass is small enough in order not to interfere with the system. Miniature load 
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cells and miniature accelerometers (Figures 6, 7 and 8) are most commonly used for in-span 
measurements. 

Contactless displacement transducers (laser or eddy current based) have also been used for 
measurements of node and antinode amplitudes, especially with small and light conductors.  

Using transducers having a different working principle, for example a piezoelectric 
accelerometer and a strain gauge load cell, it is possible to have a phase shift between the 
two signals due to the different response time of the two transducers. This phase shift is 
frequency dependant and shall be taken into account in the determination of the phase angle 
between the measured quantities at each tunable vibration mode. A procedure to calculate 
the phase shift at each test frequency is presented in Annex D. 

In a computer controlled test system, the data acquisition software can be set up to perform 
automatically the phase shift correction. In any case, for the sake of simplicity, it is 
recommended to use transducers having the same working principle so that no phase shift 
correction will be required. 

 IEC   2193/13  

Figure 7 – Miniature accelerometer  

5.6.2 Transducer accuracy 

All the transducers used for the tests shall be checked for phase accuracy and linearity over 
the anticipated testing frequency range. The transducers shall be mounted on a shaker table 
and a small mass shall be rigidly attached on the force transducer. The transducers shall be 
shaken at all proposed test frequencies, and at approximately the amplitudes chosen for the 
conductor test. Correct operation of the transducers is demonstrated by two criteria: (1) the 
phase angle between force and acceleration (or displacement) should be at or near zero 
degrees and (2) the ratio of force to acceleration (F/A) should be constant at all frequencies 
and amplitudes. F/A, is the effective mass installed on the force transducer. If velocity 
transducers are used, the phase angle between force and velocity should be at or near 90 
degrees and acceleration can be obtained by the derivative of the velocity signal acquired. 

Deviations of the phase values up to ± 5 degrees are acceptable.  
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The test verifies (1) that there is no spurious phase shifting due to effects of fixtures, 
transducers and signal conditioning devices and (2) that the transducers are linear with 
respect to frequency and vibration amplitude. This is important especially for the transducers 
used for the measurement of the power imparted to the conductor by the shaker. 

6 Conductor conditioning 

6.1 General 

Unless otherwise specified, the conductor under test shall be unused. 

Before the installation on the test span, any looseness in the conductor layers should be 
worked out. 

After that, the conductor is clamped and should be conditioned as described in the following. 

6.2 Clamping 

The terminations of the conductor under test can be made using compression dead end joints, 
or bolted dead end clamps. Wedge type tension clamps and potted (resin) terminations can 
also be used. 

If compression end fittings are used, then they shall be reverse compressed (starting from the 
clamp mouth rather than from the end of the conductor) to prevent looseness from being 
worked back into the span.  

6.3 Creep 

After the installation of an unused conductor on the test span, a pre-stretching shall be 
performed in order to accomplish most of the metallurgic creep and the geometrical 
settlement of the conductor and distribute the tensile load more uniformly in the conductor 
strands. The pre-stretching consists in keeping the conductor at a tension equal or higher 
than the test tension for period of time, generally 12 to 48 hours. The tension to be applied 
during the preconditioning shall be established in accordance with the service parameters of 
the conductor.  

The preconditioning will be considered sufficiently settled when the tension of the still 
conductor does not change more than 3 to 4 % in 30 minutes at constant room temperature.     

The conductor shall be submitted to this preconditioning without clamping it into the end rigid 
clamps. 

6.4 Running-in 

When a conductor is unused its self-damping is not constant but varies with the accumulating 
vibration cycles. This variation may be in the order of 20-40 % during the first 30-60 minutes 
of vibration. A “running-in” is considered necessary to stabilize the conductor self-damping. 
This consists of vibrating the conductor at a fixed frequency, or with a swept frequency in a 
limited frequency range, at the maximum amplitude considered for the self-damping 
measurements.  Power measurements should be performed every 15 minutes and the running 
in will be considered completed when the difference between two consecutive measurements 
will not exceed 3 to 4 %. 

7 Extraneous loss sources 

Apart of the main energy dissipation due to the vibration of the conductor at a natural 
frequency, some other energy losses take place in the test span. The source of these 
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extraneous losses has to be recognized and, if possible, eliminated or reduced to the 
minimum. They are: 

• Conductor deformation induced by the device used to force conductor vibration. 

• Conductor deformation at span extremities due to the clamping system. 

• Aerodynamic losses due to the conductor vibration in still air. The contribution of the 
aerodynamic damping to total damping may not be negligible at low frequency but 
generally it is reduced practically to zero at high frequency. Aerodynamic losses can be 
calculated according to the method reported in Annex C and subtracted, if required, from 
the measured losses. 

• Torsional, longitudinal and transversal motions other than the driven motion. Torsional and 
longitudinal motions may be induced through coupling with the forced transversal motion. 
Test frequencies where this occurs shall be skipped. Torsional modes can also be excited 
by the asymmetry of the conductor and by misalignment of the shaker.  Transversal 
motions at low frequency can be excited by air movements or by accidental contact with 
the conductor. The vibrating conductor shall be visually controlled to verify the absence of 
these kinds of motion. 

• Longitudinal support damping due to the insufficient rigidity of the terminating fixtures 
which results in the transmission of conductor vibration power into the tensioning 
apparatus where some of that power may be dissipated. 

8 Test procedures 

8.1 Determination of span resonance 

All the test methods described in this Standard require that the conductor should reach a 
resonant condition. 

To find the system resonance, the shaker is operated at a trial power setting and the 
frequency control is adjusted to provide for maximum displacement of the conductor at an 
antinode. Then the shaker power controls are adjusted to provide the correct loop amplitude/ 
velocity at an antinode. Frequency is fine-tuned to maximize loop amplitude. If necessary, the 
shaker power is again adjusted to provide the desired loop amplitude. System resonance is 
found when adjustments of the frequency control no longer results in an increase in loop 
amplitude. Testing is performed when the standing wave is stable at the correct 
amplitude/velocity. 

An alternative method make use of the measurements/monitoring of force and acceleration (or 
velocity) and their relative phase angle at the shaker attachment. The frequency is tuned until 
the phase angle between the force and the acceleration signals is stable at or near 90° (see 
Figure 8) or the phase angle between the force and the velocity signals is stable at or near 
zero degrees. In practice, the force signal may be distorted and filtering will be needed to 
obtain a valid phase measurement. 
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Figure 8 – Resonant condition detected by  
the acceleration and force signals 

The vibration frequencies to be considered during the tests should cover the spectrum 
corresponding to a wind velocity range of 1 to 7 m/s (3,6 to 25,2 km/h) unless otherwise 
specified. Equation (A.1), in Annex A, can be used to convert wind velocity into vibration 
frequency. It is recommended that measurements be made at each tunable frequency; this 
criterion may be modified in accordance with the results desired by the end user but, in any 
case, minimum of 10 test frequencies shall be utilized.  

The natural frequencies of the span may be estimated by using the following equation: 

 
m
T

L
nf   

2
  ×=  (1) 

Conductor stiffness and the influence of the shaker on the span may modify the vibration 
modes, and thereby change the natural frequencies. However, equation (1) provides a good 
starting point for finding resonances. 

8.2 Power Method  

The power method determines the dissipation characteristics of a conductor by the 
measurement of the force and the vibration level imparted to the test span at the point of 
attachment to the shaker.  

The conductor, tensioned on the experimental span, is forced to vibrate at one of its resonant 
frequencies, with both amplitude and frequency being controlled by means of the driving 
system. 
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Due to the general non-linear characteristics of the conductor response it may not always be 
possible to produce pure sinusoidal signals at resonance. The frequency components of the 
signal, other than the fundamental component, shall be filtered out. If analog filtering is used, 
the signals of both the force and the vibration level transducers shall be filtered and the filters 
shall be matched for phase and gain. Alternatively, a suitable two-channel Fast Fourier 
Transform Analyser or equivalent software may be used. 

When a stationary condition is reached, the energy introduced by the shaker to the conductor, 
over one cycle of vibration, is equal to that dissipated by the span. The energy introduced in 
the conductor, and largely dissipated by its self-damping mechanism, is determined by 
measuring the force F acting between the conductor and the shaker and the displacement of 
the driving point Yf. The result is then given by the formula: 

 dfdiss θsinYFπE ×××=  (2) 

The test procedure is as follows: 

• Establish span resonance beginning at the first tunable harmonic within the prescribed 
frequency range (minimum of ten loops). 

• Measure and record the vibration frequency. 

• Locate a mid-span  antinode.  

• Adjust the antinodal amplitude to the prescribed level and record this value. 

• Record the input force and acceleration (or velocity or displacement) and their phase 
angle differential at the driving point. 

• Measure and record the free loop length. 

• Proceed to the next tunable harmonic frequency. 

• Continue this procedure until the upper end of the required frequency range has been 
reached.  

• Following the acquisition of data, the power dissipated by the conductor can be calculated 
from the following equation: 

 aθsinAF
fπ4

1 P ×××
××

=   (3) 

If a velocity transducer is used for the data acquisition, then the power dissipated by the 
conductor can be calculated from the following equation: 

 vθcosVF
2
1 P ×××=  (4) 

If a displacement transducer is used for the data acquisition, then the power dissipated by the 
conductor can be calculated from the following equation: 

 df θsinYfF πP ××××=  (5) 

It should be noted that, in all these cases, the phase angle might have to be corrected due to 
phase shifting within the transducers as discussed in 5.6.1. 

The calculated power can be plotted vs. the antinode amplitude or frequency (see Annex B).  

The non-dimensional viscous damping coefficient, h, can be calculated by dividing the energy 
introduced in the conductor Ediss (=P/f) by the total kinetic energy of the conductor Ekin.  
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kin

diss
E
E

4π
1h =  (6) 

Ekin is given by the formula:  

 22 YmLω
4
1E okin =    (7) 

The power method is simple and requires a limited number of measurement points. However, 
all the extraneous dissipation is part of the total calculation of the conductor self-damping and 
special care must, therefore, be devoted to reduce all these extraneous loss sources or to 
account for them. For example, it is comparatively easy to determine the total amount of 
vibration energy dissipation in the span, because it is equal to the total amount of energy 
introduced into the system. This would be quite sufficient for determining the self-damping of 
the conductor if all the loops of the span had equal energy dissipation. Unfortunately, the 
loops at the ends of the span and at the shaker connection behave differently from the rest of 
the span, having an energy dissipation that can be much higher than that of all of the rest of 
the span.  

The end losses can be determined by comparing the power inputs for two spans of different 
lengths identically terminated. Where it is not convenient to change the span length, it is 
necessary to minimize these losses or to use the ISWR method.  

8.3 ISWR Method 

The ISWR method determines the power dissipation characteristics of a conductor by the 
measurement of nodal and antinodal amplitudes on the span at each tunable harmonic. 

To understand the principle involved in this method, it is necessary to trace the waves leaving 
the vibration shaker as they are reflected at the span ends. 

For this argument, we may assume that the shaker is attached near one of the span 
terminations. Impulses induced by the shaker will travel to the far end of the span to return as 
reflected waves. 

If no losses are present in the system, the incident and reflected waves are equal. Perfect 
nodes will be formed where the two waves meet and pass. That is: zero motion will exist at 
the nodes. The anti-nodes will have an amplitude equal to the sum of the incident and 
reflected waves. If losses are present in the system, however, motion will appear at the nodes. 
The amplitude of this motion will be the difference between the incident and the reflected 
waves. The ratio between nodal amplitude and anti-nodal amplitude is indicative of the 
dissipation within the system. Where low span losses are present, the very fine 
measurements, necessary for determining nodal amplitude, can be a problem.  

The ISWR testing procedure is as follows: 

• Establish span resonance beginning at the first tunable harmonic within the prescribed 
frequency range (minimum of ten loops). 

• Measure and record the vibration frequency 

• Locate a free antinode and an adjacent node.  

• Adjust the antinodal amplitude to the prescribed level and record this value. 

• Measure and record the nodal amplitude. 

• Measure and record the free loop length. 

• Measure node and antinode amplitudes in a second location. 

• Proceed to the next tunable harmonic frequency. 
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• Continue this procedure until the upper end of the required frequency range has been 
reached. 

Following the acquisition of data, the total power dissipated by the conductor can be 
calculated from the following equation: 

 







×××=
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2

n

2 Y
aVmT P   (8) 

where  

mT ×  is the wave or characteristic impedance (at high frequencies this may be 
modified due to the effect of the stiffness of the conductor). 

Vn = ωYn        is the vibration velocity at the nth antinode 

    
n

n
n  

Y
a S =  is the inverse standing wave ratio ISWR at the nth loop. 

Performing two measurements in two different loops j and k, the power dissipated by the 
conductor section between these loops will be: 

 P = Pk – Pj (9) 

And the power dissipated per unit length Pc will be: 
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where nkj is the number of loops between nodes  k and j, and λ is the wavelength. 

The value of the non-dimensional viscous damping coefficient is given by: 
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jk

nπ
SS
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×

−
=  (11) 

where Sk and Sj are the ISWR respectively at loop k and j. 

Ideally, the two nodes should be as far apart as practical to maximize the difference in their 
amplitudes relative to the measurement error. 

The advantage of this method is that the measured dissipation relates to the considered 
portion of conductor only; therefore, the estimated self-damping value is not affected by the 
already mentioned influence of span ends and shaker-conductor connection.  

The main problems that the method presents are the correct estimation of the node positions 
and the measurement of the node amplitude of vibration, which can have a very small value 
on the order of a few micrometers; an error in the measurement of the node vibration 
amplitude significantly changes the self-damping estimation. 

Two methods can be suggested to improve the accuracy of these measurements.  

The first considers to measure in many points around one node and to fit the measurements 
with an interpolating function: in this way, it is not necessary to know exactly the position of 
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the node (to place the transducers) and the minimum of the interpolating function gives the 
node amplitude. 

The second way would be to use a mathematical model well representing the real deflection 
shape of the vibrating conductor. This would allow reducing the number of transducers (only 
two around each node). 

The calculated power dissipation can be plotted vs. antinode amplitude  or frequency (see 
Annex B). 

8.4 Decay method 

The decay method determines the power dissipation characteristics of a conductor by the 
measurement of the decay rate of the amplitude of motion of a span following a period of 
forced vibration at a natural frequency and fixed amplitude. The rate of decay is a function of 
the system losses. Where low dissipation levels are present, decay times are long. 

This method, if correctly employed, can give, in one trial, an estimation of the value of the 
self-damping at several vibration amplitudes. Moreover, it is very quick and easy, requiring, in 
its simplest form, just one transducer measuring the decay. However, as in the Power method, 
all the extraneous dissipation is part of the total calculation of the conductor self–damping. 
Therefore it is necessary to minimize all these extraneous loss sources or accounting for them. 
When this is not possible the use of the ISWR method is recommended. 

Decay testing can be applied by bringing a test span into steady state resonance and 
suddenly removing the excitation by the shaker from the conductor. The decay can be 
affected by the method used to disconnect the driving force as any additional disturbance of 
the conductor causes other vibration modes to be generated. With proper precautions, the 
shaker can be disconnected  inducing a minimal disturbing impulse into the system. 

Four methods can be used to terminate forced vibration of a span:  

(1)  a fusible link to mechanically release a spring-loaded clamp. One example is shown in 
Figure 9. The shaker is coupled to the span through a link mechanism which is held shut 
by a length of fuse wire. Opening of the link is accomplished by blowing the fuse using a 
high current source.  

(2)  a modal shaker (with a decay relay) which is left attached to the span during the decay 
phase. The mass of the armature will be active during both the forced vibration and decay 
phase of the test. The effect will be negligible if the armature mass is small when 
compared with the total mass of the vibrating span. Nevertheless, friction in the shaker 
bearings, if any, may contribute to the dissipation of the system. The decrements for the 
span will reflect all the sources of dissipation, including friction in the shaker.  

(3)  a very soft connection between the shaker and the conductor under test, which produces 
a de-coupling between the conductor and the shaker armature. One example is shown in 
Figure 6. 

(4)  excitation to the shaker is cut off and a mechanical latch is simultaneously activated to 
lock the armature and hold it rigid. 

The decay test procedure is as follows: 

• Establish span resonance beginning at the first tunable harmonic within the frequency 
range of interest. 

• Measure and record the vibration frequency. 

• Locate the transducer for vibration level measurement at a mid-span antinode.  

• Adjust the antinodal amplitude to be somewhat greater than the prescribed level. This is 
done to ensure that the test amplitude passes through the prescribed level during the 
decay. 
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• Record loop length and loop amplitude. 

• Terminate forced vibration, and record the time history of the decay. An oscillographic or 
other waveform recorder may be used for this purpose. 

• Proceed to the next tunable harmonic frequency. 

• Continue this procedure until the upper end of the frequency range has been reached. 

 
IEC   2195/13  

Figure 9 – Fuse wire system disconnecting a shaker from a test span;  
this double exposure shows the mechanism both closed and open. 

Decay rate is recorded and expressed in terms of logarithmic decrement which is basically the 
natural logarithm of the amplitude ratio of two successive cycles of vibration.  

Based on the acquisition of data, the logarithmic decrement can be calculated by the following 
equation:  

 
z

a

c

1
Y
Y

ln
n

δ =  (12) 

where  

δ   = logarithmic decrement 

nc  = number of vibration cycles between the two cycles considered 
Ya = single antinode amplitude of the first cycle considered 
Yz  = single antinode amplitude of the last cycle considered 

The power P dissipated by the conductor can be determined from the following equation: 

 δLVmf P 2 ×××××= ∂2
1

 (13) 

where Va is antinode velocity at the initial constant antinode amplitude. 

If a lightly damped system (h<<1) is left free to vibrate from a forced resonance condition, it 
undergoes a transient decay of motion that looks like Figure 10.  
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Figure 10 – A decay trace 

 
The nondimensional viscous damping coefficient, h, can be calculated as follows:  

 
2π
δh =  (14) 

The decay record may take the form of a series of steps occurring at the fundamental 
frequency of the test span [3,4]. The particular shape of the steps will depend upon where the 
vibration is sensed and is more pronounced in highly damped spans. The steps are a result of 
the wave-like character of span vibration. However, in normal cases, they are very shallow 
due to the fact that dissipation caused by self-damping is quite small and the phenomenon is 
easily overlooked especially when relatively slow recording speed is used.  

The steps may be removed from consideration, if necessary, by fitting a smooth curve to the 
envelope of the decay trace, and evaluating the decay of that envelope using Equation (12). 
Applying that equation to the cycles that were actually recorded leads to very inaccurate 
results unless nc is large enough to cover several of the steps or is exactly an integer multiple 
of the number of vibration cycles per step. Use of the smooth envelope is recommended. 

In some cases, a transfer of energy may occur between the horizontal and vertical response 
of the span, although the initial conditions imposed vertical excitation. When this happens, 
erratic recordings may be observed. Normally, these occur at certain frequencies that are not 
prevalent enough to influence the entire program, and these frequencies can be avoided.  

To improve the results, it is possible to calculate the energy transferred from the conductor to 
the shaker during the decay with the same set up already described for the power method. 
However, this shaker loss is usually one order of magnitude less than that of the conductor. 

8.5 Comparison between the test methods 

Each of the three methods described contains advantages and disadvantages. A comparative 
summary of some general characteristics of each of the methods is given in Table 1. 
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Table 1 – Comparison of laboratory methods 

General 
characteristics 

ISWR Power Decay Notes 

test span with 
unknown end 

losses 
required not recommended not recommended end losses to be 

minimized in all cases 

low self-damping 
conductors applicable applicable applicable shield wires, ADSS, 

OPGW 

high self-damping 
conductors 

Not applicable to 
conductors that may 

have a gap 
preferable applicable special conductors and 

low conductor  tensions 

Estimated testing 
time per sample 36 h 24 h 12 h 

based on three tensions, 
three vibration levels and 

> 10 frequencies 

Main advantage 
Insensitive to end 

span and drive point 
losses 

simple data 
collection and 

analysis 

wide range of 
testing amplitudes 

in one trial 
 

Main disadvantage difficult to measure 
node amplitudes 

possible errors due 
to end and drive 

point losses 

possible errors 
due to end and 

drive point losses 
 

 

Although widely accepted, the ISWR and Power Method are considered costly to equip and 
tedious to perform. The decay method is intuitively easy to understand, relatively easy to 
perform, and requires minimal instrumentation. When damping is low, the decay test has good 
accuracy and resolution while both the power method and the ISWR method suffer reduced 
accuracy, therefore, the decay test may be a suitable complement to these methods. 
However, when conductor damping is low the relative effect of other damping sources is 
larger and therefore the ISWR method may be considered advantageous. 

8.6 Data presentation 

It is customary to fit self-damping data to empirical equations that are thought to model the 
self-damping phenomenon. This is done to facilitate energy balance calculations and to 
provide a basis for extrapolating the measurements beyond the ranges covered in the 
laboratory tests. Ability to extrapolate is important since limits on measurement accuracy 
effectively prevent obtaining useable data at the lower vibration frequencies, yet these may be 
the frequencies where greatest fatigue stresses occur.  

Data measured in the laboratory span are generally expressed empirically through a power 
law: 

 n

ml
0

T
fYk

L
P

=  (15)  

in which P/L describes the power per unit length dissipated by the conductor, k is a factor of 
proportionality, Y0 is the antinode amplitude of vibration, f is the frequency of vibration, while l, 
m and n are the amplitude, frequency and tension exponents, respectively.  Using the above 
empirical rule, self-damping determined in laboratory spans could be extrapolated to actual 
much longer spans. 

The damping properties of some conductors, such as ADSS, gap conductors, etc. cannot be 
expressed by the above formula and require other interpolating functions to be defined as the 
best fit of the measurement data. 
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Table 2 (from CIGRE 22.11 TF1 (1998)) summarizes the exponents obtained by a number of 
investigators for Equation (15), together with the method of measurement used, the test span 
length, span end conditions and number of conductors and tensions tested. 

Table 2 – Comparison of Conductor Self-damping Empirical Parameters 

Investigations l m n Method End 
Conditions 

Span length 
(m) 

Number of  
conductors 

 ×  
number of  
tensions 

Tompkins et al.  
(1956) 2,3 to 2,6 5,0 to 6,0 1,9 (1) ISWR N.A. 36 1 × 2 

Claren & Diana  
(1969b) 2,0 4,0 2,5; 

3,0;1,5 PT M.B. 46 3 × 3 

Seppä (1971),  
Noiseux (1991) 2,5 5,75 2,8 ISWR N.A. 36 1 × 8 

Rawlins (1983) 2,2 5,4  ISWR N.A. 36 1 × 1 

Lab. A  
(CIGRE 22.01 1989) 2,0 4,0  PT M.B. 46 1 × 1 

Lab. B  
(CIGRE 22.01 1989) 2,2 5,2  PT P.E. 30 1 × 1 

Lab. C  
(CIGRE 22.01 1989) 2,44 5,5  ISWR N.A. 36 1 × 1 

Kraus & Hagedorn  
(1991) 2,47 5,38 2,80 PT P.E. 30 1 × ? 

Noiseux (1991) (2) 2,44 5,63 2,76 ISWR N.A. 63 7 × 4 

Tavano (1988) 1,9 to 2,3 3,8 to 4,2  PT M.B. 92 4 × 1 

Möcks & Schmidt  
(1989) 2,45 5,38 2,4 PT P.E. 30 16 x 3 

Mechanical Laboratory  
Politecnico di Milano 
(2000) 

2,43 5,5 2 ISWR P.E. 46 4 × 2 

ISWR: Inverse Standing Wave Method 

PT: Power Method 

N.A.: Non applicable 

M.B.: Massive block 

P.E.: Pivoted Extremity 

(1): extrapolated 

(2): Data corrected for aerodynamic damping 

 

The power method for conductor self-damping measurements on laboratory test spans with 
rigidly fixed extremities produces empirical rules with an amplitude exponent close to 2,0 and 
a frequency exponent close to 4,0, in comparison to about 2,4 to 2,5 and 5,5, respectively, for 
the ISWR method and PT method with pivoted extremities. 

Such differences in the above exponent values, together with those in the k factor of 
proportionality, may lead to large differences in the predicted self-damping values. It thus 
appears that, the major disparities among conductor self-damping values reported by different 
laboratories are mainly related to end effects.  
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Annex A 
(normative) 

 
Recommended test parameters 

 

The values of the tensile load to be used in the test, if not specially required by a particular 
conductor application, shall be suitably chosen in order to be representative of normal 
conductor loadings in service.  

A minimum of three different tensile loads shall be used, the medium value of which should 
correspond to the most common conductor loading on the line. 

For example, the following loadings suggested by IEEE Std. 563-1978, expressed as 
percentages of the conductor rated strength RTS can be used 15 (17,5), 20 (22,5), 25 (27,5). 
The values in brackets are optional. 

During the test, the variation of the conductor tensile load shall not exceed ± 3 %. 

To ensure tension stability during the tests, testing should be performed in an area where the 
ambient temperature does not vary more than 0,2 °C/h. If the conductor temperature changes 
more than 1 °C, adjustment of the conductor tension is necessary. 

A minimum of three different antinode double amplitudes for each loop length shall be tested 
and the values (in millimetres) should be between 25/f and 150/f according to IEEE Std. 563-
1978. Alternatively, a minimum of three antinode velocities should be used in the range 100 to 
300 mm/s (peak values) as prescribed by IEEE Std. 664-1993. The two ranges are not 
equivalent. 

A minimum of ten different tunable vibration modes shall be tested. Vibration modes should 
correspond to those associated with frequencies that are generated in the wind velocity range 
of 1 to 7 m/s on the conductor under test. However, some difficulties may arise for the 
measurements of the power dissipated at low frequencies due to the long loop lengths 
associated. A minimum of ten loops is considered necessary to obtain suitable measurements 
on normal conductors. 

The relationship between frequency, wind velocity and conductor diameter is as follows 

 
D
V f ×= 0,185  (A.1) 

It is recommended that the loop lengths chosen are common to all the tensile loads used. It is 
also recommended that, within the previously suggested range values, the antinode vibration 
amplitudes or velocities be the same to all the loop lengths used. 
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Annex B 
(informative) 

 
Reporting recommendations 

 

The reporting of test results should be as complete as possible to aid repeatability of the 
tests. Table 1 of IEEE Std. 563-1978 is an example of a typical table of results. Additional 
information such as test span description, characteristics of the measurement devices, 
method(s) and specific testing procedures used, ambient temperature during testing and a 
description of the conductor under test should be reported. In more details: 

• Together with the usual conductor data (manufacturer, year of fabrication, stranding, 
weight per unit length, RTS), information should be supplied on the type of lubricant or 
grease applied to it, if any. Moreover, the previous history of the conductor, i.e. if new ex-
factory or unused from the store or taken from the line, should be stated. If the specimen 
is taken from the line, the tensile loads to which it has been subjected and the period of 
time during which it has been in service should be stated. 

 The test span arrangement should be briefly described and shown in a sketch similar to 
Figure 1. The free span length L and the position of the shaker in the span should be 
indicated. 

 The methods used to assess that no energy was transferred from the conductor free 
length to span end terminations and to minimize the conductor looseness should be 
clearly indicated. Otherwise, the methods used to measure such an energy should be 
clearly stated. 

• The method used to correct data for aerodynamic damping should be clearly indicated if 
this operation has been performed  

Moreover information should be provided for:  

• The accuracy of the tensile load measuring methods. 

• Tensile load variations during the test. 

• The type of shaker used and the type of mechanical connections between the shaker and 
the conductor. 

• The method used to drive the conductor to vibrate at resonance.  

• The method used to assess resonance conditions.  

• The parameters that are measured to obtain the power dissipated and the accuracy of the 
measurements. 

IEEE Std. 563-1978 recommends that the measurement results be presented in diagrams 
showing the power dissipated per conductor unit length, as a function of the ratio of the 
antinode displacement amplitude Y0 to conductor diameter, for each loop length λ/2 and 
corresponding frequency f and tensile load T. In the same diagram, the data referring to the 
different loop lengths and frequencies can be shown provided different symbols are used. It is 
preferable to present measurement results in different diagrams for each tensile load, unless 
otherwise required for specific comparison purposes. 

Diagrams should clearly show, for each value of T, λ/2, f, Y0, all the measured values of Pc. 
The units shall be as indicated in the list of symbols. 

An example of these diagrams is given in Figure B.1. 

It may be also useful to present the results as a plot of conductor velocity at the drive point 
against force per unit length for different frequencies and associated loop lengths, for each 
tension. This presentation allows, by simple calculation, the determination of the power 
dissipated, the conductor amplitude at the drive point, and the mechanical impedance of the 
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conductor that is the ratio of the force to the conductor velocity, for a wide variety of 
conditions. 
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Figure B.1 – Example of conductor power dissipation characteristics 

Some investigators use to present the results as a family of curves of the power dissipated 
versus vibration frequency for each vibration amplitude or velocity and for each conductor 
tension as shown in Figure B.2. 
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Figure B.2 – Example of conductor power dissipation characteristics 

BS EN 62567:2013



62567 © IEC:2013 – 31 – 

Annex C 
(informative) 

 
Correction for aerodynamic damping 

 

In order to get the net power dissipated structurally within the conductor, it is necessary to 
correct the total power measured over the test span for the aerodynamic damping generated 
by the conductor vibrating in still air. With Pnet representing the net structural power loss per 
unit conductor length, Pmeas the measured power loss per unit length and Paero the power loss 
per unit length due to aerodynamic damping, this may be done using the following 
expressions: 

 Pnet = Pmeas – Paero  (C.1) 

where 

 Paero = π2 × ρ × f3 × x2 × d4 × δr   (C.2) 

ρ = air density (= 1,205 kg/m3 at 20 °C and 1 atm.) 
f = vibration frequency  
x = Y0/d  
Yo = free loop single antinode amplitude 
d = conductor diameter   

and ExCxBA x
D

+×+×+×= str δδ  (C.3) 

where 
β

13711,
st =δ  (C.4) 

β = Stokes’ number (= d2 × f/υ) 

υ = kinematic viscosity of air (= 15,11 × 10–6 m2/s at 20 °C and 1 atm.) 

The values of the best fit coefficients A, B, C, D and E together with the applicable range of x 
and β are shown Table C.1 for a smooth cylinder as well as for stranded conductors as a 
function of the number of strands in the outer layer. These coefficients are applicable for sine-
loop motion as displayed in actual conductor vibrations.  

For 6-strand models vibrating in sine-loops, the formula for δr is: 

δr = –0,55 – 0,15 (β – 500)/1 500 + [3,885 + (β – 500)/1667] × x + 1,093 × e–2,513 × x (C.5) 

For smooth body conductors, such as those using trapezoidal strands on their outer layer, it is 
recommended to use the coefficients applicable to the smooth cylinder in Table C.1. 
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Table C.1 – Coefficients to be used with equation C-3 

Stands A B C D E X range βrange 

Cylinder 1,05 0,00 2,62 1,30 0,00 0 to 0,71 340 to 728 

6      0 to 0,71 360 to 781 

10 1,00 0,37 2,91 1,25 0,06 0 to 0,79 288 to 626 

12 1,10 0,66 1,70 1,20 0,00 0 to 0,59 512 to 1 111 

16 1,20 0,00 2,43 1,15 0,00 0 to 0,69 364 to 778 

18* 1,15 0,17 2,35 1,33 0,00 0 to 0,63 452 to 966 

20 1,10 0,34 2,27 1,50 0,00 0 to 0,56 540 to 1 154 

24 1,15 0,24 2,07 1,40 0,00 0 to 0,47 650 to 1 594 

27 1,40 0,26 2,47 1,40 0,00 0 to 0,43 913 to 1 956 

* Entries in the 18 strand case are interpolated. 
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Annex D 
(informative) 

 
Correction of phase shift between transducers 

 

Using transducers having a different working principle, for example a piezoelectric 
accelerometer and a strain gauge load cell, it is possible to have a phase shift between the 
two signals due to the different response time of the two transducers.  

This phase shift can be measured mounting the transducers on a shaker table and fixing a 
small mass on the force transducer. The transducers should be shaken at all proposed test 
frequencies, and at approximately the amplitudes chosen for the conductor test. 

The phase shift angle between the force and acceleration (or displacement) signals, due to 
the different principle of functioning of the two devices, increases linearly with the frequency.  
This phase shift angle should be recorded for each tunable frequency and subtracted from the 
phase angle measured, at the same frequency, during the self-damping measurements.  

To simplify this procedure, it is suggested to measure the phase angle α (rad) between the 
signals of the two transducer at a frequency f (Hz) and then calculate the time shift ts (s) 
between the transducer signals by the following formula:  

  
f 

α  t
×

=
π2s   (D.1) 

Considering that ts is constant, the phase shift angle α can be calculated for any other 
vibration frequency by the same formula. 

For better precision, the time shift ts should be determined for three or more different 
frequencies and the average value used as indicated above. 
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