
BSI Standards Publication

OPC unified architecture

Part 9: Alarms and conditions

BS EN 62541-9:2015

National foreword

This British Standard is the UK implementation of EN 62541-9:2015. It is
identical to IEC 62541-9:2015. It supersedes BS EN 62541-9:2012 which is
withdrawn.

The UK participation in its preparation was entrusted to Technical
Committee AMT/7, Industrial communications: process measurement and
control, including fieldbus.

A list of organizations represented on this committee can be obtained on
request to its secretary.

This publication does not purport to include all the necessary provisions of
a contract. Users are responsible for its correct application.

© The British Standards Institution 2015.
Published by BSI Standards Limited 2015

ISBN 978 0 580 83008 2
ICS 25.040.40; 25.100.01

Compliance with a British Standard cannot confer immunity from
legal obligations.

This British Standard was published under the authority of the
Standards Policy and Strategy Committee on 31 May 2015.

Amendments/corrigenda issued since publication

Date Text affected

BRITISH STANDARDBS EN 62541-9:2015

EUROPEAN STANDARD

NORME EUROPÉENNE

EUROPÄISCHE NORM

 EN 62541-9

 May 2015

ICS 25.040.40; 35.100 Supersedes EN 62541-9:2012

English Version

 OPC unified architecture - Part 9: Alarms and conditions
(IEC 62541-9:2015)

Architecture unifiée OPC - Partie 9: Alarmes et conditions
(IEC 62541-9:2015)

 OPC Unified Architecture - Teil 9: Alarme und Zustände
(IEC 62541-9:2015)

This European Standard was approved by CENELEC on 2015-04-29. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia,
Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique

Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2015 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

 Ref. No. EN 62541-9:2015 E

BS EN 62541-9:2015

EN 62541-9:2015 - 2 -

Foreword

The text of document 65E/382/CDV, future edition 2 of IEC 62541-9, prepared by SC 65E "Devices
and integration in enterprise systems", of IEC/TC 65 "Industrial-process measurement, control and
automation" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as
EN 62541-9:2015.

The following dates are fixed:

• latest date by which the document has to be implemented at
national level by publication of an identical national
standard or by endorsement

(dop) 2016-01-29

• latest date by which the national standards conflicting with
the document have to be withdrawn

(dow) 2018-04-29

This document supersedes EN 62541-9:2012.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such
patent rights.

This document has been prepared under a mandate given to CENELEC by the European Commission
and the European Free Trade Association, and supports essential requirements of EU Directive(s).

Endorsement notice

The text of the International Standard IEC 62541-9:2015 was approved by CENELEC as a European
Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 62541-7 NOTE Harmonized as EN 62541-7.

IEC 62541-11 NOTE Harmonized as EN 62541-11.

BS EN 62541-9:2015

 - 3 - EN 62541-9:2015

Annex ZA
(normative)

Normative references to international publications

with their corresponding European publications

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 When an International Publication has been modified by common modifications, indicated by (mod),
the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is
available here: www.cenelec.eu.

Publication Year Title EN/HD Year

IEC/TR 62541-1 - OPC unified architecture -
Part 1: Overview and concepts

CLC/TR 62541-1 -

IEC 62541-3 - OPC unified architecture -
Part 3: Address Space Model

EN 62541-3 -

IEC 62541-4 - OPC Unified Architecture -
Part 4: Services

EN 62541-4 -

IEC 62541-5 - OPC unified architecture -
Part 5: Information Model

EN 62541-5 -

IEC 62541-6 - OPC unified architecture -
Part 6: Mappings

EN 62541-6 -

IEC 62541-8 - OPC Unified Architecture -
Part 8: Data Access

EN 62541-8 -

EEMUA 191 Alarm systems - A guide to design,
management and procurement

- -

BS EN 62541-9:2015

http://www.cenelec.eu/advsearch.html

 – 2 – IEC 62541-9:2015 © IEC 2015

CONTENTS

FOREWORD ... 8
1 Scope .. 10
2 Normative references... 10
3 Terms, definitions, and abbreviations ... 10

3.1 Terms and definitions .. 10
3.2 Abbreviations and symbols .. 12
3.3 Used data types .. 12

4 Concepts ... 12
4.1 General ... 12
4.2 Conditions... 12
4.3 Acknowledgeable Conditions ... 14
4.4 Previous states of Conditions .. 15
4.5 Condition state synchronization ... 16
4.6 Severity, Quality, and Comment .. 16
4.7 Dialogs ... 17
4.8 Alarms .. 17
4.9 Multiple Active States .. 18
4.10 Condition Instances in the Address Space ... 19
4.11 Alarm and Condition Auditing .. 19

5 Model .. 19
5.1 General ... 19
5.2 Two-State State Machines ... 20
5.3 Condition Variables ... 21
5.4 Substate Reference Types .. 22

5.4.1 General .. 22
5.4.2 HasTrueSubState ReferenceType ... 22
5.4.3 HasFalseSubState ReferenceType ... 23

5.5 Condition Model .. 23
5.5.1 General .. 23
5.5.2 ConditionType .. 24
5.5.3 Condition and Branch Instances ... 27
5.5.4 Disable Method .. 27
5.5.5 Enable Method ... 28
5.5.6 AddComment Method ... 28
5.5.7 ConditionRefresh Method ... 29

5.6 Dialog Model ... 31
5.6.1 General .. 31
5.6.2 DialogConditionType .. 31
5.6.3 Respond Method .. 32

5.7 Acknowledgeable Condition Model .. 33
5.7.1 General .. 33
5.7.2 AcknowledgeableConditionType ... 33
5.7.3 Acknowledge Method ... 34
5.7.4 Confirm Method .. 35

5.8 Alarm Model .. 36
5.8.1 General .. 36

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 3 –

5.8.2 AlarmConditionType ... 37
5.8.3 ShelvedStateMachineType ... 39
5.8.4 LimitAlarmType .. 43
5.8.5 ExclusiveLimit Types .. 44
5.8.6 NonExclusiveLimitAlarmType .. 46
5.8.7 Level Alarm .. 48
5.8.8 Deviation Alarm .. 48
5.8.9 Rate of Change .. 49
5.8.10 Discrete Alarms .. 50

5.9 ConditionClasses .. 52
5.9.1 Overview .. 52
5.9.2 Base ConditionClassType ... 52
5.9.3 ProcessConditionClassType ... 53
5.9.4 MaintenanceConditionClassType .. 53
5.9.5 SystemConditionClassType .. 53

5.10 Audit Events ... 53
5.10.1 Overview .. 53
5.10.2 AuditConditionEventType ... 54
5.10.3 AuditConditionEnableEventType ... 55
5.10.4 AuditConditionCommentEventType ... 55
5.10.5 AuditConditionRespondEventType .. 55
5.10.6 AuditConditionAcknowledgeEventType ... 55
5.10.7 AuditConditionConfirmEventType ... 56
5.10.8 AuditConditionShelvingEventType .. 56

5.11 Condition Refresh Related Events ... 56
5.11.1 Overview .. 56
5.11.2 RefreshStartEventType .. 57
5.11.3 RefreshEndEventType .. 57
5.11.4 RefreshRequiredEventType .. 57

5.12 HasCondition Reference Type ... 58
5.13 Alarm and Condition Status Codes .. 58
5.14 Expected A&C Server Behaviours .. 59

5.14.1 General .. 59
5.14.2 Communication problems ... 59
5.14.3 Redundant A&C Servers ... 59

6 AddressSpace Organisation ... 60
6.1 General ... 60
6.2 Event Notifier and Source Hierarchy .. 60
6.3 Adding Conditions to the Hierarchy .. 61
6.4 Conditions in InstanceDeclarations .. 61
6.5 Conditions in a VariableType ... 62

Annex A (informative) Recommended localized names ... 63
A.1 Recommended State Names for TwoState Variables .. 63

A.1.1 LocaleId “en” .. 63
A.1.2 LocaleId “de” .. 63
A.1.3 LocaleId “fr” ... 64

A.2 Recommended Dialog Response Options .. 64
Annex B (informative) Examples ... 65

B.1 Examples for Event sequences from Condition instances 65

BS EN 62541-9:2015

 – 4 – IEC 62541-9:2015 © IEC 2015

B.1.1 Overview .. 65
B.1.2 Server Maintains Current State Only ... 65
B.1.3 Server Maintains Previous States ... 65

B.2 Address Space Examples .. 67
Annex C (informative) Mapping to EEMUA .. 71
Annex D (informative) Mapping from OPC A&E to OPC UA A&C ... 72

D.1 Overview... 72
D.2 Alarms and Events COM UA Wrapper .. 72

D.2.1 Event Areas ... 72
D.2.2 Event Sources .. 73
D.2.3 Event Categories .. 73
D.2.4 Event Attributes ... 74
D.2.5 Event Subscriptions.. 74
D.2.6 Condition Instances .. 76
D.2.7 Condition Refresh .. 76

D.3 Alarms and Events COM UA Proxy .. 77
D.3.1 General .. 77
D.3.2 Server Status Mapping ... 77
D.3.3 Event Type Mapping ... 77
D.3.4 Event Category Mapping .. 78
D.3.5 Event Category Attribute Mapping .. 79
D.3.6 Event Condition Mapping .. 82
D.3.7 Browse Mapping... 82
D.3.8 Qualified Names ... 83
D.3.9 Subscription Filters .. 84

Bibliography ... 86

Figure 1 – Base Condition State Model .. 13
Figure 2 – AcknowledgeableConditions State Model .. 14
Figure 3 – Acknowledge State Model ... 15
Figure 4 – Confirmed Acknowledge State Model .. 15
Figure 5 – Alarm State Machine Model .. 17
Figure 6 – Multiple Active States Example ... 18
Figure 7 – ConditionType Hierarchy .. 20
Figure 8 – Condition Model ... 24
Figure 9 – DialogConditionType Overview ... 31
Figure 10 – AcknowledgeableConditionType Overview .. 33
Figure 11 – AlarmConditionType Hierarchy Model ... 37
Figure 12 – Alarm Model ... 37
Figure 13 – Shelve state transitions .. 39
Figure 14 – Shelved State Machine Model ... 40
Figure 15 – LimitAlarmType .. 43
Figure 16 – ExclusiveLimitStateMachine .. 44
Figure 17 – ExclusiveLimitAlarmType .. 46
Figure 18 – NonExclusiveLimitAlarmType .. 47
Figure 19 – DiscreteAlarmType Hierarchy ... 50

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 5 –

Figure 20 – ConditionClass Type Hierarchy ... 52
Figure 21 – AuditEvent Hierarchy .. 54
Figure 22 – Refresh Related Event Hierarchy .. 57
Figure 23 – Typical Event Hierarchy .. 60
Figure 24 – Use of HasCondition in an Event Hierarchy ... 61
Figure 25 – Use of HasCondition in an InstanceDeclaration ... 62
Figure 26 – Use of HasCondition in a VariableType ... 62
Figure B.1 – Single State Example .. 65
Figure B.2 – Previous State Example .. 66
Figure B.3 – HasCondition used with Condition instances .. 68
Figure B.4 – HasCondition reference to a Condition Type .. 69
Figure B.5 – HasCondition used with an instance declaration ... 70
Figure D.1 – The Type Model of a Wrapped COM AE Server ... 74
Figure D.2 – Mapping UA Event Types to COM A&E Event Types .. 78
Figure D.3 – Example Mapping of UA Event Types to COM A&E Categories 79
Figure D.4 – Example Mapping of UA Event Types to A&E Categories with Attributes 82

Table 1 – Parameter Types defined in IEC 62541-3 ... 12
Table 2 – Parameter Types defined in IEC 62541-4 ... 12
Table 3 – TwoStateVariableType Definition ... 21
Table 4 – ConditionVariableType Definition ... 22
Table 5 – HasTrueSubState ReferenceType .. 22
Table 6 – HasFalseSubState ReferenceType ... 23
Table 7 – ConditionType Definition .. 25
Table 8 – Simple Attribute Operand ... 27
Table 9 – Disable Result Codes .. 28
Table 10 – Disable Method AddressSpace Definition ... 28
Table 11 – Enable Result Codes ... 28
Table 12 – Enable Method AddressSpace Definition .. 28
Table 13 – AddComment Arguments ... 29
Table 14 – AddComment result Codes .. 29
Table 15 – AddComment Method AddressSpace Definition .. 29
Table 16 – ConditionRefresh Parameters .. 30
Table 17 – ConditionRefresh ReturnCodes .. 30
Table 18 – ConditionRefresh Method AddressSpace Definition .. 31
Table 19 – DialogConditionType Definition .. 31
Table 20 – Repond Parameters ... 32
Table 21 – Respond ResultCodes ... 33
Table 22 – Respond Method AddressSpace Definition ... 33
Table 23 – AcknowledgeableConditionType Definition ... 34
Table 24 – Acknowledge Parameters ... 34
Table 25 – Acknowledge result codes .. 35
Table 26 – Acknowledge Method AddressSpace Definition .. 35

BS EN 62541-9:2015

 – 6 – IEC 62541-9:2015 © IEC 2015

Table 27 – Confirm Method Parameters .. 35
Table 28 – Confirm Result Codes .. 36
Table 29 – Confirm Method AddressSpace Definition ... 36
Table 30 – AlarmConditionType Definition ... 38
Table 31 –ShelvedStateMachine Definition .. 40
Table 32 – ShelvedStateMachine Transitions .. 41
Table 33 – Unshelve Result Codes .. 41
Table 34 – Unshelve Method AddressSpace Definition .. 41
Table 35 – TimedShelve Parameters ... 42
Table 36 – TimedShelve Result Codes .. 42
Table 37 – TimedShelve Method AddressSpace Definition ... 42
Table 38 – OneShotShelve Result Codes .. 42
Table 39 – OneShotShelve Method AddressSpace Definition ... 43
Table 40 – LimitAlarmType Definition .. 43
Table 41 – ExclusiveLimitStateMachineType Definition .. 44
Table 42 – ExclusiveLimitStateMachineType Transitions ... 45
Table 43 – ExclusiveLimitAlarmType Definition .. 46
Table 44 – NonExclusiveLimitAlarmType Definition .. 47
Table 45 – NonExclusiveLevelAlarmType Definition ... 48
Table 46 – ExclusiveLevelAlarmType Definition ... 48
Table 47 – NonExclusiveDeviationAlarmType Definition ... 49
Table 48 – ExclusiveDeviationAlarmType Definition ... 49
Table 49 – NonExclusiveRateOfChangeAlarmType Definition .. 50
Table 50 – ExclusiveRateOfChangeAlarmType Definition ... 50
Table 51 – DiscreteAlarmType Definition ... 51
Table 52 – OffNormalAlarmType Definition .. 51
Table 53 – SystemOffNormalAlarmType Definition ... 51
Table 54 – TripAlarmType Definition ... 52
Table 55 – BaseConditionClassType Definition .. 52
Table 56 – ProcessConditionClassType Definition ... 53
Table 57 – MaintenanceConditionClassType Definition .. 53
Table 58 – SystemConditionClassType Definition .. 53
Table 59 – AuditConditionEventType Definition ... 54
Table 60 – AuditConditionEnableEventType Definition ... 55
Table 61 – AuditConditionCommentEventType Definition ... 55
Table 62 – AuditConditionRespondEventType Definition .. 55
Table 63 – AuditConditionAcknowledgeEventType Definition ... 56
Table 64 – AuditConditionConfirmEventType Definition ... 56
Table 65 – AuditConditionShelvingEventType Definition .. 56
Table 66 – RefreshStartEventType Definition .. 57
Table 67 – RefreshEndEventType Definition .. 57
Table 68 – RefreshRequiredEventType Definition .. 58
Table 69 – HasCondition ReferenceType ... 58

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 7 –

Table 70 – Alarm and Condition Result Codes ... 59
Table A.1 – Recommended state names for LocaleId “en” ... 63
Table A.2 – Recommended display names for LocaleId “en” .. 63
Table A.3 – Recommended state names for LocaleId “de” ... 63
Table A.4 – Recommended display names for LocaleId “de” .. 64
Table A.5 – Recommended state names for LocaleId “fr” ... 64
Table A.6 – Recommended display names for LocaleId “fr” .. 64
Table A.7 – Recommended Dialog Response Options.. 64
Table B.1 – Example of a Condition that only keeps the latest state 65
Table B.2 – Example of a Condition that maintains previous states via branches 67
Table C.1 – EEMUA Terms ... 71
Table D.1 – Mapping from Standard Event Categories to OPC UA Event Types 73
Table D.2 – Mapping from ONEVENTSTRUCT fields to UA BaseEventType Variables 75
Table D.3 – Mapping from ONEVENTSTRUCT fields to UA AuditEventType Variables.......... 75
Table D.4 – Mapping from ONEVENTSTRUCT fields to UA AlarmType Variables 76
Table D.5 – Event Category Attribute Mapping Table ... 80

BS EN 62541-9:2015

 – 8 – IEC 62541-9:2015 © IEC 2015

INTERNATIONAL ELECTROTECHNICAL COMMISSION

OPC UNIFIED ARCHITECTURE –

Part 9: Alarms and conditions

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62541-9 has been prepared by subcommittee 65E: Devices and
integration in enterprise systems, of IEC technical committee 65: Industrial-process
measurement, control and automation.

This second edition cancels and replaces the first edition published in 2012. This edition
constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous
edition:

a) added section to describe expect behaviour for A&C servers and the associated
information model in the case of redundancy or communication faults, see 5.14 for
additional details.[ref 698 & 967];

b) changed the DialogConditionType to be not abstract since it is expect that instance of this
type will exist in the system, see Table 19 for additonal details [ref 1622];

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 9 –

c) updated ConditionRefresh Method to allow the use of the well know NodeIds associated
with the types for the MethodId and ConditionId instead of requiring the call to use only
the MethodId and ConditionId that is part of an instance. Without this change, servers that
do not expose instance may have problems with ConditionRefresh, see 5.5.7 for additional
details [ref 2091];

d) Fixed ExclusiveLimitStateMachineType and ShelvedStatemachineType to be sub-types of
FinitStateMachineType not StateMachineType. See 5.8.3 and 5.8.5.2 for additional details
[ref 2091].

The text of this standard is based on the following documents:

CDV Report on voting

65E/382/CDV 65E/408/RVC

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 62541 series, published under the general title OPC Unified
Architecture, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until
the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data
related to the specific publication. At this date, the publication will be

• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct
understanding of its contents. Users should therefore print this document using a
colour printer.

BS EN 62541-9:2015

 – 10 – IEC 62541-9:2015 © IEC 2015

OPC UNIFIED ARCHITECTURE –

Part 9: Alarms and conditions

1 Scope

This part of IEC 62541 specifies the representation of Alarms and Conditions in the OPC
Unified Architecture. Included is the Information Model representation of Alarms and
Conditions in the OPC UA address space.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any
amendments) applies.

IEC TR 62541-1, OPC Unified Architecture – Part 1: Overview and Concepts

IEC 62541-3, OPC Unified Architecture – Part 3: Address Space Model

IEC 62541-4, OPC Unified Architecture – Part 4: Services

IEC 62541-5, OPC Unified Architecture – Part 5: Information Model

IEC 62541-6, OPC Unified Architecture – Part 6: Mappings

IEC 62541-8, OPC Unified Architecture – Part 8: Data Access

EEMUA: 2nd Edition EEMUA 191 – Alarm System – A guide to design, management and
procurement (Appendixes 6, 7, 8, 9), available at http://www.eemua.co.uk/

3 Terms, definitions, and abbreviations

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC TR 62541-1,
IEC 62541-3, IEC 62541-4, and IEC 62541-5 as well as the following apply.

3.1.1
acknowledge
operator action that indicates recognition of a new Alarm

Note 1 to entry: This definition is copied from EEMUA. The term “Accept” is another common term used to
describe Acknowledge. They can be used interchangeably. This standard will use Acknowledge.

3.1.2
active
state for an Alarm that indicates that the situation the Alarm is representing currently exists

Note 1 to entry: Other common terms defined by EEMUA are “Standing” for an Active Alarm and “Cleared” when
the Condition has returned to normal and is no longer Active.

BS EN 62541-9:2015

http://www.eemua.co.uk/

IEC 62541-9:2015 © IEC 2015 – 11 –

3.1.3
ConditionClass
Condition grouping that indicates in which domain or for what purpose a certain Condition is
used

Note 1 to entry: Some top-level ConditionClasses are defined in this specification. Vendors or organisations may
derive more concrete classes or define different top-level classes.

3.1.4
ConditionBranch
specific state of a Condition

Note 1 to entry: The Server can maintain ConditionBranches for the current state as well as for previous states.

3.1.5
ConditionSource
element which a specific Condition is based upon or related to

Note 1 to entry: Typically, it will be a Variable representing a process tag (e.g. FIC101) or an Object representing
a device or subsystem.

In Events generated for Conditions, the SourceNode Property (inherited from the BaseEventType) will contain the
NodeId of the ConditionSource.

3.1.6
confirm
operator action informing the Server that a corrective action has been taken to address the
cause of the Alarm

3.1.7
disable
system is configured such that the Alarm will not be generated even though the base Alarm
Condition is present

Note 1 to entry: This definition is copied from EEMUA and is further described in EEMUA.

3.1.8
operator
special user who is assigned to monitor and control a portion of a process

Note 1 to entry: “A Member of the operations team who is assigned to monitor and control a portion of the
process and is working at the control system’s Console” as defined in EEMUA. In this standard an Operator is a
special user. All descriptions that apply to general users also apply to Operators.

3.1.9
refresh
act of providing an update to an Event Subscription that provides all Alarms which are
considered to be Retained

Note 1 to entry: This concept is further described in EEMUA.

3.1.10
retain
alarm in a state that is interesting for a Client wishing to synchronize its state of Conditions
with the Server’s state.

3.1.11
shelving
facility where the Operator is able to temporarily prevent an Alarm from being displayed to the
Operator when it is causing the Operator a nuisance

Note 1 to entry: A Shelved Alarm will be removed from the list and will not re-annunciate until un-shelved. This
definition is copied from EEMUA..

BS EN 62541-9:2015

 – 12 – IEC 62541-9:2015 © IEC 2015

3.1.12
suppress
act of determining whether an Alarm should not occur

Note 1 to entry: “An Alarm is suppressed when logical criteria are applied to determine that the Alarm should not
occur, even though the base Alarm Condition (e.g. Alarm setting exceeded) is present” as defined in EEMUA.

3.2 Abbreviations and symbols
A&E Alarm&Event (as used for OPC COM)
COM (Microsoft Windows) Component Object Model
DA Data Access
UA Unified Architecture

3.3 Used data types

The following tables describe the data types that are used throughout this standard. These
types are separated into two tables. Base data types defined in IEC 62541-3 are given in
Table 1. The base types and data types defined in IEC 62541-4 are given in Table 2.

Table 1 – Parameter Types defined in IEC 62541-3

Parameter Type
Argument
BaseDataType
NodeId
LocalizedText
Boolean
ByteString
Double
Duration
String
UInt16
Int32
UtcTime

Table 2 – Parameter Types defined in IEC 62541-4

Parameter Type
IntegerId
StatusCode

4 Concepts

4.1 General

This standard defines an Information Model for Conditions, Dialog Conditions, and Alarms
including acknowledgement capabilities. It is built upon and extends base Event handling
which is defined in IEC 62541-3, IEC 62541-4 and IEC 62541-5. This Information Model can
also be extended to support the additional needs of specific domains. The details of what
aspects of the Information Model are supported are provided via Profiles (see IEC 62541-7). It
is expected that systems will provide historical Events and Conditions via the standard
Historical Access framework (see IEC 62541-11).

4.2 Conditions

Conditions are used to represent the state of a system or one of its components. Some
common examples are:

• a temperature exceeding a configured limit;

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 13 –

• a device needing maintenance;

• a batch process that requires a user to confirm some step in the process before
proceeding.

Each Condition instance is of a specific ConditionType. The ConditionType and derived types
are sub-types of the BaseEventType (see IEC 62541-3 and IEC 62541-5). This part defines
types that are common across many industries. It is expected that vendors or other
standardisation groups will define additional ConditionTypes deriving from the common base
types defined in this part. The ConditionTypes supported by a Server are exposed in the
AddressSpace of the Server.

Condition instances are specific implementations of a ConditionType. It is up to the Server
whether such instances are also exposed in the Server’s AddressSpace. Subclause 4.10
provides additional background about Condition instances. Condition instances shall have a
unique identifier to differentiate them from other instances. This is independent of whether
they are exposed in the AddressSpace.

As mentioned above, Conditions represent the state of a system or one of its components. In
certain cases, however, previous states that still need attention also have to be maintained.
ConditionBranches are introduced to deal with this requirement and distinguish current state
and previous states. Each ConditionBranch has a BranchId that differentiates it from other
branches of the same Condition instance. The ConditionBranch which represents the current
state of the Condition (the trunk) has a Null BranchId. Servers can generate separate Event
Notifications for each branch. When the state represented by a ConditionBranch does not
need further attention, a final Event Notification for this branch will have the Retain Property
set to False. Subclause 4.4 provides more information and use cases. Maintaining previous
states and therefore also the support of multiple branches is optional for Servers.

Conceptually, the lifetime of the Condition instance is independent of its state. However,
Servers may provide access to Condition instances only while ConditionBranches exist.

The base Condition state model is illustrated in Figure 1. It is extended by the various
Condition subtypes defined in this standard and may be further extended by vendors or other
standardisation groups. The primary states of a Condition are disabled and enabled. The
Disabled state is intended to allow Conditions to be turned off at the Server or below the
Server (in a device or some underlying system). The Enabled state is normally extended with
the addition of sub-states.

Figure 1 – Base Condition State Model

A transition into the Disabled state results in a Condition Event however no subsequent Event
Notifications are generated until the Condition returns to the Enabled state.

Disabled

Enabled

IEC

BS EN 62541-9:2015

 – 14 – IEC 62541-9:2015 © IEC 2015

When a Condition enters the Enabled state, that transition and all subsequent transitions
result in Condition Events being generated by the Server.

If Auditing is supported by a Server, the following Auditing related action shall be performed.
The Server will generate AuditEvents for Enable and Disable operations (either through a
Method call or some Server / vendor – specific means), rather than generating an AuditEvent
Notification for each Condition instance being enabled or disabled. For more information, see
the definition of AuditConditionEnableEventType in 5.10.2. AuditEvents are also generated for
any other Operator action that results in changes to the Conditions.

4.3 Acknowledgeable Conditions

AcknowledgeableConditions are sub-types of the base ConditionType.
AcknowledgeableConditions expose states to indicate whether a Condition has to be
acknowledged or confirmed.

An AckedState and a ConfirmedState extend the EnabledState defined by the Condition. The
state model is illustrated in Figure 2. The enabled state is extended by adding the AckedState
and (optionally) the ConfirmedState.

Figure 2 – AcknowledgeableConditions State Model

Acknowledgment of the transition may come from the Client or may be due to some logic
internal to the Server. For example, acknowledgment of a related Condition may result in this
Condition becoming acknowledged, or the Condition may be set up to automatically
acknowledge itself when the acknowledgeable situation disappears.

Two Acknowledge state models are supported by this standard. Either of these state models
can be extended to support more complex acknowledgement situations.

The basic Acknowledge state model is illustrated in Figure 3. This model defines an
AckedState. The specific state changes that result in a change to the state depend on a
Server’s implementation. For example, in typical Alarm models the change is limited to a
transition to the Active state or transitions within the Active state. More complex models
however can also allow for changes to the AckedState when the Condition transitions to an
inactive state.

Disabled

Enabled

ConfirmedState
= TRUE

AckedState = TRUE

ConfirmedState
= FALSE

AckedState = FALSE

IEC

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 15 –

Figure 3 – Acknowledge State Model

A more complex state model which adds a confirmation to the basic Acknowledge is illustrated
in Figure 4. The Confirmed Acknowledge model is typically used to differentiate between
acknowledging the presence of a Condition and having done something to address the
Condition. For example an Operator receiving a motor high temperature Notification calls the
Acknowledge Method to inform the Server that the high temperature has been observed. The
Operator then takes some action such as lowering the load on the motor in order to reduce
the temperature. The Operator then calls the Confirm Method to inform the Server that a
corrective action has been taken.

Figure 4 – Confirmed Acknowledge State Model

4.4 Previous states of Conditions

Some systems require that previous states of a Condition are preserved for some time. A
common use case is the acknowledgement process. In certain environments it is required to
acknowledge both the transition into Active state and the transition into an inactive state.
Systems with strict safety rules sometimes require that every transition into Active state has
to be acknowledged. In situations where state changes occur in short succession there can be
multiple unacknowledged states and the Server has to maintain ConditionBranches for all
previous unacknowledged states. These branches will be deleted after they have been
acknowledged or if they reached their final state.

Multiple ConditionBranches can also be used for other use cases where snapshots of
previous states of a Condition require additional actions.

Confirmed by Server

Confirm Method

Acknowledged Unacknowledged

Acknowledge By Server

Acknowledge Method

Unconfirmed Confirmed

Server restricts to
Unconfirmed until
Acknowledged

IEC

AckedState = TRUE

AckedState = FALSE

Ack by
server

Acknowledge
method

IEC

BS EN 62541-9:2015

 – 16 – IEC 62541-9:2015 © IEC 2015

4.5 Condition state synchronization

When a Client subscribes for Events, the Notification of transitions will begin at the time of the
Subscription. The currently existing state will not be reported. This means for example that
Clients are not informed of currently Active Alarms until a new state change occurs.

Clients can obtain the current state of all Condition instances that are in an interesting state,
by requesting a Refresh for a Subscription. It should be noted that Refresh is not a general
replay capability since the Server is not required to maintain an Event history.

Clients request a Refresh by calling the ConditionRefresh Method. The Server will respond
with a RefreshStartEvent. This Event is followed by the Retained Conditions. The Server may
also send new Event Notifications interspersed with the Refresh related Event Notifications.
After the Server is done with the Refresh, a RefreshEndEvent is issued marking the
completion of the Refresh. Clients shall check for multiple Event Notifications for a
ConditionBranch to avoid overwriting a new state delivered together with an older state from
the Refresh process. If a ConditionBranch exists, then the current Condition shall be reported.
This is true even if the only interesting item regarding the Condition is that ConditionBranches
exist. This allows a Client to accurately represent the current Condition state.

A Client that wishes to display the current status of Alarms and Conditions (known as a
“current Alarm display”) would use the following logic to process Refresh Event Notifications.
The Client flags all Retained Conditions as suspect on reception of the Event of the
RefreshStartEvent. The Client adds any new Events that are received during the Refresh
without flagging them as suspect. The Client also removes the suspect flag from any Retained
Conditions that are returned as part of the Refresh. When the Client receives a
RefreshEndEvent, the Client removes any remaining suspect Events, since they no longer
apply.

The following items should be noted with regard to ConditionRefresh:

• As described in 4.4 some systems require that previous states of a Condition are
preserved for some time. Some Servers – in particular if they require
acknowledgement of previous states – will maintain separate ConditionBranches for
prior states that still need attention.
ConditionRefresh shall issue Event Notifications for all interesting states (current and
previous) of a Condition instance and Clients can therefore receive more than one
Event for a Condition instance with different BranchIds.

• Under some circumstances a Server may not be capable of ensuring the Client is fully
in sync with the current state of Condition instances. For example if the underlying
system represented by the Server is reset or communications are lost for some period
of time the Server may need to resynchronize itself with the underlying system. In
these cases the Server shall send an Event of the RefreshRequiredEventType to
advise the Client that a Refresh may be necessary. A Client receiving this special
Event should initiate a ConditionRefresh as noted in this clause.

• To ensure a Client is always informed, the three special EventTypes
(RefreshEndEventType, RefreshStartEventType and RefreshRequiredEventType)
ignore the Event content filtering associated with a Subscription and will always be
delivered to the Client.

4.6 Severity, Quality, and Comment

Comment, Severity and Quality are important elements of Conditions and any change to them
will cause Event Notifications.

The Severity of a Condition is inherited from the base Event model defined in IEC 62541-5. It
indicates the urgency of the Condition and is also commonly called ‘priority’, especially in
relation to Alarms in the ProcessConditionClass.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 17 –

A Comment is a user generated string that is to be associated with a certain state of a
Condition.

Quality refers to the quality of the data value(s) upon which this Condition is based. Since a
Condition is usually based on one or more Variables, the Condition inherits the quality of
these Variables. E.g., if the process value is “Uncertain”, the “LevelAlarm” Condition is also
questionable. If more than one variable is represented by a given condition or if the condition
is from an underlining system and no direct mapping to a variable is available, it is up to the
application to determine what quality is displayed as part of the condition.

4.7 Dialogs

Dialogs are ConditionTypes used by a Server to request user input. They are typically used
when a Server has entered some state that requires intervention by a Client. For example a
Server monitoring a paper machine indicates that a roll of paper has been wound and is ready
for inspection. The Server would activate a Dialog Condition indicating to the user that an
inspection is required. Once the inspection has taken place the user responds by informing
the Server of an accepted or unaccepted inspection allowing the process to continue.

4.8 Alarms

Alarms are specializations of AcknowledgeableConditions that add the concepts of an Active
state, a Shelving state and a Suppressed state to a Condition. The state model is illustrated in
Figure 5

Figure 5 – Alarm State Machine Model

Disabled

Active = TRUE

Enabled

Active = FALSE

Suppressed = TRUE Suppressed = FALSE

Shelved Unshelved

ConfirmedState
= TRUE

AckedState = TRUE

ConfirmedState
= FALSE

AckedState = FALSE

IEC

BS EN 62541-9:2015

 – 18 – IEC 62541-9:2015 © IEC 2015

An Alarm in the Active state indicates that the situation the Condition is representing currently
exists. When an Alarm is an inactive state it is representing a situation that has returned to a
normal state.

Some Alarm subtypes introduce sub-states of the Active state. For example an Alarm
representing a temperature may provide a high level state as well as a critically high state
(see following Clause).

The Shelving state can be set by an Operator via OPC UA Methods. The Suppressed state is
set internally by the Server due to system specific reasons. Alarm systems typically
implement the Suppress and Shelve features to help keep Operators from being overwhelmed
during Alarm “storms” by limiting the number of Alarms an Operator sees on a current Alarm
display. This is accomplished by setting the SuppressedOrShelved flag on second order
dependent Alarms and/or Alarms of less severity, leading the Operator to concentrate on the
most critical issues.

The Shelved and Suppressed states differ from the Disabled state in that Alarms are still fully
functional and can be included in Subscription Notifications to a Client.

4.9 Multiple Active States

In some cases it is desirable to further define the Active state of an Alarm by providing a sub-
state machine for the Active State. For example a multi-state level Alarm when in the Active
state may be in one of the following sub-states: LowLow, Low, High or HighHigh. The state
model is illustrated in Figure 6.

Figure 6 – Multiple Active States Example

With the multi-state Alarm model, state transitions among the sub-states of Active are allowed
without causing a transition out of the Active state.

To accommodate different use cases both a (mutually) exclusive and a non-exclusive model
are supported.

Active = FALSE

Active = TRUE

HighHigh LowLow

High Low

IEC

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 19 –

Exclusive means that the Alarm can only be in one sub-state at a time. If for example a
temperature exceeds the HighHigh limit the associated exclusive LevelAlarm will be in the
HighHigh sub-state and not in the High sub-state.

Some Alarm systems, however, allow multiple sub-states to exist in parallel. This is called
non-exclusive. In the previous example where the temperature exceeds the HighHigh limit a
non-exclusive LevelAlarm will be both in the High and the HighHigh sub-state.

4.10 Condition Instances in the Address Space

Because Conditions always have a state (Enabled or Disabled) and possibly many sub-states
it makes sense to have instances of Conditions present in the AddressSpace. If the Server
exposes Condition instances they usually will appear in the AddressSpace as components of
the Objects that “own” them. For example a temperature transmitter that has a built-in high
temperature Alarm would appear in the AddressSpace as an instance of some temperature
transmitter Object with a HasComponent Reference to an instance of a LevelAlarmType.

The availability of instances allows Data Access Clients to monitor the current Condition state
by subscribing to the Attribute values of Variable Nodes.

While exposing Condition instances in the AddressSpace is not always possible, doing so
allows for direct interaction (read, write and Method invocation) with a specific Condition
instance. For example, if a Condition instance is not exposed, there is no way to invoke the
Enable or Disable Method for the specific Condition instance.

4.11 Alarm and Condition Auditing

The OPC UA Standards include provisions for auditing. Auditing is an important security and
tracking concept. Audit records provide the “Who”, “When” and “What” information regarding
user interactions with a system. These audit records are especially important when Alarm
management is considered. Alarms are the typical instrument for providing information to a
user that something needs the user’s attention. A record of how the user reacts to this
information is required in many cases. Audit records are generated for all Method calls that
affect the state of the system, for example an Acknowledge Method call would generate an
AuditConditionAck Event.

The standard AuditEventTypes defined in IEC 62541-5 already includes the fields required for
Condition related audit records. To allow for filtering and grouping, this standard defines a
number of sub-types of the AuditEventTypes but without adding new fields to them.

This standard describes the AuditEventType that each Method is required to generate. For
example, the Disable Method has an AlwaysGeneratesEvent Reference to an
AuditConditionEnableEventType. An Event of this type shall be generated for every invocation
of the Method. The audit Event describes the user interaction with the system, in some cases
this interaction may affect more than one Condition or be related to more than one state.

5 Model

5.1 General

The Alarm and Condition model extends the OPC UA base Event model by defining various
Event Types based on the BaseEventType. All of the Event Types defined in this standard
can be further extended to form domain or Server specific Alarm and Condition Types.

Instances of Alarm and Condition Types may be optionally exposed in the AddressSpace in
order to allow direct access to the state of an Alarm or Condition.

BS EN 62541-9:2015

 – 20 – IEC 62541-9:2015 © IEC 2015

The following subclauses define the OPC UA Alarm and Condition Types. Figure 7 informally
describes the hierarchy of these Types. Subtypes of the LimitAlarmType and the
DiscreteAlarmType are not shown. The full AlarmConditionType hierarchy can be found in
Figure 11.

Defined in [UA Part 5]
BaseEvent

Type

Acknowledgeable
Condition Type

RefreshStart
EventType

SystemEvent
Type

RefreshRequired
EventType

RefreshEnd
EventType

AlarmCondition
Type

DialogCondition
Type

ConditionType

StateMachine
Type

ExclusiveLimit
StateMachineType

Shelved
StateMachineType

LimitAlarm
Type

DiscreteAlarm
Type

OffNormalAlarm
Type

SystemOffNormal
AlarmType

IEC

Figure 7 – ConditionType Hierarchy

5.2 Two-State State Machines

Most states defined in this standard are simple – i.e. they are either TRUE or FALSE. The
TwoStateVariableType is introduced specifically for this use case. More complex states are
modelled by using a StateMachineType defined in IEC 62541-5.

The TwoStateVariableType is derived from the StateVariableType defined in IEC 62541-5 and
formally defined in Table 3.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 21 –

Table 3 – TwoStateVariableType Definition

Attribute Value
BrowseName TwoStateVariableType
DataType LocalizedText
ValueRank -1 (-1 = Scalar)
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition Modelling

Rule
Subtype of the StateVariableType defined in IEC 62541-5.
Note that a Reference to this subtype is not shown in the definition of the StateVariableType
HasProperty Variable Id Boolean PropertyType Mandatory
HasProperty Variable TransitionTime UtcTime PropertyType Optional
HasProperty Variable EffectiveTransitionTime UtcTime PropertyType Optional
HasProperty Variable TrueState LocalizedText PropertyType Optional
HasProperty Variable FalseState LocalizedText PropertyType Optional
HasTrueSubState StateMachine or

TwoStateVariableType
<StateIdentifier> Defined in 5.4.2 Optional

HasFalseSubState StateMachine or
TwoStateVariableType

<StateIdentifier> Defined in 5.4.3 Optional

The Value Attribute of a TwoStateVariable contains the current state as a human readable
name. The EnabledState for example, might contain the name “Enabled” when TRUE and
“Disabled” when FALSE.

Id is inherited from the StateVariableType and overridden to reflect the required DataType
(Boolean). The value shall be the current state, i.e. either TRUE or FALSE.

TransitionTime specifies the time when the current state was entered.

EffectiveTransitionTime specifies the time when the current state or one of its sub states was
entered. If, for example, a LevelAlarm is active and – while active – switches several times
between High and HighHigh, then the TransitionTime stays at the point in time where the
Alarm became active whereas the EffectiveTransitionTime changes with each shift of a sub
state.

The optional Property EffectiveDisplayName from the StateVariableType is used if a state has
sub states. It contains a human readable name for the current state after taking the state of
any SubStateMachines in account. As an example, the EffectiveDisplayName of the
EnabledState could contain “Active/HighHigh” to specify that the Condition is active and has
exceeded the HighHigh limit.

Other optional Properties of the StateVariableType have no defined meaning for
TwoStateVariables.

TrueState and FalseState contain the localized string for the TwoStateVariable value when its
Id Property has the value TRUE or FALSE, respectively. Since the two Properties provide
meta-data for the Type, Servers may not allow these Properties to be selected in the Event
filter for a monitored item. Clients can use the Read Service to get the information from the
specific ConditionType.

A HasTrueSubState Reference is used to indicate that the TRUE state has sub states.

A HasFalseSubState Reference is used to indicate that the FALSE state has sub states.

5.3 Condition Variables

Various information elements of a Condition are not considered to be states. However, a
change in their value is considered important and supposed to trigger an Event Notification.
These information elements are called ConditionVariables.

BS EN 62541-9:2015

 – 22 – IEC 62541-9:2015 © IEC 2015

ConditionVariables are represented by a ConditionVariableType formally defined in Table 4.

Table 4 – ConditionVariableType Definition

Attribute Value
BrowseName ConditionVariableType
DataType BaseDataType
ValueRank -2 (-2 = Any)
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition Modelling

Rule
Subtype of the BaseDataVariableType defined in IEC 62541-5.
HasProperty Variable SourceTimestamp UtcTime PropertyType Mandatory

SourceTimestamp indicates the time of the last change of the Value of this ConditionVariable.
It shall be the same time that would be returned from the Read Service inside the DataValue
structure for the ConditionVariable Value Attribute.

5.4 Substate Reference Types

5.4.1 General

This Clause defines ReferenceTypes that are needed beyond those already specified as part
of IEC 62541-3 and IEC 62541-5 to extend TwoState state machines with substates. These
References will only exist when substates are available.For example if a TwoState machine
is in a FALSE State, then any SubStates referenced from the TRUE state will not be available.
If an Event is generated while in the FALSE state and information from the TRUE state
substate is part of the data that is to be reported than this data would be reported as a NULL.
With this approach TwoStateVariables can be extended with subordinate state machines in a
similar fashion to the StateMachineType defined in IEC 62541-5.

5.4.2 HasTrueSubState ReferenceType

The HasTrueSubState ReferenceType is a concrete ReferenceType that can be used directly.
It is a subtype of the NonHierarchicalReferences ReferenceType.

The semantics indicate that the sub state (the target Node) is a subordinate state of the TRUE
super state. If more than one state within a Condition is a sub state of the same super state
(i.e. several HasTrueSubState References exist for the same super state) they are all treated
as independent substates. The representation in the AddressSpace is specified in Table 5.

The SourceNode of the Reference shall be an instance of a TwoStateVariableType and the
TargetNode shall either be an instance of a TwoStateVariableType or an instance of a
subtype of a StateMachineType.

It is not required to provide the HasTrueSubState Reference from super state to sub state, but
it is required that the sub state provides the inverse Reference (IsTrueSubStateOf) to its
super state.

Table 5 – HasTrueSubState ReferenceType

Attributes Value
BrowseName HasTrueSubState
InverseName IsTrueSubStateOf
Symmetric False
IsAbstract False
References NodeClass BrowseName Comment

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 23 –

5.4.3 HasFalseSubState ReferenceType

The HasFalseSubState ReferenceType is a concrete ReferenceType that can be used
directly. It is a subtype of the NonHierarchicalReferences ReferenceType.

The semantics indicate that the sub state (the target Node) is a subordinate state of the
FALSE super state. If more than one state within a Condition is a sub state of the same super
state (i.e. several HasFalseSubState References exist for the same super state) they are all
treated as independent substates. The representation in the AddressSpace is specified in
Table 6.

The SourceNode of the Reference shall be an instance of a TwoStateVariableType and the
TargetNode shall either be an instance of a TwoStateVariableType or an instance of a
subtype of a StateMachineType.

It is not required to provide the HasFalseSubState Reference from super state to sub state,
but it is required that the sub state provides the inverse Reference (IsFalseSubStateOf) to its
super state.

Table 6 – HasFalseSubState ReferenceType

Attributes Value
BrowseName HasFalseSubState
InverseName IsFalseSubStateOf
Symmetric False
IsAbstract False
References NodeClass BrowseName Comment

5.5 Condition Model

5.5.1 General

The Condition model extends the Event model by defining the ConditionType. The
ConditionType introduces the concept of states differentiating it from the base Event model.
Unlike the BaseEventTypes, Conditions are not transient. The ConditionType is further
extended into Dialog and AcknowledgeableConditionTypes, each of which have their own sub-
types.

The Condition model is illustrated in Figure 8 and formally defined in the subsequent tables. It
is worth noting that this figure, like all figures in this standard, is not intended to be complete.
Rather, the figures only illustrate information provided by the formal definitions.

BS EN 62541-9:2015

 – 24 – IEC 62541-9:2015 © IEC 2015

ConditionType

PropertyType:
Retain

ConditionRefresh

TwoStateVariableType:
EnableState

ConditionVariableType:
Quality

Disable

ClientUserId

AddComment
ConditionVariableType:

Comment

BaseEventType

Enable

Acknowledgeable
ConditionType

Dialog
ConditionType

ConditionVariableType:
LastSeverity

PropertyType:
BranchId

PropertyType:
ConditionName

PropertyType:
ConditionClassId

PropertyType:
ConditionClassName

IEC

Figure 8 – Condition Model

5.5.2 ConditionType

The ConditionType defines all general characteristics of a Condition. All other ConditionTypes
derive from it. It is formally defined in Table 7. The FALSE state of the EnabledState shall not
be extended with a sub state machine.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 25 –

Table 7 – ConditionType Definition

Attribute Value
BrowseName ConditionType
IsAbstract True
References NodeClass BrowseName DataType TypeDefinition ModellingRule
Subtype of the BaseEventType defined in IEC 62541-5
HasSubtype ObjectType DialogConditionType Defined in 5.6.2
HasSubtype ObjectType AcknowledgeableConditionType Defined in 5.7.2

HasProperty Variable ConditionClassId NodeId PropertyType Mandatory
HasProperty Variable ConditionClassName LocalizedText PropertyType Mandatory
HasProperty Variable ConditionName String PropertyType Mandatory
HasProperty Variable BranchId NodeId PropertyType Mandatory
HasProperty Variable Retain Boolean PropertyType Mandatory
HasComponent Variable EnabledState LocalizedText TwoStateVariableType Mandatory
HasComponent Variable Quality StatusCode ConditionVariableType Mandatory
HasComponent Variable LastSeverity UInt16 ConditionVariableType Mandatory
HasComponent Variable Comment LocalizedText ConditionVariableType Mandatory
HasProperty Variable ClientUserId String PropertyType Mandatory

HasComponent Method Disable Defined in 5.5.4 Mandatory
HasComponent Method Enable Defined in 5.5.5 Mandatory
HasComponent Method AddComment Defined in 5.5.6 Mandatory
HasComponent Method ConditionRefresh Defined in 5.5.7 None

The ConditionType inherits all Properties of the BaseEventType. Their semantic is defined in
IEC 62541-5. SourceNode identifies the ConditionSource. See 5.12 for more details. If the
ConditionSource is not a Node in the AddressSpace the NodeId is set to null. The
SourceNode is the Node which the condition is associated with, it may be the same as the
InputNode for an alarm, but it may be a separate node. For example a motor, which is a
variable with a value that is an RPM, may be the ConditionSource for Conditions that are
related to the motor as well as a temperature sensor associated with the motor. In the former
the InputNode for the High RPM alarm is the value of the Motor RPM, while in the later the
InputNode of the High Alarm would be the value of the temperature sensor that is associated
with the motor.

ConditionClassId specifies in which domain this Condition is used. It is the NodeId of the
corresponding ConditionClassType. See 5.9 for the definition of ConditionClass and a set of
ConditionClasses defined in this standard. When using this Property for filtering, Clients have
to specify all individual ConditionClassType NodeIds. The OfType operator cannot be applied.
BaseConditionClassType is used as class whenever a Condition cannot be assigned to a
more concrete class.

ConditionClassName provides the display name of the ConditionClassType.

ConditionName identifies the Condition instance that the Event originated from. It can be used
together with the SourceName in a user display to distinguish between different Condition
instances. If a ConditionSource has only one instance of a ConditionType, and the Server has
no instance name, the Server shall supply the ConditionType browse name.

BranchId is Null for all Event Notifications that relate to the current state of the Condition
instance. If BranchId is not Null it identifies a previous state of this Condition instance that still
needs attention by an Operator. If the current ConditionBranch is transformed into a previous
ConditionBranch then the Server needs to assign a non-null BranchId. An initial Event for the
branch will generated with the values of the ConditionBranch and the new BranchId. The
ConditionBranch can be updated many times before it is no longer needed. When the
ConditionBranch no longer requires Operator input the final Event will have Retain set to
FALSE. The retain bit on the current Event is TRUE, as long as any ConditionBranches
require Operator input. See 4.4 for more information about the need for creating and
maintaining previous ConditionBranches and Clause B.1 for an example using branches. The
BranchId DataType is NodeId although the Server is not required to have ConditionBranches

BS EN 62541-9:2015

 – 26 – IEC 62541-9:2015 © IEC 2015

in the Address Space. The use of a NodeId allows the Server to use simple numeric
identifiers, strings or arrays of bytes.

Retain when TRUE describes a Condition (or ConditionBranch) as being in a state that is
interesting for a Client wishing to synchronize its state with the Server’s state. The logic to
determine how this flag is set is Server specific. Typically all Active Alarms would have the
Retain flag set; however, it is also possible for inactive Alarms to have their Retain flag set to
TRUE.

In normal processing when a Client receives an Event with the Retain flag set to FALSE, the
Client should consider this as a ConditionBranch that is no longer of interest, in the case of a
“current Alarm display” the ConditionBranch would be removed from the display.

EnabledState indicates whether the Condition is enabled. EnabledState/Id is TRUE if enabled,
FALSE otherwise. EnabledState/TransitionTime defines when the EnabledState last changed.
Recommended state names are described in Annex A.

A Condition’s EnabledState effects the generation of Event Notifications and as such results
in the following specific behaviour:

• When the Condition instance enters the Disabled state, the Retain Property of this
Condition shall be set to FALSE by the Server to indicate to the Client that the
Condition instance is currently not of interest to Clients.

• When the Condition instance enters the enabled state, the Condition shall be
evaluated and all of its Properties updated to reflect the current values. If this
evaluation causes the Retain Property to transition to TRUE for any ConditionBranch,
then an Event Notification shall be generated for that ConditionBranch.

• The Server may choose to continue to test for a Condition instance while it is
Disabled. However, no Event Notifications will be generated while the Condition
instance is disabled.

• For any Condition that exists in the AddressSpace the Attributes and the following
Variables will continue to have valid values even in the Disabled state; EventId, Event
Type, Source Node, Source Name, Time, and EnabledState. Other properties may no
longer provide current valid values. All Variables that are no longer provided shall
return a status of Bad_ConditionDisabled.

When enabled, changes to the following components shall cause a ConditionType Event
Notification:

• Quality;

• Severity (inherited from BaseEventType);

• Comment.

This may not be the complete list. Sub-Types may define additional Variables that trigger
Event Notifications. In general changes to Variables of the types TwoStateVariableType or
ConditionVariableType trigger Event Notifications.

Quality reveals the status of process values or other resources that this Condition instance is
based upon. If, for example, a process value is “Uncertain”, the associated “LevelAlarm”
Condition is also questionable. Values for the Quality can be any of the OPC StatusCodes
defined in IEC 62541-8 as well as Good, Uncertain and Bad as defined in IEC 62541-4. These
StatusCodes are similar to but slightly more generic than the description of data quality in the
various Fieldbus Specifications. It is the responsibility of the Server to map internal status
information to these codes. A Server which supports no quality information shall return Good.
This quality can also reflect the communication status associated with the system that this
value or resource is based on and from which this Alarm was received. For communication
errors to the underlying system, especially those that result in some unavailable Event fields,
the quality shall be Bad_NoCommunication error.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 27 –

Events are only generated for Conditions that have their Retain field set to true.

LastSeverity provides the previous severity of the ConditionBranch. Initially this Variable
contains a zero value; it will return a value only after a severity change. The new severity is
supplied via the Severity Property which is inherited from the BaseEventType.

Comment contains the last comment provided for a certain state (ConditionBranch). It may
have been provided by an AddComment Method, some other Method or in some other
manner. The initial value of this Variable is null, unless it is provided in some other manner. If
a Method provides as an option the ability to set a Comment, then the value of this Variable is
reset to null if an optional comment is not provided.

ClientUserId is related to the Comment field and contains the identity of the user who inserted
the most recent Comment. The logic to obtain the ClientUserId is defined in IEC 62541-5.

The NodeId of the Condition instance is used as ConditionId. It is not explicitly modelled as a
component of the ConditionType. However, it can be requested with the following
SimpleAttributeOperand, Table 8, in the SelectClause of the EventFilter:

Table 8 – Simple Attribute Operand

Name Type Description
SimpleAttributeOperand
 typeId NodeId NodeId of the ConditionType Node
 browsePath[] QualifiedName empty
 attributeId IntegerId Id of the NodeId Attribute

5.5.3 Condition and Branch Instances

Conditions are Objects which have a state which changes over time. Each Condition instance
has the ConditionId as identifier which uniquely identifies it within the Server.

A Condition instance may be an Object that appears in the Server Address Space. If this is
the case the ConditionId is the NodeId for the Object.

The state of a Condition instance at any given time is the set values for the Variables that
belong to the Condition instance. If one or more Variable values change the Server generates
an Event with a unique EventId.

If a Client calls Refresh the Server will report the current state of a Condition instance by re-
sending the last Event (i.e. the same EventId and Time is sent).

A ConditionBranch is a copy of the Condition instance state that can change independently of
the current Condition instance state. Each Branch has an identifier called a BranchId which is
unique among all active Branches for a Condition instance. Branches are typically not visible
in the Address Space and this standard does not define a standard way to make them visible.

5.5.4 Disable Method

Disable used to change a Condition instance to the Disabled state. Normally, the MethodId
passed to the Call Service is found by browsing the Condition instance in the AddressSpace.
However, some Servers do not expose Condition instances in the AddressSpace. Therefore
all Servers shall allow Clients to call the Disable Method by specifying ConditionId as the
ObjectId and the well known NodeId of the Method declaration on the ConditionType as the
MethodId.

Signature

Disable();

BS EN 62541-9:2015

 – 28 – IEC 62541-9:2015 © IEC 2015

Method Result Codes in Table 9 (defined in Call Service)

Table 9 – Disable Result Codes

ResultCode Description
Bad_ConditionAlreadyDisabled See Table 70 for the description of this result code.

Table 10 specifies the AddressSpace representation for the Disable Method.

Table 10 – Disable Method AddressSpace Definition

Attribute Value
BrowseName Disable
References NodeClass BrowseName DataType TypeDefinition ModellingRule
AlwaysGeneratesEvent Defined in 5.10.2 AuditConditionEnableEventType

5.5.5 Enable Method

Enable is used to change a Condition instance to the enabled state. Normally, the MethodId
passed to the Call Service is found by browsing the Condition instance in the AddressSpace.
However, some Servers do not expose Condition instances in the AddressSpace. Therefore
all Servers shall allow Clients to call the Enable Method by specifying ConditionId as the
ObjectId and the well known NodeId of the Method declaration on the ConditionType as the
MethodId. If the Condition instance is not exposed, than it may be difficult for a Client to
determine the ConditionId for a disabled Condition.

Signature

Enable();

Method Result Codes in Table 11 (defined in Call Service)

Table 11 – Enable Result Codes

ResultCode Description
Bad_ConditionAlreadyEnabled See Table 70 for the description of this result code.

Table 12 specifies the AddressSpace representation for the Enable Method.

Table 12 – Enable Method AddressSpace Definition

Attribute Value
BrowseName Enable
References NodeClass BrowseName DataType TypeDefinition ModellingRule
AlwaysGeneratesEvent Defined in 5.10.2 AuditConditionEnableEventType

5.5.6 AddComment Method

AddComment is used to apply a comment to a specific state of a Condition instance.
Normally, the MethodId passed to the Call Service is found by browsing the Condition
instance in the AddressSpace. However, some Servers do not expose Condition instances in
the AddressSpace. Therefore all Servers shall allow Clients to call the AddComment Method
by specifying ConditionId as the ObjectId and the well known NodeId of the Method
declaration on the ConditionType as the MethodId. The Method cannot be called on the
ConditionType Node.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 29 –

Signature

AddComment(
 [in] ByteString EventId
 [in] LocalizedText Comment
);

The parameters are defined in Table 13

Table 13 – AddComment Arguments

Argument Description
EventId EventId identifying a particular Event Notification where a state was reported for a

Condition.
Comment A localized text to be applied to the Condition.

Method Result Codes in Table 14 (defined in Call Service).

Table 14 – AddComment result Codes

ResultCode Description
Bad_MethodInvalid See IEC 62541-4 for the description of this result code.

The addressed Condition does not support adding comments.
Bad_EventIdUnknown See Table 70 for the description of this result code.
Bad_NodeIdUnknown See IEC 62541-4 for the description of this result code.

Used to indicate that the specified Condition is not valid or that the Method was called
on the ConditionType Node.

Comments

Comments are added to Event occurrences identified via an EventId. EventIds where the
related EventType does not support Comments at all are rejected.

A ConditionEvent – where the Comment Variable contains this text – will be sent for the
identified state. If a comment is added to a previous state (i.e. a state for which the Server
has created a branch), the BranchId and all Condition values of this branch will be reported.

Table 15 specifies the AddressSpace representation for the AddComment Method.

Table 15 – AddComment Method AddressSpace Definition

Attribute Value
BrowseName AddComment
References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument[] PropertyType Mandatory
AlwaysGenerates
Event

Defined in 5.10.4 AuditConditionCommentEventType

5.5.7 ConditionRefresh Method

ConditionRefresh allows a Client to request a Refresh of all Condition instances that currently
are in an interesting state (they have the Retain flag set). This includes previous states of a
Condition instance for which the Server maintains Branches. A Client would typically invoke
this Method when it initially connects to a Server and following any situations, such as
communication disruptions, in which it would require resynchronization with the Server. This
Method is only available on the ConditionType or its subtypes. To invoke this Method, the call
shall pass the well known MethodId of the Method on the ConditionType and the ObjectId
shall be the well known ObjectId of the ConditionType Object.

BS EN 62541-9:2015

 – 30 – IEC 62541-9:2015 © IEC 2015

Signature

ConditionRefresh(
 [in] IntegerId SubscriptionId
);

The parameters are define in Table 16

Table 16 – ConditionRefresh Parameters

Argument Description
SubscriptionId A valid Subscription Id of the Subscription to be refreshed.

Method Result Codes in Table 17 (defined in Call Service).

Table 17 – ConditionRefresh ReturnCodes

ResultCode Description
Bad_SubscriptionIdInvalid See IEC 62541-4 for the description of this result code
Bad_RefreshInProgress See Table 70 for the description of this result code

Comments

Subclause 4.5 describes the concept, use cases and information flow in more detail.

The input argument provides a Subscription identifier indicating which Client Subscription
shall be refreshed. If the Subscription is accepted the Server will react as follows:

1) The Server issues a RefreshStartEvent (defined in 5.11.2) marking the start of
Refresh. A copy of the RefreshStartEvent is queued into the Event stream for every
Notifier MonitoredItem in the Subscription. Each of the Event copies shall contain the
same EventId.

2) The Server issues Event Notifications of any Retained Conditions and Retained
Branches of Conditions that meet the Subscriptions content filter criteria. Note that the
EventId for such a refreshed Notification shall be identical to the one for the original
Notification.

3) The Server may intersperse new Event Notifications that have not been previously
issued to the notifier along with those being sent as part of the Refresh request.
Clients shall check for multiple Event Notifications for a ConditionBranch to avoid
overwriting a new state delivered together with an older state from the Refresh
process.

4) The Server issues a RefreshEndEvent (defined in 5.11.3) to signal the end of the
Refresh. A copy of the RefreshEndEvent is queued into the Event stream for every
Notifier MonitoredItem in the Subscription. Each of the Events copies shall contain the
same EventId.

If more than one Subscription is to be refreshed, then the standard call Service array
processing can be used.

As mentioned above, ConditionRefresh shall also issue Event Notifications for prior states if
they still need attention. In particular this is true for Condition instances where previous states
still need acknowledgement or confirmation.

Table 18 specifies the AddressSpace representation for the ConditionRefresh Method.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 31 –

Table 18 – ConditionRefresh Method AddressSpace Definition

Attribute Value
BrowseName ConditionRefresh
References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument[] PropertyType Mandatory
AlwaysGeneratesEvent Defined in 5.11.2 RefreshStartEvent
AlwaysGeneratesEvent Defined in 5.11.3 RefreshEndEvent

5.6 Dialog Model

5.6.1 General

The Dialog Model is an extension of the Condition model used by a Server to request user
input. It provides functionality similar to the standard Message dialogs found in most operating
systems. The model can easily be customized by providing Server specific response options
in the ResponseOptionSet and by adding additional functionality to derived Condition Types.

5.6.2 DialogConditionType

The DialogConditionType is used to represent Conditions as dialogs. It is illustrated in
Figure 9 and formally defined in Table 19.

LastResponse

DialogConditionType

ResponseOptionSet

TwoStateVariableType:
DialogState

Respond

OkResponse

ConditionType

EnableState

IsTrueSubState

Prompt

DefaultResponse CancelResponse

IEC

Figure 9 – DialogConditionType Overview

Table 19 – DialogConditionType Definition

Attribute Value
BrowseName DialogConditionType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition Modelling

Rule
Subtype of the ConditionType defined in 5.5.2
HasComponent Variable DialogState LocalizedText TwoStateVariableType Mandatory
HasProperty Variable Prompt LocalizedText PropertyType Mandatory
HasProperty Variable ResponseOptionSet LocalizedText [] PropertyType Mandatory
HasProperty Variable DefaultResponse Int32 PropertyType Mandatory
HasProperty Variable LastResponse Int32 PropertyType Mandatory
HasProperty Variable OkResponse Int32 PropertyType Mandatory
HasProperty Variable CancelResponse Int32 PropertyType Mandatory
HasComponent Method Respond Defined in 5.6.3. Mandatory

The DialogConditionType inherits all Properties of the ConditionType.

BS EN 62541-9:2015

 – 32 – IEC 62541-9:2015 © IEC 2015

DialogState/Id when set to TRUE indicates that the Dialog is active and waiting for a
response. Recommended state names are described in Annex A.

Prompt is a dialog prompt to be shown to the user.

ResponseOptionSet specifies the desired set of responses as array of LocalizedText. The
index in this array is used for the corresponding fields like DefaultResponse, LastResponse
and SelectedOption in the Respond Method. The recommended localized names for the
common options are described in Annex A.

Typical combinations of response options are

• OK

• OK, Cancel

• Yes, No, Cancel

• Abort, Retry, Ignore

• Retry, Cancel

• Yes, No

DefaultResponse identifies the response option that should be shown as default to the user. It
is the index in the ResponseOptionSet array. If no response option is the default, the value of
the Property is -1.

LastResponse contains the last response provided by a Client in the Respond Method. If no
previous response exists then the value of the Property is -1.

OkResponse provides the index of the OK option in the ResponseOptionSet array. This
choice is the response that will allow the system to proceed with the operation described by
the prompt. This allows a Client to identify the OK option if a special handling for this option is
available. If no OK option is available the value of this Property is -1.

CancelResponse provides the index of the response in the ResponseOptionSet array that will
cause the Dialog to go into the inactive state without proceeding with the operation described
by the prompt. This allows a Client to identify the Cancel option if a special handling for this
option is available. If no Cancel option is available the value of this Property is -1.

5.6.3 Respond Method

Respond is used to pass the selected response option and end the dialog. DialogState/Id will
return to FALSE.

Signature

Respond(
 [in] Int32 SelectedResponse
);

The parameters are defined in Table 20.

Table 20 – Repond Parameters

Argument Description
SelectedResponse Selected index of the ResponseOptionSet array.

Method Result Codes in Table 21 (defined in Call Service).

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 33 –

Table 21 – Respond ResultCodes

ResultCode Description
Bad_DialogNotActive See Table 70 for the description of this result code.
Bad_DialogResponseInvalid See Table 70 for the description of this result code.

Table 22 specifies the AddressSpace representation for the Respond Method.

Table 22 – Respond Method AddressSpace Definition

Attribute Value
BrowseName Respond
References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument[] PropertyType Mandatory
AlwaysGeneratesEvent Defined in 5.10.5 AuditConditionRespondEventType

5.7 Acknowledgeable Condition Model

5.7.1 General

The Acknowledgeable Condition Model extends the Condition model. States for
acknowledgement and confirmation are added to the Condition model.

AcknowledgeableConditions are represented by the AcknowledgeableConditionType which is
a subtype of the ConditionType. The model is formally defined in the following subclauses.

5.7.2 AcknowledgeableConditionType

The AcknowledgeableConditionType extends the ConditionType by defining acknowledgement
characteristics. It is an abstract type. The AcknowledgeableConditionType is illustrated in
Figure 10 and formally defined in Table 23.

Acknowledgeable
ConditionType

Acknowledge
TwoStateVariableType:

AckedState

TwoStateVariableType:
ConfirmedState

Confirm

ConditionType

EnableState

HasTrueSubState

IEC

Figure 10 – AcknowledgeableConditionType Overview

BS EN 62541-9:2015

 – 34 – IEC 62541-9:2015 © IEC 2015

Table 23 – AcknowledgeableConditionType Definition

Attribute Value
BrowseName AcknowledgeableConditionType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition ModellingRule
Subtype of the ConditionType defined in 5.5.2.
HasSubtype ObjectType AlarmConditionType Defined in 5.8.2

HasComponent Variable AckedState LocalizedText TwoStateVariableType Mandatory
HasComponent Variable ConfirmedState LocalizedText TwoStateVariableType Optional

HasComponent Method Acknowledge Defined in 5.7.3 Mandatory
HasComponent Method Confirm Defined in 5.7.4 Optional

The AcknowledgeableConditionType inherits all Properties of the ConditionType.

AckedState when FALSE indicates that the Condition instance requires acknowledgement for
the reported Condition state. When the Condition instance is acknowledged the AckedState is
set to TRUE. ConfirmedState indicates whether it requires confirmation. Recommended state
names are described in Annex A. The two states are sub-states of the TRUE EnabledState.
See 4.3 for more information about acknowledgement and confirmation models. The EventId
used in the Event Notification is considered the identifier of this state and has to be used
when calling the Methods for acknowledgement or confirmation.

A Server may require that previous states be acknowledged. If the acknowledgement of a
previous state is still open and a new state also requires acknowledgement, the Server shall
create a branch of the Condition instance as specified in 4.4. Clients are expected to keep
track of all ConditionBranches where AckedState/Id is FALSE to allow acknowledgement of
those. See also 5.5.2 for more information about ConditionBranches and the examples in
Clause B.1. The handling of the AckedState and branches also applies to the ConfirmState.

5.7.3 Acknowledge Method

Acknowledge is used to acknowledge an Event Notification for a Condition instance state
where AckedState was set to FALSE. Normally, the MethodId passed to the Call Service is
found by browsing the Condition instance in the AddressSpace. However, some Servers do
not expose Condition instances in the AddressSpace. Therefore all Servers shall allow Clients
to call the Acknowledge Method by specifying ConditionId as the ObjectId and the well known
NodeId of the Method declaration on the AcknowledgeableConditionType as the MethodId.
The Method cannot be called on the AcknowledgeableConditionType Node.

Signature

Acknowledge(
 [in] ByteString EventId
 [in] LocalizedText Comment
);

The parameters are defined in Table 24.

Table 24 – Acknowledge Parameters

Argument Description
EventId EventId identifying a particular Event Notification.

Only Event Notifications where AckedState/Id was FALSE can be acknowledged.
Comment A localized text to be applied to the Condition.

Method Result Codes in Table 25 (defined in Call Service).

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 35 –

Table 25 – Acknowledge result codes

ResultCode Description
Bad_ConditionBranchAlreadyAcked See Table 70 for the description of this result code.
Bad_EventIdUnknown See Table 70 for the description of this result code.
Bad_NodeIdUnknown See IEC 62541-4 for the description of this result code.

Used to indicate that the specified Condition is not valid or that the Method
was called on the ConditionType Node.

Comments

A Server is responsible to ensure that each Event has a unique EventId. This allows Clients to
identify and acknowledge a particular Event Notification.

The EventId identifies a specific Event Notification where a state to be acknowledged was
reported. Acknowledgement and the optional comment will be applied to the state identified
with the EventId. If the comment field is NULL (both locale and text are empty) it will be
ignored and any existing comments will remain unchanged. If the comment is to be reset, an
empty text with a locale shall be provided.

A valid EventId will result in an Event Notification where AckedState/Id is set to TRUE and the
Comment Property contains the text of the optional comment argument. If a previous state is
acknowledged, the BranchId and all Condition values of this branch will be reported. Table 26
specifies the AddressSpace representation for the Acknowledge Method.

Table 26 – Acknowledge Method AddressSpace Definition

Attribute Value
BrowseName Acknowledge
References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument[] PropertyType Mandatory
AlwaysGeneratesEvent Defined in 5.10.5 AuditConditionAcknowledge

EventType

5.7.4 Confirm Method

Confirm is used to confirm an Event Notifications for a Condition instance state where
ConfirmedState was set to FALSE. Normally, the MethodId passed to the Call Service is
found by browsing the Condition instance in the AddressSpace. However, some Servers do
not expose Condition instances in the AddressSpace. Therefore all Servers shall allow Clients
to call the Confirm Method by specifying ConditionId as the ObjectId and the well known
NodeId of the Method declaration on the AcknowledgeableConditionType as the MethodId.
The Method cannot be called on the AcknowledgeableConditionType Node.

Signature

Confirm(
 [in] ByteString EventId
 [in] LocalizedText Comment
);

The parameters are defined in Table 27.

Table 27 – Confirm Method Parameters

Argument Description
EventId EventId identifying a particular Event Notification.

Only Event Notifications where ConfirmedState/Id was TRUE can be confirmed.
Comment A localized text to be applied to the Conditions.

Method Result Codes in Table 28 (defined in Call Service).

BS EN 62541-9:2015

 – 36 – IEC 62541-9:2015 © IEC 2015

Table 28 – Confirm Result Codes

ResultCode Description
Bad_ConditionBranchAlreadyConfirmed See Table 70 for the description of this result code.
Bad_EventIdUnknown See Table 70 for the description of this result code.
Bad_NodeIdUnknown See IEC 62541-4 for the description of this result code.

Used to indicate that the specified Condition is not valid or that the Method
was called on the ConditionType Node.

Comments

A Server is responsible to ensure that each Event has a unique EventId. This allows Clients to
identify and confirm a particular Event Notification.

The EventId identifies a specific Event Notification where a state to be confirmed was
reported. A Comment can be provided which will be applied to the state identified with the
EventId.

A valid EventId will result in an Event Notification where ConfirmedState/Id is set to TRUE and
the Comment Property contains the text of the optional comment argument. If a previous state
is confirmed, the BranchId and all Condition values of this branch will be reported.

Table 29 specifies the AddressSpace representation for the Confirm Method.

Table 29 – Confirm Method AddressSpace Definition

Attribute Value
BrowseName Confirm
References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument[] PropertyType Mandatory
AlwaysGeneratesEvent Defined in 5.10.7 AuditConditionConfirm

EventType

5.8 Alarm Model

5.8.1 General

Figure 11 informally describes the AlarmConditionType, its sub-types and where it is in the
hierarchy of Event Types.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 37 –

AlarmConditionType

AcknowledgeableConditionType

ConditionType

ExclusiveLimit
AlarmType

Exclusive
Level

Exclusive
MultiDeviation

Exclusive
RateOfChange

NonExclusiveLimit
AlarmType

NonExclusive
Level

NonExclusive
MultiDeviation

NonExclusive
RateOfChange

OffNormal
AlarmType

Discrete
AlarmType

Trip
AlarmType

LimitAlarmType

IEC

Figure 11 – AlarmConditionType Hierarchy Model

5.8.2 AlarmConditionType

The AlarmConditionType is an abstract type that extends the AcknowledgeableConditionType
by introducing an ActiveState, SuppressedState and ShelvingState. The Alarm model is
illustrated in Figure 12. This illustration is not intended to be a complete definition. It is
formally defined in Table 30.

Acknowledgeable
ConditionType

TwoStateVariableType:
ActiveState

TwoStateVariableType:
SuppressedState

ConditionType

EnableState

IsTrueSubState

AlarmCondition
Type

StateMachineType:
ShelvingState CurrentState

IEC

Figure 12 – Alarm Model

BS EN 62541-9:2015

 – 38 – IEC 62541-9:2015 © IEC 2015

Table 30 – AlarmConditionType Definition

Attribute Value
BrowseName AlarmConditionType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition Modelling Rule
Subtype of the AcknowledgeableConditionType defined in 5.7.2
HasComponent Variable ActiveState LocalizedText TwoStateVariableType Mandatory
HasProperty Variable InputNode NodeId PropertyType Mandatory
HasComponent Variable SuppressedState LocalizedText TwoStateVariableType Optional
HasComponent Object ShelvingState ShelvedStateMachineType Optional
HasProperty Variable SuppressedOrShelved Boolean PropertyType Mandatory
HasProperty Variable MaxTimeShelved Duration PropertyType Optional

The AlarmConditionType inherits all Properties of the AcknowledgeableConditionType. The
following states are sub-states of the TRUE EnabledState.

ActiveState/Id when set to TRUE indicates that the situation the Condition is representing
currently exists. When a Condition instance is in the inactive state (ActiveState/Id when set to
FALSE) it is representing a situation that has returned to a normal state. The transitions of
Conditions to the inactive and Active states are triggered by Server specific actions. Sub-
Types of the AlarmConditionType specified later in this standard will have sub-state models
that further define the Active state. Recommended state names are described in Annex A.

The InputNode Property provides the NodeId of the Variable the Value of which is used as
primary input in the calculation of the Alarm state. If this Variable is not in the AddressSpace,
a Null NodeId shall be provided. In some systems, an Alarm may be calculated based on
multiple Variables Values, it is up to the system to determine which Variable’s NodeId is used.

SuppressState is used internally by a Server to automatically suppress Alarms due to system
specific reasons. For example a system may be configured to suppress Alarms that are
associated with machinery that is shutdown, such as a low level Alarm for a tank that is
currently not in use. Recommended state names are described in Annex A.

ShelvingState suggests whether an Alarm shall (temporarily) be prevented from being
displayed to the user. It is quite often used to block nuisance Alarms. The ShelvingState is
defined in 5.8.3 .

The SuppressedState and the ShelvingState together result in the SuppressedOrShelved
status of the Condition. When an Alarm is in one of the states, the SuppressedOrShelved
property will be set TRUE and this Alarm is then typically not displayed by the Client. State
transitions associated with the Alarm do occur, but they are not typically displayed by the
Clients as long as the Alarm remains in either the Suppressed or Shelved state.

The optional Property MaxTimeShelved is used to set the maximum time that an Alarm
Condition may be shelved. The value is expressed as duration. Systems can use this Property
to prevent permanent Shelving of an Alarm. If this Property is present it will be an upper limit
on the duration passed into a TimedShelve Method call. If a value that exceeds the value of
this property is passed to the TimedShelve Method, than a Bad_ShelvingTimeOutOfRange
error code is returned on the call. If this Property is present it will also be enforced for the
OneShotShelved state, in that an Alarm Condition will transition to the Unshelved state from
the OneShotShelved state if the duration specified in this Property expires following a
OneShotShelve operation without a change of any of the other items associated with the
Condition.

More details about the Alarm Model and the various states can be found in 4.8.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 39 –

5.8.3 ShelvedStateMachineType

5.8.3.1 Overview

The ShelvedStateMachineType defines a sub-state machine that represents an advanced
Alarm filtering model. This model is illustrated in Figure 14.

The state model supports two types of Shelving: OneShotShelving and TimedShelving. They
are illustrated in Figure 13. The illustration includes the allowed transitions between the
various sub-states. Shelving is an Operator initiated activity.

In OneShotShelving, a user requests that an Alarm be Shelved for its current Active state.
This type of Shelving is typically used when an Alarm is continually occurring on a boundary
(i.e. a Condition is jumping between High Alarm and HighHigh Alarm, always in the Active
state). The One Shot Shelving will automatically clear when an Alarm returns to an inactive
state. Another use for this type of Shelving is for a plant area that is shutdown i.e. a long
running Alarm such as a low level Alarm for a tank that is not in use. When the tank starts
operation again the Shelving state will automatically clear.

In TimedShelving, a user specifies that an Alarm be shelved for a fixed time period. This type
of Shelving is quite often used to block nuisance Alarms. For example, an Alarm that occurs
more than 10 times in a minute may get shelved for a few minutes.

In all states, the Unshelve can be called to cause a transition to the Unshelve state; this
includes Un-shelving an Alarm that is in the TimedShelve state before the time has expired
and the OneShotShelve state without a transition to an inactive state.

All but two transitions are caused by Method calls as illustrated in Figure 13. The “Time
Expired” transition is simply a system generated transition that occurs when the time value
defined as part of the “Timed Shelved Call” has expired. The “Any Transition Occurs”
transition is also a system generated transition; this transition is generated when the
Condition goes to an inactive state.

Timed
Shelved

Oneshot
Shelved

Unshelved

Timed Shelve call
Any Transition Occurs

One Shot Shelve callTime Expired

UnShelve call
UnShelve call

Timed Shelve call

One Shot Shelve call

IEC

Figure 13 – Shelve state transitions

The ShelvedStateMachine includes a hierarchy of sub-states. It supports all transitions
between Unshelved, OneShotShelved and TimedShelved.

The state machine is illustrated in Figure 14 and formally defined in Table 31.

BS EN 62541-9:2015

 – 40 – IEC 62541-9:2015 © IEC 2015

OneShotShelve

ShelvedStateMachine
Type

TimedShelved

OneShotShelved

UnShelvedToTimedShelved

HasCause

FiniteStateMachineType

Unshelved

UnShelvedToOneShotShelved

TimedShelvedToUnshelved

OneShotShelvedToUnShelved

Unshelve

HasCause

HasCause

TimedShelve

HasCause

TimedShelvedToOneShotShelved

HasCause
OneShotShelvedToTimedShelved

HasCause

StateType

TransitionType

UnshelveTime

IEC

Figure 14 – Shelved State Machine Model

Table 31 –ShelvedStateMachine Definition

Attribute Value
BrowseName ShelvedStateMachineType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition ModellingRule
Subtype of the FiniteStateMachineType defined in IEC 62541-5

HasProperty Variable UnshelveTime Duration PropertyType Mandatory

HasComponent Object Unshelved StateType Mandatory
HasComponent Object TimedShelved StateType Mandatory
HasComponent Object OneShotShelved StateType Mandatory

HasComponent Object UnshelvedToTimedShelved TransitionType Mandatory
HasComponent Object TimedShelvedToUnshelved TransitionType Mandatory
HasComponent Object TimedShelvedToOneShotShelved TransitionType Mandatory
HasComponent Object UnshelvedToOneShotShelved TransitionType Mandatory
HasComponent Object OneShotShelvedToUnshelved TransitionType Mandatory
HasComponent Object OneShotShelvedToTimedShelved TransitionType Mandatory

HasComponent Method TimedShelve Defined in 5.8.3.3 Mandatory
HasComponent Method OneShotShelve Defined in 5.8.3.4 Mandatory
HasComponent Method Unshelve Defined in 5.8.3.2 Mandatory

UnshelveTime specifies the remaining time in milliseconds until the Alarm automatically
transitions into the Un-shelved state. For the TimedShelved state this time is initialised with
the ShelvingTime argument of the TimedShelve Method call. For the OneShotShelved state
the UnshelveTime will be a constant set to the maximum Duration except if a
MaxTimeShelved Property is provided.

This FiniteStateMachine supports three Active states; Unshelved, TimedShelved and
OneShotShelved. It also supports six transitions. The states and transitions are described in
Table 32. This FiniteStateMachine also supports three Methods; TimedShelve,
OneShotShelve and UnShelve.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 41 –

Table 32 – ShelvedStateMachine Transitions

BrowseName References BrowseName TypeDefinition

Transitions
UnshelvedToTimedShelved FromState Unshelved StateType
 ToState TimedShelved StateType
 HasEffect AlarmConditionType
 HasCause TimedShelve Method
UnshelvedToOneShotShelved FromState Unshelved StateType
 ToState OneShotShelved StateType
 HasEffect AlarmConditionType
 HasCause OneShotShelve Method
TimedShelvedToUnshelved FromState TimedShelved StateType
 ToState Unshelved StateType
 HasEffect AlarmConditionType
TimedShelvedToOneShotShelved FromState TimedShelved StateType
 ToState OneShotShelved StateType
 HasEffect AlarmConditionType
 HasCause OneShotShelving Method
OneShotShelvedToUnshelved FromState OneShotShelved StateType
 ToState Unshelved StateType
 HasEffect AlarmConditionType
OneShotShelvedToTimedShelved FromState OneShotShelved StateType
 ToState TimedShelved StateType
 HasEffect AlarmConditionType
 HasCause TimedShelve Method

5.8.3.2 Unshelve Method

Unshelve sets the AlarmCondition to the Unshelved state.

Signature

Unshelve();

Method Result Codes in Table 33 (defined in Call Service).

Table 33 – Unshelve Result Codes

ResultCode Description
Bad_ConditionNotShelved See Table 70 for the description of this result code.

Table 34 specifies the AddressSpace representation for the Unshelve Method.

Table 34 – Unshelve Method AddressSpace Definition

Attribute Value
BrowseName Unshelve
References NodeClass BrowseName DataType TypeDefinition ModellingRule
AlwaysGeneratesEvent Defined in 5.10.7 AuditConditionShelvingEventType

5.8.3.3 TimedShelve Method

TimedShelve sets the AlarmCondition to the TimedShelved state (Parameters are defined in
Table 35 and result code are described in Table 36).

Signature

TimedShelve(
 [in] Duration ShelvingTime
);

BS EN 62541-9:2015

 – 42 – IEC 62541-9:2015 © IEC 2015

Table 35 – TimedShelve Parameters

Argument Description
ShelvingTime Specifies a fixed time for which the Alarm is to be shelved. The Server may refuse the

provided duration. If a MaxTimeShelved Property exist on the Alarm than the Shelving
time shall be less than or equal to the value of this Property.

Method Result Codes (defined in Call Service).

Table 36 – TimedShelve Result Codes

ResultCode Description
Bad_ConditionAlreadyShelved See Table 70 for the description of this result code.

The Alarm is already in TimedShelved state and the system does not allow a reset of the
shelved timer.

Bad_ShelvingTimeOutOfRange See Table 70 for the description of this result code.

Comments

Shelving for some time is quite often used to block nuisance Alarms. For example, an Alarm
that occurs more than 10 times in a minute may get shelved for a few minutes.

In some systems the length of time covered by this duration may be limited and the Server
may generate an error refusing the provided duration. This limit may be exposed as the
MaxTimeShelved Property.

Table 37 specifies the AddressSpace representation for the TimedShelve Method.

Table 37 – TimedShelve Method AddressSpace Definition

Attribute Value
BrowseName TimedShelve
References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable InputArguments Argument[] PropertyType Mandatory
AlwaysGenerates
Event

Defined in 5.10.7 AuditConditionShelvingEventType

5.8.3.4 OneShotShelve Method

OneShotShelve sets the AlarmCondition to the OneShotShelved state.

Signature

OneShotShelve();

Method Result Codes, in Table 38 (defined in Call Service).

Table 38 – OneShotShelve Result Codes

ResultCode Description
Bad_AlreadyShelved See Table 70 for the description of this result code.

The Alarm is already in OneShotShelved state.

Table 39 specifies the AddressSpace representation for the OneShotShelve Method.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 43 –

Table 39 – OneShotShelve Method AddressSpace Definition

Attribute Value
BrowseName OneShotShelve
References NodeClass BrowseName DataType TypeDefinition ModellingRule
AlwaysGeneratesEvent Defined in 5.10.7 AuditConditionShelvingEventType

5.8.4 LimitAlarmType

Alarms can be modelled with multiple exclusive sub-states and assigned limits or they may be
modelled with non exclusive limits that can be used to group multiple states together.

The LimitAlarmType is an abstract type used to provide a base Type for AlarmConditions with
multiple limits. The LimitAlarmType is illustrated in Figure 15.

AlarmConditionType

LimitAlarmType

LowLimit

LowLowLimit

HighLimit

HighHighLimit

ExclusiveLimit
AlarmType

NonExclusiveLimit
AlarmType

IEC

Figure 15 – LimitAlarmType

The LimitAlarmType is formally defined in Table 40.

Table 40 – LimitAlarmType Definition

Attribute Value
BrowseName LimitAlarmType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition Modelling

Rule
Subtype of the AlarmConditionType defined in 5.8.2.
HasSubtype ObjectType ExclusiveLimitAlarmType Defined in 5.8.5.3
HasSubtype ObjectType NonExclusiveLimitAlarmType Defined in 5.8.6
HasProperty Variable HighHighLimit Double PropertyType Optional
HasProperty Variable HighLimit Double PropertyType Optional
HasProperty Variable LowLimit Double PropertyType Optional
HasProperty Variable LowLowLimit Double PropertyType Optional

Four optional limits are defined that configure the states of the derived limit Alarm Types.
These Properties shall be set for any Alarm limits that are exposed by the derived limit Alarm
Types. These Properties are listed as optional but at least one is required. For cases where
an underlying system cannot provide the actual value of a limit, the limit Property shall still be
provided, but will have its AccessLevel set to not readable.

The Alarm limits listed may cause an Alarm to be generate when a value equals the limit or it
may generate the Alarm when the limit is exceeded, (i.e. the Value is above the limit for

BS EN 62541-9:2015

 – 44 – IEC 62541-9:2015 © IEC 2015

HighLimit and below the limit for LowLimit). The exact behaviour when the value is equal to
the limit is Server specific.

5.8.5 ExclusiveLimit Types

5.8.5.1 Overview

This Clause describes the state machine and the base Alarm Type behaviour for Alarm Types
with multiple mutually exclusive limits.

5.8.5.2 ExclusiveLimitStateMachineType

The ExclusiveLimitStateMachineType defines the state machine used by AlarmTypes that
handle multiple mutually exclusive limits. It is illustrated in Figure 16.

FiniteStateMachineType

Low

High

ExclusiveLimit
StateMachineType

LowLow

HighHigh

HighHighToHigh

HighToHighHigh

LowToLowLow

LowLowToLow

StateType

TransitionType

IEC

Figure 16 – ExclusiveLimitStateMachine

It is created by extending the FiniteStateMachineType. It is formally defined in Table 41 and
the state transitions are described in Table 42.

Table 41 – ExclusiveLimitStateMachineType Definition

Attribute Value
BrowseName ExclusiveLimitStateMachineType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition ModellingRule
Subtype of the FiniteStateMachineType
HasComponent Object HighHigh StateType Optional
HasComponent Object High StateType Optional
HasComponent Object Low StateType Optional
HasComponent Object LowLow StateType Optional
HasComponent Object LowToLowLow TransitionType Optional
HasComponent Object LowLowToLow TransitionType Optional
HasComponent Object HighToHighHigh TransitionType Optional
HasComponent Object HighHighToHigh TransitionType Optional

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 45 –

Table 42 – ExclusiveLimitStateMachineType Transitions

BrowseName References BrowseName TypeDefinition

Transitions
HighHighToHigh FromState HighHigh StateType
 ToState High StateType
 HasEffect AlarmConditionType
HighToHighHigh FromState High StateType
 ToState HighHigh StateType
 HasEffect AlarmConditionType
LowLowToLow FromState LowLow StateType
 ToState Low StateType
 HasEffect AlarmConditionType
LowToLowLow FromState Low StateType
 ToState LowLow StateType
 HasEffect AlarmConditionType

The ExclusiveLimitStateMachine defines the sub state machine that represents the actual
level of a multilevel Alarm when it is in the Active state. The sub state machine defined here
includes High, Low, HighHigh and LowLow states. This model also includes in its transition
state a series of transition to and from a parent state, the inactive state. This state machine
as it is defined shall be used as a sub state machine for a state machine which has an Active
state. This Active state could be part of a “level” Alarm or “deviation” Alarm or any other Alarm
state machine.

The LowLow, Low, High, HighHigh are typical for many industries. Vendors can introduce sub-
state models that include additional limits; they may also omit limits in an instance.

5.8.5.3 ExclusiveLimitAlarmType

The ExclusiveLimitAlarmType is used to specify the common behaviour for Alarm Types with
multiple mutually exclusive limits. The ExclusiveLimitAlarmType is illustrated in Figure 17.

BS EN 62541-9:2015

 – 46 – IEC 62541-9:2015 © IEC 2015

ConditionType

Acknowledgeable
ConditionType

AlarmConditionType

ExclusiveLimit
AlarmType

ActiveState

EnableState

IsTrueSubState

LowLimit

LowLowLimit

HighLimit

HighHighLimit

ExclusiveLimitStateMachineType:
LimitState

CurrentState

IsTrueSubState

ExclusiveLevel
AlarmType

ExclusiveDeviation
AlarmType

ExclusiveRateOfChange
AlarmType

LimitAlarmType

IEC

Figure 17 – ExclusiveLimitAlarmType

 The ExclusiveLimitAlarmType is formally defined in Table 43.

Table 43 – ExclusiveLimitAlarmType Definition

Attribute Value
BrowseName ExclusiveLimitAlarmType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition Modelling

Rule
Subtype of the LimitAlarmType defined in 5.8.4.
HasSubtype ObjectType ExclusiveLevelAlarmType Defined in 5.8.7.3
HasSubtype ObjectType ExclusiveDeviationAlarm Type Defined in 5.8.8.3
HasSubtype ObjectType ExclusiveRateOfChange

AlarmType
Defined in 5.8.9.3

HasComponent Object LimitState ExclusiveLimitStateMachineType Mandatory

The LimitState is a Substate of the ActiveState and has a IsTrueSubstate reference to the
ActiveState. The LimitState represents the actual limit that is violated in an
ExclusiveLimitAlarm. When the ActiveState of the AlarmConditionType is inactive the
LimitState shall not be available and shall return NULL on read. Any Events that subscribe
for fields from the LimitState when the ActiveState is inactive shall return a NULL for these
unavailable fields

5.8.6 NonExclusiveLimitAlarmType

The NonExclusiveLimitAlarmType is used to specify the common behaviour for Alarm Types
with multiple non-exclusive limits. The NonExclusiveLimitAlarmType is illustrated in Figure 18.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 47 –

ConditionType

Acknowledgeable
ConditionType

AlarmConditionType

NonExclusiveLimit
AlarmType

ActiveState

EnableState

IsTrueSubState

IsTrueSubState

NonExclusiveLevel
AlarmType

NonExclusiveDeviation
AlarmType

NonExclusiveRateOfChange
AlarmType

HighHighState

HighState

LowState

LowLowState

LimitAlarmType

LowLimit

LowLowLimit

HighLimit

HighHighLimit

IEC

Figure 18 – NonExclusiveLimitAlarmType

 The NonExclusiveLimitAlarmType is formally defined in Table 44.

Table 44 – NonExclusiveLimitAlarmType Definition

Attribute Value
BrowseName NonExclusiveLimitAlarmType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition Modelling

Rule
Subtype of the LimitAlarmType defined in 5.8.4.
HasSubtype ObjectType NonExclusiveLevelAlarmType Defined in 5.8.7.2
HasSubtype ObjectType NonExclusiveDeviationAlarmType Defined in 5.8.8.2
HasSubtype ObjectType NonExclusiveRateOfChange

AlarmType
Defined in 5.8.9.2

HasComponent Variable HighHighState LocalizedText TwoStateVariableType Optional
HasComponent Variable HighState LocalizedText TwoStateVariableType Optional
HasComponent Variable LowState LocalizedText TwoStateVariableType Optional
HasComponent Variable LowLowState LocalizedText TwoStateVariableType Optional

HighHighState, HighState, LowState, and LowLowState represent the non-exclusive states.
As an example, it is possible that both HighState and HighHighState are in their TRUE state.
Vendors may choose to support any subset of these states. Recommended state names are
described in Annex A.

Four optional limits are defined that configure these states. At least the HighState or the
LowState shall be provided even though all states are optional. It is implied by the definition
of a HighState and a LowState, that these groupings are mutually exclusive. A value cannot
exceed both a HighState value and a LowState value simultaneously.

BS EN 62541-9:2015

 – 48 – IEC 62541-9:2015 © IEC 2015

5.8.7 Level Alarm

5.8.7.1 Overview

A level Alarm is commonly used to report when a limit is exceeded. It typically relates to an
instrument – e.g. a temperature meter. The level Alarm becomes active when the observed
value is above a high limit or below a low limit.

5.8.7.2 NonExclusiveLevelAlarmType

The NonExclusiveLevelAlarmType is a special level Alarm utilized with one or more non-
exclusive states. If for example both the High and HighHigh states need to be maintained as
active at the same time this AlarmType should be used.

The NonExclusiveLevelAlarmType is based on the NonExclusiveLimitAlarmType. It is formally
defined in Table 45.

Table 45 – NonExclusiveLevelAlarmType Definition

Attribute Value
BrowseName NonExclusiveLevelAlarmType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition ModellingRule
Subtype of the NonExclusiveLimitAlarmType defined in 5.8.6.

No additional Properties to the NonExclusiveLimitAlarmType are defined.

5.8.7.3 ExclusiveLevelAlarmType

The ExclusiveLevelAlarmType is a special level Alarm utilized with multiple mutually exclusive
limits. It is formally defined in Table 46.

Table 46 – ExclusiveLevelAlarmType Definition

Attribute Value
BrowseName ExclusiveLevelAlarmType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition ModellingRule
Inherits the Properties of the ExclusiveLimitAlarmType defined in 5.8.5.3.

No additional Properties to the ExclusiveLimitAlarmType are defined.

5.8.8 Deviation Alarm

5.8.8.1 Overview

A deviation Alarm is commonly used to report an excess deviation between a desired set point
level of a process value and an actual measurement of that value. The deviation Alarm
becomes active when the deviation exceeds or drops below a defined limit.

For example if a set point had a value of 10 and the high deviation Alarm limit were set for 2
and the low deviation Alarm limit had a value of -1 then the low sub state is entered if the
process value dropped to below 9; the high sub state is entered if the process value became
larger than 12. If the set point were changed to 11 then the new deviation values would be 10
and 13 respectively.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 49 –

5.8.8.2 NonExclusiveDeviationAlarmType

The NonExclusiveDeviationAlarmType is a special level Alarm utilized with one or more non-
exclusive states. If for example both the High and HighHigh states need to be maintained as
active at the same time this AlarmType should be used.

The NonExclusiveDeviationAlarmType is based on the NonExclusiveLimitAlarmType. It is
formally defined in Table 47.

Table 47 – NonExclusiveDeviationAlarmType Definition

Attribute Value
BrowseName NonExclusiveDeviationAlarmType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition ModellingRule
Subtype of the NonExclusiveLimitAlarmType defined in 5.8.6.
HasProperty Variable SetpointNode NodeId PropertyType Mandatory

The SetpointNode Property provides the NodeId of the set point used in the deviation
calculation. If this Variable is not in the AddressSpace, a Null NodeId shall be provided.

5.8.8.3 ExclusiveDeviationAlarmType

The ExclusiveDeviationAlarmType is utilized with multiple mutually exclusive limits. It is
formally defined in Table 48.

Table 48 – ExclusiveDeviationAlarmType Definition

Attribute Value
BrowseName ExclusiveDeviationAlarmType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition Modelling Rule
Inherits the Properties of the ExclusiveLimitAlarmType defined in 5.8.5.3.
HasProperty Variable SetpointNode NodeId PropertyType Mandatory

The SetpointNode Property provides the NodeId of the set point used in the Deviation
calculation. If this Variable is not in the AddressSpace, a Null NodeId shall be provided.

5.8.9 Rate of Change

5.8.9.1 Overview

A Rate of Change Alarm is commonly used to report an unusual change or lack of change in a
measured value related to the speed at which the value has changed. The Rate of Change
Alarm becomes active when the rate at which the value changes exceeds or drops below a
defined limit.

A Rate of Change is measured in some time unit, such as seconds or minutes and some unit
of measure such as percent or meter. For example a tank may have a High limit for the Rate
of Change of its level (measured in meters) which would be 4 m/min. If the tank level changes
at a rate that is greater than 4 m/min then the High sub state is entered.

5.8.9.2 NonExclusiveRateOfChangeAlarmType

The NonExclusiveRateOfChangeAlarmType is a special level Alarm utilized with one or more
non-exclusive states. If for example both the High and HighHigh states need to be maintained
as active at the same time this AlarmType should be used

The NonExclusiveRateOfChangeAlarmType is based on the NonExclusiveLimitAlarmType. It
is formally defined in Table 49.

BS EN 62541-9:2015

 – 50 – IEC 62541-9:2015 © IEC 2015

Table 49 – NonExclusiveRateOfChangeAlarmType Definition

Attribute Value
BrowseName NonExclusiveRateOfChangeAlarmType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition ModellingRule
Subtype of the NonExclusiveLimitAlarmType defined in 5.8.6.

No additional Properties to the NonExclusiveLimitAlarmType are defined.

5.8.9.3 ExclusiveRateOfChangeAlarmType

ExclusiveRateOfChangeAlarmType is utilized with multiple mutually exclusive limits. It is
formally defined in Table 50.

Table 50 – ExclusiveRateOfChangeAlarmType Definition

Attribute Value
BrowseName ExclusiveRateOfChangeAlarmType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition ModellingRule
Inherits the Properties of the ExclusiveLimitAlarmType defined in 5.8.5.3.

No additional Properties to the ExclusiveLimitAlarmType are defined.

5.8.10 Discrete Alarms

5.8.10.1 DiscreteAlarmType

The DiscreteAlarmType is used to classify Types into Alarm Conditions where the input for the
Alarm may take on only a certain number of possible values (e.g. true/false,
running/stopped/terminating). The DiscreteAlarmType with sub types defined in this standard
is illustrated in Figure 19. It is formally defined in Table 51.

AlarmCondition
Type

OffNormalAlarmType

DiscreteAlarmType

TripAlarmType

LimitAlarmType

IEC

Figure 19 – DiscreteAlarmType Hierarchy

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 51 –

Table 51 – DiscreteAlarmType Definition

Attribute Value
BrowseName DiscreteAlarmType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition Modelling

Rule
Subtype of the AlarmConditionType defined in 5.8.2.
HasSubtype ObjectType OffNormalAlarmType Defined in 5.8.8

5.8.10.2 OffNormalAlarmType

The OffNormalAlarmType is a specialization of the DiscreteAlarmType intended to represent a
discrete Condition that is considered to be not normal. It is formally defined in Table 52. This
sub type is usually used to indicate that a discrete value is in an Alarm state, it is active as
long as a non-normal value is present.

Table 52 – OffNormalAlarmType Definition

Attribute Value
BrowseName OffNormalAlarmType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition Modelling

Rule
Subtype of the DiscreteAlarmType defined in 5.8.10.1
HasSubtype ObjectType TripAlarmType Defined in 5.8.10.4
HasProperty Variable NormalState NodeId PropertyType Mandatory

The NormalState Property is a Property that points to a Variable which has a value that
corresponds to one of the possible values of the Variable pointed to by the InputNode
Property where the NormalState Property Variable value is the value that is considered to be
the normal state of the Variable pointed to by the InputNode Property. When the value of the
Variable referenced by the InputNode Property is not equal to the value of the NormalState
Property the Alarm is Active. If this Variable is not in the AddressSpace, a Null NodeId shall
be provided.

5.8.10.3 SystemOffNormalAlarmType

This Condition is used by a Server to indicate that an underlying system that is providing
Alarm information is having a communication problem and that the Server may have invalid or
incomplete Condition state in the Subscription. Its representation in the AddressSpace is
formally defined in Table 53.

Table 53 – SystemOffNormalAlarmType Definition

Attribute Value
BrowseName SystemOffNormalAlarmType
IsAbstract True
References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the OffNormalAlarmType, i.e. it has HasProperty References to the same Nodes.

5.8.10.4 TripAlarmType

The TripAlarmType is a specialization of the OffNormalAlarmType intended to represent an
equipment trip Condition. The Alarm becomes active when the monitored piece of equipment
experiences some abnormal fault such as a motor shutting down due to an overload
Condition. It is formally defined in Table 54. This Type is mainly used for categorization.

BS EN 62541-9:2015

 – 52 – IEC 62541-9:2015 © IEC 2015

Table 54 – TripAlarmType Definition

Attribute Value
BrowseName TripAlarmType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition Modelling

Rule
Subtype of the OffNormalAlarmType defined in 5.8.10.2.

5.9 ConditionClasses

5.9.1 Overview

Conditions are used in specific application domains like Maintenance, System or Process. The
ConditionClass hierarchy is used to specify domains and is orthogonal to the ConditionType
hierarchy. The ConditionClassId Property of the ConditionType is used to assign a Condition
to a ConditionClass. Clients can use this Property to filter out essential classes. OPC UA
defines the base ObjectType for all ConditionClasses and a set of common classes used
across many industries. Figure 20 informally describes the hierarchy of ConditionClass Types
defined in this standard.

Defined in [UA Part 5]
BaseObjectType

BaseConditionClass
Type

ProcessConditionClass
Type

MaintenanceConditionClass
Type

SystemConditionClass
Type

IEC

Figure 20 – ConditionClass Type Hierarchy

ConditionClasses are not representations of Objects in the underlying system and, therefore,
only exist as Type Nodes in the Address Space.

5.9.2 Base ConditionClassType

BaseConditionClassType is used as class whenever a Condition cannot be assigned to a
more concrete class. Servers should use a more specific ConditionClass, if possible. All
ConditionClass Types derive from BaseConditionClassType. It is formally defined in Table 55.

Table 55 – BaseConditionClassType Definition

Attribute Value
BrowseName BaseConditionClassType
IsAbstract True
References NodeClass BrowseName DataType TypeDefinition ModellingRule
Subtype of the BaseObjectType defined in IEC 62541-5.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 53 –

5.9.3 ProcessConditionClassType

The ProcessConditionClassType is used to classify Conditions related to the process itself.
Examples of a process would be a control system in a boiler or the instrumentation associated
with a chemical plant or paper machine. The ProcessConditionClassType is formally defined
in Table 56.

Table 56 – ProcessConditionClassType Definition

Attribute Value
BrowseName ProcessConditionClassType
IsAbstract True
References NodeClass BrowseName DataType TypeDefinition Modelling

Rule
Subtype of the BaseConditionClassType defined in 5.9.2.

5.9.4 MaintenanceConditionClassType

The MaintenanceConditionClassType is used to classify Conditions related to maintenance.
Examples of maintenance would be Asset Management systems or conditions, which occur in
process control systems, which are related to calibration of equipment. The
MaintenanceConditionClassType is formally defined in Table 57. No further definition is
provided here. It is expected that other standards groups will define domain-specific sub-
types.

Table 57 – MaintenanceConditionClassType Definition

Attribute Value
BrowseName MaintenanceConditionClassType
IsAbstract True
References NodeClass BrowseName DataType TypeDefinition ModellingRule
Subtype of the BaseConditionClassType defined in 5.9.2.

5.9.5 SystemConditionClassType

The SystemConditionClassType is used to classify Conditions related to the System. It is
formally defined in Table 58. System Conditions occur in the controlling or monitoring system
process. Examples of System related items could include available disk space on a computer,
Archive media availability, network loading issues or a controller error. No further definition is
provided here. It is expected that other standards groups or vendors will define domain-
specific sub-types.

Table 58 – SystemConditionClassType Definition

Attribute Value
BrowseName SystemConditionClassType
IsAbstract True
References NodeClass BrowseName DataType TypeDefinition ModellingRule
Subtype of the BaseConditionClassType defined in 5.9.2.

5.10 Audit Events

5.10.1 Overview

Following are sub-types of AuditUpdateMethodEventTypes that will be generated in response
to the Methods defined in this standard. They are illustrated in Figure 21.

BS EN 62541-9:2015

 – 54 – IEC 62541-9:2015 © IEC 2015

Defined in [UA Part 5]
AuditEventType

AuditConditionComment
EventType

AuditCondition
EventType

AuditUpdateMethod
EventType

AuditConditionAcknowledge
EventType

AuditConditionEnable
EventType

AuditConditionShelving
EventType

AuditConditionRespond
EventType

AuditConditionConfirm
EventType

IEC

Figure 21 – AuditEvent Hierarchy

Audit Condition EventTypes are normally used in response to a Method call. However, these
Events shall also be notified if the functionality of such a Method is performed by some other
Server-specific means. In this case the SourceName Property shall contain a proper
description of this internal means and the other properties should be filled in as described for
the given Event type

5.10.2 AuditConditionEventType

This EventType is used to subsume all Audit Condition EventTypes. It is formally defined in
Table 59.

Table 59 – AuditConditionEventType Definition

Attribute Value
BrowseName AuditConditionEventType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition ModellingRule
Subtype of the AuditUpdateMethodEventType defined in IEC 62541-5

Audit Condition EventTypes inherit all Properties of the AuditUpdateMethodEventType defined
in IEC 62541-5. Unless a subtype overrides the definition, the inherited properties of the
Condition will be used as defined.

• The inherited Property SourceNode shall be filled with the ConditionId.

• The SourceName shall be “Method/” and the name of the Service that generated the
Event (e.g. Disable, Enable, Acknowledge, etc).

This Event Type can be further customized to reflect particular Condition related actions.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 55 –

5.10.3 AuditConditionEnableEventType

This EventType is used to indicate a change in the enabled state of a Condition instance. It is
formally defined in Table 60.

Table 60 – AuditConditionEnableEventType Definition

Attribute Value
BrowseName AuditConditionEnableEventType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition ModellingRule
Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

The SourceName shall indicate Method/Enable or Method/Disable. If the audit Event is not the
result of a Method call, but due to an internal action of the Server the SourceName shall
reflect Enable or Disable, it may be preceded by an appropriate description such as
“Internal/Enable” or “Remote/Enable”

5.10.4 AuditConditionCommentEventType

This EventType is used to report an AddComment action. It is formally defined in Table 61.

Table 61 – AuditConditionCommentEventType Definition

Attribute Value
BrowseName AuditConditionCommentEventType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable EventId ByteString PropertyType Mandatory
HasProperty Variable Comment LocalizedText PropertyType Mandatory
Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

The EventId field shall contain the id of the event for which the comment was added.

The Comment contains the actual comment that was added.

5.10.5 AuditConditionRespondEventType

This EventType is used to report a Respond action. It is formally defined in Table 62.

Table 62 – AuditConditionRespondEventType Definition

Attribute Value
BrowseName AuditConditionRespondEventType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable SelectedResponse Uint32 PropertyType Mandatory

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

The SelectedResponse field shall contain the response that was selected.

5.10.6 AuditConditionAcknowledgeEventType

This EventType is used to indicate acknowledgement or confirmation of one or more
Conditions. It is formally defined in Table 63.

BS EN 62541-9:2015

 – 56 – IEC 62541-9:2015 © IEC 2015

Table 63 – AuditConditionAcknowledgeEventType Definition

Attribute Value
BrowseName AuditConditionCommentEventType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable EventId ByteString PropertyType Mandatory
HasProperty Variable Comment LocalizedText PropertyType Mandatory
Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

The EventId field shall contain the id of the Event that was acknowledged.

The Comment contains the actual comment that was added, it may be a blank comment or a
null.

5.10.7 AuditConditionConfirmEventType

This EventType is used to report a Confirm action. It is formally defined in Table 64.

Table 64 – AuditConditionConfirmEventType Definition

Attribute Value
BrowseName AuditConditionCommentEventType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable EventId ByteString PropertyType Mandatory
HasProperty Variable Comment LocalizedText PropertyType Mandatory
Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

The EventId field shall contain the id of the Event that was confirmed.

The Comment contains the actual comment that was added, it may be a blank comment or a
null.

5.10.8 AuditConditionShelvingEventType

This EventType is used to indicate a change to the Shelving state of a Condition instance. It is
formally defined in Table 65.

Table 65 – AuditConditionShelvingEventType Definition

Attribute Value
BrowseName AuditConditionShelvingEventType
IsAbstract False
References NodeClass BrowseName DataType TypeDefinition ModellingRule
HasProperty Variable ShelvingTime Duration PropertyType Optional

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

If the Method indicates a TimedShelve operation, the ShelvingTime field shall contain duration
for which the Alarm is to be shelved. For other Shelving Methods, this parameter may be
omitted or null.

5.11 Condition Refresh Related Events

5.11.1 Overview

Following are sub-types of SystemEventTypes that will be generated in response to a Refresh
Methods call. They are illustrated in Figure 22.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 57 –

Defined in [UA Part 5]

RefreshEnd
EventType

SystemEventType

BaseEventType

RefreshRequired
EventType

RefreshStart
EventType

IEC

Figure 22 – Refresh Related Event Hierarchy

5.11.2 RefreshStartEventType

This EventType is used by a Server to mark the beginning of a Refresh Notification cycle. Its
representation in the AddressSpace is formally defined in Table 66.

Table 66 – RefreshStartEventType Definition

Attribute Value
BrowseName RefreshStartEventType
IsAbstract True
References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the SystemEventType defined in IEC 62541-5, i.e. it has HasProperty References to the same Nodes.

5.11.3 RefreshEndEventType

This EventType is used by a Server to mark the end of a Refresh Notification cycle. Its
representation in the AddressSpace is formally defined in Table 67.

Table 67 – RefreshEndEventType Definition

Attribute Value
BrowseName RefreshEndEventType
IsAbstract True
References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the SystemEventType defined in IEC 62541-5, i.e. it has HasProperty References to the same Nodes.

5.11.4 RefreshRequiredEventType

This EventType is used by a Server to indicate that a significant change has occurred in the
Server or in the subsystem below the Server that may or does invalidate the Condition state
of a Subscription. Its representation in the AddressSpace is formally defined in Table 68.

BS EN 62541-9:2015

 – 58 – IEC 62541-9:2015 © IEC 2015

Table 68 – RefreshRequiredEventType Definition

Attribute Value
BrowseName RefreshRequiredEventType
IsAbstract True
References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the SystemEventType defined in IEC 62541-5, i.e. it has HasProperty References to the same Nodes.

When a Server detects an Event queue overflow, it shall track if any Condition Events have
been lost, if any Condition Events were lost, it shall issue a RefreshRequiredEventType Event
to the Client after the Event queue is no longer in an overflow state.

5.12 HasCondition Reference Type

The HasCondition ReferenceType is a concrete ReferenceType and can be used directly. It is
a subtype of NonHierarchicalReferences. The representation in the AddressSpace is specified
in Table 69.

The semantic of this ReferenceType is to specify the relationship between a ConditionSource
and its Conditions. Each ConditionSource shall be the target of a HasEventSource Reference
or a sub type of HasEventSource. The AddressSpace organisation that shall be provided for
Clients to detect Conditions and ConditionSources is defined in Clause 6. Various examples
for the use of this ReferenceType can be found in B.2.

HasCondition References can be used in the Type definition of an Object or a Variable. In this
case, the SourceNode of this ReferenceType shall be an ObjectType or VariableType Node or
one of their InstanceDeclaration Nodes. The TargetNode shall be a Condition instance
declaration or a ConditionType. The following rules for instantiation apply:

• All HasCondition References used in a Type shall exist in instances of these Types as
well.

• If the TargetNode in the Type definition is a ConditionType, the same TargetNode will
be referenced on the instance.

HasCondition References may be used solely in the instance space when they are not
available in Type definitions. In this case the SourceNode of this ReferenceType shall be an
Object, Variable or Method Node. The TargetNode shall be a Condition instance or a
ConditionType.

Table 69 – HasCondition ReferenceType

Attributes Value
BrowseName HasCondition
InverseName IsConditionOf
Symmetric False
IsAbstract False
References NodeClass BrowseName Comment

5.13 Alarm and Condition Status Codes

Table 70 defines the StatusCodes defined for Alarm and Conditions.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 59 –

Table 70 – Alarm and Condition Result Codes

Symbolic Id Description
Bad_ConditionAlreadyEnabled The addressed Condition is already enabled.
Bad_ConditionAlreadyDisabled The addressed Condition is already disabled.
Bad_ConditionAlreadyShelved The Alarm is already in a shelved state.
Bad_ConditionBranchAlreadyAcked The EventId does not refer to a state that needs acknowledgement.
Bad_ConditionBranchAlreadyConfirmed The EventId does not refer to a state that needs confirmation.
Bad_ConditionNotShelved The Alarm is not in the requested shelved state.
Bad_DialogNotActive The DialogConditionType instance is not in Active state.
Bad_DialogResponseInvalid The selected option is not a valid index in the ResponseOptionSet array.
Bad_EventIdUnknown The specified EventId is not known to the Server.
Bad_RefreshInProgress A ConditionRefresh operation is already in progress.
Bad_ShelvingTimeOutOfRange The provided Shelving time is outside the range allowed by the Server for Shelving

5.14 Expected A&C Server Behaviours

5.14.1 General

This section describes behaviour that is expected from an OPC UA Server that is
implementing the A&C Information Model. In particular this clause describes specific
behaviours that apply to various aspect of the A&C Information Model.

5.14.2 Communication problems

In some implementation of an OPC UA A&C Server, the Alarms and Condition are provided by
an underlying system. The expected behaviour of an A&C Server when it is encountering
communication problems with the underlying system is:

• If communication fails to the underlying system,
– For any Event field related information that is exposed in the address space, the

Value/StatusCode obtained when reading the Event fields that are associated with the
communication failure shall have a value of NULL and a StatusCode of
Bad_CommunicationError.

– For Subscriptions that contain Conditions for which the failure applies, the effected
Conditions generate an Event if the Retain field is set to true. These Events shall have
their Event fields that are associated with the communication failure contain a
StatusCode of Bad_CommunicationError for the value.

– A Condition of the SystemOffNormalAlarmType shall be used to report the
communication failure to Alarm Clients. The NormalState field shall contain the NodeId
of the Variable that indicates the status of the underlying system.

• For start-up of an A&C Server that is obtaining A&C information from an already running
underlying system:
– If a value is unavailable for an Event field that is being reported do to a start-up of the

UA Server (i.e. the information is just not available for the Event) the Event field shall
contain a StatusCode set to Bad_WaitingForInitialData for the value.

– If the Time field is normally provided by the underlying system and is unavailable, the
Time will be reported as a StatusCode with a value of Bad_WaitingForInitialData.

5.14.3 Redundant A&C Servers

In an OPC UA Server that is implementing the A&C Information Model and that is configured
to be a redundant OPC UA Server the following behaviour is expected:

• The EventId is used to uniquely identify an Event. For an Event that is in each of the
redundant Servers, it shall be identical. This applies to all standard Events, Alarms
and Conditions. This may be accomplished by sharing of information between
redundant Server (such as actual Events) or it may be accomplished by providing a
strict EventId generating algorithm that will generate an identical EventId for each
Event

BS EN 62541-9:2015

 – 60 – IEC 62541-9:2015 © IEC 2015

• It is expected that for cold or warm failovers of redundant Servers, Subscription for
Events shall require a Refresh operation. The Client shall initiate this Refresh
operation.

• It is expected that for hot failovers of redundant Servers, Subscriptions for Events may
require a Refresh operation. The Server shall issue a RefreshRequiredEventType
Event if it is required.

• For transparent redundancy, a Server shall not require any action be performed by a
Client.

6 AddressSpace Organisation

6.1 General

The AddressSpace organisation described in this Clause allows Clients to detect Conditions
and ConditionSources. An additional hierarchy of Object Nodes that are notifies may be
established to define one or more areas; the Client can subscribe to specific areas to limit the
Event Notifications sent by the Server. Additional examples can be found in Clause B.2.

6.2 Event Notifier and Source Hierarchy

HasNotifier and HasEventSource References are used to expose the hierarchical organization
of Event notifying Objects and ConditionSources. An Event notifying Object represents
typically an area of Operator responsibility. The definition of such an area configuration is
outside the scope of this standard. If areas are available they shall be linked together and
with the included ConditionSources using the HasNotifier and the HasEventSource Reference
Types. The Server Object shall be the root of this hierarchy.

Figure 23 shows such a hierarchy. Note that HasNotifier is a sub-type of HasEventSource. I.e.
the target Node of a HasNotifier Reference (an Event notifying Object) may also be a
ConditionSource. The HasEventSource Reference is used if the target Node is a
ConditionSource but cannot be used as Event notifier. See IEC 62541-3 for the formal
definition of these Reference Types.

Server

Tank A

LevelMeasurement

Area 1

HasNotifier

HasNotifier

Tank FarmHasNotifier

HasEventSource

Machine B

HasNotifier

Device B

HasNotifier

Device C

HasEventSource

IEC

Figure 23 – Typical Event Hierarchy

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 61 –

6.3 Adding Conditions to the Hierarchy

HasCondition is used to reference Conditions. The Reference is from a ConditionSource to a
Condition instance or – if no instance is exposed by the Server – to the ConditionType.

Clients can locate Conditions by first browsing for ConditionSources following
HasEventSource References (including sub-types like the HasNotifier Reference) and then
browsing for HasCondition References from all target Nodes of the discovered References.

Figure 24 shows the application of the HasCondition Reference in an Event hierarchy. The
Variable LevelMeasurement and the Object “Device B” Reference Condition instances. The
Object “Tank A” References a ConditionType (MySystemAlarmType) indicating that a
Condition exists but is not exposed in the AddressSpace.

Server

Tank A

LevelMeasurement

Area 1

HasNotifier

HasNotifier

Tank FarmHasNotifier

HasEventSource

Machine B

HasNotifier

Device B

HasNotifier

MyLevelAlarmType:
LevelMonitoringHasCondition

MyAlarmTypeA:
Condition 1

MyAlarmTypeA:
Condition 2

HasCondition

HasCondition

MySystemAlarmType
IEC

Figure 24 – Use of HasCondition in an Event Hierarchy

6.4 Conditions in InstanceDeclarations

Figure 25 shows the use of the HasCondition Reference and the HasEventSource Reference
in an InstanceDeclaration. They are used to indicate what References and Conditions are
available on the instance of the ObjectType.

The use of the HasEventSource Reference in the context of InstanceDeclarations and
TypeDefinition Nodes has no effect for Event generation.

BS EN 62541-9:2015

 – 62 – IEC 62541-9:2015 © IEC 2015

Tank A

MyLevelAlarmType:
LevelMonitoring

LevelMeasurement

MyLevelAlarmType:
LevelMonitoring

LevelMeasurement

TankType

HasCondition

HasEventSource
HasEventSource

HasCondition

IEC

Figure 25 – Use of HasCondition in an InstanceDeclaration

6.5 Conditions in a VariableType

Use of HasCondition in a VariableType is a special use case since Variables (and
VariableTypes) may not have Conditions as components. Figure 26 provides an example of
this use case. Note that there is no component relationship for the “LevelMonitoring” Alarm. It
is Server-specific whether and where they assign a HasComponent Reference.

Tank A

ExclusiveLevelAlarmType:

LevelMonitoring

LevelMeasurementType:

LevelMeasurement

HasEventSource

HasCondition

AlarmType

LevelMeasurementType

AnalogItemType

ExclusiveLevelAlarmType:

LevelMonitoring

HasCondition

ExclusiveLevel
AlarmType

BaseObjectType BaseVariableType

IEC

Figure 26 – Use of HasCondition in a VariableType

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 63 –

Annex A
(informative)

Recommended localized names

A.1 Recommended State Names for TwoState Variables

A.1.1 LocaleId “en”

The recommended state display names for the LocaleId “en” are listed in Table A.1 and
Table A.2.

Table A.1 – Recommended state names for LocaleId “en”

Condition Type State Variable FALSE State Name TRUE State Name
ConditionType EnabledState Disabled Enabled
DialogConditionType DialogState Inactive Active
AcknowledgeableConditionType

AckedState Unacknowledged Acknowledged
ConfirmedState Unconfirmed Confirmed

AlarmConditionType ActiveState Inactive Active
SuppressedState Unsuppressed Suppressed

NonExclusiveLimitAlarmType HighHighState HighHigh inactive HighHigh active
HighState High inactive High active
LowState Low inactive Low active
LowLowState LowLow inactive LowLow active

Table A.2 – Recommended display names for LocaleId “en”

Condition Type Browse Name Display name

Shelved
Unshelved Unshelved
TimedShelved Timed Shelved
OneShotShelved One Shot Shelved

Exclusive HighHigh HighHigh
High High
Low Low
LowLow LowLow

A.1.2 LocaleId “de”

The recommended state display names for the LocaleId “de” are listed in Table A.3 and
Table A.4.

Table A.3 – Recommended state names for LocaleId “de”

Condition Type State Variable FALSE State Name TRUE State Name
ConditionType EnabledState Ausgeschaltet Eingeschaltet
DialogConditionType DialogState Inaktiv Aktiv
AcknowledgeableConditionType

AckedState Unquittiert Quittiert
ConfirmedState Unbestätigt Bestätigt

AlarmConditionType ActiveState Inaktiv Aktiv
SuppressedState Nicht unterdrückt Unterdrückt

NonExclusiveLimitAlarmType HighHighState HighHigh inaktiv HighHigh aktiv
HighState High inaktiv High aktiv
LowState Low inaktiv Low aktiv
LowLowState LowLow inaktiv LowLow aktiv

BS EN 62541-9:2015

 – 64 – IEC 62541-9:2015 © IEC 2015

Table A.4 – Recommended display names for LocaleId “de”

Condition Type Browse Name Display name

Shelved
Unshelved Nicht zurückgestellt
TimedShelved Befristet zurückgestellt
OneShotShelved Einmalig zurückgestellt

Exclusive HighHigh HighHigh
High High
Low Low
LowLow LowLow

A.1.3 LocaleId “fr”

The recommended state display names for the LocaleId “fr” are listed in Table A.5 and
Table A.6.

Table A.5 – Recommended state names for LocaleId “fr”

Condition Type State Variable FALSE State Name TRUE State Name
ConditionType EnabledState Hors Service En Service
DialogConditionType DialogState Inactive Active
AcknowledgeableConditionType

AckedState Non-acquitté Acquitté
ConfirmedState Non-Confirmé Confirmé

AlarmConditionType ActiveState Inactive Active
SuppressedState Présent Supprimé

NonExclusiveLimitAlarmType HighHighState Très Haute Inactive Très Haute active
HighState Haute inactive Haute active
LowState Basse inactive Basse active
LowLowState Très basse inactive Très basse active

Table A.6 – Recommended display names for LocaleId “fr”

Condition Type Browse Name Display name

Shelved
Unshelved Surveillée
TimedShelved Mise de coté temporelle
OneShotShelved Mise de coté unique

Exclusive HighHigh Très haute
High Haute
Low Basse
LowLow Très basse

A.2 Recommended Dialog Response Options

The recommended Dialog response option names in different locales are listed in Table A.7.

Table A.7 – Recommended Dialog Response Options

Locale “en” Locale “de” Locale “fr”
Ok OK Ok
Cancel Abbrechen Annuler
Yes Ja Oui
No Nein Non
Abort Abbrechen Abandonner
Retry Wiederholen Réessayer
Ignore Ignorieren Ignorer
Next Nächster Prochain
Previous Vorheriger Precedent

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 65 –

Annex B
(informative)

Examples

B.1 Examples for Event sequences from Condition instances

B.1.1 Overview

The following examples show the Event flow for typical Alarm situations. The tables list the
value of state Variables for each Event Notification.

B.1.2 Server Maintains Current State Only

This example is for Servers that do not support previous states and therefore do not create
and maintain Branches of a single Condition.

Figure B.1 shows an Alarm as it becomes active and then inactive and also the
acknowledgement and confirmation cycles. Table B.1 lists the values of the state Variables.
All Events are coming from the same Condition instance and therefore have the same
ConditionId.

Time Axis

Active

1
Event

Notifications

Acked

Confirmed

76532 84
IEC

Figure B.1 – Single State Example

Table B.1 – Example of a Condition that only keeps the latest state

EventId BranchId Active Acked Confirmed Retain Description
-*) Null False True True False Initial state of Condition.
1 Null True False True True Alarm goes active.
2 Null True True False True Condition acknowledged Confirm required
3 Null False True False True Alarm goes inactive.
4 Null False True True False Condition confirmed
5 Null True False True True Alarm goes active.
6 Null False False True True Alarm goes inactive.
7 Null False True False True Condition acknowledged, Confirm required.
8 Null False True True False Condition confirmed.

*) The first row is included to illustrate the initial state of the Condition. This state will not be reported by an Event.

B.1.3 Server Maintains Previous States

This example is for Servers that are able to maintain previous states of a Condition and
therefore create and maintain Branches of a single Condition.

BS EN 62541-9:2015

 – 66 – IEC 62541-9:2015 © IEC 2015

Figure B.2 illustrates the use of branches by a Server requiring acknowledgement of all
transitions into Active state, not just the most recent transition. In this example no
acknowledgement is required on a transition into an inactive state. Table B.2 lists the values
of the state Variables. All Events are coming from the same Condition instance and have
therefore the same ConditionId.

 Time Axis

Active

1
Event

Notifications

Acked

Confirmed

832

Current State
(BranchId Null)

Active=true

Previous State
(BranchId 1)

Previous State
(BranchId 2)

Active=true

Acked=false

5

7

6

9

11

12

13

1410

4

IEC

Figure B.2 – Previous State Example

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 67 –

Table B.2 – Example of a Condition that maintains previous states via branches

EventId BranchId Active Acked Confirmed Retain Description
a) null False True True False Initial state of Condition.
1 null True False True True Alarm goes active.
2 null True True True True Condition acknowledged requires Confirm
3 null False True False True Alarm goes inactive.
4 null False True True False Confirmed
5 null True False True True Alarm goes active.
6 null False True True True Alarm goes inactive.

7 1 True False True True b) Prior state needs acknowledgment. Branch 1
created.

8 null True False True True Alarm goes active again.
9 1 True True False True Prior state acknowledged, Confirm required.
10 null False True True True b) Alarm goes inactive again.

11 2 True False True True Prior state needs acknowledgment. Branch2
created.

12 1 True True True False Prior state confirmed. Branch 1 deleted.

13 2 True True True False Prior state acknowledged, Auto Confirmed by
system Branch 2 deleted.

14 Null False True True False No longer of interest.
a) The first row is included to illustrate the initial state of the Condition. This state will not be reported by an Event.

Notes on specific situations shown with this example:

If the current state of the Condition is acknowledged then the Acked flag is set and the new state is reported (Event
2). If the Condition state changes before it can be acknowledged (Event #6) then a branch state is reported (Event
7). Timestamps for the Events 6 and 7 is identical.

The branch state can be updated several times (Events 9) before it is cleared (Event 12).

A single Condition can have many branch states active (Events #11)
b) It is recommended as in this table to leave Retain=True as long as there exist previous states (branches).

B.2 Address Space Examples

This Clause provides additional examples for the use of HasNotifier, HasEventSource and
HasCondition References to expose the organization of areas and sources with their
associated Conditions. This hierarchy is additional to a hierarchy provided with Organizes and
Aggregates References.

Figure B.3 illustrates the use of the HasCondition Reference with Condition instances.

BS EN 62541-9:2015

 – 68 – IEC 62541-9:2015 © IEC 2015

HasNotifier

Objects

Server

Tank A

Organizes

MyLevelAlarmType:
LevelMonitoring

LevelMeasurement

Area 1

Tank Farm Machine B

Device B

MyAlarmTypeA:
Condition 1

MyAlarmTypeA:
Condition 2

HasEventSource

HasEventSourceHasCondition

HasCondition

IEC

Figure B.3 – HasCondition used with Condition instances

In systems where Conditions are not available as instances, the ConditionSource can
reference the ConditionTypes instead. This is illustrated with the example in Figure B.4.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 69 –

Objects

Server

Tank A

Organizes

LevelMeasurement

ProcessAlarm
Type

ExclusiveLimit
AlarmType

Exclusive
Level

MyLevelAlarmType

HasNotifier

Area 1

Tank Farm Machine B

HasEventSource

HasCondition

IEC

Figure B.4 – HasCondition reference to a Condition Type

Figure B.5 provides an example where the HasCondition Reference is already defined in the
Type system. The Reference can point to a Condition Type or to an instance. Both variants
are shown in this example. A Reference to a Condition Type in the Type system will result in a
Reference to the same Type Node in the instance

BS EN 62541-9:2015

 – 70 – IEC 62541-9:2015 © IEC 2015

Tank A

MyLevelAlarmType:
LevelMonitoring

LevelMeasurement

Tank Farm

HasEventSource

HasCondition

MyLevelAlarmType:
LevelMonitoring

LevelMeasurement

TankType

HasCondition

HasEventSource

MySystemAlarmType

HasNotifier
HasConditionHasCondition

IEC

Figure B.5 – HasCondition used with an instance declaration

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 71 –

Annex C
(informative)

Mapping to EEMUA

Table C.1 lists EEMUA terms and how OPC UA terms maps to them.

Table C.1 – EEMUA Terms

EEMUA Term OPC UA Term EEMUA Definition

Accepted Acknowledged=true
An Alarm is accepted when the Operator has indicated awareness of its
presence.

In OPC UA this can be accomplished with the Acknowledge Method.

Active Alarm Active = True An Alarm Condition which is on (i.e. limit has been exceeded and Condition
continues to exist).

Alarm
Message

Message Property
(defined in
IEC 62541-5.)

Test information presented to the Operator that describes the Alarm
Condition.

Alarm Priority
Severity Property
(defined in
IEC 62541-5.)

The ranking of Alarms by severity and response time.

Alert -

A lower priority Notification than an Alarm that has no serious consequence if
ignored or missed. In some Industries also referred to as a Prompt or
Warning”.

No direct mapping! In UA the concept of Alerts can be accomplished by the
use of severity. E.g., Alarms that have a severity below 50 may be
considered as Alerts.

Cleared Active = False An Alarm state that indicates the Condition has returned to normal.

Disable Enabled = False An Alarm is disabled when the system is configured such that the Alarm will
not be generated even though the base Alarm Condition is present.

Prompt Dialog
A request from the control system that the operator perform some process
action that the system cannot perform or that requires Operator authority to
perform.

Raised Active = True An Alarm is Raised or initiated when the Condition creating the Alarm has
occurred.

Release OneShotShelving

A ‘release’ is a facility that can be applied to a standing (UA = active) Alarm in a
similar way to which Shelving is applied. A released Alarm is temporarily removed
from the Alarm list and put on the shelf. There is no indication to the Operator when
the Alarm clears, but it is taken off the shelf. Hence, when the Alarm is raised again it
appears on the Alarm list in the normal way.

Reset Retain=False

An Alarm is Reset when it is in a state that can be removed from the Display
list.

OPC UA includes Retain flag which as part of its definition states: “when a Client
receives an Event with the Retain flag set to FALSE, the Client should consider this
as a Condition/Branch that is no longer of interest, in the case of a “current Alarm
display” the Condition/Branch would be removed from the display”

Shelving Shelving

Shelving is a facility where the Operator is able to temporarily prevent an
Alarm from being displayed to the Operator when it is causing the Operator a
nuisance. A Shelved Alarm will be removed from the list and will not re-
annunciate until un-shelved.

Standing Active = True An Alarm is Standing whilst the Condition persists (Raised and Standing are
often used interchangeably)’.

Suppress Suppress
An Alarm is suppressed when logical criteria are applied to determine that
the Alarm should not occur, even though the base Alarm Condition (e.g.
Alarm setting exceeded) is present.

Unaccepted Acknowledged =
False

An Alarm is accepted when the Operator has indicated awareness of its
presence. It is unaccepted until this has been done.

BS EN 62541-9:2015

 – 72 – IEC 62541-9:2015 © IEC 2015

Annex D
(informative)

Mapping from OPC A&E to OPC UA A&C

D.1 Overview

Serving as a bridge between COM and OPC UA components, the Alarm and Events proxy and
wrapper enable existing A&E COM Clients and Servers to connect to UA Alarms and
Conditions components.

Simply stated, there are two aspects to the migration strategy. The first aspect enables a UA
Alarms and Conditions Client to connect to an existing Alarms and Events COM Server via a
UA Server wrapper. This wrapper is notated from this point forward as the A&E COM UA
Wrapper. The second aspect enables an existing Alarms and Events COM Client to connect to
a UA Alarms and Conditions Server via a COM proxy. This proxy is notated from this point
forward as the A&E COM UA Proxy.

An Alarms and Events COM Client is notated from this point forward as A&E COM Client.

A UA Alarms and Conditions Server is notated from this point forward as UA A&C Server.

The mappings describe generic A&E COM interoperability components. It is recommended
that vendors use this mapping if they develop their own components, however, some
applications may benefit from vendor specific mappings.

D.2 Alarms and Events COM UA Wrapper

D.2.1 Event Areas

Event Areas in the A&E COM Server are represented in the A&E COM UA Wrapper as
Objects with a TypeDefinition of BaseObjectType. The EventNotifier Attribute for these
Objects always has the SubscribeToEvents flag set to true.

The root Area is represented by an Object with a BrowseName that depends on the UA
Server. It is always the target of a HasNotifier Reference from the Server Node. The root Area
allows multiple A&E COM Servers to be wrapped within a single UA Server.

The Area hierarchy is discovered with the BrowseOPCAreas and the GetQualifiedAreaName
Methods. The Area name returned by BrowseOPCAreas is used as the BrowseName and
DisplayName for each Area Node. The QualifiedAreaName is used to construct the NodeId.
The NamespaceURI qualifying the NodeId and BrowseName is a unique URI assigned to the
combination of machine and COM Server.

Each Area is the target of HasNotifier Reference from its parent Area. It may be the source of
one or more HasNotifier References to its child Areas. It may also be a source of a
HasEventSource Reference to any sources in the Area.

The A&E COM Server may not support filtering by Areas. If this is the case then no Area
Nodes are shown in the UA Server address space. Some implementations could use the
AREAS Attribute to provide filtering by Areas within the A&E COM UA Wrapper.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 73 –

D.2.2 Event Sources

Event Sources in the A&E COM Server are represented in the A&E COM UA Wrapper as
Objects with a TypeDefinition of BaseObjectType. If the A&E COM Server supports source
filtering then the SubscribeToEvents flag is true and the Source is a target of a HasNotifier
Reference. If source filtering is not supported the SubscribeToEvents flag is false and the
Source is a target of a HasEventSource Reference.

The Sources are discovered by calling BrowseOPCAreas and the GetQualifiedSourceName
Methods. The Source name returned by BrowseOPCAreas is used as the BrowseName and
DisplayName. The QualifiedSourceName is used to construct the NodeId. Event Source
Nodes are always targets of a HasEventSource Reference from an Area.

D.2.3 Event Categories

Event Categories in the A&E COM Server are represented in the UA Server as ObjectTypes
which are subtypes of BaseEventType. The BrowseName and DisplayName of the ObjectType
Node for Simple and Tracking Event Types are constructed by appending the text ‘EventType’
to the Description of the Event Category. For Condition Event Types the text ‘AlarmType’ is
appended to the Condition Name.

These ObjectType Nodes have a super type which depends on the A&E Event Type, the
Event Category Description and the Condition Name; however, the best mapping requires
knowledge of the semantics associated with the Event Categories and Condition Names. If an
A&E COM UA Wrapper does not know these semantics then Simple Event Types are
subtypes of BaseEventType, Tracking Event Types are subtypes of AuditEventType and
Condition Event Types are subtypes of the AlarmType. Table D.1 defines mappings for a set
of “well known” Category description and Condition Names to a standard super type.

Table D.1 – Mapping from Standard Event Categories to OPC UA Event Types

COM A&E Event Type Category Description Condition Name OPC UA EventType

Simple --- --- BaseEventType

Simple Device Failure --- DeviceFailureEventType

Simple System Message --- SystemEventType

Tracking --- --- AuditEventType

Condition --- --- AlarmType

Condition Level --- LimitAlarmType

Condition Level PVLEVEL ExclusiveLevelAlarmType

Condition Level SPLEVEL ExclusiveLevelAlarmType

Condition Level HI HI NonExclusiveLevelAlarmType

Condition Level HI NonExclusiveLevelAlarmType

Condition Level LO NonExclusiveLevelAlarmType

Condition Level LO LO NonExclusiveLevelAlarmType

Condition Deviation --- NonExclusiveDeviationAlarmType

Condition Discrete --- DiscreteAlarmType

Condition Discrete CFN OffNormalAlarmType

Condition Discrete TRIP TripAlarmType

There is no generic mapping defined for A&E COM sub-Conditions. If an Event Category is
mapped to a LimitAlarmType then the sub Condition name in the Event are be used to set the
state of a suitable State Variable. For example, if the sub-Condition name is “HI HI” then that
means the HighHigh state for the LimitAlarmType is active

BS EN 62541-9:2015

 – 74 – IEC 62541-9:2015 © IEC 2015

For Condition Event Types the Event Category is also used to define subtypes of
BaseConditionClassType.

Figure D.1 illustrates how ObjectType Nodes created from the Event Categories and
Condition Names are placed in the standard OPC UA Event hierarchy.

BaseEventType

<CategoryA>
EventType

<CategoryB>
EventType AuditEventType

<CategoryC>
EventType

AlarmType<ConditionNameX>
AlarmType

ExclusiveLevel
AlarmType

LevelAlarmType

ExclusiveLimit
AlarmType

DeviationAlarmType

<ConditionNameY>
AlarmType

<ConditionNameZ>
AlarmType

IEC

Figure D.1 – The Type Model of a Wrapped COM AE Server

D.2.4 Event Attributes

Event Attributes in the A&E COM Server are represented in the UA Server as Variables which
are targets of HasProperty References from the ObjectTypes which represent the Event
Categories. The BrowseName and DisplayName are the description for the Event Attribute.
The data type of the Event Attribute is used to set DataType and ValueRank. The NodeId is
constructed from the EventCategoryId, ConditionName and the AttributeId.

D.2.5 Event Subscriptions

The A&E COM UA Wrapper creates a Subscription with the COM AE Server the first time a
MonitoredItem is created for the Server Object or one of the Nodes representing Areas. The
Area filter is set based on the Node being monitored. No other filters are specified.

If all MonitoredItems for an Area are disabled then the Subscription will be deactivated.

The Subscription is deleted when the last MonitoredItem for the Node is deleted.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 75 –

When filtering by Area the A&E COM UA Wrapper needs to add two Area filters: one based on
the QualifiedAreaName which forms the NodeId and one with the text ‘/*’ appended to it. This
ensures that Events from sub areas are correctly reported by the COM AE Server.

A simple A&E COM UA Wrapper will always request all Attributes for all Event Categories
when creating the Subscription. A more sophisticated wrapper may look at the EventFilter to
determine which Attributes are actually used and only request those.

Table D.2 lists how the fields in the ONEVENTSTRUCT that are used by the A&E COM UA
Wrapper are mapped to UA BaseEventType Variables.

Table D.2 – Mapping from ONEVENTSTRUCT fields to UA BaseEventType Variables

UA Event Variable ONEVENTSTRUCT
Field

Notes

EventId

szSource
szConditionName
ftTime
ftActiveTime
dwCookie

A ByteString constructed by appending the fields together.

EventType
dwEventType
dwEventCategory
szConditionName

The NodeId for the corresponding ObjectType Node. The
szConditionName maybe omitted by some implementations.

SourceNode szSource The NodeId of the corresponding Source Object Node.

SourceName szSource -

Time ftTime -

ReceiveTime - Set when the Notification is received by the wrapper.

LocalTime - Set based on the clock of the machine running the wrapper.

Message szMessage Locale is the default locale for the COM AE Server.

Severity dwSeverity -

Table D.3 lists how the fields in the ONEVENTSTRUCT that are used by the A&E COM UA
Wrapper are mapped to UA AuditEventType Variables.

Table D.3 – Mapping from ONEVENTSTRUCT fields to UA AuditEventType Variables

UA Event Variable ONEVENTSTRUCT
Field

Notes

ActionTimeStamp ftTime Only set for tracking Events.

Status - Always set to True.

ServerId - Set to the COM AE Server NamespaceURI

ClientAuditEntryId - Not set.

ClientUserId szActorID -

Table D.4 lists how the fields in the ONEVENTSTRUCT that are used by the A&E COM UA
Wrapper are mapped to UA AlarmType Variables.

BS EN 62541-9:2015

 – 76 – IEC 62541-9:2015 © IEC 2015

Table D.4 – Mapping from ONEVENTSTRUCT fields to UA AlarmType Variables

UA Event Variable ONEVENTSTRUCT
Field

Notes

ConditionClassId dwEventType
Set to the NodeId of the ConditionClassType for the Event
Category of a Condition Event Type. Set to the NodeId of
BaseConditionClassType Node for non-Condition Event Types.

ConditionClassName dwEventType
Set to the BrowseName of the ConditionClassType for the Event
Category of Condition Event Type. To set “BaseConditionClass"
non-Condition Event Types.

ConditionName szConditionName -

BranchId - Always set to null.

Retain wNewState Set to True if the OPC_CONDITION_ACKED bit is not set or
OPC_CONDITION_ACTIVE bit is set.

EnabledState wNewState Set to "Enabled" or "Disabled"

EnabledState.Id wNewState Set to True if OPC_CONDITION_ENABLED is set

EnabledState.

EffectiveDisplayName
wNewState

A string constructed from the bits in the wNewState flag.

The following rules are applied in order to select the string:

"Disabled" if OPC_CONDITION_ENABLED is not set.

"Unacknowledged" if OPC_CONDITION_ACKED is not set.

"Active" if OPC_CONDITION_ACKED is set.

"Enabled" if OPC_CONDITION_ENABLED is set.

Quality wQuality The COM DA Quality converted to a UA StatusCode.

Severity dwSeverity
Set based on the last Event received for the Condition instance.

Set to the current value if the last Event is not available.

Comment - The value of the ACK_COMMENT Attribute

ClientUserId szActorID -

AckedState wNewState Set to "Acknowledged" or "Unacknowledged "

AckedState.Id wNewState Set to True if OPC_CONDITION_ACKED is set

ActiveState wNewState Set to "Active" or "Inactive "

ActiveState.Id wNewState Set to True if OPC_CONDITION_ACTIVE is set

ActiveState.TransitionTime ftActiveTime -

The A&C Condition Model defines other optional Variables which are not needed in the A&E
COM UA Wrapper. Any additional fields associated with Event Attributes are also reported.

D.2.6 Condition Instances

Condition Instances do not appear in the UA Server address space. Conditions can be
acknowledged by passing the EventId to the Acknowledge Method defined on the
AcknowledgeableConditionType.

Conditions cannot be enabled or disabled via the COM A&E Wrapper.

D.2.7 Condition Refresh

The COM A&E Wrapper does not store the state of Conditions. When ConditionRefresh is
called the Refresh Method is called on all COM AE Subscriptions associated with the
ConditionRefresh call. The wrapper needs to wait until it receives the call back with the
bLastRefresh flag set to True in the OnEvent call before it can tell the UA Client that the
Refresh has completed.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 77 –

D.3 Alarms and Events COM UA Proxy

D.3.1 General

As illustrated in the figure below, the A&E COM UA Proxy is a COM Server combined with a
UA Client. It maps the Alarms and Conditions address space of UA A&C Server into the
appropriate COM Alarms and Event Objects.

Subclauses D.3.2 through D.3.9 identify the design guidelines and constraints used to
develop the A&E COM UA Proxy provided by the OPC Foundation. In order to maintain a high
degree of consistency and interoperability, it is strongly recommended that vendors, who
choose to implement their own version of the A&E COM UA Proxy, follow these same
guidelines and constraints.

The A&E COM Client simply needs to address how to connect to the UA A&C Server.
Connectivity approaches include the one where A&E COM Clients connect to a UA A&C
Server with a CLSID just as if the target Server were an A&E COM Server. However, the
CLSID can be considered virtual since it is defined to connect to intermediary components
that ultimately connect to the UA A&C Server. Using this approach, the A&E COM Client calls
co-create instance with a virtual CLSID as described above. This connects to the A&E COM
UA Proxy components. The A&E COM UA Proxy then establishes a secure channel and
session with the UA A&C Server. As a result, the A&E COM Client gets a COM Event Server
interface pointer.

D.3.2 Server Status Mapping

The A&E COM UA Proxy reads the UA A&C Server status from the Server Object Variable
Node. Status enumeration values that are returned in ServerStatusDataType structure can be
mapped 1 for 1 to the A&E COM Server status values with the exception of UA A&C Server
status values Unknown and Communication Fault. These both map to the A&E COM Server
status value of Failed.

The VendorInfo string of the A&E COM Server status is mapped from ManufacturerName.

D.3.3 Event Type Mapping

Since all Alarms and Conditions Events belong to a subtype of BaseEventType, the A&E COM
UA Proxy maps the subtype as received from the UA A&C Server to one of the three A&E
Event types: Simple, Tracking and Condition. Figure D.2 shows the mapping as follows:

• Those A&C Events which are of subtype AuditEventType are marked as A&E Event
type Tracking;

• Those A&C Events which are ConditionType are marked as A&E Event type Condition;

• Those A&C Events which are of any subtype except AuditEventType or ConditionType
are marked as A&E Event type Simple.

BS EN 62541-9:2015

 – 78 – IEC 62541-9:2015 © IEC 2015

BaseEvent
Type

AuditEvent
Type

BaseModelChangeEvent
Type

Condition
Type

SystemEvent
Type

 UA Base Event
Types

COM Alarm and
Event Types

Tracking Condition Simple

Mapping of UA Events includes subtypes of each base event type

IEC

Figure D.2 – Mapping UA Event Types to COM A&E Event Types

Note that the Event type mapping described above also applies to the children of each
subtype.

D.3.4 Event Category Mapping

Each A&E Event type (e.g. Simple, Tracking, Condition) has an associated set of Event
categories which are intended to define groupings of A&E Events. For example, Level and
Deviation are possible Event categories of the Condition Event type for an A&E COM Server.
However, since A&C does not explicitly support Event categories, the A&E COM UA Proxy
uses A&C Event types to return A&E Event categories to the A&E COM Client. The A&E COM
UA Proxy builds the collection of supported categories by traversing the type definitions in the
address space of the UA A&C Server. Figure D.3 shows the mapping as follows:

• A&E Tracking categories consist of the set of all Event types defined in the hierarchy
of subtypes of AuditEventType and TransitionEventType, including AuditEventType
itself and TransitionEventType itself;

• A&E Condition categories consist of the set of all Event types defined in the hierarchy
of subtypes of ConditionType, including ConditionType itself;

• A&E Simple categories consist of the set of Event types defined in the hierarchy of
subtypes of BaseEventType excluding AuditEventType and ConditionType and their
respective subtypes.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 79 –

BaseEvent
Type

Condition
Type

 UA Condition Type
Hierarchy
(partial)

COM A&E Condition
Type

Condition Event Type

AcknowledgeableCondition
Type

AlarmCondition
Type

Catergory 2 : AcknowledgeableConditionType

Catergory 3 : AlarmConditionType

Catergory 1 : ConditionType

IEC

Figure D.3 – Example Mapping of UA Event Types to COM A&E Categories

Category name is derived from the display name Attribute of the Node type as discovered in
the type hierarchy of the UA A&C Server.

Category description is derived from the description Attribute of the Node type as discovered
in the type hierarchy of the UA A&C Server.

The A&E COM UA Proxy assigns Category IDs.

D.3.5 Event Category Attribute Mapping

The collection of Attributes associated with any given A&E Event is encapsulated within the
ONEVENTSTRUCT. Therefore the A&E COM UA Proxy populates the Attribute fields within
the ONEVENTSTRUCT using corresponding values from UA Event Notifications either directly
(e.g., Source, Time, Severity) or indirectly (e.g., OPC COM Event category determined by way
of the UA Event type). Table D.5 lists the Attributes currently defined in the
ONEVENTSTRUCT in the leftmost column. The rightmost column of Table D.5 indicates how
the A&E COM UA proxy defines that Attribute.

BS EN 62541-9:2015

 – 80 – IEC 62541-9:2015 © IEC 2015

Table D.5 – Event Category Attribute Mapping Table

A&E ONEVENTSTRUCT “attribute” A&E COM UA Proxy Mapping
The following items are present for all A&E event types
szSource UA BaseEventType Property: SourceName

ftTime UA BaseEventType Property: Time

szMessage UA BaseEventType Property: Message

dwEventType See D.3.3

dwEventCategory See D.3.4

dwSeverity UA BaseEventType Property: Severity

dwNumEventAttrs Calculated within A&E COM UA Proxy

pEventAttributes Constructed within A&E COM UA Proxy

The following items are present only for A&E Condition-Related Events
szConditionName UA ConditionType Property: ConditionName

szSubConditionName UA ActiveState Property: EffectiveDisplayName

wChangeMask Calculated within Alarms and Events COM UA proxy

wNewState:
OPC_CONDITION_ACTIVE

A&C AlarmConditionType Property: ActiveState
Note that events mapped as non-Condition Events and those that do not derive from
AlarmConditionType are set to ACTIVE by default.

wNewState:
OPC_CONDITION_ENABLED

A&C ConditionType Property: EnabledState
 Note, Events mapped as non-Condition Events are set to ENABLED (state bit mask =
0x1) by default.

wNewState:
OPC_CONDITION_ACKED

A&C AcknowledgeableConditionType Property: AckedState
Note that A&C Events mapped as non-Condition Events or which do not derive from
AcknowledgeableConditionType are set to UNACKNOWLEDGED and AckRequired =
false by default.

wQuality A&C ConditionType Property: Quality
 Note that Events mapped as non-Condition Events are set to OPC_QUALITY_GOOD
by default.

In general, the Severity field of the StatusCode is used to map COM status codes
OPC_QUALITY_BAD, OPC_QUALITY_GOOD and OPC_QUALITY_UNCERTAIN.
When possible, specific status' are mapped directly. These include (UA => COM):

Bad status codes
 Bad_ConfigurationError => OPC_QUALITY_CONFIG_ERROR
 Bad_NotConnected => OPC_QUALITY_NOT_CONNECTED
 Bad_DeviceFailure => OPC_QUALITY_DEVICE_FAILURE
 Bad_SensorFailure => OPC_QUALITY_SENSOR_FAILURE
 Bad_NoCommunication => OPC_QUALITY_COMM_FAILURE
 Bad_OutOfService => OPC_QUALITY_OUT_OF_SERVICE

Uncertain status codes
 Uncertain_NoCommunicationLastUsableValue =>
OPC_QUALITY_LAST_USABLE
 Uncertain_LastUsableValue => OPC_QUALITY_LAST_USABLE
 Uncertain_SensorNotAccurate => OPC_QUALITY_SENSOR_CAL
 Uncertain_EngineeringUnitsExceeded => OPC_QUALITY_EGU_EXCEEDED
 Uncertain_SubNormal => OPC_QUALITY_SUB_NORMAL

Good status codes
 Good_LocalOverride => OPC_QUALITY_LOCAL_OVERRIDE

bAckRequired If the ACKNOWLEDGED bit (OPC_CONDITION_ACKED) is set then the Ack
Required Boolean is set to false, otherwise the Ack Required Boolean is set to true. If
the Event is not of type AcknowledgeableConditionType or subtype then the
AckRequired Boolean is set to false.

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 81 –

A&E ONEVENTSTRUCT “attribute” A&E COM UA Proxy Mapping
ftActiveTime If the Event is of type AlarmConditionType or subtype and a transition from

ActiveState of false to ActiveState to true is being processed then the TransitionTime
Property of ActiveState is used. If the Event is not of type AlarmConditionType or
subtype then this field is set to current time.

dwCookie Generated by the A&E COM UA Proxy. These unique Condition Event cookies are not
associated with any related identifier from the address space of the UA A&C Server.

The following is used only for A&E tracking events and for A&E condition-relate events which are acknowledgement
notifications
szActorID

Vendor specific Attributes – ALL
ACK Comment

AREAS All A&E Events are assumed to support the "Areas" Attribute. However, no Attribute or
Property of an A&C Event is available which provides this value. Therefore, the A&E
COM UA Proxy initializes the value of the Areas Attribute based on the monitored item
producing the Event. If the A&E COM Client has applied no area filtering to a
Subscription, the corresponding A&C Subscription will contain just one monitored item
– that of the UA A&C Server Object. Events forwarded to the A&E COM Client on
behalf of this Subscription will carry an Areas Attribute value of empty string. If the
A&E COM Client has applied an area filter to a Subscription then the related UA A&C
Subscription will contain one or more monitored items for each notifier Node identified
by the area string(s). Events forwarded to the A&E COM Client on behalf of such a
Subscription will carry an areas Attribute whose value is the relative path to the notifier
which produced the Event (i.e., the fully qualified area name).

Vendor specific Attributes – based on category
SubtypeProperty1 All the UA A&C subtype properties that are not part of the standard set exposed by

BaseEventType or ConditionType SubtypePropertyn

Condition Event instance records are stored locally within the A&E COM UA Proxy. Each
record holds ONEVENTSTRUCT data for each EventSource/Condition instance. When the
Condition instance transitions to the state INACTIVE|ACKED, where AckRequired = true or
simply INACTIVE, where AckRequired = false, the local Condition record is deleted. When a
Condition Event is received from the UA A&C Server and a record for this Event (identified by
source/Condition pair) already exists in the proxy Condition Event store, the existing record is
simply updated to reflect the new state or other change to the Condition, setting the change
mask accordingly and producing an OnEvent callback to any subscribing Clients. In the case
where the Client application acknowledges an Event which is currently unacknowledged
(AckRequired = true), the UA A&C Server Acknowledge Method associated with the Condition
is called and the subsequent Event produced by the UA A&C Server indicating the transition
to acknowledged will result in an update to the current state of the local Condition record as
well as an OnEvent Notification to any subscribing Clients.

The A&E COM UA Proxy maintains the mapping of Attributes on an Event category basis. An
Event category inherits its Attributes from the properties defined on all supertypes in the UA
Event Type hierarchy. New Attributes are added for any properties defined on the direct UA
Event type to A&E category mapping. The A&E COM UA Proxy adds two Attributes to each
category: AckComment and Areas. Figure D.4 shows an example of this mapping.

BS EN 62541-9:2015

 – 82 – IEC 62541-9:2015 © IEC 2015

Figure D.4 – Example Mapping of UA Event Types
to A&E Categories with Attributes

D.3.6 Event Condition Mapping

Events of any subtype of ConditionType are designated COM Condition Events and are
subject to additional processing due to the stateful nature of Condition Events. COM
Condition Events transition between states composed of the triplet
ENABLED|ACTIVE|ACKNOWLEDGED. In UA A&C, Event subtypes of ConditionType only
carry a value which can be mapped to ENABLED (DISABLED) and optionally, depending on
further sub typing, may carry additional information which can be mapped to ACTIVE
(INACTIVE) or ACKNOWLEDGED (UNACKNOWLEGED). Condition Event processing
proceeds as described in Table D.5 (see A&E ONEVENTSTRUCT “Attribute” rows:
OPC_CONDITION_ACTIVE, OPC_CONDITION_ENABLED and OPC_CONDITION_ACKED).

D.3.7 Browse Mapping

A&E COM browsing yields a hierarchy of areas and sources. Areas can contain both sources
and other areas in tree fashion where areas are the branches and sources are the leaves. The
A&E COM UA Proxy relies on the "HasNotifier" Reference to assemble a hierarchy of
branches/areas such that each Object Node which contains a HasNotifier Reference and
whose EventNotifier Attribute is set to SubscribeToEvents is considered an area. The root for
the Event hierarchy is the Server Object. Starting at the Server Object, eventNotifier
References are followed and each HasNotifier target whose EventNotifier Attribute is set to
SubscribeToEvents becomes a nested COM area within the hierarchy.

IEC

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 83 –

Note that the HasNotifier target can also be a HasNotifier source. Further, any Node which is
a HasEventSource source and whose EventNotifier Attribute is set to SubscribeToEvents is
also considered a COM Area. The target Node of any HasEventSource Reference is
considered an A&E COM “source” or leaf in the A&E COM browse tree.

In general, Nodes which are the source Nodes of the HasEventSource Reference and/or are
the source Nodes of the HasNotifier Reference are always A&ECOM Areas. Nodes which are
the target Nodes of the HasEventSource Reference are always A&E COM Sources. Note
however that targets of HasEventSource which cannot be found by following the HasNotifier
References from the Server Object are ignored.

Given the above logic, the A&E COM UA Proxy browsing will have the following limitations:
Only those Nodes in the UA A&C Server’s address space which are connected by the
HasNotifier Reference (with exception of those contained within the top level Objects folder)
are considered for area designation. Only those Nodes in the UA A&C Server’s address space
which are connected by the HasEventSource Reference (with exception of those contained
within the top level Objects folder) are considered for area or source designation. To be an
area, a Node shall contain a HasNotifier Reference and its EventNotifier Attribute shall be set
to SubscribeToEvents. To be a source, a Node shall be the target Node of a HasEventSource
Reference and shall have been found by following HasNotifier References from the Server
Object.

D.3.8 Qualified Names

D.3.8.1 Qualified Name Syntax

From the root of any sub tree in the address space of the UA A&C Server, the A&E COM
Client may request the list of areas and/or sources contained within that level. The resultant
list of area names or source names will consist of the set of browse names belonging to those
Nodes which meet the criteria for area or source designation as described above. These
names are "short" names meaning that they are not fully qualified. The A&E COM Client may
request the fully qualified representation of any of the short area or source names. In the case
of sources, the fully qualified source name returned to the A&E COM Client will be the string
encoded value of the NodeId as defined in IEC 62541-6 (e.g., “ns=10;i=859“). In the case of
areas, the fully qualified area name returned to the COM Client will be the relative path to the
notifier Node as defined in IEC 62541-4 (e.g.,
“/6:Boiler1/6:Pipe100X/1:Input/2:Measurement“). Relative path indices refer to the namespace
table described below.

D.3.8.2 Namespace Table

UA Server Namespace table indices may vary over time. This represents a problem for those
A&E COM Clients which cache and reuse fully qualified area names. One solution to this
problem would be to use a qualified name syntax which includes the complete URIs for all
referenced table indices. This however would result in fully qualified area names which are
unwieldy and impractical for use by A&E COM Clients. As an alternative, the A&E COM UA
Proxy will maintain an internal copy of the UA A&C Server's namespace table together with
the locally cached endpoint description. The A&E COM UA Proxy will evaluate the UA A&C
Server’s namespace table at connect time against the cached copy and automatically handle
any re-mapping of indices if required. The A&E COM Client can continue to present cached
fully qualified area names for filter purposes and the A&E COM UA Proxy will ensure these
names continue to reference the same notifier Node even if the Server's namespace table
changes over time.

To implement the relative path, the A&E COM UA Proxy maintains a stack of INode interfaces
of all the Nodes browsed leading to the current level. When the A&E COM Client calls
GetQualifiedAreaName, the A&E COM UA Proxy first validates that the area name provided is
a valid area at the current level. Then looping through the stack, the A&E COM UA Proxy
builds the relative path. Using the browse name of each Node, the A&E COM UA Proxy
constructs the translated name as follows:

BS EN 62541-9:2015

 – 84 – IEC 62541-9:2015 © IEC 2015

QualifiedName translatedName = new QualifiedName(Name,(ushort)
ServerMappingTable[NamespaceIndex]) where

Name – the unqualified browse name of the Node

NamespaceIndex – the Server index

the ServerMappingTable provides the Client namespace index that corresponds to the
Server index.

A ‘/’ is appended to the translated name and the A&E COM UA Proxy continues to loop
through the stack until the relative path is fully constructed

D.3.9 Subscription Filters

D.3.9.1 General

The A&E COM UA Proxy supports all of the defined A&E COM filter criteria.

D.3.9.2 Filter by Event, Category or Severity

These filter types are implemented using simple numeric comparisons. For Event filters, the
received Event shall match the Event type(s) specified by the filter. For Category filters, the
received Event’s category (as mapped from UA Event type) shall match the category or
categories specified by the filter. For severity filters, the received Event severity shall be
within the range specified by the Subscription filter.

D.3.9.3 Filter by Source

In the case of source filters, the UA A&C Server is free to provide any appropriate, Server-
specific value for SourceName. There is no expectation that source Nodes discovered via
browsing can be matched to the SourceName Property of the Event returned by the UA A&C
Server using string comparisons. Further, the A&E COM Client may receive Events from
sources which are not discoverable by following only HasNotifier and/or HasEventSource
References. Thus, source filters will only apply if the source string can be matched to the
SourceName Property of an Event as received from the target UA A&C Server. Source filter
logic will use the pattern matching rules documented in the A&E COM specification, including
the use of wildcard characters.

D.3.9.4 Filter by Area

The A&E COM UA Proxy implements Area filtering by adjusting the set of monitored items
associated with a Subscription. In the simple case where the Client selects no area filter, the
A&E COM UA Proxy will create a UA Subscription which contains just one monitored item, the
Server Object. In doing so, the A&E COM UA Proxy will receive Events from the entire Server
address space – that is, all Areas. The A&E COM Client will discover the areas associated
with the UA Server address space by browsing. The A&E COM Client will use
GetQualifiedAreaName as usual in order to obtain area strings which can be used as filters.
When the A&E COM Client applies one or more of these area strings to the COM Subscription
filter, the A&E COM UA Proxy will create monitored items for each notifier Node identified by
the area string(s). Recall that the fully qualified area name is in fact the namespace qualified
relative path to the associated notifier Node.

The A&E COM UA Proxy calls the TranslateBrowsePathsToNodeIds Service to get the Node
ids of the fully qualified area names in the filter. The Node ids are then added as monitored
items to the UA Subscription maintained by the A&E COM UA Proxy. The A&E COM UA Proxy
also maintains a reference count for each of the areas added, to handle the case of multiple
A&E COM Subscription applying the same area filter. When the A&E COM Subscriptions are
removed or when the area name is removed from the filter, the ref count on the monitored
item corresponding to the area name is decremented. When the ref count goes to zero, the
monitored item is removed from the UA Subscription

BS EN 62541-9:2015

IEC 62541-9:2015 © IEC 2015 – 85 –

As with source filter strings, area filter strings can contain wildcard characters. Area filter
strings which contain wildcard characters require more processing by the A&E COM UA
Proxy. When the A&E COM Client specifies an area filter string containing wildcard
characters, the A&E COM UA Proxy will scan the relative path for path elements that are
completely specified. The partial path containing just those segments which are fully specified
represents the root of the notifier sub tree of interest. From this sub tree root Node, the A&E
COM UA Proxy will collect the list of notifier Nodes below this point. The relative path
associated with each of the collected notifier Nodes in the sub tree will be matched against
the Client supplied relative path containing the wildcard character. A monitored item is
created for each notifier Node in the sub tree whose relative path matches that of the supplied
relative path using established pattern matching rules. An area filter string which contains
wildcard characters may result in multiple monitored items added to the UA Subscription. By
contrast, an area filter string made up of fully specified path segments and no wildcard
characters will result in one monitored item added to the UA Subscription. So, the steps
involved are:

1) check if the filter string contains any of these wild card characters, '*', '?', '#', '[', ']', '!',
'-';

2) scan the string for path elements that are completely specified by retrieving the
substring up to the last occurrence of the ‘/’ character;

3) obtain the NodeId for this path using TranslateBrowsePathsToNodeIds;
4) browse the Node for all notifiers below it;
5) using the ComUtils.Match() function match the browse names of these notifiers against

the Client supplied string containing the wild card character;
6) add the Node ids of the notifiers that match as monitored items to the UA Subscription.

BS EN 62541-9:2015

 – 86 – IEC 62541-9:2015 © IEC 2015

Bibliography

IEC 62541-7, OPC Unified Architecture – Part 7: Profiles

IEC 62541-11, OPC Unified Architecture – Part 11: Historical Access

BS EN 62541-9:2015

This page deliberately left blank

BSI is the national body responsible for preparing British Standards and other
standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization
products are published by BSI Standards Limited.

British Standards Institution (BSI)

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

About us
We bring together business, industry, government, consumers, innovators
and others to shape their combined experience and expertise into standards
-based solutions.

The knowledge embodied in our standards has been carefully assembled in
a dependable format and refined through our open consultation process.
Organizations of all sizes and across all sectors choose standards to help
them achieve their goals.

Information on standards
We can provide you with the knowledge that your organization needs
to succeed. Find out more about British Standards by visiting our website at
bsigroup.com/standards or contacting our Customer Services team or
Knowledge Centre.

Buying standards
You can buy and download PDF versions of BSI publications, including British
and adopted European and international standards, through our website at
bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development
Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions
Our range of subscription services are designed to make using standards
easier for you. For further information on our subscription products go to
bsigroup.com/subscriptions.

With British Standards Online (BSOL) you’ll have instant access to over 55,000
British and adopted European and international standards from your desktop.
It’s available 24/7 and is refreshed daily so you’ll always be up to date.

You can keep in touch with standards developments and receive substantial
discounts on the purchase price of standards, both in single copy and subscription
format, by becoming a BSI Subscribing Member.

PLUS is an updating service exclusive to BSI Subscribing Members. You will
automatically receive the latest hard copy of your standards when they’re
revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits
of membership, please visit bsigroup.com/shop.

With a Multi-User Network Licence (MUNL) you are able to host standards
publications on your intranet. Licences can cover as few or as many users as you
wish. With updates supplied as soon as they’re available, you can be sure your
documentation is current. For further information, email bsmusales@bsigroup.com.

Revisions
Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your
business. If you find an inaccuracy or ambiguity within a British Standard or other
BSI publication please inform the Knowledge Centre.

Copyright
All the data, software and documentation set out in all British Standards and
other BSI publications are the property of and copyrighted by BSI, or some person
or entity that owns copyright in the information used (such as the international
standardization bodies) and has formally licensed such information to BSI for
commercial publication and use. Except as permitted under the Copyright, Designs
and Patents Act 1988 no extract may be reproduced, stored in a retrieval system
or transmitted in any form or by any means – electronic, photocopying, recording
or otherwise – without prior written permission from BSI. Details and advice can
be obtained from the Copyright & Licensing Department.

Useful Contacts:
Customer Services
Tel: +44 845 086 9001
Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions
Tel: +44 845 086 9001
Email: subscriptions@bsigroup.com

Knowledge Centre
Tel: +44 20 8996 7004
Email: knowledgecentre@bsigroup.com

Copyright & Licensing
Tel: +44 20 8996 7070
Email: copyright@bsigroup.com

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

www.bsigroup.com/standards
www.bsigroup.com/shop
www.bsigroup.com/shop
www.bsigroup.com/subscriptions

	EN62541-9{2015}e.pdf
	Foreword
	Endorsement notice
	Annex ZA (normative) Normative references to international publications with their corresponding European publications

	30323161-VOR.pdf
	English
	CONTENTS
	FOREWORD
	1 Scope
	2 Normative references
	3 Terms, definitions, and abbreviations
	3.1 Terms and definitions
	3.2 Abbreviations and symbols
	3.3 Used data types

	4 Concepts
	4.1 General
	4.2 Conditions
	4.3 Acknowledgeable Conditions
	4.4 Previous states of Conditions
	4.5 Condition state synchronization
	4.6 Severity, Quality, and Comment
	4.7 Dialogs
	4.8 Alarms
	4.9 Multiple Active States
	4.10 Condition Instances in the Address Space
	4.11 Alarm and Condition Auditing

	5 Model
	5.1 General
	5.2 Two-State State Machines
	5.3 Condition Variables
	5.4 Substate Reference Types
	5.4.1 General
	5.4.2 HasTrueSubState ReferenceType
	5.4.3 HasFalseSubState ReferenceType

	5.5 Condition Model
	5.5.1 General
	5.5.2 ConditionType
	5.5.3 Condition and Branch Instances
	5.5.4 Disable Method
	5.5.5 Enable Method
	5.5.6 AddComment Method
	5.5.7 ConditionRefresh Method

	5.6 Dialog Model
	5.6.1 General
	5.6.2 DialogConditionType
	5.6.3 Respond Method

	5.7 Acknowledgeable Condition Model
	5.7.1 General
	5.7.2 AcknowledgeableConditionType
	5.7.3 Acknowledge Method
	5.7.4 Confirm Method

	5.8 Alarm Model
	5.8.1 General
	5.8.2 AlarmConditionType
	5.8.3 ShelvedStateMachineType
	5.8.4 LimitAlarmType
	5.8.5 ExclusiveLimit Types
	5.8.6 NonExclusiveLimitAlarmType
	5.8.7 Level Alarm
	5.8.8 Deviation Alarm
	5.8.9 Rate of Change
	5.8.10 Discrete Alarms

	5.9 ConditionClasses
	5.9.1 Overview
	5.9.2 Base ConditionClassType
	5.9.3 ProcessConditionClassType
	5.9.4 MaintenanceConditionClassType
	5.9.5 SystemConditionClassType

	5.10 Audit Events
	5.10.1 Overview
	5.10.2 AuditConditionEventType
	5.10.3 AuditConditionEnableEventType
	5.10.4 AuditConditionCommentEventType
	5.10.5 AuditConditionRespondEventType
	5.10.6 AuditConditionAcknowledgeEventType
	5.10.7 AuditConditionConfirmEventType
	5.10.8 AuditConditionShelvingEventType

	5.11 Condition Refresh Related Events
	5.11.1 Overview
	5.11.2 RefreshStartEventType
	5.11.3 RefreshEndEventType
	5.11.4 RefreshRequiredEventType

	5.12 HasCondition Reference Type
	5.13 Alarm and Condition Status Codes
	5.14 Expected A&C Server Behaviours
	5.14.1 General
	5.14.2 Communication problems
	5.14.3 Redundant A&C Servers

	6 AddressSpace Organisation
	6.1 General
	6.2 Event Notifier and Source Hierarchy
	6.3 Adding Conditions to the Hierarchy
	6.4 Conditions in InstanceDeclarations
	6.5 Conditions in a VariableType

	Annex A (informative)Recommended localized names
	A.1 Recommended State Names for TwoState Variables
	A.1.1 LocaleId “en”
	A.1.2 LocaleId “de”
	A.1.3 LocaleId “fr”

	A.2 Recommended Dialog Response Options

	Annex B (informative)Examples
	B.1 Examples for Event sequences from Condition instances
	B.1.1 Overview
	B.1.2 Server Maintains Current State Only
	B.1.3 Server Maintains Previous States

	B.2 Address Space Examples

	Annex C (informative)Mapping to EEMUA
	Annex D (informative)Mapping from OPC A&E to OPC UA A&C
	D.1 Overview
	D.2 Alarms and Events COM UA Wrapper
	D.2.1 Event Areas
	D.2.2 Event Sources
	D.2.3 Event Categories
	D.2.4 Event Attributes
	D.2.5 Event Subscriptions
	D.2.6 Condition Instances
	D.2.7 Condition Refresh

	D.3 Alarms and Events COM UA Proxy
	D.3.1 General
	D.3.2 Server Status Mapping
	D.3.3 Event Type Mapping
	D.3.4 Event Category Mapping
	D.3.5 Event Category Attribute Mapping
	D.3.6 Event Condition Mapping
	D.3.7 Browse Mapping
	D.3.8 Qualified Names
	D.3.8.1 Qualified Name Syntax
	D.3.8.2 Namespace Table
	D.3.9 Subscription Filters
	D.3.9.1 General
	D.3.9.2 Filter by Event, Category or Severity
	D.3.9.3 Filter by Source
	D.3.9.4 Filter by Area

	Bibliography
	Figures
	Figure 1 – Base Condition State Model
	Figure 2 – AcknowledgeableConditions State Model
	Figure 3 – Acknowledge State Model
	Figure 4 – Confirmed Acknowledge State Model
	Figure 5 – Alarm State Machine Model
	Figure 6 – Multiple Active States Example
	Figure 7 – ConditionType Hierarchy
	Figure 8 – Condition Model
	Figure 9 – DialogConditionType Overview
	Figure 10 – AcknowledgeableConditionType Overview
	Figure 11 – AlarmConditionType Hierarchy Model
	Figure 12 – Alarm Model
	Figure 13 – Shelve state transitions
	Figure 14 – Shelved State Machine Model
	Figure 15 – LimitAlarmType
	Figure 16 – ExclusiveLimitStateMachine
	Figure 17 – ExclusiveLimitAlarmType
	Figure 18 – NonExclusiveLimitAlarmType
	Figure 19 – DiscreteAlarmType Hierarchy
	Figure 20 – ConditionClass Type Hierarchy
	Figure 21 – AuditEvent Hierarchy
	Figure 22 – Refresh Related Event Hierarchy
	Figure 23 – Typical Event Hierarchy
	Figure 24 – Use of HasCondition in an Event Hierarchy
	Figure 25 – Use of HasCondition in an InstanceDeclaration
	Figure 26 – Use of HasCondition in a VariableType
	Figure B.1 – Single State Example
	Figure B.2 – Previous State Example
	Figure D.1 – The Type Model of a Wrapped COM AE Server
	Figure D.2 – Mapping UA Event Types to COM A&E Event Types
	Figure D.3 – Example Mapping of UA Event Types to COM A&E Categories
	Figure D.4 – Example Mapping of UA Event Types to A&E Categories with Attributes

	Tables
	Table 1 – Parameter Types defined in IEC 62541-3
	Table 2 – Parameter Types defined in IEC 62541-4
	Table 3 – TwoStateVariableType Definition
	Table 4 – ConditionVariableType Definition
	Table 5 – HasTrueSubState ReferenceType
	Table 6 – HasFalseSubState ReferenceType
	Table 7 – ConditionType Definition
	Table 8 – Simple Attribute Operand
	Table 9 – Disable Result Codes
	Table 10 – Disable Method AddressSpace Definition
	Table 11 – Enable Result Codes
	Table 12 – Enable Method AddressSpace Definition
	Table 13 – AddComment Arguments
	Table 14 – AddComment result Codes
	Table 15 – AddComment Method AddressSpace Definition
	Table 16 – ConditionRefresh Parameters
	Table 17 – ConditionRefresh ReturnCodes
	Table 18 – ConditionRefresh Method AddressSpace Definition
	Table 19 – DialogConditionType Definition
	Table 20 – Repond Parameters
	Table 21 – Respond ResultCodes
	Table 22 – Respond Method AddressSpace Definition
	Table 23 – AcknowledgeableConditionType Definition
	Table 24 – Acknowledge Parameters
	Table 25 – Acknowledge result codes
	Table 26 – Acknowledge Method AddressSpace Definition
	Table 27 – Confirm Method Parameters
	Table 28 – Confirm Result Codes
	Table 29 – Confirm Method AddressSpace Definition
	Table 30 – AlarmConditionType Definition
	Table 31 –ShelvedStateMachine Definition
	Table 32 – ShelvedStateMachine Transitions
	Table 33 – Unshelve Result Codes
	Table 34 – Unshelve Method AddressSpace Definition
	Table 35 – TimedShelve Parameters
	Table 36 – TimedShelve Result Codes
	Table 37 – TimedShelve Method AddressSpace Definition
	Table 38 – OneShotShelve Result Codes
	Table 39 – OneShotShelve Method AddressSpace Definition
	Table 40 – LimitAlarmType Definition
	Table 41 – ExclusiveLimitStateMachineType Definition
	Table 42 – ExclusiveLimitStateMachineType Transitions
	Table 43 – ExclusiveLimitAlarmType Definition
	Table 44 – NonExclusiveLimitAlarmType Definition
	Table 45 – NonExclusiveLevelAlarmType Definition
	Table 46 – ExclusiveLevelAlarmType Definition
	Table 47 – NonExclusiveDeviationAlarmType Definition
	Table 48 – ExclusiveDeviationAlarmType Definition
	Table 49 – NonExclusiveRateOfChangeAlarmType Definition
	Table 50 – ExclusiveRateOfChangeAlarmType Definition
	Table 51 – DiscreteAlarmType Definition
	Table 52 – OffNormalAlarmType Definition
	Table 53 – SystemOffNormalAlarmType Definition
	Table 54 – TripAlarmType Definition
	Table 55 – BaseConditionClassType Definition
	Table 56 – ProcessConditionClassType Definition
	Table 57 – MaintenanceConditionClassType Definition
	Table 58 – SystemConditionClassType Definition
	Table 59 – AuditConditionEventType Definition
	Table 60 – AuditConditionEnableEventType Definition
	Table 61 – AuditConditionCommentEventType Definition
	Table 62 – AuditConditionRespondEventType Definition
	Table 63 – AuditConditionAcknowledgeEventType Definition
	Table 64 – AuditConditionConfirmEventType Definition
	Table 65 – AuditConditionShelvingEventType Definition
	Table 66 – RefreshStartEventType Definition
	Table 67 – RefreshEndEventType Definition
	Table 68 – RefreshRequiredEventType Definition
	Table 69 – HasCondition ReferenceType
	Table 70 – Alarm and Condition Result Codes
	Table A.1 – Recommended state names for LocaleId “en”
	Table A.2 – Recommended display names for LocaleId “en”
	Table A.3 – Recommended state names for LocaleId “de”
	Table A.4 – Recommended display names for LocaleId “de”
	Table A.5 – Recommended state names for LocaleId “fr”
	Table A.6 – Recommended display names for LocaleId “fr”
	Table A.7 – Recommended Dialog Response Options
	Table B.1 – Example of a Condition that only keeps the latest state
	Table B.2 – Example of a Condition that maintains previous states via branches
	Figure B.3 – HasCondition used with Condition instances
	Figure B.4 – HasCondition reference to a Condition Type
	Figure B.5 – HasCondition used with an instance declaration
	Table C.1 – EEMUA Terms
	Table D.1 – Mapping from Standard Event Categories to OPC UA Event Types
	Table D.2 – Mapping from ONEVENTSTRUCT fields to UA BaseEventType Variables
	Table D.3 – Mapping from ONEVENTSTRUCT fields to UA AuditEventType Variables
	Table D.4 – Mapping from ONEVENTSTRUCT fields to UA AlarmType Variables
	Table D.5 – Event Category Attribute Mapping Table

	Français
	SOMMAIRE
	AVANT-PROPOS
	1 Domaine d'application
	2 Références normatives
	3 Termes, définitions et abréviations
	3.1 Termes et définitions
	3.2 Abréviations et symboles
	3.3 Types de données utilisés

	4 Concepts
	4.1 Généralités
	4.2 Conditions
	4.3 Conditions acquittables
	4.4 États antérieurs des Conditions
	4.5 Synchronisation des états d'une condition
	4.6 Sévérité, qualité et commentaire
	4.7 Dialogues
	4.8 Alarmes
	4.9 Etats actifs multiples
	4.10 Instances Condition dans l'espace d’adresses
	4.11 Conduite d'audits pour les alarmes et les conditions

	5 Modèle
	5.1 Généralités
	5.2 Diagrammes d'états à deux états
	5.3 Variables de Condition
	5.4 Types de référence des sous-états
	5.4.1 Généralités
	5.4.2 ReferenceType HasTrueSubState
	5.4.3 ReferenceType HasFalseSubState

	5.5 Modèle de Condition
	5.5.1 Généralités
	5.5.2 ConditionType
	5.5.3 Instances Condition et Branch
	5.5.4 Méthode Disable
	5.5.5 Méthode Enable
	5.5.6 Méthode AddComment
	5.5.7 Méthode ConditionRefresh

	5.6 Modèle Dialog
	5.6.1 Généralités
	5.6.2 DialogConditionType
	5.6.3 Méthode Respond

	5.7 Modèle Condition acquittable
	5.7.1 Généralités
	5.7.2 AcknowledgeableConditionType
	5.7.3 Méthode Acknowledge
	5.7.4 Méthode Confirm

	5.8 Modèle Alarm
	5.8.1 Généralités
	5.8.2 AlarmConditionType
	5.8.3 ShelvedStateMachineType
	5.8.4 LimitAlarmType
	5.8.5 ExclusiveLimit Types
	5.8.6 NonExclusiveLimitAlarmType
	5.8.7 Alarm niveau
	5.8.8 Alarm Ecart
	5.8.9 Rate of Change (Vitesse de variation)
	5.8.10 Alarmes de type Discret

	5.9 ConditionClasses
	5.9.1 Vue d’ensemble
	5.9.2 ConditionClassType de base
	5.9.3 ProcessConditionClassType
	5.9.4 MaintenanceConditionClassType
	5.9.5 SystemConditionClassType

	5.10 Événements Audit
	5.10.1 Vue d’ensemble
	5.10.2 AuditConditionEventType
	5.10.3 AuditConditionEnableEventType
	5.10.4 AuditConditionCommentEventType
	5.10.5 AuditConditionRespondEventType
	5.10.6 AuditConditionAcknowledgeEventType
	5.10.7 AuditConditionConfirmEventType
	5.10.8 AuditConditionShelvingEventType

	5.11 Événements relatifs au rafraîchissement de Condition
	5.11.1 Vue d’ensemble
	5.11.2 RefreshStartEventType
	5.11.3 RefreshEndEventType
	5.11.4 RefreshRequiredEventType

	5.12 Type de référence HasCondition
	5.13 Codes de statut pour Alarm et conditions
	5.14 Comportements attendus du Serveur A&C
	5.14.1 Généralités
	5.14.2 Problèmes de communication
	5.14.3 Serveurs A&C redondants

	6 Organisation de l'AddressSpace
	6.1 Généralités
	6.2 Hiérarchie des notificateurs et des sources d'événements
	6.3 Ajout de conditions à la hiérarchie
	6.4 Conditions dans InstanceDeclarations
	6.5 Conditions dans un VariableType

	Tableaux
	Tableau 1 – Types de paramètre définis dans l’IEC 62541-3
	Tableau 2 – Types de paramètres définis dans l’IEC 62541-4
	Tableau 3 – Définition de TwoStateVariableType
	Tableau 4 – Définition de ConditionVariableType
	Tableau 5 – ReferenceType HasTrueSubState
	Tableau 6 – ReferenceType HasFalseSubState
	Tableau 7 – Définition de ConditionType
	Tableau 8 – SimpleAttributeOperand
	Tableau 9 – Code de résultats pour la méthode Disable
	Tableau 10 – Définition de l'AddressSpace pour la méthode Disable
	Tableau 11 –Codes de résultats de la méthode Enable
	Tableau 12 – Définition de l'AddressSpace pour la méthode Enable
	Tableau 13 – Arguments AddComment
	Tableau 14 – Codes de résultats de AddComment
	Tableau 15 – Définition de l'AddressSpace pour la méthode AddComment
	Tableau 16 – Paramètres ConditionRefresh
	Tableau 17 – ReturnCodes de ConditionRefresh
	Tableau 18 – Définition de l'AddressSpace pour la méthode ConditionRefresh
	Tableau 19 – Définition de DialogConditionType
	Tableau 20 – Paramètres Respond
	Tableau 21 – ResultCodes de Respond
	Tableau 22 – Définition de l'AddressSpace pour la méthode Respond
	Tableau 23 – Définition d'AcknowledgeableConditionType
	Tableau 24 – Paramètres Acknowledge
	Tableau 25 – Codes de résultats de Acknowledge
	Tableau 26 – Définition de l'AddressSpace pour la méthode Acknowledge
	Tableau 27 – Paramètres de la méthode Confirm
	Tableau 28 – Codes de résultats de la méthode Confirm
	Tableau 29 – Définition de l'AddressSpace pour la méthode Confirm
	Tableau 30 – Définition d'AlarmConditionType
	Tableau 31 – Définition de ShelvedStateMachine
	Tableau 32 – Transitions de ShelvedStateMachine
	Tableau 33 – Codes de résultat de la méthode Unshelve
	Tableau 34 – Définition de l'AddressSpace pour la méthode Unshelve
	Tableau 35 – Paramètres TimedShelve
	Tableau 36 – Codes de résultats de la méthode TimedShelve
	Tableau 37 – Définition de l'AddressSpace pour la méthode TimedShelve
	Tableau 38 – Codes de résultats de la méthode OneShotShelve
	Tableau 39 – Définition de l'AddressSpace pour la méthode OneShotShelve
	Tableau 40 – Définition de LimitAlarmType
	Tableau 41 – Définition d'ExclusiveLimitStateMachineType
	Tableau 42 – Transitions d'ExclusiveLimitStateMachineType
	Tableau 43 – Définition d'ExclusiveLimitAlarmType
	Tableau 44 – Définition de NonExclusiveLimitAlarmType
	Tableau 45 – Définition de NonExclusiveLevelAlarmType
	Tableau 46 – Définition d'ExclusiveLevelAlarmType
	Tableau 47 – Définition de NonExclusiveDeviationAlarmType
	Tableau 48 – Définition d'ExclusiveDeviationAlarmType
	Tableau 49 – Définition de NonExclusiveRateOfChangeAlarmType
	Tableau 50 – Définition d'ExclusiveRateOfChangeAlarmType
	Tableau 51 – Définition de DiscreteAlarmType
	Tableau 52 – Définition d'OffNormalAlarmType
	Tableau 53 – Définition de SystemOffNormalAlarmType
	Tableau 54 – Définition de TripAlarmType
	Tableau 55 – Définition de BaseConditionClassType
	Tableau 56 – Définition de ProcessConditionClassType
	Tableau 57 – Définition de MaintenanceConditionClassType
	Tableau 58 – Définition de SystemConditionClassType
	Tableau 59 – Définition d'AuditConditionEventType
	Tableau 60 – Définition d'AuditConditionEnableEventType
	Tableau 61 – Définition d'AuditConditionCommentEventType
	Tableau 62 – Définition d'AuditConditionRespondEventType
	Tableau 63 – Définition d'AuditConditionAcknowledgeEventType
	Tableau 64 – Définition d'AuditConditionConfirmEventType
	Tableau 65 – Définition d'AuditConditionShelvingEventType
	Tableau 66 – Définition de RefreshStartEventType
	Tableau 67 – Définition de RefreshEndEventType
	Tableau 68 – Définition de RefreshRequiredEventType
	Tableau 69 – ReferenceType HasCondition
	Tableau 70 – Codes de résultat pour Alarm et conditions
	Tableau A.1 – Désignations d'états recommandées pour LocaleId “en”
	Tableau A.2 – Désignations d'affichages recommandées pour LocaleId “en”
	Tableau A.3 – Désignations d'états recommandées pour LocaleId “de”
	Tableau A.4 – Désignations d'affichage recommandées pour LocaleId “de”
	Tableau A.5 – Désignations d'états recommandées pour LocaleId “fr”
	Tableau A.6 – Désignations d'affichage recommandées pour LocaleId “fr”
	Tableau A.7 – Options de réponses recommandées dans les dialogues
	Tableau B.1 – Exemple d'une Condition qui conserve uniquement l'état le plus récent
	Tableau B.2 – Exemple d'une Condition qui maintientles états antérieurs via des branches
	Tableau C.1 – Termes de l'EEMUA
	Tableau D.1 – Correspondance entre les catégories d’évènementsnormalisées et les types d’événements OPC UA
	Tableau D.2 – Correspondance des champs de l'ONEVENTSTRUCTavec les Variables de BaseEventType de l'UA
	Tableau D.3 – Correspondance des champs de l'ONEVENTSTRUCTavec les Variables d'AuditEventType de l'UA
	Tableau D.4 – Correspondance des champs de l'ONEVENTSTRUCTavec les Variables d'AlarmType de l'UA
	Tableau D.5 – Tableau de correspondance d'attributs de catégories d'événements

	Figures
	Figure 1 – Modèle d'état de base pour Condition
	Figure 2 – Modèle d'état pour AcknowledgeableConditions
	Figure 3 – Modèle d’état pour Acknowledge
	Figure 4 – Modèle d’état pour Confirmed Acknowledge (acquittement confirmé)
	Figure 5 – Modèle de diagramme d’états pour les alarmes
	Figure 6 – Exemple d’états actifs multiples
	Figure 7 – Hiérarchie de ConditionType
	Figure 8 – Modèle de Condition
	Figure 9 – Vue d'ensemble de DialogConditionType
	Figure 10 – Vue d'ensemble d'AcknowledgeableConditionType
	Figure 11 – Modèle de la hiérarchie d'AlarmConditionType
	Figure 12 – Modèle Alarm
	Figure 13 – Transitions d'états de suspension
	Figure 14 – Modèle de diagramme d’états Shelved (en suspension)
	Figure 15 – LimitAlarmType
	Figure 16 – ExclusiveLimitStateMachine
	Figure 17 – ExclusiveLimitAlarmType
	Figure 18 – NonExclusiveLimitAlarmType
	Figure 19 – Hiérarchie de DiscreteAlarmType
	Figure 20 – Hiérarchie de types de ConditionClass
	Figure 21 – Hiérarchie d'AuditEvent
	Figure 22 – Hiérarchie d'événements relatifs au rafraîchissement
	Figure 23 – Hiérarchie typique d'événements
	Figure 24 – Utilisation de HasCondition dans une hiérarchie d'événements
	Figure 25 – Utilisation de HasCondition dans une InstanceDeclaration
	Figure 26 – Utilisation de HasCondition dans un VariableType
	Figure B.1 – Exemple d'état unique
	Figure B.2 – Exemple d'état antérieur
	Figure B.3 – Référence HasCondition utilisée avec des instances Condition
	Figure B.4 – Référence HasCondition à un type de Condition
	Figure B.5 – Référence HasCondition utilisée avec une déclaration d'instance
	Figure D.1 – Modèle de type d'un serveur "COM AE Server" contenu
	Figure D.2 – Correspondance des types d'événements de l'UAavec les types d'événements A&E COM
	Figure D.3 – Exemple de correspondance des types d'événementsde l'UA avec les catégories d'A&E COM
	Figure D.4 – Exemple de correspondance des types d'événements UAavec les catégories A&E avec attributs

	Annexe A (informative)Désignations localisées recommandées
	A.1 Désignations d'états recommandées pour les variables à deux états
	A.1.1 LocaleId “en”
	A.1.2 LocaleId “de”
	A.1.3 LocaleId “fr”

	A.2 Options de réponses recommandées dans les dialogues

	Annexe B (informative)Exemples
	B.1 Exemples pour des séquences d'événements issues d'instances Condition
	B.1.1 Vue d'ensemble
	B.1.2 Le Serveur maintient seulement l'état courant
	B.1.3 Le Serveur maintient les états antérieurs

	B.2 Exemples d'espace d’adresses

	Annexe C (informative)Correspondance avec l'EEMUA
	Annexe D (informative)Correspondance d'OPC A&E vers OPC UA A&C
	D.1 Vue d’ensemble
	D.2 Conteneur d'Alarmes et Événements COM UA
	D.2.1 Zones d'événements
	D.2.2 Sources d'événements
	D.2.3 Catégories d'événements
	D.2.4 Attributs d'événements
	D.2.5 Abonnements à des événements
	D.2.6 Instances Condition
	D.2.7 Rafraîchissement de Condition

	D.3 Proxy Alarmes et Événements COM UA
	D.3.1 Généralités
	D.3.2 Correspondance du statut de Serveur
	D.3.3 Correspondance de types d'événements
	D.3.4 Correspondance de catégories d'événements
	D.3.5 Correspondance d'attributs de catégories d'événements
	D.3.6 Correspondance de conditions d'événements
	D.3.7 Correspondance par navigation (Browse Mapping)
	D.3.8 Noms qualifiés
	D.3.8.1 Syntaxe de noms qualifiés
	D.3.8.2 Tableau d'espaces de noms

	D.3.9 Filtres d'abonnement
	D.3.9.1 Généralités
	D.3.9.2 Filtre par événement, par catégorie ou par sévérité
	D.3.9.3 Filtre par source
	D.3.9.4 Filtre par zone

	Bibliographie

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

