
BSI Standards Publication

OPC unified architecture

Part 6: Mappings

BS EN 62541-6:2015

National foreword

This British Standard is the UK implementation of EN 62541-6:2015. It is
identical to IEC 62541-6:2015. It supersedes BS EN 62541-6:2011 which is
withdrawn.

The UK participation in its preparation was entrusted to Technical
Committee AMT/7, Industrial communications: process measurement and
control, including fieldbus.

A list of organizations represented on this committee can be obtained on
request to its secretary.

This publication does not purport to include all the necessary provisions of
a contract. Users are responsible for its correct application.

© The British Standards Institution 2015.
Published by BSI Standards Limited 2015

ISBN 978 0 580 83005 1
ICS 25.040.40; 25.100.01

Compliance with a British Standard cannot confer immunity from
legal obligations.

This British Standard was published under the authority of the
Standards Policy and Strategy Committee on 30 June 2015.

Amendments/corrigenda issued since publication

Date Text affected

BRITISH STANDARDBS EN 62541-6:2015

EUROPEAN STANDARD

NORME EUROPÉENNE

EUROPÄISCHE NORM

 EN 62541-6

 May 2015

ICS 25.040.40; 35.100 Supersedes EN 62541-6:2011

English Version

 OPC unified architecture - Part 6: Mappings
(IEC 62541-6:2015)

Architecture unifiée OPC - Partie 6: Correspondances
(IEC 62541-6:2015)

 OPC Unified Architecture - Teil 6: Protokollabbildungen
(IEC 62541-6:2015)

This European Standard was approved by CENELEC on 2015-04-29. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia,
Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique

Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2015 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

 Ref. No. EN 62541-6:2015 E

BS EN 62541-6:2015

EN 62541-6:2015 - 2 -

Foreword

The text of document 65E/377/CDV, future edition 2 of IEC 62541-6, prepared by SC 65E "Devices
and integration in enterprise systems", of IEC/TC 65 "Industrial-process measurement, control and
automation" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as
EN 62541-6:2015.

The following dates are fixed:

• latest date by which the document has to be implemented at
national level by publication of an identical national
standard or by endorsement

(dop) 2016-01-29

• latest date by which the national standards conflicting with
the document have to be withdrawn

(dow) 2018-04-29

This document supersedes EN 62541-6:2011.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such
patent rights.

This document has been prepared under a mandate given to CENELEC by the European Commission
and the European Free Trade Association, and supports essential requirements of EU Directive(s).

Endorsement notice

The text of the International Standard IEC 62541-6:2015 was approved by CENELEC as a European
Standard without any modification.

BS EN 62541-6:2015

 - 3 - EN 62541-6:2015

Annex ZA
(normative)

Normative references to international publications

with their corresponding European publications

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 When an International Publication has been modified by common modifications, indicated by (mod),
the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is
available here: www.cenelec.eu.

Publication Year Title EN/HD Year

IEC/TR 62541-1 - OPC unified architecture -
Part 1: Overview and concepts

CLC/TR 62541-1 -

IEC/TR 62541-2 - OPC unified architecture -
Part 2: Security model

CLC/TR 62541-2 -

IEC 62541-3 - OPC unified architecture -
Part 3: Address Space Model

EN 62541-3 -

IEC 62541-4 - OPC Unified Architecture -
Part 4: Services

EN 62541-4 -

IEC 62541-5 - OPC unified architecture -
Part 5: Information Model

EN 62541-5 -

IEC 62541-7 - OPC unified architecture -
Part 7: Profiles

EN 62541-7 -

IEEE 754 2008 IEEE Standard for Binary Floating-Point
Arithmetic

- -

ITU-T X.509 - Information technology - Open systems
interconnection - The Directory: Public-key
and attribute certificate frameworks

- -

ITU-T X.690 2002 Information technology - ASN.1 encoding
rules: Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules
(CER) and Distinguished Encoding Rules
(DER)

- -

FIPS PUB 180-2 2002 Secure Hash Standard - -

FIPS PUB 197 2001 Advanced Encryption Standard (AES) - -

RFC 1305 1992 Network Time Protocol (Version 3) -
Specification, Implementation and Analysis

- -

RFC 2104 1997 HMAC: Keyed-Hashing for Message
Authentication

- -

RFC 2437 1998 PKCS #1: RSA Cryptography
Specifications Version 2.0

- -

BS EN 62541-6:2015

http://www.cenelec.eu/advsearch.html

EN 62541-6:2015 - 4 -

Publication Year Title EN/HD Year

RFC 2616 1999 Hypertext Transfer Protocol - HTTP/1.1 - -

RFC 3280 2002 Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List
(CRL) Profile

- -

RFC 3548 2003 The Base16, Base32, and Base64 Data
Encodings

- -

RFC 3629 2003 UTF-8, a transformation format of
ISO 10646

- -

RFC 4514 2006 Lightweight Directory Access Protocol
(LDAP): String Representation of
Distinguished Names

- -

RFC 5246 2008 The Transport Layer Security (TLS)
Protocol Version 1.2

- -

SOAP Part 1 2007 SOAP Version 1.2 -
Part 1: Messaging Framework

- -

SOAP Part 2 2007 SOAP Version 1.2 -
Part 2: Adjuncts

- -

WS-Addressing 2004 Web Services Addressing
(WS-Addressing)

- -

XML Encryption 2002 XML Encryption Syntax and Processing - -

XML Schema Part 1 2004 XML Schema -
Part 1: Structures

- -

XML Schema Part 2 2004 XML Schema -
Part 2: Datatypes

- -

XML Signature 2008 XML Signature Syntax and Processing - -

BS EN 62541-6:2015

 – 2 – IEC 62541-6:2015 © IEC 2015

CONTENTS

FOREWORD ... 7
1 Scope .. 9
2 Normative references .. 9
3 Terms, definitions, abbreviations and symbols ... 11

3.1 Terms and definitions .. 11
3.2 Abbreviations and symbols ... 11

4 Overview ... 12
5 Data encoding ... 13

5.1 General ... 13
5.1.1 Overview ... 13
5.1.2 Built-in Types ... 13
5.1.3 Guid ... 14
5.1.4 ByteString .. 15
5.1.5 ExtensionObject` ... 15
5.1.6 Variant ... 15

5.2 OPC UA Binary ... 16
5.2.1 General.. 16
5.2.2 Built-in Types ... 16
5.2.3 Enumerations... 25
5.2.4 Arrays .. 25
5.2.5 Structures .. 25
5.2.6 Messages .. 26

5.3 XML .. 26
5.3.1 Built-in Types ... 26
5.3.2 Enumerations... 33
5.3.3 Arrays .. 33
5.3.4 Structures .. 33
5.3.5 Messages .. 34

6 Message SecurityProtocols ... 34
6.1 Security handshake .. 34
6.2 Certificates ... 35

6.2.1 General.. 35
6.2.2 Application Instance Certificate .. 36
6.2.3 Signed Software Certificate.. 36

6.3 Time synchronization .. 37
6.4 UTC and International Atomic Time (TAI) .. 37
6.5 Issued User Identity Tokens – Kerberos .. 38
6.6 WS Secure Conversation .. 38

6.6.1 Overview ... 38
6.6.2 Notation ... 40
6.6.3 Request Security Token (RST/SCT) ... 40
6.6.4 Request Security Token Response (RSTR/SCT) .. 41
6.6.5 Using the SCT ... 42
6.6.6 Cancelling Security contexts .. 42

6.7 OPC UA Secure Conversation .. 43
6.7.1 Overview ... 43

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 3 –

6.7.2 MessageChunk structure ... 43
6.7.3 MessageChunks and error handling ... 46
6.7.4 Establishing a SecureChannel ... 47
6.7.5 Deriving keys ... 48
6.7.6 Verifying Message Security .. 49

7 Transport Protocols ... 50
7.1 OPC UA TCP .. 50

7.1.1 Overview ... 50
7.1.2 Message structure ... 50
7.1.3 Establishing a connection .. 52
7.1.4 Closing a connection.. 53
7.1.5 Error handling .. 54
7.1.6 Error recovery .. 54

7.2 SOAP/HTTP .. 56
7.2.1 Overview ... 56
7.2.2 XML Encoding ... 56
7.2.3 OPC UA Binary Encoding .. 57

7.3 HTTPS .. 57
7.3.1 Overview ... 57
7.3.2 XML Encoding ... 59
7.3.3 OPC UA Binary Encoding .. 60

7.4 Well known addresses .. 60
8 Normative Contracts .. 61

8.1 OPC Binary Schema ... 61
8.2 XML Schema and WSDL ... 61

Annex A (normative) Constants .. 62
A.1 Attribute Ids .. 62
A.2 Status Codes .. 62
A.3 Numeric Node Ids ... 62

Annex B (normative) OPC UA Nodeset .. 64
Annex C (normative) Type declarations for the OPC UA native Mapping 65
Annex D (normative) WSDL for the XML Mapping .. 66

D.1 XML Schema .. 66
D.2 WDSL Port Types ... 66
D.3 WSDL Bindings ... 66

Annex E (normative) Security settings management .. 67
E.1 Overview... 67
E.2 SecuredApplication ... 68
E.3 CertificateIdentifier ... 71
E.4 CertificateStoreIdentifier ... 73
E.5 CertificateList .. 73
E.6 CertificateValidationOptions .. 73

Annex F (normative) Information Model XML Schema .. 75
F.1 Overview... 75
F.2 UANodeSet ... 75
F.3 UANode .. 76
F.4 Reference ... 76
F.5 UAType ... 77

BS EN 62541-6:2015

 – 4 – IEC 62541-6:2015 © IEC 2015

F.6 UAInstance ... 77
F.7 UAVariable ... 77
F.8 UAMethod ... 78
F.9 TranslationType .. 78
F.10 UADataType ... 79
F.11 DataTypeDefinition ... 79
F.12 DataTypeField .. 80
F.13 Variant .. 80
F.14 Example (Informative) ... 81

Figure 1 – The OPC UA Stack Overview ... 13
Figure 2 – Encoding Integers in a binary stream ... 16
Figure 3 – Encoding Floating Points in a binary stream ... 17
Figure 4 – Encoding Strings in a binary stream ... 17
Figure 5 – Encoding Guids in a binary stream ... 18
Figure 6 – Encoding XmlElements in a binary stream .. 19
Figure 7 – A String NodeId .. 20
Figure 8 – A Two Byte NodeId .. 20
Figure 9 – A Four Byte NodeId .. 21
Figure 10 – Security handshake .. 34
Figure 11 – Relevant XML Web Services specifications .. 39
Figure 12 – The WS Secure Conversation handshake ... 39
Figure 13 – OPC UA Secure Conversation MessageChunk ... 43
Figure 14 – OPC UA TCP Message structure .. 52
Figure 15 – Establishing a OPC UA TCP connection ... 53
Figure 16 – Closing a OPC UA TCP connection .. 53
Figure 17 – Recovering an OPC UA TCP connection .. 55
Figure 18 – Scenarios for the HTTPS Transport .. 58

Table 1 – Built-in Data Types .. 14
Table 2 – Guid structure ... 14
Table 3 – Supported Floating Point Types ... 17
Table 4 – NodeId components .. 19
Table 5 – NodeId DataEncoding values .. 19
Table 6 – Standard NodeId Binary DataEncoding .. 19
Table 7 – Two Byte NodeId Binary DataEncoding ... 20
Table 8 – Four Byte NodeId Binary DataEncoding... 20
Table 9 – ExpandedNodeId Binary DataEncoding ... 21
Table 10 – DiagnosticInfo Binary DataEncoding .. 22
Table 11 – QualifiedName Binary DataEncoding ... 22
Table 12 – LocalizedText Binary DataEncoding .. 22
Table 13 – Extension Object Binary DataEncoding.. 23
Table 14 – Variant Binary DataEncoding ... 24
Table 15 – Data Value Binary DataEncoding ... 25

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 5 –

Table 16 – Sample OPC UA Binary Encoded structure .. 26
Table 17 – XML Data Type Mappings for Integers ... 27
Table 18 – XML Data Type Mappings for Floating Points .. 27
Table 19 – Components of NodeId .. 29
Table 20 – Components of ExpandedNodeId .. 30
Table 21 – Components of Enumeration ... 33
Table 22 – SecurityPolicy ... 35
Table 23 – ApplicationInstanceCertificate ... 36
Table 24 – SignedSoftwareCertificate ... 37
Table 25 – Kerberos UserTokenPolicy .. 38
Table 26 – WS-* Namespace prefixes ... 40
Table 27 – RST/SCT Mapping to an OpenSecureChannel Request 41
Table 28 – RSTR/SCT Mapping to an OpenSecureChannel Response 42
Table 29 – OPC UA Secure Conversation Message header .. 44
Table 30 – Asymmetric algorithm Security header ... 44
Table 31 – Symmetric algorithm Security header .. 45
Table 32 – Sequence header .. 45
Table 33 – OPC UA Secure Conversation Message footer .. 46
Table 34 – OPC UA Secure Conversation Message abort body ... 47
Table 35 – OPC UA Secure Conversation OpenSecureChannel Service 47
Table 36 – Cryptography key generation parameters .. 49
Table 37 – OPC UA TCP Message header .. 50
Table 38 – OPC UA TCP Hello Message ... 51
Table 39 – OPC UA TCP Acknowledge Message .. 51
Table 40 – OPC UA TCP Error Message ... 52
Table 41 – OPC UA TCP error codes .. 54
Table 42 – WS-Addressing headers .. 56
Table 43 – Well known addresses for Local Discovery Servers ... 60
Table A.1 – Identifiers assigned to Attributes .. 62
Table E.1 – SecuredApplication .. 69
Table E.2 – CertificateIdentifier ... 71
Table E.3 – Structured directory store ... 72
Table E.4 – CertificateStoreIdentfier ... 73
Table E.5 – CertificateList ... 73
Table E.6 – CertificateValidationOptions ... 74
Table F.1 – UANodeSet .. 75
Table F.2 – UANode ... 76
Table F.3 – Reference .. 77
Table F.4 – UANodeSet Type Nodes... 77
Table F.5 – UANodeSet Instance Nodes ... 77
Table F.6 – UAInstance .. 77
Table F.7 – UAVariable ... 78
Table F.8 – UAMethod .. 78

BS EN 62541-6:2015

 – 6 – IEC 62541-6:2015 © IEC 2015

Table F.9 – TranslationType ... 79
Table F.10 – UADataType ... 79
Table F.11 – DataTypeDefinition ... 80
Table F.12 – DataTypeField .. 80

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 7 –

INTERNATIONAL ELECTROTECHNICAL COMMISSION

OPC UNIFIED ARCHITECTURE –

Part 6: Mappings

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62541-6 has been prepared by subcommittee 65E: Devices and
integration in enterprise systems, of IEC technical committee 65: Industrial-process
measurement, control and automation.

This second edition cancels and replaces the first edition published in 2011. This edition
constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous
edition:

a) Some applications need to operation in environments with no access to cryptography
libraries. To support this a new HTTPS transport has been defined in 7.3;

b) The padding byte is not long enough to handle asymmetric key sizes larger than 2048 bits.
Added an additional padding byte to 6.7.2 to handle this case.

c) Fixed errors in SOAP action URIs defined in 7.2.2;

BS EN 62541-6:2015

 – 8 – IEC 62541-6:2015 © IEC 2015

d) Needed a standard way to serialize nodes in an address space. Added the UANodeSet
schema defined in Annex F;

The text of this standard is based on the following documents:

CDV Report on voting

65E/377/CDV 65E/405/RVC

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 62541 series, published under the general title OPC Unified
Architecture, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until
the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data
related to the specific publication. At this date, the publication will be

• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct
understanding of its contents. Users should therefore print this document using a
colour printer.

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 9 –

OPC UNIFIED ARCHITECTURE –

Part 6: Mappings

1 Scope

This part of IEC 62541 specifies the OPC Unified Architecture (OPC UA) mapping between
the security model described in IEC TR 62541-2, the abstract service definitions, described in
IEC 62541-4, the data structures defined in IEC 62541-5 and the physical network protocols
that can be used to implement the OPC UA specification.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any
amendments) applies.

IEC TR 62541-1, OPC Unified Architecture – Part 1: Overview and Concepts

IEC TR 62541-2, OPC Unified Architecture – Part 2: Security Model

IEC 62541-3, OPC Unified Architecture – Part 3: Address Space Model

IEC 62541-4, OPC Unified Architecture – Part 4: Services

IEC 62541-5, OPC Unified Architecture – Part 5: Information Model

IEC 62541-7, OPC Unified Architecture – Part 7: Profiles

XML Schema Part 1: XML Schema Part 1: Structures
http://www.w3.org/TR/xmlschema-1/

XML Schema Part 2: XML Schema Part 2: Datatypes
http://www.w3.org/TR/xmlschema-2/

SOAP Part 1: SOAP Version 1.2 Part 1: Messaging Framework
http://www.w3.org/TR/soap12-part1/

SOAP Part 2: SOAP Version 1.2 Part 2: Adjuncts
http://www.w3.org/TR/soap12-part2/

XML Encryption: XML Encryption Syntax and Processing
http://www.w3.org/TR/xmlenc-core/

XML Signature: XML-Signature Syntax and Processing
http://www.w3.org/TR/xmldsig-core/

WS Security: SOAP Message Security 1.1
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf

BS EN 62541-6:2015

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmldsig-core/
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

 – 10 – IEC 62541-6:2015 © IEC 2015

WS Addressing: Web Services Addressing (WS-Addressing)
http://www.w3.org/Submission/ws-addressing/

WS Trust: WS Trust 1.3
http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-trust.html

WS Secure Conversation: WS Secure Conversation 1.3
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.3/ws-secureconversation.html

WS Security Policy: WS Security Policy 1.2
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-
os.html

SSL/TLS: RFC 5246 – The TLS Protocol Version 1.2
http://tools.ietf.org/html/rfc5246.txt

X509: X.509 Public Key Certificate Infrastructure
http://www.itu.int/rec/T-REC-X.509-200003-I/e

WS-I Basic Profile 1.1: WS-I Basic Profile Version 1.1
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

WS-I Basic Security Profile 1.1: WS-I Basic Security Profile Version 1.1
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html

HTTP: RFC 2616 – Hypertext Transfer Protocol – HTTP/1.1
http://www.ietf.org/rfc/rfc2616.txt

Base64: RFC 3548 – The Base16, Base32, and Base64 Data Encodings
http://www.ietf.org/rfc/rfc3548.txt

X690: ITU-T X.690 – Basic (BER), Canonical (CER) and Distinguished (DER) Encoding Rules
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf

IEEE-754: Standard for Binary Floating-Point Arithmetic
http://grouper.ieee.org/groups/754/

HMAC: HMAC – Keyed-Hashing for Message Authentication
http://www.ietf.org/rfc/rfc2104.txt

PKCS #1: PKCS #1 – RSA Cryptography Specifications Version 2.0
http://www.ietf.org/rfc/rfc2437.txt

FIPS 180-2: Secure Hash Standard (SHA)
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

FIPS 197: Advanced Encyption Standard (AES)
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf

UTF8: UTF-8, a transformation format of ISO 10646
http://tools.ietf.org/html/rfc3629

RFC 3280: RFC 3280 – X.509 Public Key Infrastructure Certificate and CRL Profile
http://www.ietf.org/rfc/rfc3280.txt

RFC 4514: RFC 4514 – LDAP: String Representation of Distinguished Names

BS EN 62541-6:2015

http://www.w3.org/Submission/ws-addressing/
http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-trust.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.3/ws-secureconversation.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://tools.ietf.org/html/rfc5246.txt
http://www.itu.int/rec/T-REC-X.509-200003-I/e
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc3548.txt
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
http://grouper.ieee.org/groups/754/
http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc2437.txt
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://tools.ietf.org/html/rfc3629
http://www.ietf.org/rfc/rfc3280.txt

IEC 62541-6:2015 © IEC 2015 – 11 –

http://www.ietf.org/rfc/rfc4514.txt

NTP: RFC 1305 – Network Time Protocol (Version 3)
http://www.ietf.org/rfc/rfc1305.txt

Kerberos: WS Security Kerberos Token Profile 1.1

http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-KerberosTokenProfile.pdf

3 Terms, definitions, abbreviations and symbols

3.1 Terms and definitions

For the purposes of this document the terms and definitions given in IEC TR 62541-1,
IEC TR 62541-2 and IEC 62541-3 as well as the following apply.

3.1.1
DataEncoding
a way to serialize OPC UA Messages and data structures

3.1.2
Mapping
specifies how to implement an OPC UA feature with a specific technology

Note 1 to entry: For example, the OPC UA Binary Encoding is a Mapping that specifies how to serialize OPC UA
data structures as sequences of bytes.

3.1.3
Security Protocol
ensures the integrity and privacy of UA Messages that are exchanged between OPC UA
applications

3.1.4
Stack Profile
a combination of DataEncodings, SecurityProtocol and TransportProtocol Mappings

Note 1 to entry: OPC UA applications implement one or more StackProfiles and can only communicate with OPC
UA applications that support a StackProfile that they support.

3.1.5
Transport Protocol
a way to exchange serialized OPC UA Messages between OPC UA applications

3.2 Abbreviations and symbols
API Application Programming Interface
ASN.1 Abstract Syntax Notation #1 (used in X690)
BP WS-I Basic Profile Version
BSP WS-I Basic Security Profile
CSV Comma Separated Value (File Format)
HTTP Hypertext Transfer Protocol
HTTPS Secure Hypertext Transfer Protocol
IPSec Internet Protocol Security
RST Request Security Token
OID Object Identifier (used with ASN.1)
RSTR Request Security Token Response

BS EN 62541-6:2015

http://www.ietf.org/rfc/rfc4514.txt
http://www.ietf.org/rfc/rfc1305.txt
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-KerberosTokenProfile.pdf

 – 12 – IEC 62541-6:2015 © IEC 2015

SCT Security Context Token
SHA1 Secure Hash Algorithm
SOAP Simple Object Access Protocol
SSL Secure Sockets Layer (Defined in SSL/TLS)
TCP Transmission Control Protocol
TLS Transport Layer Security (Defined in SSL/TLS)
UTF8 Unicode Transformation Format (8-bit) (Defined in UTF8)
UA Unified Architecture
UASC OPC UA Secure Conversation
WS-* XML Web Services Specifications
WSS WS Security
WS-SC WS Secure Conversation
XML Extensible Markup Language

4 Overview

Other parts of this series of standards are written to be independent of the technology used
for implementation. This approach means OPC UA is a flexible specification that will continue
to be applicable as technology evolves. On the other hand, this approach means that it is not
possible to build an OPC UA Application with the information contained in IEC TR 62541-1
through to IEC 62541-5 because important implementation details have been left out.

This standard defines Mappings between the abstract specifications and technologies that can
be used to implement them. The Mappings are organized into three groups: DataEncodings,
SecurityProtocols and TransportProtocols. Different Mappings are combined together to
create StackProfiles. All OPC UA Applications shall implement at least one StackProfile and
can only communicate with other OPC UA Applications that implement the same StackProfile.

This standard defines the DataEncodings in Clause 5, the SecurityProtocols in Clause 6 and
the TransportProtocols in 6.7.6. The StackProfiles are defined in IEC 62541-7.

All communication between OPC UA Applications is based on the exchange of Messages. The
parameters contained in the Messages are defined in IEC 62541-4; however, their format is
specified by the DataEncoding and TransportProtocol. For this reason, each Message defined
in IEC 62541-4 shall have a normative description which specifies exactly what shall be put
on the wire. The normative descriptions are defined in the appendices.

A Stack is a collection of software libraries that implement one or more StackProfiles. The
interface between an OPC UA Application and the Stack is a non-normative API which hides
the details of the Stack implementation. An API depends on a specific DevelopmentPlatform.
Note that the datatypes exposed in the API for a DevelopmentPlatform may not match the
datatypes defined by the specification because of limitations of the DevelopmentPlatform. For
example, Java does not support an unsigned integer which means that any Java API will need
to map unsigned integers onto a signed integer type.

Figure 1 illustrates the relationships between the different concepts defined in this standard.

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 13 –

Figure 1 – The OPC UA Stack Overview

The layers described in this specification do not correspond to layers in the OSI 7 layer model
[X200]. Each OPC UA StackProfile should be treated as a single Layer 7 (Application)
protocol that is built on an existing Layer 5, 6 or 7 protocol such as TCP/IP, TLS or HTTP.The
SecureChannel layer is always present even if the SecurityMode is None. In this situation, no
security is applied but the SecurityProtocol implementation shall maintain a logical channel
with a unique identifier. Users and administrators are expected to understand that a
SecureChannel with SecurityMode set to None cannot be trusted unless the Application is
operating on a physically secure network or a low level protocol such as IPSec is being used.

5 Data encoding

5.1 General

5.1.1 Overview

This standard defines two data encodings: OPC UA Binary and OPC UA XML. It describes
how to construct Messages using each of these encodings.

5.1.2 Built-in Types

All OPC UA DataEncodings are based on rules that are defined for a standard set of built-in
types. These built-in types are then used to construct structures, arrays and Messages. The
built-in types are described in Table 1.

Serialization Layer

UA Application

API

Secure Channel Layer

Encoded Message

Transport Layer

Secured Message

Development Platforms
.NET 3.0

ANSI C
JRE 5.0

Data Encodings
UA Binary
UA XML

Security Protocols
WS Secure Conversation
UA Secure Conversation

Transport Protocols
UA TCP
SOAP/HTTP

Security Transforms
Signing

Encryption

WSDL and XML Schema
UA Binary Schema

Client
Server

Mappings

Stack

Wire Protocol

IEC

BS EN 62541-6:2015

 – 14 – IEC 62541-6:2015 © IEC 2015

Table 1 – Built-in Data Types

ID Name Description

1 Boolean A two-state logical value (true or false).
2 SByte An integer value between −128 and 127.
3 Byte An integer value between 0 and 256.
4 Int16 An integer value between −32 768 and 32 767.
5 UInt16 An integer value between 0 and 65 535.
6 Int32 An integer value between −2 147 483 648 and 2 147 483 647.
7 UInt32 An integer value between 0 and 429 4967 295.
8 Int64 An integer value between −9 223 372 036 854 775 808 and 9 223 372 036 854 775 807
9 UInt64 An integer value between 0 and 18 446 744 073 709 551 615.
10 Float An IEEE single precision (32 bit) floating point value.
11 Double An IEEE double precision (64 bit) floating point value.
12 String A sequence of Unicode characters.
13 DateTime An instance in time.
14 Guid A 16 byte value that can be used as a globally unique identifier.
15 ByteString A sequence of octets.
16 XmlElement An XML element.
17 NodeId An identifier for a node in the address space of an OPC UA Server.
18 ExpandedNodeId A NodeId that allows the namespace URI to be specified instead of an index.
19 StatusCode A numeric identifier for a error or condition that is associated with a value or an operation.
20 QualifiedName A name qualified by a namespace.
21 LocalizedText Human readable text with an optional locale identifier.
22 ExtensionObject A structure that contains an application specific data type that may not be recognized by the

receiver.
23 DataValue A data value with an associated status code and timestamps.
24 Variant A union of all of the types specified above.
25 DiagnosticInfo A structure that contains detailed error and diagnostic information associated with a StatusCode.

Most of these data types are the same as the abstract types defined in IEC 62541-3 and
IEC 62541-4. However, the ExtensionObject and Variant types are defined in this standard. In
addition, this standard defines a representation for the Guid type defined in IEC 62541-3.

5.1.3 Guid

A Guid is a 16-byte globally unique identifier with the layout shown in Table 2.

Table 2 – Guid structure

Component Data Type

Data1 UInt32
Data2 UInt16
Data3 UInt16
Data4 Byte[8]

Guid values may be represented as a string in this form:

<Data1>-<Data2>-<Data3>-<Data4[0:1]>-<Data4[2:7]>

Where Data1 is 8 characters wide, Data2 and Data3 are 4 characters wide and each Byte in
Data4 is 2 characters wide. Each value is formatted as a hexadecimal number padded zeros.
A typical Guid value would look like this when formatted as a string:

C496578A-0DFE-4b8f-870A-745238C6AEAE

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 15 –

5.1.4 ByteString

A ByteString is structurally the same as a one dimensional array of Byte. It is represented as
a distinct built-in data type because it allows encoders to optimize the transmission of the
value. However, some DevelopmentPlatforms will not be able to preserve the distinction
between a ByteString and a one dimensional array of Byte.

If a decoder for DevelopmentPlatform cannot preserve the distinction it shall convert all one
dimensional arrays of Byte to ByteStrings.

Each element in a one dimensional array of ByteString can have a different length which
means is structurally different from a two dimensional array of Byte where the length of each
dimension is the same. This means decoders shall preserve the distinction between two or
more dimension arrays of Byte and one or more dimension arrays of ByteString.

If a DevelopmentPlatform does not support unsigned integers then it will have to represent
ByteStrings as arrays of SByte. In this case, the requirements for Byte would then apply to
SByte.

5.1.5 ExtensionObject`

An ExtensionObject is a container for any Complex Data types which cannot be encoded as
one of the other built-in data types. The ExtensionObject contains a complex value serialized
as a sequence of bytes or as an XML element. It also contains an identifier which indicates
what data it contains and how it is encoded.

Complex Data types are represented in a Server address space as sub-types of the Structure
DataType. The DataEncodings available for any given Complex Data type are represented as
a DataTypeEncoding Object in the Server AddressSpace. The NodeId for the
DataTypeEncoding Object is the identifier stored in the ExtensionObject. IEC 62541-3
describes how DataTypeEncoding Nodes are related to other Nodes of the AddressSpace.

Server implementers should use namespace qualified numeric NodeIds for any
DataTypeEncoding Objects they define. This will minimize the overhead introduced by
packing Complex Data values into ExtensionObjects.

5.1.6 Variant

A Variant is a union of all built-in data types including an ExtensionObject. Variants can also
contain arrays of any of these built-in types. Variants are used to store any value or
parameter with a data type of BaseDataType or one of its subtypes.

Variants can be empty. An empty Variant is described as having a null value and should be
treated like a null column in a SQL database. A null value in a Variant may not be the same
as a null value for data types that support nulls such as Strings. Some Development
Platforms may not be able to preserve the distinction between a null for a DataType and a null
for a Variant. Therefore Applications shall not rely on this distinction.

Variants can contain arrays of Variants but they cannot directly contain another Variant.

DataValue and DiagnosticInfo types only have meaning when returned in a response
message with an associated StatusCode. As a result, Variants cannot contain instances of
DataValue or DiagnosticInfo.

Variables with a DataType of BaseDataType are mapped to a Variant, however, the
ValueRank and ArrayDimensions Attributes place restrictions on what is allowed in the
Variant. For example, if the ValueRank is Scalar then the Variant may only contain scalar
values.

BS EN 62541-6:2015

 – 16 – IEC 62541-6:2015 © IEC 2015

5.2 OPC UA Binary

5.2.1 General

The OPC UA Binary DataEncoding is a data format developed to meet the performance needs
of OPC UA Applications. This format is designed primarily for fast encoding and decoding,
however, the size of the encoded data on the wire was also a consideration.

The OPC UA Binary DataEncoding relies on several primitive data types with clearly defined
encoding rules that can be sequentially written to or read from a binary stream. A structure is
encoded by sequentially writing the encoded form of each field. If a given field is also a
structure then the values of its fields are written sequentially before writing the next field in
the containing structure. All fields shall be written to the stream even if they contain null
values. The encodings for each primitive type specify how to encode either a null or a default
value for the type.

The OPC UA Binary DataEncoding does not include any type or field name information
because all OPC UA applications are expected to have advance knowledge of the services
and structures that they support. An exception is an ExtensionObject which provides an
identifier and a size for the Complex Data structure it represents. This allows a decoder to
skip over types that it does not recognize.

5.2.2 Built-in Types

5.2.2.1 Boolean

A Boolean value shall be encoded as a single byte where a value of 0 (zero) is false and any
non-zero value is true.

Encoders shall use the value of 1 to indicate a true value; however, decoders shall treat any
non-zero value as true.

5.2.2.2 Integer

All integer types shall be encoded as little endian values where the least significant byte
appears first in the stream.

Figure 2 illustrates how value 1 000 000 000 (Hex: 3B9ACA00) should be encoded as a 32 bit
integer in the stream.

Figure 2 – Encoding Integers in a binary stream

5.2.2.3 Floating Point

All floating point values shall be encoded with the appropriate IEEE-754 binary representation
which has three basic components: the sign, the exponent, and the fraction. The bit ranges
assigned to each component depend on the width of the type. Table 3 lists the bit ranges for
the supported floating point types.

IEC

00 CA 9A 3B

0 1 2 3 4

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 17 –

Table 3 – Supported Floating Point Types

Name Width (bits) Fraction Exponent Sign
Float 32 0-22 23-30 31
Double 64 0-51 52-62 63

In addition, the order of bytes in the stream is significant. All floating point values shall be
encoded with the least significant byte appearing first (i.e. little endian).

Figure 3 illustrates how the value −6,5 (Hex: C0D00000) should be encoded as a Float.

The floating point type supports positive and negative infinity and not-a-number (NaN). The
IEEE specification allows for multiple NaN variants, however, the encoders/decoders may not
preserve the distinction. Encoders shall encode a NaN value as an IEEE quiet-NAN
(000000000000F8FF) or (0000C0FF). Any unsupported types such as denormalized numbers
shall also be encoded as an IEEE quiet-NAN.

Figure 3 – Encoding Floating Points in a binary stream

5.2.2.4 String

All String values are encoded as a sequence of UTF8 characters without a null terminator and
preceded by the length in bytes.

The length in bytes is encoded as Int32. A value of −1 is used to indicate a ‘null’ string.

Figure 4 illustrates how the multilingual string “水Boy” should be encoded in a byte stream.

Figure 4 – Encoding Strings in a binary stream

5.2.2.5 DateTime

A DateTime value shall be encoded as a 64-bit signed integer (see Clause 5.2.2.2) which
represents the number of 100 nanosecond intervals since January 1, 1601 (UTC).

Not all DevelopmentPlatforms will be able to represent the full range of dates and times that
can be represented with this DataEncoding. For example, the UNIX time_t structure only has
a 1 second resolution and cannot represent dates prior to 1970. For this reason, a number of
rules shall be applied when dealing with date/time values that exceed the dynamic range of a
DevelopmentPlatform. These rules are:

a) A date/time value is encoded as 0 if either
1) The value is equal to or earlier than 1601-01-01 12:00AM.
2) The value is the earliest date that can be represented with the DevelopmentPlatform’s

encoding.

IEC

0 1 2 3 4 5 6

06 00 00 00

水

B0 B4 42 6F 79

Length

E6

B o y

7 8 9 10

IEC

00 00 D0 C0

0 1 2 3 4

BS EN 62541-6:2015

 – 18 – IEC 62541-6:2015 © IEC 2015

b) A date/time is encoded as the maximum value for an Int64 if either
1) The value is equal to or greater than 9999-01-01 11:59:59PM,
2) The value is the latest date that can be represented with the DevelopmentPlatform’s

encoding.
c) A date/time is decoded as the earliest time that can be represented on the platform if

either
1) The encoded value is 0,
2) The encoded value represents a time earlier than the earliest time that can be

represented with the DevelopmentPlatform’s encoding.
d) A date/time is decoded as the latest time that can be represented on the platform if either

1) The encoded value is the maximum value for an Int64,
2) The encoded value represents a time later than the latest time that can be represented

with the DevelopmentPlatform’s encoding.

These rules imply that the earliest and latest times that can be represented on a given
platform are invalid date/time values and should be treated that way by Applications.

A decoder shall truncate the value if a decoder encounters a DateTime value with a resolution
that is greater than the resolution supported on the DevelopmentPlatform.

5.2.2.6 Guid

A Guid is encoded in a structure as shown in Table 2. Fields are encoded sequentially
according to the data type for field.

Figure 5 illustrates how the Guid “72962B91-FA75-4ae6-8D28-B404DC7DAF63” should be
encoded in a byte stream.

Figure 5 – Encoding Guids in a binary stream

5.2.2.7 ByteString

A ByteString is encoded as sequence of bytes preceded by its length in bytes. The length is
encoded as a 32-bit signed integer as described above.

If the length of the byte string is −1 then the byte string is ‘null’.

5.2.2.8 XmlElement

An XmlElement is an XML fragment serialized as UTF8 string and then encoded as
ByteString.

Figure 6 illustrates how the XmlElement “<A>Hot水” should be encoded in a byte
stream.

IEC

0 1 2 3 4 5 6

91 2B 96 72 FA E6 4A 8D 28

Data1

75

7 8 9 10

B4

11

04 DC 7D

12 13 14

AF

15

Data2 Data3 Data4

63

16

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 19 –

.

Figure 6 – Encoding XmlElements in a binary stream

5.2.2.9 NodeId

The components of a NodeId are described the Table 4.

Table 4 – NodeId components

Name Data Type Description
Namespace UInt16 The index for a namespace URI.

An index of 0 is used for OPC UA defined NodeIds.
IdentifierType Enum The format and data type of the identifier.

The value may be one of the following:
 NUMERIC - the value is an UInteger;
 STRING - the value is String;
 GUID - the value is a Guid;
 OPAQUE - the value is a ByteString;

Value * The identifier for a node in the address space of an OPC UA Server.

The DataEncoding of a NodeId varies according to the contents of the instance. For that
reason the first byte of the encoded form indicates the format of the rest of the encoded
NodeId. The possible DataEncoding formats are shown in Table 5. The tables that follow
describe the structure of each possible format (they exclude the byte which indicates the
format).

Table 5 – NodeId DataEncoding values

Name Value Description

Two Byte 0x00 A numeric value that fits into the two byte representation.
Four Byte 0x01 A numeric value that fits into the four byte representation.
Numeric 0x02 A numeric value that does not fit into the two or four byte representations.
String 0x03 A String value.
Guid 0x04 A Guid value.
ByteString 0x05 An opaque (ByteString) value.
NamespaceUri Flag 0x80 See discussion of ExpandedNodeId in 5.2.2.10.
ServerIndex Flag 0x40 See discussion of ExpandedNodeId in 5.2.2.10.

The standard NodeId DataEncoding has the structure shown in Table 6. The standard
DataEncoding is used for all formats that do not have an explicit format defined.

Table 6 – Standard NodeId Binary DataEncoding

Name Data Type Description

Namespace UInt16 The NamespaceIndex.
Identifier * The identifier which is encoded according to the following rules:

NUMERIC UInt32
STRING String
GUID Guid
OPAQUE ByteString

IEC

0 1 2 3 4 5 6

3C 41 3E 72 74 E6 B0 B4 3C

<A>

6F

7 8 9 10

3F

11

41 3E

12 13

Hot 水

0D 00 00 00

Length

14 15 16 17

BS EN 62541-6:2015

 – 20 – IEC 62541-6:2015 © IEC 2015

An example of a String NodeId with Namespace = 1 and Identifier = “Hot水” is shown in
Figure 7.

Figure 7 – A String NodeId

The Two Byte NodeId DataEncoding has the structure shown in Table 7.

Table 7 – Two Byte NodeId Binary DataEncoding

Name Data Type Description

Identifier Byte The Namespace is the default OPC UA namespace (i.e. 0).
The Identifier Type is ‘Numeric’.
The Identifier shall be in the range 0 to 255.

An example of a Two Byte NodeId with Identifier = 72 is shown in Figure 8.

Figure 8 – A Two Byte NodeId

The Four Byte NodeId DataEncoding has the structure shown in Table 8.

Table 8 – Four Byte NodeId Binary DataEncoding

Name Data Type Description

Namespace Byte The Namespace shall be in the range 0 to 255.
Identifier UInt16 The Identifier Type is ‘Numeric’.

The Identifier shall be an integer in the range 0 to 65 535.

An example of a Four Byte NodeId with Namespace = 5 and Identifier = 1 025 is shown in
Figure 9.

IEC

0

72

1 2

Identifier

00

Encoding

IEC

0 1 2 3 4 5 6

00 00 00 72 74 E6 B0 B46F

7 8 9 10 11 12 13

Hot 水

03 01 00 06

Length

Encoding Byte

Namespace

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 21 –

Figure 9 – A Four Byte NodeId

5.2.2.10 ExpandedNodeId

An ExpandedNodeId extends the NodeId structure by allowing the NamespaceUri to be
explicitly specified instead of using the NamespaceIndex. The NamespaceUri is optional. If it
is specified then the NamespaceIndex inside the NodeId shall be ignored.

The ExpandedNodeId is encoded by first encoding a NodeId as described in 5.2.2.9 and then
encoding NamespaceUri as a String.

An instance of an ExpandedNodeId may still use the NamespaceIndex instead of the
NamespaceUri. In this case, the NamespaceUri is not encoded in the stream. The presence of
the NamespaceUri in the stream is indicated by setting the NamespaceUri flag in the encoding
format byte for the NodeId.

If the NamespaceUri is present then the encoder shall encode the NamespaceIndex as 0 in
the stream when the NodeId portion is encoded. The unused NamespaceIndex is included in
the stream for consistency.

An ExpandedNodeId may also have a ServerIndex which is encoded as a UInt32 after the
NamespaceUri. The ServerIndex flag in the NodeId encoding byte indicates whether the
ServerIndex is present in the stream. The ServerIndex is omitted if it is equal to zero.

The ExpandedNodeId encoding has the structure shown in Table 9.

Table 9 – ExpandedNodeId Binary DataEncoding

Name Data Type Description
NodeId NodeId The NamespaceUri and ServerIndex flags in the NodeId encoding indicate

whether those fields are present in the stream.
NamespaceUri String Not present if null or Empty.
ServerIndex UInt32 Not present if 0.

5.2.2.11 StatusCode

A StatusCode is encoded as a UInt32.

5.2.2.12 DiagnosticInfo

A DiagnosticInfo structure is described in IEC 62541-4. It specifies a number of fields that
could be missing. For that reason, the encoding uses a bit mask to indicate which fields are
actually present in the encoded form.

As described in IEC 62541-4, the SymbolicId, NamespaceUri, LocalizedText and Locale fields
are indexes in a string table which is returned in the response header. Only the index of the
corresponding string in the string table is encoded. An index of −1 indicates that there is no
value for the string.

IEC

0 1 2 3 4

01 05 01 40

Identifier

Encoding Byte Namespace

BS EN 62541-6:2015

 – 22 – IEC 62541-6:2015 © IEC 2015

Table 10 – DiagnosticInfo Binary DataEncoding

Name Data Type Description

Encoding Mask Byte A bit mask that indicates which fields are present in the stream.
The mask has the following bits:

0x01 Symbolic Id
0x02 Namespace
0x04 LocalizedText
0x08 Locale
0x10 Additional Info
0x20 InnerStatusCode
0x40 InnerDiagnosticInfo

SymbolicId Int32 A symbolic name for the status code.
NamespaceUri Int32 A namespace that qualifies the symbolic id.
LocalizedText Int32 A human readable summary of the status code.
Locale Int32 The locale used for the localized text.
Additional Info String Detailed application specific diagnostic information.
Inner StatusCode StatusCode A status code provided by an underlying system.
Inner DiagnosticInfo DiagnosticInfo Diagnostic info associated with the inner status code.

5.2.2.13 QualifiedName

A QualifiedName structure is encoded as shown in Table 11.

The abstract QualifiedName structure is defined in IEC 62541-3.

Table 11 – QualifiedName Binary DataEncoding

Name Data Type Description

NamespaceIndex UInt16 The namespace index.
Name String The name.

5.2.2.14 LocalizedText

A LocalizedText structure contains two fields that could be missing. For that reason, the
encoding uses a bit mask to indicate which fields are actually present in the encoded form.

The abstract LocalizedText structure is defined in IEC 62541-3.

Table 12 – LocalizedText Binary DataEncoding

Name Data Type Description

EncodingMask Byte A bit mask that indicates which fields are present in the stream.
The mask has the following bits:

0x01 Locale
0x02 Text

Locale String The locale.
Omitted is null or empty.

Text String The text in the specified locale.
Omitted is null or empty.

5.2.2.15 ExtensionObject

An ExtensionObject is encoded as sequence of bytes prefixed by the NodeId of its
DataTypeEncoding and the number of bytes encoded.

An ExtensionObject may be encoded by the Application which means it is passed as a
ByteString or an XmlElement to the encoder. In this case, the encoder will be able to write the

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 23 –

number of bytes in the object before it encodes the bytes. However, an ExtensionObject may
know how to encode/decode itself which means the encoder shall calculate the number of
bytes before it encodes the object or it shall be able to seek backwards in the stream and
update the length after encoding the body.

When a decoder encounters an ExtensionObject it shall check if it recognizes the
DataTypeEncoding identifier. If it does then it can call the appropriate function to decode the
object body. If the decoder does not recognize the type it shall use the EncodingMask to
determine if the body is a ByteString or an XmlElement and then decode the object body or
treat it as opaque data and skip over it.

The serialized form of an ExtensionObject is shown in Table 13.

Table 13 – Extension Object Binary DataEncoding

Name Data Type Description

TypeId NodeId The identifier for the DataTypeEncoding node in the Server's AddressSpace.
ExtensionObjects defined by the OPC UA specification have a numeric node
identifier assigned to them with a NamespaceIndex of 0. The numeric
identifiers are defined in A.1.

Encoding Byte An enumeration that indicates how the body is encoded.
The parameter may have the following values:

0x00 No body is encoded.
0x01 The body is encoded as a ByteString.
0x02 The body is encoded as a XmlElement.

Length Int32 The length of the object body.
The length shall be specified if the body is encoded.

Body Byte[*] The object body.
This field contains the raw bytes for ByteString bodies.
For XmlElement bodies this field contains the XML encoded as a UTF-8
string without any null terminator.

ExtensionObjects are used in two contexts: as values contained in Variant structures or as
parameters in OPC UA Messages.

5.2.2.16 Variant

A Variant is a union of the built-in types.

The structure of a Variant is shown in Table 14.

BS EN 62541-6:2015

 – 24 – IEC 62541-6:2015 © IEC 2015

Table 14 – Variant Binary DataEncoding

Name Data Type Description

EncodingMask Byte The type of data encoded in the stream.
The mask has the following bits assigned:

0:5 Built-in Type Id (see Table 1).
6 True if the Array Dimensions field is encoded.
7 True if an array of values is encoded.

ArrayLength Int32 The number of elements in the array.
This field is only present if the array bit is set in the encoding mask.
Multi-dimensional arrays are encoded as a one dimensional array and this
field specifies the total number of elements. The original array can be
reconstructed from the dimensions that are encoded after the value field.
Higher rank dimensions are serialized first. For example an array with
dimensions [2,2,2] is written in this order:
 [0,0,0], [0,0,1], [0,1,0], [0,1,1], [1,0,0], [1,0,1], [1,1,0], [1,1,1]

Value * The value encoded according to its built-in data type.
If the array bit is set in the encoding mask then each element in the array is
encoded sequentially. Since many types have variable length encoding each
element shall be decoded in order.
The value shall not be a Variant but it could be an array of Variants.
Many implementation platforms do not distinguish between one dimensional
Arrays of Bytes and ByteStrings. For this reason, decoders are allowed to
automatically convert an Array of Bytes to a ByteString.

ArrayDimensions Int32[] The length of each dimension.
This field is only present if the array dimensions flag is set in the encoding
mask. The lower rank dimensions appear first in the array.

The types and their identifiers that can be encoded in a Variant are shown in Table 1.

5.2.2.17 DataValue

A DataValue is always preceded by a mask that indicates which fields are present in the
stream.

The fields of a DataValue are described in Table 15.

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 25 –

Table 15 – Data Value Binary DataEncoding

Name Data Type Description

Encoding Mask Byte A bit mask that indicates which fields are present in the stream.
The mask has the following bits:

0x01 False if the Value is Null.
0x02 False if the StatusCode is Good.
0x04 False if the Source Timestamp is DateTime.MinValue.
0x08 False if the Server Timestamp is DateTime.MinValue.
0x10 False if the Source Picoseconds is 0.
0x20 False if the Server Picoseconds is 0.

Value Variant The value.
Not present if the Value bit in the EncodingMask is False.

Status StatusCode The status associated with the value.
Not present if the StatusCode bit in the EncodingMask is False.

SourceTimestamp DateTime The source timestamp associated with the value.
Not present if the SourceTimestamp bit in the EncodingMask is False.

SourcePicoseconds UInt16 The number of 10 picosecond intervals for the SourceTimestamp.
Not present if the SourcePicoseconds bit in the EncodingMask is False.
If the source timestamp is missing the picoseconds are ignored.

ServerTimestamp DateTime The Server timestamp associated with the value.
Not present if the ServerTimestamp bit in the EncodingMask is False.

ServerPicoseconds UInt16 The number of 10 picosecond intervals for the ServerTimestamp.
Not present if the ServerPicoseconds bit in the EncodingMask is False.
If the Server timestamp is missing the picoseconds are ignored.

The Picoseconds fields store the difference between a high resolution timestamp with a
resolution of 10 picoseconds and the Timestamp field value which only has a 100 ns
resolution. The Picoseconds fields shall contain values less than 10 000. The decoder shall
treat values greater than or equal to 10 000 as the value ‘9999’.

5.2.3 Enumerations

Enumerations are encoded as Int32 values.

5.2.4 Arrays

Arrays that occur outside of a Variant are encoded as a sequence of elements preceded by
the number of elements encoded as an Int32 value. If an Array is null then its length is
encoded as −1. An Array of zero length is different from an Array that is null so encoders and
decoders shall preserve this distinction.

Multi-dimensional arrays can only be encoded within a Variant.

5.2.5 Structures

Structures are encoded as a sequence of fields in the order that they appear in the definition.
The encoding for each field is determined by the built-in type for the field.

All fields specified in the complex type shall be encoded.

Structures do not have a null value. If an encoder is written in a programming language that
allows structures to have null values then the encoder shall create a new instance with default
values for all fields and serialize that. Encoders shall not generate an encoding error in this
situation.

BS EN 62541-6:2015

 – 26 – IEC 62541-6:2015 © IEC 2015

The following is an example of a structure using C++ syntax:

class Type2
{
 int A;
 int B;
};

class Type1
{
 int X;
 int NoOfY;
 Type2* Y;
 int Z;
};

The Y field is a pointer to an array with a length stored in NoOfY.

An instance of Type1 which contains an array of two Type2 instances would be encoded as
37 byte sequence. If the instance of Type1 was encoded in an ExtensionObject it would have
the encoded form shown in Table 16. The TypeId, Encoding and the length are fields defined
by the ExtensionObject. The encoding of the Type2 instances do not include any type
identifier because it is explicitly defined in Type1.

Table 16 – Sample OPC UA Binary Encoded structure

Field Bytes Value

Type Id 4 The identifier for Type1

Encoding 1 0x1 for ByteString

Length 4 28

X 4 The value of field ‘X’

NoOfY 4 2

Y.A 4 The value of field ‘Y[0].A’

Y.B 4 The value of field ‘Y[0].B’

Y.A 4 The value of field ‘Y[1].A’

Y.B 4 The value of field ‘Y[1].B’

Z 4 The value of field ‘Z’

5.2.6 Messages

Messages are encoded as ExtensionObjects. The parameters in each Message are serialized
in the same way the fields of a Structure are serialized. The TypeId field contains the
DataTypeEncoding identifier for the Message. The Length field is omitted since the Messages
are defined by this series of OPC UA standards.

Each OPC UA Service described in IEC 62541-4 has a request and response Message. The
DataTypeEncoding IDs assigned to each Service are given in A.3.

5.3 XML

5.3.1 Built-in Types

5.3.1.1 General

Most built-in types are encoded in XML using the formats defined in XML Schema Part 2
specification. Any special restrictions or usages are discussed below. Some of the built-in
types have an XML Schema defined for them using the syntax defined in XML Schema Part 1.

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 27 –

The prefix xs: is used to denote a symbol defined by the XML Schema specification.

5.3.1.2 Boolean

A Boolean value is encoded as an xs:boolean value.

5.3.1.3 Integer

Integer values are encoded using one of the subtypes of the xs:decimal type. The mappings
between the OPC UA integer types and XML schema data types are shown in Table 17.

Table 17 – XML Data Type Mappings for Integers

Name XML Type
SByte xs:byte
Byte xs:unsignedByte
Int16 xs:short
UInt16 xs:unsignedShort
Int32 xs:int
UInt32 xs:unsignedInt
Int64 xs:long
UInt64 xs:unsignedLong

5.3.1.4 Floating Point

Floating point values are encoded using one of the XML floating point types. The mappings
between the OPC UA floating point types and XML schema data types are shown in Table 18.

Table 18 – XML Data Type Mappings for Floating Points

Name XML Type
Float xs:float
Double xs:double

The XML floating point type supports positive infinity (INF), negative infinity (-INF) and not-a-
number (NaN).

5.3.1.5 String

A String value is encoded as an xs:string value.

5.3.1.6 DateTime

A DateTime value is encoded as an xs:dateTime value.

All DateTime values shall be encoded as UTC times or with the time zone explicitly specified.

Correct:

2002-10-10T00:00:00+05:00
2002-10-09T19:00:00Z

Incorrect:

2002-10-09T19:00:00

It is recommended that all xs:dateTime values be represented in UTC format.

The earliest and latest date/time values that can be represented on a DevelopmentPlatform
have special meaning and shall not be literally encoded in XML.

BS EN 62541-6:2015

 – 28 – IEC 62541-6:2015 © IEC 2015

The earliest date/time value on a DevelopmentPlatform shall be encoded in XML as '0001-01-
01T00:00:00Z'.

The latest date/time value on a DevelopmentPlatform shall be encoded in XML as '9999-12-
31T11:59:59Z'

If a decoder encounters a xs:dateTime value that cannot be represented on the
DevelopmentPlatform it should convert the value to either the earliest or latest date/time that
can be represented on the DevelopmentPlatform. The XML decoder should not generate an
error if it encounters an out of range date value.

The earliest date/time value on a DevelopmentPlatform is equivalent to a null date/time value.

5.3.1.7 Guid

A Guid is encoded using the string representation defined in 5.1.3.

The XML schema for a Guid is:

<xs:complexType name="Guid">
 <xs:sequence>
 <xs:element name="String" type="xs:string" minOccurs="0" />
 </xs:sequence>
</xs:complexType>

5.3.1.8 ByteString

A ByteString value is encoded as an xs:base64Binary value (see Base64).

The XML schema for a ByteString is:

<xs:element name="ByteString" type="xs:base64Binary" nillable="true"/>

5.3.1.9 XmlElement

An XmlElement value is encoded as an xs:complexType with the following XML schema:

<xs:complexType name="XmlElement">
 <xs:sequence>
 <xs:any minOccurs="0" maxOccurs="1" processContents="lax" />
 </xs:sequence>
</xs:complexType>

XmlElements may only be used inside Variant or ExtensionObject values.

5.3.1.10 NodeId

A NodeId value is encoded as an xs:string with the syntax:

ns=<namespaceindex>;<type>=<value>

The elements of the syntax are described in Table 19.

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 29 –

Table 19 – Components of NodeId

Field Data Type Description

<namespaceindex> UInt16 The NamespaceIndex formatted as a base 10 number.
If the index is 0 then the entire 'ns=0;' clause shall be omitted.

<type> Enum A flag that specifies the IdentifierType.
The flag has the following values:

i NUMERIC (UInteger)
s STRING (String)
g GUID (Guid)
b OPAQUE (ByteString)

<value> * The Identifier encoded as string.
The Identifier is formatted using the XML data type mapping for the IdentifierType.
Note that the Identifier may contain any non-null UTF8 character including whitespace.

Examples of NodeIds:

i=13
ns=10;i=-1
ns=10;s=Hello:World
g=09087e75-8e5e-499b-954f-f2a9603db28a
ns=1;b=M/RbKBsRVkePCePcx24oRA==

The XML schema for a NodeId is:

<xs:complexType name="NodeId">
 <xs:sequence>
 <xs:element name="Identifier" type="xs:string" minOccurs="0" />
 </xs:sequence>
</xs:complexType>

5.3.1.11 ExpandedNodeId

An ExpandedNodeId value is encoded as an xs:string with the syntax:

svr=<serverindex>;ns=<namespaceindex>;<type>=<value>
or
svr=<serverindex>;nsu=<uri>;<type>=<value>

The possible fields are shown in Table 20.

BS EN 62541-6:2015

 – 30 – IEC 62541-6:2015 © IEC 2015

Table 20 – Components of ExpandedNodeId

Field Data Type Description

<serverindex> UInt32 The ServerIndex formatted as a base 10 number.
If the ServerIndex is 0 then the entire 'svr=0;' clause shall be omitted.

<namespaceindex> UInt16 The NamespaceIndex formatted as a base 10 number.
If the NamespaceIndex is 0 then the entire 'ns=0;' clause shall be omitted.
The NamespaceIndex shall not be present if the URI is present.

<uri> String The NamespaceUri formatted as a string.
Any reserved characters in the URI shall be replaced with a ‘%’ followed by its 8 bit
ANSI value encoded as two hexadecimal digits (case insensitive). For example, the
character ‘;’ would be replaced by ‘%3B’.
The reserved characters are ‘;’ and ‘%’.
If the NamespaceUri is null or empty then 'nsu=;' clause shall be omitted.

<type> Enum A flag that specifies the IdentifierType.
This field is described in Table 19.

<value> * The Identifier encoded as string.
This field is described in Table 19.

The XML schema for an ExpandedNodeId is:

<xs:complexType name="ExpandedNodeId">
 <xs:sequence>
 <xs:element name="Identifier" type="xs:string" minOccurs="0" />
 </xs:sequence>
</xs:complexType>

5.3.1.12 StatusCode

A StatusCode is encoded as an xs:unsignedInt with the following XML schema:

<xs:complexType name="StatusCode">
 <xs:sequence>
 <xs:element name="Code" type="xs:unsignedInt" minOccurs="0" />
 </xs:sequence>
</xs:complexType>

5.3.1.13 DiagnosticInfo

An DiagnosticInfo value is encoded as an xs:complexType with the following XML schema:

<xs:complexType name="DiagnosticInfo">
 <xs:sequence>
 <xs:element name="SymbolicId" type="xs:int" minOccurs="0" />
 <xs:element name="NamespaceUri" type="xs:int" minOccurs="0" />
 <xs:element name="LocalizedText" type="xs:int" minOccurs="0/>
 <xs:element name="Locale" type="xs:int" minOccurs="0/>
 <xs:element name="AdditionalInfo" type="xs:string" minOccurs="0"/>
 <xs:element name="InnerStatusCode" type="tns:StatusCode"
 minOccurs="0" />
 <xs:element name="InnerDiagnosticInfo" type="tns:DiagnosticInfo"
 minOccurs="0" />
 </xs:sequence>
</xs:complexType>

5.3.1.14 QualifiedName

A QualifiedName value is encoded as an xs:complexType with the following XML schema:

<xs:complexType name="QualifiedName">
 <xs:sequence>

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 31 –

 <xs:element name="NamespaceIndex" type="xs:int" minOccurs="0" />
 <xs:element name="Name" type="xs:string" minOccurs="0" />
 </xs:sequence>
</xs:complexType>

5.3.1.15 LocalizedText

A LocalizedText value is encoded as an xs:complexType with the following XML schema:

<xs:complexType name="LocalizedText">
 <xs:sequence>
 <xs:element name="Locale" type="xs:string" minOccurs="0" />
 <xs:element name="Text" type="xs:string" minOccurs="0" />
 </xs:sequence>
</xs:complexType>

5.3.1.16 ExtensionObject

An ExtensionObject value is encoded as an xs:complexType with the following XML schema:

<xs:complexType name="ExtensionObject">
 <xs:sequence>
 <xs:element name="TypeId" type="tns:NodeId" minOccurs="0" />
 <xs:element name="Body" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:any minOccurs="0" processContents="lax"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

The body of the ExtensionObject contains a single element which is either a ByteString or
XML encoded Structure. A decoder can distinguish between the two by inspecting the top
level element. An element with the name tns:ByteString contains an OPC UA Binary encoded
body. Any other name shall contain an OPC UA XML encoded body.

The TypeId is the NodeId for the DataTypeEncoding Object.

5.3.1.17 Variant

A Variant value is encoded as an xs:complexType with the following XML schema:

<xs:complexType name="Variant">
 <xs:sequence>
 <xs:element name="Value" minOccurs="0" nillable="true">
 <xs:complexType>
 <xs:sequence>
 <xs:any minOccurs="0" processContents="lax"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

If the Variant represents a scalar value then it shall contain a single child element with the
name of the built-in type. For example, the single precision floating point value 3,141 5 would
be encoded as:

<tns:Float>3.1415</tns:Float>

BS EN 62541-6:2015

 – 32 – IEC 62541-6:2015 © IEC 2015

If the Variant represents a single dimensional array then it shall contain a single child element
with the prefix 'ListOf' and the name built-in type. For example an Array of strings would be
encoded as:

<tns:ListOfString>
 <tns:String>Hello</tns:String>
 <tns:String>World</tns:String>
</tns:ListOfString>

If the Variant represents a multidimensional Array then it shall contain a child element with the
name ‘Matrix’ with the two sub-elements shown in this example:

<tns:Matrix>
 <tns:Dimensions>
 <tns:Int32>2</tns:Int32>
 <tns:Int32>2</tns:Int32>
 </tns:Dimensions>
 <tns:Elements>
 <tns:String>A</tns:String>
 <tns:String>B</tns:String>
 <tns:String>C</tns:String>
 <tns:String>D</tns:String>
 </tns:Elements>
</tns:Matrix>

In this example, the array has the following elements:

[0,0] = "A"; [0,1] = "B"; [1,0] = "C"; [1,1] = "D"

The elements of a multi-dimensional Array are always flattened into a single dimensional
Array where the higher rank dimensions are serialized first. This single dimensional Array is
encoded as a child of the ‘Elements’ element. The ‘Dimensions’ element is an Array of Int32
values that specify the dimensions of the array starting with the lowest rank dimension. The
multi-dimensional Array can be reconstructed by using the dimensions encoded.

The complete set of built-in type names is found in Table 1.

5.3.1.18 DataValue

A DataValue value is encoded as a xs:complexType with the following XML schema:

<xs:complexType name="DataValue">
 <xs:sequence>
 <xs:element name="Value" type="tns:Variant" minOccurs="0"
 nillable="true" />
 <xs:element name="StatusCode" type="tns:StatusCode"
 minOccurs="0" />
 <xs:element name="SourceTimestamp" type="xs:dateTime"
 minOccurs="0" />
 <xs:element name="SourcePicoseconds" type="xs:unsignedShort"
 minOccurs="0"/>
 <xs:element name="ServerTimestamp" type="xs:dateTime"
 minOccurs="0" />
 <xs:element name="ServerPicoseconds" type="xs:unsignedShort"
 minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 33 –

5.3.2 Enumerations

Enumerations that are used as parameters in the Messages defined in IEC 62541-4 are
encoded as xs:string with the following syntax:

<symbol>_<value>

The elements of the syntax are described in Table 21.

Table 21 – Components of Enumeration

Field Type Description

<symbol> String The symbolic name for the enumerated value.
<value> UInt32 The numeric value associated with enumerated value.

For example, the XML schema for the NodeClass enumeration is:

<xs:simpleType name="NodeClass">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Unspecified_0" />
 <xs:enumeration value="Object_1" />
 <xs:enumeration value="Variable_2" />
 <xs:enumeration value="Method_4" />
 <xs:enumeration value="ObjectType_8" />
 <xs:enumeration value="VariableType_16" />
 <xs:enumeration value="ReferenceType_32" />
 <xs:enumeration value="DataType_64" />
 <xs:enumeration value="View_128" />
 </xs:restriction>
</xs:simpleType>

Enumerations that are stored in a Variant are encoded as an Int32 value.

For example, any Variable could have a value with a DataType of NodeClass. In this case the
corresponding numeric value is placed in the Variant (e.g. NodeClass::Object would be stored
as a 1).

5.3.3 Arrays

Array parameters are always encoded by wrapping the elements in a container element and
inserting the container into the structure. The name of the container element should be the
name of the parameter. The name of the element in the array shall be the type name.

For example, the Read service takes an array of ReadValueIds. The XML schema would look
like:

<xs:complexType name="ListOfReadValueId">
 <xs:sequence>
 <xs:element name="ReadValueId" type="tns:ReadValueId"
 minOccurs="0" maxOccurs="unbounded" nillable="true" />
 </xs:sequence>
</xs:complexType>

The nillable attribute shall be specified because XML encoders will drop elements in arrays if
those elements are empty.

5.3.4 Structures

Structures are encoded as a xs:complexType with all of the fields appearing in a sequence.
All fields are encoded as an xs:element and have xs:maxOccurs set to 1.

BS EN 62541-6:2015

 – 34 – IEC 62541-6:2015 © IEC 2015

For example, the Read service has a ReadValueId structure in the request. The XML schema
would look like:

<xs:complexType name="ReadValueId">
 <xs:sequence>
 <xs:element name="NodeId" type="tns:NodeId" minOccurs="1" />
 <xs:element name="AttributeId" type="xs:int" minOccurs="1" />
 <xs:element name="IndexRange" type="xs:string"
 minOccurs="0" nillable="true" />
 <xs:element name="DataEncoding" type="tns:NodeId" minOccurs="1" />
 </xs:sequence>
</xs:complexType>

5.3.5 Messages

Messages are encoded as an xs:complexType. The parameters in each Message are
serialized in the same way the fields of a Structure are serialized.

6 Message SecurityProtocols

6.1 Security handshake

All SecurityProtocols shall implement the OpenSecureChannel and CloseSecureChannel
services defined in IEC 62541-4. These Services specify how to establish a SecureChannel
and how to apply security to Messages exchanged over that SecureChannel. The Messages
exchanged and the security algorithms applied to them are shown in Figure 10.

SecurityProtocols shall support three SecurityModes: None, Sign and SignAndEncrypt. If the
SecurityMode is None then no security is used and the security handshake shown in
Figure 10 is not required. However, a SecurityProtocol implementation shall still maintain a
logical channel and provide a unique identifier for the SecureChannel.

Figure 10 – Security handshake

Client Server

OpenSecureChannel Request

Signed with Client Private Key

Encrypted with Server Public Key

AsymmetricSignatureAlgorithm
AsymmetricEncryptionAlgorithm
or
AsymmetricKeyWrapAlgorithm
SymmetricEncryptionAlgorithm

OpenSecureChannel Response

Signed with Server Private Key

Encrypted with Client Public Key

CreateSession Request

Signed with Client Signing Key

Encrypted with Server Encryption Key
SymmetricEncryptionAlgorithm
KeyDerivationAlgorithm

SymmetricSignatureAlgorithm
KeyDerivationAlgorithm
DerivedSignatureKeyLength

CreateSession Response

Signed with Server Signing Key

Encrypted with Client Encryption Key
IEC

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 35 –

Each SecurityProtocol mapping specifies exactly how to apply the security algorithms to the
Message. A set of security algorithms that shall be used together during a security handshake
is called a SecurityPolicy. IEC 62541-7 defines standard SecurityPolicies as parts of the
standard Profiles which OPC UA applications are expected to support. IEC 62541-7 also
defines a URI for each standard SecurityPolicy.

A Stack is expected to have built in knowledge of the SecurityPolicies that it supports.
Applications specify the SecurityPolicy they wish to use by passing the URI to the Stack.

Table 22 defines the contents of a SecurityPolicy. Each SecurityProtocol mapping specifies
how to use each of the parameters in the SecurityPolicy. A SecurityProtocol mapping may not
make use of all of the parameters.

Table 22 – SecurityPolicy

Name Description
PolicyUri The URI assigned to the SecurityPolicy.
SymmetricSignatureAlgorithm The URI of the symmetric signature algorithm to use.
SymmetricEncryptionAlgorithm The URI of the symmetric key encryption algorithm to use.
AsymmetricSignatureAlgorithm The URI of the asymmetric signature algorithm to use.
AsymmetricKeyWrapAlgorithm The URI of the asymmetric key wrap algorithm to use.
AsymmetricEncryptionAlgorithm The URI of the asymmetric key encryption algorithm to use.
MinAsymmetricKeyLength The minimum length for an asymmetric key.
MaxAsymmetricKeyLength The maximum length for an asymmetric key.
KeyDerivationAlgorithm The key derivation algorithm to use.
DerivedSignatureKeyLength The length in bits of the derived key used for Message authentication.

The AsymmetricEncryptionAlgorithm is used when encrypting the entire Message with an
asymmetric key. Some SecurityProtocols do not encrypt the entire Message with an
asymmetric key. Instead, they use the AsymmetricKeyWrapAlgorithm to encrypt a symmetric
key and then use the SymmetricEncryptionAlgorithm to encrypt the Message.

The AsymmetricSignatureAlgorithm is used to sign a Message with an asymmetric key.

The KeyDerivationAlgorithm is used to create the keys used to secure Messages sent over
the SecureChannel. The length of the keys used for encryption is implied by the
SymmetricEncryptionAlgorithm. The length of the keys used for creating Symmetric
Signatures depends on the SymmetricSignatureAlgorithm and may be different from the
encryption key length.

6.2 Certificates

6.2.1 General

OPC UA Applications use Certificates to store the Public Keys needed for Asymmetric
Cryptography operations. All SecurityProtocols use X509 Version 3 Certificates (see X509)
encoded using the DER format (see X690). Certificates used by OPC UA Applications shall
also conform to RFC 3280 which defines a profile for X509 Certificates when they are used as
part of an Internet based Application.

The ServerCertificate and ClientCertificate parameters used in the abstract
OpenSecureChannel service are instances of the ApplicationInstance Certificate Data Type.
Subclause 6.2.2 describes how to create an X509 Certificate that can be used as an
ApplicationInstance Certificate.

The ServerSoftwareCertificates and ClientSoftwareCertificates parameters in the abstract
CreateSession and ActivateSession Services are instances of the SignedSoftwareCertificate
Data Type. Subclause 6.2.3 describes how to create an X509 Certificate that can be used as
a SignedSoftwareCertificate.

BS EN 62541-6:2015

 – 36 – IEC 62541-6:2015 © IEC 2015

6.2.2 Application Instance Certificate

An ApplicationInstanceCertificate is a ByteString containing the DER encoded form (see
X690) of an X509v3 Certificate. This Certificate is issued by certifying authority and identifies
an instance of an Application running on a single host. The X509v3 fields contained in an
ApplicationInstance Certificate are described in Table 23. The fields are defined completely in
RFC 3280.

Table 23 also provides a mapping from the RFC 3280 terms to the terms used in the abstract
definition of an ApplicationInstanceCertificate defined in IEC 62541-4.

Table 23 – ApplicationInstanceCertificate

Name Part 4 Parameter
Name

Description

ApplicationInstanceCertificate An X509v3 Certificate.
 version version shall be “V3”
 serialNumber serialNumber The serial number assigned by the issuer.
 signatureAlgorithm signatureAlgorithm The algorithm used to sign the Certificate.
 signature signature The signature created by the Issuer.
 issuer issuer The distinguished name of the Certificate used to create the signature.

The issuer field is completely described in RFC 3280.
 validity validTo, validFrom When the Certificate becomes valid and when it expires.
 subject subject The distinguished name of the Application Instance.

The Common Name attribute shall be specified and should be the
productName or a suitable equivalent. The Organization Name attribute
shall be the name of the Organization that executes the Application
instance. This organization is usually not the vendor of the Application.
Other attributes may be specified.
The subject field is completely described in RFC 3280.

 subjectAltName applicationUri,
 hostnames

The alternate names for the Application Instance.
Shall include a uniformResourceIdentifier which is equal to the
applicationUri.
Servers shall specify a dNSName or IPAddress which identifies the
machine where the Application Instance runs. Additional dNSNames may
be specified if the machine has multiple names. The IPAddress should not
be specified if the Server has dNSName.
The subjectAltName field is completely described in RFC 3280.

 publicKey publicKey The public key associated with the Certificate.
 keyUsage keyUsage Specifies how the Certificate key may be used.

Shall include digitalSignature, nonRepudiation, keyEncipherment and
dataEncipherment.
Other key uses are allowed.

 extendedKeyUsage keyUsage Specifies additional key uses for the Certificate.
Shall specify 'serverAuth and/or clientAuth.
Other key uses are allowed.

 authorityKeyIdentifier Provides more information about the key used to sign the Certificate. It
shall be specified for Certificates signed by a CA. It should be specified for
self-signed Certificates.

6.2.3 Signed Software Certificate

A SignedSoftwareCertificate is a ByteString containing the DER encoded form of an X509v3
Certificate. This Certificate is issued by a certifying authority and contains an X509v3
extension with the SoftwareCertificate which specifies the claims verified by the certifying
authority. The X509v3 fields contained in a SignedSoftwareCertificate are described in
Table 24. The fields are defined completely in RFC 3280.

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 37 –

Table 24 – SignedSoftwareCertificate

Name Description
SignedSoftwareCertificate An X509v3 Certificate.
 version version Shall be “V3”
 serialNumber serialNumber The serial number assigned by the issuer.
 signatureAlgorithm signatureAlgorithm The algorithm used to sign the Certificate.
 signature signature The signature created by the Issuer.
 issuer issuer The distinguished name of the Certificate used to create the signature.

The issuer field is completely described in RFC 3280.
 validity validTo, validFrom When the Certificate becomes valid and when it expires.
 subject subject The distinguished name of the product.

The Common Name attribute shall be the same as the productName in the
SoftwareCertificate and the Organization Name attribute shall be the
vendorName in the SoftwareCertificate.
Other attributes may be specified.
The subject field is completely described in RFC 3280.

 subjectAltName productUri The alternate names for the product.
It shall include a ‘uniformResourceIdentifier’ which is equal to the
productUri specified in the SoftwareCertificate.
The subjectAltName field is completely described in RFC 3280.

 publicKey publicKey The public key associated with the Certificate.
 keyUsage keyUsage Specifies how the Certificate key may be used.

shall be ‘digitalSignature’ and ‘nonRepudiation’
Other key uses are not allowed.

 extendedKeyUsage keyUsage Specifies additional key uses for the Certificate.
May specify ‘codeSigning’.
Other key usages are not allowed.

 softwareCertificate softwareCertificate The XML encoded form of the SoftwareCertificate stored as UTF8 text.
Subclause 5.3.4 describes how to encode a SoftwareCertificate in XML.
The ASN.1 Object Identifier (OID) for this extension is:
1.2.840.113556.1.8000.2264.1.6.1

6.3 Time synchronization

All Security Protocols require that system clocks on communicating machines be reasonably
synchronized in order to check the expiry times for Certificates or Messages. The amount of
clock skew that can be tolerated depends on the system security requirements and
Applications shall allow administrators to configure the acceptable clock skew when verifying
times. A suitable default value is 5 minutes.

The Network Time Protocol (NTP) provides a standard way to synchronize a machine clock
with a time server on the network. Systems running on a machine with a full featured
operating system like Windows or Linux will already support NTP or an equivalent. Devices
running embedded operating systems should support NTP.

If a device operating system cannot practically support NTP then an OPC UA Application can
use the Timestamps in the ResponseHeader (see IEC 62541-4) to synchronize its clock. In
this scenario the OPC UA Application will have to know the URL for a Discovery Server on a
machine known to have the correct time. The OPC UA Application or a separate background
utility would call the FindServers Service and set its clock to the time specified in the
ResponseHeader. This process will need to be repeated periodically because clocks can drift
over time.

6.4 UTC and International Atomic Time (TAI)

All times in OPC UA are in UTC, however, UTC can include discontinuities due to leap
seconds or repeating seconds added to deal with variations in the earth’s orbit and rotation.
Servers that have access to source for International Atomic Time (TAI) may choose to use
this instead of UTC. That said, Clients must always be prepared to deal with discontinuities
due to the UTC or simply because the system clock is adjusted on the Server machine.

BS EN 62541-6:2015

 – 38 – IEC 62541-6:2015 © IEC 2015

6.5 Issued User Identity Tokens – Kerberos

Kerberos UserIdentityTokens can be passed to the Server using the IssuedIdentityToken. The
body of the token is an XML element that contains the WS-Security token as defined in the
Kerberos Token Profile (Kerberos) specification.

Servers that support Kerberos authentication shall provide a UserTokenPolicy which specifies
what version of the Kerberos Token Profile is being used, the Kerberos Realm and the
Kerberos Principal Name for the Server. The Realm and Principal name are combined
together with a simple syntax and placed in the issuerEndpointUri as shown in Table 25.

Table 25 – Kerberos UserTokenPolicy

Name Decription
tokenType ISSUEDTOKEN_3
issuedTypeType http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1
issuerEndpointUri A string with the form \\<realm>\<server principal name> where

 <realm> is the Kerberos realm name (e.g. Windows Domain);
 <server principal name> is the Kerberos principal name for the OPC UA Server.

The interface between the Client and Server applications and the Kerberos Authentication
Service is application specific. The realm is the DomainName when using a Windows Domain
controller as the Kerberos provider.

6.6 WS Secure Conversation

6.6.1 Overview

Any Message sent via SOAP may be secured with the WS Secure Conversation . This
protocol specifies a way to negotiate shared secrets via WS Trust and then use these secrets
to secure Messages exchanged with the mechanisms defined in WS Security.

The mechanisms for actually signing XML elements are described in the XML Signature
specification. The mechanisms for encrypting XML elements are described in the
XML Encryption specification.

WS Security Policy defines standard algorithm suites which can be used to secure SOAP
Messages. These algorithm suites map directly onto the SecurityPolicies that are defined in
IEC 62541-7. WS-I Basic Security Profile 1.1 defines best practices when using WS-Security
which will help ensure interoperability. All OPC UA implementations shall conform to this
specification.

The Timestamp header defined by WS Security is used to prevent replay attacks and shall be
present and signed in all Messages exchanged.

Figure 11 illustrates the relationship between the different WS-* specifications that are used
by this mapping. The versions of the WS-* specifications shown in the diagram were the most
current versions at the time of publication. IEC 62541-7 may define Profiles that require
support for future versions of these specifications.

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 39 –

Figure 11 – Relevant XML Web Services specifications

Figure 12 illustrates how these WS-* specifications are used in the security handshake.

Figure 12 – The WS Secure Conversation handshake

The RST (Request Security Token) and RSTR (Request Security Token Response) Messages
are defined by WS Trust. WS Secure Conversation defines new actions for these Messages
that tell the Server that the Client wants to create a SCT (Security Context Token). The SCT
contains the shared keys that the Applications use to secure Messages sent over the
SecureChannel.

Individual Messages are secured with keys derived from the SCT using the mechanism
defined in WS Secure Conversation. The subclauses below specify the structure of the
individual Messages and illustrate which features from the WS-* specifications are required to
implement the OPC UA security handshake.

Client Server

RST/SCT (WS-Trust)
BinarySecurityToken (contains Client Public Key)
SecurityToken (encrypted with Server Private Key)
DerivedKeyToken (signing)
DerivedKeyToken (encrypting)

RSTR/SCT (WS-Trust)

CreateSession Request

CreateSession Response

Each DerivedKeyToken
contains a Nonce that is
used to derived the key
from the shared secret

DerivedKeyToken (signing)
DerivedKeyToken (encrypting)

SecurityContextToken (identifier only)
DerivedKeyToken (signing)
DerivedKeyToken (encrypting)

SecurityContextToken (identifier only)
DerivedKeyToken (signing)
DerivedKeyToken (encrypting)

Contains a secret that is
used to create the derived
keys.

The SecurityContextToken
contains a secret created
from the entropy provided in
the RST and RSTR.

OpenSecureChannel Response

OpenSecureChannel Request

IEC

IEC

WS Security 1.1

SOAP 1.2

HTTP or HTTPS (SSL/TLS)

WS Trust 1.3

WS Addressing 1.0

WS Secure Conversation 1.3

XML Signature 1.0 XML Encryption 1.0

W
S

 S
ecurity P

olicy 1.2

BS EN 62541-6:2015

 – 40 – IEC 62541-6:2015 © IEC 2015

6.6.2 Notation

SOAP Messages use XML elements defined in a number of different specifications. This
document uses the prefixes in Table 26 to identify the specification that defines an XML
element.

Table 26 – WS-* Namespace prefixes

Prefix Specification
wsu WS-Security Utilities
wsse WS-Security Extensions
wst WS-Trust
wsc WS-Secure Conversation
wsa WS-Addressing
xenc XML Encryption

6.6.3 Request Security Token (RST/SCT)

The Request Security Token Messages implements the abstract OpenSecureChannel request
Message defined in IEC 62541-4. The syntax of this Message is defined by WS Trust. The
structure of the Message is described in detail in WS Secure Conversation.

This Message shall have the following tokens:

a) A wsse:BinarySecurityToken containing the Client’s Public Key. The Public Key is sent in
a DER encoded X509v3 Certificate.

b) An encrypted wsse:SecurityToken containing ClientNonce used to derive keys. This
SecurityToken shall be encrypted with the AsymmetricKeyWrapAlgorithm and the Public
Key associated with the Server’s Application Instance Certificate.

c) A wsc:DerivedKeyToken which is used to sign the body, the WS Addressing headers and
the wsu:Timestamp header using the SymmetricSignatureAlgorithm. The signature
element shall then be signed using the AsymmetricSignatureAlgorithm with the Client’s
Private Key. The wsc:DerivedKeyToken shall also specify a Nonce.

d) A wsc:DerivedKeyToken which is used to encrypt the body of the Message using the
SymmetricEncryptionAlgorithm.

This Message shall have the wsa:Action, wsa:MessageId, wsa:ReplyTo and wsa:To headers
defined by WS Addressing. The Message shall also have a wsu:Timestamp header defined by
WS Security. These headers shall also be signed with the derived key used to sign the
Message body.

The signature shall be calculated before applying encryption and the signature shall be
encrypted.

The mapping between the OpenSecureChannel request parameters and the elements of the
RST/SCT Message are shown in Table 27.

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 41 –

Table 27 – RST/SCT Mapping to an OpenSecureChannel Request

OpenSecureChannel
Parameter

RST/SCT Element Description

clientCertificate wsse:BinarySecurityToken Passed in the SOAP header.
requestType wst:RequestType Shall be “http://schemas.xmlsoap.org/ws/2005/02/trust/Issue”

when creating a new SCT.
Shall be “http://schemas.xmlsoap.org/ws/2005/02/trust/Renew”
when renewing a SCT.

secureChannelId wsse:SecurityTokenReference Passed in the SOAP header when renewing an SCT.
securityMode
securityPolicyUri

wst:SignatureAlgorithm
wst:EncryptionAlgorithm
wst:KeySize

These elements describe the SecurityPolicy requested by the
Client.
These elements shall match the SecurityPolicy used by the
Endpoint that the Client wishes to connect to.
These elements are optional.

clientNonce wst:Entropy This contains the Nonce specified by the Client.
The Nonce is specified with the wst:BinarySecret element.

requestedLifetime wst:Lifetime The requested lifetime for the SCT.
This element is optional.

6.6.4 Request Security Token Response (RSTR/SCT)

The Request Security Token Response Message implements the abstract
OpenSecureChannel response Message defined in IEC 62541-4. The syntax of this Message
is defined by WS Trust. The use of the Message is described in detail in
WS Secure Conversation. This Message not signed or encrypted with the asymmetric
algorithms as described in IEC 62541-4. The symmetric algorithms and a key provided in the
request Message are used instead.

This Message shall have the following tokens:

a) A wsc:DerivedKeyToken which is used to sign the body, the WS Addressing headers and
the wsu:Timestamp header using the SymmetricSignatureAlgorithm. This key is derived
from the encrypted SecurityToken specified in the RST/SCT Message. The
wsc:DerivedKeyToken shall also specify a Nonce.

b) A wsc:DerivedKeyToken which is used to encrypt the body of the Message using the
SymmetricEncryptionAlgorithm. This key is derived from the encrypted SecurityToken
specified in the RST/SCT Message. The wsc:DerivedKeyToken shall also specify a Nonce.

This Message shall have the wsa:Action and wsa:RelatesTo headers defined by
WS Addressing. The Message shall also have a wsu:Timestamp header defined by
WS Security. These headers shall also be signed with the derived key used to sign the
Message body.

The signature shall be calculated before applying encryption and the signature shall be
encrypted.

The mapping between the OpenSecureChannel response parameters and the elements of the
RSTR/SCT Message are shown Table 28.

BS EN 62541-6:2015

 – 42 – IEC 62541-6:2015 © IEC 2015

Table 28 – RSTR/SCT Mapping to an OpenSecureChannel Response

OpenSecureChannel
Parameter

RSTR/SCT Element Description

--- wst:RequestedProofToken This contains a wst:ComputedKey element which specifies the
algorithm used to compute the shared secret key from the Nonces
provided by the Client and the Server.

--- wst:TokenType Specifies the type of SecurityToken issued.
securityToken wst:RequestedSecurityToken Specifies the new SCT (Security Context Token) or renewed SCT.
 channelId wsc:Identifier An absolute URI which identifies the SCT.
 tokenId wsc:Instance An identifier for a set of keys issued for a context.

It shall be unique within the context.
 createdAt wsu:Created This is optional element in the wsc:SecurityContextToken returned

in the header.
revisedLifetime wst:Lifetime The revised lifetime for the SCT.
serverNonce wst:Entropy This contains the Nonce specified by the Server.

The Nonce is specified with the wst:BinarySecret element.
The xenc:EncryptedData element is not used in OPC UA because
the Message body shall be encrypted.

The lifetime specifies the UTC expiration time for the security context token. The Client shall
renew the SCT before that time by sending the RST/SCT Message again. The exact
behaviour is described in IEC 62541-4.

6.6.5 Using the SCT

Once the Client receives the RSTR/SCT Message it can use the SCT to secure all other
Messages.

An identifier for the SCT used shall be passed as an wsc:SecurityContextToken in each
request Message. The response Message shall reference the SecurityContextToken used in
the request.

If encryption is used it shall be applied before the signature is calculated.

Any Message secured with the SecurityContextToken shall have the following additional
tokens:

a) A wsc:DerivedKeyToken which is used to sign the body, the WS Addressing headers and
the wsu:Timestamp header using the SymmetricSignatureAlgorithm. This key is derived
from the SecurityContextToken. The wsc:DerivedKeyToken shall also specify a Nonce.

b) A wsc:DerivedKeyToken which is used to encrypt the body of the Message using the
SymmetricEncryptionAlgorithm. This key is derived from the SecurityContextToken. The
wsc:DerivedKeyToken shall also specify a Nonce.

This Message shall have the wsa:Action and wsa:RelatesTo headers defined by
WS Addressing. The Message shall also have a wsu:Timestamp header defined by
WS Security.

6.6.6 Cancelling Security contexts

The Cancel Message defined by WS Trust implements the abstract CloseSecureChannel
request Message defined in IEC 62541-4.

This Message shall be secured with the SCT.

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 43 –

6.7 OPC UA Secure Conversation

6.7.1 Overview

OPC UA Secure Conversation (UASC) is a binary version of WS-Secure Conversation. It
allows secure communication over transports that do not use SOAP or XML.

UASC is designed to operate with different TransportProtocols that may have limited buffer
sizes. For this reason, OPC UA Secure Conversation will break OPC UA Messages into
several pieces (called ‘MessageChunks’) that are smaller than the buffer size allowed by the
TransportProtocol. UASC requires a TransportProtocol buffer size that is at least 8196 bytes.

All security is applied to individual MessageChunks and not the entire OPC UA Message. A
Stack that implements UASC is responsible for verifying the security on each MessageChunk
received and reconstructing the original OPC UA Message.

All MessageChunks will have a 4-byte sequence assigned to them. These sequence numbers
are used to detect and prevent replay attacks.

UASC requires a TransportProtocol that will preserve the order of MessageChunks, however,
a UASC implementation does not necessarily process the Messages in the order that they
were received.

6.7.2 MessageChunk structure

Figure 13 shows the structure of a MessageChunk and how security is applied to the
Message.

Figure 13 – OPC UA Secure Conversation MessageChunk

Every MessageChunk has a Message header with the fields defined in Table 29.

Message Header

Security Header

Body

Signature

Data To Sign

Data To Encrypt

Sequence Header

Padding

IEC

BS EN 62541-6:2015

 – 44 – IEC 62541-6:2015 © IEC 2015

Table 29 – OPC UA Secure Conversation Message header

Name Data Type Description
MessageType Byte[3] A three byte ASCII code that identifies the Message type.

The following values are defined at this time:
 MSG A Message secured with the keys associated with a channel.
 OPN OpenSecureChannel Message.
 CLO CloseSecureChannel Message.

IsFinal Byte A one byte ASCII code that indicates whether the MessageChunk is the final chunk in a
Message.
The following values are defined at this time:
 C An intermediate chunk.
 F The final chunk.
 A The final chunk (used when an error occurred and the Message is aborted).

MessageSize UInt32 The length of the MessageChunk, in bytes. This value includes size of the Message
header.

SecureChannelId UInt32 A unique identifier for the SecureChannel assigned by the Server.
If a Server receives a SecureChannelId which it does not recognize it shall return an
appropriate transport layer error.
When a Server starts the first SecureChannelId used should be a value that is likely to
be unique after each restart. This ensures that a Server restart does not cause
previously connected Clients to accidently ‘reuse’ SecureChannels that did not belong to
them.

The Message header is followed by a security header which specifies what cryptography
operations have been applied to the Message. There are two versions of the security header
which depend on the type of security applied to the Message. The security header used for
asymmetric algorithms is defined in Table 30. Asymmetric algorithms are used to secure the
OpenSecureChannel Messages. PKCS #1defines a set of asymmetric algorithms that may be
used by UASC implementations. The AsymmetricKeyWrapAlgorithm element of the
SecurityPolicy structure defined in Table 22 is not used by UASC implementations.

Table 30 – Asymmetric algorithm Security header

Name Data Type Description
SecurityPolicyUriLength Int32 The length of the SecurityPolicyUri in bytes.This value shall not exceed 255

bytes.
SecurityPolicyUri Byte[*] The URI of the Security Policy used to secure the Message.

This field is encoded as a UTF8 string without a null terminator.
SenderCertificateLength Int32 The length of the SenderCertificate in bytes.

This value shall not exceed MaxCertificateSize bytes.
SenderCertificate Byte[*] The X509v3 Certificate assigned to the sending Application Instance.

This is a DER encoded blob.
The structure of an X509 Certificate is defined in X509.
The DER format for a Certificate is defined in X690
This indicates what Private Key was used to sign the MessageChunk.
The Stack shall close the channel and report an error to the Application if the
SenderCertificate is too large for the buffer size supported by the transport
layer.
This field shall be null if the Message is not signed.
If the Certificate is signed by a CA the DER encoded CA Certificate may be
appended after the Certificate in the byte array. If the CA Certificate is also
signed by another CA this process is repeated until the entire Certificate chain
is in the buffer or if MaxSenderCertificateSize limit is reached (the process
stops after the last whole Certificate that can be added without exceeding the
MaxSenderCertificateSize limit).
Receivers can extract the Certificates from the byte array by using the
Certificate size contained in DER header (see X509).
Receivers that do not handle Certificate chains shall ignore the extra bytes.

ReceiverCertificateThumbprintLength Int32 The length of the ReceiverCertificateThumbprint in bytes.
The length of this field is always 20 bytes.

ReceiverCertificateThumbprint Byte[*] The thumbprint of the X509v3 Certificate assigned to the receiving Application
Instance.
The thumbprint is the SHA1 digest of the DER encoded form of the Certificate.
This indicates what public key was used to encrypt the MessageChunk.
This field shall be null if the Message is not encrypted.

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 45 –

The receiver shall close the communication channel if any of the fields in the security header
have invalid lengths.

The SenderCertificate, including any chains, shall be small enough to fit into a single
MessageChunk and leave room for at least one byte of body information. The maximum size
for the SenderCertificate can be calculated with this formula:

MaxSenderCertificateSize =
 MessageChunkSize –
 12 - // Header size
 4 – // SecurityPolicyUriLength
 SecurityPolicyUri - // UTF-8 encoded string
 4 – // SenderCertificateLength
 4 – // ReceiverCertificateThumbprintLength
 20 – // ReceiverCertificateThumbprint
 8 - // SequenceHeader size
 1 - // Minimum body size
 1 - // PaddingSize if present
 Padding - // Padding if present
 ExtraPadding - // ExtraPadding if present
 AsymmetricSignatureSize // If present

The MessageChunkSize depends on the transport protocol but shall be at least 8196 bytes.
The AsymmetricSignatureSize depends on the number of bits in the public key for the
SenderCertificate. The Int32FieldLength is the length of an encoded Int32 value and it is
always 4 bytes.

The security header used for symmetric algorithms defined in Table 31. Symmetric algorithms
are used to secure all Messages other than the OpenSecureChannel Messages.
FIPS 197define symmetric encryption algorithms that UASC implementations may use.
FIPS 180-2 and HMAC define some symmetric signature algorithms.

Table 31 – Symmetric algorithm Security header

Name Data Type Description
TokenId UInt32 A unique identifier for the SecureChannel SecurityToken used to secure the Message.

This identifier is returned by the Server in an OpenSecureChannel response Message. If
a Server receives a TokenId which it does not recognize it shall return an appropriate
transport layer error.

The security header is always followed by the sequence header which is defined in Table 32.
The sequence header ensures that the first encrypted block of every Message sent over a
channel will start with different data.

Table 32 – Sequence header

Name Data Type Description
SequenceNumber UInt32 A monotonically increasing sequence number assigned by the sender to each

MessageChunk sent over the SecureChannel.
RequestId UInt32 An identifier assigned by the Client to OPC UA request Message. All MessageChunks

for the request and the associated response use the same identifier.

SequenceNumbers may not be reused for any TokenId. The SecurityToken lifetime should be
short enough to ensure that this never happens; however, if it does the receiver should treat it
as a transport error and force a reconnect.

The SequenceNumber shall also monotonically increase for all Messages and shall not wrap
around until it is greater than 4 294 966 271 (UInt32.MaxValue – 1 024). The first number
after the wrap around shall be less than 1 024. Note that this requirement means that
SequenceNumbers do not reset when a new TokenId is issued. The SequenceNumber shall
be incremented by exactly one for each MessageChunk sent unless the communication
channel was interrupted and re-established. Gaps are permitted between the

BS EN 62541-6:2015

 – 46 – IEC 62541-6:2015 © IEC 2015

SequenceNumber for the last MessageChunk received before the interruption and the
SequenceNumber for first MessageChunk received after communication was reestablished.
Note that the first MessageChunk after a network interruption is always an
OpenSecureChannel request or response.

The sequence header is followed by the Message body which is encoded with the OPC UA
Binary encoding as described in 5.2.6. The body may be split across multiple
MessageChunks.

Each MessageChunk also has a footer with the fields defined in Table 33.

Table 33 – OPC UA Secure Conversation Message footer

Name Data Type Description
PaddingSize Byte The number of padding bytes (not including the byte for the PaddingSize).

Padding Byte[*] Padding added to the end of the Message to ensure length of the data to encrypt is an

integer multiple of the encryption block size.
The value of each byte of the padding is equal to PaddingSize.

ExtraPaddingSize Byte The most significant byte of a two byte integer used to specify the padding size when the
key used to encrypt the message chunk is larger than 2048 bits. This field is omitted if
the key length is less than or equal to 2048 bits.

Signature Byte[*] The signature for the MessageChunk.
The signature includes the all headers, all Message data, the PaddingSize and the
Padding.

The formula to calculate the amount of padding depends on the amount of data that needs to
be sent (called BytesToWrite). The sender shall first calculate the maximum amount of space
available in the MessageChunk (called MaxBodySize) using the following formula:

MaxBodySize = PlainTextBlockSize * Floor((MessageChunkSize –
 HeaderSize – SignatureSize – 1)/CipherTextBlockSize) –
 SequenceHeaderSize;

The HeaderSize includes the MessageHeader and the SecurityHeader. The
SequenceHeaderSize is always 8 bytes.

During encryption a block with a size equal to PlainTextBlockSize is processed to produce a
block with size equal to CipherTextBlockSize. These values depend on the encryption
algorithm and may be the same.

The OPC UA Message can fit into a single chunk if BytesToWrite is less than or equal to the
MaxBodySize. In this case the PaddingSize is calculated with this formula:

PaddingSize = PlainTextBlockSize –
((BytesToWrite + SignatureSize + 1) % PlainTextBlockSize);

If the BytesToWrite is greater than MaxBodySize the sender shall write MaxBodySize bytes
with a PaddingSize of 0. The remaining BytesToWrite – MaxBodySize bytes shall be sent in
subsequent MessageChunks.

The PaddingSize and Padding fields are not present if the MessageChunk is not encrypted.

The Signature field is not present if the MessageChunk is not signed.

6.7.3 MessageChunks and error handling

MessageChunks are sent as they are encoded. MessageChunks belonging to the same
Message shall be sent sequentially. If an error occurs creating a MessageChunk then the
sender shall send a final MessageChunk to the receiver that tells the receiver that an error
occurred and that it should discard the previous chunks. The sender indicates that the

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 47 –

MessageChunk contains an error by setting the IsFinal flag to ‘A’ (for Abort). Table 34
specifies the contents of the Message abort MessageChunk.

Table 34 – OPC UA Secure Conversation Message abort body

Name Data
Type

Description

Error UInt32 The numeric code for the error.
This shall be one of the values listed in Table 41.

Reason String A more verbose description of the error.
This string shall not be more than 4 096 characters.
A Client shall ignore strings that are longer than this.

The receiver shall check the security on the abort MessageChunk before processing it. If
everything is ok then the receiver shall ignore the Message but shall not close the
SecureChannel. The Client shall report the error back to the Application as StatusCode for the
request. If the Client is the sender then it shall report the error without waiting for a response
from the Server.

6.7.4 Establishing a SecureChannel

Most Messages require a SecureChannel to be established. A Client does this by sending an
OpenSecureChannel request to the Server. The Server shall validate the Message and the
ClientCertificate and return an OpenSecureChannel response. Some of the parameters
defined for the OpenSecureChannel service are specified in the security header (see 6.7.2)
instead of the body of the Message. For this reason, the OpenSecureChannel Service is not
the same as the one specified in IEC 62541-4. Table 35 lists the parameters that appear in
the body of the Message.

Table 35 – OPC UA Secure Conversation OpenSecureChannel Service

Name Data Type
Request
 RequestHeader RequestHeader
 ClientProtocolVersion UInt32
 RequestType SecurityTokenRequestType
 SecurityMode MessageSecurityMode
 ClientNonce ByteString
 RequestedLifetime Int32

Response
 ResponseHeader ResponseHeader
 ServerProtocolVersion UInt32
 SecurityToken ChannelSecurityToken
 SecureChannelId UInt32
 TokenId UInt32
 CreatedAt DateTime
 RevisedLifetime Int32
 ServerNonce ByteString

The ClientProtocolVersion and ServerProtocolVersion parameters are not defined in
IEC 62541-4 and are added to the Message to allow backward compatibility if OPC UA-
SecureConversation needs to be updated in the future. Receivers always accept numbers
greater than the latest version that they support. The receiver with the higher version number
is expected to ensure backward compatibility.

If OPC UA-SecureConversation is used with the OPC UA-TCP protocol (see 7.1) then the
version numbers specified in the OpenSecureChannel Messages shall be the same as the
version numbers specified in the OPC UA-TCP protocol Hello/Acknowledge Messages. The
receiver shall close the channel and report a Bad_ProtocolVersionUnsupported error if there
is a mismatch.

BS EN 62541-6:2015

 – 48 – IEC 62541-6:2015 © IEC 2015

The Server shall return an error response as described in IEC 62541-4 if there are any errors
with the parameters specified by the Client.

The RevisedLifetime tells the Client when it shall renew the SecurityToken by sending another
OpenSecureChannel request. The Client shall continue to accept the old SecurityToken until it
receives the OpenSecureChannel response. The Server has to accept requests secured with
the old SecurityToken until that SecurityToken expires or until it receives a Message from the
Client secured with the new SecurityToken. The Server shall reject renew requests if the
SenderCertificate is not the same as the one used to create the SecureChannel or if there is a
problem decrypting or verifying the signature. The Client shall abandon the SecureChannel if
the Certificate used to sign the response is not the same as the Certificate used to encrypt the
request.

The OpenSecureChannel Messages are not signed or encrypted if the SecurityMode is None.
The Nonces are ignored and should be set to null. The SecureChannelId and the TokenId are
still assigned but no security is applied to Messages exchanged via the channel. The
SecurityToken shall still be renewed before the RevisedLifetime expires. Receivers shall still
ignore invalid or expired TokenIds.

If the communication channel breaks the Server shall maintain the Secure Channel long
enough to allow the Client to reconnect. The ReviseLifetime parameter also tells the Client
how long the Server will wait. If the Client cannot reconnect within that period it shall assume
the SecureChannel has been closed.

The AuthenticationToken in the RequestHeader shall be set to null.

If an error occurs after the Server has verified Message security it shall return a ServiceFault
instead of a OpenSecureChannel response. The ServiceFault Message is described in
IEC 62541-4.

If the SecurityMode is not None then the Server shall verify that a SenderCertificate and a
ReceiverCertificateThumbprint were specified in the SecurityHeader.

6.7.5 Deriving keys

Once the SecureChannel is established the Messages are signed and encrypted with keys
derived from the Nonces exchanged in the OpenSecureChannel call. These keys are derived
by passing the Nonces to a pseudo-random function which produces a sequence of bytes
from a set of inputs. A pseudo-random function is represented by the following function
declaration:

Byte[] PRF(
Byte[] secret,
Byte[] seed,
Int32 length,
Int32 offset)

Where length is the number of bytes to return and offset is a number of bytes from the
beginning of the sequence.

The lengths of the keys that need to be generated depend on the SecurityPolicy used for the
channel. The following information is specified by the SecurityPolicy:

a) SigningKeyLength (from the DerivedSignatureKeyLength);
b) EncryptingKeyLength (implied by the SymmetricEncryptionAlgorithm);
c) EncryptingBlockSize (implied by the SymmetricEncryptionAlgorithm).

The parameters passed to the pseudo random function are specified in Table 36.

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 49 –

Table 36 – Cryptography key generation parameters

Key Secret Seed Length Offset
ClientSigningKey ServerNonce ClientNonce SigningKeyLength 0
ClientEncryptingKey ServerNonce ClientNonce EncryptingKeyLength SigningKeyLength
ClientInitializationVector ServerNonce ClientNonce EncryptingBlockSize SigningKeyLength+ EncryptingKeyLength
ServerSigningKey ClientNonce ServerNonce SigningKeyLength 0
ServerEncryptingKey ClientNonce ServerNonce EncryptingKeyLength SigningKeyLength
ServerInitializationVector ClientNonce ServerNonce EncryptingBlockSize SigningKeyLength+ EncryptingKeyLength

The Client keys are used to secure Messages sent by the Client. The Server keys are used to
secure Messages sent by the Server.

The SSL/TLS specification defines a pseudo random function called P_SHA1 which is used
for some SecurityProfiles. The P_SHA1 algorithm is defined as follows:

P_SHA1(secret, seed) = HMAC_SHA1(secret, A(1) + seed) +
 HMAC_SHA1(secret, A(2) + seed) +
 HMAC_SHA1 (secret, A(3) + seed) + ...
Where A(n) is defined as:
 A(0) = seed
 A(n) = HMAC_SHA1(secret, A(n-1))
+ indicates that the results are appended to previous results.

6.7.6 Verifying Message Security

The contents of the MessageChunk shall not be interpreted until the Message is decrypted
and the signature and sequence number verified.

If an error occurs during Message verification the receiver shall close the communication
channel. If the receiver is the Server it shall also send a transport error Message before
closing the channel. Once the channel is closed the Client shall attempt to re-open the
channel and request a new SecurityToken by sending an OpenSecureChannel request. The
mechanism for sending transport errors to the Client depends on the communication channel.

The receiver shall first check the SecureChannelId. This value may be 0 if the Message is an
OpenSecureChannel request. For other Messages it shall report a
Bad_SecureChannelUnknown error if the SecureChannelId is not recognized. If the Message
is an OpenSecureChannel request and the SecureChannelId is not 0 then the
SenderCertificate shall be the same as the SenderCertificate used to create the channel.

If the Message is secured with asymmetric algorithms then the receiver shall verify that it
supports the requested SecurityPolicy. If the Message is the response sent to the Client then
the SecurityPolicy shall be the same as the one specified in the request. In the Server the
SecurityPolicy shall be the same as the one used to originally create the SecureChannel. The
receiver shall check that the Certificate is trusted first and return Bad_CertificateUntrusted on
error. The receiver shall then verify the SenderCertificate using the rules defined in
IEC 62541-4. The receiver shall report the appropriate error if Certificate validation fails. The
receiver shall verify the ReceiverCertificateThumbprint and report a Bad_CertificateUnknown
error if it does not recognize it.

If the Message is secured with symmetric algorithms then a
Bad_SecureChannelTokenUnknown error shall be reported if the TokenId refers to a
SecurityToken that has expired or is not recognized.

If decryption or signature validation fails then a Bad_SecurityChecksFailed error is reported. If
an implementation allows multiple SecurityModes to be used the receiver shall also verify that
the Message was secured properly as required by the SecurityMode specified in the
OpenSecureChannel request.

BS EN 62541-6:2015

 – 50 – IEC 62541-6:2015 © IEC 2015

After the security validation is complete the receiver shall verify the RequestId and the
SequenceNumber. If these checks fail a Bad_SecurityChecksFailed error is reported. The
RequestId only needs to be verified by the Client since only the Client knows if it is valid or
not.

At this point the SecureChannel knows it is dealing with an authenticated Message that was
not tampered with or resent. This means the SecureChannel can return secured error
responses if any further problems are encountered.

Stacks that implement UASC shall have a mechanism to log errors when invalid Messages
are discarded. This mechanism is intended for developers, systems integrators and
administrators to debug network system configuration issues and to detect attacks on the
network.

7 Transport Protocols

7.1 OPC UA TCP

7.1.1 Overview

OPC UA TCP is a simple TCP based protocol that establishes a full duplex channel between a
Client and Server. This protocol has two key features that differentiate it from HTTP. First,
this protocol allows responses to be returned in any order. Second, this protocol allows
responses to be returned on a different TCP transport end-point if communication failures
cause temporary TCP session interruption.

The OPC UA TCP protocol is designed to work with the SecureChannel implemented by a
layer higher in the stack. For this reason, the OPC UA TCP protocol defines its interactions
with the SecureChannel in addition to the wire protocol.

7.1.2 Message structure

Every OPC UA TCP Message has a header with the fields defined in Table 37.

Table 37 – OPC UA TCP Message header

Name Type Description
MessageType Byte[3] A three byte ASCII code that identifies the Message type.

The following values are defined at this time:
 HEL a Hello Message.
 ACK an Acknowledge Message.
 ERR an Error Message.
The SecureChannel layer defines additional values which the OPC UA TCP layer shall accept.

Reserved Byte[1] Ignored. shall be set to the ASCII codes for ‘F’ if the MessageType is one of the values
supported by the OPC UA TCP protocol.

MessageSize UInt32 The length of the Message, in bytes. This value includes the 8 bytes for the Message header.

The layout of the OPC UA TCP Message header is intentionally identical to the first 8 bytes of
the OPC UA Secure Conversation Message header defined in Table 29. This allows the OPC
UA TCP layer to extract the SecureChannel Messages from the incoming stream even if it
does not understand their contents.

The OPC UA TCP layer shall verify the MessageType and make sure the MessageSize is less
than the negotiated ReceiveBufferSize before passing any Message onto the SecureChannel
layer.

The Hello Message has the additional fields shown in Table 38.

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 51 –

Table 38 – OPC UA TCP Hello Message

Name Data Type Description
ProtocolVersion UInt32 The latest version of the OPC UA TCP protocol supported by the Client.

The Server may reject the Client by returning Bad_ProtocolVersionUnsupported.
If the Server accepts the connection is responsible for ensuring that it returns Messages
that conform to this version of the protocol.
The Server shall always accept versions greater than what it supports.

ReceiveBufferSize UInt32 The largest MessageChunk that the sender can receive.
This value shall be greater than 8 192 bytes.

SendBufferSize UInt32 The largest MessageChunk that the sender will send.
This value shall be greater than 8 192 bytes.

MaxMessageSize UInt32 The maximum size for any response Message. The Server shall abort the Message with
a Bad_ResponseTooLarge StatusCode if a response Message exceeds this value.
The mechanism for aborting Messages is described fully in 6.7.3.
The Message size is calculated using the unencrypted Message body.
A value of zero indicates that the Client has no limit.

MaxChunkCount UInt32 The maximum number of chunks in any response Message.
The Server shall abort the Message with a Bad_ResponseTooLarge StatusCode if a
response Message exceeds this value.
The mechanism for aborting Messages is described fully in 6.7.3.
A value of zero indicates that the Client has no limit.

EndpointUrl String The URL of the Endpoint which the Client wished to connect to.
The encoded value shall be less than 4 096 bytes.
Servers shall return a Bad_TcpUrlRejected error and close the connection if the length
exceeds 4 096 or if it does not recognize the resource identified by the URL.

The EndpointUrl parameter is used to allow multiple Servers to share the same port on a
machine. The process listening (also known as the proxy) on the port would connect to the
Server identified by the EndpointUrl and would forward all Messages to the Server via this
socket. If one socket closes then the proxy shall close the other socket.

The Acknowledge Message has the additional fields shown in Table 39.

Table 39 – OPC UA TCP Acknowledge Message

Name Type Description
ProtocolVersion UInt32 The latest version of the OPC UA TCP protocol supported by the Server.

If the Client accepts the connection is responsible for ensuring that it sends Messages
that conform to this version of the protocol.
The Client shall always accept versions greater than what it supports.

ReceiveBufferSize UInt32 The largest MessageChunk that the sender can receive.
This value shall not be larger than what the Client requested in the Hello Message.
This value shall be greater than 8 192 bytes.

SendBufferSize UInt32 The largest MessageChunk that the sender will send.
This value shall not be larger than what the Client requested in the Hello Message.
This value shall be greater than 8 192 bytes.

MaxMessageSize UInt32 The maximum size for any request Message. The Client shall abort the Message with a
Bad_RequestTooLarge StatusCode if a request Message exceeds this value.
The mechanism for aborting Messages is described fully in 6.7.3.
The Message size is calculated using the unencrypted Message body.
A value of zero indicates that the Server has no limit.

MaxChunkCount UInt32 The maximum number of chunks in any request Message.
The Client shall abort the Message with a Bad_RequestTooLarge StatusCode if a
request Message exceeds this value.
The mechanism for aborting Messages is described fully in 6.7.3.
A value of zero indicates that the Server has no limit.

The Error Message has the additional fields shown in Table 40.

BS EN 62541-6:2015

 – 52 – IEC 62541-6:2015 © IEC 2015

Table 40 – OPC UA TCP Error Message

Name Type Description
Error UInt32 The numeric code for the error.

This shall be one of the values listed in Table 41.
Reason String A more verbose description of the error.

This string shall not be more than 4 096 characters.
A Client shall ignore strings that are longer than this.

Figure 14 illustrates the structure of a Message placed on the wire. This includes also
illustrates how the Message elements defined by the OPC UA Binary Encoding mapping (see
5.2) and the OPC UA Secure Conversation mapping (see 6.7) relate to the OPC UA TCP
Messages.

The socket is always closed gracefully by the Server after it sends an Error Message.

Figure 14 – OPC UA TCP Message structure

7.1.3 Establishing a connection

Connections are always initiated by the Client which creates the socket before it sends the
first OpenSecureChannel request. After creating the socket the first Message sent shall be a
Hello which specifies the buffer sizes that the Client supports. The Server shall respond with
an Acknowledge Message which completes the buffer negotiation. The negotiated buffer size
shall be reported to the SecureChannel layer. The negotiated SendBufferSize specifies the
size of the MessageChunks to use for Messages sent over the connection.

The Hello/Acknowledge Messages may only be sent once. If they are received again the
receiver shall report an error and close the socket. Servers shall close any socket after a
period of time if it does not receive a Hello Message. This period of time shall be configurable
and have a default value which does not exceed two minutes.

The Client sends the OpenSecureChannel request once it receives the Acknowledge back
from the Server. If the Server accepts the new channel it shall associate the socket with the
SecureChannelId. The Server uses this association to determine which socket to use when it
has to send a response to the Client. The Client does the same when it receives the
OpenSecureChannel response.

The sequence of Messages when establishing a OPC UA TCP connection are shown in
Figure 15.

Chunk 1 Chunk 2 Chunk 3

ExtensionObject Prefix
Message Header (Intermediate Chunk)
Message Header (Final Chunk)
Security Header

Message Signature
Padding

Encrypted Data
Signed Data

Chunk 1

Chunk 2

Chunk 3

Message

Sequence Header

IEC

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 53 –

Figure 15 – Establishing a OPC UA TCP connection

The Server Application does not do any processing while the SecureChannel is negotiated;
however, the Server Application shall to provide the Stack with the list of trusted Certificates.
The Stack shall provide notifications to the Server Application whenever it receives an
OpenSecureChannel request. These notifications shall include the OpenSecureChannel or
Error response returned to the Client.

7.1.4 Closing a connection

The Client closes the connection by sending a CloseSecureChannel request and closing the
socket gracefully. When the Server receives this Message it shall release all resources
allocated for the channel. The Server does not send a CloseSecureChannel response.

If security verification fails for the CloseSecureChannel Message then the Server shall report
the error and close the socket. The Server shall allow the Client to attempt to reconnect.

The sequence of Messages when closing an OPC UA TCP connection is shown in Figure 16.

Figure 16 – Closing a OPC UA TCP connection

The Server Application does not do any processing when the SecureChannel is closed;
however, the Stack shall provide notifications to the Server Application whenever a
CloseSecureChannel request is received or when the Stack cleans up an abandoned
SecureChannel.

Close Secure Channel Request

Client Secure Channel TCP TCP Secure Channel Server

Close Socket

IEC

Hello

Open Secure Channel Request

Create Session

Client Secure Channel TCP TCP Secure Channel Server

Acknowledge

Open Secure Channel Response

Open Socket

IEC

BS EN 62541-6:2015

 – 54 – IEC 62541-6:2015 © IEC 2015

7.1.5 Error handling

When a fatal error occurs the Server shall send an Error Message to the Client and close the
socket. When a Client encounters one of these errors, it shall also close the socket but does
not send an Error Message. After the socket is closed a Client shall try to reconnect
automatically using the mechanisms described in 7.1.6.

The possible OPC UA TCP errors are defined in Table 41.

Table 41 – OPC UA TCP error codes

Name Description
TcpServerTooBusy The Server cannot process the request because it is too busy.

It is up to the Server to determine when it needs to return this Message.
A Server can control the how frequently a Client reconnects by waiting to return this error.

TcpMessageTypeInvalid The type of the Message specified in the header invalid.
Each Message starts with a 4 byte sequence of ASCII values that identifies the Message
type.
The Server returns this error if the Message type is not accepted.
Some of the Message types are defined by the SecureChannel layer.

TcpSecureChannelUnknown The SecureChannelId and/or TokenId are not currently in use.
This error is reported by the SecureChannel layer.

TcpMessageTooLarge The size of the Message specified in the header is too large.
The Server returns this error if the Message size exceeds its maximum buffer size or the
receive buffer size negotiated during the Hello/Acknowledge exchange.

TcpTimeout A timeout occurred while accessing a resource.
It is up to the Server to determine when a timeout occurs.

TcpNotEnoughResources There are not enough resources to process the request.
The Server returns this error when it runs out of memory or encounters similar resource
problems.
A Server can control the how frequently a Client reconnects by waiting to return this error.

TcpInternalError An internal error occurred.
This should only be returned if an unexpected configuration or programming error occurs.

TcpUrlRejected The Server does not recognize the EndpointUrl specified.
SecurityChecksFailed The Message was rejected because it could not be verified.
RequestInterrupted The request could not be sent because of a network interruption.
RequestTimeout Timeout occurred while processing the request.
SecureChannelClosed The secure channel has been closed.
SecureChannelTokenUnknown The SecurityToken has expired or is not recognized.
CertificateUntrusted The sender Certificate is not trusted by the receiver.
CertificateTimeInvalid The sender Certificate has expired or is not yet valid.
CertificateIssuerTimeInvalid The issuer for the sender Certificate has expired or is not yet valid.
CertificateUseNotAllowed The sender’s Certificate may not be used for establishing a secure channel.
CertificateIssuerUseNotAllowed The issuer Certificate may not be used as a Certificate Authority.
CertificateRevocationUnknown Could not verify the revocation status of the sender’s Certificate.
CertificateIssuerRevocationUnknown Could not verify the revocation status of the issuer Certificate.
CertificateRevoked The sender Certificate has been revoked by the issuer.
IssuerCertificateRevoked The issuer Certificate has been revoked by its issuer.
CertificateUnknown The receiver Certificate thumbprint is not recognized by the receiver.

The numeric values for these error codes are defined in A.2.

7.1.6 Error recovery

Once the SecureChannel has been established, the Client shall go into an error recovery
state whenever the socket breaks or if the Server returns an OPC UA TCP Error Message as
defined in Table 40. While in this state the Client periodically attempts to reconnect to the
Server. If the reconnect succeeds the Client sends a Hello followed by an
OpenSecureChannel request (see 6.7.4) that re-authenticates the Client and associates the
new socket with the existing SecureChannel.

The Client shall wait between reconnect attempts. The first reconnect shall happen
immediately. After that, the wait period should start as 1 second and increase gradually to a
maximum of 2 minutes. One sequence would double the period each attempt until reaching

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 55 –

the maximum. In other words, the Client would use the following wait periods: { 0, 1, 2, 4, 8,
16, 32, 64, 120, 120, …}. The Client shall keep attempting to reconnect until the
SecureChannel is closed or after the period equal to the RevisedLifetime of the last
SecurityToken elapses.

The Stack in the Server should not discard responses if there is no connection immediately
available. It should wait and see if the Client creates a new socket. It is up to the Server stack
implementation to decide how long it will wait and how many responses it is willing to hold
onto.

The Stack in the Client shall not fail requests that have already been sent and are waiting for
a response when the socket is closed. However, these requests may timeout and report a
Bad_TcpRequestTimeout error to the Application. If the Client sends a new request the stack
shall either buffer the request or return a Bad_TcpRequestInterrupted error. The Client can
stop the reconnect process by closing the SecureChannel.

The Server may abandon the SecureChannel before a Client is able to reconnect. If this
happens the Client will get a Bad_TcpSecureChannelUnknown error in response to the
OpenSecureChannel request. The Stack shall return this error to the Application that can
attempt to create a new SecureChannel.

The negotiated buffer sizes should never change when a connection is recovered; however,
the buffer sizes are negotiated before the Server knows whether the socket is being used for
an existing SecureChannel or a new one. A Client shall treat this as a fatal error, close the
SecureChannel and returns an Bad_TcpSecureChannelClosed error to the Application.

The sequence of Messages when recovering an OPC UA TCP connection is shown in
Figure 17.

Figure 17 – Recovering an OPC UA TCP connection

Hello/Acknowledge

Open Secure Channel

Create Session

Hello/Acknowledge

Publish 2

Close Secure Channel

Client Secure Channel TCP TCP Secure Channel Server

Close Session

Open Secure Channel

Error
Error

Publish 1

Publish 1 (Response)

Close Socket

IEC

BS EN 62541-6:2015

 – 56 – IEC 62541-6:2015 © IEC 2015

7.2 SOAP/HTTP

7.2.1 Overview

SOAP describes an XML based syntax for exchanging Messages between Applications. OPC
UA Messages are exchanged using SOAP by serializing the OPC UA Messages using one of
the supported encodings described in Clause 5 and inserting that encoded Message into the
body of the SOAP Message.

All OPC UA Applications that support the SOAP/HTTP transport shall support SOAP 1.2 as
described in SOAP Part 1.

All OPC UA Messages are exchanged using the request-response Message exchange pattern
defined in SOAP Part 2 even if the OPC UA service does not specify any output parameters.
In these cases, the Server shall return an empty response Message that tells the Client that
no errors occurred.

WS-I Basic Profile 1.1 defines best practices when using SOAP Messages which will help
ensure interoperability. All OPC UA implementations shall conform to this specification.

HTTP is the network communication protocol used to exchange SOAP Messages. An OPC UA
service request Message is always sent by the Client in the body of an HTTP POST request.
The Server returns an OPC UA response Message in the body of the HTTP response. The
HTTP binding for SOAP is described completely in SOAP Part 2.

OPC UA does not define any SOAP headers; however, SOAP Messages containing OPC UA
Messages will include headers used by the other WS specifications in the stack.

SOAP faults are returned only for errors that occurred with in the SOAP stack. Errors that
occur within in the Application are returned as OPC UA error response Messages as
described in IEC 62541-4.

WS Addressing defines standard headers used to route SOAP Messages through
intermediaries. Implementations shall support the WS-Addressing headers listed Table 42.

Table 42 – WS-Addressing headers

Header Request Response
wsa:To Required Optional
wsa:From Optional Optional
wsa:ReplyTo Required Not Used
wsa:Action Required Required
wsa:MessageID Required Optional
wsa:RelatesTo Not Used Required

Note that WS-Addressing defines standard URIs to use in the ReplyTo and From headers
when a Client does not have an externally accessible endpoint. In these cases, the SOAP
response is always returned to the Client using the same communication channel that sent the
request.

OPC UA Servers shall ignore the wsa:FaultTo header if it is specified in a request.

7.2.2 XML Encoding

The OPC UA XML Encoding specifies a way to represent an OPC UA Message as an XML
element. This element is added to the SOAP Message as the only child of the SOAP body
element.

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 57 –

If an error occurs in the Server while parsing the request body, the Server may return a SOAP
fault or it may return an OPC UA error response.

The SOAP Action associated with an XML encoded request Message always has the form:

http://opcfoundation.org/UA/2008/02/Services.wsdl/<service name>

Where <service name> is the name of the OPC UA Service being invoked.

The SOAP Action associated with an XML encoded response Message always has the form:

http://opcfoundation.org/UA/2008/02/Services.wsdl/<service name>Response

7.2.3 OPC UA Binary Encoding

The OPC UA Binary Encoding specifies a way to represent an OPC UA Message as a
sequence of bytes. These bytes sequences shall be encoded in the SOAP body using the
Base64 data format.

The Base64 data format is a UTF-7 representation of binary data that is less efficient than raw
binary data, however, many OPC UA Applications that exchange Messages using SOAP will
find that encoding OPC UA Messages in OPC UA Binary and then encoding the binary in
Base64 is more efficient than encoding everything in XML.

The WSDL definition for a OPC UA Binary encoded request Message is:

<xs:element name="InvokeServiceRequest" type="xs:base64Binary" nillable="true" />

<wsdl:message name="InvokeServiceMessage">
 <wsdl:part name="input" element="s0:InvokeServiceRequest"/>
</wsdl:message>

The SOAP Action associated with an OPC UA Binary encoded request Message always has
the form:

http://opcfoundation.org/UA/2008/02/Services.wsdl/InvokeService

The WSDL definition for an OPC UA Binary encoded response Message is:

<xs:element name="InvokeServiceResponse" type="xs:base64Binary" nillable="true" />

<wsdl:message name="InvokeServiceResponseMessage">
 <wsdl:part name="output" element="s0:InvokeServiceResponse"/>
</wsdl:message>

The SOAP Action associated with an OPC UA Binary encoded response Message always has
the form:

http://opcfoundation.org/UA/2008/02/Services.wsdl/ InvokeServiceResponse

7.3 HTTPS

7.3.1 Overview

HTTPS refers HTTP Messages exchanged over a SSL/TLS connection. The syntax of the
HTTP Messages does not change and the only difference is a TLS connection is created
instead of a TCP/IP connection. This implies this that profiles which use this transport can
also be used with HTTP when security is not a concern.

BS EN 62541-6:2015

http://opcfoundation.org/UA/InvokeServiceResponse

 – 58 – IEC 62541-6:2015 © IEC 2015

HTTPS is a protocol that provides transport security. This means all bytes are secured as
they are sent without considering the Message boundaries. Transport security can only work
for point to point communication and does not allow untrusted intermediaries or proxy servers
to handle traffic.

The SecurityPolicy shall be specified, however, it only affects the algorithms used for signing
the Nonces during the CreateSession/ActivateSession handshake. A SecurityPolicy of None
indicates that the Nonces do not need to be signed. The SecurityMode is set to Sign unless
the SecurityPolicy is None; in this case the SecurityMode shall be set to None. If a
UserIdentityToken is to be encrypted it shall be explicitly specified in the UserTokenPolicy.

An HTTP Header called ‘OPCUA-SecurityPolicy’ is used by the Client to tell the Server what
SecurityPolicy it is using if there are multiple choices available. The value of the header is the
URI for the SecurityPolicy. If the Client omits the header then the Server shall assume a
SecurityPolicy of None.

All HTTPS communications via a URL shall be treated as a single SecureChannel that is
shared by multiple Clients. Stacks shall provide a unique identifier for the SecureChannel
which allows Applications correlate a request with a SecureChannel.This means that Sessions
can only be considered secure if the AuthenticationToken (see IEC 62541-4) is long (>20
bytes) and HTTPS encryption is enabled.

The crypography algorithms used by HTTPS have no relationship to the EndpointDescription
SecurityPolicy and are determined by the policies set for HTTPS and are outside the scope of
OPC UA.

Figure 18 illustrates a few scenarios where the HTTPS transport could be used.

Figure 18 – Scenarios for the HTTPS Transport

In some scenarios, HTTPS communication will rely on an intermediary which is not trusted by
the applications. If this is the case then the HTTPS transport cannot be used to ensure
security and the applications will have to establish a secure tunnel like a VPN before
attempting any OPC UA related communication.

Applications which support the HTTPS transport shall support HTTP 1.1 and SSL/TLS 1.0.

Some HTTPS implementations require that all Servers have a Certificate with a Common
Name (CN) that matches the DNS name of the Server machine. This means that a Server with
multiple DNS names will need multiple HTTPS certificates. If multiple Servers are on the

Web
Server

UA Client UA Server
Direct Connection

Web
Browser

Proxy
Server

UA Server

HTTPS

UA TCPHTTPS

Browser Based Client (e.g. Silverlight)
via Web Server Proxy

UA ServerUA Client

Normal Client via HTTPS Proxy Server

HTTPSHTTPS
IEC

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 59 –

same machine they may share HTTPS certificates. This means that ApplicationCertificates
are not the same as HTTPS Certificates. Applications which use the HTTPS transport and
require Application authentication shall check Application Certificates during the
CreateSession/ActivateSession handshake.

HTTPS Certificates can be automatically generated; however, this will cause problems for
Clients operating inside a restricted environment such as a web browser. Therefore, HTTPS
certificates should be issued by an authority which is accepted by all web browsers which
need to access the Server. The set of Certificate authorities accepted by the web browsers is
determined by the organization that manages the Client machines. Client applications that are
not running inside a web may use the trust list that is used for Application Certificates.

HTTPS connections have an unpredictable lifetime. Therefore, Servers must rely on the
AuthenticationToken passed in the RequestHeader to determine the identity of the Client. This
means the AuthenticationToken shall be a randomly generated value with at least 32 bytes of
data and HTTPS with signing and encryption shall always be used.

HTTPS allows Clients to have certificates; however, they are not required by the HTTPS
transport. A Server shall allow Clients to connect without an HTTPS Certificate.

HTTP 1.1 supports Message chunking where the Content-Length header in the request
response is set to “chunked” and each chunk is prefixed by its size in bytes. All applications
that support the HTTPS transport shall supporting HTTP chunking.

7.3.2 XML Encoding

This TransportProfile implements the OPC UA Services using a SOAP request-response
message pattern over an HTTPS connection.

The body of the HTTP Messages shall be a SOAP 1.2 Message (see SOAP Part 1). WS-
Addressing headers are optional.The contents of the SOAP body and the SOAP action are the
same as specified in 7.2.2 and 7.2.3.

All requests shall be HTTP POST requests. The Content-type shall be "application/soap+xml"
and the charset and action parameters shall be specified. The charset parameter shall be "utf-
8" and the action parameter shall be the URI for the SOAP action.

An example HTTP request header is:

POST /UA/SampleServer HTTP/1.1
Content-Type: application/soap+xml; charset="utf-8";
 action="http://opcfoundation.org/UA/2008/02/Services.wsdl/Read"
Content-Length: nnnn

The action parameter appears on the same line as the Content-Type declaration.

An example request Message (see 7.2.3):

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope">
 <s:Body>
 <ReadRequest xmlns="http://opcfoundation.org/UA/2008/02/Types.xsd">
 …
 </ReadRequest>
 </s:Body>
</s:Envelope>

An example HTTP response header is:

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset="utf-8";

BS EN 62541-6:2015

 – 60 – IEC 62541-6:2015 © IEC 2015

 action="http://opcfoundation.org/UA/2008/02/Services.wsdl/ReadResponse"
Content-Length: nnnn

The action parameter appears on the same line as the Content-Type declaration.

An example response Message:

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope">
 <s:Body>
 <ReadResponse xmlns="http://opcfoundation.org/UA/2008/02/Types.xsd">
 …
 </ReadResponse>
 </s:Body>
</s:Envelope>

7.3.3 OPC UA Binary Encoding

This TransportProfile implements the OPC UA Services using an OPC UA Binary encoded
Messages exchanged over an HTTPS connection.

Applications which support the HTTPS Profile shall support HTTP 1.1.

The body of the HTTP Messages shall be OPC UA Binary encoded blob. The Content-type
shall be "application/octet-stream".

An example HTTP request header is:

POST /UA/SampleServer HTTP/1.1
Content-Type: application/octet-stream;
Content-Length: nnnn

An example HTTP response header is:

HTTP/1.1 200 OK
Content-Type: application/octet-stream;
Content-Length: nnnn

The Message body is the request or response structure encoded as an ExtensionObject in
OPC UA Binary.

7.4 Well known addresses

The Local Discovery Server (LDS) is an OPC UA Server that implements the Discovery
Service Set defined in IEC 62541-4. If an LDS is installed on a machine it shall use one or
more of the well-known addresses defined in Table 43.

Table 43 – Well known addresses for Local Discovery Servers

Transport Mapping URL Notes
SOAP/HTTP http://localhost/UADiscovery May require integration with a web Server like IIS.
SOAP/HTTP http://localhost:52601/UADiscovery Alternate if it Port 80 cannot be used by the LDS.
OPC UA TCP opc.tcp://localhost:4840/UADiscovery
OPC UA HTTPS https:// localhost:4843/UADiscovery

OPC UA Applications that make use of the LDS shall allow administrators to change the well
known addresses used within a system.

The Endpoint used by Servers to register with the LDS shall be the base address with the
path “/registration” appended to it (e.g. http://localhost/UADiscovery/registration). OPC UA
Servers shall allow administrators to configure the address to use for registration.

BS EN 62541-6:2015

http://localhost/UADiscovery/registration

IEC 62541-6:2015 © IEC 2015 – 61 –

Each OPC UA Server Application implements the Discovery Service Set. If the OPC UA
Server requires a different address for this Endpoint it shall create the address by appending
the path “/discovery” to its base address.

8 Normative Contracts

8.1 OPC Binary Schema

The normative contract for the OPC UA Binary encoded Messages is an OPC Binary Schema.
This file defines the structure of all types and Messages. The syntax for an OPC Binary Type
Schema is described in IEC 62541-3. This schema captures normative names for types and
their fields as well the order the fields appear when encoded. The data type of each field is
also captured.

8.2 XML Schema and WSDL

The normative contract for the OPC UA XML encoded Messages is an XML Schema. This file
defines the structure of all types and Messages. This schema captures normative names for
types and their fields as well the order the fields appear when encoded. The data type of each
field is also captured.

The normative contract for Message sent via the SOAP/HTTP TransportProtocol is a WSDL
that includes XML Schema for the OPC UA XML encoded Messages. It also defines the port
types for OPC UA Servers and DiscoveryServers.

Links to the WSDL and XML Schema files can be found in Annex D.

BS EN 62541-6:2015

 – 62 – IEC 62541-6:2015 © IEC 2015

Annex A
(normative)

Constants

A.1 Attribute Ids

Table A.1 – Identifiers assigned to Attributes

Attribute Identifier
NodeId 1
NodeClass 2
BrowseName 3
DisplayName 4
Description 5
WriteMask 6
UserWriteMask 7
IsAbstract 8
Symmetric 9
InverseName 10
ContainsNoLoops 11
EventNotifier 12
Value 13
DataType 14
ValueRank 15
ArrayDimensions 16
AccessLevel 17
UserAccessLevel 18
MinimumSamplingInterval 19
Historizing 20
Executable 21
UserExecutable 22

A.2 Status Codes

This annex defines the numeric identifiers for all of the StatusCodes defined by the OPC UA
Specification. The identifiers are specified in a CSV file with the following syntax:

<SymbolName>, <Code>, <Description>

Where the SymbolName is the literal name for the error code that appears in the specification
and the Code is the hexadecimal value for the StatusCode (see IEC 62541-4). The severity
associated with a particular code is specified by the prefix (Good, Uncertain or Bad).

The CSV released with this version of the standards can be found here:

http://www.opcfoundation.org/UA/schemas/1.02/StatusCode.csv

NOTE The latest CSV that is compatible with this version of the standard can be found here:

http://www.opcfoundation.org/UA/schemas/StatusCode.csv

A.3 Numeric Node Ids

This annex defines the numeric identifiers for all of the numeric NodeIds defined by the OPC
UA Specification. The identifiers are specified in a CSV file with the following syntax:

<SymbolName>, <Identifier>, <NodeClass>

BS EN 62541-6:2015

http://www.opcfoundation.org/UA/schemas/1.02/StatusCode.csv
http://www.opcfoundation.org/UA/schemas/StatusCode.csv

IEC 62541-6:2015 © IEC 2015 – 63 –

Where the SymbolName is either the BrowseName of a Type Node or the BrowsePath for an
Instance Node that appears in the specification and the Identifier is numeric value for the
NodeId.

The BrowsePath for an instance Node is constructed by appending the BrowseName of the
instance Node to BrowseName for the containing instance or type. A ‘_’ character is used to
separate each BrowseName in the path. For example, IEC 62541-5 defines the ServerType
ObjectType Node which has the NamespaceArray Property. The SymbolName for the
NamespaceArray InstanceDeclaration within the ServerType declaration is:
ServerType_NamespaceArray. IEC 62541-5 also defines a standard instance of the
ServerType ObjectType with the BrowseName ‘Server’. The BrowseName for the
NamespaceArray Property of the standard Server Object is: Server_NamespaceArray.

The NamespaceUri for all NodeIds defined here is http://opcfoundation.org/UA/

The CSV released with this version of the standards can be found here:

http://www.opcfoundation.org/UA/schemas/1.02/NodeIds.csv

NOTE The latest CSV that is compatible with this version of the standard can be found here:

http://www.opcfoundation.org/UA/schemas/NodeIds.csv

BS EN 62541-6:2015

http://opcfoundation.org/UA/
http://www.opcfoundation.org/UA/schemas/1.02/NodeIds.csv
http://www.opcfoundation.org/UA/schemas/NodeIds.csv

 – 64 – IEC 62541-6:2015 © IEC 2015

Annex B
(normative)

OPC UA Nodeset

The OPC UA NodeSet includes the complete Information Model defined in this standard. It
follows the XML Information Model schema syntax defined in Annex F and can thus be read
and processed by a computer program.

The Information Model Schema released with this version of the standard can be found here:

http://www.opcfoundation.org/UA/schemas/1.02/Opc.Ua.NodeSet2.xml

NOTE The latest Information Model schema that is compatible with this version of the standard can be found
here:

http://www.opcfoundation.org/UA/schemas/Opc.Ua.NodeSet2.xml

BS EN 62541-6:2015

http://www.opcfoundation.org/UA/schemas/1.02/Opc.Ua.NodeSet2.xml
http://www.opcfoundation.org/UA/schemas/1.02/Opc.Ua.NodeSet2.xml

IEC 62541-6:2015 © IEC 2015 – 65 –

Annex C
(normative)

Type declarations for the OPC UA native Mapping

This Annex defines the OPC UA Binary encoding for all DataTypes and Messages defined in
this standard. The schema used to describe the type is defined in IEC 62541-3.

The OPC UA Binary Schema released with this version of the standards can be found here:

http://www.opcfoundation.org/UA/schemas/1.02/Opc.Ua.Types.bsd.xml

NOTE The latest file that is compatible with this version of the standards can be found here:

http://www.opcfoundation.org/UA/schemas/Opc.Ua.Types.bsd.xml

BS EN 62541-6:2015

http://www.opcfoundation.org/UA/schemas/1.02/Opc.Ua.Types.bsd.xml
http://www.opcfoundation.org/UA/schemas/Opc.Ua.Types.bsd.xml

 – 66 – IEC 62541-6:2015 © IEC 2015

Annex D
(normative)

WSDL for the XML Mapping

D.1 XML Schema

This annex defines the XML Schema for all DataTypes and Messages defined in this series of
OPC UA standards.

The XML Schema released with this version of the standards can be found here:

http://www.opcfoundation.org/UA/schemas/1.02/Opc.Ua.Types.xsd

NOTE The latest file that is compatible with this version of the standards can be found here:

http://www.opcfoundation.org/UA/2008/02/Types.xsd

D.2 WDSL Port Types

This annex defines the WSDL Operations and Port Types for all Services defined in
IEC 62541-4.

The WSDL released with this version of the standards can be found here:

http://www.opcfoundation.org/UA/schemas/1.02/Opc.Ua.Services.wsdl

NOTE The latest file that is compatible with this version of the standards can be found here:

http://opcfoundation.org/UA/2008/02/Services.wsdl

This WSDL imports the XML Schema defined in D.1.

D.3 WSDL Bindings

This annex defines the WSDL Bindings for all Services defined in IEC 62541-4.

The WSDL released with this version of the standards can be found here:

http://www.opcfoundation.org/UA/schemas/1.02/Opc.Ua.Endpoints.wsdl

NOTE The latest file that is compatible with this version of the standards can be found here:

http://opcfoundation.org/UA/2008/02/Endpoints.wsdl

This WSDL imports the WSDL defined in D.2.

BS EN 62541-6:2015

http://www.opcfoundation.org/UA/schemas/1.02/Opc.Ua.Types.xsd
http://www.opcfoundation.org/UA/2008/02/Types.xsd
http://www.opcfoundation.org/UA/schemas/1.02/Opc.Ua.Services.wsdl
http://opcfoundation.org/UA/2008/02/Services.wsdl
http://www.opcfoundation.org/UA/schemas/1.02/Opc.Ua.Endpoints.wsdl
http://opcfoundation.org/UA/2008/02/Endpoints.wsdl

IEC 62541-6:2015 © IEC 2015 – 67 –

Annex E
(normative)

Security settings management

E.1 Overview

All OPC UA applications shall support security; however, this requirement means that
Administrators need to configure the security settings for the OPC UA Application. This
appendix describes an XML Schema which can be used to read and update the security
settings for a OPC UA Application. All OPC UA applications may support configuration by
importing/exporting documents that conform to the schema (called the SecuredApplication
schema) defined in this Annex.

The XML Schema released with this version of the standards can be found here:

http://www.opcfoundation.org/UA/schemas/1.02/SecuredApplication.xsd

NOTE The latest file that is compatible with this version of this specification can be found here:

http://opcfoundation.org/UA/2011/03/SecuredApplication.xsd

The SecuredApplication schema can be supported in two ways:

1) Providing an XML configuration file that can be edited directly;
2) Providing a import/export utility that can be run as required;

If the Application supports direct editing of an XML configuration file then that file shall have
exactly one element with the local name ‘SecuredApplication’ and URI equal to the
SecuredApplication schema URI. A third party configuration utility shall be able to parse the
XML file, read and update the ‘SecuredApplication’ element. The administrator shall ensure
that only authorized administrators can update this file. The following is an example of a
configuration that can be directly edited:

<s1:SampleConfiguration xmlns:s1="http://acme.com/UA/Sample/Configuration.xsd">
 <ApplicationName>ACME UA Server</ApplicationName>
 <ApplicationUri>urn:myfactory.com:Machine54:ACME UA Server</ApplicationUri>

 <!-- any number of application specific elements -->

 <SecuredApplication xmlns="http://opcfoundation.org/UA/2011/03/SecuredApplication.xsd">
 <ApplicationName>ACME UA Server</ApplicationName>
 <ApplicationUri>urn:myfactory.com:Machine54:ACME UA Server</ApplicationUri>
 <ApplicationType>Server_0</ApplicationType>
 <ApplicationCertificate>
 <StoreType>Windows</StoreType>
 <StorePath>LocalMachine\My</StorePath>
 <SubjectName>ACME UA Server</SubjectName>
 </ApplicationCertificate>
 </SecuredApplication>

 <!-- any number of application specific elements -->

 <DisableHiResClock>true</DisableHiResClock>
</s1:SampleConfiguration>

If an Application provides an import/export utility then the import/export file shall be a
document that conforms to the SecuredApplication schema. The administrator shall ensure
that only authorized administrators can run the utility. The following is an example of a file
used by an import/export utility:

<?xml version="1.0" encoding="utf-8" ?>
<SecuredApplication xmlns="http://opcfoundation.org/UA/2011/03/SecuredApplication.xsd">
 <ApplicationName>ACME UA Server</ApplicationName>

BS EN 62541-6:2015

http://www.opcfoundation.org/UA/schemas/1.02/SecuredApplication.xsd
http://opcfoundation.org/UA/2011/03/SecuredApplication.xsd

 – 68 – IEC 62541-6:2015 © IEC 2015

 <ApplicationUri>urn:myfactory.com:Machine54:ACME UA Server</ApplicationUri>
 <ApplicationType>Server_0</ApplicationType>
 <ConfigurationMode>urn:acme.com:ACME Configuration Tool</ConfigurationMode>
 <LastExportTime>2011-03-04T13:34:12Z</LastExportTime>
 <ExecutableFile>%ProgramFiles%\ACME\Bin\ACME UA Server.exe</ExecutableFile>
 <ApplicationCertificate>
 <StoreType>Windows</StoreType>
 <StorePath>LocalMachine\My</StorePath>
 <SubjectName>ACME UA Server</SubjectName>
 </ApplicationCertificate>
 <TrustedCertificateStore>
 <StoreType>Windows</StoreType>
 <StorePath>LocalMachine\UA Applications</StorePath>
 <!-- Offline CRL Checks by Default -->
 <ValidationOptions>16</ValidationOptions>
 </TrustedCertificateStore>
 <TrustedCertificates>
 <Certificates>
 <CertificateIdentifier>
 <SubjectName>CN=MyFactory CA</SubjectName>
 <!-- Online CRL Check for this CA -->
 <ValidationOptions>32</ValidationOptions>
 </CertificateIdentifier>
 </Certificates>
 </TrustedCertificates>
 <RejectedCertificatesStore>
 <StoreType>Directory</StoreType>
 <StorePath>%CommonApplicationData%\OPC Foundation\RejectedCertificates</StorePath>
 </RejectedCertificatesStore>
</SecuredApplication>

E.2 SecuredApplication

The SecuredApplication element specifies the security settings for an Application. The
elements contained in a SecuredApplication are described in Table E.1.

When an instance of a SecuredApplication is imported into an Application the Application
updates its configuration based on the information contained within it. If unrecoverable errors
occur during import an Application shall not make any changes to its configuration and report
the reason for the error.

The mechanism used to import or export the configuration depends on the Application.
Applications shall ensure that only authorized users are able to access this feature.

The SecuredApplication element may reference X509 Certificates which are contained in
physical stores. Each Application needs to decide whether it uses shared physical stores
which the administrator can control directly by changing the location or private stores that can
only be accessed via the import/export utility. If the Application uses private stores then the
contents of these private stores shall be copied to the export file during export. If the import
file references shared physical stores then the import/export utility shall copy the contents of
those stores to the private stores.

The import/export utility shall not export private keys. If the administrator wishes to assign a
new public-private key to the Application the administrator shall place the private in a store
where it can be accessed by the import/export utility. The import/export utility is then
responsible for ensuring it is securely moved to a location where the Application can access
it.

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 69 –

Table E.1 – SecuredApplication

Element Type Description
ApplicationName String A human readable name for the Application.

Applications shall allow this value to be read or changed.
ApplicationUri String A globally unique identifier for the instance of the Application.

Applications shall allow this value to be read or changed.
ApplicationType ApplicationType The type of Application.

May be one of
• Server_0;
• Client_1;
• ClientAndServer_2;
• DiscoveryServer_3;

Application shall provide this value.
Applications do not allow this value to be changed.

ProductName String A name for the product.
Application shall provide this value.
Applications do not allow this value to be changed.

ConfigurationMode String Indicates how the Application should be configured.
An empty or missing value indicates that the configuration file can be
edited directly. The location of the configuration file shall be provided in
this case.
Any other value is a URI that identifies the configuration utility. The
vendor documentation shall explain how to use this utility.
Application shall provide this value.
Applications do not allow this value to be changed.

LastExportTime UtcTime When the configuration was exported by the import/export utility.
It may be omitted if Applications allow direct editing of the security
configuration.

ConfigurationFile String The full path to a configuration file used by the Application.
Applications do nor provide this value if a import/export utility is used.
Applications do not allow this value to be changed.
Permissions set on this file shall control who has rights to change the
configuration of the Application.

ExecutableFile String The full path to an executable file for the Application.
Applications may not provide this value.
Applications do not allow this value to be changed.
Permissions set on this file shall control who has rights to launch the
Application.

ApplicationCertificate CertificateIdentifier The identifier for the ApplicationInstance Certificate.
Applications shall allow this value to be read or changed.
This identifier may reference a Certificate store that contains the private
key. If the private key is not accessible to outside applications this
value shall contain the X509 Certificate for the Application.
If the configuration utility assigns a new private key this value shall
reference the store where the private key is placed. The import/export
utility may delete this private key if it moves it to a secure location
accessible to the Application.
Applications shall allow Administrators to enter the password required
to access the private key during the import operation. The exact
mechanism depends on the Application.
Applications shall report an error if the ApplicationCertificate is not
valid.

BS EN 62541-6:2015

 – 70 – IEC 62541-6:2015 © IEC 2015

Element Type Description
TrustedCertificateStore CertificateStore

Identifier
The location of the CertificateStore containing the Certificates of
Applications or Certificate Authorities (CAs) which can be trusted.
Applications shall allow this value to be read or changed.
This value shall be a reference to a physical store which can be
managed separately from the Application. Applications that support
shared physical stores shall check this store for changes whenever
they validate a Certificate.
The Administrator is responsible for verifying the signature on all
Certificates placed in this store. This means the Application may trust
Certificates in this store even if they cannot be verified back to a trusted
root.
Administrators shall place any CA certificates used to verify the
signature in the UntrustedIssuerStore or the UntrustedIssuerList. This
will allow applications to properly verify the signatures.
The Application shall check the revocation status of the Certificates in
this store if the Certificate was issued by a CA. The Application shall
look for the offline Certificate Recovation List (CRL) for a CA in the
store where it found the CA Certificate.
The location of an online CRL for CA shall be specified with the
CRLDistributionPoints (OID= 2.5.29.31) X509 Certificate extension.
The ValidationOptions parameter is used to specify which revocation
list should be used for CAs in this store.

TrustedCertificates CertificateList A list of Certificates for Applications for CAs that can be trusted.
Applications shall allow this value to be read or changed.
The value is an explicit list of Certificates which is private to the
Application. It is used when the Application does not support shared
physical Certificate stores or when Administrators need to specify
ValidationOptions for individual Certificates.
If the TrustedCertificateStore and the TrustedCertificates parameters
are both specified then the Application shall use the
TrustedCertificateStore for checking trust relationships. The
TrustedCertificates parameter is only used to lookup ValidationOptions
for individual Certificates. It may also be used to provide CRLs for CA
certificates.
If the TrustedCertificateStore is not specified then TrustedCertificates
parameter shall contain the complete X509 Certificate for each entry.

IssuerStore CertificateStore
Identifier

The location of the CertificateStore containing CA Certificates which
are not trusted but are needed to check signatures on Certificates.
Applications shall allow this value to be read or changed.
This value shall be a reference to a physical store which can be
managed separately from the Application. Applications that support
shared physical stores shall check this store for changes whenever
they validate a Certificate.
This store may also contain CRLs for the CAs.

IssuerCertificates CertificateList A list of Certificates for CAs which are not trusted but are needed to
check signatures on Certificates.
Applications shall allow this value to be read or changed.
The value is an explicit list of Certificates which is private to the
Application. It is used when the Application does not support shared
physical Certificate stores or when Administrators need to specify
ValidationOptions for individual Certificates.
If the IssuerStore and the IssuerCertificates parameters are both
specified then the Application shall use the IssuerStore for checking
signatures. The IssuerCertificates parameter is only used to lookup
ValidationOptions for individual Certificates. It may also be used to
provide CRLs for CA certificates.

RejectedCertificatesStore CertificateStore
Identifier

The location of the shared CertificateStore containing the Certificates of
Applications which were rejected.
Applications shall allow this value to be read or changed.
Applications shall add the DER encoded Certificate into this store
whenever it rejects a Certificate because it is untrusted or if it failed one
of the validation rules which can be suppressed (see Clause E.6).
Applications shall not add a Certificate to this store if it was rejected for
a reason that cannot be suppressed (e.g. Certificate revoked).

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 71 –

Element Type Description
BaseAddresses String[] A list of URLs for the Endpoints supported by a Server.

Applications shall allow these values to be read or changed.
If a Server does not support the scheme for a URL it shall ignore it.
This list can have multiple entries for the same URL scheme. The first
entry for a scheme is the base URL. The rest are assumed to be DNS
aliases that point to the first URL.
It is the responsibility of the Administrator to configure the network to
route these aliases correctly.

SecurityProfileUris SecurityProfile[]
 ProfileUri String
 Enabled Boolean

A list of security profiles supported by a Server.
Applications shall allow these values to be read or changed.
Applications shall allow the Enabled flag to be changed for each
SecurityProfile that it supports.
If the Enabled flag is false the Server shall not allow connections using
the SecurityProfile.
If a Server does not support a SecurityProfile it shall ignore it.

Extensions xs:any A list of vendor defined Extensions attached to the security settings.
Applications shall ignore Extensions that they do not recognize.
Applications that update a file containing Extensions shall not delete or
modify extensions that they do not recognize.

E.3 CertificateIdentifier

The CertificateIdentifier element describes an X509 Certificate. The Certificate can be
provided explicitly within the element or the element can specify the location of the
CertificateStore that contains the Certificate. The elements contained in a CertificateIdentifier
are described in Table E.2.

Table E.2 – CertificateIdentifier

Element Type Description
StoreType String The type of CertificateStore that contains the Certificate.

Predefined values are "Windows" and "Directory".
If not specified the RawData element shall be specified.

StorePath String The path to the CertificateStore.
The syntax depends on the StoreType.
If not specified the RawData element shall be specified.

SubjectName String The SubjectName for the Certificate.
The Common Name (CN) component of the SubjectName.
The SubjectName represented as a string that complies with Section 3 of
RFC 4514.
Values that do not contain '=' characters are presumed to be the Common
Name component.

Thumbprint String The SHA1 thumbprint for the Certificate formatted as a hexadecimal string.
Case is not significant.

RawData ByteString The DER encoded Certificate.
The CertificateIdentifier is invalid if the information in the DER Certificate
conflicts with the information specified in other fields. Import utilities shall reject
configurations containing invalid Certificates.
This field shall not be specified if the StoreType and StorePath are specified.

ValidationOptions Int32 The options to use when validating the Certificate.The possible options are
described in E.6.

OfflineRevocationList ByteString A Certificate Revocation List (CRL) associated with an Issuer Certificate.
The format of a CRL is defined by RFC 3280.
This field is only meaningful for Issuer Certificates.

OnlineRevocationList String A URL for an Online Revocation List associated with an Issuer Certificate.
This field is only meaningful for Issuer Certificates.

A "Windows" StoreType specifies a Windows Certificate store.

BS EN 62541-6:2015

 – 72 – IEC 62541-6:2015 © IEC 2015

The syntax of the StorePath has the form:

 [\\HostName\]StoreLocation[\(ServiceName | UserSid)]\StoreName
where:
 HostName – the name of the machine where the store resides.
 StoreLocation – one of LocalMachine, CurrentUser, User or Service
 ServiceName – the name of a Windows Service.
 UserSid – the SID for a Windows user account.
 StoreName – the name of the store (e.g. My, Root, Trust, CA, etc.).

Examples of Windows StorePaths are:

 \\MYPC\LocalMachine\My
 \CurrentUser\Trust
 \\MYPC\Service\My UA Server\UA Applications

 \User\S-1-5-25\Root

A "Directory" StoreType specifies a directory on disk which contains files with DER encoded
Certificates. The name of the file is the SHA1 thumbprint for the Certificate. Only public keys
may be placed in a "Directory" Store. The StorePath is an absolute file system path with a
syntax that depends on the operating system.

If a "Directory" store contains a ‘certs’ subdirectory then it is presumed to be a structured
store with the subdirectories described in Table E.3.

Table E.3 – Structured directory store

Subdirectory Description
certs Contains the DER encoded X509 Certificates.

The files shall have a .der file extension.
private Contains the private keys.

The format of the file may be Application specific.
PEM encoded files should have a .pem extension.
PKCS#12 encoded files should have a .pfx extension.
The root file name shall be the same as the corresponding public key file in the certs directory.

crl Contains the DER encoded CRL for any CA Certificates found in the certs or ca directories.
The files shall have a .crl file extension.

Each Certificate is uniquely identified by its Thumbprint. The SubjectName or the
distinguished SubjectName may be used to identify a Certificate to a human; however, they
are not unique. The SubjectName may be specified in conjuction with the Thumbprint or the
RawData. If there is an inconsistency between the information provided then the
CertificateIdentifier is invalid. Invalid CertificateIdentifiers are handled differently depending
on where they are used.

It is recommended that the SubjectName always be specified.

A Certificate revocation list (CRL) contains a list of certificates issued by a CA that are no
longer trusted. These lists should be checked before an Application can trust a Certificate
issued by a trusted CA. The format of a CRL is defined by RFC 3280.

Offline CRLs are placed in a local Certificate store with the Issuer Certificate. Online CRLs
may exist but the protocol depends on the system. An online CRL is identified by a URL.

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 73 –

E.4 CertificateStoreIdentifier

The CertificateStoreIdentifier element describes a physical store containing X509 Certificates.
The elements contained in a CertificateStoreIdentifier are described in Table E.4.

Table E.4 – CertificateStoreIdentfier

Element Type Description
StoreType String The type of CertificateStore that contains the Certificate.

Predefined values are "Windows" and "Directory".
StorePath String The path to the CertificateStore.

The syntax depends on the StoreType.
See E.3 for a description of the syntax for different StoreTypes.

ValidationOptions Int32 The options to use when validating the Certificates contained in the store.
The possible options are described in E.6.

All Certificates are placed in a physical store which can be protected from unauthorized
access. The implementation of a store can vary and will depend on the Application,
development tool or operating system. A Certificate store may be shared by many applications
on the same machine.

Each Certificate store is identified by a StoreType and a StorePath. The same path on
different machines identifies a different store.

E.5 CertificateList

The CertificateList element is a list of Certificates. The elements contained in a CertificateList
are described in Table E.5.

Table E.5 – CertificateList

Element Type Description
Certficates CertificateIdentifier[] The list of Certificates contained in the Trust List
ValidationOptions Int32 The options to use when validating the Certificates contained in the store.

These options only apply to Certificates that have ValidationOptions with the
UseDefaultOptions bit set. The possible options are described in E.6.

E.6 CertificateValidationOptions

The CertificateValidationOptions control the process used to validate a Certificate. Any
Certificate can have validation options associated. If none are specified the ValidationOptions
for the store or list containing the Certificate are used. The possible options are shown in
Table E.6.

BS EN 62541-6:2015

 – 74 – IEC 62541-6:2015 © IEC 2015

Table E.6 – CertificateValidationOptions

Field Bit Description
SuppressCertificateExpired 0 Ignore errors related to the validity time of the Certificate or its issuers.
SuppressHostNameInvalid 1 Ignore mismatches between the host name or Application uri.
SuppressRevocationStatusUnknown 2 Ignore errors if the issuer’s revocation list cannot be found.
CheckRevocationStatusOnline 3 Check the revocation status online.

If set the validator will look for the URL of the CRL Distribution Point in the
Certificate and use the OCSP (Online Certificate Status Protocol) to determine if the
Certificate has been revoked.
If the CRL Distribution Point is not reachable then the validator will look for offline
CRLs if the CheckRevocationStatusOffine bit is set. Otherwise, validation fails.
This option is specified for Issuer Certificates and used when validating Certificates
issued by that Issuer.

CheckRevocationStatusOffine 4 Check the revocation status offline.
If set the validator will look a CRL in the Certificate Store where the CA Certificate
was found.
Valididation fails if a CRL is not found.
This option is specified for Issuer Certificates and used when validating Certificates
issued by that Issuer.

UseDefaultOptions 5 If set the CertificateValidationOptions from the CertificateList shall be used.
If a Certificate does not belong to a CertificateList then the default is 0 for all bits.

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 75 –

Annex F
(normative)

Information Model XML Schema

F.1 Overview

Information Model developers define standard AddressSpaces which are implemented by
many Servers. There is a need for a standard syntax that Information Model developers can
use to formally define their models in a form that can be read by a computer program. This
Annex defines an XML-based schema for this purpose.

The XML Schema released with this version of the standards can be found here:

http://www.opcfoundation.org/UA/schemas/1.02/UANodeSet.xsd

NOTE The latest file that is compatible with this version of the standards can be found here:

http://opcfoundation.org/UA/2011/03/UANodeSet.xsd

The schema document is the formal definition. The description in this Annex only discusses
details of the semantics that cannot be captured in the schema document. Types which are
self-describing are not discussed.

This schema can also be used to serialize (i.e. import or export) an arbitrary set of Nodes in
the Server Address Space. This serialized form can be used to save Server state for use by
the Server later or to exchange with other applications (e.g. to support offline configuration by
a Client).

F.2 UANodeSet

The UANodeSet is the root of the document. It defines a set of Nodes, their Attributes and
References. References to Nodes outside of the document are allowed.

The structure of a UANodeSet is shown in Table F.1.

Table F.1 – UANodeSet

Element Type Description
NamespaceUris UriTable A list of NamespaceUris used in the UANodeSet.
ServerUris UriTable A list of ServerUris used in the UANodeSet.
Aliases AliasTable A list of Aliases used in the UANodeSet.
Extensions xs:any An element containing any vendor defined extensions to the UANodeSet.
<choice> UAObject

UAVariable
UAMethod
UAView
UAObjectType
UAVariableType
UADataType
UAReferenceType

The Nodes in the UANodeSet.

The NamespaceUri is a list of URIs for namespaces used in the UANodeSet. The
NamespaceIndexes used in NodeId, ExpandedNodeIds and QualifiedNames identify an
element in this list. The first index is always 1 (0 is always the OPC UA namespace).

BS EN 62541-6:2015

http://www.opcfoundation.org/UA/schemas/1.02/UANodeSet.xsd
http://opcfoundation.org/UA/2011/03/UANodeSet.xsd

 – 76 – IEC 62541-6:2015 © IEC 2015

The ServerUris is a list of URIs for Servers referenced in the UANodeSet. The ServerIndex in
ExpandedNodeIds identifies an element in this list. The first index is always 1 (0 is always the
current Server).

The Aliases are a list of string substitutions for NodeIds. Aliases can be used to make the file
more readable by allowing a string like ‘HasProperty’ in place of a numeric NodeId (i=46).
Aliases are optional.

The Extensions are free form XML data that can be used to attach vendor defined data to the
UANodeSet.

F.3 UANode

A UANode is an abstract base type for all Nodes. It defines the base set of Attributes and the
References. There are subtypes for each NodeClass defined in IEC 62541-4. Each of these
subtypes defines XML elements and attributes for the OPC UA Attributes specific to the
NodeClass. The fields in the UANode type are defined in Table F.2.

Table F.2 – UANode

Element Type Description
NodeId NodeId A NodeId serialized as a String.

The syntax of the serialized String is defined in 5.3.1.10.
BrowseName QualifiedName A QualifiedName serialized as a String with the form:

<namespace index>:<name>
Where the NamespaceIndex refers to the NamespaceUris table.

SymbolicName String A symbolic name for the Node that can be used as a class/field name in
autogenerated code. It should only be specified if the BrowseName cannot
be used for this purpose.
This field does not appear in the AddressSpace and is intended for use by
design tools. Only letters, digits or the underscore (‘_’) are permitted.

WriteMask WriteMask The value of the WriteMask Attribute.
UserWriteMask WriteMask The value of the UserWriteMask Attribute.
DisplayName LocalizedText[] A list of DisplayNames for the Node in different locales.

There shall be only one entry per locale.
Description LocalizedText[] The list of the Descriptions for the Node in different locales.

There shall be only one entry per locale.
References Reference[] The list of References for the Node.
Extensions xs:any An element containing any vendor defined extensions to the UANode.

The Extensions are free form XML data that can be used to attach vendor defined data to the
UANode.

F.4 Reference

The Reference type specifies a Reference for a Node. The Reference can be forward or
inverse. Only one direction for each Reference needs to be in a UANodeSet. The other
direction shall be added automatically during any import operation. The fields in the
Reference type are defined in Table F.3.

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 77 –

Table F.3 – Reference

Element Type Description
NodeId NodeId The NodeId of the target of the Reference serialized as a String.

The syntax of the serialized String is defined in 5.3.1.11 (ExpandedNodeId).
This value can be replaced by an Alias.

ReferenceType NodeId The NodeId of the ReferenceType serialized as a String.
The syntax of the serialized String is defined in 5.3.1.10 (NodeId).
This value can be replaced by an Alias.

IsForward Boolean If TRUE the Reference is a forward reference.

F.5 UAType

A UAType is a subtype of the UANode defined in F.3. It is the base type for the types defined
in Table F.4.

Table F.4 – UANodeSet Type Nodes

Subtype Description
UAObjectType Defines an ObjectType Node as described in IEC 62541-3.
UAVariableType Defines a VariableType Node as described in IEC 62541-3.
UADataType Defines a DataType Node as described in IEC 62541-3.
UAReferenceType Defines a ReferenceType Node as described in IEC 62541-3.

F.6 UAInstance

A UAInstance is a subtype of the UANode defined in F.3. It is the base type for the types
defined in Table F.5. The fields in the UAInstance type are defined in Table F.6.

Table F.5 – UANodeSet Instance Nodes

Subtype Description
UAObject Defines an Object Node as described in IEC 62541-3.
UAVariable Defines a Variable Node as described in IEC 62541-3.
UAMethod Defines a Method Node as described in IEC 62541-3.
UAView Defines a View Node as described in IEC 62541-3.

Table F.6 – UAInstance

Element Type Description
All of the fields from the UANode type described in F.3.
ParentNodeId NodeId The NodeId of the Node that is the parent of the Node within the information

model. This field is used to indicate that a tight coupling exists between the
Node and its parent (e.g. when the parent is deleted the child is deleted as
well). This information does not appear in the AddressSpace and is intended for
use by design tools.

F.7 UAVariable

A UAVariable is a subtype of the UAInstance defined in F.6. It represents a Variable Node.
The fields in the UAVariable type are defined in Table F.7.

BS EN 62541-6:2015

 – 78 – IEC 62541-6:2015 © IEC 2015

Table F.7 – UAVariable

Element Type Description
All of the fields from the UAInstance type described in 0.
Value Variant The Value of the Node encoding using the UA XML wire encoding.
Translation TranslationType[] A list of translations for the Value if the Value is a LocalizedText or a structure

containing LocalizedTexts.
This field may be omitted.
If the Value is an array the number of elements in this array shall match the
number of elements in the Value. Extra elements are ignored.
If the Value is a scalar then there is one element in this array.
If the Value is a structure then the each element contains translations for one
or more fields identified by a name. See the TranslationType for more
information.

DataType NodeId The data type of the value.
ValueRank ValueRank The value rank.
ArrayDimensions ArrayDimensions The number of dimensions in an array value.
AccessLevel AccessLevel The access level.
UserAccessLevel AccessLevel The access level for the current user.
MinimumSamplingInterval Duration The minimum sampling interval.
Historizing Boolean Whether history is being archived.

F.8 UAMethod

A UAMethod is a subtype of the UAInstance defined in 0. It represents a Method Node. The
fields in the UAMethod type are defined in Table F.8.

Table F.8 – UAMethod

Element Type Description
All of the fields from the UAInstance type described in 0.
MethodDeclarationId NodeId May be specified for Method Nodes that are a target of a HasComponent

reference from a single Object Node. It is the NodeId of the UAMethod with the
same BrowseName contained in the TypeDefinition associated with the Object
Node.
If the TypeDefinition overrides a Method inherited from a base ObjectType then
this attribute shall reference the Method Node in the subtype.

F.9 TranslationType

A TranslationType contains additional translations for LocalizedTexts used in the Value of a
Variable. The fields in the TranslationType are defined in Table F.9. If multiple Arguments
existed there would be a Translation element for each Argument.

The type can have two forms depending on whether the Value is a LocalizedText or a
Structure containing LocalizedTexts. If it is a LocalizedText is contains a simple list of
translations. If it is a Structure it contains a list of fields which each contain a list of
translations. Each field is identified by a Name which is unique within the structure. The
mapping between the Name and the Structure requires an understanding of the Structure
encoding. If the Structure field is encoded as a LocalizedText with UA XML then the name is
the unqualified path to the XML element where names in the path are separated by ‘/’. For
example, a structure with a nested structure containing a LocalizedText could have a path like
“Server/ApplicationName”.

The following example illustrates how translations for the Description field in the Argument
Structure are represented in XML:

<Value>
 <ListOfExtensionObject xmlns="http://opcfoundation.org/UA/2008/02/Types.xsd">

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 79 –

 <ExtensionObject>
 <TypeId>
 <Identifier>i=297</Identifier>
 </TypeId>
 <Body>
 <Argument>
 <Name>ConfigData</Name>
 <DataType>
 <Identifier>i=15</Identifier>
 </DataType>
 <ValueRank>-1</ValueRank>
 <ArrayDimensions />
 <Description>
 <Text>[English Translation for Description]</Text>
 </Description>
 </Argument>
 </Body>
 </ExtensionObject>
 </ListOfExtensionObject>
</Value>
<Translation>
 <Field Name="Description">
 <Text Locale="de-DE">[German Translation for Description]</Text>
 <Text Locale="fr-FR">[French Translation for Description]</Text>
 </Field>
</Translation>

If multiple Arguments existed there would be a Translation element for each Argument.

Table F.9 – TranslationType

Element Type Description
Text LocalizedText[] An array of translations for the Value.

It only appears if the Value is a LocalizedText or an array of LocalizedText.
Field StructureTranslationType[] An array of structure fields which have translations.

It only appears if the Value is a Structure or an array of Structures.
 Name String The name of the field.

This uniquely identifies the field within the structure.
The exact mapping depends on the encoding of the structure.

 Text LocalizedText[] An array of translations for the structure field.

F.10 UADataType

A UADataType is a subtype of the UAType defined in 0. It defines a DataType Node. The
fields in the UADataType type are defined in Table F.10.

Table F.10 – UADataType

Element Type Description
All of the fields from the UANode type described in F.3.
Definition DataTypeDefinition An abstract definition of the data type that can be used by design tools to create

code that can serialize the data type in XML and/or Binary forms. It does not
appear in the AddressSpace. This is only used to define subtypes of the
Structure or Enumeration DataTypes.

F.11 DataTypeDefinition

A DataTypeDefinition defines an abstract representation of a UADataType that can be used
by design tools to automatically create serialization code. The fields in the DataTypeDefinition
type are defined in Table F.11.

BS EN 62541-6:2015

 – 80 – IEC 62541-6:2015 © IEC 2015

Table F.11 – DataTypeDefinition

Element Type Description
Name QualifiedName A unique name for the data type.

This field is only specified for nested DataTypeDefinitions.
The BrowseName of the DataType Node is used otherwise.

SymbolicName String A symbolic name for the data type that can be used as a class/structure name
in autogenerated code. It should only be specified if the Name cannot be used
for this purpose.
Only letters, digits or the underscore (‘_’) are permitted.
This field is only specified for nested DataTypeDefinitions.
The SymbolicName of the DataType Node is used otherwise.

BaseType QualifiedName The name of any base type.
Note that the BaseType can refer to types defined in other files.
The NamespaceUri associated with the Name should indicate where to look for
the BaseType definition.
This field is only specified for nested DataTypeDefinitions.
The HasSubtype Reference of the DataType Node is used otherwise.

Fields DataTypeField[] The list of fields that make up the data type.
This definition assumes the structure has a sequential layout.
For enumerations the fields are simply a list of values.
Unions are not supported.

F.12 DataTypeField

A DataTypeField defines an abstract representation of a field within a UADataType that can
be used by design tools to automatically create serialization code. The fields in the
DataTypeField type are defined in Table F.12.

Table F.12 – DataTypeField

Element Type Description
Name String A name for the field that is unique within the DataTypeDefinition.
SymbolicName String A symbolic name for the field that can be used in autogenerated code.

It should only be specified if the Name cannot be used for this purpose.
Only letters, digits or the underscore (‘_’) are permitted.

DataType NodeId The NodeId of the DataType for the field.
This NodeId can refer to another Node with its own DataTypeDefinition.
This field is not specified for subtypes of Enumeration.

ValueRank Int32 The value rank for the field.
It shall be Scalar (-1) or a fixed rank Array (>=1).
This field is not specified for subtypes of Enumeration.

Description LocalizedText[] A description for the field in multiple locales.
Definition DataTypeDefinition The field is a structure with a layout specified by the definition.

This field is optional.
This field allows designers to create nested structures without defining a new
DataType Node for each structure.
This field is not specified for subtypes of Enumeration.

Value Int32 The value associated with the field.
This field is only specified for subtypes of Enumeration.

F.13 Variant

The Variant type specifies the value for a Variable or VariableType Node. This type is the
same as the type defined in 5.3.1.17. As a result, the functions used to serialize Variants
during Service calls can be used to serialize Variant in this file syntax.

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 81 –

Variants can contain NodeIds, ExpandedNodeIds and QualifiedNames which must be
modified so the NamespaceIndexes and ServerIndexes reference the NamespaceUri and
ServerUri tables in the UANodeSet.

Variants can also contain ExtensionObjects which contain and EncodingId and a Structure
with fields which could be are NodeIds, ExpandedNodeIds or QualifiedNames. The
NamespaceIndexes and ServerIndexes in these fields shall also reference the tables in the
UANodeSet.

F.14 Example (Informative)

An example of the UANodeSet can be found below.

This example defines the Nodes for an InformationModel with the URI of
“http://sample.com/Instances”. This example references Nodes defined in the base OPC UA
InformationModel and an InformationModel with the URI “http://sample.com/Types”.

The XML namespaces declared at the top include the URIs for the Namespaces referenced in
the document because the document includes Complex Data. Documents without Complex
Data would not have these declarations.

<UANodeSet
xmlns:s1="http://sample.com/Instances"
xmlns:s0="http://sample.com/Types"
xmlns:uax="http://opcfoundation.org/UA/2008/02/Types.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://opcfoundation.org/UA/2011/03/UANodeSet.xsd">

The NamespaceUris table includes all Namespaces referenced in the document except for the
base OPC UA InformationModel. A NamespaceIndex of 1 refers to the URI
“http://sample.com/Instances”.

 <NamespaceUris>
 <Uri>http://sample.com/Instances</Uri>
 <Uri>http://sample.com/Types</Uri>
 </NamespaceUris>

The Aliases table is provided to enhance readability. There are no rules for what is included.
A useful guideline would include standard ReferenceTypes and DataTypes if they are
referenced in the document.

 <Aliases>
 <Alias Alias="HasComponent">i=47</Alias>
 <Alias Alias="HasProperty">i=46</Alias>
 <Alias Alias="HasSubtype">i=45</Alias>
 <Alias Alias="HasTypeDefinition">i=40</Alias>
 </Aliases>

The BicycleType is a DataType Node that inherits from a DataType defined in another
InformationModel (ns=2;i=314). It is assumed that any Application importing this file will
already know about the referenced InformationModel. A Server could map the references onto
another OPC UA Server by adding a ServerIndex to TargetNode NodeIds. The structure of the
DataType is defined by the Definition element. This information can be used by code
generators to automatically create serializers for the DataType.

<UADataType NodeId="ns=1;i=365" BrowseName="1:BicycleType">
 <DisplayName>BicycleType</DisplayName>
 <References>
 <Reference ReferenceType="HasSubtype" IsForward="false">ns=2;i=314</Reference>
 </References>

BS EN 62541-6:2015

 – 82 – IEC 62541-6:2015 © IEC 2015

 <Definition Name="BicycleType" BaseType="0:1:BicycleType">
 <Field Name="NoOfGears" DataType="UInt32" />
 <Field Name="ManufacterName" DataType="QualifiedName" />
 </Definition>
</UADataType>

This Node is an instance of an Object TypeDefinition Node defined in another
InformationModel (ns=2;i=341). It has a single Property which is declared later in the
document.

<UAObject NodeId="ns=1;i=375" BrowseName="1:DriverOfTheMonth" ParentNodeId="ns=1;i=281">
 <DisplayName>DriverOfTheMonth</DisplayName>
 <References>
 <Reference ReferenceType="HasProperty">ns=1;i=376</Reference>
 <Reference ReferenceType="HasTypeDefinition">ns=2;i=341</Reference>
 <Reference ReferenceType="HasComponent" IsForward="false">ns=1;i=281</Reference>
 </References>
</UAObject>

This Node is an instance of a Variable TypeDefinition Node defined in base OPC UA
InformationModel (i=68). The DataType is the base type for the BicycleType DataType. The
AccessLevels declare the Variable as Readable and Writeable. The ParentNodeId indicates
that this Node is tightly coupled with the Parent (DriverOfTheMonth) and will be deleted if the
Parent is deleted.

<UAVariable NodeId="ns=1;i=376" BrowseName="2:PrimaryVehicle"
 ParentNodeId="ns=1;i=375" DataType="ns=2;i=314" AccessLevel="3" UserAccessLevel="3">
 <DisplayName>PrimaryVehicle</DisplayName>
 <References>
 <Reference ReferenceType="HasTypeDefinition">i=68</Reference>
 <Reference ReferenceType="HasProperty" IsForward="false">ns=1;i=375</Reference>
 </References>

This Value is an instance of a BicycleType DataType. It is wrapped in an ExtensionObject
which declares that the value is serialized using the Default XML DataTypeEncoding for the
DataType. The Value could be serialized using the Default Binary DataTypeEncoding but that
would result in a document that cannot be edited by hand. No matter which
DataTypeEncoding is used, the NamespaceIndex used in the ManufacterName field refers to
the NamespaceUris table in this document. The Application is responsible for changing
whatever value it needs to be when the document is loaded by an Application.

 <Value>
 <ExtensionObject xmlns="http://opcfoundation.org/UA/2008/02/Types.xsd">
 <TypeId>
 <Identifier>ns=1;i=366</Identifier>
 </TypeId>
 <Body>
 <s1:BicycleType>
 <s0:Make>Trek</s0:Make>
 <s0:Model>Compact</s0:Model>
 <s1:NoOfGears>10</s1:NoOfGears>
 <s1:ManufacterName>
 <uax:NamespaceIndex>1</uax:NamespaceIndex>
 <uax:Name>Hello</uax:Name>
 </s1:ManufacterName>
 </s1:BicycleType>
 </Body>
 </ExtensionObject>
 </Value>
 </UAVariable>

These are the DataTypeEncoding Nodes for the BicyleType DataType.

 <UAObject NodeId="ns=1;i=366" BrowseName="Default XML">
 <DisplayName>Default XML</DisplayName>
 <References>
 <Reference ReferenceType="HasEncoding" IsForward="false">ns=1;i=365</Reference>
 <Reference ReferenceType="HasDescription">ns=1;i=367</Reference>
 <Reference ReferenceType="HasTypeDefinition">i=76</Reference>
 </References>
 </UAObject>

BS EN 62541-6:2015

IEC 62541-6:2015 © IEC 2015 – 83 –

 <UAObject NodeId="ns=1;i=370" BrowseName="Default Binary">
 <DisplayName>Default Binary</DisplayName>
 <References>
 <Reference ReferenceType="HasEncoding" IsForward="false">ns=1;i=365</Reference>
 <Reference ReferenceType="HasDescription">ns=1;i=371</Reference>
 <Reference ReferenceType="HasTypeDefinition">i=76</Reference>
 </References>
 </UAObject>

This is the DataTypeDescription Node for the Default XML DataTypeEncoding of the
BicyleType DataType. The Value is one of the built-in types.

 <UAVariable NodeId="ns=1;i=367" BrowseName="1:BicycleType" DataType="String">
 <DisplayName>BicycleType</DisplayName>
 <References>
 <Reference ReferenceType="HasTypeDefinition">i=69</Reference>
 <Reference ReferenceType="HasComponent" IsForward="false">ns=1;i=341</Reference>
 </References>
 <Value>
 <uax:String>//xs:element[@name='BicycleType']</uax:String>
 </Value>
 </UAVariable>

This is the DataTypeDescription Node for the DataTypeDescription declared above. The XML
Schema document is a UTF-8 document stored as a base64 string. This allows clients to read
the schema for the

<UAVariable NodeId="ns=1;i=341" BrowseName="1:Quickstarts.DataTypes.Instances"
DataType="ByteString">
 <DisplayName>Quickstarts.DataTypes.Instances</DisplayName>
 <References>
 <Reference ReferenceType="HasProperty">ns=1;i=343</Reference>
 <Reference ReferenceType="HasComponent">ns=1;i=367</Reference>
 <Reference ReferenceType="HasComponent" IsForward="false">i=92</Reference>
 <Reference ReferenceType="HasTypeDefinition">i=72</Reference>
 </References>
 <Value>
 <uax:ByteString>PHhz...W1hPg==</uax:ByteString>
 </Value>
</UAVariable>

BS EN 62541-6:2015

This page deliberately left blank

BSI is the national body responsible for preparing British Standards and other
standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization
products are published by BSI Standards Limited.

British Standards Institution (BSI)

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

About us
We bring together business, industry, government, consumers, innovators
and others to shape their combined experience and expertise into standards
-based solutions.

The knowledge embodied in our standards has been carefully assembled in
a dependable format and refined through our open consultation process.
Organizations of all sizes and across all sectors choose standards to help
them achieve their goals.

Information on standards
We can provide you with the knowledge that your organization needs
to succeed. Find out more about British Standards by visiting our website at
bsigroup.com/standards or contacting our Customer Services team or
Knowledge Centre.

Buying standards
You can buy and download PDF versions of BSI publications, including British
and adopted European and international standards, through our website at
bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development
Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions
Our range of subscription services are designed to make using standards
easier for you. For further information on our subscription products go to
bsigroup.com/subscriptions.

With British Standards Online (BSOL) you’ll have instant access to over 55,000
British and adopted European and international standards from your desktop.
It’s available 24/7 and is refreshed daily so you’ll always be up to date.

You can keep in touch with standards developments and receive substantial
discounts on the purchase price of standards, both in single copy and subscription
format, by becoming a BSI Subscribing Member.

PLUS is an updating service exclusive to BSI Subscribing Members. You will
automatically receive the latest hard copy of your standards when they’re
revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits
of membership, please visit bsigroup.com/shop.

With a Multi-User Network Licence (MUNL) you are able to host standards
publications on your intranet. Licences can cover as few or as many users as you
wish. With updates supplied as soon as they’re available, you can be sure your
documentation is current. For further information, email bsmusales@bsigroup.com.

Revisions
Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your
business. If you find an inaccuracy or ambiguity within a British Standard or other
BSI publication please inform the Knowledge Centre.

Copyright
All the data, software and documentation set out in all British Standards and
other BSI publications are the property of and copyrighted by BSI, or some person
or entity that owns copyright in the information used (such as the international
standardization bodies) and has formally licensed such information to BSI for
commercial publication and use. Except as permitted under the Copyright, Designs
and Patents Act 1988 no extract may be reproduced, stored in a retrieval system
or transmitted in any form or by any means – electronic, photocopying, recording
or otherwise – without prior written permission from BSI. Details and advice can
be obtained from the Copyright & Licensing Department.

Useful Contacts:
Customer Services
Tel: +44 845 086 9001
Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions
Tel: +44 845 086 9001
Email: subscriptions@bsigroup.com

Knowledge Centre
Tel: +44 20 8996 7004
Email: knowledgecentre@bsigroup.com

Copyright & Licensing
Tel: +44 20 8996 7070
Email: copyright@bsigroup.com

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

www.bsigroup.com/standards
www.bsigroup.com/shop
www.bsigroup.com/shop
www.bsigroup.com/subscriptions

	EN62541-6{2015}e.pdf
	Foreword
	Endorsement notice
	Annex ZA (normative) Normative references to international publications with their corresponding European publications

	30323158-VOR.pdf
	English
	CONTENTS
	FOREWORD
	1 Scope
	2 Normative references
	3 Terms, definitions, abbreviations and symbols
	3.1 Terms and definitions
	3.2 Abbreviations and symbols

	4 Overview
	5 Data encoding
	5.1 General
	5.1.1 Overview
	5.1.2 Built-in Types
	5.1.3 Guid
	5.1.4 ByteString
	5.1.5 ExtensionObject`
	5.1.6 Variant

	5.2 OPC UA Binary
	5.2.1 General
	5.2.2 Built-in Types
	5.2.3 Enumerations
	5.2.4 Arrays
	5.2.5 Structures
	5.2.6 Messages

	5.3 XML
	5.3.1 Built-in Types
	5.3.2 Enumerations
	5.3.3 Arrays
	5.3.4 Structures
	5.3.5 Messages

	6 Message SecurityProtocols
	6.1 Security handshake
	6.2 Certificates
	6.2.1 General
	6.2.2 Application Instance Certificate
	6.2.3 Signed Software Certificate

	6.3 Time synchronization
	6.4 UTC and International Atomic Time (TAI)
	6.5 Issued User Identity Tokens – Kerberos
	6.6 WS Secure Conversation
	6.6.1 Overview
	6.6.2 Notation
	6.6.3 Request Security Token (RST/SCT)
	6.6.4 Request Security Token Response (RSTR/SCT)
	6.6.5 Using the SCT
	6.6.6 Cancelling Security contexts

	6.7 OPC UA Secure Conversation
	6.7.1 Overview
	6.7.2 MessageChunk structure
	6.7.3 MessageChunks and error handling
	6.7.4 Establishing a SecureChannel
	6.7.5 Deriving keys
	6.7.6 Verifying Message Security

	7 Transport Protocols
	7.1 OPC UA TCP
	7.1.1 Overview
	7.1.2 Message structure
	7.1.3 Establishing a connection
	7.1.4 Closing a connection
	7.1.5 Error handling
	7.1.6 Error recovery

	7.2 SOAP/HTTP
	7.2.1 Overview
	7.2.2 XML Encoding
	7.2.3 OPC UA Binary Encoding

	7.3 HTTPS
	7.3.1 Overview
	7.3.2 XML Encoding
	7.3.3 OPC UA Binary Encoding

	7.4 Well known addresses

	8 Normative Contracts
	8.1 OPC Binary Schema
	8.2 XML Schema and WSDL

	Annexes
	Annex A (normative) Constants
	A.1 Attribute Ids
	A.2 Status Codes
	A.3 Numeric Node Ids

	Annex B (normative) OPC UA Nodeset
	Annex C (normative) Type declarations for the OPC UA native Mapping
	Annex D (normative) WSDL for the XML Mapping
	D.1 XML Schema
	D.2 WDSL Port Types
	D.3 WSDL Bindings

	Annex E (normative) Security settings management
	E.1 Overview
	E.2 SecuredApplication
	E.3 CertificateIdentifier
	E.4 CertificateStoreIdentifier
	E.5 CertificateList
	E.6 CertificateValidationOptions

	Annex F (normative) Information Model XML Schema
	F.1 Overview
	F.2 UANodeSet
	F.3 UANode
	F.4 Reference
	F.5 UAType
	F.6 UAInstance
	F.7 UAVariable
	F.8 UAMethod
	F.9 TranslationType
	F.10 UADataType
	F.11 DataTypeDefinition
	F.12 DataTypeField
	F.13 Variant
	F.14 Example (Informative)

	Figures
	Figure 1 – The OPC UA Stack Overview
	Figure 2 – Encoding Integers in a binary stream
	Figure 3 – Encoding Floating Points in a binary stream
	Figure 4 – Encoding Strings in a binary stream
	Figure 5 – Encoding Guids in a binary stream
	Figure 6 – Encoding XmlElements in a binary stream
	Figure 7 – A String NodeId
	Figure 8 – A Two Byte NodeId
	Figure 9 – A Four Byte NodeId
	Figure 10 – Security handshake
	Figure 11 – Relevant XML Web Services specifications
	Figure 12 – The WS Secure Conversation handshake
	Figure 13 – OPC UA Secure Conversation MessageChunk
	Figure 14 – OPC UA TCP Message structure
	Figure 15 – Establishing a OPC UA TCP connection
	Figure 16 – Closing a OPC UA TCP connection
	Figure 17 – Recovering an OPC UA TCP connection
	Figure 18 – Scenarios for the HTTPS Transport

	Tables
	Table 1 – Built-in Data Types
	Table 2 – Guid structure
	Table 3 – Supported Floating Point Types
	Table 4 – NodeId components
	Table 5 – NodeId DataEncoding values
	Table 6 – Standard NodeId Binary DataEncoding
	Table 7 – Two Byte NodeId Binary DataEncoding
	Table 8 – Four Byte NodeId Binary DataEncoding
	Table 9 – ExpandedNodeId Binary DataEncoding
	Table 10 – DiagnosticInfo Binary DataEncoding
	Table 11 – QualifiedName Binary DataEncoding
	Table 12 – LocalizedText Binary DataEncoding
	Table 13 – Extension Object Binary DataEncoding
	Table 14 – Variant Binary DataEncoding
	Table 15 – Data Value Binary DataEncoding
	Table 16 – Sample OPC UA Binary Encoded structure
	Table 17 – XML Data Type Mappings for Integers
	Table 18 – XML Data Type Mappings for Floating Points
	Table 19 – Components of NodeId
	Table 20 – Components of ExpandedNodeId
	Table 21 – Components of Enumeration
	Table 22 – SecurityPolicy
	Table 23 – ApplicationInstanceCertificate
	Table 24 – SignedSoftwareCertificate
	Table 25 – Kerberos UserTokenPolicy
	Table 26 – WS-* Namespace prefixes
	Table 27 – RST/SCT Mapping to an OpenSecureChannel Request
	Table 28 – RSTR/SCT Mapping to an OpenSecureChannel Response
	Table 29 – OPC UA Secure Conversation Message header
	Table 30 – Asymmetric algorithm Security header
	Table 31 – Symmetric algorithm Security header
	Table 32 – Sequence header
	Table 33 – OPC UA Secure Conversation Message footer
	Table 34 – OPC UA Secure Conversation Message abort body
	Table 35 – OPC UA Secure Conversation OpenSecureChannel Service
	Table 36 – Cryptography key generation parameters
	Table 37 – OPC UA TCP Message header
	Table 38 – OPC UA TCP Hello Message
	Table 39 – OPC UA TCP Acknowledge Message
	Table 40 – OPC UA TCP Error Message
	Table 41 – OPC UA TCP error codes
	Table 42 – WS-Addressing headers
	Table 43 – Well known addresses for Local Discovery Servers
	Table A.1 – Identifiers assigned to Attributes
	Table E.1 – SecuredApplication
	Table E.2 – CertificateIdentifier
	Table E.3 – Structured directory store
	Table E.4 – CertificateStoreIdentfier
	Table E.5 – CertificateList
	Table E.6 – CertificateValidationOptions
	Table F.1 – UANodeSet
	Table F.2 – UANode
	Table F.3 – Reference
	Table F.4 – UANodeSet Type Nodes
	Table F.5 – UANodeSet Instance Nodes
	Table F.6 – UAInstance
	Table F.7 – UAVariable
	Table F.8 – UAMethod
	Table F.9 – TranslationType
	Table F.10 – UADataType
	Table F.11 – DataTypeDefinition
	Table F.12 – DataTypeField

	Français
	SOMMAIRE
	AVANT-PROPOS
	1 Domaine d’application
	2 Références normatives
	3 Termes, définitions, abréviations et symboles
	3.1 Termes et définitions
	3.2 Abréviations et symboles

	4 Vue d’ensemble
	5 Codage de données
	5.1 Généralités
	5.1.1 Vue d’ensemble
	5.1.2 Types intégrés
	5.1.3 Guid (Identificateur globalement Unique)
	5.1.4 Chaîne d’octets
	5.1.5 Objet d’Extension
	5.1.6 Variante

	5.2 OPC UA Binaire
	5.2.1 Généralités
	5.2.2 Types intégrés
	5.2.3 Énumérations
	5.2.4 Matrices
	5.2.5 Structures
	5.2.6 Messages

	5.3 XML
	5.3.1 Types intégrés
	5.3.2 Énumérations
	5.3.3 Matrices
	5.3.4 Structures
	5.3.5 Messages

	6 Protocoles de sécurité des messages
	6.1 Protocole d’établissement de liaison de sécurité
	6.2 Certificats
	6.2.1 Généralités
	6.2.2 Certificat d’instance d’application
	6.2.3 Certificat de logiciel signé

	6.3 Synchronisation horaire
	6.4 Temps universel coordonné (UTC) et Temps atomique international (TAI)
	6.5 Jetons d’identité d’utilisateur émis – Jetons Kerberos
	6.6 Conversation sécurisée WS
	6.6.1 Vue d’ensemble
	6.6.2 Notation
	6.6.3 Demande de jeton de sécurité (RST/SCT)
	6.6.4 Réponse à la Demande de jeton de sécurité (RSTR/SCT)
	6.6.5 Utilisation du SCT
	6.6.6 Annulation des contextes de sécurité

	6.7 Conversation OPC UA sécurisée
	6.7.1 Vue d’ensemble
	6.7.2 Structure des Blocs de Messages
	6.7.3 Blocs de Messages et traitement d’erreurs
	6.7.4 Établissement d’un Canal Sécurisé
	6.7.5 Dérivation des clés
	6.7.6 Vérification de la sécurité d’un message

	7 Protocoles de Transport
	7.1 Protocole OPC UA TCP
	7.1.1 Vue d’ensemble
	7.1.2 Structure de message
	7.1.3 Établissement d’une connexion
	7.1.4 Fermeture d’une connexion
	7.1.5 Traitement d’erreurs
	7.1.6 Recouvrement d’erreurs

	7.2 Protocole SOAP/HTTP
	7.2.1 Vue d’ensemble
	7.2.2 Codage XML
	7.2.3 Codage OPC UA Binaire

	7.3 Protocole HTTPS
	7.3.1 Vue d’ensemble
	7.3.2 Codage XML
	7.3.3 Codage Binaire OPC UA

	7.4 Adresses notoires

	8 Contrats normatifs
	8.1 Schéma OPC binaire
	8.2 Schéma XML et langage WSDL

	Annexes
	Annexe A (normative) Constantes
	A.1 Identificateurs d’attributs
	A.2 Codes de Statut
	A.3 Identificateurs de nœud numériques

	Annexe B (normative) Ensemble de nœuds OPC UA
	Annexe C (normative) Déclarations de type pour la correspondance d’origine OPC UA
	Annexe D (normative) Langage WSDL pour la correspondance XML
	D.1 Schéma XML
	D.2 Types de port WDSL
	D.3 Liaisons WSDL

	Annexe E (normative) Gestion des paramètres de sécurité
	E.1 Vue d’ensemble
	E.2 Application Sécurisée
	E.3 Identificateur de Certificat
	E.4 Identificateur de Mémoire de Certificat
	E.5 Liste de Certificats
	E.6 Options de Validation des Certificats

	Annexe F (normative) Schéma XML du Modèle d’Informations
	F.1 Vue d’ensemble
	F.2 Ensemble de Nœuds UA
	F.3 Nœuds UA
	F.4 Référence
	F.5 Type UA
	F.6 Instance UA
	F.7 Variable UA
	F.8 Méthode UA
	F.9 Type de traduction
	F.10 Type de Données UA
	F.11 Définition du Type de Données
	F.12 Champ de Type de Données
	F.13 Variante
	F.14 Exemple (Informatif)

	Figures
	Figure 1 – Vue d’ensemble des piles OPC UA
	Figure 2 – Codage des entiers dans une séquence binaire
	Figure 3 – Codage des virgules flottantes dans une séquence binaire
	Figure 4 – Codage de chaînes dans une séquence binaire
	Figure 5 – Codage des Guid dans une séquence binaire
	Figure 6 – Codage des Eléments Xml dans une séquence binaire
	Figure 7 – Identificateur de Nœud de chaîne
	Figure 8 – Identificateur de Nœud à deux octets
	Figure 9 – Identificateur de Nœud à quatre octets
	Figure 10 – Protocole d’établissement de liaison de sécurité
	Figure 11 – Spécifications appropriées des services Web XML
	Figure 12 – Protocole d’établissement de liaison de Conversation sécurisée WS
	Figure 13 – Bloc de Messages de Conversation sécurisée OPC UA
	Figure 14 – Structure de message OPC UA TCP
	Figure 15 – Établissement d’une connexion OPC UA TCP
	Figure 16 – Fermeture d’une connexion OPC UA TCP
	Figure 17 – Rétablissement d’une connexion OPC UA TCP
	Figure 18 – Scénarii pour le transport HTTPS

	Tableaux
	Tableau 1 – Types de Données intégrés
	Tableau 2 – Structure du Guid
	Tableau 3 – Types à virgule flottante pris en charge
	Tableau 4 – Composants d’un Identificateur de Nœud
	Tableau 5 – Valeurs de Codage de Données de l’Identificateur de Nœud
	Tableau 6 – Codage de Données binaires normalisé d’Identificateur de Nœud
	Tableau 7 – Codage de Données binaires de l’Identificateur de nœud à deux octets
	Tableau 8 – Codage de Données binaires de l’Identificateur de Nœud à quatre octets
	Tableau 9 – Codage de Données Binaires de l’Identificateur de Nœud Etendu
	Tableau 10 – Codage de Données Binaires de l’Information de Diagnostic
	Tableau 11 – Codage de Données Binaires de Nom Qualifié
	Tableau 12 – Codage de Données Binaires de Texte Localisé
	Tableau 13 – Codage de Données Binaires de l’Objet d’Extension
	Tableau 14 – Codage de Données Binaires de Variante
	Tableau 15 – Codage de Données Binaires de la Valeur de Données
	Tableau 16 – Échantillon de structure codée binaire OPC UA
	Tableau 17 – Correspondances des types de données XML pour des Entiers
	Tableau 18 – Correspondances de types de données XML pour les virgules flottantes
	Tableau 19 – Composants de l’Identificateur de Nœud
	Tableau 20 – Composants de l’Identificateur de Nœud Etendu
	Tableau 21 – Composants d’Énumération
	Tableau 22 – Politique de Sécurité
	Tableau 23 – Certificat d’Instance d’Application
	Tableau 24 – Certificat de Logiciel Signé
	Tableau 25 – Politique pour le Jeton Utilisateur (UserTokenPolicy) Kerberos
	Tableau 26 – Préfixes d’Espace de nom WS-*
	Tableau 27 – Correspondance RST/SCT avec une demande Ouverture de Canal Sécurisé
	Tableau 28 – Correspondance RSTR/SCT avec une Réponsed’Ouverture de Canal Sécurisé
	Tableau 29 – En-tête de message de Conversation OPC UA Sécurisée
	Tableau 30 – En-tête de sécurité d’algorithme asymétrique
	Tableau 31 – En-tête de sécurité d’algorithme symétrique
	Tableau 32 – En-tête de séquence
	Tableau 33 – Cartouche de message de Conversation Sécurisée OPC UA
	Tableau 34 – Corps de l’abandon de message de Conversation Sécurisée OPC UA
	Tableau 35 – Service d’Ouverture d’un Canal Sécurisé pourune Conversation Sécurisée OPC UA
	Tableau 36 – Paramètres de génération de clés de cryptographie
	Tableau 37 – En-tête de message OPC UA TCP
	Tableau 38 – Message d’Accueil OPC UA TCP
	Tableau 39 – Message d’Acquittement de protocole OPC UA TCP
	Tableau 40 – Message d’erreur OPC UA TCP
	Tableau 41 – Codes d’erreurs OPC UA TCP
	Tableau 42 – En-têtes d’adressage WS
	Tableau 43 – Adresses notoires pour les serveurs de découverte locaux
	Tableau A.1 – Identificateurs affectés aux attributs
	Tableau E.1 – Application Sécurisée
	Tableau E.2 – Identificateur de certificat
	Tableau E.3 – Mémoire Répertoire structurée
	Tableau E.4 – Identificateur de Mémoire de Certificat
	Tableau E.5 – Liste de Certificats
	Tableau E.6 – Options de Validation des Certificats
	Tableau F.1 – Ensemble de Nœuds UA
	Tableau F.2 – Nœud UA
	Tableau F.3 – Référence
	Tableau F.4 – Nœuds du Type Ensemble de Nœuds UA
	Tableau F.5 – Nœuds de l’Instance Ensemble de Nœuds UA
	Tableau F.6 – Instance UA
	Tableau F.7 – Variable UA
	Tableau F.8 – Méthode UA
	Tableau F.9 – Type de traduction
	Tableau F.10 – Type de Données UA
	Tableau F.11 – Définition du Type de Données
	Tableau F.12 – Champ de Type de Données

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

