BSI Standards Publication

Semiconductor die products

Part 2: Exchange data formats

[
bSlo ..making excellence a habit.

BS EN 62258-2:2011

BRITISH STANDARD

National foreword

This British Standard is the UK implementation of EN 62258-2:2011. It is
identical to IEC 62258-2:2011. It supersedes BS EN 62258-2:2005 which is
withdrawn.

The UK participation in its preparation was entrusted to Technical Committee
EPL/47, Semiconductors.

A list of organizations represented on this committee can be obtained on
request to its secretary.

This publication does not purport to include all the necessary provisions of a
contract. Users are responsible for its correct application.

© BSI 2011
ISBN 978 0 580 61892 5
ICS 31.080.99

Compliance with a British Standard cannot confer immunity from
legal obligations.

This British Standard was published under the authority of the Standards
Policy and Strategy Committee on 31 July 2011.

Amendments issued since publication

Amd. No. Date Text affected

http://dx.doi.org/10.3403/30079666

BS EN 62258-2:2011

EUROPEAN STANDARD EN 62258-2
NORME EUROPEENNE

EUROPAISCHE NORM July 2011
ICS 31.080.99 Supersedes EN 62258-2:2009

English version

Semiconductor die products -
Part 2: Exchange data formats
(IEC 62258-2:2011)

Produits de puces de semiconducteurs - Halbleiter-Chip-Erzeugnisse -
Partie 2: Formats d'échange de données Teil 2: Datenaustausch-Formate
(CEI 62258-2:2011) (IEC 62258-2:2011)

This European Standard was approved by CENELEC on 2011-06-29. CENELEC members are bound to comply
with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard
the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on
application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CENELEC member into its own language and notified
to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus,
the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy,
Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia,
Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europaisches Komitee fiir Elektrotechnische Normung

Management Centre: Avenue Marnix 17, B - 1000 Brussels

© 2011 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Ref. No. EN 62258-2:2011 E

http://dx.doi.org/10.3403/30079666U
http://dx.doi.org/10.3403/30079666

BS EN 62258-2:2011
EN 62258-2:2011 -2-

Foreword

The text of document 47/2085/FDIS, future edition 2 of |EC 62258-2, prepared by IEC TC 47,
Semiconductor devices, was submitted to the IEC-CENELEC parallel vote and was approved by

CENELEC as EN 62258-2 on 2011-06-29.
This European Standard supersedes EN 62258-2:2004.

With respect to EN 62258-2:2005, the following parameters have been updated for EN 62258-2:2011:

Subclause Parameter name
829 DEVICE_PICTURE_FILE
8.2.10 DEVICE_DATA FILE
8.4.6 TERMINAL_GROUP
84.7 PERMUTABLE
8.5.1 TERMINAL_MATERIAL
(was DIE_ TERMINAL MATERIAL)
8.5.2 TERMINAL_MATERIAL_STRUCTURE
8.6.2 MAX_TEMP_TIME
8.7.6 SIMULATOR _simulator TERM_GROUP
8.8.3 ASSEMBLY
892 WAFER_THICKNESS
893 WAFER_THICKNESS TOLERANCE
8.9.9 WAFER_INK
8.10.4 BUMP_SHAPE
8.10.5 BUMP_SIZE
8.10.6 BUMP_SPECIFICATION_DRAWING
8.10.7 BUMP_ATTACHMENT_METHOD
8.11.4 MPD_MSL_LEVEL
8.11.5 MPD_PACKAGE_DRAWING
8.12.1 QUALITY
8.12.2 TEST
8.13.1 TEXT
8.14.1 PARSE

This standard shall be read in conjunction with EN 62258-1|.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN and CENELEC shall not be held responsible for identifying any or all such patent
rights.

The following dates were fixed:

— latest date by which the EN has to be implemented
at national level by publication of an identical
national standard or by endorsement (dop) 2012-03-29

— latest date by which the national standards conflicting
with the EN have to be withdrawn (dow) 2014-06-29

Annex ZA has been added by CENELEC.

http://dx.doi.org/10.3403/30079666U
http://dx.doi.org/10.3403/30079666U
http://dx.doi.org/10.3403/30079666
http://dx.doi.org/10.3403/30079666
http://dx.doi.org/10.3403/30055769U

BS EN 62258-2:2011
-3- EN 62258-2:2011

Endorsement notice

The text of the International Standard IEC 62258-2:2011 was approved by CENELEC as a European
Standard without any modification.

BS EN 62258-2:2011
EN 62258-2:2011 -4 -

Annex ZA
(normative)

Normative references to international publications
with their corresponding European publications
The following referenced documents are indispensable for the application of this document. For dated

references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD
applies.

Publication Year Title EN/HD Year
EC 61360-4 2005 Standard data element types with associated EN 61360-4 2005

classification scheme for electric components - + corr. December 2005
Part 4: IEC reference collection of standard
data element types and component classes

EC 62258-1 - Semiconductor die products - N 62258-1 -
Part 1: Procurement and use
SO 6093 1985 Information processing - Representation of - -

numerical values in character strings for
information interchange

SO 8601 2004 Data elements and interchange formats - - -
Information interchange - Representation of
dates and times

2002 Industrial automation systems and integration - -
- Product data representation and exchange -
Part 21: Implementation methods: Clear text
encoding of the exchange structure

IPC/JEDEC 2007 Handling, Packing, Shipping and Use of - -
J-STD-033B Moisture/Reflow Sensitive Surface Mount
Devices

http://dx.doi.org/10.3403/01063540U
http://dx.doi.org/10.3403/01063540U
http://dx.doi.org/10.3403/30055769U
http://dx.doi.org/10.3403/30055769U
http://dx.doi.org/10.3403/00168186U
http://dx.doi.org/10.3403/03234467U
http://dx.doi.org/10.3403/00572155U

BS EN 62258-2:2011

-2- 62258-2 © IEC:2011
CONTENTS
INTRODU CT ION L.ttt e e e e e et et e e e e e e e eaeaaaas 7
S Yoo o == o To o] o =T o A 8
2 NOIMAtiVE FEIEIENCES. . e e e 8
3 Terms and definitioNS ... 9
N = Yo LU T =T ¢ 1= 01 PPN 9
5 Device Data eXchange format (DDX) file goals and usage...........cooiiiiiiiiiiiiiiiniinei e, 9
6 DDX file format and file format rulesc.oooiiiiiii 9
B.1 Data validity....oooeiiiii s 10
6.2 CharaCter Sl .. i, 10
6.3 SYNTAX RULES ... 10
T DX Ale CONEENT. .o 11
7.1 DDXAile CONTENE TUIES ...veeie e 11
T4 BlOCK StrUCTUIE ... 11
T.1.2 Parameter fYPeS oo 11
0 R T B - 7= 1 1Y/ o= Y= S PP 11
7.1.4 FOrward refErENCES . ..cu i 12
70D Ui S i 12
7.1.6 Co-ordinate data..........ccooiiiiii 12
T AT RESEIVEA WOIAS ..ottt e e 12
7.2 DDX DEVICE blOCK SYNTAX....iiuiiiiiiiiiii e 13
7.3 DX data SYNtaX . o 14
8 Definitions of DEVICE block parametersccooiuiiiiiiiiii e 14
8.1 BLO CK AT A e 15
8.1.1 DEVICE_NAME Parameter ..o 15
8.1.2 DEVICE_FORM Parameter ..o 16
8.1.3 BLOCK VERSION Parameterccouoiuiiiii e 16
8.1.4 BLOCK CREATION DATE Parameter........ccooomniiuiiiiiiiieieieeeeeeee 16
8.1.5 VERSION Parameter ..., 16
8.2 DEVICE DAT A e 16
8.2.1 DIE_NAME Parameter ... 16
8.2.2 DIE_PACKAGED PART _NAME Parameter........cccoooiiuiiiiiiiiiiiiiiiceieee . 16
8.2.3 DIE_MASK REVISION Parametercc.oouiiiiiiieie e 17
8.2.4 MANUFACTURER Parameteroouiiiiiiii e, 17
8.2.5 DATA _SOURCE Parameterccoooiuiiiiieiee e 17
8.2.6 DATA _VERSION Parametercooouiiiiiiie e 17
8.2.7 FUNCTION Parameter ..o, 17
8.2.8 IC_TECHNOLOGY Parameter........ccc.oeuiiiieee e 18
8.2.9 DEVICE _PICTURE_FILE Parametercc.oouniiiiiiiie e 18
8.2.10 DEVICE_DATA FILE Parametercc.oouimiiieeee e 18
8.3 GEOMETRIC DAT A e 19
8.3.1 GEOMETRIC _UNITS Parametercc.oouieiiiieeee e 19
8.3.2 GEOMETRIC_VIEW Parametercooooiiiiiiieee e 19
8.3.3 GEOMETRIC_ORIGIN Parameterccccooiiiiiiiii e, 19
8.3.4 SIZE Parameter ..., 20

8.3.5 SIZE_TOLERANCE Parameter..........c.oiiiiiiiiiii e 20

BS EN 62258-2:2011

62258-2 © IEC:2011 -3-
8.3.6 THICKNESS Parameter ..o, 21
8.3.7 THICKNESS_TOLERANCE Parameter.........ccooiiiiiiiiiiiie e 21
8.3.8 FIDUCIAL_TYPE Parameteroooiiiiiiee e 21
8.3.9 FIDUCIAL Parameter ..o, 23
8.4 TERMINAL D AT A e e 24
8.4.1 TERMINAL_COUNT Parameter..........oouiiiiiii e 24
8.4.2 TERMINAL_TYPE_COUNT Parameter.......ccccoiiiiiiiiiiiiieeeeeee 24
8.4.3 CONNECTION_COUNT Parameteroouiieiiiiiieiiie e 24
8.4.4 TERMINAL_TYPE Parameter.... ..o 25
8.4.5 TERMINAL Parameter ..o, 26
8.4.6 TERMINAL_GROUP Parameterooiiiiiii e 29
8.4.7 PERMUTABLE Parameter.......ccooiuiiiiiii e, 31
8.5 MA T ERIAL DA T A e 32
8.5.1 TERMINAL _MATERIAL Parameter.........coooiiiiiiii e, 32
8.5.2 TERMINAL_MATERIAL_STRUCTURE Parameter.........c.cooviiiiiiiiiian. 32
8.5.3 DIE_SEMICONDUCTOR_MATERIAL Parameterccocooviiiiiiiiiiieans 32
8.5.4 DIE_SUBSTRATE_MATERIAL Parameter ..o 33
8.5.5 DIE_SUBSTRATE_CONNECTION Parameterccccooiiiiiiiiiiiiiiieeans 33
8.5.6 DIE_PASSIVATION_MATERIAL Parameter.......cccooviiiiiiiiiiieeeee 33
8.5.7 DIE_BACK_DETAIL Parameter ..o 34
8.6 ELECTRICAL AND THERMAL RATING DATA ... e, 34
8.6.1 MAX_TEMP Parameter ... 34
8.6.2 MAX_TEMP_TIME Parameter ..o 34
8.6.3 POWER_RANGE Parameter.... ..o 34
8.6.4 TEMPERATURE_RANGE Parametercoooiiiiiiii e 34
8.7 SIMU L AT ION AT A . e 35
8.7.1 Simulator MODEL FILE Parameter..........ccooiiiiiiii e, 35
8.7.2 Simulator MODEL FILE DATE Parameter.........ccooooiiiiiiiiiiiiieceeeee, 35
8.7.3 Simulator NAME Parameter ..o, 35
8.7.4 Simulator VERSION Parameter..........cooiiiiiiii e, 35
8.7.5 Simulator COMPLIANCE Parameter..........ccccooiiiiiiii e, 36
8.7.6 Simulator TERM_GROUP Parameter ..o 36
8.8 HANDLING, PACKING, STORAGE and ASSEMBLY DATA ... 36
8.8.1 DELIVERY_FORM Parametero 36
8.8.2 PACKING_CODE Parameter.o 36
8.8.3 ASSEMBLY Parameterso, 36
8.9 WAFER SPECIFIC DAT A e 37
8.9.1 WAFER_SIZE Parameter ..o 37
8.9.2 WAFER_THICKNESS Parameter ... 37
8.9.3 WAFER_THICKNESS_ TOLERANCE Parameter...........cooooiiiiiiiiiiieans 37
8.9.4 WAFER_DIE_STEP_SIZE Parameter........ccooiiiiiiii e 38
8.9.5 WAFER_GROSS_DIE_COUNT Parameter.......ccooiiiiiiiiiiiieieeeeeen 38
8.9.6 WAFER_INDEX Parameter ..o 38
8.9.7 WAFER_RETICULE_STEP_SIZE Parameter.......ccoooviiiiiiiiiiiiiceeen 38
8.9.8 WAFER_RETICULE_GROSS_DIE_COUNT Parametercccccoeieiiinaans. 39
8.9.9 WAFER_INK Parametersoooiiii e 39
8.10 BUMP TERMINATION SPECIFIC DAT A e 39

8.10.1 BUMP_MATERIAL Parameter ... 39

BS EN 62258-2:2011

-4 - 62258-2 © IEC:2011

8.10.2 BUMP_HEIGHT Parameter ... 40

8.10.3 BUMP_HEIGHT_TOLERANCE Parameter..........ccoooiiiiiiiiiiiiieeeiieeeeeenn 40

8.10.4 BUMP_SHAPE Parameter..... ..o 40

8.10.5 BUMP_SIZE Parameter ..o 40

8.10.6 BUMP_SPECIFICATION_DRAWING Parameter..........cccoooveiiiiiiiiiiiiieins 41

8.10.7 BUMP_ATTACHMENT_METHOD Parametercccoiiiiiieiiiiiiiiieeeeeenn 41

8.11 MINIMALLY PACKAGED DEVICE (MPD) SPECIFIC DATA. ... 41

8.11.1 MPD_PACKAGE_MATERIAL Parameterccoiiiiiiiiiiiii e 41

8.11.2 MPD_PACKAGE_STYLE Parameterccocouiiiiiiiiiee e 41

8.11.3 MPD_CONNECTION_TYPE Parameter..........coooiiiiiiiiiii e 42

8.11.4 MPD_MSL_LEVEL Parameter........ccooouiiiiiiii e 42

8.11.5 MPD_PACKAGE_DRAWING Parameter.........ccccouiiiiiiiiiiiieiiieeee e 42

8.12 QUALITY, RELIABILITY and TEST DATA .. e 42

8.12.1 QUALITY Parameters ... 42

8.12.2 TEST Parameters ... 43

8.1 OTHER DA T A e e e e e e e e e e e e e e e anns 43

8.13.1 TEXT Parameters ... 43

8. 14 CONT RO L DA T A ittt e e e e e e e e e e e e e e anns 43

8.14.1 PARSE Parameters ... 43

Annex A (informative) An example of a DDX DEVICE bIOCKcciiiiiiiiiiiiiee, 47

Annex B (informative) Groups and Permutationcooiiiiiiiiii 49

Annex C (informative) A Typical CAD view from the DDX file block example given in

A X A L s 52

Annex D (informative) Properties for Simulation..............cooiii 53
Annex E (informative) TERMINAL and TERMINAL_TYPE graphical usage for CAD/CAM

Sy S M S e 55

Annex F (informative) Cross-reference with [EC 61360-4........cccviviiiiiiiiiiiieie e 58

Annex G (informative) Notes on VERSION and NAME parameters..........ccoooiviiiiiiiniiincinncennn. 61

Annex H (informative) Notes on WAFER parameterscccooiiiiiiiiiiiici e 62

Annex | (informative) Additional NOLES ... 64

Annex J (informative) DDX Version hiStOrycooiiiiiiiii e 65

Annex K (informative) Parse CONtrol.... ... 68

Figure 1 — Relationship between geometric centre and geometric origin...........c..cooeiiiiinnns 20

Figure C.1 — CAD representation of DDX example from Annex Accoooiiiiiiiiiiiieieecee, 52

Figure E.1 — Highlighting the MX and MY orientation propertiescccocooiiiiiiiiin. 56

Figure E.2 — Highlighting the angular rotational orientation propertiescccooiiiiiiiinni. 57

Figure H.1 — lllustrating the WAFER parameters..........coooiiiii e 63

Table 1 — Terminal Shape tyYPeS .. u e 25

Table 2 — Terminal shape CO-0rdiNatesScouiiiiiiii e 26

Table 3 — Terminal 1O tYPeS ... e 28

Table 4 — Substrate Connection Parameters............oooiiiiiiiiiiiii e 33

Table F.1 — Parameter List .. .o e 58

Table J.1 — Parameter Change History List........ccooiiiiiiii e 65

http://dx.doi.org/10.3403/01063540U

BS EN 62258-2:2011
62258-2 © IEC:2011 -7 -

INTRODUCTION

This International Standard is based on the work carried out in the ESPRIT 4" Framework
project GOODDIE which resulted in publication of the ES 59008 series of European
specifications. Organisations that helped prepare this document include the ESPRIT ENCAST
and ENCASIT projects, the Die Products Consortium, JEITA, JEDEC and ZVEI.

The structure of this International Standard as currently conceived is as follows:

Under main title: IEC 62258: Semiconductor die products

Part 1:
Part 2:
Part 3:

Part 4:
Part 5:
Part 6:
Part 7:
Part 8:

Procurement and use
Exchange data formats

Recommendations for good practice in handling, packing and storage
(Technical report)

Questionnaire for die users and suppliers (Technical report)
Requirements for information concerning electrical simulation
Requirements for information concerning thermal simulation
XML schema for data exchange (Technical report)

EXPRESS model schema for data exchange (Technical report)

Further parts may be added as required.

BS EN 62258-2:2011
-8- 62258-2 © IEC:2011

SEMICONDUCTOR DIE PRODUCTS -

Part 2: Exchange data formats

1 Scope and object

This Part of IEC 62258 specifies the data formats that may be used for the exchange of data
which is covered by other parts of the IEC 62258 series, as well as definitions of all parameters
used according to the principles and methods of IEC 61360. It introduces a Device Data
Exchange (DDX) format, with the prime goal of facilitating the transfer of adequate geometric
data between die manufacturer and CAD/CAE user and formal information models that allow

data exchange in other formats such as STEP physical file format, in accordance with
SO 10303-21, and XML. The data format has been kept intentionally flexible to permit usage

beyond this initial scope.

It has been developed to facilitate the production, supply and use of semiconductor die
products, including but not limited to:

e wafers,
e singulated bare die,
e die and wafers with attached connection structures,

e minimally or partially encapsulated die and wafers.

This standard reflects the DDX data format at version 1.3.0

2 Normative references

The following referenced documents are indispensable for the application of this document. For
dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document (including any amendments) applies.

EC 62258-1, Semiconductor die products — Part 1: Procurement and use

IEC 61360-4:2005, Standard data element types with associated classification scheme for
electric components — Part 4: IEC reference collection of standard data element types,
component classes303-21

ISO 8601:2004, Data elements and interchange formats — Information interchange -
Representation of dates and times

ISO 6093:1985, Information processing — Representation of numerical values in character
strings for information interchange

IPC/JEDEC J-STD-033B:2007, Handling, Packing, Shipping and Use of Moisture/Reflow
Sensitive Surface Mount Devices

ISO 10303-21:2002, Industrial automation systems and integration - Product data
representation and exchange — Part 21: Implementation methods: Clear text encoding of the
exchange structure

http://dx.doi.org/10.3403/00572155U
http://dx.doi.org/10.3403/30055769U
http://dx.doi.org/10.3403/30090806
http://dx.doi.org/10.3403/03234467
http://dx.doi.org/10.3403/00168186

BS EN 62258-2:2011
62258-2 © IEC:2011 -9-

3 Terms and definitions

For the purposes of this document, the terms and definitions given in JEC 62258-1| apply.

4 Requirements

Specific reference for parameter variables is made to the IEC 61360 data element type (DET)
codes, which are defined in Part 4 of IEC 61360.

5 Device Data eXchange format (DDX) file goals and usage

5.1 To facilitate the transferral of data by electronic media from the device vendor to the end-
user for use within a CAD or CAE system, a data file format, Device Data eXchange, (DDX),
shall be used. This data file format has been deliberately kept flexible, to permit further
enhancements and additions for future use.

5.2 It is strongly recommended that Device Data eXchange files have the three letter DDX file
extension, and a Device Data eXchange file shall hereon be referred to as a DDX file.

5.3 Data that are to be transferred from a device vendor to a user shall be contained in a
single computer-readable DDX file, and the minimum contents of this file shall suffice a
geometric CAD/CAE software design system. The file shall be textually readable, to permit
simple manual verification.

5.4 The DDX file and its data contents shall be independent of both computer machine and
operating system.

5.5 The DDX file contents shall include mechanical and interconnectivity information, but may
additionally include electrical and functional data.

5.6 The DDX file may contain data for one or more devices, and shall be capable of being
used as a library file by a CAD/CAE software design system. The file may contain one or more
sets of data for the same device type, each having different delivery forms, such as bumped
die, bare die, and Chip-Scale packaging.

5.7 The DDX file shall be capable of being simply or automatically generated, such as by an
ASCII text editor or a spreadsheet.

5.8 The DDX file shall be capable of referencing additional external files, such as simulation
and thermal model files.

5.9 All data shall be defined in such a way that conversion to or from other exchange formats
is possible, such as GDSII and CIF for geometric data of die. As close compatibility to the
existing DIE (Die Information Exchange) data as possible is desired, to facilitate simple
translation of partial DIE data files.

5.10 Definitions of parameters shall be in conformity with IEC 61360 (refer to Clause 5 of

EC 62258-1).

6 DDX file format and file format rules

NOTE 1 Version 1.2.1 of DDX supersedes version 1.0.0 contained in ES 59008-6-1.

NOTE 2 Version 1.3.0 of DDX supersedes version 1.2.1 contained in |[EC 62258-2:200§.

http://dx.doi.org/10.3403/30055769U
http://dx.doi.org/10.3403/30055769U
http://dx.doi.org/10.3403/30079666

BS EN 62258-2:2011
-10 - 62258-2 © IEC:2011

Refer to Clause 1 for the DDX version of this standard.

6.1 Data validity

6.1.1 All data not complying with the data syntax (refer to 7.3) shall be treated as a remark
and, as such, ignored.

6.1.2 All mandatory data shall be present. Missing data shall be flagged as an error,
rendering that data unusable.

6.1.3 Mathematical operations, calculations or formulae shall not be permitted within numeric
data.

6.2 Character set

6.2.1 The DDX file shall be an ASCII compatible text file with suitable line termination. Line
termination will depend upon the operating system. DOS/Windows © generally uses a
carriage/line-feed <CR/LF> terminator (ASCII 0Dh/0Ah), whereas UNIX® invariably relies solely
upon a line-feed <LF> (ASCII 0x0A) terminator, the carriage return <CR> (ASCII 0x0D) being
present by implication.

6.2.2 ASCII characters 0x00 to Ox7F are permitted, ASCII characters 0x80 to OxFF shall be
ignored.

6.2.3 All text data shall be case independent.

6.2.4 Space characters (ASCII 20h) and tab characters (ASCIl 09h) shall both be treated as
space separators, multiple space and tab characters will syntactically be treated as a single
space separator.

6.3 SYNTAX RULES

6.3.1 All data lines shall be terminated with a semicolon: “;”.
6.3.2 A comma “,” shall be used as a data separator.

6.3.3 Lines beginning with a hash “#” shall be treated as an intentional comment. All data on
that line shall be ignored.

6.3.4 Underscores “_” shall be ignored in a variable or property name, and may be used as
intermediate name separators. Underscores are valid within textual string and name data.

6.3.5 Braces are used to open and close structures or BLOCKs. An open brace “{* shall be
used to begin a structure or block, and a close brace “}” shall be used to terminate a structure
or block.

6.3.6 Brackets “()” shall be permitted, then ignored, in numeric data for clarity (e.g. in co-
ordinate pairs).

6.3.7 To accommodate typical spreadsheet CSV (Comma Separated Variable) format outputs,
textual data may be inside double quotes “’, and matching pairs of double quotes shall be
ignored.

6.3.8 There is no specific line continuation character. A textual string opened with a double
quote “” shall close with a matching double quote ”’, irrespective of the number of line breaks
within that text. As all DDX commands terminate with a semicolon, the non-textual data will be

11

BS EN 62258-2:2011
62258-2 © IEC:2011 -11-

deemed to have ended at that semicolon. Textual data will be deemed to have ended at the
semicolon following the closing double quote. Textual data not enclosed within double quotes
may not include line break or control characters, and shall terminate at the first occurrence of a
semicolon. Textual data following this semicolon will be treated as erroneous data and
discarded.

6.3.9 For practicality, readability and ease of line parsing, is it recommended that the line
length (between line termination characters) does not exceed 255 characters. It is further
strongly recommended that a maximum limit of 1 023 characters per line be imposed to
prevent other parsing software from having an input buffer overrun error.

7 DDX file content

7.1 DDX file content rules
711 Block structure

Data shall only exist within a block structure, referred to as a DEVICE block, and one or more
DEVICE blocks, each containing data, may exist within a single file. Each DEVICE block is
unique, and shall only contain data relevant to a single device, having a specific device form.
All data within each DEVICE block shall be treated as being local and unique only to that block.
(Refer to0 6.3.4)

7.1.2 Parameter types

There are two types of parameters use for data, structures and variables, and these
parameters shall only exist with a DEVICE block:

e a structure determines a set or multiple sets of data having different data types.

e avariable is equated to a single or multiple data of a single data type.
71.3 Data types

Data types are as follows.

7.1.3.1 Textual string data

All ASCII characters from ASCII 20h to ASCII 7Fh are permitted within textual data, characters
including and above ASCII 80h shall be ignored. Consideration may be given to special print
and display control characters to permit the printing of underscore or overscore characters. It is
advised that textual string data is placed within pairs of double quotes, refer to 6.3.7.

7.1.3.2 Textual name data

All names shall be unique, and shall only consist of the following characters from the ASCII
character set: -

AZ a-z 09 $ -%&! @ _ .

When textual name data are used to form a file name, it is advisable for the name to be limited
to eight characters for the file name and to three characters for the file extension, with a point
“.” used as the name/extension delimiter, in line with many common operating systems. It is
advisable for textual name data to be placed within pairs of double quotes (refer to 6.3.7).

Note that all textual name data is case independent, and spaces are not permitted within a
textual name.

BS EN 62258-2:2011
-12 - 62258-2 © IEC:2011

7.1.3.3 Real numeric data

Real numeric data shall comply with]SO 6093:1984, and shall consist of the characters: -
09 + - .E e

The data values may be signed, and use engineering or scientific notation, but shall not include
dimensional units, e.qg.

90008, 9000.80, 9.0008ES, -5207, -5.207E3, 0.102, 102E-3

Note that a comma “,” is used as a data separator, and therefore shall not be used as a

replacement for a decimal point “.”.

71.3.4 Integer numeric data

Integer numeric data values shall comply to |SO 6093:1985, and only the characters 0 to 9 are
permitted. Integers shall be unsigned, and shall not include dimensional units.

For practical purposes, an integer shall be limited to 16-bit resolution, i.e. integer values
between and including 0 to 65536 only are acceptable.

7.1.3.5 Date data

Date data values shall comply with]SO 8601:2004 format, and may include time information
as well, e.g.

“YYYY-MM-DD”, “YYYYMMDD”, “YYYY-MM-DDTHH:MM:SS”.

7.1.4 Forward references

To permit single-pass parsing, no variable identifier or variable name shall be referenced prior
to being defined.

7.1.5 Units

All units shall belong to the Sl system, apart from the geometric unit of the micron (10-8m), the
inch and the mil (10=3 inch). Only one unit of dimension shall be permitted within a single
DEVICE block. Note that the inch and the mil are non-preferred units, and are only present due
to continued common usage.

7.1.6 Co-ordinate data

In all co-ordinate data, the X co-ordinate shall precede the Y co-ordinate and the Y co-ordinate
shall precede the Z co-ordinate (i.e. X,Y or X,Y,Z).

The X co-ordinate shall be the horizontal axis (numerically left to right), the Y co-ordinate shall
be the vertical axis (numerically bottom to top), and the Z co-ordinate shall be depth axis
(numerically near to far).

71.7 Reserved words

All parameter names shall be considered as reserved and no variable identifier or variable
name shall be permitted to have the same name. This restriction does not apply to free form
textual data within quotes or double quotes (as 7.1.3.1 and 7.1.3.2).

http://dx.doi.org/10.3403/00168186
http://dx.doi.org/10.3403/00168186
http://dx.doi.org/10.3403/03234467

BS EN 62258-2:2011
62258-2 © IEC:2011 -13 -

7.2 DDX DEVICE block syntax

DEVICE device_name device_form {
relevant die data
}

The DDX file may contain one or more DEVICE blocks, all data pertaining to a particular device
shall be embedded within the relevant block. (Refer to clause 6.1.1 and clause 7.1.1).

A DEVICE block is opened by the DEVICE keyword and opening brace “{*, (as shown), and the
DEVICE block is closed by the matching closing brace “}".

Data not within a DEVICE block structure shall be treated as a remark, permitting the future
addition of checksum information, file creation date and historical data etc., within the DDX file,
without affecting the actual device data.

The device_name is the given name by which the device shall be referred, and the
device_form is the mechanical form of the device to which the block data pertains.

Valid data for the device_form variable are:

e bare_die,
e bumped_die,
e lead_frame_die

¢ minimally_packaged_device (or MPD).

Further device_form types may be added at a later stage, refer to |EC 61360-4:2005, AAD004-
001, “die type code”, for further details.

Only one DEVICE block having device_name of type device_form shall be present within the
DDX file, but duplication of either device_name or device_form is permissible.

An example of a typical DDX file arrangement of DEVICE blocks:-

DEVICE namel bare die {
relevant data for device “namel” as a bare die..

}
DEVICE namel bumped die {
relevant data for device “namel”as a bumped die..

}
DEVICE name?2 mpd {

relevant data for device “name2” as a minimally packaged device..

}
DEVICE nameZ bare die {
relevant data for device “name2” as a bare die..

}
DEVICE namel mpd {

relevant data for device “namel” as a minimally packaged device..

}
DEVICE name3 bare die {

relevant data for device “name3” as a bare die..

}

In the above example, there are three occurrences of a DEVICE block for device “name1”, and
two occurrences of a DEVICE block for device “name2”, but each of these DEVICE blocks
specify a different device_form. The order or sequencing of the DEVICE blocks has no
relevance.

http://dx.doi.org/10.3403/30090806

7.3

DDX data syntax

Property = value [, value];

BS EN 62258-2:2011

-14 - 62258-2 © IEC:2011

<property>[equate separator]<value/variable {separator <value/variable> }>[data terminator][line terminator]

<property>
[space]

[equate separator]
[separator]

[data terminator]
[line terminator]

For example:

thickness =
Thickness=470;

geometric_units=

geometricunits
GeometricUnits=
terminal type =
Terminal Type
TerminalType =
TERMINALTYPE

T2,

Parameter name

{space character (20h) or tab character (09h)}0+
[space]{equal =}[space]

[space]{comma ,}[space]

[space]{semicolon;}

{CR or CR/LF}

100.0 ;

micron;

= micron;
“millimetres”;
T1l, Circle, 220;
T2, Rectangle, 200 ,
O, (200, 250);
= T2, O, 200 ,

250;

250;

Thus, terminal_type, Terminal_Type, TerminalType and TERMINALTYPE will all reference

the same parameter name.

8 Definitions of DEVICE block parameters

8.0 General usage notes
8.0.1 Device form notes
Where a parameter is unique to the device_form, as defined in the DEVICE block, the

parameter will be preceded with the following ...

8.0.1.1 DIE_ data parameter is unique to bare die or bumped die form

8.0.1.2 BUMP_ data parameter is unique to only bumped die

8.0.1.3 MPD_ data parameter is unique to a minimally packaged device, such as a
CSP

8.0.1.4 WAFER_ data parameter is unique to a die device delivered at wafer level

8.0.1.5 LEAD_ data parameter is unique to a die device with attached lead frame.

8.0.2 Data Parameter Items

Within the following list of data parameters (see 8.1 onwards), the following items are shown:

8.0.2.1 the parameter name, as used syntactically within the DDX file,

8.0.2.2 the parameter type, indicating either a variable or structure data type,

8.0.2.3 the parameter function, determining its usage and meaning,

8.0.2.4 the parameter value, indicating the type of data expected,

8.0.2.5 any parameter limitation, indicating any limitation within the DEVICE block,

8.0.2.6 parameter dependencies, highlighting parameters that need to be declared prior to
invocation,

8.0.2.7 one or more practical examples, and

BS EN 62258-2:2011
62258-2 © IEC:2011 - 15 -

8.0.2.8 any relevant notes.

A brief table of parameters is given in Annex F, and a working example of a full DDX DEVICE
block is given in Annex A, with its expected graphical output in Annex C.

All parameters shall conform to the relevant IEC 61360 Data Element Type (DET) codes, as
defined in |[EC 61360-4:2005. Refer to Annex F for a cross-reference table.

8.0.3 Terms and conventions

A point of electrical connection is called a terminal. This may be a bond-pad for a bare die, and
may equally refer to the landing or connection footprint area required by an interconnection
medium. It is a common convention for die to have the initial terminal, numbered 1, in the
upper left hand corner of the die, and for terminal or pin numbering to continue counter-
clockwise in sequence.

The X co-ordinate dimensions are for the length in the horizontal plane with increasing positive
values to the right. The Y co-ordinate dimensions are for the width in the horizontal plane with
increasing positive values away from the user’s view. The Z co-ordinate dimensions are for
height in the vertical direction with increasing positive values upwards (towards the viewer).

As a point of reference, all die components, including bumped die, are generally viewed from
above with the active side upwards.

8.0.4 Summary of general rules

8.0.4.1 All valid data shall be contained within a DEVICE block (refer to 7.1.1).
8.0.4.2 Any local or unique parameter, such as a name, shall be defined prior to its usage.

8.0.4.3 All parameters shall conform to the relevant IEC 61360 DET codes, as defined in
Part 4 of IEC 61360 (refer to 5.8 and Annex F).

8.0.4.4 The units of measurement, GEOMETRIC_UNITS, shall be defined before any
geometric variable is defined.

8.0.4.5 The geometric origin, GEOMETRIC_ORIGIN, and the geometric view,
GEOMETRIC_VIEW, shall be defined before any geometric co-ordinates are defined.

8.0.4.6 The TERMINAL_COUNT parameter shall be defined before any TERMINAL
parameters are referred to and the number of TERMINAL parameters shall not
exceed the TERMINAL_COUNT value.

8.0.4.7 The TERMINAL_TYPE_COUNT parameter shall be defined before any
TERMINAL_TYPE parameters are referred to and the number of
TERMINAL_TYPE parameters shall not exceed the TERMINAL_TYPE_COUNT
value.

8.1 BLOCK DATA
8.1.1 DEVICE_NAME Parameter

This is defined within the DEVICE block heading as the device_name parameter

Parameter Name device_name

Parameter Type Variable, refer to 7.2 on DEVICE blocks

Parameter Function Defines the device manufacturer's type number or the reference name.
Parameter Values Textual name data, as 7.1.3.2

Example SN74LS04

Reference See 7.1.7, 7.2 and Annex G.

http://dx.doi.org/10.3403/30090806

BS EN 62258-2:2011
- 16 - 62258-2 © IEC:2011

8.1.2 DEVICE_FORM Parameter

This is defined within the DEVICE block heading by the device_form parameter.

Parameter Name device_form

Parameter Type Variable, refer to 7.2 on DEVICE blocks
Parameter Function Defines the physical form of the device.
Parameter Values Textual string data, as 7.1.3.1

Example bare die, bumped die, MPD
Reference Subclause 7.2 and Annex G.

8.1.3 BLOCK_VERSION Parameter

Parameter Name BLOCK_VERSION

Parameter Type Variable

Parameter Function Specifies the version number and/or issue number of the DEVICE
block.

Parameter Values Textual string data, as 7.1.3.1

Limitations Shall be declared only once within a single DEVICE block.

Example BLOCK VERSION = “1.0A";

Reference Annex G.

8.1.4 BLOCK_CREATION_DATE Parameter

Parameter Name BLOCK_CREATION_DATE

Parameter Type Variable

Parameter Function Specifies the date that the DEVICE block was created and last edited.
Parameter Values Date, as 7.1.3.5

Limitations Shall be declared only once within a single DEVICE block.
Example BLOCK CREATION DATE = “1997-12-25";
Reference Annex G.

8.1.5 VERSION Parameter

Parameter Name VERSION

Parameter Type Variable

Parameter Function Specifies the revision/version number of the DDX standard, (currently
at version 1.3.0), to which this DEVICE block conforms.

Parameter Values Textual string data, as 7.1.3.1

Limitations Shall be declared only once within a single DEVICE block.

Example VERSION = “1.3.07;

Notes Refer to Clause 1 for the version of this standard document. Note that

this document may not be the latest version, so refer to your Standards
Authority if in doubt.
Reference Annex G.

8.2 DEVICE DATA

8.2.1 DIE_NAME Parameter

Parameter Name DIE_NAME

Parameter Type Variable

Parameter Function Specifies the name of the die or mask set from which the die was
produced. This may be different to the DEVICE_NAME parameter.

Parameter Values Textual string data, as 7.1.3.1

Limitations Shall be declared only once within a single DEVICE block.
Example DIE NAME = “XXC345”;

Reference Annex G.

8.2.2 DIE_PACKAGED_PART_NAME Parameter
Parameter Name DIE_PACKAGED_PART_NAME

BS EN 62258-2:2011
62258-2 © IEC:2011

Parameter Type
Parameter Function

Parameter Values
Example
Notes

17 -

Variable

Specifies the manufacturers part name for the equivalent packaged
part, where available or applicable. This may be different to the
DEVICE_NAME parameter.

Textual string data, as 7.1.3.1

DIE PACKAGED PART NAME = “SN5405JN”;

Used to reference the identical packaged die part, not merely similar
function, when supplied by the same manufacturer in packaged form.

8.2.3 DIE_MASK_REVISION Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Limitations
Example

Notes

Reference

DIE_MASK_REVISION

Variable

Specifies the mask revision details associated with that particular
version on the die.

Textual string data, as 7.1.3.1

Shall be declared only once within a single DEVICE block.

DIE MASK REVISION = “RTDACl”;

DIE MASK REVISION = “9033-2-101-M5/2";

Intended to ensure that the die data matches the geometric version of
the actual die.

Annex G.

8.2.4 MANUFACTURER Parameter

Parameter Name
Parameter Type
Parameter Function
Parameter Values
Limitations
Example

MANUFACTURER

Variable

Specifies the manufacturer or fabrication house of the device.
Textual string data, as 7.1.3.1

Shall be declared only once within a single DEVICE block.
MANUFACTURER = “Fuzziwuz Logic Inc.”;

8.2.5 DATA_SOURCE Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Limitations
Example

DATA_SOURCE

Variable

Specifies the source of the device data, essentially where this is
different from the manufacturer or fabrication house.

Textual string data, as 7.1.3.1

Shall be declared only once within a single DEVICE block.

DATA SOURCE = “AnyChip Technology Ltd.”;

DATA SOURCE = “Good-Die database”;

8.2.6 DATA_VERSION Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Limitations
Example
Reference

DATA_VERSION

Variable

Specifies the revision of the data source use to determine the
parameters within the DEVICE block. This parameter is linked to 8.2.5,
the DATA_SOURCE parameter.

Textual string data, as 7.1.3.1

Shall be declared only once within a single DEVICE block.

DATA VERSION = “Initial Issue 1.07;

Refer to Annex G.

8.2.7 FUNCTION Parameter

Parameter Name
Parameter Type
Parameter Function
Parameter Values

FUNCTION

Variable

A brief description of the devices’ function.
Textual string data, as 7.1.3.1

Limitations
Example
Notes

BS EN 62258-2:2011
- 18 - 62258-2 © IEC:2011

Shall be declared only once within a single DEVICE block.

FUNCTION = “16 Bit Microprocessor”;

IEC 61360-4:2004 specifies certain functional and application classes
that may be used.

8.2.8 IC_TECHNOLOGY Parameter

Parameter Name
Parameter Type
Parameter Function
Parameter Values
Limitations
Example

IC_TECHNOLOGY

Variable

Specifies the fabrication technology of the device.

Textual string data, as 7.1.3.1

Shall be declared only once within a single DEVICE block.

IC TECHNOLOGY = ™“CMOS”;

IC TECHNOLOGY = “bipolar”;
IC TECHNOLOGY = “bicmos”;
IC TECHNOLOGY = "“GaAs”;

8.2.9 DEVICE_PICTURE_FILE Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Example

Notes

Reference

DEVICE_PICTURE_FILE

Variable

Specifies the name(s) of the graphics or picture file(s) representing the
device.

Textual name data, as 7.1.3.2

DEVICE PICTURE FILE = “DIE0O01.JPG”;

DEVICE PICTURE FILE = “AAOBOC.SF”, “FRED.GIF”;

The picture file may be an actual photograph, or a pictorial
representation of the device. The file extent should indicate the file
format used. Only file names, without relative or absolute path names,
shall be used.

Multiple parameters (picture file names) may be introduced within a
single declaration, or multiple declarations maybe be employed to the
same effect.

There is no scaling or positional data requirement.

Annex |, Notes 3 and 4.

8.2.10 DEVICE_DATA_FILE Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Example

Notes

Reference

DEVICE_DATA_FILE

Variable

Specifies the name(s) of a file(s) containing pertinent data, such as
technical specifications, procurement documents or general data-
sheets.

Textual name data, as 7.1.3.2

DEVICE DATA FILE = “SpecSheet.PDF”;

DEVICE DATA FILE = “AAOBOC.DOC”, “AROBOC.TXT”;

The data file may be of any recognised format. The file extent should
indicate the file format used. Only file names, without relative or
absolute path names, shall be used.

Multiple parameters (data file names) may be introduced within a single
declaration, or multiple declarations maybe be employed to the same
effect.

Annex |, Notes 3 and 4.

http://dx.doi.org/10.3403/30090806

BS EN 62258-2:2011
62258-2 © IEC:2011

—19 -

8.3 GEOMETRIC DATA

8.3.1 GEOMETRIC_UNITS Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values

Limitations
Example

Notes

Reference

GEOMETRIC_UNITS

Variable

Specifies the geometric units that shall apply to all geometric values
within the DEVICE block.

Textual string data, as 7.1.3.1.

One of the following values:

= micrometre, or micron,

= metre,
= millimetre,
= inch

= mil (1.0E-3 inch)

Shall be declared only once within a single DEVICE block.

GEOMETRIC UNITS = microns;

GEOMETRIC UNITS = mil;

This GEOMETRIC_UNITS parameter shall be declared before any
geometric units are used. The micron is generally the default
dimensional unit for die dimensions, and the inch and mil are non-
preferred units.

Subclause 7.1.5 and Annex E.

8.3.2 GEOMETRIC_VIEW Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values

Limitations
Example

Notes

Reference

GEOMETRIC_VIEW

Variable

Specifies the geometric view that shall apply to all geometric shapes
within the DEVICE block.

Textual string data, as 7.1.3.1.

One of the following values:

e TOP meaning active side upwards, and

e BOTTOM meaning active side downwards.

Shall be declared only once within a single DEVICE block.

GEOMETRIC VIEW = top;

GEOMETRIC VIEW = “bottom”;

The GEOMETRIC_VIEW parameter shall be declared before any
geometric shapes are created. It would be common for a bare die and
packaged part to be viewed in the “TOP” view, whereas bumped die
may well be viewed from the “BOTTOM?” (i.e. through the substrate).
Annex E.

8.3.3 GEOMETRIC_ORIGIN Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Dependencies
Limitations
Example

Notes

Reference

GEOMETRIC_ORIGIN

Variable

Determines the X- and Y-geometric origin from which all other co-
ordinate pairs are referenced. The origin is given with respect to the
geometric centre of the die in the units specified by the
GEOMETRIC_UNITS parameter.

Real X co-ordinate origin, Real Y co-ordinate origin, as 7.1.3.3
GEOMETRIC_UNITS, SIZE

Shall be declared only once within a single DEVICE block.

GEOMETRIC ORIGIN = -6000,-7500;

Dimension values are in GEOMETRIC_UNITS.

The origin co-ordinate pair values relate to the geometric die centre,
refer to Figure 1. for further explanation.

Annex E.

BS EN 62258-2:2011
-20 - 62258-2 © IEC:2011

(—Xsize/2, Ysize/2) (Xsizel2, Ysizel2)

Geometric centre of device
Size = Xsize, Ysize ;
+(0,0)

Geometric origin = Xo, Yo;
+ (Xo, Yo)

(—Xsizel2, —Ysizel2) (Xsize/2, —Ysize/2)

IEC 895/11

Figure 1 — Relationship between geometric centre and geometric origin

The GEOMETRIC_ORIGIN is treated as an offset for all co-ordinate data, so that the
GEOMETRIC_ORIGIN values are added to all individual co-ordinate data pairs to give the X-
and Y- position relative to the geometric centre of the device.

The primary use of the GEOMETRIC_ORIGIN parameter is to permit the centring of the origin
on a terminal or other geometric feature, rather than an arbitrary geometric position, as, in
practice, SIZE may be subject to an asymmetric tolerance so that all related references to this
geometric centre could therefore also be subject to a tolerance error.

8.3.4 SIZE Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Dependencies
Limitations
Example

Notes

Reference

SIZE

Variable

Determines the X- and Y- dimensions of the device, and optionally
specifies its shape as an ellipse.

Real X-dimension, Real Y-dimension, (as 7.1.3.3), {Ellipse}
GEOMETRIC_UNITS, GEOMETRIC_VIEW

Shall be declared only once within a single DEVICE block.

SIZE = 250, 500.5;

SIZE = 350, 350, E;

Dimension values are in GEOMETRIC_UNITS.

In the latter example, the character “E” as the 3 parameter defines an
ellipse, in this instance a circular die of 350 GEOMETRIC_UNITS in
diameter.

Annex E.

8.3.5 SIZE_TOLERANCE Parameter

Parameter Name
Parameter Type
Parameter Function
Parameter Values

SIZE_TOLERANCE

Variable

Specify the geometric tolerance(s) of the SIZE parameter values.
Real in GEOMETRIC_UNITS, as 7.1.3.3

BS EN 62258-2:2011

62258-2 © IEC:2011 -21-

Dependencies GEOMETRIC_UNITS, SIZE, GEOMETRIC_VIEW
Limitations Shall be declared only once within a single DEVICE block.
Example SIZE TOLERANCE 0.5;

SIZE TOLERANCE -0.2,0.5;
SIZE TOLERANCE -0.2,0.5,-0.1,0.4;
Notes One, two or four values may be given:-

Where a single tolerance value is given, the tolerance shall be taken as
an unsigned * value for both the X- and Y-axis.

Where two tolerance values are given:-
the first value shall be taken as the minimum for both the X-axis
and the Y-axis,
the second value shall be taken as the maximum for both X-
axis and the Y-axis.

Where four tolerance values are given:-
the first value shall be taken as the minimum for the X-axis,
the second value shall be taken as the maximum for the X-axis,
the third value shall be taken as the minimum for the Y-axis,
and
the fourth value shall be taken as the maximum for the Y-axis.

8.3.6 THICKNESS Parameter

Parameter Name THICKNESS

Parameter Type Variable

Parameter Function Determines the thickness (Z-dimension) of the device.
Parameter Values Real Z-dimension value, as 7.1.3.3

Dependencies GEOMETRIC_UNITS

Limitations Shall be declared only once within a single DEVICE block.
Example THICKNESS = 10.5;

Notes Dimension values are in GEOMETRIC_UNITS.

8.3.7 THICKNESS_TOLERANCE Parameter

Parameter Name THICKNESS_TOLERANCE

Parameter Type Variable

Parameter Function Specifies the tolerance(s) of the THICKNESS parameter that may be
expected due to normal process variations.

Parameter Values Real in GEOMETRIC_UNITS, as 7.1.3.3
Dependencies GEOMETRIC_UNITS, THICKNESS
Limitations Shall be declared only once within a single DEVICE block.
Example THICKNESS TOLERANCE = 2.5;
THICKNESS TOLERANCE = -1.2,1.5;
Notes One or two values may be given:-

Where a single tolerance value is given, the tolerance shall be taken as
an unsigned + value.

Where two tolerance values are given:-
the first value shall be taken as the minimum, and
the second value shall be taken as the maximum.

8.3.8 FIDUCIAL_TYPE Parameter

Parameter Name FIDUCIAL_TYPE

Parameter Type Structure

Parameter Function The FIDUCIAL_TYPE structure assigns a fiducial type name and
defines the associated graphic file and size of an individual fiducial
type. The structure may be used to define a single fiducial type, or a
multiple of fiducial types.

Dependencies GEOMETRIC_UNITS, GEOMETRIC_VIEW

Notes A fiducial only exists as a graphic shape within a rectangle, the graphic
data for the fiducial is held within an external graphic file. The co-

BS EN 62258-2:2011
-22 - 62258-2 © IEC:2011

ordinate pairs for this rectangle are relative only to the fiducial shape
type, and are used as references when placing the shape.
Reference Annexes E and |.

Single FIDUCIAL_TYPE definition syntax:

FIDUCIAL_TYPE Fiducial type name = Fiducial_file_name, X-size, Y-size;
FIDUCIAL_TYPE Fiducial _type _name = Fiducial_file_name, X-size, Y-size;

Multiple FIDUCIAL_TYPE definition syntax:

FIDUCIAL_TYPE {
Fiducial _type _name = Fiducial_file_name, X-size, Y-size;
Fiducial _type _name = Fiducial_file_name, X-size, Y-size;
Fiducial _type _name = Fiducial_file_name, X-size, Y-size;

where:

8.3.8.1 Fiducial_type_name

Textual reference name (as 7.1.3.2) for a fiducial type, which shall be unique within the
DEVICE block.

8.3.8.2 Fiducial_file_name

This is the name of the file (as 7.1.3.2) that holds the fiducial as graphic data. The graphic data
type shall be indicated by the file extension code, such as “BMP”, “GIF”, “DXF” etc. The data
type is not specified with this standard, and it is up to the CAD/CAM software as to what can
and cannot be displayed. The graphic shall be treated as being contained within a rectangle of
X-size, Y-size dimensions.

8.3.8.3 X-size, Y-size

These real numeric parameters (as 7.1.3.3) comprise a co-ordinate pair, and determine the
rectangle size of the fiducial graphic. The geometric centre of the fiducial graphic shall be
determined as being (X-size/2, Y-size/2).

Example 1

FIDUCIAL TYPE Fidl = “tile.bmp”, 200, 250;

This example describes a fiducial, found as an external file “tile.bmp”, uniquely referred to
as Fid1l, with an X-size of 200 units, and a Y-size of 250 units. The units are defined by the
GEOMETRIC_UNITS parameter.

Example 2

FIDUCIAL_TYPE {
fidul = “graphicl.bmp”, 200, 300;
fidu2 = “graphic2.dxf”, 500, 500;
fidu3 = “graphic3.gif”, 100, 100;
}

This multiple definition example describes three separate fiducial types and shapes:
= fidul is contained in file “graphicl.bmp”, of size 200 by 300 units.
= fidu? is contained in file “graphic2.dxf”, of size 500 by 500 units.
= fidu3 is contained in file “graphic3.gif”, of size 100 by 100 units.

BS EN 62258-2:2011
62258-2 © IEC:2011 - 23 -

8.3.9 FIDUCIAL Parameter

Parameter Name FIDUCIAL

Parameter Type Structure

Parameter Function The FIDUCIAL structure defines the location and orientation of each
individual graphic fiducial. As a structure, FIDUCIAL may be used to
define a single fiducial, or a multiple of fiducials.

Dependencies GEOMETRIC_VIEW, FIDUCIAL_TYPE, GEOMETRIC_UNITS, and
GEOMETRIC_ORIGIN.
Notes Each fiducial type name used shall have been previously declared in a

FIDUCIAL_TYPE invocation, and co-ordinate pair information shall
relate to the GEOMETRIC_ORIGIN of the device.
Reference Annex E.

Single FIDUCIAL definition syntax:

FIDUCIAL F_n = Fiducial_type _name, X-co., Y-co., orientation;
FIDUCIAL F_n = Fiducial _type _name, X-co., Y-co., orientation;

Multiple FIDUCIAL definition syntax:

FIDUCIAL {
F_n = Fiducial _type _name, X-co., Y-co., orientation;
F_n = Fiducial_type _name, X-co., Y-co., orientation;
F_n = Fiducial_type _name, X-co., Y-co., orientation;

where:

8.3.91 F_n

Unique fiducial identifier, where “n” is the actual fiducial number (Integer, as in 7.1.3.4),
numbering from top left anti-clockwise. Note that the underscore character is optional, it is
used for clarity only.

8.3.9.2 Fiducial_type_name

Textual name (as in 7.1.3.2) of a referenced FIDUCIAL_TYPE shape (as 8.3.8.1), which shall
have been previously declared, (refer to 7.1.4).

8.3.9.3 X-co

Numeric real X co-ordinate value (as 7.1.3.3) for location of the centre of the fiducial shape, in
units defined by the GEOMETRIC_UNITS parameter. This value is relative to the X co-ordinate
value of the GEOMETRIC_ORIGIN, and this parameter is identical in operation to that
described in 8.4.5.4.

8.3.9.4 Y-co

Numeric real Y co-ordinate value (as 7.1.3.3) for location of the centre of the fiducial shape, in
units defined by the GEOMETRIC_UNITS parameter. This value is relative to the Y co-ordinate
value of the GEOMETRIC_ORIGIN, and this parameter is identical in operation to that
described in 8.4.5.5.

8.3.9.5 Orientation

Orientation value, of integer values from 0 to 360 (see 7.1.3.4). This is the angle of clockwise
rotation in degrees about the geometric reference centre of the fiducial shape. If the letters
“MX” are included, then the orientation of the fiducial shape shall be mirrored in the X-axis,
similarly if the letters “MY” are included, then the orientation of the fiducial shape shall be

BS EN 62258-2:2011
- 24 - 62258-2 © IEC:2011

mirrored in the Y-axis. Both “MX” and “MY” may be present simultaneously (refer to Annex D
for a graphical representation), and all mirroring shall be done about the geometric reference
centre of the fiducial shape. Note that the mirroring operation shall be carried out first, then the
fiducial shall be rotated by the orientation angle. This parameter is identical in operation to that
described in 8.4.5.6

Example 1

FIDUCIAL Fid007 = fidul, 5000, 7000, MXO0;
This example declares that fiducial Fid007......

= is located at X = 5000 units, Y = 7000 units,
= is a FIDUCIAL_TYPE named “fidu1”, mirrored on the X-axis and orientated at 0°.

Example 2
FIDUCIAL F_18 = fiduX1l, 1000, 2200, 90;
This example declares that fiducial F_18

= jslocated at X = 1000 units, Y = 2200 units
* is aFIDUCIAL_TYPE named “fiduX1”, orientated (rotated) by 90° clockwise.

Example 3

FIDUCIAL ({
Fid007-fidul, 5000, 7000, MXO;
F 18 = fidux1l, 1000, 2200, 90;
}

This multiple fiducial definition example declares identical fiducial data to that shown in
Examples 1 and 2.

8.4 TERMINAL DATA

8.4.1 TERMINAL_COUNT Parameter

Parameter Name TERMINAL_COUNT

Parameter Type Variable

Parameter Function Specifies the number of electrical terminal or points of connection.
Parameter Values Integer, asin 7.1.3.4

Limitations Shall be declared only once within a single DEVICE block.
Example TERMINAL COUNT = 44;
Notes The TERMINAL_COUNT value shall be declared before any

TERMINAL declaration or usage.

8.4.2 TERMINAL_TYPE_COUNT Parameter

Parameter Name TERMINAL_TYPE_COUNT

Parameter Type Variable

Parameter Function Specifies the number of different connection or bond terminal types or
shapes.

Parameter Values Integer, asin 7.1.3.4

Limitations Shall be declared only once within a single DEVICE block.

Example TERMINAL TYPE COUNT = 4;

Notes The TERMINAL_TYPE_COUNT value shall be declared before any

TERMINAL_TYPE declaration or usage.

8.4.3 CONNECTION_COUNT Parameter

Parameter Name CONNECTION_COUNT
Parameter Type Variable, optional

BS EN 62258-2:2011
62258-2 © IEC:2011

Parameter Function

Parameter Values
Limitations
Example

Notes

— 25—

Specifies the maximum number of connections used by the TERMINAL
parameter. This parameter actually specifies the highest value for the
connection conn_N numbers used in the TERMINAL parameter
declaration (refer to 8.4.5.2).

Integer, as in 7.1.3.4

Shall be declared only once within a single DEVICE block.
CONNECTION COUNT = 4;

The CONNECTION_COUNT value should be declared before any
TERMINAL declaration or usage. It shall be used as a limit check for
the connection conn_N numbers. If the CONNECTION_COUNT
parameter is not declared, then no check will take place.

8.4.4 TERMINAL_TYPE Parameter

Parameter Name
Parameter Type
Parameter Function

Dependencies
Notes

Reference

TERMINAL_TYPE

Structure

The TERMINAL_TYPE structure assigns a type name and defines the
shape and size of an individual terminal type. As a structure,
TERMINAL_TYPE may be used to define a single terminal type, or a
multiple of terminal types.

GEOMETRIC_UNITS, GEOMETRIC_VIEW,
TERMINAL_TYPE_COUNT

The co-ordinate pairs are relative only to the terminal shape type, and
are used as references when placing the shape.

Annex E.

Single TERMINAL_TYPE definition syntax:

TERMINAL_TYPE Terminal _type name = Terminal_shape_type, Co-ordinates.,,,;
TERMINAL_TYPE Terminal _type name = Terminal_shape_type, Co-ordinates.,,,;

Multiple TERMINAL_TYPE definition syntax:

TERMINAL_TYPE {
Terminal _type_name = Terminal _shape_type, Co-ordinates .,,,;
Terminal _type_name = Terminal_shape_type, Co-ordinates .,,,;
Terminal _type_name = Terminal_shape_type, Co-ordinates .,,,;

where:

8.4.4.1 Terminal_type_name

Textual reference name for a terminal type, as in 7.1.3.2, which shall be unique within the

DEVICE block.

8.4.4.2 Terminal_shape_type

Determines the terminal shape type (only the first letter need be used):

Table 1 — Terminal shape types

Char DET data Shape
R RECT Rectangle,
C CIRC Circle,
E ELL Ellipse,
P POLY Polygon.

BS EN 62258-2:2011
- 26 — 62258-2 © IEC:2011

8.4.4.3 Co-ordinates

Real co-ordinate values (refer to Table 2), as in 7.1.3.3.

This specifies the relative co-ordinates for the terminal shape, and in doing so, determines the
geometric reference centre for the shape. The geometric reference centre of the shape will be
used by the TERMINAL co-ordinates (see 8.4.5.4 and 8.4.5.5) to place the shape, and all
rotation and mirroring will be about this geometric reference centre. Only the polygon shape
can have a geometric reference centre other than the natural “centre-of gravity”.

Table 2 — Terminal shape co-ordinates

Shape Co-ordinates Geometric reference centre

Rectangle X-size, Y-size The geometric centre (0,0) will occur at X-size/2:Y-
size/2

Circle Diameter The geometric centre (0,0) will occur at
diameter/2:diameter/2

Ellipse X-axis, Y-axis The geometric centre (0,0) will occur at X-axis/2, Y-axis
/2

Polygon X-co1, Y-CO1 ,...... An “N” sided polygon will have N pairs of co-ordinates,

X-con, Y-con geometrically centred upon (0,0), with the assumption

that the polygon shape will be completed with the vector
(Xcon,Ycon - Xco1,Ycoq)

Example 1

TERMINAL TYPE ShapeRl = Rectangle, 200, 250;

This example describes a rectangle, uniquely referred to as ShapeR1, with an X-axis
dimension of 200 units, and a Y-axis dimension of 250 units. The units are defined by the
GEOMETRIC_UNITS parameter.

Example 2

TERMINAL TYPE {

ShapeR1l = R, 200, 300;

ShapeC2 = C, 250;

ShapeE3 = E, 400, 200;

ShapeP4 = P, (150, 200), (=150, 200), (-150,-150), (150,-150) ;

}

This example describes four separate terminal types and shapes:

= ShapeR1 is a rectangular terminal having an X-axis dimension of 200 units and a Y-
axis dimension of 300 units,

= ShapeC2 is a circular terminal of 250 units in diameter,

= ShapeE3 is an elliptical terminal with the X-axis diameter of 400 units and Y-axis
diameter of 200 units, and

= ShapeP4 is a 4-sided polygonal terminal shape, with a geometric reference centre of
(0,0).

Note that only the first letter of the Terminal _shape type descriptor is used, and that the
Terminal_type _names are unique.

8.4.5 TERMINAL Parameter

Parameter Name TERMINAL
Parameter Type Structure

BS EN 62258-2:2011
62258-2 © IEC:2011 - 27 -

Parameter Function The TERMINAL structure defines the name, location, orientation and
electrical function of each individual connection terminal. As a structure,
TERMINAL may be used to define a single terminal, or a multiple of

terminals.
Dependencies TERMINAL_COUNT, CONNECTION_COUNT, GEOMETRIC_VIEW,
TERMINAL_TYPE, GEOMETRIC_UNITS, GEOMETRIC_ORIGIN.
Notes Each terminal type name used shall have been previously declared in a

TERMINAL_TYPE invocation, and co-ordinate pair information shall
relate to the GEOMETRIC_ORIGIN of the device. Refer to Annex E.

Single TERMINAL definition syntax:

TERMINAL T_n conn N, Terminal type name, X-co., Y-co., orient.,
Terminal name, IO type;
conn N, Terminal type name, X-co., Y-co., orient.,

Terminal name, IO type;

TERMINAL T_n

Multiple TERMINAL definition syntax:

TERMINAL {
T n = conn N, Terminal type name, X-co., Y-co., orient.,
Terminal name, IO type;
T n = conn N, Terminal type name, X-co., Y-co., orient.,
Terminal name, IO type;
T n = conn N, Terminal type name, X-co., Y-co., orient.,
Terminal name, IO type;
}
where:
8.4.5.1 T n

@9

Unique terminal identifier, where “n” is the actual terminal number (Integer, as 7.1.3.4),
numbering from top left anti-clockwise. Note that the underscore character is optional, it is
used for clarity only.

8.4.5.2 conn_N

Connection number, non-unique integer, as 7.1.3.4. This connection number is merely a place
reference, and may optionally refer to a package pin; need not be present, or may be zero, 0,
or left blank if unknown. The singular advantage of this connection number is in specifying and
identifying multiple terminals that need to be connected together. The value of this connection
number should be checked to ensure that it does not exceed the value determined by
CONNECTION_COUNT, when specified.

8.4.5.3 Terminal_type_name

Textual name, as 7.1.3.2, of a referenced TERMINAL_TYPE terminal shape (as 8.4.3.1), which
shall have been previously declared, (refer to 7.1.4).

8.4.5.4 X-co

Numeric real X co-ordinate value, as 7.1.3.3, for location of centre of the terminal shape, in
units defined by the GEOMETRIC_UNITS parameter. This value is relative to the X co-ordinate
value of the GEOMETRIC_ORIGIN.

BS EN 62258-2:2011
- 28 — 62258-2 © IEC:2011

8.4.5.5 Y-co

Numeric real Y co-ordinate value, as 7.1.3.3, for location of centre of the terminal shape, in
units defined by the GEOMETRIC_UNITS parameter. This value is relative to the Y co-ordinate
value of the GEOMETRIC_ORIGIN.

8.4.5.6 Orient

Orientation value, of integer values from 0 to 360, as 7.1.3.4. This is the angle of clockwise
rotation in degrees about the geometric reference centre of the terminal shape. If the letters
“MX” are included, then the orientation of the terminal shape shall be mirrored in the X-axis,
similarly if the letters “MY” are included, then the orientation of the terminal shape shall be
mirrored in the Y-axis. Both “MX” and “MY” may be present simultaneously (refer to Annex D
for a graphical representation), and all mirroring shall be done about the geometric reference
centre of the terminal shape. Note that the mirroring operation shall be carried out first, then
the terminal shall be rotated by the orientation angle.

8.4.5.7 Terminal_name

Textual name, non-unique, as 7.1.3.2. This terminal name is for user reference and graphic
display only, and may be omitted.

8.4.5.8 10_type

A single letter indicating the terminal pin function type as given in Table 3, not mandatory.
Further characters may be added as required.

Table 3 — Terminal 10 types

Letter Terminal Function

Input, digital

Output, digital

Bi-directional, digital

Ground connection

Supply, may be any supply type

Analog pin, input or output

No-connect pin, leave disconnected

Undetermined, user programmable 1/0

Test pin, connect only under manufacturers advice

Internally connected, do not connect.

Digital functional input pin, to be held at a logic High

rlfx{X|{d|lc|z|>P|<|®@|W|O

Digital functional input pin, to be held at a logic Low

T_n (see 8.4.5.1) shall always be unique, whereas the pin connection number (see 8.4.5.2),
conn_N, and terminal name (see 8.4.5.7), Terminal_name, need not be unique.

Example 1
TERMINAL Pin007 = 9, ShapeR1l, (5000, 7000), MXO0, VCCl, V;

This example declares that terminal “Pin007”......

= js connected to arbitrary connection # 9,
= s located at x = 5000 units, Y = 7000 units,

BS EN 62258-2:2011
62258-2 © IEC:2011 -29 -

is a TERMINAL_TYPE named “ShapeR1”, mirrored on the X-axis, orientated at 0°, and
is called “VCC1”, and
is a power supply pin.

Example 2

TERMINAL Conn0O8 = 17, ShapeP2, 5000, 7300, 90, gd2i, I
TERMINAL Conn0O9 = 17, ShapeP2, 5000, 7800, 90, gd2o, O

’
’

These example declare that terminals “Conn08” and “Conn09”.....

are both connected to arbitrary connection # 17,

are located at X = 5000 units, Y = 7300 units & X = 5000 units, Y = 7800 units
respectively,

are both a TERMINAL_TYPE named “ShapeP2”, orientated (rotated) by 90° clockwise,
are named “qd2i” & “qd20”

and constitute a digital I/O bi-directional connection, with “qd2l” being an input (I) and
“qd20” being an output (O).

Example 3

TERMINAL TermlO = , ShapeP2, 5000, 7600, 0, , X;

This example declares that terminal “Term10”.....

is unconnected (or with no specific connection reference),

is located at X = 5000 units, Y = 7600 units,

is a TERMINAL_TYPE named “ShapeP2", orientated at 0°, and
has no given name and

is specified as not to be bonded to.

Example 4

TERMINAL T_44 = , ShapeR2, 25000, 97000, MXMY90, ,;

This example declares that terminal T_44.....

is unconnected (or with no specific connection reference),

is located at (25000:97000),

is a TERMINAL_TYPE named “ShapeR2”, mirrored in both the X- and Y-axis, then
orientated at (rotated clockwise by) 90°,

has no given name, and

has no specified electrical connection properties.

Example 5

TERMINAL ({
Pin007 = 9, ShapeR1l, (5000, 7000), MX0, VCCl, V;
Conn08 17, ShapeP2, (5000, 7300), 90, gd2i, I;
Conn09 17, ShapeP2, (5000, 7800), 90, gd2o, O;
TermlO0 = , ShapeP2, (5000, 7600), 0, , X;
T_44 = , ShapeR2, (25000, 97000), MXMY90, ,;

}

This multiple terminal definition example declares identical terminal data to that shown in
Examples 1 to 4.

8.4.6 TERMINAL_GROUP Parameter
Parameter Name TERMINAL_GROUP
Parameter Type Structure

Parameter Function The TERMINAL_GROUP structure assigns a group of terminals to a

single terminal-group identifier that may be used in place of a list of

BS EN 62258-2:2011
-30 - 62258-2 © IEC:2011

terminals. The structure may be used to define a single group or a
multiple of groups.
Refer to TERMINAL_GROUP Rules (voir 8.4.6.1) for detail.

Parameter Values Two or more terminal or group identifiers, as defined in 8.4.5.1 and
8.4.6.3

Dependencies TERMINAL (see 8.4.5)

Limitations A TERMINAL_GROUP identifier must be unique, and may only
referenced after it has been declared.

Reference Annex B.

8.4.6.1 TERMINAL_GROUP Rules

8.4.6.1.1 Content

The elements forming a group may be terminal identifiers or group identifiers or
any mixture of the two. A group must contain at least two elements.

8.4.6.1.2 Uniqueness

All elements within a group must be unique. A group may not contain groups that
refer directly or indirectly to the same element.

8.4.6.1.3 Ordering

The order of elements within groups may be important. Where two or more
groups are to be related in a permutation, then the elements within those groups
must correspond across the groups.

8.4.6.1.4 Recursion

A group may not contain itself nor may it contain any group that refers directly or
indirectly to itself

Single TERMINAL_GROUP definition syntax:

TERMINAL_GROUP G_n = _ Terminal or Group identifier, ... Terminal or Group identifier;
TERMINAL_GROUP G_n = _ Terminal or Group identifier, ... Terminal or Group identifier;

Multiple TERMINAL_GROUP definition syntax:

TERMINAL_GROUP {

G_n = _Terminal or Group identifier, ... Terminal or Group identifier;
G_n

= Terminal or Group identifier, ... Terminal or Group identifier;

where:

8.4.62 G_n

Unique TERMINAL_GROUP identifier, where “n” is the actual TERMINAL _GROUP number
(Integer, as 7.1.3.4). Note that the underscore character is optional, it is used for clarity only.

8.4.6.3 Terminal or Group identifier
Two or more terminal or terminal-group identifier names, as

e Any terminal identifier name must be pre-declared in a TERMINAL statement, refer to
8.4.4.1. A terminal identifier name may occur only once within a single group
assignment.

e Any terminal-group identifier name must be pre-declared in a TERMINAL_GROUP
statement, refer to 8.4.6.2. A terminal-group identifier name may occur only once within
a single group assignment and assignment circularity or recursion is not permitted.

BS EN 62258-2:2011
62258-2 © IEC:2011

Example

Notes

- 31 -

TERMINAL GROUP G 1 = T 10, T 11, T 12;
TERMINAL GROUP G 2 = T 15, T 16, T 12
TERMINAL_GROUP {

G3=T1, T 2;

G4 =T34, T 5;

G5=G1, T 3;

G6=2G3, G4, T 11;

}

In all cases, a single terminal identifier shall only occur with a group
once. This is also relevant when considering the expansion of a
terminal-group.

Refer to Annex B.

8.4.7 PERMUTABLE Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values

Dependencies

Notes

Reference

PERMUTABLE

Structure

The PERMUTABLE structure assigns a list of terminals or terminal
groups that are permutable. The list can comprise terminal identifiers
(as 8.4.5.1) or terminal-group identifiers (as 8.4.6.2) but not a mixture
of the two types of identifier. Each PERMUABLE assignment declares
that the terminals or terminal groups listed are exchangeable and/or
swappable in terms of functionality. This is to facilitate alternative
connection and routing by CAD software.

Refer PERMUTABLE Rules (see 8.4.7.1) for detail.

Refer to Annex B for further explanation.

The PERMUTABLE parameter statement shall consist of either a list of
two or more terminal identifiers (see 8.4.6.1) or two or more terminal-
group identifiers (see 8.4.6.1), but shall not contain a mixture of
terminal and terminal-group identifiers.

TERMINAL (see 8.4.5)

TERMINAL_GROUP (see 8.4.6)

In all cases, a single terminal identifier shall only occur with a group
once. This is relevant when considering the expansion of a terminal-
group.

For correct permutation of terminal-groups within a single
PERMUTABLE assignment, it is mandatory that the sequence of
terminals within each group corresponds directly to the sequence of
terminals of the other terminal-groups within the assignment.

Annex B.

8.4.7.1 PERMUTABLE Rules

8.4.7.1.1 Content

The elements forming a permutation may be terminal identifiers or group
identifiers but not a mixture of the two. A permutation must contain at least two

elements.

8.4.7.1.2 Uniqueness

All elements within a permutation must be unique. A permutation may not contain
groups that refer directly or indirectly to the same element.

Each element within a permutation must contain the same number of Terminal
identifiers (whether within Terminal Groups or not) as each other.

8.4.71.3 Ordering

The order of elements within a permutation is not important.

Single PERMUTABLE definition syntax:

BS EN 62258-2:2011
-32 - 62258-2 © IEC:2011

PERMUTABLE P_n = Terminal identifier, ... Terminal identifier;
PERMUTABLE P_n = Terminal identifier, ... Terminal identifier;
PERMUTABLE P_n = Group identifier, ... Group identifier;
PERMUTABLE P_n = Group identifier, ... Group identifier;

Multiple PERMUTABLE
PERMUTABLE {

}

Example

definition syntax:

P_n = Terminal identifier, ... Terminal identifier;
P_n = Terminal identifier, ... Terminal identifier;
P_n = Group identifier, ... Group identifier;
P_n = Group identifier, ... Group identifier;

PERMUTABLE P 1

PERMUTABLE P_2 GPl, GP2, GP3, GP5, GP4;
PERMUTABLE {
P1=7T1, T 2;
P2 =T 4, T 5;
P3=7T09, T 10;
P 4=1T12, T 13;
P5=G5, G6, G7, G 8;

8.5 MATERIAL DATA

8.5.1 TERMINAL_MATERIAL Parameter

Parameter Name
Parameter Type
Parameter Function
Parameter Values
Limitations
Example

TERMINAL_MATERIAL

Variable

Specifies the material used for the final terminations on the device.
Textual string data, as 7.1.3.1

Shall be declared only once within a single DEVICE block.

TERMINAL MATERIAL = “Al”;
TERMINAL MATERIAL = “Copper”;
TERMINAL MATERIAL = “SAC405”;

8.5.2 TERMINAL_MATERIAL_STRUCTURE Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Limitations
Example

TERMINAL_MATERIAL_STRUCTURE

Variable

Specifies the sequential structure of the materials used to build-up the
terminations on the device.

Textual string data, as 7.1.3.1

Shall be declared only once within a single DEVICE block.

TERMINAL MATERIAL STRUCTURE = “Al-Ti-Ni-Au”;

8.5.3 DIE_SEMICONDUCTOR_MATERIAL Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values

Limitations
Example

Notes

DIE_SEMICONDUCTOR_MATERIAL

Variable

Specifies the semiconductor material, which is used for fabrication of
the die.

Textual string data, as 7.1.3.1

Shall be declared only once within a single DEVICE block.

DIE SEMICONDUCTOR MATERIAL “Insulator”;

DIE SEMICONDUCTOR MATERIAL “Silicon”;
DIE_SEMICONDUCTOR MATERIAL = “Sapphire”;

This parameter is only relevant if the die bulk material is different from
the die substrate material.

BS EN 62258-2:2011
62258-2 © IEC:2011 -33 -

8.5.4 DIE_SUBSTRATE_MATERIAL Parameter

Parameter Name DIE_SUBSTRATE_MATERIAL
Parameter Type Variable
Parameter Function Specifies the bulk or substrate material on which the die is made where

it differs from the DIE_SEMICONDUCTOR_MATERIAL.

Parameter Values Textual string data, as 7.1.3.1

Limitations

Shall be declared only once within a single DEVICE block.

Example DIE SUBSTRATE MATERIAL = “Silicon”;
DIE SUBSTRATE MATERIAL = “Insulator”;
DIE SUBSTRATE MATERIAL = “Sapphire”;

8.5.5 DIE_SUBSTRATE_CONNECTION Parameter

Parameter Name DIE_SUBSTRATE_CONNECTION

Parameter Type Variable
Parameter Function Specifies the electrical connection for the substrate, if any. By

fabrication, the substrate may be already electrically connected, which
should also be stated. Where a substrate connection should be made,
the potential point for connection shall also be stated.

Parameter Values One or more textual string data, as 7.1.3.1

Limitations
Example

Notes

The first parameter shall conform to values given in Table 4
Shall be declared only once within a single DEVICE block.

DIE SUBSTRATE CONNECTION “CONN”, “Ground”;

DIE SUBSTRATE CONNECTION “N/A”;

DIE SUBSTRATE CONNECTION “ISOL”;

DIE SUBSTRATE CONNECTION “OPT”,”Most Negative”;
DIE SUBSTRATE CONNECTION “OPT”,”Most Positive”;
DIE SUBSTRATE CONNECTION “CONN”,”Digital vdd”;
DIE SUBSTRATE CONNECTION “OPT”,”Analog ground”;

Table 4 — Substrate Connection Parameters

Parameter Value Function
CONN Must be electrically connected
ISOL Must be electrically isolated
OPT May be optionally connected

N/A Not Applicable
N/K Not Known (unknown)

When either “CONN” or “OPT” is given as the first parameter value, the second
parameter value shall be comprehensively stated, sufficiently adequate to be
understood for electrical connectivity. Recommended parameter values are: “Most
Positive”, “Most Negative”, “GND”, “AGND”, “DGND”, “VSS”, “vDD”, “VEE”, “VCC”,
“AVSS”, “AVDD”, “AVEE”, “AVCC”, “DVSS”, “DVDD”, “DVEE", “DVCC”,”VBIAS”, or
“SPECIAL”.

Alternatively, a specific TERMINAL name “T_n", as described in 8.4.5 may be used
as the second parameter value for direct connection to the substrate.

8.5.6 DIE_PASSIVATION_MATERIAL Parameter

Parameter Name DIE_PASSIVATION_MATERIAL

Parameter Type Variable

Parameter Function Specifies the die surface passivation material.

Parameter Values Textual string data, as 7.1.3.1

Limitations Shall be declared only once within a single DEVICE block.

Example

DIE PASSIVATION MATERIAL
DIE PASSIVATION MATERIAL
DIE PASSIVATION MATERIAL

“Silicon Nitride”;
“Oxy-Nitride”;
“Polyimide”;

8.5.7

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Limitations
Example

BS EN 62258-2:2011

- 34 - 62258-2 © IEC:2011

DIE_BACK_DETAIL Parameter

DIE_BACK_DETAIL

Variable

Specifies the detail finish to the die backside, relevant for different
attachment methods / package styles, to include both finish and
material.

Textual string data, as 7.1.3.1

Shall be declared only once within a single DEVICE block.

DIE BACK DETAIL = “Sawn”;

DIE BACK DETAIL “Au-Metallized”;

DIE BACK DETAIL “Backlapped”;

DIE BACK DETAIL “Polished”;

DIE BACK DETAIL “Gold Metal”;

DIE BACK DETAIL = “None”;

8.6 ELECTRICAL AND THERMAL RATING DATA

8.6.1

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Parameter Units
Limitations
Example

8.6.2

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Parameter Units
Dependencies
Limitations
Example

8.6.3

Parameter Name
Parameter Type
Parameter Function
Parameter Values
Parameter Units
Limitations
Example

Notes

8.6.4

Parameter Name
Parameter Type
Parameter Function
Parameter Values

MAX_TEMP Parameter

MAX_TEMP

Variable

Specifies the maximum temperature to which the device may be
exposed during any part of die attach, device soldering or other
manufacturing process.

Real, as 7.1.3.3

°C, Celsius

Shall be declared only once within a single DEVICE block.

MAX TEMP = 280;

MAX_TEMP_TIME Parameter

MAX_TEMP_TIME

Variable

Specifies the maximum time for which the device may be exposed to
the maximum temperature during any part of die attach, device
soldering or other manufacturing process.

Real, as 7.1.3.3

Seconds

MAX_TEMP

Shall be declared only once within a single DEVICE block.

MAX TEMP TIME = 10;

POWER_RANGE Parameter

POWER_RANGE

Variable

Specifies the power likely to be dissipated by the device.

Real, as 7.1.3.3

Watts

Shall be declared only once within a single DEVICE block.

POWER RANGE = 0.92;

This parameter should be used with caution, as without fully specifying
all measurement conditions, use of this value can be misunderstood.
The value given should indicate the likely maximum power dissipated
under “typical” worst-case conditions.

TEMPERATURE_RANGE Parameter

TEMPERATURE_RANGE

Variable

Specifies the operation and specification range of the die.
Minimum (Real, in °C), Maximum (Real, in °C), as clause 7.1.3.3

BS EN 62258-2:2011
62258-2 © IEC:2011

Parameter Units
Limitations
Example

Notes

— 35—
0 .
C, Celsius
Shall be declared only once within a single DEVICE block.
TEMPERATURE RANGE = -40, 90;

For use with bare die, this parameter should be used with caution, and
is only intended to indicate the operational or specified temperature
“grade” of the equivalent packaged part.

8.7 SIMULATION DATA

8.7.1 Simulator MODEL FILE Parameter

Parameter Name
Parameter Type
Parameter Function
Parameter Values
Limitations
Example

Notes
Reference

SIMULATOR_simulator_MODEL_FILE

Variable

Specifies the name of the model file for use with simulator.

Textual name data, as 7.1.3.2

Shall be declared only once within a DEVICE block per simulator type.
SIMULATOR SPICE MODEL FILE = “BC109.MOD”;

SIMULATOR SPECTRE MODEL FILE = “RTBAAL.S”;

Only file names, without relative or absolute path names, shall be used.
Annex D.

8.7.2 Simulator MODEL FILE DATE Parameter

Parameter Name
Parameter Type
Parameter Function
Parameter Values
Limitations
Example

Notes

Reference

SIMULATOR_simulator_MODEL_FILE_DATE

Variable

Specifies the creation or validation date of the model file.

Date, as 7.1.3.5

Shall be declared only once within a DEVICE block per simulator type.
SIMULATOR SPICE MODEL FILE DATE=719951021";

SIMULATOR VHDL MODEL FILE DATE="1993-05-17";

This date should match the date of the actual model file, to indicate
that the correct model file is being used, and for use within a library
make / build function.

Annex D.

8.7.3 Simulator NAME Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Limitations
Example

Reference

SIMULATOR_simulator_NAME

Variable

Specifies the name of either the generic or specific simulator to which
the model file is appropriate.

Textual string data, as 7.1.3.1

Shall be declared only once within a DEVICE block per simulator type.

SIMULATOR SPICE NAME = “pSpice”;
SIMULATOR VERILOG NAME = “Verilog-XL”;
Annex D.

8.7.4 Simulator VERSION Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Limitations
Example

Reference

SIMULATOR_simulator_VERSION

Variable

Specifies the version number of the simulator as specified by the
SIMULATOR_simulator NAME parameter, which was used to verify the
model data.

Textual string data, as 7.1.3.1

Shall be declared only once within a DEVICE block per simulator type.

SIMULATOR SPICE VERSION = “4.0.1";
SIMULATOR VERILOG VERSION = “1.7B”;
Annex D.

BS EN 62258-2:2011
- 36 - 62258-2 © IEC:2011

8.7.5 Simulator COMPLIANCE Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Limitations
Example

Reference

SIMULATOR_simulator_COMPLIANCE

Variable

Specifies the minimum compliance level of the simulator required to
both accurately reproduce and correlate with simulation results.

Textual string data, as 7.1.3.1

Shall be declared only once within a DEVICE block per simulator type.

SIMULATOR VHDL COMPLIANCE = “VHDL ’937;
SIMULATOR SPICE COMPLIANCE = “2G6”;
Annex D.

8.7.6 Simulator TERM_GROUP Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Limitations

Example

Reference

SIMULATOR_simulator_TERM_GROUP

Variable

Specifies the group or terminals to which the simulator model applies.
If missing, the assumption is that the simulator model applies to the
whole device.

A list of terminals (as 8.4.5.1) and/or terminal groups (as 8.4.6.2)

The terminals or terminal groups referenced shall have already been
declared in either a TERMINAL or TERMINAL_GROUP parameter.
Shall be declared only once within a DEVICE block per simulator type.
SIMULATOR SPICE TERM GROUP = T 1, T 2, G 1;
SIMULATOR IBIS TERM GROUP = G 5, G 8, T 11, T 33;
Annexes B and D.

8.8 HANDLING, PACKING, STORAGE and ASSEMBLY DATA

8.8.1 DELIVERY_FORM Parameter

Parameter Name
Parameter Type
Parameter Function
Parameter Values
Limitations
Example

DELIVERY_FORM

Variable

Specifies the form in which the die is delivered.

Textual string data, as 7.1.3.1

Shall be declared only once within a single DEVICE block.
DELIVERY FORM “Wafer”;

DELIVERY FORM “Die”;

DELIVERY FORM “Bare Die in Waffle Tray”;
DELIVERY FORM “Sawn Wafer”;

DELIVERY FORM “Tray”;

DELIVERY:FORM “Bandoleer”, “Waffle”;

8.8.2 PACKING_CODE Parameter

Parameter Name
Parameter Type
Parameter Function
Parameter Values
Example

PACKING_CODE

Variable

Specifies the form of primary packing used for the supply of devices.
Textual string data, as 7.1.3.1

PACKING CODE “WAFFLE”;

PACKING CODE “GEL PACK”;

PACKING CODE = “Bandoleer”;

8.8.3 ASSEMBLY Parameters

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Examples

Notes

ASSY _ text-identifier

Variable

General textual parameter, to enable the user to include relevant and
identified assembly techniques, parameters and operations.

Textual string data, as 7.1.3.1

ASSY PROCESS LIMITATIONS = “NONE”;

Recognised ASSY identifiers are:

BS EN 62258-2:2011
62258-2 © IEC:2011 - 37 -

ASSY PROCESS LIMITATIONS
ASSY STORAGE LIMITATIONS
ASSY ASSEMBLY LIMITATIONS
ASSY TEMPERATURE LIMITATIONS
ASSY BONDING METHODS

ASSY BONDING MATERIALS
ASSY ATTACH METHODS

ASSY ATTACH MATERIALS

ASSY GENERAL REQUIREMENTS
.10 ASSY HANDLING REQUIREMENTS
11 ASSY PACKING REQUIREMENTS
.12 ASSY STORAGE REQUIREMENTS
.13 ASSY SHIPPING REQUIREMENTS

OO Jo Ul W

00 0O 0O 0O 0O GO CO OO OO 0O CO O O
00 0O 0O 0O 0O GO CO OO OO 0O CO O O
WWWwWwwwwwwwwww

8.9 WAFER SPECIFIC DATA

8.9.1 WAFER_SIZE Parameter

Parameter Name WAFER_SIZE
Parameter Type Variable
Parameter Function Specifies the wafer diameter.
Parameter Values Textual string data, as 7.1.3.1
Limitations Shall be declared only once within a single DEVICE block.
Example WAFER _SIZE = “6 inch”;
WAFER SIZE = “150mm”;
Notes As this is a dimensional value, but related to the fabrication and not the

die size, the WAFER_SIZE parameter may be in units different to those
defined by the GEOMETRIC_UNITS parameter, hence the data is
presented as free-form text.

8.9.2 WAFER_THICKNESS Parameter

Parameter Name THICKNESS
Parameter Type Variable
Parameter Function Determines the thickness (Z-dimension) of the wafer.
Parameter Values Real Z-dimension value, as in 7.1.3.3
Dependencies GEOMETRIC_UNITS
Limitations Shall be declared only once within a single DEVICE block.
Example WAFER THICKNESS = 10.5;
WAFER THICKNESS = 80;
Notes Dimension values are in GEOMETRIC_UNITS.

8.9.3 WAFER_THICKNESS_TOLERANCE Parameter

Parameter Name WAFER_THICKNESS_TOLERANCE

Parameter Type Variable

Parameter Function Specifies the tolerance(s) of the WAFER_THICKNESS parameter that
may be expected due to normal process variations.

Parameter Values Real in GEOMETRIC_UNITS, as 7.1.3.3
Dependencies GEOMETRIC_UNITS, WAFER_THICKNESS
Limitations Shall be declared only once within a single DEVICE block.
Example WAFER THICKNESS TOLERANCE = 2.5;
WAFER THICKNESS TOLERANCE = -1.2,1.5;
Notes One or two values may be given:-

Where a single tolerance value is given, the tolerance shall be taken as
an unsigned + value.

Where two tolerance values are given:-
the first value shall be taken as the minimum, and
the second value shall be taken as the maximum.

BS EN 62258-2:2011
- 38 - 62258-2 © IEC:2011

8.9.4 WAFER_DIE_STEP_SIZE Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Dependencies
Limitations
Example

Reference

WAFER_DIE_STEP_SIZE

Variable

Determines the X- and Y- step size dimensions, in
GEOMETRIC_UNITS, for the die on wafer, as required by mechanical
handling equipment.

Real X-dimension, Real Y-dimension, (as 7.1.3.3)
GEOMETRIC_UNITS, GEOMETRIC_VIEW

Shall be declared only once within a single DEVICE block.

WAFER DIE STEP SIZE = 280, 530;

WAFER DIE STEP SIZE = 1500, 1500;

Annex H.

8.9.5 WAFER_GROSS_DIE_COUNT Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Limitations
Example

Notes

Reference

WAFER_GROSS_DIE_COUNT

Variable

Specifies the number of whole and viable gross die (of the die type in
question) available on the wafer.

Integer, as 7.1.3.4

Shall be declared only once within a single DEVICE block.

WAFER GROSS DIE COUNT = 2027;

This parameter value is only intended to give an indication of the
number of relevant and viable die per wafer, and shall have no other
implication.

Annex H.

8.9.6 WAFER_INDEX Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values

Limitations
Example

Notes

Reference

WAFER_INDEX

Variable

Specifies the type of index feature on a wafer which acts as a
reference feature and its orientation with respect to the X-axis for the
die.

The first parameter determines the index feature type, and the second
parameter specifies the approximate angular relationship between the
assumed X-axis for the die and the index feature on the wafer. The
angle shall be given, in degrees counted clockwise, of the index feature,
taking the X-axis of the die as the reference.

Textual string data, as 7.1.3.1, with value “Flat” or “Notch”, followed by
a single integer value, in units of degrees, from 0 to 359, as 7.1.3.4.
Shall be declared only once within a single DEVICE block.

WAFER INDEX = “Flat”,90;

WAFER INDEX = “Notch”,0;

This parameter is only intended as a guide, and so integer
approximations shall be acceptable. Negative angle values are not
permitted. Where more than one flat exists on the wafer, the
orientation is with respect to the major, or prime, flat. This may also
indicate the crystal [110] direction.

Annex H.

8.9.7 WAFER_RETICULE_STEP_SIZE Parameter

Parameter Name
Parameter Type
Parameter Function
Parameter Values
Dependencies
Limitations
Example

WAFER_RETICULE_STEP_SIZE

Variable

Specifies X- and Y- step and repeat dimensions for a single reticule.
Real X-dimension, Real Y-dimension, (as 7.1.3.3)
GEOMETRIC_UNITS, GEOMETRIC_VIEW

Shall be declared only once within a single DEVICE block.

WAFER RETICULE STEP SIZE = 2500, 8000;

WAFER RETICULE STEP SIZE = 15000, 27500;

BS EN 62258-2:2011
62258-2 © IEC:2011

Notes

Reference

— 39 —

This parameter is relevant mainly for MPW (Multi Project Wafers), or
instances where the WAFER_DIE_STEP_SIZE becomes invalid due to
a non-integer relationship between reticule size and die size.

Annex H.

8.9.8 WAFER_RETICULE_GROSS_DIE_COUNT Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Limitations
Example

Notes

Reference

WAFER_RETICULE_GROSS_DIE_COUNT

Variable

Specifies the number of whole and viable gross die (of the die type in
question) emplaced within a single reticule.

Integer, as 7.1.3.4

Shall be declared only once within a single DEVICE block.

WAFER RETICULE GROSS DIE COUNT = 40;

This parameter is relevant mainly for MPW (Multi Project Wafers), or
instances where there is more than one die type in the reticule. This
parameter value is only intended to give an indication of the number of
relevant and viable die per reticule, and shall have no other implication.
Annex H.

8.9.9 WAFER_INK Parameters

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Examples

Notes

WAFER_INK text-identifier

Variable

General textual parameter, to enable the user to include relevant
parameters relating to the wafer dot/ink size and colour. This is of
particular relevance for visual systems for die selection, sorting and
inspection.

Textual string data, as 7.1.3.1

WAFER INK COLOUR = “BLACK”;

WAFER INK LOCATION = “CENTRAL”;

WAFER INK SIZE MAX = “0.8mm”;

WAFER INK SORT COLOUR = “BIN1l, RED, UPPER RIGHT”;
WAFER INK SORT COLOUR = “BIN2, GREEN, LOWER LEFT”;

Recognised WAFER_INK_identifiers are:

8.9.9.1 WAFER INK COLOUR
8.9.9.2 WAFER INK SIZE

8.9.9.3 WAFER _INK SIZE TOL
8.9.9.4 WAFER INK SIZE MAX
8.9.9.5 WAFER_INK_ LOCATION
8.9.9.6 WAFER INK LOCATION TOL
8.9.9.7 WAFER INK HEIGHT MAX
8.9.9.8 WAFER INK SORT COLOUR

8.10 BUMP TERMINATION SPECIFIC DATA

Any data given that is pertinent to a “bumped” device (a device using added bump connection
structures) can only reflect the bump parameters at the time of bump formation, and not
necessarily the final parameters. Due to the nature of final bump connection, the bump
parameters will be altered and deformed during the attachment process. Therefore all
geometric and metallurgical parameters given should be considered for “virgin” bumps.

8.10.1 BUMP_MATERIAL Parameter

Parameter Name
Parameter Type
Parameter Function
Parameter Values
Limitations

BUMP_MATERIAL

Variable

Specifies the metallurgical material of the bump contact.
Textual string data, as clause 7.1.3.1

Shall be declared only once within a single DEVICE block.

Example

Notes

BS EN 62258-2:2011

- 40 - 62258-2 © IEC:2011
BUMP MATERIAL = “Copper”;
BUMP MATERIAL = “Molybdenum Telluride”;
BUMP MATERIAL = “Au”;
BUMP MATERIAL = “SAC415”;
BUMP MATERIAL = “Pb-3Sn”;

Required only for device types with bump connection structures. Where
a device has both bumped and non-bumped terminals,
TERMINAL_MATERIAL should be used to describe the non-bumped
terminals, and BUMP_MATERIAL should be used to describe the
bumped terminal.

8.10.2 BUMP_HEIGHT Parameter

Parameter Name
Parameter Type
Parameter Function
Parameter Values
Dependencies
Limitations
Example

Notes

BUMP_HEIGHT

Variable

Specifies the bump contact height above the passivation surface.
Numeric real, in GEOMETRIC_UNITS, as 7.1.3.3

GEOMETRIC_UNITS

Shall be declared only once within a single DEVICE block.

BUMP HEIGHT = 150.0;

Required only for device types with bump connection structures. The
height of the bump can only be stated before the bump is modified by
attachment and/or permanent connection.

8.10.3 BUMP_HEIGHT_TOLERANCE Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Dependencies
Limitations
Example

Notes

BUMP_HEIGHT_TOLERANCE
Variable
Specifies the tolerance of bump contact height above the passivation
surface.
Numeric real, in GEOMETRIC_UNITS, as 7.1.3.3
GEOMETRIC_UNITS, BUMP_HEIGHT
Shall be declared only once within a single DEVICE block.
BUMP HEIGHT TOLERANCE = 35.0;
BUMP_HEIGHT TOLERANCE = -10.0,25.0;
One or two values may be given:-
Where a single tolerance value is given, the tolerance shall be taken as
an unsigned =+ value.
Where two tolerance values are given:-
the first value shall be taken as the minimum, and
the second value shall be taken as the maximum.
Required only for device types with bump connection structures.

8.10.4 BUMP_SHAPE Parameter

Parameter Name
Parameter Type
Parameter Function
Parameter Values
Limitations
Example

Notes

BUMP_SHAPE

Variable

Specifies the shape of bump the contact height.

Textual string data, as 7.1.3.1

Shall be declared only once within a single DEVICE block.

BUMP SHAPE="Pyramidical”;

BUMP SHAPE="Ball”;

Required only for device types with bump connection structures. The
shape of the bump can only be stated before the bump is modified by
attachment and/or permanent connection.

8.10.5 BUMP_SIZE Parameter

Parameter Name
Parameter Type
Parameter Function
Parameter Values

BUMP_SIZE

Variable

Specifies the size of bump X-Y co-ordinates.
Numeric real, in GEOMETRIC_UNITS, as 7.1.3.3

BS EN 62258-2:2011
62258-2 © IEC:2011

Dependencies
Limitations
Example
Notes

41—

GEOMETRIC_UNITS

Shall be declared only once within a single DEVICE block.

BUMP SIZE= “150,150";

Required only for device types with bump connection structures. The
size of the bump can only be stated before the bump is modified by
attachment and/or permanent connection.

8.10.6 BUMP_SPECIFICATION_DRAWING Parameter

Parameter Name
Parameter Type
Parameter Function
Parameter Values
Example

Notes

Reference

BUMP_SPECIFICATION_DRAWING

Variable

Specifies the name(s) of the bump specification drawing file(s).

Textual name data, as 7.1.3.2

BUMP SPECIFICATION DRAWING “BumpShapel.JPG”;

BUMP SPECIFICATION DRAWING “BS1.JPG”, “BS2.TIF”;
Only file names, without relative or absolute path names, shall be used.
Required only for device types with bump connection structures. Any
drawing of the bump can only reflect the state of the bump before being
modified by attachment and/or permanent connection.

Multiple parameters (specification drawing files) may be introduced
within a single declaration, or multiple declarations maybe be employed
to the same effect.

There is no scaling or positional data requirement.

Annex |, Note 3 and 4.

8.10.7 BUMP_ATTACHMENT_METHOD Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Limitations
Example

Notes

BUMP_ATTACHMENT_METHOD

Variable

Specifies the type of attachment method required or suggested for this
type of bump.

Textual string data, as 7.1.3.1

Shall be declared only once within a single DEVICE block.

BUMP ATTACHMENT METHOD = “Thermocompression”;

BUMP ATTACHMENT METHOD = “Solder Reflow”;

Required only for device types with bump connection structures.

8.11 MINIMALLY PACKAGED DEVICE (MPD) SPECIFIC DATA

8.11.1 MPD_PACKAGE_MATERIAL Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values

Limitations
Example

Notes

MPD_PACKAGE_MATERIAL

Variable

Specifies the package body material used as final encapsulation of the
MPD.

Textual string data as 7.1.3.1

Shall be declared only once within a single DEVICE block.
MPD PACKAGE MATERIAL “Plastic”;

MPD PACKAGE MATERIAL = “Epoxy”;

MPD PACKAGE MATERIAL “Ceramic”;

MPD PACKAGE MATERIAL = “Metal Can”;

Generally required for assembly purposes.

8.11.2 MPD_PACKAGE_STYLE Parameter

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Limitations

MPD_PACKAGE_STYLE

Variable

Specifies the code for the package style as defined in a standard or as
given by the manufacturer.

Textual string data as 7.1.3.1

Shall be declared only once within a single DEVICE block.

BS EN 62258-2:2011

—42 - 62258-2 © IEC:2011

Example MPD PACKAGE STYLE = “SO0T-23";

MPD PACKAGE STYLE = “MO”;

MPD PACKAGE STYLE = “TSOP-48";
8.11.3 MPD_CONNECTION_TYPE Parameter
Parameter Name MPD_CONNECTION_TYPE
Parameter Type Variable
Parameter Function Specifies the connection method to the MPD, such as lead, bump etc.
Parameter Values Textual string data, as 7.1.3.1
Limitations Shall be declared only once within a single DEVICE block.
Example MPD CONNECTION TYPE = “Bump”;

MPD CONNECTION TYPE = “TAB Lead”;

8.11.4 MPD_MSL_LEVEL Parameter

Parameter Name MPD_MSL_LEVEL

Parameter Type Variable

Parameter Function Specifies the Moisture Sensitivity Level of the MPD package, in
accordance with IPC/JEDEC J-STD-033B:2007 — Handling, Packing,
Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices,

2005.
Parameter Values Textual string data, as 7.1.3.1
Limitations Shall be declared only once within a single DEVICE block.
Example MPD MSL LEVEL = “37;

8.11.5 MPD_PACKAGE_DRAWING Parameter

Parameter Name MPD_PACKAGE_DRAWING
Parameter Type Variable
Parameter Function = Specifies the name(s) of the MPD package specification drawing file(s).
Parameter Values Textual name data, as 7.1.3.2
Example MPD PACKAGE DRAWING = “PackageOutline.PDF”;
MPD PACKAGE DRAWING = “POl1.JPG”,”POlA.GIF”;
Notes Only file names, without relative or absolute path names, shall be used.

Multiple parameters (package drawing files) may be introduced within a
single declaration, or multiple declarations maybe be employed to the
same effect.
There is no scaling or positional data requirement.

Reference Annex I, Notes 3 and 4.

8.12 QUALITY, RELIABILITY and TEST DATA

8.12.1 QUALITY Parameters

Parameter Name QUAL_ identifier

Parameter Type Variable

Parameter Function General text parameter, to enable the user to include relevant and
identified quality and reliability parameters.

Parameter Values Textual string data, as 7.1.3.1

Limitations Each identifier shall be declared only once within a single DEVICE
block.

Examples QUAL OUTGOING QUALITY LEVEL = “...”;

Notes Recognised QUAL_identifiers are:
8.12.1.1 QUAL OUTGOING QUALITY LEVEL
8.12.1.2 QUAL OUTGOING QUALITY UNITS
8.12.1.3 QUAL OUTGOING QUALITY DESCRIPTION
8.12.1.4 QUAL RELIABILITY VALUE
8.12.1.5 QUAL RELIABILITY UNITS
8.12.1.6 QUAL RELIABILITY REFERENCE

BS EN 62258-2:2011
62258-2 © IEC:2011

—43 -

8.12.1.7 QUAL RELIABILITY CONDITIONS
8.12.1.8 QUAL RELIABILITY CALC METHOD
8.12.1.9 QUAL STANDARDS COMPLIANCE

8.12.2 TEST Parameters

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Limitations

Examples

Notes

8.13 OTHER DATA

TEST_ identifier

Variable

General text parameter, to enable the user to include relevant and
identified test related parameters.

Textual string data, as 7.1.3.1

Each identifier shall be declared only once within a single DEVICE
block.

TEST ADDITIONAL REGUIREMENTS = “NONE”;

TEST SCREEN COMPLIANCE = ”“MIL-883B”;

Recognised TEST_identifiers are:

8§.12.2.1 TEST ELECTRICAL CONDITIONS
8§.12.2.2 TEST ADDITIONAL SCREENING
8§.12.2.3 TEST TESTABILITY FEATURES
8.12.2.4 TEST ADDITIONAL REQUIREMENTS
8§.12.2.5 TEST YIELD CODE

8.12.2.6 TEST FLOW

8.12.2.7 TEST_TEMP

8.12.2.8 TEST_SCREEN

8.12.2.9 TEST_SCREEN COMPLIANCE

8.13.1 TEXT Parameters

Parameter Name
Parameter Type
Parameter Function

Parameter Values
Limitations

Examples

Notes

TEXT_-identifier

Variable

General text parameter, to enable the user to include relevant and
identified text not otherwise covered.

Textual string data, as 7.1.3.1

Each identifier shall be declared only once within a single DEVICE
block.

TEXT SPECIAL REQUIREMENTS = “N/A”;

Recognised TEXT_identifiers are:

8.13.1.1 TEXT PRODUCT STATUS
8.13.1.2 TEXT FORM OF SUPPLY
8§.13.1.3 TEXT SPECIAL REQUIREMENTS
8§.13.1.4 TEXT SPECIFIC REQUIREMENTS
8.13.1.5 TEXT_ STORAGE_CONDITIONS
8.13.1.6 TEXT STORAGE DURATION
8§.13.1.7 TEXT LONGTERM STORAGE
8.13.1.8 TEXT ORIGINAL MANUFACTURER
8.13.1.9 TEXT ORIGINAL DESIGN DATE

8.14 CONTROL DATA

8.14.1 PARSE Parameters

Parameter Name
Parameter Type
Parameter Function

PARSE_-identifier

Variable

Specific parameters for use as control flags or parameters by the
parsing software only, these parameters have no DEVICE related
meaning nor function.

Parameter Values
Notes

Examples

BS EN 62258-2:2011
— 44 — 62258-2 © IEC:2011

Textual string data, as 7.1.3.1

The PARSE_xxx parameters are only applicable to data occurring
subsequent to their invocation; this allows the PARSE_xxx parameters
to be changed during parsing throughout a single DEVICE block. It is
therefore strongly advised that if the PARSE_xxx parameters are to be
used, the initial invocation occurs before any other data within the
device BLOCK. Multi-pass parsers must accommodate this feature.
These parse parameters may be modified or overridden by other
options within the parsing software, such as command-line options.
Refer to Annex K for further details.

PARSE MODE = STRICT;
PARSE ERROR REPORT = TERSE;
PARSE ERROR TRAP = ALL;
PARSE IGNORE = NONE;

PARSE DEFINE PARAMETER
PARSE DEFINE STRUCTURE

“A New Parameter”;
“A New Structure”;

8.14.1.1 PARSE_MODE

The PARSE_MODE parameter selects the severity of rule and syntax
checking within a device BLOCK. Refer to Annex K for more detail.

The recognised PARSE_MODE parameters are:

STRICT
RELAXED
ENHANCED
USER

8.14.1.2 PARSE_ERROR_REPORT

The PARSE_ERROR_REPORT parameter determines how the
warnings and errors uncovered during parsing of the device BLOCK
are reported. A cumulative report of warnings and errors is expected
once all parsing has been completed, this feature is not affected by this
parameter. Refer to Annex K for further details.

The recognised PARSE_ ERROR_REPORT parameters are:

OFF No errors are reported during parsing

TERSE Only errors are reported during parsing

VERBOSE All warnings and errors are reported during
parsing

8.14.1.3 PARSE_ERROR_TRAP

The PARSE_ERROR_TRAP parameter determines how the parsing
software should proceed once an error has been uncovered. Refer to
Annex K for further details.

The recognised PARSE_ ERROR_TRAP parameters are:

ALL Parser should not halt on error.
FIRST Parser should halt on first error.

8.14.1.4 PARSE_IGNORE

The PARSE_IGNORE parameter determines whether the data is
checked or not. Extreme caution must be exercised when using this
parameter. Refer to Annex K for further details.

BS EN 62258-2:2011
62258-2 © IEC:2011

— 45—

The recognised PARSE_ IGNORE parameters are:

NONE All parsing checks are performed.

OFF All parsing checks are performed (as NONE)

ALL All parsing checks are ignored.

SYNTAX ONLY Only syntactical errors and line-termination
checks.

8.14.1.5 PARSE_DEFINE_PARAMETER

The PARSE_DEFINE_PARAMETER parameter allows for the
introduction and definition of new data parameters by name prior to
them being incorporated within a new release of the DDX syntax. Refer
to Annex K for further details.

Example:

PARSE DEFINE PARAMETER
PARSE DEFINE PARAMETER

“My New Parameter”;
"My Second Parameter”;

My New Parameter = “some data”;
My Second Parameter = “some other data”;

If the “new” parameter name conflicts with parameter names or
reserved words already in existence, a warning should be flagged up,
and the “new” parameter treated as defined in the current DDX
standard, i.e. the PARSE_DEFINE_PARAMETER should be flagged as
a warning, then ignored. This will allow the parsing software to accept
these “new” parameters once they have been ratified without re-writing
the DDX file.

The “new” name shall follow the general guidelines as set out in
Clauses 5 to 7, and will only be valid within that device BLOCK. The
“‘new” parameter will then be checked for syntax and parsed as if it
were a standard parameter.

The PARSE_DEFINE_PARAMETER may occur as many times as
needed, each statement may only introduce a single parameter, and
must precede the use of that parameter.

Until ratified and incorporated with a new release of the DDX standard,
all values pertaining to the “new” parameter will be treated as textual
string data, as 7.1.3.1.

8.14.1.6 PARSE_DEFINE_STRUCTURE

The PARSE_DEFINE_STRUCTURE parameter allows for the
introduction of new data structures by name prior to them being
incorporated within a new release of the DDX syntax. Refer to Annex K
for further details.

Example:

PARSE DEFINE STRUCTURE
PARSE DEFINE STRUCTURE

“A New Structure”;
“Another Structure”;

NEW STRUCTURE
NEW STRUCTURE
}

“some data”, Y“some more data”;

A New Structure {
= “some data”, Y“some more data”;

BS EN 62258-2:2011
—46 - 62258-2 © IEC:2011

Another Structure {
ANOTHER NEW STRUCT
ANOTHER NEW STRUCT

}

“some data”, “some more data”;
“some data”, “some more data”;

If the “new” structure name conflicts with structure names or reserved
words already in existence, a warning should be flagged up, and the
“‘new” structure treated as defined in the current DDX standard, i.e. the
PARSE_DEFINE_STRUCTURE should be flagged as a warning, then
ignored. This will allow the parsing software to accept these “new”
structures once they have been ratified without re-writing the DDX file.

The “new” name shall follow the general guidelines as set out in
Clauses 5 to 7, and will only be valid within that device BLOCK. The
“new” structure will then be checked for syntax and parsed as if it were
a structure.

The PARSE_DEFINE_STRUCTURE may occur as many times as
needed, each statement may only introduce a single structure, and
must precede the use of that structure.

The “Structure_indent_name” may be referenced as any other structure
name, but again not within existing defined structure parameters until
ratified.

Until ratified and incorporated with a new release of the DDX standard,
all individual values contained within the “new” structure will be treated
as textual string data, as 7.1.3.1.

BS EN 62258-2:2011
62258-2 © IEC:2011 —47 -

Annex A
(informative)

An example of a DDX DEVICE block

DEVICE 7995 bare die {

#

Initial header data, with block and device history.
#

BLOCK_CREATION DATE = “2000-12-25";

BLOCK_VERSION = 1.0;

MANUFACTURER = “Fuzziwuzz Logic Ltd.”;

FUNCTION = “Special gate”;

DATA SOURCE = “GOOD-DIE database”;

DATA VERSION = “Initial Issue A”;

VERSION = “1.2.2"7;

#

Declaration of geometric view, units, size etc.,
#

GEOMETRIC_UNITS = millimetre;

GEOMETRIC_VIEW = “top”;

SIZE = 1.312, 1.050;

SIZE _TOLERANCE = 0.00, 0.0005, 0.00 0.0005;
THICKNESS = 0.360;

THICKNESS TOLERANCE = 0.00, 0.0007;
GEOMETRIC_ ORIGIN = 0,0;

#

Additional details of Die type and usage.
#

DI*E NAME = “XX7322";

DIE_MASK REVISION = “Mask 1.0”;

MAX_TEMP = 280;
POWER_RANGE = 0.500;
DIE_SUBSTRATE_MATERIAL = “Silicon”;
DIE_TERMINAL MATERIAL = “Al”;
IC_TECHNOLOGY = “bipolar”;
DIE_SUBSTRATE_CONNECTION = “Ground”;

#

Delivery details.

#

DIE_BACK_DETAIL = “Back-Lapped”;
DIE_DELIVERY_FORM = “Die, Wafer”;
WAFER_SIZE = “4 inch”;

#

Definition of the number of bond pad types, bond pads
and connections.
#
TERMINAL_TYPE_COUNT
TERMINAL_COUNT =
CONNECTION_COUNT = 14;

(.
@ U1
~e o~

BS EN 62258-2:2011
—48 — 62258-2 © IEC:2011

#
Definition of the bond pad shapes and dimensions.
#
TERMINAL TYPE {
PADR]1 = Rectangle, 0.144, 0.104;
PADR2 = Rectangle, 0.264, 0.104;
PADR3 = Rectangle, 0.084, 0.084;
PADC1l = Circle, 0.100;
PADP1 = Polygon, -0.0175,-0.042),
(-0.042, 0.0175), (-0.0175, 0.042),
(0.0175, 0.042), 0.042, 0.0175),
(0.042,-0.0175), 0.0175,-0.042)
}

(-0.042,-0.0175),

’

o~~~ —~

#
Bond pad placement, naming, orientation and connectivity

details.

#

TERMINAL {
TlL =1 ,PADC1l,-0.550, 0.416, O0,VCCA , P
T2 = 3 ,PADP1,-0.502, 0.190, O0,INPUTA ,I;
T3 = 4 ,PADP1,-0.502,-0.192, O0,INPUTB ,I;
T4 = 7 ,PADC1,-0.399,-0.442, O0,GNDA , G
T5 = 8 ,PADR2, 0.498,-0.442, 0,GNDB , G
T6 = 11,PADR3, 0.511,-0.171, 0,OUTPUTA,O;
T7 = 12,PADR3, 0.511, 0.171, 0,OUTPUTB,O;
T8 = 14,PADR1, 0.558, 0.416, 0,VCCB , P
}

#

Details of a supplied pSpice simulation model.

#

SIMULATOR_SPICE_MODEL_FILE = “SP7995.MOD”;
SIMULATOR_SPICE MODEL_FILE_DATE = “1997-09-17";
SIMULATOR_SPICE NAME = “pSpice”;
SIMULATOR_SPICE_VERSION = “4.0.17;
SIMULATOR_SPICE_COMPLIANCE = “2G6”;

#

Details of a supplied Spectre simulation model.
#

SIMULATOR_SPECTRE MODEL FILE = “SP7995.5";
SIMULATOR SPECTRE_MODEL_FILE DATE = “1998-11-05";
SIMULATOR_SPECTRE_NAME = “Spectre”;
SIMULATOR_SPECTRE_VERSION = “4.2.1, 19927;
SIMULATOR_SPECTRE_COMPLIANCE = “2G6, Level-3";

#

Details of reference fiducial, supplied as a JIF graphic file
#

FIDUCIAL TYPE fiducl = “7995FID1.JIF”, 0.072, 0.055;

FIDUCIAL F1 = fiducl, -0.612, 0.470, 0;

End of block
}

BS EN 62258-2:2011
62258-2 © IEC:2011 —-49 -

Annex B
(informative)

Groups and Permutation

A. Specific Rules for the TERMINAL_GROUP parameter

Rule A1. Content (refer to 8.4.6.1.1) — The elements forming a group may be terminal
identifiers or group identifiers or any mixture of the two. A group must contain at
least two elements.

Rule A2. Uniqueness (refer to 8.4.6.1.2) — All elements within a group must be unique. A
group may not contain groups that refer directly or indirectly to the same
element.

Rule A3. Ordering (refer to 8.4.6.1.3) — the order of elements within groups may be

important. Where two or more groups are to be related in a permutation, then
the elements within those groups must correspond across the groups.

Rule A4. Recursion (refer to 8.4.6.1.4) — A group may not contain itself nor may it
contain any group that refers directly or indirectly to itself.

B. Specific Rules for the PERMUTABLE parameter

Rule B1. Content (refer to 8.4.7.1.1) — The elements forming a permutation may be
terminal identifiers or group identifiers but not a mixture of the two. A
permutation must contain at least two elements.

Rule B2. Uniqueness (refer to 8.4.7.1.2) — All elements within a permutation must be
unique. A permutation may not contain groups that refer directly or indirectly to
the same element. Each element within a permutation must contain the same
number of Terminal identifiers (whether within Terminal Groups or not) as each
other.

Rule B3. Ordering (refer to 8.4.7.1.3) — the order of elements within a permutation is not
important.

The simplest method of describing the use and function of the TERMINAL_GROUP and
PERMUTABLE parameters is by analysing a simple example. Here, a fragment of a DDX file
for a 7400 device is given. The 7400 device is a quad 2-input NAND gate, and so for
functionality, all four NAND gates are exchangeable. Throughout the analysis we refer to
terminals, but for a packaged part the user may consider the term “pins” to be more
appropriate.

DEVICE 74ACT00 bare die {

BLOCK _CREATION DATE = "13/02/2006";

BLOCK _VERSION = 1.0;

DEVICE NAME = "74ACTO00";

MANUFACTURER = "Fuzziwuzz Logic Ltd";

FUNCTION = "Quad two-input advanced CMOS NAND gate";
DEVICE FORM = "bare die";

DATA SOURCE = "GOOD-DIE Project database";

VERSION = "1.3.0";

GEOMETRIC UNITS = micrometre;

GEOMETRIC VIEW = "top";

SIZE = 1067, 1143;

THICKNESS = 356;
GEOMETRIC_ORIGIN = 0,0;
DIE_NAME = "74ACTO00";

DIE MASK REVISION = "Mask T";
MAX TEMP = 150;

BS EN 62258-2:2011

-50 - 62258-2 © IEC:2011
POWER RANGE = 0.2;
IC TECHNOLOGY = "CMOS";
DIE SEMICONDUCTOR MATERIAL = "silicon";
DIE SUBSTRATE CONNECTION = "CONN, Vcc";
DIE DELIVERY FORM = "Die, wafer";

TERMINAL TYPE COUNT = 1;

TERMINAL TYPE {
PADR1 = Rectangle, 97, 97;
}

TERMINAL {
T 1 1, PADR1l, -385, 422, 0, Al, I;
T 2 = 2, PADR1l, -385, 176, 0, Bl, I;
T 3 =3, PADR1l, -385, 11, 0, Y1, O;
T 4 = 4, PADR1, -385, -236, 0, A2, I;
T 5 =5, PADR1l, -208, -423, 0, B2, I;
T 6 = 6, PADR1, -43, -423, 0, Y2, O;
T 7 =17, PADR1, 123, -423, 0, GND, G;
T 8 = 8, PADR1, 385, -423, 0, Y3, O;
T 9 =9, PADR1, 385, -166, 0, B3, I;
T 10 10, PADR1, 385, -1, 0, A3, I;
T 11 = 11, PADR1, 385, 164, 0, Y4, O;
T 12 = 12, PADR1, 385, 423, 0, B4, I;
T 13 = 13, PADR1, 38, 423, 0, A4, I;
T 14 = 14, PADR1l, -129, 423, 0, VCC, P;
}

TERMINAL GROUP {
NAND INA = T
NAND INB = T ;
NAND INC = T_ 0
NAND IND = T 1
NAND A = NAND INA, T
NAND B = NAND INB, T
NAND C = NAND_ INC, T
NAND D = NAND IND, T

}

PERMUTABLE {
P1=T1, T 2;
P2 =T34, T 5;
P3=T09, T 10;
P 4 =T 12, T 13;
P 5 = NAND A, NAND B, NAND C, NAND D;
}

The 7400 device has 4 identical gates, Gates A to D, with the following characteristics:

7400 Device INPUT1 INPUT2 OUTPUT
Gate A T 1 T 2 T 3
Gate B T 4 T5 T 6
Gate C T9 T 10 T 8
Gate D T 12 T 13 T 11

Regarding the DDX fragment above, we see that TERMINAL GROUP NAND INA groups the
inputs for Gate A together, NAND INB for Gate B and so on ...

TERMINAL GROUP NAND A similarly groups the inputs for Gate A along with the relevant
output terminal, and again NAND B to NAND D follow the Gates B to D in similar fashion. Note

BS EN 62258-2:2011
62258-2 © IEC:2011 -51-

that the mixing of terminal-groups and terminals within the same statement (in accordance with
Rule A1), and that the terminal ordering (Rule A3) of input terminals and then output terminal,
is adhered to.

Finally, the PERMUTABLE statement can be analysed thus:

1 states that the terminals T 1 and T 2 (Gate A) are interchangeable.

2 states that the terminals T 4 and T 5 (Gate B) are interchangeable.

3 states that the terminals T 9 and T 10 (Gate C) are interchangeable.

4 states that the terminals T 12 and T 13 (Gate D) are interchangeable.

5 states that groups NAND A to NAND D (Gates A to D) are interchangeable, so
long as the sequence order of the terminals is adhered to.

Note that in the above example, we use “P 1 = T 1, T 2;” andnot “P 1 = NAND INA;”,
as the latter statement would violate Rule B1 in not having at least two elements.
As Rule B3 states, the ordering of the elements is not important, such that the statement
P 5 = NAND A, NAND B, NAND C, NAND D;
shall have the same interpretation as
P 5 = NAND D, NAND C, NAND B, NAND A;
As Rule B2 states, the following would NOT be acceptable

P 7 = NAND D, T 1, T 2; (unequal elements, also breaks Rule B1)
P 8 = NAND INA, NAND B; (unequal elements)

P 9 = NAND INA, NAND A; (unequal elements and possible recursion)
P 10 = NAND A, NAND A; (possible recursion)

BS EN 62258-2:2011
-52 - 62258-2 © IEC:2011

Annex C
(informative)

A Typical CAD view from the DDX file block example given in Annex A

- T8 vceB

T2
T7 |OUTPUTB

7995
Mask 1.0

T3 T6 |OUTPUTA

T4
T5 GNDB

IEC 896/11
Figure C.1 — CAD representation of DDX example from Annex A

Note that Figure C.1. is not intended to be a geometrically accurate drawing, the purpose is
solely to assist visualise the output from the DDX example given in Annex A. (The Die Fiducial
graphic is not shown). The CAD system has chosen to display the DEVICE_NAME (refer to
8.1.1) and the DIE_MASK_REVISION (refer clause 8.2.3) parameters for the die. The
individual terminal identifiers and terminal names have similarly been selected for display (refer
to 8.4.5 for details).

BS EN 62258-2:2011
62258-2 © IEC:2011 - 53 -

Annex D
(informative)

Properties for Simulation

A DDX file can reference other external files, such as electrical simulation model files,
mechanical model files and thermal modelling files.

To do this adequately, the following data shall be present:

— the file name and its creation date,

— the exact name of the simulator,

— its version

— the relevant compliance level to which this model applies,
— The terminals to which the model applies (electrical).

Within the model file there should be a textual note relating to the model’s capability,
applicability and accuracy, specifically noting any shortcomings of the model and its usage.
The text “simulator” shall be replaced with either the actual or generic name of the simulator
used and/or model data. Typical “simulator” names might be Verilog, VHDL, SPICE, ELDO,
BSDL, IBIS etc.

8.7.1 SIMULATOR_simulator MODEL_FILE
Data presented as a file name. All file names given shall not include any
absolute computer drive, computer path reference, or any details that
cause the information to become computer or operating system specific
or dependent.

8.7.2 SIMULATOR_simulator MODEL FILE DATE
Data presented as a date, as per]SO 8601
8.7.3 SIMULATOR_simulator NAME

Data presented as text of the actual simulator used to prove the model.

8.7.4 SIMULATOR_ simulator VERSION
Data presented as text determlnlng the actual version or revision of the
simulator against which the model file was proven.

8.7.5 SIMULATOR_simulator COMPLIANCE
Data presented as text which reflects the overall compliance of the
simulator model, where applicable. “2G6”, “VHDL ‘93", “IEEE 1364-
2001” or “IEEE 1076.3-97” are examples of industry recognised
compliance levels.

8.7.6 SIMULATOR_simulator_ TERM_ GROUP
Determines the terminals or terminal groups to which the simulator
applies when the model file only covers a limited range of terminals,
otherwise it is assumed that the model file covers the entire device. This
parameter therefore permits the restriction of the simulation model to
specific terminals or groups of terminals, and by it's absence, implies
that the simulation model is applicable to all device terminals.

Example:

SIMULATOR_SPICE MODEL FILE = “RTBAE2.MOD”;
SIMULATOR SPICE MODEL FILE DATE = “1997-09-17";

SIMULATOR_SPICE_NAME = pSplce

http://dx.doi.org/10.3403/03234467U

BS EN 62258-2:2011
- 54 - 62258-2 © IEC:2011

SIMULATOR _SPICE VERSION = “4.0.17;
SIMULATOR_SPICE COMPLIANCE = “2G6”;

TERMINAL GROUP G 1 = P8, P9, P10;

TERMINAL GROUP G 2 = P28, P29, P30;
SIMULATOR _SPICE TERM GROUP = T 1, T 2, G 1, G 2;

BS EN 62258-2:2011
62258-2 © IEC:2011 - 55—

Annex E
(informative)

TERMINAL and TERMINAL_TYPE graphical usage for CAD/CAM systems

The creation of a CAD/CAE “view” of the device from the data within the DEVICE block may be
considered as having four separate steps. There is no geometric layer information contained
within the DDX format, and it is assumed that all geometric data shall be displayed on a single
layer. Textual information may be provided on a separate layer.

The GEOMETRIC_UNITS parameter (see 8.3.1) defines the appropriate scaling factors to be
employed, and sets the scene for all further numerical input from that DEVICE block. The
GEOMETRIC_VIEW parameter (see 8.3.2) determines whether the device is being viewed from
the top or bottom.

The device outline is created from the SIZE parameter (see 8.3.4), and any geometric offset for
further geometric placement is calculated from the GEOMETRIC_ORIGIN parameter (see
8.3.3). Data such as device name and type is collected and prepared for display purposes.
Note that the GEOMETRIC_ORIGIN parameter is referenced to the XSIZE and YSIZE
parameters, before tolerancing, as XSIZE/2, YSIZE/2. The GEOMETRIC_ORIGIN parameter
values are added to this reference for all relative geometric parameters. The
SIZE_TOLERANCE parameter (see 8.3.5) values may also be used to indicate the minimum
and maximum device outline.

The TERMINAL_COUNT, TERMINAL_TYPE_COUNT and CONNECTION_COUNT parameters
(see 8.4.1, 8.4.2 and 8.4.3) are essentially duplicated, as their values may be calculated from
the TERMINAL (see 8.4.5) and TERMINAL_TYPE (see 8.4.4) structures. They are intended,
however, to be used as a “sanity” check, to ensure correct parsing, and highlight any file or
BLOCK corruption. The TERMINAL_TYPE_COUNT value can only be less than or equal to the
TERMINAL_TYPE value. The CONNECTION_COUNT value has no such restriction.

The shapes of the terminals or connecting areas are separately defined, each shape having its
own geometric reference centre. These shapes are defined with the TERMINAL_TYPE
structure. Each of these terminal shapes can be placed anywhere within the device outline and,
as there is no placement limitation, may be placed outside the device outline should the user
so desire (e.g. pad placement for PCB-type connections). The TERMINAL_TYPE structure
introduces Terminal_Type_Names (see 8.4.4.1 and 8.4.5.3) that shall be unique within the
DEVICE block; these names are placeholders for subsequent usage by the TERMINAL
structure, and so should be introduced prior to the TERMINAL structure statement using the
placeholder name to permit single pass parsing of the DEVICE block. To prevent any possible
ambiguity, it is strongly advised that the Terminal_Type_Names be limited to alphanumeric
characters.

These terminals types (shapes), having been defined, may now be referenced by their
Terminal_Type_Name, and geometrically placed by the TERMINAL structure in sequence
(T_n), at given locations (the X & Y co-ordinates), orientated by mirroring (Figure E.1) and
clockwise rotation (Figure E.2), and finally assigned a terminal name and 1/O function for
further use by the CAD system. The Terminal_name (see 8.4.5.7) would usually be visible as
text, for visual convenience and need not be unique. The Terminal_name can also indicate
terminals that will usually be electrically connected together, such as “VDD”, “VSS”, “Ground”
etc.. A connection number (conn_N) may also be assigned and whilst this number bears no
relation to the actual terminal number, it can be used for identifying common groups of pins,
(such as pins that must be connected together), or actually referring to the original device’s
packaged pin-out (which again can be different to the die pad numbering). The functional 1/0
details (IO_type) (see 8.4.5.8) of each terminal are available for further connectivity checks by
the CAD system. The unique TERMINAL identifier, (T_n) (see 8.4.5.1), can have any mix of

BS EN 62258-2:2011
- 56 - 62258-2 © IEC:2011

alphanumeric characters, and need not be in, nor follow, any particular sequence. The only
requisite is that, as an identifier, it is unique within that DEVICE block, and to prevent any
possible ambiguity, it is strongly advised that the unique identifier, (T_n) be limited to
alphanumeric characters.

Where applicable, the DIE_SUBSTRATE_CONNECTION (see 8.5.5) details should be
displayed, alerting the user to the need to facilitate appropriate connection.

The creation and placement of fiducials is identical to that for terminals by using the
FIDUCIAL_TYPE (see 8.3.8) and FIDUCIAL (see 8.3.9) parameter structures (q.v.). The main
differences being that

e graphical fiducial data are only held within a separate graphic file, and

e that fiducials do not have any connectivity or electrical properties.

It is up to the CAD/CAM system to determine as to how to display the graphic content of the
fiducial graphic file, as there are currently a plethora of graphical file standards. The fiducial
graphic shall be scaled to fit within the size dimensions given by the FIDUCIAL_TYPE
parameter structure, whose reference and placement centre will be taken as the midpoint of
the X- and Y-size dimensions. The actual content and type of graphical data within this file is
commonly determined by the file extent. i.e. TIFF, GIF, JPEG, BMP.

Original object

f e b a e f
c d d ¢ d c

a b e f b a

Orientation MX Orientation MY Orientation MXMY

IEC 897/11

Figure E.1 — Highlighting the MX and MY orientation properties

BS EN 62258-2:2011
62258-2 © IEC:2011 - 57 -

Original object

f a d e
e f
c b =
d c c
e d b a a f
Rotated by 90° Rotated by 180° Rotated by 270°
IEC 898/11

Figure E.2 — Highlighting the angular rotational orientation properties

BS EN 62258-2:2011
- 58 - 62258-2 © IEC:2011

Annex F
(informative)

Cross-reference with |[EC 61360-4

The table below provides a read-across between the parameters in this standard and the DET

definitions given in |JEC 61360-4:2004.

Table F.1 — Parameter List

Clause/ Parameter Name Parameter Data Type DET Code
Sub- Type
clause

8.1 BLOCK DATA

8.1.1 DEVICE NAME Header Text AAH547-001
8.1.2 DEVICE FORM Header Text AADO004-001
8.1.3 BLOCK_VERSION Variable Text

8.1.4 |BLOCK CREATION DATE Variable Date

8.1.5 VERSION Variable Text

8.2 DEVICE_DATA

8.2.1 |DIE NAME Variable Text AAD002-001
8.2.2 DIE PACKAGED PART NAME Variable Text AAD143-001
8.2.3 |DIE MASK REVISION Variable Text AAD003-001
8.2.4 MANUFACTURER Variable Text AAD140-001
8.2.5 |DATA SOURCE Variable Text AAD142-001
826 DATA VERSION Variable Text

8.2.7 FUNCTION Variable Text

8.2.8 |IC TECHNOLOGY Variable Text AAE686-005
8.2.8 |DEVICE PICTURE FILE Variable File Name

8.2.9 DEVICE DATA FILE Variable File Name

8.3 GEOMETRIC DATA

8.3.1 |GEOMETRIC UNITS Variable Real AAD115-001
8.3.2 |GEOMETRIC VIEW Variable Text AAD144-001
8.3.3 |GEOMETRIC ORIGIN Variable Real AAD129 & 130-001
8.3.4 |sizE Variable Real AADO70 & 071-001
8.3.,5 |SIZE TOLERANCE Variable Real AAD117-001
8.3.6 |THICKNESS Variable Real AAD072-001
8.3.7 |THICKNESS TOLERANCE Variable Real AAD118-001
8.3.8 |FIDUCIAL TYPE Structure AAD156 to 159-001
8.3.9 |FIDUCIAL Structure AAD160 to 162-001

8.4 TERMINAL DATA

841 |TERMINAL COUNT Variable Integer |AAD145-001
8.4.2 |TERMINAL TYPE counT Variable Integer | AAD116-001
8.4.3 |CONNECTION COUNT Variable Integer

8.4.4 |TERMINAL TYPE Structure AADO024 to 030,

AAD121-001

http://dx.doi.org/10.3403/01063540U
http://dx.doi.org/10.3403/30090806

BS EN 62258-2:2011

62258-2 © IEC:2011 —59 -
Clause/ Parameter Name Parameter Data Type DET Code
Sub- Type
clause
8.4.5 |TERMINAL Structure AADO14 to 016,
AADO019, AAD020-001
8.4.6 |TERMINAL GROUP Structure
8.4.7 |PERMUTABLE Structure
8.5 MATERIAL DATA
8.5.1 |TERMINAL MATERIAL Variable Text AAD120-001,
(was DIE TERMINAL MATERIAL) AAE634-005
8.5.2 |TERMINAL MATERIAL STRUCTURE Variable Text
8.5.3 |DIE SEMICONDUCTOR MATERIAL Variable Text AAD148-001
8.5.4 |DIE SUBSTRATE MATERIAL Variable Text AAD005-001
855 |DIE SUBSTRATE CONNECTION Variable Text AADO006 & 007-001
8.5.6 |DIE PASSIVATION MATERIAL Variable Text AAD078-001
8.5.7 DIE BACK DETAIL Variable Text AAD119-001
8.6 |ELECTRICAL and THERMAL DATA Variable
8.6.1 |MAX TEMP Variable Real AAD149-001
8.6.2 MAX TEMP_TIME Variable Real
8.6.3 |POWER RANGE Variable Real AAD151-001
8.6.4 TEMPERATURE RANGE Variable Real AAE891-005
8.7 SIMULATOR DATA
8.7.1 |SIMULATOR simulator MODEL FILE Variable File Name
8.7.2 SIMULATOR simulator MODEL FILE DATE Variable Text
8.7.3 |SIMULATOR simulator NAME Variable Text
8.7.4 |SIMULATOR simulator VERSION Variable Text
8.7.5 |SIMULATOR simulator COMPLIANCE Variable Text
8.7.6 SIMULATOR simulator TERM_ GROUP Variable
8.8 HANDLING, PACKING, STORAGE and
ASSEMBLY
8.8.1 |DELIVERY FORM Variable Text AAD155-001
(was DIE DELIVERY FORM)
8.8.2 |PACKING CODE Variable Text AAD055-001
8.8.8 ASSEMBLY parameters Variable Text
8.9 WAFER SPECIFIC DATA
8.9.1 |WAFER SIZE Variable Text AAD011-001
8.9.2 WAFER THICKNESS Variable Real
8.9.3 |WAFER THICKNESS TOLERANCE Variable Real
8.9.4 WAFER DIE STEP SIZE Variable Real AAD163-001, AAD164-
001
8.9.5 |WAFER GROSS DIE COUNT Variable Integer |AAD165-001
8.9.6 |WAFER INDEX Variable Real AAD166-001, AAD167-
001
8.9.7 |WAFER RETICULE STEP SIZE Variable Real AAD168-001, AAD169-
001
8.9.8 |WAFER RETICULE GROSS DIE COUNT Variable Integer |AAD170-001

BS EN 62258-2:2011

- 60 - 62258-2 © IEC:2011
Clause/ Parameter Name Parameter Data Type DET Code
Sub- Type
clause
8.9.9 WAFER INK PARAMETERS Variable Text
8.10 BUMP TERMINATION SPECIFIC DATA
8.10.1 |BUMP_MATERIAL Variable Text AAD124-001
8.10.2 |BUMP_HEIGHT Variable Real AAD146-001
8.10.3 |BUMP_HEIGHT_TOLERANCE Variable Real AAD147-001
8.10.4 |BUMP_SHAPE Variable Text
8.10.5 |BUMP_SIZE Variable Real
8.10.6 |[BUMP_SPECIFICATION_DRAWING Variable File Name
8.10.7 |BUMP_ATTACHMENT METHOD Variable Text
8.11 MINIMALLY PACKAGE DEVICE SPECIFIC DATA
8.11.1 |MPD_PACKAGE_MATERIAL Variable Text AAD150-001
8.11.2 |MPD PACKAGE STYLE Variable Text
8.11.3 |MPD_CONNECTION_TYPE Variable Text
8.11.4 |MPD MSL LEVEL Variable Text
8.11.5 |MPD_PACKAGE_DRAWING Variable File Name
Deleted |MPD DELIVERY FORM (refer to 8.8.1) Variable
Deleted DB/IPE_%ONNECTION_MATERIAL (refer to Variable
8.12 QUALITY, RELIABILITY and TEST DATA
8.12.1 QUALITY Parameters Variable Text
8.12.1 TEST Parameters Variable Text
8.13 OTHER DATA
8.13.1 TEXT Variable Text

BS EN 62258-2:2011
62258-2 © IEC:2011 -61-

Annex G
(informative)

Notes on VERSION and NAME parameters

There are three “VERSION” related parameters, each of which contains specific revision data
concerned with the different aspects of the data presented within a DDX BLOCK.

VERSION Subclause 8.1.5

This relates to the IEC 62258, Part 2, and its issue. Being a data transfer standard for use with
CAD/CAE systems, it is anticipated that there will be updates and revisions, particularly the
inclusion of additional data, on a regular basis. Refer to Clause 1 to determine the DDX version
covered in this standard.

BLOCK_VERSION Subclause 8.1.3

This parameter relates solely to the revision status of the data with the BLOCK, and would
expect to be “up-revved” as data within the BLOCK is modified. The BLOCK_VERSION
parameter is specifically NOT concerned with the source of any data changes.

DATA_VERSION Subclause 8.2.6

This parameter covers the source of the data used; to indicate the technical “state-of-the-art”
for the data contents. This parameter is therefore closely coupled with the DATA_SOURCE
parameter.

BLOCK_CREATION_DATE Subclause 8.1.4

This parameter relates solely to the last date that data within the block was revised, and always
accompanies, and should be linked to, the BLOCK_VERSION parameter.

Likewise, there are four “NAME” related parameters, each of which represents a different
aspect of the name by which the device is known.

DEVICE_NAME Subclause 8.1.1
This is often referred to as the type number and is the identity normally used in data sheets
and in parts lists.

DIE_NAME Subclause 8.2.1
This is the name given to the die itself and the set of masks used in its fabrication. This name
is often part of the fiducials on the die surface.

DIE_MASK_REVISION Subclause 8.2.3
The revision or version code of the mask set used in fabricating the die.

DIE_PACKAGED_PART_NAME Subclause 8.2.2
This is generally similar to the DEVICE_NAME and is quoted as the name of a packaged part
which usually contains the same die and has similar electrical characteristics.

BS EN 62258-2:2011
- 62— 62258-2 © IEC:2011

Annex H
(informative)

Notes on WAFER parameters

When die are delivered as unsawn wafers, additional parameters can assist in the practicality
of mechanical handling and quantity purchasing. Such parameters include the die step size,
wafer size, wafer flat angle and gross die per wafer. Where the die step size is irregular, often
caused by the reticule step, further parameters relating to the reticule size can become
important.

Parameters relating to wafer delivery include:

WAFER_SIZE Subclause 8.9.1
This parameter gives the approximate wafer diameter. This is commonly quoted in millimetres
or inches, and so need not be related to the GEOMETRIC_UNITS parameter.

WAFER_DIE_STEP_SIZE Subclause 8.9.4
The X and Y co-ordinates specified by this parameter are commonly used for die sawing and
wafer probing, etc. The units again are determined by the GEOMETRIC_UNITS parameter.

WAFER_GROSS_DIE_COUNT Subclause 8.9.5

The gross die count can be an important parameter in the calculation of nett die per wafer, but
does not reflect the good die per wafer, only the total of viable relevant die (whole die). Whilst
theoretically there is a direct mathematical relationship between wafer and die size, test “drop-
ins” etc., will affect the final count. The user should also be aware of cost-saving techniques
which involve the reduction in the number of masks required that often result in fewer viable
die.

WAFER_INDEX Subclause 8.9.6

This parameter pair defines the both type of physical feature present on a wafer and its
orientation, which may then be used in an auto-location system in order to determine the
placement and orientation of the wafer.

The first parameter specifies the type of feature, either a “flat” or “notch”, whilst the second
parameter determines the approximate angle, to the nearest degree, of this index feature on
the wafer with respect to the X-axis on the surface of the die. This can assist in wafer location
recognition system for initial or crude orientation prior to final alignment by optical means.
Where more than one flat exists on the wafer, the orientation is with respect to the major, or
prime, flat, which may also be used to indicate the wafer lattice crystal [110] direction.

WAFER_RETICULE_STEP_SIZE Subclause 8.9.7
Where the reticule dimensions interfere with the regular stepping of the die size, the reticule
step size should be given, in the same dimensions as the die step size (GEOMETRIC_UNITS).

WAFER_RETICULE_GROSS_DIE_COUNT Subclause 8.9.8

Where the WAFER_RETICULE_STEP_SIZE parameter is relevant, it may also be relevant to
state the number of die, of the specified die type, within the reticule window. In the case of
MPW runs, this may only be one die.

BS EN 62258-2:2011
62258-2 © IEC:2011 - 63 -

WAFER_FLAT_ORIENTATION

c - X axis
*,
\<g

N,

Wafer flat

WAFER_RETICULE_STEP_SIZE

Reticule step

Ipie | IDie || !Die | IDie ||| ! Die || |Die |.|Die |.|Die
Y Y Y Y Y Y Y Y
Ax = X X —] x| [=X =] x| X]| X —
J Die J Die J Die Y| Die \|(Die J Die Y| Die J Die
AX | XX XXX X X —

Ipie | !Die || IDie | IDie || ! Die || |Die | !Die |.!Die
Y Y Y Y Y Y Y Y
=X —| X=X | X=X X X X —
J Die J Die J Die Y| Die \l(Die J Die Y| Die J Die

AX] X X X[X X X X —

WAFER_DIE_STEP_SIZE

IEC 899/11

Figure H.1 — lllustrating the WAFER parameters

Figure H.1 shows a representation of where the reticule step size interferes with the die step
dimensions, (the reticule here containing a total of 8 die in a 4 by 2 matrix). The gap between
reticule and reticule results in an additional distance between adjacent die at the boundaries of
the reticule. Figure H.1 also shows then wafer flat angle with respect to the assumed X-
dimension of the die. Notional parameter values for Figure H.1 might be:

WAFER SIZE = “150mm”;
WAFER DIE STEP SIZE = 1000,1000;

WAFER _GROSS_DIE_COUNT = 2077;

WAFER INDEX = “Flat”,45;

WAFER RETICULE STEP SIZE = 4050, 2100;
WAFER RETICULE GROSS DIE COUNT = 8;

The reticule parameters given in this example here demonstrates a 50 unit discrepancy
(GEOMETRIC_UNITS) in the X-dimension, and a 100 unit discrepancy (GEOMETRIC_UNITS)
in the Y-dimension.

1)

BS EN 62258-2:2011
- 64 - 62258-2 © IEC:2011

Annex |
(informative)

Additional notes

As it stands, the DDX format requires data to reside within a block structure, strictly
delimited by braces. The only data required outside of these braces are the DEVICE
keyword and the associated parameters of DEVICE_NAME and DEVICE_FORM. This then
leaves scope for future expansion, such as the inclusion of non-DDX format data outside
of the DDX block structure, provided that the DDX structure and format rules are
conformed to. Such additional data may include file and block checksums to validate the
data file contents, although full ASCII character checksum calculations need to take into
account the differing line delimiters used by different software operating systems. This
additional data should be catered for, and ignored, by any parsing routine specifically for
reading DDX formatted data.

As there are many different character conventions for displaying or annotating a negated
signal, such as “\”, “/7, “N”, “B” or “not/bar”, no particular method has been adopted in the
DDX format for the display of such signal names. It is therefore reliant upon the
information provider to adopt a single convention, and the CAE vendor to accommodate
this convention in the graphical display, where required.

Referencing an external file. File name references are required by:

8.3.8.2 FIDUCIAL_TYPE

8.2.9 DEVICE_PICTURE_FILE

8.2.10 DEVICE_DATA_FILE

8.11.5 MPD_PACKAGE_DRAWING

8.10.6 BUMP_SPECIFICATION_DRAWING

When referencing an external file, such as a graphic, textual or document file, it is
preferable that the external file type conforms to a standard format in common use.
Convention holds that the document format and/or type is indicated by the named file
extent.

Multiple file names. Multiple file names are permitted in:

8.2.9 DEVICE_PICTURE_FILE

8.2.10 DEVICE_DATA_FILE

8.11.5 MPD_PACKAGE_DRAWING

8.10.6 BUMP_SPECIFICATION_DRAWING

Where multiple file names are permitted, the file names can be introduced in a single
function invocation, as:

DEVICE DATA FILE = “filel.txt”, “file2.txt”, .., “fileX.txt”;

or as multiple invocations of that function, as:

DEVICE DATA FILE
DEVICE DATA FILE

“filel.txt”;
“file2.txt”;

DEVICE DATA FILE = “fileN.txt”;

When using a single function invocation to introduce more than one file name, each file
name should be surrounded by double quotes (as 6.3.7) and each file name shall be
separated by a comma (as 6.3.2). Each line shall be terminated by a semicolon as 6.3.1.

BS EN 62258-2:2011

62258-2 © IEC:2011 - 65—

Annex J
(informative)

DDX Version history

The following table, Table J.1, indicates the parameter version history. The issue column
reflects the current DDX revision and version number at which that parameter was either
introduced or last altered.

The current version for this DDX format is 1.3.0, as stated in Clause 1 of this standard.
The previous version of this DDX format was 1.0, as defined in ES59008, Part 6-1.

Table J.1 — Parameter Change History List

Clause/ Parameter Name ES59008-6-1 Previous Current
Subclau- Reference

se Clause Issue
8.1 BLOCK DATA
8.1.1 DEVICE NAME 8.2 8.5 1.0
8.1.2 DEVICE FORM 8.1 8.4 1.0
8.1.3 BLOCK_VERSION 8.17 8.2 1.0
8.1.4 BLOCK_ CREATION DATE 8.16 8.1 1.0
8.1.5 VERSION 8.3 8.3 1.0
8.2 DEVICE_DATA
8.2.1 DIE NAME 8.8 1.2.1
8.2.2 DIE PACKAGED PART NAME 8.36 8.9 1.0
8.2.3 DIE MASK REVISION 8.30 8.6 1.0
8.2.4 MANUFACTURER 8.4 8.7 1.0
8.2.5 DATA SOURCE 8.19 8.11 1.0
8.2.6 DATA VERSION 8.55 8.12 1.0
8.2.7 FUNCTION 8.5 8.10 1.0
8.2.8 IC_TECHNOLOGY 8.20 8.25 1.0
8.2.8 DEVICE PICTURE FILE 1.3.0
8.2.9 DEVICE DATA FILE 1.3.0
8.3 GEOMETRIC DATA
8.3.1 GEOMETRIC UNITS 8.6 8.13 1.0
8.3.2 GEOMETRIC VIEW 8.7 8.14 1.0
8.3.3 GEOMETRIC ORIGIN 8.10 8.17 1.0
8.3.4 SIZE 8.8 8.15 1.0
8.3.5 SIZE TOLERANCE 8.21 8.18 1.0
8.3.6 THICKNESS 8.9 8.16 1.0
8.3.7 THICKNESS TOLERANCE 8.22 8.19 1.0
8.3.8 FIDUCIAL TYPE 8.47 8.51 1.0
8.3.9 FIDUCIAL 8.48 8.52 1.0
8.4 TERMINAL DATA

BS EN 62258-2:2011

- 66 - 62258-2 © IEC:2011
Clause/ Parameter Name ES59008-6-1 Previous Current
Subclau- Reference

se Clause Issue
8.4.1 TERMINAL COUNT 8.11 8.20 1.0
8.4.2 TERMINAL TYPE COUNT 8.12 8.21 1.0
8.4.3 CONNECTION COUNT 8.13 8.22 1.0
8.4.4 TERMINAL TYPE 8.14 8.23 1.0
8.4.5 TERMINAL 8.15 8.24 1.0
8.4.6 TERMINAL GROUP 8.58 1.3.0
8.4.7 PERMUTABLE 8.61 1.3.0
8.5 MATERIAL DATA
8.5.1 TERMINAL MATERIAL 8.30 1.3.0

(was DIE TERMINAL MATERIAL)
8.5.2 TERMINAL MATERIAL STRUCTURE 1.3.0
8.5.3 DIE SEMICONDUCTOR MATERIAL 8.34 8.26 1.0
8.5.4 DIE SUBSTRATE MATERIAL 8.32 8.27 1.0
8.5.5 DIE SUBSTRATE CONNECTION 8.31 8.28 1.0
8.5.6 DIE PASSIVATION MATERIAL 8.37 8.29 1.0
8.5.7 DIE BACK DETAIL 8.33 8.31 1.0
8.6 ELECTRICAL and THERMAL DATA
8.6.1 MAX TEMP 8.18 8.33 1.0
8.6.2 MAX_TEMP TIME 1.3.0
8.6.3 POWER RANGE 8.23 8.34 1.0
8.6.4 TEMPERATURE RANGE 8.24 8.35 1.0
8.7 SIMULATOR DATA
8.7.1 SIMULATOR simulator MODEL FILE 8.25 8.36 1.0
8.7.2 SIMULATOR simulator MODEL FILE DATE 8.26 8.37 1.0
8.7.3 SIMULATOR_ simulator NAME 8.27 8.38 1.0
8.7.4 SIMULATOR simulator VERSION 8.28 8.39 1.0
8.7.5 SIMULATOR simulator COMPLIANCE 8.29 8.40 1.0
8.7.6 SIMULATOR simulator TERM_ GROUP 8.59 1.3.0
8.8 HANDLING, PACKING, STORAGE and ASSEMBLY
8.8.1 DELIVERY FORM 8.35 8.41 1.0
(was DIE DELIVERY FORM)

8.8.2 PACKING CODE 8.46 8.42 1.0
8.8.8 ASSEMBLY parameters 1.3.0
8.9 WAFER SPECIFIC DATA
8.9.1 WAFER SIZE 8.45 8.32 1.0
8.9.2 WAFER THICKNESS 1.3.0
8.9.3 WAFER THICKNESS TOLERANCE 1.3.0
8.9.4 WAFER DIE STEP SIZE 8.53 1.2.1
8.95 WAFER GROSS DIE COUNT 8.54 1.2.1
8.9.6 WAFER INDEX 8.55 1.2.1
897 WAFER RETICULE STEP SIZE 8.56 1.2.1
8.9.8 WAFER RETICULE GROSS DIE COUNT 8.57 1.2.1

BS EN 62258-2:2011

62258-2 © IEC:2011 - 67 —
Clause/ Parameter Name ES59008-6-1 Previous Current
Subclau- Reference
se Clause Issue
8.9.9 WAFER_INK 1.3.0
8.10 BUMP TERMINATION SPECIFIC DATA
8.10.1 BUMP_ MATERIAL 8.38 8.43 1.0
8.10.2 |BUMP_HEIGHT 8.39 8.44 1.0
8.10.3 |BUMP HEIGHT TOLERANCE 8.40 8.45 1.0
8.10.4 |BUMP_SHAPE 1.3.0
8.10.5 |BUMP SIZE 1.3.0
8.10.6 |BUMP SPECIFICATION DRAWING 1.3.0
8.10.7 |BUMP ATTACHMENT METHOD 1.3.0
8.1 MINIMALLY PACKAGE DEVICE SPECIFIC DATA
8.11.1 MPD_ PACKAGE MATERIAL 8.41 8.46 1.0
8.11.2 |MPD PACKAGE STYLE 8.47 1.2.1
8.11.3 |MPD_CONNECTION_TYPE 8.43 8.49 1.0
8.11.4 MPD MSL LEVEL 1.30
8.11.5 |MPD PACKAGE DRAWING 130
Deleted |MPD DELIVERY FORM (refer to 8.8.1) 8.42 8.48 1.0
Deleted |MPD CONNECTION MATERIAL (refer to 8.5.1) 8.44 8.50 1.0
8.12 QUALITY, RELIABILITY and TEST DATA
8.12.1 QUALITY Parameters 1.3.0
8.12.1 TEST Parameters 130
8.13 OTHER DATA
8.13.1 TEXT 8.60 1.3.0
8.14 CONTROL DATA
8.14.1 PARSE 1.3.0

BS EN 62258-2:2011
- 68 - 62258-2 © IEC:2011

Annex K
(informative)

Parse Control

The PARSE_ series of parameters are intended to add in-line control of the parsing software,
primarily to allow for additions and extensions to the DDX software that have not, to date, been
ratified and included in the current standard. Note that none of the PARSE__ parameters have
any relevance or meaning to the device data.

To this end a number of PARSE_ parameters have been added:

8.14.1 PARSE_MODE

8.14.2 PARSE_ERROR_REPORT
8.14.3 PARSE_ERROR_TRAP

8.14.4 PARSE_IGNORE

8.14.5 PARSE_DEFINE_PARAMETER
8.14.6 PARSE_DEFINE_STRUCTURE

The PARSE_MODE, PARSE_ERROR_REPORT, PARSE_ERROR_TRAP and
PARSE_IGNORE parameters may have multiple occurrences, and are intended to “switch” the
desired parse mode as the DDX file or DDX block is linearly read.

The PARSE_DEFINE_PARAMETER and PARSE_DEFINE_STRUCTURE parameters serve to
introduce new parameters and/or structures to the parsing software for inclusion in syntax
checks, data validation and value assignment, solely for that specific DDX block. Once defined,
it is expected that the new parameters and structures will fully conform to the syntax etc., as
defined in Clauses 5 to 7. Until the new parameters and structures have been ratified and
included in an update to this DDX standard, all data shall be treated as textual and will have no
associated S.I unit.

The PARSE_MODE parameter is intended to control the way in which the syntax and data
rules are interpreted and applied. In all cases, data that complies with this version of the DDX
format (refer Clause 1) shall be free from errors or warnings. New data parameters or
structures that have been introduced using the PARSE_DEFINE_xxx parameters may require
some rule relaxation before an error-free parse result is achieved.

PARSE MODE = STRICT;

Under “normal” circumstances, the _MODE parameter will default to “STRICT”, and
all currently compliant data must be error free, and errors will be issued if the
PARSE_DEFINE options are used. These errors are to or structures than those
given in the current standard,

PARSE MODE = RELAXED;

The “RELAXED” value is given to permit inclusion of additional defined data that
may not strictly comply with the rules as written. Instead of errors, warnings are to
be issued when new parameters are included to serve notice to the user that the
DDX block under scrutiny contains parameters not currently in the standard.

PARSE MODE USER;

PARSE MODE ENHANCED;

The “ENHANCED” and “USER” values are alternative options available to the
discretion of the parse software provider and user.

The PARSE_ERROR_REPORT parameter determines the level of warnings and errors
reported DURING parsing, it should have no effect on the end report. This is primarily to
prevent warnings regarding parameters being used prior to their assignment, caused by the
introduction of new parameters. These parameter options are self-explanatory.

BS EN 62258-2:2011

62258-2 © IEC:2011 - 69 -
PARSE ERROR REPORT = OFF;
PARSE ERROR REPORT = TERSE;
PARSE ERROR REPORT = VERBOSE;

The PARSE_ERROR_TRAP parameter determines how the parsing software should react once
an error (as opposed to a warning) is discovered.

PARSE ERROR TRAP = ALL;
This is the expected “default” mode. The DDX block is parsed and all errors are
reported.

PARSE ERROR TRAP = FIRST;
The “FIRST” value should cause the parsing software to halt upon the detection of
the first error.

The PARSE_IGNORE parameter is meant to control whether checking is actually performed of
part of the DDX block or not, and should accordingly be used with care.

PARSE IGNORE NONE ;

PARSE IGNORE = OFF;

All parsing checks are performed. This should be the default state for the parsing
software.

PARSE IGNORE = ALL;
All parsing checks are ignored, this is useful only to bypass rubbish data

PARSE IGNORE = SYNTAX ONLY;

Only syntactical errors and line-termination checks are performed. There are no
checks on forward/backward referencing of variables, nor of parameter counts etc.
This option should only be used when new parameters or structures are introduced
that include variable referencing or non-textual data.

WARNINGS and ERRORS

It is advised that the following items be classed as WARNINGS, and all other
errors classified as ERRORS:

WARNING 1. The occurrence of ASCII characters in the range 0x80 to OxFF

WARNING 2. Where a data line is assumed to be terminated due to its length
exceeding the parser’s line input buffer. Refer to 6.3.9.

WARNING 3. Where textual data, not enclosed within double quotes, includes
line break characters, refer to 6.3.8.

WARNING 4. Where the textual file name does not conform to the character
set as defined in 7.1.3.2.

WARNING 5. Where the PARSE_DEFINE xxx introduces a parameter or
structure that has been ratified and defined within the later
versions of the DDX standard.

This page deliberately left blank

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other
standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization
products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators
and others to shape their combined experience and expertise into standards
-based solutions.

The knowledge embodied in our standards has been carefully assembled in
a dependable format and refined through our open consultation process.
Organizations of all sizes and across all sectors choose standards to help
them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs
to succeed. Find out more about British Standards by visiting our website at
bsiaroun.com/standards or contacting our Customer Services team or

Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British
and adopted European and international standards, through our website at
bsiaroun.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development
Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards
easier for you. For further information on our subscription products go to
bsiaroun.com/subscrintions.

With British Standards Online (BSOL) you'll have instant access to over 55,000
British and adopted European and international standards from your desktop.

It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial
discounts on the purchase price of standards, both in single copy and subscription
format, by becoming a BSI Subscribing Member.

PLUS is an updating service exclusive to BSI Subscribing Members. You will
automatically receive the latest hard copy of your standards when they're

revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits

of membership, please visit bsiaroun.com/shop.

With a Multi-User Network Licence (MUNL) you are able to host standards
publications on your intranet. Licences can cover as few or as many users as you
wish. With updates supplied as soon as they're available, you can be sure your
documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters
389 Chiswick High Road London W4 4AL UK

bsi.

Revisions
Our British Standards and other publications are updated by amendment or revision.
We continually improve the quality of our products and services to benefit your

business. If you find an inaccuracy or ambiguity within a British Standard or other
BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and
other BSI publications are the property of and copyrighted by BSI, or some person
or entity that owns copyright in the information used (such as the international
standardization bodies) and has formally licensed such information to BSI for
commercial publication and use. Except as permitted under the Copyright, Designs
and Patents Act 1988 no extract may be reproduced, stored in a retrieval system
or transmitted in any form or by any means — electronic, photocopying, recording
or otherwise — without prior written permission from BSI. Details and advice can
be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services

Tel: +44 845 086 9001

Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions
Tel: +44 845 086 9001
Email: subscriptions@bsigroup.com

Knowledge Centre
Tel: +44 20 8996 7004
Email: knowledgecentre@bsigroup.com

Copyright & Licensing
Tel: +44 20 8996 7070
Email: copyright@bsigroup.com

..making excellence a habit’

www.bsigroup.com/standards
www.bsigroup.com/shop
www.bsigroup.com/shop
www.bsigroup.com/subscriptions

	30247992-VOR.pdf
	English
	CONTENTS
	FOREWORD
	INTRODUCTION
	1 Scope and object
	2 Normative references
	3 Terms and definitions
	4 Requirements
	5 Device Data eXchange format (DDX) file goals and usage
	6 DDX file format and file format rules
	6.1 Data validity
	6.2 Character set
	6.3 SYNTAX RULES

	7 DDX file content
	7.1 DDX file content rules
	7.2 DDX DEVICE block syntax
	7.3 DDX data syntax

	8 Definitions of DEVICE block parameters
	8.1 BLOCK DATA
	8.2 DEVICE DATA
	8.3 GEOMETRIC DATA
	8.4 TERMINAL DATA
	8.5 MATERIAL DATA
	8.6 ELECTRICAL AND THERMAL RATING DATA
	8.7 SIMULATION DATA
	8.8 HANDLING, PACKING, STORAGE and ASSEMBLY DATA
	8.9 WAFER SPECIFIC DATA
	8.10 BUMP TERMINATION SPECIFIC DATA
	8.11 MINIMALLY PACKAGED DEVICE (MPD) SPECIFIC DATA
	8.12 QUALITY, RELIABILITY and TEST DATA
	8.13 OTHER DATA
	8.14 CONTROL DATA

	Annex A (informative)
An example of a DDX DEVICE block
	Annex B (informative)
Groups and Permutation
	Annex C (informative)
A Typical CAD view from the DDX file block example given in Annex A
	Annex D (informative)
Properties for Simulation
	Annex E (informative)
TERMINAL and TERMINAL_TYPE graphical usage for CAD/CAM systems
	Annex F (informative)
Cross-reference with IEC 61360-4
	Annex G (informative)
Notes on VERSION and NAME parameters
	Annex H (informative)
Notes on WAFER parameters
	Annex I (informative)
Additional notes
	Annex J (informative)
DDX Version history
	Annex K (informative)
Parse Control
	Figures

	Figure 1 – Relationship between geometric centre and geometric origin
	Figure C.1 – CAD representation of DDX example from Annex A
	Figure E.1 – Highlighting the MX and MY orientation properties
	Figure E.2 – Highlighting the angular rotational orientation properties
	Figure H.1 – Illustrating the WAFER parameters

	Tables

	Table 1 – Relationship between geometric centre and geometric origin

	Table 2
 Terminal shape co-ordinates
	Table 3 – Terminal IO types
	Table 4 – Substrate Connection Parameters
	Table F.1 – Parameter List
	Table J.1 – Parameter Change History List

	Français

	SOMMAIRE
	AVANT-PROPOS
	INTRODUCTION
	1 Domaine d'application et objet
	2 Références normatives
	3 Termes et définitions
	4 Exigences
	5 Buts et usage du fichier de format d'échange de données de dispositif (DDX)
	6 Format de fichier DDX et règles relatives au format de fichier
	6.1 Validité des données
	6.2 Jeu de caractères
	6.3 RÈGLES SYNTAXIQUES

	7 Contenu d'un fichier DDX
	7.1 Règles relatives au contenu d'un fichier DDX
	7.2 Syntaxe du bloc DEVICE DDX
	7.3 Syntaxe des données DDX

	8 Définitions des paramètres d'un bloc DEVICE
	8.1 BLOCK DATA (DONNÉES DE BLOC)
	8.2 DONNÉES DE DISPOSITIF
	8.3 DONNÉES GÉOMÉTRIQUES
	8.4 DONNÉES RELATIVES AUX BORNES
	8.5 DONNÉES RELATIVES AUX MATÉRIAUX
	8.6 DONNÉES RELATIVES AUX CARACTÉRISTIQUES ASSIGNÉES ÉLECTRIQUES ET THERMIQUES
	8.7 DONNÉES DE SIMULATION
	8.8 DONNÉES RELATIVES À LA MANUTENTION, AU CONDITIONNEMENT, AU STOCKAGE ET À L'ASSEMBLAGE
	8.9 DONNÉES SPÉCIFIQUES AUX TRANCHES
	8.10 DONNÉES SPÉCIFIQUES AUX TERMINAISONS À BOSSES
	8.11 DONNÉES SPÉCIFIQUES AUX DISPOSITIFS À ENCAPSULATION RÉDUITE (MPD, MINIMALLY PACKAGED DEVICE)
	8.12 DONNÉES DE QUALITÉ, FIABILITÉ ET ESSAIS
	8.13 AUTRES DONNÉES
	8.14 DONNÉES DE CONTRÔLE

	Annexe A (informative)
Exemple d'un bloc DEVICE DDX
	Annexe B (informative)
Groupes et permutation
	Annexe C (informative)
Vue CAO type à partir de l'exemple de blocde fichier DDX donné dans l'Annexe A
	Annexe D (informative)
Propriétés pour la Simulation
	Annexe E (informative)
Utilisation graphique de TERMINAL et TERMINAL_TYPEpour les systèmes CAO/FAO
	Annexe F (informative)
Correspondance avec la CEI 61360-4
	Annexe G (informative)
Notes sur les paramètres VERSION et NAME
	Annexe H (informative)
Notes sur les paramètres WAFER
	Annexe I (informative)
Notes complémentaires
	Annexe J (informative)
Historique des versions DDX
	Annexe K (informative)
Contrôle d'analyse
	Figures

	Figure 1 – Relation entre le centre géométrique et l'origine géométrique
	Figure C.1 – Représentation CAO de l'exemple de DDX issu de l'Annexe A
	Figure E.1 – Mise en évidence des propriétés d'orientation MX et MY
	Figure E.2 – Mise en évidence des propriétés d'orientation de rotation angulaire
	Figure H.1 – Illustration des paramètres WAFER

	Tableaux

	Tableau 1 – Types de forme de borne

	Tableau 2 – Coordonnées de la forme de borne
	Tableau 3 – Types d'I/O (c'est-à-dire E/S) de borne
	Tableau 4 – Paramètres de connexion au substrat
	Tableau F.1 – Liste de paramètres
	Tableau J.1 – Liste de l'historique des modifications des paramètres

