BRITISH STANDARD BS EN
61691-2:2001

IEC
61691-2:2001

Behavioural
languages —

Part 2: VHDL multilogic system for
model interoperability

The European Standard EN 61691-2:2001 has the status of a
British Standard

ICS 35.240.50

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW
L] I

BS EN 61691-2:2001

This British Standard, having
been prepared under the
direction of the
Electrotechnical Sector Policy
and Strategy Committee, was
published under the authority
of the Standards Policy and
Strategy Committee on

2 April 2002

© BSI 2 April 2002

ISBN 0 580 39266 X

National foreword

This British Standard is the official English language version of
EN 61691-2:2001. It is identical with TEC 61691-2:2001.

The UK participation in its preparation was entrusted to Technical Committee
GEL/93, Design automation, which has the responsibility to:

— aid enquirers to understand the text;

— present to the responsible international/European committee any
enquiries on the interpretation, or proposals for change, and keep the
UK interests informed,;

— monitor related international and European developments and
promulgate them in the UK.

A list of organizations represented on this committee can be obtained on
request to its secretary.

From 1 January 1997, all IEC publications have the number 60000 added to
the old number. For instance, IEC 27-1 has been renumbered as IEC 60027-1.
For a period of time during the change over from one numbering system to the
other, publications may contain identifiers from both systems.

Cross-references

The British Standards which implement international or European
publications referred to in this document may be found in the BSI Standards
Catalogue under the section entitled “International Standards Correspondence
Index”, or by using the “Find” facility of the BSI Standards Electronic
Catalogue.

A British Standard does not purport to include all the necessary provisions of
a contract. Users of British Standards are responsible for their correct
application.

Compliance with a British Standard does not of itself confer immunity
from legal obligations.

Summary of pages
This document comprises a front cover, an inside front cover, the EN title page,
the EN foreword page, the IEC title page, pages 2 to 23 and a back cover.

The BSI copyright date displayed in this document indicates when the
document was last issued.

Amendments issued since publication

Amd. No. Date Comments

http://dx.doi.org/10.3403/30170787U

EUROPEAN STANDARD EN 61691-2
NORME EUROPEENNE
EUROPAISCHE NORM December 2001

ICS 35.240.50

English version

Behavioural languages
Part 2: VHDL multilogic system for model interoperability
(IEC 61691-2:2001)

Langages relatifs au comportement Verhaltensebenensprache

Partie 2: Systéme multilogique en VHDL Teil 2: System fur mehrwertige Logik
permettant l'interopérabilité des modéles fur das VHDL-Interoperabilitatsmodell
(CEI 61691-2:2001) (IEC 61691-2:2001)

This European Standard was approved by CENELEC on 2001-09-01. CENELEC members are bound to
comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European
Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on
application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CENELEC member into its own language and
notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Czech Republic,
Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands,
Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Européisches Komitee fiir Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

© 2001 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Ref. No. EN 61691-2:2001 E

http://dx.doi.org/10.3403/02535867U

EN 61691-2:2001

Foreword

The text of document 93/130/FDIS, future edition 1 of IEC 61691-2, prepared by IEC TC 93, Design
automation, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as
EN 61691-2 on 2001-09-01.

The following dates were fixed:

— latest date by which the EN has to be implemented
at national level by publication of an identical
national standard or by endorsement (dop) 2002-06-01

— latest date by which the national standards conflicting
with the EN have to be withdrawn (dow) 2004-09-01

This standard is based on IEEE Std 1164:1993, Multivalue logic system for VHDL model
interoperability.

Endorsement notice

The text of the International Standard IEC 61691-2:2001 was approved by CENELEC as a European
Standard without any modification.

http://dx.doi.org/10.3403/02535867U
http://dx.doi.org/10.3403/02535867U

INTERNATIONAL
STANDARD

EN 61691-2:2001

IEC
61691-2

First edition
2001-06

Behavioural languages —

Part 2:
VHDL multilogic system
for model interoperability

Reference number
IEC 61691-2:2001(E)

http://dx.doi.org/10.3403/02535867U
http://dx.doi.org/10.3403/02535867U

Page 2
EN 61691-2:2001

BEHAVIOURAL LANGUAGES -
Part 2: VHDL multilogic system
for model interoperatibility

1. Overview

1.1 Scope

This standard is embodied in the Std_logic_1164 package package body along with this clause 1 documentation. The
information annex AA is a guide to users and is not part of this standard, but suggests ways in which one might use

1.2 Conformance with this standard
The following conformance rules shall apply as they

a) No modifications shall be made to the package declaration

b) The Std_logic_1164 package body represents the formal Std_logic_1164 package declaration. Implementers
of this package body as it is; or they may choose to implement to the user. Users shall not implement a
semantic that

2. Std_logic_1164 package declaration

-- Title : Std_logic_1164 multivalue logic system
-- Library : This package shall be compiled into a library
-- : symbolically named IEEE.

-- Developers: IEEE model standards group (par 1164)

-- Purpose : This packages defines a standard for designers
-- : to use in describing the

-- : used in VHDL modeling.

© BSI 2 April 2002

Page 3
EN 61691-2:2001

-- Limitation: The logic system defined in this package may
-- : be insufficient for modeling switched

-- . since such a requirement is out of the

- . effort. Furthermore, mathematics, primitives,

-- . timing standards, etc. are considered

-- : issues in relation to this package and

-- : beyond the scope of this effort.

-- Note : No declarations or definitions shall be
-- : or excluded from, this package. The

-- . defines the types, subtypes, and

-- : Std_logic_1164. The Std_logic_1164

-- : considered the formal definition of the
-- . this package. Tool developers may

-- . the package body in the most efficient
-- . to them.

-- modification history :

-- version | mod. date:|
-- v4.200 | 01/02/92 |

PACKAGE Std_logic_1164 IS
-- logic state system (unresolved)

TYPE std_ulogic IS (‘U’, -- Uninitialized
‘X’, -- Forcing Unknown
‘0’, -- Forcing 0
‘1°, -- Forcing 1
‘Z’, -- High Impedance
‘W’, -- Weak Unknown

‘L, --Weak 0

‘H’, -- Weak 1

‘-> -~ Don't care
);

-- unconstrained array of std_ulogic for use with the

TYPE std_ulogic_vector IS ARRAY (NATURAL RANGE <>)

-- resolution function

FUNCTION resolved (s : std_ulogic_vector) RETURN std_ulogic;

-- ¥ industry standard logic type ***

SUBTYPE std_logic IS resolved std_ulogic;
-- unconstrained array of std_logic for use in

TYPE std_logic_vector IS ARRAY) NATURAL RANGE <>) OF

© BSI 2 April 2002

Page 4
EN 61691-2:2001

-- common subtypes

SUBTYPE X01 IS resolved std_ulogic RANGE ¢
SUBTYPE X01Z IS resolved std_ulogic RANGE “Z)
SUBTYPE UXO01 IS resolved std_ulogic RANGE “1°)
SUBTYPE UX01Z IS resolved std_ulogic RANGE “1°, ‘Z)

-- overloaded logical operators

FUNCTION “and” (1 : std_ulogic; 1 :
FUNCTION “nand” (1: std_ulogic; r:
FUNCTION “or” (1: std_ulogic;:
FUNCTION “nor” (1:std_ulogic;r:
FUNCTION “xor” (1:std_ulogic;r:
FUNCTION “xnor” (1: std_ulogic; r:
FUNCTION “not” (1: std_ulogic

-- vectorized overloaded logical operators

FUNCTION “and” (1, r: std_logic_vector)
FUNCTION “and” (1, : std_ulogic_vector)
FUNCTION “nand” (1, r: std_logic_vector)
FUNCTION “nand” (1, r: std_ulogic_vector)
FUNCTION “or” (I, r: std_logic_vector)
FUNCTION “or” (1, r: std_ulogic_vector)
FUNCTION “nor” (1, r: std_logic_vector)
FUNCTION “nor” (1, r: std_ulogic_vector)
FUNCTION “xor” (1, r: std_logic_vector)
FUNCTION “xor” (1, r: std_ulogic_vector)

-- Note : The declaration and implementation of the

-- specifically commented until a time at which the VHDL

-- officially adopted as containing such a function. At

-- the following comments may be removed along with this

-- further “official” balloting of this

-- the intent of this effort to provide such a function

-- available in the VHDL standard.

-- FUNCTION “xnor” (1, r : std_logic_vector)

-- FUNCTION “xnor” (1, r : std_ulogic_vector)
FUNCTION “not” (1: std_logic_vector)
FUNCTION “not” (1: std_ulogic_vector)

-- conversion functions

FUNCTION To_bit (s : std_ulogic; xXmap :

FUNCTION To_bitvector (s : std_logic_vector ; xmap : BIT_VECTOR,;

FUNCTION To_bitvector (s : std_ulogic_vector; xmap : BIT_VECTOR;

FUNCTION To_StdULogic (b:BIT)

FUNCTION To_StdLogicVector (b : BIT_VECTOR)

FUNCTION To_StdLogicVector (s : std_ulogic_vector) RETURN std_logic_vector;
FUNCTION To_StdULogicVector (b : BIT_VECTOR) RETURN std_ulogic_vector;
FUNCTION To_StdULogicVector (s : std_logic_vector) RETURN std_ulogic_vector;

© BSI 2 April 2002

Page 5
EN 61691-2:2001

-- strength strippers and type converters

FUNCTION To_XO01 (s : std_logic_vector) RETURN
FUNCTION To_XO01 (s : std_ulogic_vector) RETURN
FUNCTION To_XO01 (s : std_ulogic) RETURN XO01;
FUNCTION To_X01 (b :BIT_VECTOR) RETURN
FUNCTION To_X01 (b :BIT_VECTOR) RETURN
FUNCTION To_XO01 (b:BIT) RETURN XO01;
FUNCTION To_X01Z (s : std_logic_vector) RETURN
FUNCTION To_XO01Z (s : std_ulogic_vector) RETURN
FUNCTION To_XO01Z (s : std_ulogic) RETURN X01Z;
FUNCTION To_X01Z (b : BIT_VECTOR) RETURN
FUNCTION To_XO01Z (b : BIT_VECTOR) RETURN
FUNCTION To_X01Z (b : BIT) RETURN XO01Z;
FUNCTION To_UXOT1 (s : std_logic_vector) RETURN
FUNCTION To_UXOLI (s : std_ulogic_vector) RETURN
FUNCTION To_UXO1 (s : std_ulogic) RETURN UXO01;
FUNCTION To_UXO01 (b : BIT_VECTOR) RETURN
FUNCTION To_UXO0I1 (b : BIT_VECTOR) RETURN
FUNCTION To_UXO0I1 (b : BIT) RETURN UXO01;

-- edge detection

FUNCTION rising_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN;
FUNCTION falling_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN;

-- object contains an unknown

FUNCTION Is_X (s : std_ulogic_vector) RETURN BOOLEAN;

FUNCTION Is_X (s : std_logic_vector) RETURN BOOLEAN;

FUNCTION Is_X (s : std_ulogic) RETURN BOOLEAN;
END Std_logic_1164;

w

. Std_logic_1164 package body

-- Title : Std_logic_1164 multivalue logic system
-- Library : This package shall be compiled into a library
-- : symbolically named IEEE.

-- Developers: IEEE model standards group (par 1164)

-- Purpose : This package defines a standard for designers
-- : to use in describing the interconnection

-- : used in VHDL modeling.

-- L1m1tat10n The logic system defined in this package may
-- . be insufficient for modeling switched

-- : since such a requirement is out of the

- . effort. Furthermore, mathematics, primitives,

- : timing standards, etc., are considered

-- : issues in relation to this package and

© BSI 2 April 2002

Page 6
EN 61691-2:2001

-- : beyond the scope of this effort.

-- Note : No declarations or definitions shall be

-- . or excluded from this package. The “

-- : defines the types, subtypes and declarations of
-- : Std_logic_1164. The Std_logic_1164

-- . considered the formal definition of the

-- : this package. Tool developers may choose

-- . the package body in the most efficient

-- : to them.

-- modification history :

-- version | mod. date:|
— v4.200 | 01/02/91 |

PACKAGE BODY Std_logic_1164 IS
-- local types

TYPE stdlogic_1d IS ARRAY (std_ulogic) OF std_ulogic;
TYPE stdlogic_table IS ARRAY (std_ulogic, std_ulogic)

-- resolution function

CONSTANT resolution_table : stdlogic_table := (

- |UX 01 Z WLH -
(U, U, U, ¢
(U, X, X, ¢
(U, X, 0, ¢
(U, X7, X0, ¢
(U, X, 0, ¢
(U, X2, 0%, ¢
(U, X, 0, ¢
(U, X, 0, ¢
(U, X7, X0, ¢

);

FUNCTION resolved (s : std_ulogic_vector) RETURN
VARIABLE result : std_ulogic := ‘Z’; --
BEGIN
-- the test for a single driver is essential;
-- loop would return ‘X’ for a single
-- would conflict with the value of a single
-- signal.
IF (s'LENGTH =1) THEN RETURN s (s’LOW);
ELSE
FOR i IN s'RANGE LOOP
result := resolution_table (result, s(i));
END LOOP;
END IF;

© BSI 2 April 2002

Page 7
EN 61691-2:2001

RETURN result;
END resolved;

--tables for logical operations

--truth table for “and” function
CONSTANT and_table : stdlogic_table : = (

- JUX 012Z W L H -

(u, U, o e

(U, X, 00, ¢

(0, 0%, 0%, ¢

(U, X, 00 c

(U, X, 00

(U, X, 00, ¢

(0, 0%, 0%, ¢

(U, X, 00 ¢

(U, X, 00 ¢
);
-- truth table for “or” function
CONSTANT or_table : stdlogic_table := (

- |UX 01 Z W L H -

(o, u, Ut
(U, X, X,
(U, X, 00
(e
(U, X, X, e
(U, X, X, e
(U, X, 00 ¢
(‘1 e,
(U, X, X,
);
-- truth table for “xor” function
CONSTANT xor_table : stdlogic_table := (

- |JU X 01 Z W L H -

(u, o, U,

(U, X, X,

(U, X, 00

(U, X, 1 f

(U, X, X,

(U, X, X,

(U, X, 00 ¢

(U, X, 1t

(U, X, X,
);
-- truth table for “not” function
CONSTANT not_table: stdlogic_1d :=

-] U X 012Z WTLH - |

© BSI 2 April 2002

Page 8
EN 61691-2:2001

(‘U’, cxa’ ‘1’, ‘0’,

-- overloaded logical operators (with optimizing hints)

FUNCTION “and” (1: std_ulogic; r:
BEGIN
RETURN (and_table(l, 1));
END “and”;
FUNCTION “nand” (1 : std_ulogic; r:
BEGIN
RETURN (not_table (and_table(l, 1)));
END “nand”;
FUNCTION “or” (1: std_ulogic; r:
BEGIN
RETURN (or_table(l, r));
END “or”;
FUNCTION “nor” (1: std_ulogic;r:
BEGIN
RETURN (not_table (or_table(1, r)));
END “nor”;
FUNCTION “xor” (1: std_ulogic; r:
BEGIN
RETURN (xor_table(l, 1));
END “xor”;
-- FUNCTION “xnor” (1: std_ulogic;r:
-- begin
-~ return not_table(xor_table(l, r));
-- end “xnor”;
FUNCTION “not” (1: std_ulogic) RETURN UXO01 IS
BEGIN
RETURN (not_table(l));
END “not”;

--and

FUNCTION “and” (1,r : std_logic_vector)
ALIAS 1v : std_logic_vector (1 TO I'LENGTH) IS 1;
ALIAS rv : std_logic_vector (1 TO r'LENGTH) IS 1;
VARIABLE result : std_logic_vector (1 TO I'LENGTH);
BEGIN
IF (I'LENGTH /=r'LENGTH) THEN
ASSERT FALSE
REPORT “arguments of overloaded ‘length”
SEVERITY FAILURE;
ELSE
FOR i IN resultRANGE LOOP
result(i) := and_table (Iv(i), rv(i));
END LOOP;
END IF;
RETURN result;
END “and”;

FUNCTION “and” (Lr : std_ulogic_vector)

© BSI 2 April 2002

ALIAS 1v : std_ulogic_vector (1 To I'LENGTH) IS [;
ALIAS rv : std_ulogic_vector (1 TO r'LENGTH) IS r;
VARIABLE result : std_ulogic_vector (1 TO I'LENGTH);
BEGIN
IF (I'LENGTH /=r'LENGTH) THEN
ASSERT FALSE
REPORT *“arguments of overloaded ‘length”
SEVERITY FAILURE;
ELSE
FOR i IN result RANGE LOOP
result(i) := and_table (Iv(i), rv(i));
END LOOP;
END IF;
RETURN result;
END “and”;

-- nand

FUNCTION “nand” (1, : std_logic_vector)
ALIAS 1v : std_logic_vector (1 TO I'LENGTH) IS 1;
ALIAS rv : std_logic_vector (1 TO r'LENGTH) IS 1;
VARIABLE result : std_logic_vector (1 TO 1 'LENGTH);
BEGIN
IF (1'LENGTH /= r'LENGTH) THEN
ASSERT FALSE
REPORT “arguments of overloaded ‘length”
SEVERITY FAILURE;
ELSE
FOR i IN result RANGE LOOP
result(i) := not_table(and_table (Iv(i), rv(i)));
END LOOP;
END IF;
RETURN result;
END “nand”;

FUNCTION “nand” (Lr: std_ulogic_vector)
ALIAS lv : std_ulogic_vector (1 TO I'LENGTH) IS 1;
ALIAS rv : std_ulogic_vector (1 TO r'LENGTH) IS ;
VARIABLE result : std_ulogic_vector (1 TO I'LENGTH);
BEGIN
IF (I'LENGTH /=r'LENGTH) THEN
ASSERT FALSE
REPORT *“arguments of overloaded ‘length”
SEVERITY FAILURE;
ELSE
FOR i IN resultRANGE LOOP
result(i) := not_table(and_table (Iv(i), rv(i)));
END LOOP;
END IF;
RETURN result;
END “nand”;

--0or

© BSI 2 April 2002

Page 9
EN 61691-2:2001

Page 10
EN 61691-2:2001

FUNCTION “or” (Lr: std_logic_vector)
ALIAS lv : std_logic_vector (1 TO I'LENGTH) IS I;
ALIAS rv : std_logic_vector (1 TO r'LENGTH) IS r;
VARIABLE result : std_logic_vector (1 TO I'LENGTH);
BEGIN
IF (1'LENGTH /=r'LENGTH) THEN
ASSERT FALSE
REPORT “arguments of overloaded ‘length
SEVERITY FAILURE;
ELSE
FOR i IN resulttRANGE LOOP
result(i) := or_table (1v(i), rv(i));
END LOOP;
END IF;
RETURN result;
END “or”;

FUNCTION “or” (1,r: std_ulogic_vector)
ALIAS lv : std_ulogic_vector (1 TO I'LENGTH) IS I;
ALIAS rv : std_ulogic_vector (1 TO r'LENGTH) IS r;
VARIABLE result : std_ulogic_vector (1 TO I'LENGTH);
BEGIN
IF (I'LENGTH /= r'LENGTH) THEN
ASSERT FALSE
REPORT “arguments of overloaded ‘length”
SEVERITY FAILURE;
ELSE
FOR i IN resulttRANGE LOOP
result(i) := or_table (Iv(i), rv(i));
END LOOP;
END IF;
RETURN result;
END ‘or’;

-- nor

FUNCTION “nor” (Lr: std_logic_vector)
ALIAS 1v : std_logic_vector (1 TO I'LENGTH) IS 1;
ALIAS rv : std_logic_vector (1 TO rLENGTH) IS 1;
VARIABLE result : std_logic_vector (1 TO I'LENGTH);
BEGIN
IF (I'LENGTH /=r'LENGTH) THEN
ASSERT FALSE
REPORT “arguments of overloaded ‘length”
SEVERITY FAILURE;
ELSE
FOR i IN resultRANGE LOOP
result(i) := not_table(or_table (1v(i), rv(1)));
END LOOP;
END IF;
RETURN result;
END “nor”;

FUNCTION “nor” (Lr : std_ulogic_vector)

© BSI 2 April 2002

ALIAS lv : std_ulogic_vector (1 TO 'LENGTH) IS [;
ALIAS rv : std_ulogic_vector (1 TO r'LENGTH) IS r;
VARIABLE result : std_ulogic_vector (1 TO I'LENGTH);
BEGIN
IF (I'LENGTH /=r'LENGTH) THEN
ASSERT FALSE
REPORT *“arguments of overloaded ‘length”
SEVERITY FAILURE;
ELSE
FOR i IN result RANGE LOOP
result(i) := not_table(or_table (1v(i), rv(1)));
END LOOP
END IF;
RETURN result;
END “nor”;

-- XOr

FUNCTION “xor” (Lr: std_logic_vector)
ALIAS 1v : std_logic_vector (1 To 'LENGTH) IS 1;
ALIAS RV : std_logic_vector (1 TO r'LENGTH) IS 1;
VARIABLE result : std_logic_vector (1 TO I'LENGTH);
BEGIN
IF (1'LENGTH /= r'LENGTH) THEN
ASSERT FALSE
REPORT “arguments of overloaded ‘length”
SEVERITY FAILURE;
ELSE
FOR i IN result RANGE LOOP
result(i) := xor_table (Iv(i), rv(i));
END LOOP;
END IF;
RETURN result;
END “xor”;

FUNCTION “xor” (Lr: std_ulogic_vector)
ALIAS lv : std_ulogic_vector (1 TO I'LENGTH) IS 1;
ALIAS rv : std_ulogic_vector (1 TO r'LENGTH) IS r;
VARIABLE result : std_ulogic_vector (1 TO I'LENGTH);
BEGIN
IF (I'LENGTH /=r'LENGTH) THEN
ASSERT FALSE
REPORT “arguments of overloaded ‘length”
SEVERITY FAILURE;
ELSE
FOR i IN resultRANGE LOOP
result(i) := xor_table (Iv(i), rv(i));
END LOOP;
END IF;
RETURN result;
END “xor”;

-- -- Xnor

© BSI 2 April 2002

Page 11
EN 61691-2:2001

Page 12

EN 61691-2:2001

Note : The declaration and implementation of the *
specifically commented until a time at which the VHDL
officially adopted as containing such a function. At

the following comments may be removed along with this

further “official” balloting of this
the intent of this effort to provide such a function
available in the VHDL standard.

FUNCTION “xnor” (1, r : std_logic_vector)
alias lv : std_logic_vector (1 to I'length) is I;
alias rv : std_logic_vector (1 to r'length) is r;
variable result : std_logic_vector (1 to I'length);
begin
if (I'length /=r'length) then
assert false
report “arguments of overloaded ‘length”
severity failure;
else
for i in result'range loop
result(i) := not_table(xor_table (1v(i), rv(i)));
end loop;
end if}
return result;
end “xnor”;

FUNCTION “xnor” (L,r: std_ulogic_vector)
alias 1v : std_ulogic_vector) 1 to I'length) is 1;
alias rv : std_ulogic_vector) 1 to r'length) is r;
variable result : std_ulogic_vector (1 to 1'length);
begin
if (I'length /=r'length) then
assert false
report “arguments of overloaded ‘length”
severity failure;

else
for i in result'range loop

result(i) := not_table(xor_table (Iv(i), rv(i)));

end loop;

end if}

return result;

end “xnor”;

-- not

FUNCTION “not” (1: std_logic_vector)
ALIAS 1v : std_logic_vector (1 TO I'LENGTH) IS 1;
VARIABLE result : std_logic_vector (1 To
BEGIN
FOR i IN resultRANGE LOOP
result(i) := not_table(1v(i));
END LOOP;
RETURN result;
END;

© BSI 2 April 2002

Page 13
EN 61691-2:2001

FUNCTION “not” (1: std_ulogic_vector)
ALIAS 1v : std_ulogic_vector) 1 TO 'LENGTH) IS I;
VARIABLE result : std_ulogic_vector (1 TO
BEGIN
FOR i IN result RANGE LOOP
result(i) := not_table(1v(i));
END LOOP;
RETURN result;
END;

-- conversion tables
TYPE logic_x01_table IS ARRAY (std_ulogic‘'LOW TO

TYPE logic_x01z_table IS ARRAY (std_ulogic'LOW TO
TYPE logic_ux01_table IS ARRAY (std_ulogic'LOW TO

-- table name : cvt_to_x01

-- parameters :
- in : std_ulogic -- some logic value
--returns @ x01 -- state value of logic value

-- purpose : to convert state-strength to state only

--example :if (cvt_to_x01) input_signal) = *

CONSTANT cvt_to_x01 : logic_x01_table :=(

X, U
0, 0
Qe
X, 7
X W
0, D
ST

-- table name : cvt_to_x01z

-- parameters :
- in : std_ulogic -- some logic value
--returns : x0lz -- state value of logic value

-- purpose : to convert state-strength to state only

--example :if (cvt_to_x01z (input_signal) =

CONSTANT cvt_to_x01z : logic_x01z_table := (

X, U
07, 0
Qe

© BSI 2 April 2002

Page 14
EN 61691-2:2001

Ay
X0, W
0, - L
SR T
X e
)i
-- table name : cvt_to_ux01
-- parameters :
-- in : std_ulogic -- some logic value
--returns : ux0l -- state value of logic value

-- purpose : to convert state-strength to state only

--example :if (cvt_to_uxO0l1 (input_signal) =

CONSTANT cvt_to_ux01 : logic_ux01_table := (

Ul U
XX
0,

SRS

X W
0

QP
)

-- conversion functions

FUNCTION To_bit (s : std_ulogic; xmap

BEGIN
CASE s IS
WHEN ‘0’ | ‘'L’ =>
WHEN ‘1’ | ‘H’ =>
WHEN OTHERS => RETURN xmap;
END CASE;
END;

FUNCTION To_bitvector (s : std_logic_vector ; xmap : BIT_VECTOR_IS
ALIAS sv : std_logic_vector (SLENGTH-1 DOWNTO
VARIABLE result : BIT_VECTOR (s'LENGTH-1 DOWNTO 0);

BEGIN
FOR i IN result RANGE LOOP

CASE sv(i) IS
WHEN ‘0’ | ‘L’ =>
WHEN ‘1’ | ‘H” =>
WHEN OTHERS => result(i) := xmap;
END CASE;
END LOOP;
RETURN result;
END;

FUNCTION To_bitvector (s : std_ulogic_vector; xmap : BIT_VECTOR_IS
ALIAS sv : std_logic_vector (SLENGTH-1 DOWNTO

© BSI 2 April 2002

Page 15
EN 61691-2:2001

VARIABLE result : BIT_VECTOR (s'LENGTH-1 DOWNTO 0);
BEGIN
FOR i IN resultRANGE LOOP
CASE sv(i) IS
WHEN 0’ | ‘'L’ =>
WHEN ‘1’ | ‘H’ =>
WHEN OTHERS => result(i) := xmap;
END CASE,;
END LOOP;
RETURN result;
END;

FUNCTION To_StdUlogic (b:BIT)RETURN
BEGIN
CASEb IS
WHEN ‘0’ => RETURN 0’
WHEN ‘1’ => RETURN ‘1’
END CASE;
END;

FUNCTION To_StdlogicVector (b : BIT_VECTOR) RETURN
ALIAS bv : BIT_VECTOR (b'LENGTH-1 DOWNTO 0) IS b;
VARIABLE result : std_logic_vector (o' LENGTH-1

BEGIN
FOR i IN resulttRANGE LOOP

CASE bv (i) IS
WHEN ‘0’ => result(i) := ‘0’;
WHEN ‘1’ => result(i) := ‘1’;
END CASE;
END LOOP;
RETURN result;
END;

FUNCTION To_StdLogicVector (s : std_ulogic_vector) RETURN std_logic_vector IS
ALIAS sv : std_ulogic_vector (SLENGTH-1 DOWNTO
VARIABLE result : std_logic_vector (SLENGTH-1
BEGIN
FOR i IN RESULT'RANGE LOOP
result(i) := sv(i)
END LOOP;
RETURN result;
END;

FUNCTION To_StdULogicVector (b : BIT_VECTOR)IS
ALIAS bv : BIT_VECTOR (b'LENGTH-1 DOWNTO 0) IS b;
VARIABLE result : std_ulogic_vector (b LENGTH-1

BEGIN
FOR i IN resulttRANGE LOOP

CASE bv (1) IS
WHEN ‘0’ => result(i) := ‘0’;
WHEN ‘1’ => result(i) := ‘1’;
END CASE;
END LOOP;
RETURN result;

© BSI 2 April 2002

Page 16

EN 61691-2:2001

END;

FUNCTION To_StdULogicVector (s : std_logic_vector) RETURN std_ulogic_vector IS

ALIAS sv : std_logic_vector (SLENGTH-1 DOWNTO

VARIABLE result : std_ulogic_vector (SLENGTH-1
BEGIN

FOR i IN resultRANGE LOOP

result(i) := sv(i);

END LOOP;

RETURN result;
END;

-- strength strippers and type convertors
--to_x01

FUNCTION To_XO01 (s : std_logic_vector) RETURN
ALIAS sv : std_logic_vector (1 TO s'LENGTH) IS s;
VARIABLE result : std_logic_vector (1 TO s'LENGTH);

BEGIN
FOR i IN result RANGE LOOP

result(i) ;= cvt_to_x01 (sv(i));
END LOOP;
RETURN result;
END;

FUNCTION To_X01 (s : std_ulogic_vector) RETURN
ALIAS sv : std_ulogic_vector (1 TO s'LENGTH) IS s;
VARIABLE result : std_ulogic_vector (1 TO s'LENGTH),

BEGIN
FOR i IN resultRANGE LOOP

result(i) ;= cvt_to_x01 (sv(i));
END LOOP;
RETURN result;
END;

FUNCTION To_XO01 (s : std_ulogic) RETURN XO01 IS
BEGIN

RETURN (cvt_to_x01(s));
END;

FUNCTION To_XO01 (b:BIT_VECTOR) RETURN
ALIAS bv : BIT_VECTOR (1 TO b'LENGTH) IS b;
VARIABLE result : std_logic_vector (1 TO b'LENGTH);

BEGIN
FOR i IN resultRANGE LOOP

CASE bv(i) IS
WHEN ‘0’ => result(i) := ‘0’;
WHEN ‘1’ => result(i) := “1’;
END CASE;
END LOOP;
RETURN result;
END;

© BSI 2 April 2002

Page 17
EN 61691-2:2001

FUNCTION To_XO01 (b : BIT_VECTOR) RETURN
ALIAS bv : BIT_VECTOR (1 TO b'LENGTH) IS b;
VARIABLE result : std_ulogic_vector (1 TO b'TLENGTH);

BEGIN
FOR i IN result RANGE LOOP

CASE bv(i) IS
WHEN ‘0’ => result(i) := ‘0’;
WHEN ‘1’ => result(i) := ‘1’;
END CASE,;
END LOOP;
RETURN result;
END;

FUNCTION To_X01 (b:BIT) RETURN X01 IS
BEGIN
CASEDbIS
WHEN ‘0’ => RETURN(“0°);
WHEN ‘1’ => RETURN(‘1");
END CASE;
END;

--to_x01z

FUNCTION TO_XO01Z (s: std_logic_vector) RETURN
ALIAS sv : std_logic_vector (1 TO s'LENGTH) IS s;
VARIABLE result : std_logic_vector (1 TO s'LENGTH);

BEGIN
FOR i IN result RANGE LOOP

result(i) ;= cvt_to_x01z (sv(i));
END LOOP;
RETURN result;
END;

FUNCTION TO_XO01Z (s : std_ulogic_vector) RETURN
ALIAS sv : std_ulogic_vector (1 TO sS'LENGTH) IS s;
VARIABLE result : std_ulogic_vector (1 TO s'LENGTH);

BEGIN
FOR i IN result RANGE LOOP

result(i) ;= cvt_to_x01z (sv(i));
END LOOP;
RETURN result;
END;

FUNCTION To_XO01Z (s : std_ulogic) RETURN X01Z IS
BEGIN

RETURN (cvt_to_x01z(s));
END;

FUNCTION To_X01Z (b :BIT_VECTOR) RETURN
ALIAS bv : BIT_VECTOR (1 TO b'LENGTH) IS b;
VARIABLE result : std_logic_vector (1 TO b'LENGTH);

BEGIN
FOR i IN resultRANGE LOOP

CASE bv(i) IS

© BSI 2 April 2002

Page 18
EN 61691-2:2001

WHEN ‘0’ => result(i) := ‘0’;
WHEN ‘1’ => result(i) := “1’;
END CASE;
END LOOP;
RETURN result;
END;

FUNCTION To_XO01Z (b: BIT_VECTOR) RETURN
ALIAS bv : BIT_VECTOR (1 TO b'LENGTH) IS b;
VARIABLE result : std_ulogic_vector (1 TO b'LENGTH);

BEGIN
FOR i IN resultRANGE LOOP

CASE bv(i) IS
WHEN ‘0’ => result(i) := ‘0’;
WHEN °1” => result(i) = ‘1’;
END CASE,;
END LOOP;
RETURN result;
END;

FUNCTION To_X01Z (b : BIT) RETURN X01Z IS
BEGIN
CASEb IS
WHEN ‘0’ => RETURN(*0");
WHEN ‘1’ => RETURN(*");
END CASE;
END;

--to_ux01

FUNCTION To_UXO1 (s : std_logic_vector) RETURN
ALIAS sv : std_logic_vector (1 TO s'LENGTH) IS s;
VARIABLE result : std_logic_vector (1 TO s'LENGTH);

BEGIN
FOR i IN result RANGE LOOP

result(i) := cvt_to_ux01 (sv(i));
END LOOP;
RETURN result;
END;

FUNCTION To_UXO01 (s : std_ulogic_vector) RETURN
ALIAS sv : std_ulogic_vector (1 TO sS'LENGTH) IS s;
VARIABLE result : std_ulogic_vector (1 TO s'LENGTH);

BEGIN
FOR i IN result RANGE LOOP

result (1) := cvt_to_ux01 (sv(i));
END LOOP;
RETURN result;
END;

FUNCTION To_UXO01 (s : std_ulogic) RETURN UXO01 IS
BEGIN

RETURN (cvt_to_ux01(s));
END;

© BSI 2 April 2002

FUNCTION To_UXO01 (b:BIT_VECTOR) RETURN
ALIAS bv : BIT_VECTOR (1 TO b'LENGTH) IS b;
VARIABLE result : std_logic_vector (1 TO b'LENGTH);

BEGIN
FOR i IN resultRANGE LOOP

CASE bv(i) IS
WHEN 0’ => result(i) := ‘0’;
WHEN ‘1’ => result(i) = ‘1’;
END CASE,;
END LOOP;
RETURN result;
END;

FUNCTION To_UXO01 (b:BIT_VECTOR) RETURN
ALIAS bv : BIT_VECTOR (1 TO b'LENGTH) IS b;
VARIABLE result : std_ulogic_vector (1 TO b'LENGTH)

BEGIN
FOR i IN result RANGE LOOP

CASE bv(i) IS
WHEN ‘0’ => result(i) := ‘0’;
WHEN ‘1” => result(i) := ‘1’;
END CASE;
END LOOP;
RETURN result;
END;

FUNCTION To_UXO01 (b :BIT) RETURN UXO01 IS
BEGIN
CASEb IS
WHEN ‘0’ => RETURN(“0°);
WHEN “1° => RETURN(‘);
END CASE;
END;

-- edge detection

FUNCTION rising_edge (SIGNAL s : std_ulogic) RETURN
BEGIN
RETURN (S'EVENT AND (To_XO01(s) = ‘1’) AND
(To_XO01(s'LAST_VALUE) =
END;
FUNCTION falling_edge (SIGNAL s : std_ulogic) RETURN
BEGIN
RETURN (S'EVENT AND (To_XO01(s) = ‘0’) AND
(To_XO01(s'LAST_VALUE) =

-- object contains an unknown

FUNCTION Is_X (s : std_ulogic_vector) RETURN BOOLEAN IS

BEGIN
FOR i IN sRANGE LOOP
CASE s(i) IS
WHEN ‘U’ | X’ | ¢

© BSI 2 April 2002

Page 19
EN 61691-2:2001

Page 20
EN 61691-2:2001

WHEN OTHERS => NULL;
END CASE;
END LOOP;
RETURN FALSE;
END;

FUNCTION Is_X (s : std_logic_vector) RETURN BOOLEAN IS
BEGIN
FOR i IN s'RANGE LOOP
CASE s(i) IS
WHEN ‘U’ | ‘X’ | ¢
WHEN OTHERS => NULL;
END CASE
END LOOP;
RETURN FALSE;
END;

FUNCTION Is_X ('s:std_ulogic) RETURN BOOLEAN IS
BEGIN
CASE s IS
WHEN ‘U’ | ‘X’ | ‘22
WHEN OTHERS => NULL;
END CASE;
RETURN FALSE;
END;
END std_logic_1164;

© BSI 2 April 2002

Page 21
EN 61691-2:2001

Annex A Using the Std_logic_1164 Package

(Informative)

This annex is intended to be a brief guide to using the a means of building models that interoperate, provided typing
imposed by the VHDL language.

A.1 Value system

The value system in Std_logic_1164 was developed to model the logic system is named “std_ulogic” where the
comprising the type have a specified semantic and a interoperate, one must interpret the meaning of each of

Type std_ulogic is (

‘U, Uninitialized state
‘X, Forcing Unknown etc.
‘0, Forcing Zero

‘1, Forcing One

AR High Impedance

‘W, Weak Unknown

‘T, Weak Zero

‘H’, Weak One

-’ Don't Care modeling

A.2 Handling strengths

Behavioral modeling techniques rarely require knowledge “strength stripper” functions have been designed “forcing”
strength counterparts.

Once in forcing strength, the model can simply respond to stripping is done by using one of the following functions:

To_XO01 (...) converts ‘L’ and ‘H’ to ‘0’ and
To_UXO0 1(...) converts ‘L’ and ‘H’ to ‘0’ and to ‘X’.

A.3 Use of the uninitialized value
The ‘U’ value is located in the first position of automatically initialized to ‘U’ unless expressly

Uninitialized values were designed to provide a means of uninitialized state since the time of system XNOR, and NOT
have been designed to propagate ‘U’

The propagation of ‘U’s through a circuit gives properly initialized. The AND gate example that follows

A.4 Behavioral modeling for ‘U’ propagation

For behavioral modeling where ‘U’ propagation is system, as far as the modeler is concerned, thereby

A.5 ‘U’s related to conditional expressions

Case statements, “if” expressions, and selected path for ‘U’ state propagation in order to

© BSI 2 April 2002

Page 22
EN 61691-2:2001

A.6 Structural modeling with logical tables

The logical tables are designed to generate output values of the nine-state system passes through any of the arises for
a weak or floating strength to be propagated model developer shall be certain to assign the

A.7 X-handling: assignment of X's

In assignments, the ‘X’ and -’ values means that synthesis tools are allowed to generate either ‘X’ usually appears
during transitions or as a conditions, such as in the following waveform assignment:

S <= ‘X’ after 1 ns, ‘1’ after 5 ns

where the current value of S becomes indeterminate after

A.8 Modeling with don't care's

A.8.1 Use of the don't care state in synthesis models

For synthesis, a VHDL program is a specification of the order to simulate) real circuits. The former deals with function
of a circuit from an electrical point of view. assumption that the VHDL models will be logical function of the logic
type to logical function. The motivation for do not specify the behavior of the circuit to be built, such simulation
artifacts to remain in models for these references, the user is assuming only the kind of occur in hardware.

A.8.2 Semantics of ‘-’

In designing the resolution function and the various syntactic shorthand for ‘X, provided for becomes ‘X’ as soon as
it is operated upon and value represents either a ‘1’ ora ‘0’ as

A.9 Resolution function
In digital logic design, there are a number of occasions together. The most common of which is tri-state™! buses in
which memory data ports are connected to each to controlling microprocessors. Another common case is loaded signal

path. In each of these cases, the VHDL devices be “resolved” signal types.

Focusing on resolution: when two signals' values are that wire. For example, if two parallel buffers both is in the high-
impedance state ‘Z’ and another signal values will result in a value of ‘1’

The resolution function built into Std_logic_1164 impedance values and forcing values dominate over weak values.

A.10 Using Std_ulogic vs. Std_logic
In deciding whether to use the resolved signal or

a) Does the simulator run slower when using a resolved type simulator optimized for the std_logic data types?
b) What should be done to insure interoperability of models

Each of these is considered, in order, below:

I Tri-state is a trademark of National Semiconductor.

© BSI 2 April 2002

Page 23
EN 61691-2:2001

Most simulator vendors, in approving this standard, formal semantics of the package, but wanted to be allowed
manner. Consequently, a great number of simulator vendors performance for signals declared of the resolved type.

In the case of two unity buffers, wired in parallel and signal (i.e., std_logic) and the type of the unity driver work
properly. But, suppose a user developed a model of ports as eight element arrays of std_logic just to each and every
buffer element. In this scenario, the user std_logic_vector as the array type of the buffer port. are by definition
incompatible. Therefore, if the user to a microprocessor address or data bus unless that Since the user may have not
developed the microprocessor and might prefer not to use a type conversion function in order to have resolved vector
type is preferred.

For scalar ports and signals, the developer may use either the std_ulogic or std_logic type.

For vector ports and signals, the developer should use the STD_LOGIC_VECTOR type.

© BSI 2 April 2002

BS EN
61691-2:2001
IEC
61691-2:2001

BSI

389 Chiswick High Road
London

W4 4AL

BSI — British Standards Institution

BSI is the independent national body responsible for preparing
British Standards. It presents the UK view on standards in Europe and at the
international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of
British Standards should make sure that they possess the latest amendments or
editions.

It is the constant aim of BSI to improve the quality of our products and services.
We would be grateful if anyone finding an inaccuracy or ambiguity while using
this British Standard would inform the Secretary of the technical committee
responsible, the identity of which can be found on the inside front cover.

Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400.

BSI offers members an individual updating service called PLUS which ensures
that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be
addressed to Customer Services. Tel: +44 (0)20 8996 9001.

Fax: +44 (0)20 8996 7001. Email: orders@bsi-global.com. Standards are also
available from the BSI website at http://www.bsi-global.com.

In response to orders for international standards, it 1s BSI policy to supply the
BSI implementation of those that have been published as British Standards,
unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and
international standards through its Library and its Technical Help to Exporters
Service. Various BSI electronic information services are also available which give
details on all its products and services. Contact the Information Centre.

Tel: +44 (0)20 8996 7111. Fax: +44 (0)20 8996 7048. Email: info@bsi-global.com.

Subscribing members of BSI are kept up to date with standards developments
and receive substantial discounts on the purchase price of standards. For details
of these and other benefits contact Membership Administration.

Tel: +44 (0)20 8996 7002. Fax: +44 (0)20 8996 7001.

Email: membership@bsi-global.com.

Information regarding online access to British Standards via British Standards
Online can be found at http://www.bsi-global.com/bsonline.

Further information about BSI is available on the BSI website at
http://www.bsi-global.com.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the
UK, of the publications of the international standardization bodies. Except as
permitted under the Copyright, Designs and Patents Act 1988 no extract may be
reproduced, stored in a retrieval system or transmitted in any form or by any
means — electronic, photocopying, recording or otherwise — without prior written
permission from BSI.

This does not preclude the free use, in the course of implementing the standard,
of necessary details such as symbols, and size, type or grade designations. If these
details are to be used for any other purpose than implementation then the prior
written permission of BSI must be obtained.

Details and advice can be obtained from the Copyright & Licensing Manager.
Tel: +44 (0)20 8996 7070. Fax: +44 (0)20 8996 7553.
Email: copyright@bsi-global.com.

