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Foreword

The text of document 65A/550/FDIS, future edition 2 of IEC 61508-3, prepared by SC 65A, System
aspects, of IEC TC 65, Industrial-process measurement, control and automation, was submitted to the
IEC-CENELEC parallel vote and was approved by CENELEC as EN 61508-3 on 2010-05-01.

This European Standard supersedes EN 61508-3:2001.
It has the status of a basic safety publication according to IEC Guide 104.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN and CENELEC shall not be held responsible for identifying any or all such patent
rights.

The following dates were fixed:

— latest date by which the EN has to be implemented
at national level by publication of an identical
national standard or by endorsement (dop) 2011-02-01

— latest date by which the national standards conflicting
with the EN have to be withdrawn (dow) 2013-05-01

Annex ZA has been added by CENELEC.

Endorsement notice

The text of the International Standard IEC 61508-3:2010 was approved by CENELEC as a European
Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

[1] IEC 61511 series NOTE Harmonized in EN 61511 series (not modified).
[2] IEC 62061 NOTE Harmonized as EN 62061.

[3] IEC 61800-5-2 NOTE Harmonized as EN 61800-5-2.

[4] IEC 61508-5:2010 NOTE Harmonized as EN 61508-5:2010 (not modified).
[5] IEC 61508-6:2010 NOTE Harmonized as EN 61508-6:2010 (not modified).
[6] IEC 61508-7:2010 NOTE Harmonized as EN 61508-7:2010 (not modified).
[7] IEC 60601 series NOTE Harmonized in 60601 series (partially modified).

[8] IEC 61131-3 NOTE Harmonized as EN 61131-3.
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Annex ZA
(normative)

Normative references to international publications
with their corresponding European publications

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD
applies.

Publication Year Title EN/HD Year

IEC 61508-1 2010  Functional safety of EN 61508-1 2010
electrical/electronic/programmable electronic
safety-related systems -
Part 1: General requirements

IEC 61508-2 2010  Functional safety of EN 61508-2 2010
electrical/electronic/programmable electronic
safety-related systems -
Part 2: Requirements for
electrical/electronic/programmable electronic
safety-related systems

IEC 61508-4 2010  Functional safety of EN 61508-4 2010
electrical/electronic/programmable electronic
safety-related systems -
Part 4: Definitions and abbreviations

IEC Guide 104 1997  The preparation of safety publications and the - -
use of basic safety publications and group
safety publications

ISO/IEC Guide 51 1999  Safety aspects - Guidelines for their inclusion - -
in standards
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INTRODUCTION

Systems comprised of electrical and/or electronic elements have been used for many years to
perform safety functions in most application sectors. Computer-based systems (generically
referred to as programmable electronic systems) are being used in all application sectors to
perform non-safety functions and, increasingly, to perform safety functions. If computer
system technology is to be effectively and safely exploited, it is essential that those
responsible for making decisions have sufficient guidance on the safety aspects on which to
make these decisions.

This International Standard sets out a generic approach for all safety lifecycle activities for
systems comprised of electrical and/or electronic and/or programmable electronic (E/E/PE)
elements that are used to perform safety functions. This unified approach has been adopted
in order that a rational and consistent technical policy be developed for all electrically-based
safety-related systems. A major objective is to facilitate the development of product and
application sector international standards based on the IEC 61508 series.

NOTE 1 Examples of product and application sector international standards based on the IEC 61508 series are
given in the bibliography (see references [1], [2] and [3]).

In most situations, safety is achieved by a number of systems which rely on many
technologies (for example mechanical, hydraulic, pneumatic, electrical, electronic, programmable
electronic). Any safety strategy must therefore consider not only all the elements within an
individual system (for example sensors, controlling devices and actuators) but also all the
safety-related systems making up the total combination of safety-related systems. Therefore,
while this International Standard is concerned with E/E/PE safety-related systems, it may also
provide a framework within which safety-related systems based on other technologies may be
considered.

It is recognized that there is a great variety of applications using E/E/PE safety-related
systems in a variety of application sectors and covering a wide range of complexity, hazard
and risk potentials. In any particular application, the required safety measures will be
dependent on many factors specific to the application. This International Standard, by being
generic, will enable such measures to be formulated in future product and application sector
international standards and in revisions of those that already exist.

This International Standard

— considers all relevant overall, E/E/PE system and software safety lifecycle phases (for
example, from initial concept, through design, implementation, operation and maintenance
to decommissioning) when E/E/PE systems are used to perform safety functions;

— has been conceived with a rapidly developing technology in mind; the framework is
sufficiently robust and comprehensive to cater for future developments;

— enables product and application sector international standards, dealing with E/E/PE
safety-related systems, to be developed; the development of product and application
sector international standards, within the framework of this standard, should lead to a high
level of consistency (for example, of underlying principles, terminology etc.) both within
application sectors and across application sectors; this will have both safety and economic
benefits;

— provides a method for the development of the safety requirements specification necessary
to achieve the required functional safety for E/E/PE safety-related systems;

— adopts a risk-based approach by which the safety integrity requirements can be
determined;

— introduces safety integrity levels for specifying the target level of safety integrity for the
safety functions to be implemented by the E/E/PE safety-related systems;

NOTE 2 The standard does not specify the safety integrity level requirements for any safety function, nor does it
mandate how the safety integrity level is determined. Instead it provides a risk-based conceptual framework and
example techniques.
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sets target failure measures for safety functions carried out by E/E/PE safety-related
systems, which are linked to the safety integrity levels;

sets a lower limit on the target failure measures for a safety function carried out by a
single E/E/PE safety-related system. For E/E/PE safety-related systems operating in

— a low demand mode of operation, the lower limit is set at an average probability of a
dangerous failure on demand of 10-9;

— a high demand or a continuous mode of operation, the lower limit is set at an average
frequency of a dangerous failure of 10=9[h-1];

NOTE 3 A single E/E/PE safety-related system does not necessarily mean a single-channel architecture.

NOTE 4 It may be possible to achieve designs of safety-related systems with lower values for the target safety
integrity for non-complex systems, but these limits are considered to represent what can be achieved for relatively
complex systems (for example programmable electronic safety-related systems) at the present time.

sets requirements for the avoidance and control of systematic faults, which are based on
experience and judgement from practical experience gained in industry. Even though the
probability of occurrence of systematic failures cannot in general be quantified the
standard does, however, allow a claim to be made, for a specified safety function, that the
target failure measure associated with the safety function can be considered to be
achieved if all the requirements in the standard have been met;

introduces systematic capability which applies to an element with respect to its confidence
that the systematic safety integrity meets the requirements of the specified safety integrity
level,

adopts a broad range of principles, techniques and measures to achieve functional safety
for E/E/PE safety-related systems, but does not explicitly use the concept of fail safe.
However, the concepts of “fail safe” and “inherently safe” principles may be applicable and
adoption of such concepts is acceptable providing the requirements of the relevant
clauses in the standard are met.
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FUNCTIONAL SAFETY OF ELECTRICAL/ELECTRONIC/
PROGRAMMABLE ELECTRONIC SAFETY-RELATED SYSTEMS -

Part 3: Software requirements

1 Scope

1.1 This part of the IEC 61508 series

a) is intended to be utilized only after a thorough understanding of IEC 61508-1 and
IEC 61508-2;

b) applies to any software forming part of a safety-related system or used to develop a
safety-related system within the scope of IEC 61508-1 and IEC 61508-2. Such software is
termed safety-related software (including operating systems, system software, software in
communication networks, human-computer interface functions, and firmware as well as
application software);

c) provides specific requirements applicable to support tools used to develop and configure a
safety-related system within the scope of IEC 61508-1 and IEC 61508-2;

d) requires that the software safety functions and software systematic capability are
specified;

NOTE 1 If this has already been done as part of the specification of the E/E/PE safety-related systems (see 7.2 of
IEC 61508-2), then it does not have to be repeated in this part.

NOTE 2 Specifying the software safety functions and software systematic capability is an iterative procedure; see
Figures 3 and 6.

NOTE 3 See Clause 5 and Annex A of IEC 61508-1 for documentation structure. The documentation structure
may take account of company procedures, and of the working practices of specific application sectors.

NOTE 4 Note: See 3.5.9 of IEC 61508-4 for definition of the term "systematic capability".

e) establishes requirements for safety lifecycle phases and activities which shall be applied
during the design and development of the safety-related software (the software safety
lifecycle model). These requirements include the application of measures and techniques,
which are graded against the required systematic capability, for the avoidance of and
control of faults and failures in the software;

f) provides requirements for information relating to the software aspects of system safety
validation to be passed to the organisation carrying out the E/E/PE system integration;

g) provides requirements for the preparation of information and procedures concerning
software needed by the user for the operation and maintenance of the E/E/PE safety-
related system;

h) provides requirements to be met by the organisation carrying out modifications to safety-
related software;

i) provides, in conjunction with IEC 61508-1 and IEC 61508-2, requirements for support
tools such as development and design tools, language translators, testing and debugging
tools, configuration management tools;

NOTE 4 Figure 5 shows the relationship between IEC 61508-2 and IEC 61508-3.
j) Does not apply for medical equipment in compliance with the IEC 60601 series.

1.2 |EC 61508-1, IEC 61598-2, IEC 61508-3 and IEC 61508-4 are basic safety publications,
although this status does not apply in the context of low complexity E/E/PE safety-related
systems (see 3.4.3 of IEC 61508-4). As basic safety publications, they are intended for use by
technical committees in the preparation of standards in accordance with the principles
contained in IEC Guide 104 and ISO/IEC Guide 51. IEC 61508-1, IEC 61508-2, IEC 61508-3
and IEC 61508-4 are also intended for use as stand-alone publications. The horizontal safety
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function of this international standard does not apply to medical equipment in compliance with
the IEC 60601 series.

1.3 One of the responsibilities of a technical committee is, wherever applicable, to make
use of basic safety publications in the preparation of its publications. In this context, the
requirements, test methods or test conditions of this basic safety publication will not apply
unless specifically referred to or included in the publications prepared by those technical
committees.

1.4 Figure 1 shows the overall framework of the IEC 61508 series and indicates the role that
IEC 61508-3 plays in the achievement of functional safety for E/E/PE safety-related systems.
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2 Normative references

The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.

IEC 61508-1: 2010, Functional safety of electrical/electronic/programmable electronic safety-
related systems — Part 1: General requirements
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IEC 61508-2: 2010, Functional safety of electrical/electronic/programmable electronic safety-
related systems — Part 2: Requirements for electrical/electronic/programmable electronic
safety-related systems

IEC 61508-4: 2010, Functional safety of electrical/electronic/programmable electronic safety-
related systems — Part 4: Definitions and abbreviations

IEC Guide 104:1997, The preparation of safety publications and the use of basic safety
publications and group safety publications

IEC/ISO Guide 51:1999, Safety aspects — Guidelines for their inclusion in standards

3 Definitions and abbreviations

For the purposes of this document, the definitions and abbreviations given in IEC 61508-4
apply.

4 Conformance to this standard

The requirements for conformance to this standard are given in Clause 4 of IEC 61508-1.

5 Documentation

The objectives and requirements for documentation are given in Clause 5 of IEC 61508-1.

6 Additional requirements for management of safety-related software

6.1 Objectives

The objectives are as detailed in 6.1 of IEC 61508-1.

6.2 Requirements

6.2.1 The requirements are as detailed in 6.2 of IEC 61508-1, with the following additional
requirements.

6.2.2 The functional safety planning shall define the strategy for software procurement,
development, integration, verification, validation and modification to the extent required by the
safety integrity level of the safety functions implemented by the E/E/PE safety-related system.

NOTE The philosophy of this approach is to use the functional safety planning as an opportunity to customize this
standard to take account of the required safety integrity for each safety function implemented by the E/E/PE safety-
related system.

6.2.3 Software configuration management shall:

a) apply administrative and technical controls throughout the software safety lifecycle, in
order to manage software changes and thus ensure that the specified requirements for
safety-related software continue to be satisfied;

b) guarantee that all necessary operations have been carried out to demonstrate that the
required software systematic capability has been achieved;

c) maintain accurately and with unique identification all configuration items which are
necessary to meet the safety integrity requirements of the E/E/PE safety-related system.
Configuration items include at least the following: safety analysis and requirements;
software specification and design documents; software source code modules; test plans
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and results; verification documents; pre-existing software elements and packages which
are to be incorporated into the E/E/PE safety-related system; all tools and development
environments which are used to create or test, or carry out any action on, the software of
the E/E/PE safety-related system;

d) apply change-control procedures:
e to prevent unauthorized modifications; to document modification requests;
e to analyse the impact of a proposed modification, and to approve or reject the request;
e to document the details of, and the authorisation for, all approved modifications;

e to establish configuration baseline at appropriate points in the software development,
and to document the (partial) integration testing of the baseline;

e to guarantee the composition of, and the building of, all software baselines (including
the rebuilding of earlier baselines).

NOTE 1 Management decision and authority is needed to guide and enforce the use of administrative and
technical controls.

NOTE 2 At one extreme, an impact analysis may include an informal assessment. At the other extreme, an
impact analysis may include a rigorous formal analysis of the potential adverse impact of all proposed changes
which may be inadequately understood or implemented. See IEC 61508-7 for guidance on impact analysis.

e) ensure that appropriate methods are implemented to load valid software elements and
data correctly into the run-time system;

NOTE 3 This may include consideration of specific target location systems as well as general systems.
Software other than application might need a safe loading method, e.g. firmware.

f) document the following information to permit a subsequent functional safety audit:
configuration status, release status, the justification (taking account of the impact
analysis) for and approval of all modifications, and the details of the modification;

g) formally document the release of safety-related software. Master copies of the software
and all associated documentation and version of data in service shall be kept to permit
maintenance and modification throughout the operational lifetime of the released software.

NOTE 4 For further information on configuration management, see IEC 61508-7
7 Software safety lifecycle requirements

71 General
711 Objective

The objective of the requirements of this subclause is to structure the development of the
software into defined phases and activities (see Table 1 and Figures 3 to 6).

7.1.2 Requirements

7.1.2.1 A safety lifecycle for the development of software shall be selected and specified
during safety planning in accordance with Clause 6 of IEC 61508-1.

7.1.2.2 Any software lifecycle model may be used provided all the objectives and
requirements of this clause are met.

7.1.2.3 Each phase of the software safety lifecycle shall be divided into elementary activities
with the scope, inputs and outputs specified for each phase.

NOTE See Figures 3, 4 and Table 1.

7.1.2.4 Provided that the software safety lifecycle satisfies the requirements of Table 1, it is
acceptable to tailor the V-model (see Figure 6) to take account of the safety integrity and the
complexity of the project.
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NOTE 1 A software safety lifecycle model which satisfies the requirements of this clause may be suitably
customized for the particular needs of the project or organisation. The full list of lifecycle phases in Table 1 is
suitable for large newly developed systems. In small systems, it might be appropriate, for example, to merge the
phases of software system design and architectural design.

NOTE 2 See Annex G for the characteristics of data-driven systems (e.g. full variability / limited variability
programming languages, extent of data configuration) that may be relevant when customising the software safety
lifecycle.

7.1.2.5 Any customisation of the software safety lifecycle shall be justified on the basis of
functional safety.

7.1.2.6 Quality and safety assurance procedures shall be integrated into safety lifecycle
activities.

7.1.2.7 For each lifecycle phase, appropriate techniques and measures shall be used.
Annexes A and B provide a guide to the selection of techniques and measures, and
references to IEC 61508-6 and IEC 61508-7. IEC 61508-6 and IEC 61508-7 give
recommendations on specific techniques to achieve the properties required for systematic
safety integrity. Selecting techniques from these recommendations does not guarantee by
itself that the required safety integrity will be achieved.

NOTE Success in achieving systematic safety integrity depends on selecting techniques with attention to the
following factors:

— the consistency and the complementary nature of the chosen methods, languages and tools for the whole
development cycle;

— whether the developers use methods, languages and tools they fully understand;

— whether the methods, languages and tools are well-adapted to the specific problems encountered during
development.

7.1.2.8 The results of the activities in the software safety lifecycle shall be documented (see
Clause 5).

NOTE Clause 5 of IEC 61508-1 considers the documented outputs from the safety lifecycle phases. In the
development of some E/E/PE safety-related systems, the output from some safety lifecycle phases may be a
distinct document, while the documented outputs from several phases may be merged. The essential requirement
is that the output of the safety lifecycle phase be fit for its intended purpose.

7.1.2.9 |If at any phase of the software safety lifecycle, a modification is required pertaining
to an earlier lifecycle phase, then an impact analysis shall determine (1) which software
modules are impacted, and (2) which earlier safety lifecycle activities shall be repeated.

NOTE At one extreme, an impact analysis may include an informal assessment. At the other extreme, an impact
analysis may include a rigorous formal analysis of the potential adverse impact of all proposed changes which may
be inadequately understood or implemented. See IEC 61508-7 for guidance on impact analysis.
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Box 10 in Figure 2
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Figure 3 — E/E/PE system safety lifecycle (in realisation phase)
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Figure 4 — Software safety lifecycle (in realisation phase)
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Figure 5 — Relationship and scope for IEC 61508-2 and IEC 61508-3
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Figure 6 — Software systematic capability and the development lifecycle (the V-model)
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Table 1 — Software safety lifecycle — overview

Safety lifecycle Objectives Scope Require- Inputs Outputs
phase ments (information |(information
subclause required) produced)
Figure Title
4 box
number
10.1 [Software To specify the requirements for |PE system; 7.2.2 E/E/PE safety [software
safety safety-related software in terms [software requirements [safety
requirements |of the requirements for software |system specification requirements
specification [safety functions and the as developed |specification
requirements for software during
systematic capability; allocation (see
) ) IEC 61508-1)
To specify the requirements for
the software safety functions for
each E/E/PE safety-related
system necessary to implement E/E/PE system
the required safety functions; safety
requirements
To specify the requirements for specification
software systematic capability (from
for each E/E/PE safety-related IEC 61508-2)
system necessary to achieve
the safety integrity level
specified for each safety
function allocated to that
E/E/PE safety-related system
10.2 |Validation plan|To develop a plan for validating [PE system; 7.3.2 software safety |validation
for software the software aspects of system [software requirements [plan for
aspects of safety system specification software
system safety aspects of
system
safety
10.3 |[Software Architecture: PE system; 7.4.3 software safety |software
design and software requirements [|architecture
development |70 create a software system specification; [design;
architecture that fulfils the
specified requirements for E/E/PE system [software
safety-related software with hardware architecture
respect to the required safety architecture integration
integrity level; design (from test
. IEC 61508-2) |[specification;
To evaluate the requirements
placed on the software by the software/ PE
hardware architecture of the integration
E/E/PE safety-related system, test
including the significance of specification
E/E/PE hardware/software (also
interactions for safety of the required by
equipment under control IEC 61508-2)
10.3 |[Software Support tools and programming |PE system; 7.4.4 software safety |support tools
design and languages: requirements [and coding
development ) software specification; |standards;
To select a suitable set of tools, system;
including languages and ’ software selection of
_compilers, run-time system support architecture development
interfaces, user interfaces, and tools: design tools

data formats and
representations for the required
safety integrity level, over the
whole safety lifecycle of the
software which assists
verification, validation,
assessment and modification

programming
language
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Table 1 (continued)

Safety lifecycle Objectives Scope Require- Inputs Outputs
phase ments (information |(information
subclause required) produced)
Figure Title
4 box
number
10.3 [Software Detailed design and major 7.4.5 software Software
design and development (software system |elements architecture system
development [design): and design; design
) ) subsystems specification;
To design and implement of software support tools
software that fulfils the architectural and coding software
specified requirements for design. standards. system
safety-related software with integration
respect to the required safety test
integrity level, which is specification.
analysable and verifiable, and
which is capable of being safely
modified
10.3 [Software Detailed design and software 7.4.5 software software
design and development (individual system system design |module
development [software module design): design specification; |design
. . specification;
To design and implement support tools
software that fulfils the and coding software
specified requirements for standards module test
safety-related software with specification
respect to the required safety
integrity level, which is
analysable and verifiable, and
which is capable of being safely
modified
10.3 |Software Detailed code implementation: [individual 7.4.6 software source code
design and ) . software module design |[listing;
development |70 design and implement modules specification; )
software that fulfils the code review
specified requirements for support tools  |report
safety-related software with and coding
respect to the required safety standards
integrity level, which is
analysable and verifiable, and
which is capable of being safely
modified
10.3 [Software Software module testing: software 7.4.7 software software
design and . ) modules module test module test
development |70 verify that the requirements specification; |results;
for safety-related software (in
terms of the required software source code verified and
safety functions and the listing; tested
software systematic capability) ) software
have been achieved code review | oqyles
report
To show that each software
module performs its intended
function and does not perform
unintended functions
To ensure, in so far as it is
appropriate, that configuration
of PE systems by data fulfils the
specified requirements for the
software systematic capability
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Safety lifecycle Objectives Scope Require- Inputs Outputs
phase ments (information |(information
subclause required) produced)
Figure Title
4 box
number
10.3 [Software Software integration testing: software 7.4.8 software software
design and . ) architecture; system system
development |70 verify that the requirements integration test |integration
for safety-related software (in  [software specification test results:
terms of the required software |system
safety functions and the verified and
software systematic capability) tested
have been achieved software
To show that all software system
modules, elements and
subsystems interact correctly to
perform their intended function
and do not perform unintended
functions
To ensure, in so far as it is
appropriate, that configuration
of PE systems by data fulfils the
specified requirements for the
software systematic capability
10.4 |Programmable |To integrate the software onto [program- 7.5.2 software software
electronics the target programmable mable architecture architecture
integration electronic hardware; electronics integration test |integration
. hardware; specification; |test results;
(hardware and |To combine the software and
software) hardware in the safety-related |integrated software/PE programmabl
programmable electronics to software integration test [e electronics
ensure their compatibility and to specification integration
meet the requirements of the (also required [test results;
intended safety integrity level 12)3/ IEC 61508 verified and
tested
Integrated integrated
programmable [programmabl
electronics e electronics
10.5 |[Software To provide information and as above 7.6.2 all above, as |software
operation and |[procedures concerning software relevant operation
modification necessary to ensure that the and
procedures functional safety of the E/E/PE modification
safety-related system is procedures
maintained during operation
and modification
10.6 |Software To ensure that the integrated as above 7.7.2 validation plan |software
aspects of system complies with the for software safety
system safety [specified requirements for aspects of validation
validation safety-related software at the system safety |results;
intended safety integrity level validated
software
— Software To guide corrections, as above 7.8.2 software software
modification enhancements or adaptations to modification modification
the validated software, ensuring procedures; impact
that the required software analysis
systematic capability is software results;
sustained modification
request software

modification
log
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Table 1 (continued)

Safety lifecycle Objectives Scope Require- Inputs Outputs
phase ments (information |(information
subclause required) produced)
Figure Title
4 box
number
- Software To test and evaluate the depends on 7.9.2 appropriate appropriate
verification outputs from a given software |phase verification verification
safety lifecycle phase to ensure plan (depends (report
correctness and consistency on phase) (depends
with respect to the outputs and on phase)
standards provided as input to
that phase
- Software To investigate and arrive at a all above 8 software software
functional judgement on the software phases functional functional
safety aspects of the functional safety safety safety
assessment achieved by the E/E/PE safety- assessment assessment
related systems plan report

7.2 Software safety requirements specification
NOTE This phase is Box 10.1 of Figure 4.

7.21 Objectives

7.21.1 The first objective of the requirements of this subclause is to specify the
requirements for safety-related software in terms of the requirements for software safety
functions and the requirements for software systematic capability.

7.2.1.2 The second objective of the requirements of this subclause is to specify the
requirements for the software safety functions for each E/E/PE safety-related system
necessary to implement the required safety functions.

7.2.1.3 The third objective of the requirements of this subclause is to specify the require-
ments for software systematic capability for each E/E/PE safety-related system necessary to
achieve the safety integrity level specified for each safety function allocated to that E/E/PE
safety-related system.

7.2.2 Requirements

NOTE 1 These requirements will in most cases be achieved by a combination of generic embedded software and
application specific software. It is the combination of both that provides the features that satisfy the following
subclauses. The exact division between generic and application specific software depends on the chosen software
architecture (see 7.4.3).

NOTE 2 For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of the software safety requirements specification should be
considered:

— completeness with respect to the safety needs to be addressed by software;

— correctness with respect to the safety needs to be addressed by software;

— freedom from intrinsic specification faults, including freedom from ambiguity;

— understandability of safety requirements;

— freedom from adverse interference of non-safety functions with the safety needs to be addressed by software;
— capability of providing a basis for verification and validation.

NOTE 3 The safety needs to be addressed by software is the set of safety functions and corresponding safety
integrity requirements assigned to software functions by the design of the E/E/PE system. (The complete set of
system safety needs is a larger set that includes also safety functions that do not depend on software). The

completeness of the software safety requirements specification depends crucially on the effectiveness of earlier
system lifecycle phases.
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7.2.2.1 If the requirements for safety-related software have already been specified for the
E/E/PE safety-related system (see Clause 7 of IEC 61508-2), then the specification of
software safety requirements need not be repeated.

7.2.2.2 The specification of the requirements for safety-related software shall be derived
from the specified safety requirements of the E/E/PE safety-related system (see IEC 61508-
2, 7), and any requirements of safety planning (see Clause 6). This information shall be made
available to the software developer.

NOTE 1 This requirement does not mean that there will be no iteration between the developer of the E/E/PE
system and the developer of the software (IEC 61508-2 and IEC 61508-3). As the safety-related software
requirements and the software architecture become more precise, there may be an impact on the E/E/PE system
hardware architecture, and for this reason close co-operation between the hardware and software developer is
essential. See Figure 5.

NOTE 2 Where a software design incorporates pre-existing reusable software, that software may have been
developed without taking account of the current system requirement specification. See 7.4.2.12 for the
requirements on the pre-existing software to satisfy the software safety requirements specification.

7.2.2.3 The specification of the requirements for safety-related software shall be sufficiently
detailed to allow the design and implementation to achieve the required safety integrity
(including any requirement for independence, see 7.4.3 of IEC 61508-2), and to allow an
assessment of functional safety to be carried out.

NOTE The level of detail of the specification may vary with the complexity of the application. An adequate
specification of functional behaviour may include requirements for accuracy, timing and performance, capacity,
robustness, overload tolerance, and other characterising properties of the specific application.

7.2.2.4 In order to address independence, a suitable common cause failure analysis shall be
carried out. Where credible failure mechanisms are identified, effective defensive measures
shall be taken.

NOTE See Annex F for techniques for achieving one aspect of independence of software.

7.2.2.5 The software developer shall evaluate the information in 7.2.2.2 to ensure that the
requirements are adequately specified. In particular the software developer shall consider the
following:

a) safety functions;

b) configuration or architecture of the system;

c) hardware safety integrity requirements (programmable electronics, sensors, and
actuators);

d) software systematic capability requirements;
e) capacity and response time;

f) equipment and operator interfaces, including reasonably foreseeable misuse.

NOTE Compatibility with any applications already in existence should be considered.

7.2.2.6 If not already adequately defined in specified safety requirements of the E/E/PE
safety-related system, all relevant modes of operation of the EUC, of the E/E/PE system, and
of any equipment or system connected to the E/E/PE system shall be detailed in the specified
requirements for safety-related software.

7.2.2.7 The software safety requirements specification shall specify and document any
safety-related or relevant constraints between the hardware and the software.

7.2.2.8 To the extent required by the E/E/PE hardware architecture design, and considering
the possible increase in complexity, the software safety requirements specification shall
consider the following:

a) software self-monitoring (for examples see IEC 61508-7);
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b) monitoring of the programmable electronics hardware, sensors, and actuators;

c) periodic testing of safety functions while the system is running;

d) enabling safety functions to be testable when the EUC is operational;

e) software functions to execute proof tests and all diagnostic tests in order to fulfil the

safety integrity requirement of the E/E/PE safety-related system.
NOTE Increased complexity resulting from the above considerations may require the architecture to be revisited.

7.2.2.9 When the E/E/PE safety-related system is required to perform non-safety functions,
then the specified requirements for safety-related software shall clearly identify the non-safety
functions.

NOTE See 7.4.2.8 and 7.4.2.9 for requirements on non-interference between safety functions and non-safety
functions.

7.2.2.10 The software safety requirements specification shall express the required safety
properties of the product, but not of the project as this is covered by safety planning (see
Clause 6 of 61508-1). With reference to 7.2.2.1 to 7.2.2.9, the following shall be specified as
appropriate:

a) the requirements for the following software safety functions:

1)  functions that enable the EUC to achieve or maintain a safe state;

2) functions related to the detection, annunciation and management of faults in the
programmable electronics hardware;

3) functions related to the detection, annunciation and management of sensor and
actuators faults;

4) functions related to the detection, annunciation and management of faults in the
software itself (software self-monitoring);

5) functions related to the periodic testing of safety functions on-line (i.e. in the
intended operational environment);

6) functions related to the periodic testing of safety functions off-line (i.e. in an
environment where the EUC is not being relied upon for its safety function);

7) functions that allow the PE system to be safely modified;
8) interfaces to non safety-related functions;

9) capacity and response time performance;

10) interfaces between the software and the PE system;

NOTE 1 They include both off-line and on-line programming facilities.
11) safety-related communications (see 7.4.11 of IEC 61508-2).
b) the requirements for the software systematic capability:

1) the safety integrity level(s) for each of the functions in a) above;

NOTE 2 See Annex A of IEC 61508-5 for information concerning the allocation of safety integrity to
software elements.

2) independence requirements between functions.
7.2.2.11 Where software safety requirements are expressed or implemented by configuration
data, the data shall be:
a) consistent with the system safety requirements;

b) expressed in terms of the permitted range and authorized combinations of its operational
parameters;

c) defined in a manner which is compatible with the underlying software (for example
sequence of execution, run time, data structures, etc.).

NOTE 1 This requirement on application data is particularly relevant to data-driven applications. These are
characterized as follows: the source code is pre-existing and the primary objective of the development activity is to
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provide assurance that the configuration data correctly states the behaviour required from the application. There
may be complex dependencies between data items, and the validity of data may change over time.

NOTE 2 See Annex G for guidance on data-driven systems.

7.2.2.12 Where data defines the interface between software and external systems, the
following performance characteristics shall be considered in addition to 7.4.11 of IEC 61508-
2:

[

the need for consistency in terms of data definitions;

[}

invalid, out of range or untimely values;

Q O

best case and worst case execution time, and deadlock;

D

)
)
) response time and throughput, including maximum loading conditions;
)
)

overflow and underflow of data storage capacity.
7.2.2.13 Operational parameters shall be protected against:

a) invalid, out of range or untimely values;
b) unauthorized changes;
c) corruption.

NOTE 1 Protection against unauthorized changes should be considered, taking account of both software-based
and non-software mechanisms. Note that effective protection against unauthorized software changes can have
adverse effects on safety e.g. when changes are needed rapidly and in stressful conditions.

NOTE 2 Although a person can form part of a safety-related system (see Clause 1 of IEC 61508-1), human factor
requirements related to the design of E/E/PE safety-related systems are not considered in detail in this standard.
However, the following human considerations should be addressed where appropriate:

e An operator information system should use the pictorial layout and the terminology the operators are familiar
with. It should be clear, understandable and free from unnecessary details and/or aspects;

e Information about the EUC displayed to the operator should follow closely the physical arrangement of the
EUC;

e |f several display contents to the operator are feasible and/or if the possible operator actions allow interactions
whose consequences cannot be seen at one glance, the information displayed should automatically contain at
each state of a display or an action sequence, which state of the sequence is reached, which operations are
feasible and which possible consequences can be chosen.

7.3 Validation plan for software aspects of system safety
NOTE 1 This phase is Box 10.2 of Figure 4.
NOTE 2 Software usually cannot be validated separately from its underlying hardware and system environment.

7.3.1 Objective

The objective of the requirements of this subclause is to develop a plan for validating the
safety-related software aspects of system safety.

7.3.2 Requirements

7.3.2.1 Planning shall be carried out to specify the steps, both procedural and technical, that
will be used to demonstrate that the software satisfies its safety requirements.

7.3.2.2 The validation plan for software aspects of system safety shall consider the
following:
a) details of when the validation shall take place;
b) details of those who shall carry out the validation;
c) identification of the relevant modes of the EUC operation including:
1) preparation for use including setting and adjustment;
2) start up, teach, automatic, manual, semi-automatic, steady state operation;
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3) re-setting, shut down, maintenance;

4) reasonably foreseeable abnormal conditions and reasonably foreseeable operator
misuse.

d) identification of the safety-related software which needs to be validated for each mode of
EUC operation before commissioning commences;

e) the technical strategy for the validation (for example analytical methods, statistical tests
etc.);

f) in accordance with item e), the measures (techniques) and procedures that shall be used
for confirming that each safety function conforms with the specified requirements for the
safety functions, and the specified requirements for software systematic capability;

g) the required environment in which the validation activities are to take place (for example,
for tests this could include calibrated tools and equipment);

h) the pass/fail criteria;

i) the policies and procedures for evaluating the results of the validation, particularly
failures.

NOTE These requirements are based on the general requirements given in 7.8 of IEC 61508-1.

7.3.2.3 The validation shall give a rationale for the chosen strategy. The technical strategy
for the validation of safety-related software shall include the following information:

a) choice of manual or automated techniques or both;

b) choice of static or dynamic techniques or both;

c) choice of analytical or statistical techniques or both.

d) choice of acceptance criteria based on objective factors or expert judgment or both.

7.3.2.4 As part of the procedure for validating safety-related software aspects, the scope
and contents of the validation plan for software aspects of system safety shall be agreed with
the assessor or with a party representing the assessor, if required by the safety integrity level
(see Clause 8 of IEC 61508-1). This procedure shall also make a statement concerning the
presence of the assessor during testing.

7.3.2.5 The pass/fail criteria for accomplishing software validation shall include:

a) the required input signals with their sequences and their values;
b) the anticipated output signals with their sequences and their values; and

c) other acceptance criteria, for example memory usage, timing and value tolerances.

7.4 Software design and development

NOTE This phase is box 10.3 of Figure 4.
7.4.1 Objectives

7.4.1.1 The first objective of the requirements of this subclause is to create a software
architecture that fulfils the specified requirements for safety-related software with respect to
the required safety integrity level.

7.4.1.2 The second objective of the requirements of this subclause is to evaluate the
requirements placed on the software by the hardware architecture of the E/E/PE safety-
related system, including the significance of E/E/PE hardware/software interactions for safety
of the equipment under control.

7.4.1.3 The third objective of the requirements of this subclause is to select a suitable set of
tools, including languages and compilers, run-time system interfaces, user interfaces, and data
formats and representations for the required safety integrity level, over the whole safety lifecycle
of the software which assists verification, validation, assessment and modification.
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7.4.1.4 The fourth objective of the requirements of this subclause is to design and implement
software that fulfils the specified requirements for safety-related software with respect to the
required safety integrity level, which is analysable and verifiable, and which is capable of
being safely modified.

7.4.1.5 The fifth objective of the requirements of this subclause is to verify that the
requirements for safety-related software (in terms of the required software safety functions
and the software systematic capability) have been achieved.

7.4.1.6 The sixth objective of the requirements of this subclause is to ensure, in so far as it
is appropriate, that configuration of PE systems by data fulfils the specified requirements for
the software systematic capability.

7.4.2 General requirements

7.4.2.1 Depending on the nature of the software development, responsibility for conformance
with 7.4 can rest with the supplier of a safety related programming environment (e.g. PLC
supplier) alone, or with the user of that environment (e.g. the application software developer)
alone, or with both. The division of responsibility shall be determined during safety planning
(see Clause 6).

NOTE See 7.4.3 for aspects of system and software architecture that are relevant to deciding on a practical
division of responsibility.

7.4.2.2 In accordance with the required safety integrity level and the specific technical
requirements of the safety function, the design method chosen shall possess features that
facilitate:

a) abstraction, modularity and other features which control complexity;

b) the expression of:

1)  functionality;

2) information flow between elements;

3) sequencing and time related information;

4)  timing constraints;

5)  concurrency and synchronized access to shared resources;
6) data structures and their properties;

7) design assumptions and their dependencies;

8) exception handling;

9) design assumptions (pre-conditions, post-conditions, invariants);
10) comments.
c) ability to represent several views of the design including structural and behavioural views;
d) comprehension by developers and others who need to understand the design;
e) verification and validation.
7.4.2.3 Testability and the capacity for safe modification shall be considered during the

design activities in order to facilitate implementation of these properties in the final safety-
related system.

NOTE Examples include maintenance modes in machinery and process plant.

7.4.2.4 The design method chosen shall possess features that facilitate software
modification. Such features include modularity, information hiding and encapsulation.

NOTE SeeF.7.
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7.4.2.5 The design representations shall be based on a notation which is unambiguously
defined or restricted to unambiguously defined features.

7.4.2.6 As far as practicable the design shall keep the safety-related part of the software
simple.

7.4.2.7 The software design shall include, commensurate with the required safety integrity
level, self-monitoring of control flow and data flow. On failure detection, appropriate actions
shall be taken.

7.4.2.8 Where the software is to implement both safety and non-safety functions, then all of
the software shall be treated as safety-related, unless adequate design measures ensure that
the failures of non-safety functions cannot adversely affect safety functions.

7.4.2.9 Where the software is to implement safety functions of different safety integrity
levels, then all of the software shall be treated as belonging to the highest safety integrity
level, unless adequate independence between the safety functions of the different safety
integrity levels can be shown in the design. It shall be demonstrated either (1) that
independence is achieved by both in the spatial and temporal domains, or (2) that any
violation of independence is controlled. The justification for independence shall be
documented.

NOTE See Annex F for techniques for achieving one aspect of independence of software.

7.4.2.10 Where the systematic capability of a software element is lower than the safety
integrity level of the safety function which the software element supports, the element shall be
used in combination with other elements such that the systematic capability of the
combination equals the safety integrity level of the safety function.

7.4.2.11 Where a safety function is implemented using a combination of software elements
of known systematic capability, the systematic capability requirements of 7.4.3 of IEC 61508-
2, shall apply to the combination of elements.

NOTE Distinguish consistently between (1) the end-to-end safety function that is supported by one or more
elements and (2) the element safety function of each of the supporting elements. Where two elements combine to
achieve a higher systematic capability in combination, each of the paired elements should be capable of
preventing/mitigating the hazardous event, but the paired elements are not required to have identical element
safety functions, and it is not required that each of the paired elements is independently capable of providing the
whole safety functionality demanded from the combination.

EXAMPLE An electronic engine throttle control where the end-to-end safety function is “prevent undemanded
acceleration”. The end-to-end safety function is implemented by two processors. The element safety function of the
primary controller is the ideal demand/response behaviour of the throttle. The element safety function of the
secondary processor is a diverse monitor (see IEC 61508-7 C.3.4) and applies an emergency stop if necessary.
The combination of the two processors gives higher confidence that the end-to-end safety function “prevent
undemanded acceleration” will be achieved.

7.4.2.12 Where a pre-existing software element is reused to implement all or part of a safety
function, the element shall meet both requirements a) and b) below for systematic safety
integrity:

a) meet the requirements of one of the following compliance routes:

— Route 15: compliant development. Compliance with the requirements of this standard
for the avoidance and control of systematic faults in software;

— Route 25: proven in use. Provide evidence that the element is proven in use. See
7.4.10 of IEC 61508-2;

— Route 35:assessment of non-compliant development. Compliance with 7.4.2.13.

NOTE 1 Route 1s, 25 and 3s are the element compliance routes of 7.4.2.2 c) of IEC 61508-2 with particular
reference to software elements. They are reproduced here for convenience only, and to minimize references back
to IEC 61508-2.
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NOTE 2 See 3.2.8 of IEC 61508-4. The pre-existing software could be a commercially available product, or it
could have been developed by some organisation for a previous product or system. Pre-existing software may or
may not have been developed in accordance with the requirements of this standard.

NOTE 3 Requirements on pre-existing elements apply to a run-time library or an interpreter.

b) provide a safety manual (see Annex D of IEC 61508-2 and Annex D of this standard) that
gives a sufficiently precise and complete description of the element to make possible an
assessment of the integrity of a specific safety function that depends wholly or partly on
the pre-existing software element.

NOTE 4 The safety manual may be derived from the element supplier's own documentation and records of the
element supplier’s development process, or may be created or supplemented by additional qualification activities
undertaken by the developer of the safety related system or by third parties. In some cases, reverse engineering
may be required to create specification or design documentation adequate to meet the requirements of this clause,
subject to the prevailing legal conditions (e.g. copyright or intellectual property rights).

NOTE 5 The justification of the element may be developed during safety planning (see Clause 6).

7.4.213 To comply with Route 3; a pre-existing software element shall meet all of the
following requirements a) to i):

a) The software safety requirements specification for the element in its new application shall
be documented to the same degree of precision as would be required by this standard for
any safety related element of the same systematic capability. The software safety
requirements specification shall cover the functional and safety behaviour as applicable to
the element in its new application and as specified in 7.2. See Table A.1.

b) The justification for use of a software element shall provide evidence that the desirable
safety properties specified in the referenced subclauses (i.e. 7.2.2, 7.4.3, 7.4.4, 7.4.5,
746, 747, 7.5.2, 7.7.2, 7.8.2, 7.9.2, and Clause 8) have been considered, taking
account of the guidance in Annex C.

c) The element’s design shall be documented to a degree of precision, sufficient to provide
evidence of compliance with the requirement specification and the required systematic
capability. See 7.4.3, 7.4.5 and 7.4.6, and Tables A.2 and A.4 of Annex A.

d) The evidence required in 7.4.2.13 a) and 7.4.2.13 b) shall cover the software’s integration
with the hardware. See 7.5 and Table A.6 of Annex A.

e) There shall be evidence that the element has been subject to verification and validation
using a systematic approach with documented testing and review of all parts of the
element’s design and code. See 7.4.7, 7.4.8, 7.5, 7.7 and 7.9 and Tables A.5 to A.7 and
A.9 of Annex A as well as related tables in Annex B.

NOTE 1 Positive operational experience may be used to satisfy black-box and probabilistic testing
requirements [see Tables A.7 and B.3].

f) Where the software element provides functions which are are not required in the safety
related system, then evidence shall be provided that the unwanted functions will not
prevent the E/E/PE system from meeting its safety requirements.

NOTE 2 Ways to meet this requirement include:

e removing the functions from the build;

e disabling the functions;

e appropriate system architecture (e.g. partitioning, wrappers, diversity, checking the credibility of outputs);

e extensive testing.

g) There shall be evidence that all credible failure mechanisms of the software element have
been identified and that appropriate mitigation measures have been implemented.

NOTE 3 Appropriate mitigation measures include:
e appropriate system architecture (e.g. partitioning, wrappers, diversity, credibility of checking of outputs);

e exception handling.

h) The planning for use of the element shall identify the configuration of the software
element, the software and hardware run-time environment and if necessary the
configuration of the compilation / linking system.
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i) The justification for use of the element shall be valid for only those applications which
respect the assumptions made in the compliant item safety manual for the element (see
Annex D of IEC 61508-2 and Annex D).

7.4.2.14 This Subclause 7.4.2 shall, in so far as it is appropriate, apply to data and data
generation languages.

NOTE See Annex G for guidance on data-driven systems.

a) Where a PE system consists of pre-existing functionality that is configured by data to meet
specific application requirements, the design of the application software shall be
commensurate with the degree of application configurability, pre-delivered existing
functionality and complexity of the PE safety-related system.

b) Where the safety-related functionality of a PE system is determined significantly or
predominantly by configuration data, appropriate techniques and measures shall be used
to prevent the introduction of faults during the design, production, loading and
modification of the configuration data and to ensure that the configuration data correctly
states the application logic.

c) The specification of data structures shall be:

1) consistent with the functional requirements of the system, including the application
data;

2) complete;
3) self consistent;
4) such that the data structures are protected against alteration or corruption.

d) Where a PE System consists of pre-existing functionality that is configured by data to
meet specific application requirements, the configuration process itself shall be
documented appropriately.

7.4.3 Requirements for software architecture design

NOTE 1 The software architecture defines the major elements and subsystems of the software, how they are
interconnected, and how the required attributes, particularly safety integrity, will be achieved. It also defines the
overall behaviour of the software, and how software elements interface and interact. Examples of major software
elements include operating systems, databases, EUC input/output subsystems, communication subsystems,
application program(s), programming and diagnostic tools, etc.

NOTE 2 In certain industrial sectors the software architecture would be called a function description or functional
design specification (although these documents could also include the hardware).

NOTE 3 In some contexts of user application programming, particularly in PLCs (see Annex E of IEC 61508-6),
the software architecture is provided by the supplier as a standard feature of the product. The supplier would,
under this standard, be required to assure the user of the compliance of his products to the requirements of 7.4.
The user tailors the PLC to the application by using the standard programming facilities, for example ladder logic.
The requirements of 7.4.3 to 7.4.8 still apply. The requirement to define and document the software architecture
can be seen as information that the user would use to select the PLC (or equivalent) for the application.

NOTE 4 From a safety viewpoint, the software architecture phase is where the basic safety strategy is developed
for the software.

NOTE 5 Although the IEC 61508 series sets numerical target failure measures for safety functions carried out by
E/E/PE safety-related systems, systematic safety integrity is usually unquantified (see 3.5.6 of IEC 61508-4), and
software safety integrity (see 3.5.5 of IEC 61508-4) is defined as a systematic capability on a confidence scale of
1-4 (see 3.5.9 of IEC 61508-4). This standard recognizes that a software failure can be safe or unsafe depending
on the specific use of the software The system/software architecture needs to be such that unsafe failures of an
element are limited by some architectural constraint, and that development methods should take account of these
constraints. This standard applies development and validation techniques with rigour that is qualitatively consistent
with the required systematic capability.

NOTE 6 For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of the software architecture design should be considered:

— completeness with respect to software safety requirements specification;
— correctness with respect to software safety requirements specification;

— freedom from intrinsic design faults;
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— simplicity and understandability;
—  predictability of behaviour;

— verifiable and testable design;
— fault tolerance;

— defence against common cause failure from external events.

7.4.3.1 Depending on the nature of the software development, responsibility for conformance
with 7.4.4 can rest with multiple parties. The division of responsibility shall be documented
during safety planning (see Clause 6 of IEC 61508-1).

7.4.3.2 The software architecture design shall be established by the software supplier and/or
developer, and shall be detailed. The software architecture design shall:

a) select and justify (see 7.1.2.7) an integrated set of techniques and measures necessary
during the software safety lifecycle phases to satisfy the software safety requirements
specification at the required safety integrity level. These techniques and measures include
software design strategies for both fault tolerance (consistent with the hardware) and fault
avoidance, including (where appropriate) redundancy and diversity;

b) be based on a partitioning into elements/subsystems, for each of which the following
information shall be provided:

1) whether the elements/subsystems have been previously verified, and if yes, their
verification conditions;

2) whether each subsystem/element is safety-related or not;
3) software systematic capability of the subsystem/element.

c) determine all software/hardware interactions and evaluate and detail their significance;

NOTE Were the software/hardware interaction is already determined by the system architecture, it is sufficient to
refer to the system architecture.

d) use a notation to represent the architecture which is unambiguously defined or restricted
to unambiguously defined features;

e) select the design features to be used for maintaining the safety integrity of all data. Such
data may include plant input-output data, communications data, operator interface data,
maintenance data and internal database data;

f) specify appropriate software architecture integration tests to ensure that the software
architecture satisfies the software safety requirements specification at the required safety
integrity level.

7.4.3.3 Any changes required to the E/E/PE System Safety Requirements Specification (see
7.2.2) after applying 7.4.3.2 shall be agreed with the E/E/PE developer and documented.

NOTE There will inevitably be iteration between the hardware and software architecture (see Figure 5) and there
is therefore a need to discuss with the hardware developer such issues as the test specification for the integration
of the programmable electronics hardware and the software (see 7.5).

7.4.4 Requirements for support tools, including programming languages

NOTE For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of support tools should be considered:

— the degree to which the tool supports the production of software with the required software properties;
— the clarity of the operation and functionality of the tool;

— the correctness and repeatability of the output.

7.4.4.1 A software on-line support tool shall be considered to be a software element of the safety-
related system

NOTE See 3.2.10 and 3.2.11 of IEC 61508-4 for examples of on-line and off-line tools.
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7.4.4.2 Software off-line support tools shall be selected as a coherent part of the software
development activities.

NOTE 1 See 7.1.2 for software development lifecycle requirements.

NOTE 2 Appropriate off-line tools to support the development of software should be used in order to increase the
integrity of the software by reducing the likelihood of introducing or not detecting faults during the development.
Examples of tools relevant to the phases of the software development lifecycle include:

a) transformation or translation tools that convert a software or design representation (e.g. text or a diagram)
from one abstraction level to another level: design refinement tools, compilers, assemblers, linkers,
binders, loaders and code generation tools;

b) verification and validation tools such as static code analysers, test coverage monitors, theorem proving
assistants, and simulators;

c) diagnostic tools used to maintain and monitor the software under operating conditions;
d) infrastructure tools such as development support systems;
e) configuration control tools such as version control tools;

f) application data tools that produce or maintain data which are required to define parameters and to
instantiate system functions. Such data includes function parameters, instrument ranges, alarm and trip
levels, output states to be adopted at failure, geographical layout.

NOTE 3 Off-line support tools should be selected to be integrated. In this context, tools are integrated if they work
co-operatively such that the outputs from one tool have suitable content and format for automatic input to a
subsequent tool, thus minimising the possibility of introducing human error in the reworking of intermediate results.

NOTE 4 Off-line support tools should be selected to be compatible with the needs of the application, of the safety
related system, and of the integrated toolset.

NOTE 5 The availability of suitable tools to supply the services that are necessary over the whole lifetime of the
E/E/PE safety-related system (e.g. tools to support specification, design, implementation, documentation,
modification) should be considered.

NOTE 6 Consideration should be given to the competence of the users of the selected tools. See Clause 6 of
IEC 61508-1 for competence requirements.

7.4.4.3 The selection of the off-line support tools shall be justified.

7.4.4.4 All off-line support tools in classes T2 and T3 shall have a specification or product
documentation which clearly defines the behaviour of the tool and any instructions or
constraints on its use. See 7.1.2 for software development lifecycle requirements, and 3.2.11
of IEC 61508-4 for categories of software off-line support tool.

NOTE This “specification or product documentation” is not a safety manual for compliant items (see Annex D of
61508-2 and also of this standard) for the tool itself. The safety manual for compliant item relates to a pre-existing
element that is incorporated into the executable safety related system. Where a pre-existing element has been
generated by a T3 tool and then incorporated into the executable safety related system, then any relevant
information (e.g. the documentation for an optimising compiler may indicate that the evaluation order of function
parameters is not guaranteed) from the tool’s “specification or product documentation” should be included in the
compliant item safety manual that makes possible an assessment of the integrity of a specific safety function that
depends wholly or partly on the incorporated element.”

7.4.4.5 An assessment shall be carried out for offline support tools in classes T2 and T3 to
determine the level of reliance placed on the tools, and the potential failure mechanisms of
the tools that may affect the executable software. Where such failure mechanisms are
identified, appropriate mitigation measures shall be taken.

NOTE 1 Software HAZOP is one technique to analyse the consequences of potential software tool failures.

NOTE 2 Examples of mitigation measures include: avoiding known bugs, restricted use of the tool functionality,
checking the tool output, use of diverse tools for the same purpose.

7.4.4.6 For each tool in class T3, evidence shall be available that the tool conforms to its
specification or documentation. Evidence may be based on a suitable combination of history
of successful use in similar environments and for similar applications (within the organisation
or other organisations), and of tool validation as specified in 7.4.4.7.

NOTE 1 A version history may provide assurance of maturity of the tool, and a record of the errors / ambiguities
that should be taken into account when the tool is used in the new development environment.
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NOTE 2 The evidence listed for T3 may also be used for T2 tools in judging the correctness of their results.
7.4.4.7 The results of tool validation shall be documented covering the following results:

a) a chronological record of the validation activities;
b) the version of the tool product manual being used;
c) the tool functions being validated;

d) tools and equipment used;

e) the results of the validation activity; the documented results of validation shall state either
that the software has passed the validation or the reasons for its failure;

f) test cases and their results for subsequent analysis;
g) discrepancies between expected and actual results.
7.4.4.8 Where the conformance evidence of 7.4.4.6 is unavailable, there shall be effective

measures to control failures of the executable safety related system that result from faults that
are attributable to the tool.

NOTE An example of a measure would be the generation of diverse redundant code which allows the detection
and control of failures of the executable safety related system as a result of faults that have been introduced into
the executable safety related system by a translator.

7.4.4.9 The compatibility of the tools of an integrated toolset shall be verified.

Note: tools are integrated if they work co-operatively such that the outputs from one tool have suitable content and
format for automatic input to a subsequent tool, thus minimizing the possibility of introducing human error in the
reworking of intermediate results. See IEC 61508-7 B.3.5.

7.4.410 To the extent required by the safety integrity level, the software or design
representation (including a programming language) selected shall:

a) have a translator which has been assessed for fitness for purpose including, where
appropriate, assessment against the international or national standards;

b) use only defined language features;

c) match the characteristics of the application;

d) contain features that facilitate the detection of design or programming mistakes;
e) support features that match the design method.

NOTE 1 A programming language is a class of software or design representations. A translator converts a
software or design representation (e.g. text or a diagram) from one abstraction level to another level. Examples of
translators include: design refinement tools, compilers, assemblers, linkers, binders, loaders and code generation
tools.

NOTE 2 The assessment of a translator may be performed for a specific application project, or for a class of
applications. In the latter case all necessary information on the tool (the “specification or product manual”, see
7.4.4.4) regarding the intended and appropriate use of the tool should be available to the user of the tool. The
assessment of the tool for a specific project may then be reduced to checking general suitability of the tool for the
project and compliance with the “specification or product manual” (i.e. proper use of the tool). Proper use might
include additional verification activities within the specific project.

NOTE 3 A validation suite (i.e. a set of test programs whose correct translation is known in advance) may be used
to evaluate the fitness for purpose of a translator according to defined criteria, which should include functional and
non-functional requirements. For the functional translator requirements, dynamic testing may be a main validation
technique. If possible an automatic testing suite should be used.

7.4.4.11 Where 7.4.4.10 cannot be fully satisfied, the fitness for purpose of the language,
and any additional measures which address any identified shortcomings of the language shall
be justified.

7.4.4.12 Programming languages for the development of all safety-related software shall be
used according to a suitable programming language coding standard.
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NOTE See IEC 61508-7 for guidance on coding standard aspects that relate to software safety.

7.4.4.13 A programming language coding standard shall specify good programming practice,
proscribe unsafe language features (for example, undefined language features, unstructured
designs, etc.), promote code understandability, facilitate verification and testing, and specify
procedures for source code documentation. Where practicable, the following information shall
be contained in the source code:

a) legal entity (for example company, author(s), etc.);
b) description;

c) inputs and outputs;

d) configuration management history.

7.4.4.14 Where automatic code generation or similar automatic translation takes place, the
suitability of the automatic translator for safety-related system development shall be assessed
at the point in the development lifecycle where development support tools are selected.

7.4.4.15 Where off-line support tools of classes T2 and T3 generate items in the
configuration baseline, configuration management shall ensure that information on the tools is
recorded in the configuration baseline. This includes in particular:

a) the identification of the tool and its version;

b) the identification of the configuration baseline items for which the tool version has been
used;

c) the way the tool was used (including the tool parameters, options and scripts selected) for
each configuration baseline item.

NOTE The objective of this clause is to allow the baseline to be reconstructed.

7.4.4.16 Configuration management shall ensure that for tools in classes T2 and T3, only
qualified versions are used.

7.4.4.17 Configuration management shall ensure that only tools compatible with each other
and with the safety-related system are used.

NOTE The safety-related system hardware may also impose compatibility constraints on software tools e.g. a
processor emulator needs to be an accurate model of the real processor electronics.

7.4.4.18 Each new version of off-line support tool shall be qualified. This qualification may
rely on evidence provided for an earlier version if sufficient evidence is provided that:

a) the functional differences (if any) will not affect tool compatibility with the rest of the
toolset; and

b) the new version is unlikely to contain significant new, unknown faults.

NOTE Evidence that the new version is unlikely to contain significant new, unknown faults may be based on (1) a
clear identification of the changes made, (2) an analysis of the verification and validation actions performed on the
new version, and (3) any existing operational experience from other users that is relevant to the new version.

7.4.4.19 Depending on the nature of the software development, responsibility for
conformance with 7.4.4 can rest with multiple parties. The division of responsibility shall be
documented during safety planning (see Clause 6 of IEC 61508-1).

7.4.5 Requirements for detailed design and development — software system design

NOTE 1 Detailed design is defined here to mean software system design: the partitioning of the major elements in
the architecture into a system of software modules; individual software module design; and coding. In small
applications, software system design and architectural design may be combined.

NOTE 2 The nature of detailed design and development will vary with the nature of the software development
activities and the software architecture (see 7.4.3). In some contexts of application programming, for example
ladder logic and function blocks, detailed design can be considered as configuring rather than programming.
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However it is still good practice to design the software in a structured way, including organising the software into a
modular structure that separates out (as far as possible) safety-related parts; including range checking and other
features that provide protection against data input mistakes; using previously verified software modules; and
providing a design that facilitates future software modifications.

NOTE 3 For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of the design and development should be considered:

— completeness with respect to software safety requirements specification;
— correctness with respect to software safety requirements specification;
— freedom from intrinsic design faults;

— simplicity and understandability

—  predictability of behaviour;

— verifiable and testable design;

— fault tolerance / fault detection;

— freedom from common cause failure.

7.4.5.1 Depending on the nature of the software development, responsibility for conformance
with 7.4.5 can rest with multiple parties. The division of responsibility shall be documented
during safety planning (see Clause 6 of IEC 61508-1).

7.4.5.2 The following information shall be available prior to the start of detailed design: the
specification of requirements for the E/E/PE safety related system; the software architecture
design; the validation plan for software aspects of system safety.

7.4.5.3 The software shall be produced to achieve modularity, testability, and the capability
for safe modification.

7.4.5.4 For each major element/subsystem in the software architecture design, further
refinement of the design shall be based on a partitioning into software modules (i.e. the
specification of the software system design). The design of each software module and the
verification to be applied to each software module shall be specified.

NOTE 1 For pre-existing software elements, see 7.4.2.

NOTE 2 Verification includes testing and analysis.

7.4.5.5 Appropriate software system integration tests shall be specified to ensure that the
software system satisfies the software safety requirements specification at the required safety
integrity level.

7.4.6 Requirements for code implementation

NOTE To the extent required by the safety integrity level, the source code shall possess the following properties
(see Annexes A and B for specific techniques, and see Annex C for guidance on interpretation of properties) of
code should be considered:

e be readable, understandable and testable;
e satisfy the specified requirements for software module design (see 7.4.5);
e satisfy the specified requirements of the coding standards (see 7.4.4);

e satisfy all relevant requirements specified during safety planning (see Clause 6).

7.4.6.1 Each module of software code shall be reviewed. Where the code is produced by an
automatic tool, the requirements of 7.4.4 shall be met. Where the source code consists of
reused pre-existing software, the requirements of 7.4.2 shall be met.

NOTE Code review is a verification activity (see 7.9). Code review can be carried out by means of an inspection
of the code: (1) by an individual; (2) by a software walk-though (see IEC 61508-7 C.5.15); or (3) by a formal
inspection (see IEC 61508-7 C.5.14), in increasing order of rigour.
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7.4.7 Requirements for software module testing

NOTE 1 Testing that the software module correctly satisfies its test specification is a verification activity (see
7.9). It is the combination of code review and software module testing that provides assurance that a software
module satisfies its associated specification, i.e. it is verified.

NOTE 2 For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of the software module testing should be considered:

— completeness of testing with respect to the software design specification;
— correctness of testing with respect to the software design specification (successful completion);
— repeatability;

— precisely defined testing configuration.

7.4.7.1 Each software module shall be verified as required by the software module test
specification that was developed during software system design (see 7.4.5).

NOTE Verification includes testing and analysis.

7.4.7.2 This verification shall show whether or not each software module performs its
intended function and does not perform unintended functions.

NOTE 1 This does not imply testing of all input combinations, nor of all output combinations. Testing all equi-
valence classes or structure based testing may be sufficient. Boundary value analysis or control flow analysis may
reduce the test cases to an acceptable number. Analysable programs make the requirements easier to fulfil. See
Annex C of IEC 61508-7 for these techniques.

NOTE 2 Where the development uses formal methods, formal proofs or assertions, such tests may be reduced in
scope. See Annex C of IEC 61508-7 for these techniques.

NOTE 3 Although systematic safety integrity is usually unquantified (see 3.5.6 of IEC 61508-4), quantified
statistical evidence (e.g. statistical testing, reliability growth) is acceptable if all the relevant conditions for
statistically valid evidence are satisfied e.g. see Annex D of IEC 61508-7.

NOTE 4 If the module is simple enough to make practicable an exhaustive test, then this can be the most efficient
way to demonstrate conformance.

7.4.7.3 The results of the software module testing shall be documented.
7.4.7.4 The procedures for corrective action on not passing the test shall be specified.

7.4.8 Requirements for software integration testing
NOTE Testing that the software is correctly integrated is a verification activity (see 7.9).

7.4.8.1 Software integration tests shall be specified during the design and development
phase (see 7.4.5).

7.4.8.2 The software system integration test specification shall state the following:

QO

the division of the software into manageable integration sets;

[}

test cases and test data;

o O

)

)

) types of tests to be performed;

) test environment, tools, configuration and programs;
)

D

test criteria on which the completion of the test will be judged,;

—h

) procedures for corrective action on failure of test.

7.4.8.3 The software shall be tested in accordance with the software integration tests
specified in the software system integration test specification. These tests shall show that all
software modules and software elements/subsystems interact correctly to perform their
intended function and do not perform unintended functions.



BS EN 61508-3:2010
- 36 - 61508-3 © IEC:2010

NOTE 1 This does not imply testing of all input combinations, nor of all output combinations. Testing all equi-
valence classes or structure based testing may be sufficient. Boundary value analysis or control flow analysis may
reduce the test cases to an acceptable number. Analysable programs make the requirements easier to fulfil. See
Annex C of IEC 61508-7 for these techniques.

NOTE 2 Where the development uses formal methods, formal proofs or assertions, such tests may be reduced in
scope. See Annex C of IEC 61508-7 for these techniques.

NOTE 3 Although systematic safety integrity is usually unquantified (see 3.5.6 of IEC 61508-4), quantified
statistical evidence (e.g. statistical testing, reliability growth) is acceptable if all the relevant conditions for
statistically valid evidence are satisfied e.g. see Annex D of IEC 61508-7.

7.4.8.4 The results of software integration testing shall be documented, stating the test
results, and whether the objectives and the test criteria have been met. If there is a failed
integration test, the reasons for the failure shall be documented.

7.4.8.5 During software integration, any modification to the software shall be subject to an
impact analysis which shall determine all software modules impacted, and the necessary re-
verification and re-design activities.

7.5 Programmable electronics integration (hardware and software)

NOTE This phase is box 10.4 of Figure 4.
7.5.1 Objectives

7.5.1.1 The first objective of the requirements of this subclause is to integrate the software
onto the target programmable electronic hardware.

7.5.1.2 The second objective of the requirements of this subclause is to combine the
software and hardware in the safety-related programmable electronics to ensure their
compatibility and to meet the requirements of the intended safety integrity level.

NOTE 1 Testing that the software is correctly integrated with the programmable electronic hardware is a
verification activity (see 7.9).

NOTE 2 Depending on the nature of the application, these activities may be combined with 7.4.8.

7.5.2 Requirements

NOTE For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of the integration should be considered:

— completeness of integration with respect to the design specifications;

— correctness of integration with respect to the design specifications (successful completion);

— repeatability;

— precisely defined integration configuration.

7.5.2.1 Integration tests shall be specified during the design and development phase (see

7.4.3) to ensure the compatibility of the hardware and software in the safety-related
programmable electronics.

NOTE Close co-operation with the developer of the E/E/PE system may be required in order to develop the
integration tests.

7.5.2.2 The software/PE integration test specification (hardware and software) shall state the
following:

[

the split of the system into integration levels;

(=)

test cases and test data;

o O

test environment including tools, support software and configuration description;

D

)
)
) types of tests to be performed;
)
)

test criteria on which the completion of the test will be judged.
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7.5.2.3 The software/PE integration test specification (hardware and software) shall
distinguish between those activities which can be carried out by the developer on his
premises and those that require access to the user's site.

7.5.2.4 The software/PE integration test specification (hardware and software) shall
distinguish between the following activities:

a) merging of the software system on to the target programmable electronic hardware;
b) E/E/PE integration, i.e. adding interfaces such as sensors and actuators;
c) applying the E/E/PE safety-related system to the EUC.

NOTE Items b) and c) are covered by IEC 61508-1 and IEC 61508-2 and are included here to put item a) in
context and for completeness. They are not normally the responsibility of the software developers.

7.5.2.5 The software shall be integrated with the safety-related programmable electronic
hardware in accordance with the software/PE integration test specification (hardware and
software).

7.5.2.6 During the integration testing of the safety-related programmable electronics
(hardware and software), any change to the integrated system shall be subject to an impact
analysis. The impact analysis shall determine all software modules impacted, and the
necessary re-verification activities.

7.5.2.7 Test cases and their expected results shall be documented for subsequent analysis.

7.5.2.8 The integration testing of the safety-related programmable electronics (hardware and
software) shall be documented, stating the test results, and whether the objectives and the
test criteria have been met. If there is a failure, the reasons for the failure shall be
documented. Any resulting modification or change to the software shall be subject to an
impact analysis which shall determine all software elements/modules impacted, and the
necessary re-verification and re-design activities.

7.6 Software operation and modification procedures

NOTE This phase is box 10.5 of Figure 4.
7.6.1 Objective

The objective of the requirements of this subclause is to provide information and procedures
concerning software necessary to ensure that the functional safety of the E/E/PE safety-
related system is maintained during operation and modification.

7.6.2 Requirements

The requirements are given in 7.6 of IEC 61508-2 and in 7.8 of this standard.

NOTE In this standard software (unlike hardware) is not capable of being maintained: it is always modified.

7.7 Software aspects of system safety validation

NOTE 1 This phase is box 10.6 of Figure 4.

NOTE 2 Software usually cannot be validated separately from its underlying hardware and system environment.

7.71 Objective

The objective of the requirements of this subclause is to ensure that the integrated system
complies with the software safety requirements specification at the required safety integrity
level.
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7.7.2 Requirements

NOTE For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of safety validation should be considered:

— completeness of validation with respect to the software design specification;

— correctness of validation with respect to the software design specification (successful completion);

— repeatability;

— precisely defined validation configuration.

7.7.2.1 If the compliance with the requirements for safety-related software has already been

established in the safety validation planning for the E/E/PE safety-related system (see 7.7 of
IEC 61508-2), then the validation need not be repeated.

7.7.2.2 The validation activities shall be carried out as specified the in validation plan for
software aspects of system safety.

7.7.2.3 Depending on the nature of the software development, responsibility for conformance
with 7.7 can rest with multiple parties. The division of responsibility shall be documented
during safety planning (see Clause 6 of IEC 61508-1).

7.7.2.4 The results of validating the software aspects of system safety shall be documented.

7.7.2.5 For each safety function, software safety validation shall document the following
results:

a) a chronological record of the validation activities that will permit the sequence of activities
to be retraced;

NOTE When recording test results, it is important to be able to retrace the sequence of activities. The
emphasis of this requirement is on retracing a sequence of activities, and not on producing a timed/dated list
of documents.

b) the version of the validation plan for software aspects of system safety (see 7.3) being
used;

c) the safety function being validated (by test or analysis), together with reference to the
validation plan for software aspects of system safety;

d) tools and equipment used together with calibration data;

e) the results of the validation activity;

f) discrepancies between expected and actual results.

7.7.2.6 When discrepancies occur between expected and actual results, the analysis made
and the decisions taken on whether to continue the validation, or to issue a change request

and return to an earlier part of the development lifecycle, shall be documented as part of the
results of validating the software aspects of system safety.

NOTE The requirements of 7.7.2.2 to 7.7.2.6 are based on the general requirements given in 7.14 of IEC 61508-
1.

7.7.2.7 The validation of safety-related software aspects of system safety shall meet the
following requirements:

a) testing shall be the main validation method for software; analysis, animation and
modelling may be used to supplement the validation activities;
b) the software shall be exercised by simulation of:
1) input signals present during normal operation;
2) anticipated occurrences;
3) undesired conditions requiring system action;



BS EN 61508-3:2010
61508-3 © IEC:2010 -39 -

c) the supplier and/or developer (or the multiple parties responsible for compliance) shall
make available the documented results of the validation of software aspects of system
safety and all pertinent documentation to the system developer to enable his product to
meet the requirements of IEC 61508-1 and IEC 61508-2.

7.7.2.8 Software tools shall meet the requirements of 7.4.4.

7.7.2.9 The results of the validation of safety-related software aspects of system safety shall
meet the following requirements:

a) the tests shall show that all of the specified requirements for safety-related software (see
7.2) are correctly met and the software does not perform unintended functions;

b) test cases and their results shall be documented for subsequent analysis and independent
assessment (see Clause 8 of IEC 61508-1) as required by the safety integrity level;

c) the documented results of validating the software aspects of system safety shall state
either (1) that the software has passed the validation or (2) the reasons for not passing
the validation.

7.8 Software modification

NOTE This phase is Box 10.5 of Figure 4.
7.8.1 Objective

The objective of the requirements of this subclause is to guide corrections, enhancements or
adaptations to the validated software, ensuring that the required software systematic
capability is sustained.

7.8.2 Requirements

NOTE For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of the software modification should be considered:

— completeness of modification with respect to its requirements;
— correctness of modification with respect to its requirements;
— freedom from introduction of intrinsic design faults;

— avoidance of unwanted behaviour;

— verifiable and testable design;

— regression testing and verification coverage.

7.8.2.1 Prior to carrying out any software modification, software modification procedures
shall be made available (see 7.16 of IEC 61508-1).

NOTE 1 Subclauses 7.8.2.1 to 7.8.2.9 apply primarily to changes occurring during the operational phase of the
software. They may also apply during the programmable electronics integration and overall installation and
commissioning phases (see 7.13 of IEC 61508-1).

NOTE 2 An example of a modification procedure model is shown in Figure 9 of IEC 61508-1.

7.8.2.2 A modification shall be initiated only on the issue of an authorized software
modification request under the procedures specified during safety planning (see Clause 6)
which details the following:

a) the hazards which may be affected;

b) the proposed modification;

c) the reasons for modification.

NOTE A request for modification could arise from, for example

e functional safety is found to be less than required by the safety requirements specification;

e systematic fault experience;
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e new or amended safety legislation;

e modifications to the EUC or its use;

e modification to the overall safety requirements;

e analysis of operations and maintenance performance, indicating that the performance is below target;

e routine functional safety audits.

7.8.2.3 An analysis shall be carried out on the impact of the proposed software modification
on the functional safety of the E/E/PE safety-related system:

a) to determine whether or not a hazard and risk analysis is required;
b) to determine which software safety lifecycle phases will need to be repeated.

7.8.2.4 The impact analysis results obtained in 7.8.2.3 shall be documented.

7.8.2.5 All modifications which have an impact on the functional safety of the E/E/PE safety-
related system shall initiate a return to an appropriate phase of the software safety lifecycle.
All subsequent phases shall then be carried out in accordance with the procedures specified
for the specific phases in accordance with the requirements in this standard. Safety planning
(see Clause 6) shall detail all subsequent activities.

NOTE It may be necessary to implement a full hazard and risk analysis, which may generate a need for different
safety integrity levels than currently specified for the safety functions implemented by the E/E/PE safety-related
systems.

7.8.2.6 The safety planning for the modification of safety-related software shall meet the
requirements given in Clause 6 of IEC 61508-1. In particular:

a) identification of staff and specification of their required competency;

b) detailed specification for the modification;

c) verification planning;

d) scope of revalidation and testing of the modification to the extent required by the safety

integrity level.
NOTE Depending on the nature of the application, involvement of domain experts may be important.

7.8.2.7 Modification shall be carried out as planned.

7.8.2.8 Details of all modifications shall be documented, including references to:

a) the modification/retrofit request;

b) the results of the impact analysis which assesses the impact of the proposed software
modification on the functional safety, and the decisions taken with associated
justifications;

c) software configuration management history;
d) deviation from normal operations and conditions;
e) all documented information affected by the modification activity.

7.8.2.9 Information on the details of all modifications shall be documented. The
documentation shall include the re-verification and re-validation of data and results.

7.8.2.10 The assessment of the required modification or retrofit activity shall be dependent
on the results of the impact analysis and the software systematic capability.
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7.9 Software verification
7.9.1 Objective

The objective of the requirements of this subclause is, to the extent required by the safety
integrity level, to test and evaluate the outputs from a given software safety lifecycle phase to
ensure correctness and consistency with respect to the inputs to that phase.

NOTE 1 This subclause considers the generic aspects of verification which are common to several safety lifecycle
phases. This subclause does not place additional requirements for the testing element of verification in 7.4.7
(software module testing), 7.4.8 (software integration) and 7.5 (programmable electronics integration) because
these are verification activities in themselves. Nor does this subclause require verification in addition to software
validation (see 7.7), because in this standard software validation is the demonstration of conformance to the safety
requirements specification. Checking whether the safety requirements specification is itself correct is carried out by
domain experts.

NOTE 2 Depending on the software architecture, responsibility for the verification activity may be split between all
organisations involved in the development and modification of the software.

7.9.2 Requirements

NOTE For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of the data verification should be considered:

— completeness of verification with respect to the previous phase;
— correctness of verification with respect to the previous phase (successful completion);
— repeatability;

— precisely defined verification configuration.

7.9.2.1 The verification of software shall be planned (see 7.3) concurrently with the develop-
ment, for each phase of the software safety lifecycle, and shall be documented.

7.9.2.2 The software verification planning shall refer to the criteria, techniques and tools to
be used in the verification activities, and shall address:

a) the evaluation of the safety integrity requirements;

b) the selection and documentation of verification strategies, activities and techniques;

c) the selection and utilisation of verification tools (test harness, special test software,
input/output simulators etc.);

d) the evaluation of verification results;
e) the corrective actions to be taken.

7.9.2.3 The software verification shall be performed as planned.

NOTE Selection of techniques, measures for verification and the degree of independence of the verification
activities will depend upon a number of factors and may be specified in application sector standards. The factors
could include, for example:

. size of project;

. degree of complexity;

. degree of novelty of design;

. degree of novelty of technology.

7.9.2.4 Evidence shall be documented to show that the phase being verified has, in all
respects, been satisfactorily completed.

7.9.2.5 After each verification, the verification documentation shall include:

a) identification of items to be verified;

b) identification of the information against which the verification has been done;

NOTE 1 Information against which the verification has been performed includes but is not limited to input from the
previous lifecycle phase, design standards, coding standards and tools used.
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c) non-conformances.

NOTE 2 Examples of non-conformances include software modules, data structures, and algorithms poorly
adapted to the problem.

7.9.2.6 All essential information from phase N of the software safety lifecycle needed for the
correct execution of the next phase N+1 shall be available and shall be verified. Outputs from
phase N include:
a) adequacy of the specification, design, or code in phase N for:
1) functionality;
2) safety integrity, performance and other requirements of safety planning (see Clause 6);
3) readability by the development team;
4) testability for further verification;
5) safe modification to permit further evolution;

b) adequacy of the validation planning and/or tests specified for phase N for specifying and
describing the design of phase N;

c) check for incompatibilities between:
1) the tests specified in phase N, and the tests specified in the previous phase N-1;
2) the outputs within phase N.

7.9.2.7 Subject to the choice of software development lifecycle (see 7.1), the following
verification activities shall be performed:

a) verification of software safety requirements;
b) verification of software architecture;

c) verification of software system design;

d) verification of software module design;

e) verification of code;

f) verification of data;

g) verification of timing performance;

h) software module testing (see 7.4.7);

i) software integration testing (see 7.4.8);

j) programmable electronics integration testing (see 7.5);

k) software aspects of system safety validation (see 7.7).

NOTE For requirements a) to g) see below.

7.9.2.8 Verification of software safety requirements: after the software safety requirements
specification has been completed, and before the next phase of software design and
development begins, verification shall:

a) consider whether the software safety requirements specification adequately fulfils the
E/E/PE system safety requirements specification (see 7.10 of IEC 61508-1 and 7.2 of
IEC 61508-2) for functionality, safety integrity, performance, and any other requirements
of safety planning;

b) consider whether the validation plan for software aspects of system safety adequately
fulfils the software safety requirements specification;

c) check for incompatibilities between:

1) the software safety requirements specification, and the E/E/PE system safety
requirements specification (see 7.10 of IEC 61508-1 and 7.2 of IEC 61508-2);

2) the software safety requirements specification, and the validation plan for software
aspects of system safety.
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7.9.2.9 Verification of software architecture: after the software architecture design has been
completed, verification shall:

a) consider whether the software architecture design adequately fulfils the software safety
requirements specification;

b) consider whether the integration tests specified in the software architecture design are
adequate;

c) consider whether the attributes of each major element/subsystem are adequate with
reference to:

1) feasibility of the safety performance required;
2) testability for further verification;
3) readability by the development and verification team;
4) safe modification to permit further evolution.
d) check for incompatibilities between the following:
1) the software architecture design, and the software safety requirements specification;
2) the software architecture design and its integration tests;
3) the software architecture design integration tests and the validation plan for software
aspects of system safety.

7.9.2.10 Verification of software system design: after the software system design has been
completed, verification shall:

a) consider whether the software system design (see 7.4.5) adequately fulfils the software
architecture design;

b) consider whether the specified tests of the software system integration (see 7.4.5)
adequately fulfil the software system design (see 7.4.5);

c) consider whether the attributes of each major element of the software system design
specification (see 7.4.5) are adequate with reference to:

1) feasibility of the safety performance required;

2) testability for further verification;

3) readability by the development and verification team;
4) safe modification to permit further evolution.

NOTE The software system integration tests may be specified as part of the software architecture integration
tests.

d) check for incompatibilities between:

1) the software system design specification (see 7.4.5), and the software architecture
design;

2) the software system design specification (see 7.4.5), and the software system
integration test specification (see.4.5);

3) the tests required by the software system integration test specification (see 7.4.5) and
the software architecture integration test specification (see 7.4.3).

7.9.2.11 \Verification of software module design: after the design of each software module
has been completed, verification shall:

a) consider whether the software module design specification (see 7.4.5) adequately fulfils
the software system design specification (see 7.4.5);

b) consider whether the software module test specification (see 7.4.5) is adequate for the
software module design specification (see 7.4.5);

c) consider whether the attributes of each software module are adequate with reference to:

1) feasibility of the safety performance required (see software safety requirements
specification);
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2) testability for further verification;
3) readability by the development and verification team;
4) safe modification to permit further evolution.

d) check for incompatibilities between:

1) the software module design specification (see 7.4.5), and the software system design
specification (see 7.4.5);

2) (for each software module) the software module design specification (see 7.4.5), and
the software module test specification (see 7.4.5);

3) the software module test specification (see 7.4.5), and the software system integration
test specification (see 7.4.5).

7.9.2.12 \Verification of code: the source code shall be verified by static methods to ensure
conformance to the software module design specification (see 7.4.5), the required coding
standards (see 7.4.4), and the validation plan for software aspects of system safety.

NOTE In the early phases of the software safety lifecycle, verification is static (for example inspection, review,
formal proof, etc). Code verification includes such techniques as software inspections and walk-throughs. It is the
combination of the results of code verification and software module testing that provides assurance that each
software module satisfies its associated specification. From then onwards testing becomes the primary means of
verification.

7.9.2.13 Verification of data.

a) The data structures shall be verified.
b) The application data shall be verified for:
1) consistency with the data structures;
2) completeness against the application requirements;

3) compatibility with the underlying system software (for example, sequence of execution,
run-time, etc.); and

4) correctness of the data values.
c) All operational parameters shall be verified against the application requirements.

d) All plant interfaces and associated software (i.e. sensors and actuators and off-line
interfaces: see 7.2.2.12) shall be verified for:

1) detection of anticipated interface failures;
2) tolerance to anticipated interface failures.

e) All communication interfaces and associated software shall be verified for an adequate
level of:

1) failure detection;
2) protection against corruption;
3) data validation.

7.9.2.14 Verification of timing performance: predictability of behaviour in the time domain
shall be verified.

NOTE Timing behaviour may include: performance, resources, response time, worst case execution time,
thrashing, dead-lock free, run-time system.

8 Functional safety assessment

NOTE For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of the functional safety assessment should be considered:

— completeness of functional safety assessment with respect to this standard;

— correctness of functional safety assessment with respect to the design specifications (successful completion);



BS EN 61508-3:2010
61508-3 © IEC:2010 - 45—

— traceable closure of all identified issues;

— the ability to modify the functional safety assessment after change without the need for extensive re-work of
the assessment;

— repeatability;
— timeliness;

—  precisely defined configuration.

8.1 The objective and requirements of Clause 8 of IEC 61508-1 apply to the assessment of
safety-related software.

8.2 Unless otherwise stated in application sector international standards, the minimum level
of independence of those carrying out the functional safety assessment shall be as specified
in Clause 8 of IEC 61508-1.

8.3 An assessment of functional safety may make use of the results of the activities of
Table A.10.

NOTE Selecting techniques from Annexes A and B does not guarantee by itself that the required safety integrity
will be achieved (see 7.1.2.7). The assessor should also consider:

e the consistency and the complementary nature of the chosen methods, languages and tools for the whole
development cycle;

e whether the developers use methods, languages and tools they fully understand;

e whether the methods, languages and tools are well-adapted to the specific problems encountered during
development.
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Annex A
(normative)

Guide to the selection of techniques and measures

Some of the subclauses of this standard have an associated table, for example 7.2 (software
safety requirements specification) is associated with Table A.1. More detailed tables in Annex
B expand upon some of the entries in the tables of Annex A. For example, Table B.2 expands
on the topic of dynamic analysis and testing in Table A.5.

See IEC 61508-7 for an overview of the specific techniques and measures referenced in
Annexes A and B.

With each technique or measure in the tables there is a recommendation for safety integrity
levels 1 to 4. These recommendations are as follows.

HR the technique or measure is highly recommended for this safety integrity level. If this
technique or measure is not used then the rationale behind not using it should be
detailed with reference to Annex C during the safety planning and agreed with the
assessor.

R the technique or measure is recommended for this safety integrity level as a lower
recommendation to a HR recommendation.

--- the technique or measure has no recommendation for or against being used.

NR the technique or measure is positively not recommended for this safety integrity level. If
this technique or measure is used then the rationale behind using it should be detailed
with reference to Annex C during the safety planning and agreed with the assessor.

Appropriate techniques/measures shall be selected according to the safety integrity level.
Alternate or equivalent techniques/measures are indicated by a letter following the number.
Only one of the alternate or equivalent techniques/measures has to be satisfied.

Other measures and techniques may be applied providing that the requirements and
objectives have been met. See Annex C for guidance on selecting techniques.

The ranking of the techniques and measures is linked to the concept of effectiveness used in
IEC 61508-2. For all other factors being equal, techniques which are ranked HR will be more
effective in either preventing the introduction of systematic faults during software
development, or (for the case of the software architecture) more effective in controlling
residual faults in the software revealed during execution than techniques ranked as R.

Given the large number of factors that affect software systematic capability it is not possible
to give an algorithm for combining the techniques and measures that will be correct for any
given application. Guidance on a rationale for selecting specific techniques to achieve
software systematic capability is given in Annex C.

For a particular application, the appropriate combination of techniques or measures are to be
stated during safety planning, with appropriate techniques or measures being selected unless
the note attached to the table makes other requirements.

Initial guidance in the form of two worked examples on the interpretation of the tables is given
in IEC 61508-6.
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Table A.1 — Software safety requirements specification

(See 7.2)
Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
1a | Semi-formal methods Table B.7 R R HR HR
1b | Formal methods B.2.2,C.2.4 --- R R HR
2 Forward traceability between the system safety C.2.11 R R HR HR
requirements and the software safety requirements

3 Backward traceability between the safety C.2.11 R R HR HR
requirements and the perceived safety needs

4 Computer-aided specification tools to support B.2.4 R R HR HR
appropriate techniques/measures above

NOTE 1 The software safety requirements specification will always require a description of the problem in natural
language and any necessary mathematical notation that reflects the application.

NOTE 2 The table reflects additional requirements for specifying the software safety requirements clearly and
precisely.

NOTE 3 See Table C.1.

NOTE 4 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.
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Table A.2 — Software design and development —
software architecture design

(see 7.4.3)
Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
Architecture and design feature
1 Fault detection C.3.1 --- R HR HR
2 Error detecting codes C.3.2 R R HR
3a [ Failure assertion programming C.3.3 R R HR
3b | Diverse monitor techniques (with independence between c3.4 --- R —---
the monitor and the monitored function in the same
computer)
3c | Diverse monitor techniques (with separation between the c3.4 --- R R HR
monitor computer and the monitored computer)
3d | Diverse redundancy, implementing the same software C.3.5 --- --- --- R
safety requirements specification
3e [ Functionally diverse redundancy, implementing different €35 --- --- R HR
software safety requirements specification
3f Backward recovery C.3.6 R R --- NR
3g | Stateless software design (or limited state design) C.2.12 --- --- R HR
4a | Re-try fault recovery mechanisms C.3.7 R R --- ---
4b | Graceful degradation C.3.8 R R HR HR
5 Artificial intelligence - fault correction C.3.9 --- NR NR NR
6 Dynamic reconfiguration C.3.10 --- NR NR NR
7 Modular approach Table B.9 HR HR HR HR
8 Use of trusted/verified software elements (if available) C.2.10 R HR HR HR
9 Forward traceability between the software safety C.2.11 R R HR HR
requirements specification and software architecture
10 | Backward traceability between the software safety C.2.11 R R HR HR
requirements specification and software architecture
11a | Structured diagrammatic methods ** C.21 HR HR HR HR
11b | Semi-formal methods ** Table B.7 R R HR HR
11c | Formal design and refinement methods ** B.2.2, C.2.4 --- R HR
11d | Automatic software generation C.4.6 R R R
12 | Computer-aided specification and design tools B.2.4 R R HR HR
13a | Cyclic behaviour, with guaranteed maximum cycle time C.3.11 R HR HR HR
13b | Time-triggered architecture C.3.11 R HR HR HR
13c | Event-driven, with guaranteed maximum response time C.3.11 R HR HR -
14 | Static resource allocation C.2.6.3 - R HR HR
15 | Static synchronisation of access to shared resources C.2.6.3 - - R HR
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NOTE 1 Some of the methods given in Table A.2 are about design concepts, others are about how the design is
represented.

NOTE 2 The measures in this table concerning fault tolerance (control of failures) should be considered with the
requirements for architecture and control of failures for the hardware of the programmable electronics in IEC 61508-
2.

NOTE 3 See Table C.2.
NOTE 4 The group 13 measures apply only to systems and software with safety timing requirements.

NOTE 5 Measure 14. The use of dynamic objects (for example on the execution stack or on a heap) may impose
requirements on both available memory and also execution time. Measure 14 does not need to be applied if a
compiler is used which ensures a) that sufficient memory for all dynamic variables and objects will be allocated
before runtime, or which guarantees that in case of memory allocation error, a safe state is achieved; b) that
response times meet the requirements.

NOTE 6 Measure 4a. Re-try fault recovery is often appropriate at any SIL but a limit should be set on the number
of retries.

NOTE 7 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or equivalent
techniques/measures are indicated by a letter following the number. It is intended the only one of the alternate or
equivalent techniques/measures should be satisfied. The choice of alternative technique should be justified in
accordance with the properties, given in Annex C, desirable in the particular application.

** Group 11, “Structured methods”. Use measure 11a only if 11b is not suited to the domain for SIL 3+4.

Table A.3 — Software design and development —
support tools and programming language

(See 7.4.4)
Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
1 Suitable programming language C.4.5 HR HR HR HR
2 Strongly typed programming language C.4.1 HR HR HR HR
3 Language subset C.4.2 - --- HR HR
4a | Certified tools and certified translators C.4.3 R HR HR HR
4b | Tools and translators: increased confidence from use C4.4 HR HR HR HR

NOTE 1 See Table C.3.

NOTE 2 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.
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Table A.4 — Software design and development —
detailed design

(See 7.4.5 and 7.4.6)

(Includes software system design, software module design and coding)

Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
1a | Structured methods ** C.21 HR HR HR HR
1b [ Semi-formal methods ** Table B.7 R HR HR HR
1c | Formal design and refinement methods ** B.2.2, C.24 --- R R HR
2 Computer-aided design tools B.3.5 R R HR HR
3 Defensive programming C.2.5 - R HR HR
4 Modular approach Table B.9 HR HR HR HR
5 Design and coding standards C.2.6 R HR HR HR

Table B.1
6 Structured programming C.2.7 HR HR HR HR
7 Use of trusted/verified software elements (if available) C.2.10 R HR HR HR
8 Forward traceability between the software safety C.2.11 R R HR HR
requirements specification and software design

NOTE 1 See Table C.4.

NOTE 2 There is still debate about the suitability of OO software development for safety-related systems. See
Annex G of IEC 61508-7 for guidance on object oriented architecture and design.

NOTE 3 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*

*k

Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.

Group 1, “Structured methods”. Use measure 1a only if 1b is not suited to the domain for SIL 3+4.
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Table A.5 — Software design and development —
software module testing and integration

(See 7.4.7 and 7.4.8)

Technique/Measure * Ref. SIL1(SIL2|SIL3| SIL4
1 Probabilistic testing C.5.1 --- R R R
2 Dynamic analysis and testing B.6.5 R HR HR HR
Table B.2
3 Data recording and analysis C.5.2 HR HR HR HR
Functional and black box testing B.5.1 HR HR HR HR
B.5.2
Table B.3
5 Performance testing Table B.6 R HR HR
6 Model based testing C.5.27 R HR HR
7 Interface testing C.5.3 R HR HR
8 Test management and automation tools c.4.7 R HR HR HR
9 Forward traceability between the software design specification C.2.11 R HR HR
and the module and integration test specifications
10 Formal verification C.5.12 --- --- R R

NOTE 1 Software module and integration testing are verification activities (see Table B.9).
NOTE 2 See Table C.5.

NOTE 3 Technique 9. Formal verification may reduce the amount and extent of module and integration testing
required.

NOTE 4 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate techniques/measures shall be selected according to the safety integrity level.

Table A.6 — Programmable electronics integration (hardware and software)

(See 7.5)
Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
1 Functional and black box testing B.5.1 HR HR HR HR
B.5.2
Table B.3

2 Performance testing Table B.6 R R HR HR
3 Forward traceability between the system and software C.2.11 R R HR HR

design requirements for hardware/software

integration and the hardware/software integration test

specifications

NOTE 1 Programmable electronics integration is a verification activity (see Table A.9).
NOTE 2 See Table C.6.

NOTE 3 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate techniques/measures shall be selected according to the safety integrity level.
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Table A.7 — Software aspects of system safety validation

(See 7.7)
Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
1 Probabilistic testing C.5.1 --- R R HR
2 Process simulation C.5.18 R R HR HR
3 Modelling Table B.5 R R HR HR
4 Functional and black-box testing B.5.1 HR HR HR HR
B.5.2
Table B.3

5 Forward traceability between the software safety C.2.11 R R HR HR

requirements specification and the software safety

validation plan
6 Backward traceability between the software safety C.2.11 R R HR HR

validation plan and the software safety requirements

specification

NOTE 1 See Table C.7.

NOTE 2 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*  Appropriate techniques/measures shall be selected according to the safety integrity level.

Table A.8 — Modification

(See 7.8)
Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4

1 Impact analysis C.5.23 HR HR HR HR
2 Reverify changed software module C.5.23 HR HR HR HR
3 Reverify affected software modules C.5.23 R HR HR HR
4a | Revalidate complete system Table A.7 --- R HR HR
4b [ Regression validation C.5.25 R HR HR HR
5 Software configuration management C.5.24 HR HR HR HR
6 Data recording and analysis C.5.2 HR HR HR HR
7 Forward traceability between the Software safety C.2.1 R R HR HR

requirements specification and the software

modification plan (including reverification and

revalidation)
8 Backward traceability between the software C.2.11 R R HR HR

modification plan (including reverification and

revalidation)and the software safety requirements

specification

NOTE 1 See Table C.8.
NOTE 2 Techniques group 4. Impact analysis is a necessary part of regression validation. See IEC 61508-7.

NOTE 3 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.
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Table A.9 — Software verification

(See 7.9)
Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
1 Formal proof C.5.12 --- R R HR
2 Animation of specification and design C.5.26 R R R R
3 Static analysis B.6.4 R HR HR HR
Table B.8
4 Dynamic analysis and testing B.6.5 R HR HR HR
Table B.2
5 Forward traceability between the software design C.2.11 R R HR HR
specification and the software verification (including
data verification) plan
6 Backward traceability between the software C.2.11 R R HR HR
verification (including data verification) plan and
the software design specification
7 Offline numerical analysis C.2.13 R R HR HR
Software module testing and integration See Table A.5
Programmable electronics integration testing See Table A.6
Software system testing (validation) See Table A.7

NOTE 1 For convenience all verification activities have been drawn together under this table. However, this does
not place additional requirements for the dynamic testing element of verification in Table A.5 and Table A.6 which
are verification activities in themselves. Nor does this table require verification testing in addition to software
validation (see Table B.7), which in this standard is the demonstration of conformance to the safety requirements
specification (end-end verification).

NOTE 2 Verification crosses the boundaries of IEC 61508-1, IEC 61508-2 and IEC 61508-3. Therefore the first
verification of the safety-related system is against the earlier system level specifications.

NOTE 3 In the early phases of the software safety lifecycle verification is static, for example inspection, review,
formal proof. When code is produced dynamic testing becomes possible. It is the combination of both types of
information that is required for verification. For example code verification of a software module by static means
includes such techniques as software inspections, walk-throughs, static analysis, formal proof. Code verification
by dynamic means includes functional testing, white-box testing, statistical testing. It is the combination of both
types of evidence that provides assurance that each software module satisfies its associated specification.

NOTE 4 See Table C.9.

NOTE 5 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate techniques/measures shall be selected according to the safety integrity level.
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Table A.10 — Functional safety assessment

(see Clause 8)

Assessment/Technique * Ref. SIL 1 SIL 2 SIL 3 SIL 4

1 Checklists B.2.5 R R R R
2 Decision/truth tables C.6.1 R R R R
3 Failure analysis Table B.4 R R HR HR
4 Common cause failure analysis of diverse software (if C.6.3 --- R HR HR

diverse software is actually used)
5 Reliability block diagram C.6.4 R R R
6 Forward traceability between the requirements of C.2.11 R R HR HR

Clause 8 and the plan for software functional safety

assessment

NOTE 1 See Table C.10.

NOTE 2 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate techniques/measures shall be selected according to the safety integrity level.
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Annex B
(informative)

Detailed tables

Table B.1 — Design and coding standards

(Referenced by Table A.4)

Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
1 Use of coding standard to reduce likelihood of errors C.2.6.2 HR HR HR HR
2 No dynamic objects C.2.6.3 R HR HR HR
3a | No dynamic variables C.2.6.3 --- R HR HR
3b [ Online checking of the installation of dynamic variables C.2.6.4 --- R HR HR
4 Limited use of interrupts C.2.6.5 R R HR HR
5 Limited use of pointers C.2.6.6 - R HR HR
6 Limited use of recursion C.2.6.7 --- R HR HR
7 No unstructured control flow in programs in higher level C.2.6.2 R HR HR HR
languages
8 No automatic type conversion C.2.6.2 R HR HR HR

NOTE 1 Measures 2, 3a and 5. The use of dynamic objects (for example on the execution stack or on a heap)
may impose requirements on both available memory and also execution time. Measures 2, 3a and 5 do not need to
be applied if a compiler is used which ensures a) that sufficient memory for all dynamic variables and objects will
be allocated before runtime, or which guarantees that in case of memory allocation error, a safe state is achieved;
b) that response times meet the requirements.

NOTE 2 See Table C.11.

NOTE 3 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.
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Table B.2 — Dynamic analysis and testing

(Referenced by Tables A.5 and A.9)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4

1 Test case execution from boundary value analysis C.5.4 R HR HR HR
2 Test case execution from error guessing C.5.5 R R R

3 Test case execution from error seeding C.5.6 --- R R

4 Test case execution from model-based test case C.5.27 R R HR HR

generation

5 Performance modelling C.5.20 R R R HR
6 Equivalence classes and input partition testing C.5.7 R R R HR
7a | Structural test coverage (entry points) 100 % ** C.5.8 HR HR HR HR
7b | Structural test coverage (statements) 100 %** C.5.8 R HR HR HR
7c | Structural test coverage (branches) 100 %** C.5.8 R R HR HR
7d | Structural test coverage (conditions, MC/DC) 100 %** C.5.8 R R R HR

NOTE 1 The analysis for the test cases is at the subsystem level and is based on the specification and/or the
specification and the code.

NOTE 2 See Table C.12.

NOTE 3 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate techniques/measures shall be selected according to the safety integrity level.

*k

Where 100 % coverage cannot be achieved (e.g. statement coverage of defensive code), an appropriate
explanation should be given.

Table B.3 — Functional and black-box testing

(Referenced by Tables A.5, A.6 and A.7)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4
1 Test case execution from cause consequence diagrams B.6.6.2 --- --- R R
2 Test case execution from model-based test case C.5.27 R R HR HR
generation
3 Prototyping/animation C.5.17 --- ---
4 Equivalence classes and input partition testing, C.5.7 R HR HR HR
including boundary value analysis C.5.4
5 Process simulation C.5.18 R R R R

NOTE 1 The analysis for the test cases is at the software system level and is based on the specification only.

NOTE 2 The completeness of the simulation will depend upon the safety integrity level, complexity and
application.

NOTE 3 See Table C.13.

NOTE 4 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate techniques/measures shall be selected according to the safety integrity level.
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Table B.4 — Failure analysis

(Referenced by Table A.10)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4
1a | Cause consequence diagrams B.6.6.2 R R R R
1b | Event tree analysis B.6.6.3 R R R R
2 Fault tree analysis B.6.6.5 R R R R
3 Software functional failure analysis B.6.6.4 R R R R

NOTE 1 Preliminary hazard analysis should have already taken place in order to categorize the software into the
most appropriate safety integrity level.

NOTE 2 See Table C.14.

NOTE 3 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.

Table B.5 — Modelling

(referenced by Table A.7)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4
1 Data flow diagrams C.2.2 R R R R
2a | Finite state machines B.2.3.2 --- R HR HR
2b | Formal methods B.2.2, C24 --- R R HR
2c | Time Petri nets B.2.3.3 --- R HR HR
3 Performance modelling C.5.20 R HR HR HR
4 Prototyping/animation C.5.17 R R R R
5 Structure diagrams C.2.3 R R R HR

NOTE 1 |If a specific technique is not listed in the table, it should not be assumed that it is excluded from
consideration. It should conform to this standard.

NOTE 2 Quantification of probabilities is not required.
NOTE 3 See Table C.15.

NOTE 4 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.
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Table B.6 — Performance testing

(referenced by Tables A.5 and A.6)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4
1 Avalanche/stress testing C.5.21 R R HR HR
2 Response timings and memory constraints C.5.22 HR HR HR HR
3 Performance requirements C.5.19 HR HR HR HR

NOTE 1 See Table C.16.

NOTE 2 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*  Appropriate techniques/measures shall be selected according to the safety integrity level.

Table B.7 — Semi-formal methods

(Referenced by Tables A.1, A.2 and A.4)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4
1 Logic/function block diagrams See Note 1 R R HR HR
2 Sequence diagrams see Note 1 R R HR HR
3 Data flow diagrams C.2.2 R R R R
4a | Finite state machines/state transition diagrams B.2.3.2 R R HR HR
4b | Time Petri nets B.2.3.3 R R HR HR
5 Entity-relationship-attribute data models B.2.4.4 R R R
6 Message sequence charts C.2.14 R R R
7 Decision/truth tables C.6.1 R R HR HR
8 UML C.3.12 R R R R

NOTE 1 Logic/function block diagrams and sequence diagrams are described in IEC 61131-3.
NOTE 2 See Table C.17.

NOTE 3 The references “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate detailed descriptions of
techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.
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Table B.8 — Static analysis

(Referenced by Table A.9)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4
1 Boundary value analysis C.5.4 R R HR HR
2 Checklists B.2.5 R R R R
3 Control flow analysis C.5.9 R HR HR HR
4 Data flow analysis C.5.10 R HR HR HR
5 Error guessing C.5.5 R R R
6a | Formal inspections, including specific criteria C.5.14 R HR HR
6b | Walk-through (software) C.5.15 R R
7 Symbolic execution C.5.11 --- --- R R
8 Design review C.5.16 HR HR HR HR
9 Static analysis of run time error behaviour B.2.2, C.2.4 R R R HR
10 | Worst-case execution time analysis C.5.20 R R R R

NOTE 1 See Table C.18.

NOTE 2 The references “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate detailed descriptions of
techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.

Table B.9 — Modular approach

(Referenced by Table A.4)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4
1 Software module size limit C.2.9 HR HR HR HR
2 Software complexity control C.5.13 R R HR HR
3 Information hiding/encapsulation C.2.8 R HR HR HR
4 Parameter number limit / fixed number of subprogram C.2.9 R R R R
parameters
5 One entry/one exit point in subroutines and functions C.2.9 HR HR HR HR
6 Fully defined interface C.2.9 HR HR HR HR

NOTE 1 See Table C.19.

NOTE 2 The references “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate detailed descriptions of
techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate techniques/measures shall be selected according to the safety integrity level. No single technique
is likely to be sufficient. All appropriate techniques shall be considered.
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Annex C
(informative)

Properties for software systematic capability

C.1 Introduction

Given the large number of factors that affect software systematic capability it is not possible
to give an algorithm for combining the techniques and measures that will be correct for any
given application. The purpose of Annex C is:

— to give guidance on selecting specific techniques from Annexes A and B to achieve
software systematic capability;

— to outline a rationale for justifying the use of techniques that are not explicitly listed in
Annexes A and B.

Annex C is supplementary to Annexes A and B tables.

Cc.1.1 Structure of Annex C, relating to Annexes A and B

The outputs from each phase of the software safety lifecycle are defined in Table 1. For
example, consider the software safety requirements specification.

Table A.1 (“Software safety requirements specification”) of Annex A recommends specific
techniques for developing the software safety requirements specification.

Technique/Measure * Ref. SIL 1 SIL2 | SIL3 SIL 4
1a Semi-formal methods Table B.7 R R HR HR
1b Formal methods B.2.2,C.24 --- R R HR
2 Forward traceability between the system safety C.2.11 R R HR HR
requirements and the software safety requirements

3 Backward traceability between the safety C.2.11 R R HR HR
requirements and the perceived safety needs

4 Computer-aided specification tools to support B.2.4 R R HR HR
appropriate techniques/measures above

Annex C Table C.1 (“Properties for systematic safety integrity — Software safety requirements
specification”) states that the software safety requirements specification is characterized by
the following desirable properties (which are informally defined in Annex F of IEC 61508-7):

Properties
Completeness | Correctness | Freedom from | Understandability | Freedom from | Capability of
with respect to | with respect intrinsic of safety adverse providing a
the safety to the safety | specification requirements interference basis for
needs to be needs to be faults, of non-safety | verification
addressed by addressed including functions with and
software by software | freedom from the safety validation
ambiguity needs to be
addressed by
software
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Annex C Table C.1 also ranks on an informal scale R1/R2/R3 the effectiveness of specific
techniques in achieving these desirable properties.

Properties
Completeness | Correctness | Freedom from | Understandability | Freedom from | Capability of
with respect to | with respect intrinsic of safety adverse providing a
Technique/ the safety to the safety | specification requirements interference basis for
needs to be needs to be faults, of non-safety | verification
Measure addressed by addressed including functions with and
software by software | freedom from the safety validation
ambiguity needs to be
addressed by
software
1a | Semi- R1 R1 R1 R1 _ R2
formal L L ) ) )
methods Application- Application- Method and Defined notation Defined
friendly or friendly or notation that that restricts notation that
domain domain helps avoid or opportunity for reduces
specific specific detect internal | misunderstanding ambiguity in
specification [ specification | inconsistency, specification
method and method and missing R2
notation used notation behaviour or Application of
by domain used by mathematically complexity limits
experts domain inconsistent in specification
experts expressions.
R2 R2
Verification | Verification of
of specification
specification | according to
according to coverage
coverage criteria
criteria
R3

Verification of
specification
based on
systematic
analysis, and /
or systematic
avoidance of
particular
types of
intrinsic
specification
faults

The confidence that can be placed in the software safety requirements specification as a
basis for safe software depends on the rigour of the techniques by which the desirable
properties of the software safety requirements specification have been achieved. The rigour of
a technique is informally ranked on a scale R1 to R3, where R1 is the least rigorous and R3
the most rigorous.

R1 without objective acceptance criteria, or with limited objective acceptance
criteria. E.g., black-box testing based on judgement, field trials.

R2 with objective acceptance criteria that can give a high level of confidence that the
required property is achieved (exceptions to be identified & justified); e.g., test or
analysis techniques with coverage metrics, coverage of checklists.

R3 with objective, systematic reasoning that the required property is achieved.

E.g. formal proof, demonstrated adherence to architectural constraints that
guarantee the property.

this technique is not relevant to this property.
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A technique may achieve one of several R1/R2/R3 rankings relating to a particular property,
depending on the level of rigour that the technique satisfies.

Properties
Completeness | Correctness | Freedom from | Understandability | Freedom from | Capability of
with respect to | with respect intrinsic of safety adverse providing a
Technique/ the safety to the safety | specification requirements interference basis for
needs to be needs to be faults, of non-safety | verification
Measure addressed by addressed including functions with and
software by software | freedom from the safety validation
ambiguity needs to be
addressed by
software
1a [ Semi- R1
formal
methods Defined notation

that restricts
opportunity for
misunderstanding

R2

Application of
complexity limits
in specification

In this example, a semi-formal method achieves rigour R1 by providing a restricted notation
that improves accurate expression, and achieves R2 by further restricting the complexity of
specification which might otherwise cause confusion.

Cc.1.2 Method of use — 1

For guidance purposes, if it can be convincingly demonstrated that the desirable properties
have been achieved in the development of the software safety requirements specification,
then confidence is justified that the software safety requirements specification is an adequate
basis for developing software that has sufficient systematic safety integrity.

Annex C Table C.1 says that each of the Annex A Table A.1 techniques typically achieves, to
a greater or lesser extent, one or more of the above Table C.1 properties that are relevant to
the software safety requirements specification.

However, it is important to note that although Annex A Table A.1 recommends specific
techniques, these recommendations are not prescriptive, and in fact Annex A states clearly
that “Given the large number of factors that affect software systematic capability it is not
possible to give an algorithm for combining the techniques and measures that will be correct
for any given application”.

In practice the techniques by which the software safety requirements specification is
developed are selected subject to several practical constraints (see 7.1.2.7) in addition to the
inherent capabilities of the techniques. Such constraints may include:

— the consistency and the complementary nature of the chosen methods, languages and
tools for the whole development cycle;

— whether the developers use methods, languages and tools they fully understand;

— whether the methods, languages and tools are well-adapted to the specific problems
encountered during development.

Table C.1 may be used to compare the relative effectiveness of the specific Annex A
Table A.1 techniques in achieving the desirable properties of the software safety requirements
specification lifecycle, while at the same time factoring in the practical constraints of the
particular development project.
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For example, a formal method is capable of giving a better basis (R3) for verification and
validation than is a semi-formal method (R2), but other project constraints (e.g. the availability
of sophisticated computer support tools, or the very specialized expressiveness of a formal
notation) may favour a semi-formal approach.

In this way, the Table C.1 desirable properties can provide the basis of a reasoned and
practical comparison of the alternative techniques that Annex A Table A.1 recommends for
developing the software safety requirements specification. Or more generally, a reasoned
selection from the several alternative techniques recommended by Annex A for a particular
lifecycle phase can be made by considering the desirable properties listed in the
corresponding Annex C table.

But note carefully that due to the nature of systematic behaviour, these Annex C properties
may not be achievable or demonstrable with the highest rigour. Rather, they are goals to be
aimed for. Their achievement may even necessitate trade-offs between different properties
e.g. between defensive design and simplicity.

Finally, in addition to defining R1/R2/R3 criteria, it is useful for guidance purposes to make an
informal link between (1) the increasing level of rigour of the R1 to R3 progression and (2) an
increased confidence in the correctness of the software. As a general and informal
recommendation, the following minimum levels of rigour should be aimed for when Annex A
requires the corresponding SIL performance:

SIL Rigour R
1/2 R1

3 R2 where available

4 highest rigour available

Cc.1.3 Method of use — 2

Although Annex A recommends specific techniques, it is also permitted to apply other
measures and techniques, providing that the requirements and objectives of the lifecycle
phase have been met.

It has already been noted that many factors affect software systematic capability, and it is not
possible to give an algorithm for selecting and combining the techniques in a way that is
guaranteed in any given application to achieve the desirable properties.

There may be several effective ways to achieve the desirable properties, and it should be
recognized that system developers may be able to provide alternative evidence. The
information in these Annex C tables can be used as the basis of a reasoned argument to
justify the selection of techniques other than those given in the Annex A tables.
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Annex D
(normative)

Safety manual for compliant items —
additional requirements for software elements

D.1  Purpose of the safety manual

D.1.1 When an element is re-used or is intended to be re-used in one or more other system
developments, it is necessary to ensure that the element is accompanied by a sufficiently
precise and complete description (i.e. functions, constraints and evidence), to make possible
an assessment of the integrity of a specific safety function that depends wholly or partly on
the element. This shall be implemented by means of a safety manual.

D.1.2 The safety manual may consist of the element supplier’s documentation if this is
adequate to meet the requirements of Annex D of IEC 61508-2 and of this annex. Otherwise it
should be created as part of the design of the safety related system.

D.1.3 The safety manual shall define the attributes of an element, which may comprise
hardware constraints and/or software of which the integrator shall be aware and take into
consideration during application. In particular it forms the vehicle for informing the integrator
of its properties and what the element was designed for, its behaviour and characteristics.

NOTE 1 The scope and time of delivery of the safety manual will be dependent upon who it applies to, the type of
integrator, the purpose of the element and who provides and maintains it.

NOTE 2 The person or department or organization that integrates software is called the integrator.
D.2 Contents of the safety manual for a software element

D.2.1 The safety manual shall contain all the information required by IEC 61508-2 Annex D,
that is relevant to the element. E.g. the hardware-related items of IEC 61508-2 Annex D are
not relevant to a purely software element.

D.2.2 The element shall be identified and all necessary instructions for its use shall be
available to the integrator.

NOTE For software this can be demonstrated by clearly identifying the element and demonstrating that its content
is unchanged.

D.2.3 Element configuration:

a) The configuration of the software element, the software and hardware run-time
environment and if necessary the configuration of the compilation / link system shall be
documented in the safety manual.

b) The recommended configuration of the software element shall be documented in the
safety manual and that configuration shall be used in safety application.

c) The safety manual shall include all the assumptions made on which the justification for
use of the element depends.

D.2.4 The following shall be included in the safety manual:

a) Competence: The minimum degree of knowledge expected of the integrator of the element
should be specified, i.e. knowledge of specific application tools.

b) Degree of reliance placed on the element: Details of any certification of the element,
independent assessment performed, integrity to which the integrator may place on the
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pre-existing element. This should include the integrity to which the element was designed,
the standards that were followed during the design process, and any constraints passed to
the integrator which shall be implemented in support of the systematic capability claimed.
(depending on the functionality of the element, it is conceivable that some requirements
may only be met at the integration phase of a system. In such circumstances, these
requirements shall be identified for further progression by the integrator. Requirements
pertaining to response times and performance are two such examples).

NOTE Unlike IEC 61508-2, IEC 61508-3 does not require software failure modes or quantitative failure rates

in safety manual for compliant items, because the causes of software errors are fundamentally different from
the causes of the random hardware failures of interest in IEC 61508-2 Annex D.

Installation instructions: Details of, or reference to, how to install the pre-existing element
into the integrated system.

The reason for release of the element: Details of whether the pre-existing element has
been subject to release to clear outstanding anomalies, or inclusion of additional
functionality.

Outstanding anomalies: Details of all outstanding anomalies should be given, with
explanation of the anomaly, how it occurs and the mechanisms that the integrator shall
take to mitigate the anomaly should the particular functions be used.

Backward compatibility: Details of whether the element is compatible with previous
releases of the sub-system, and if not, details of the process providing the upgrade path
to be followed.

Compatibility with other systems: A pre-existing element may be dependent upon a
specially developed operating system. In such circumstances, details of the version of the
specially developed operating system should be detailed.

The build standard should also be specified incorporating compiler identification and
version, tools used in creation of the pre-existing element (identification and version), and
test pre-existing element used (again identification and version).

Element configuration: Details of the pre-existing element name(s) and description(s)
should be given, including the version / issue / modification state.

Change control: The mechanism by which the integrator can initiate a change request to
the producer of the software.

Requirements not met: It is conceivable that there may exist specific requirements that
have been specified, but have not been met in the current revision of the element. In such
circumstances, these requirements should be identified for the integrator to consider.

Design safe state: In certain circumstances, upon controlled failure of the system
application, the element may revert to a design safe state. In such circumstances, the
precise definition of design safe state should be specified for consideration by the
integrator.

Interface constraints: Details of any specific constraints, in particular user interface
requirements shall be identified.

Details of any security measures that may have been implemented against listed threats
and vulnerabilities.

Configurable elements: details of the configuration method or methods available for the
element, their use and any constraints on their use shall be provided.

D.3 Justification of claims in the safety manual for compliant items

D.3.1 All claims in the safety manual for compliant items shall be justified by adequate
supporting evidence. See 7.4.9.7 of IEC 61508-2.

NOTE 1 It is essential that the claimed safety performance of an element is supported by sufficient evidence.
Unsupported claims do not help establish the correctness and integrity of the safety function to which the element
contributes.
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NOTE 2 The supporting evidence may be derived from the element supplier’'s own documentation and records of

the element supplier’'s development process, or may be created or supplemented by additional qualification
activities by the developer of the safety related system or by third parties.

NOTE 3 There may be commercial or legal restrictions on the availability of the evidence (e.g. copyright or
intellectual property rights). These restrictions are outside the scope of this standard.

D.3.2 The supporting evidence that justifies the claims in the safety manual for compliant
items is distinct from the element safety manual.

D.3.3 Where the evidence cannot be made available to facilitate functional safety
assessment, then the element is not suitable for use in E/E/PE safety-related systems.



BS EN 61508-3:2010
- 100 - 61508-3 © IEC:2010

Annex E
(informative)

Relationships between IEC 61508-2 and IEC 61508-3

The following table helps finding which clauses of IEC 61508-2 need consideration by those
who are dealing with software only and which clauses can be neglected. It is well known that
almost all clauses address hardware issues. Therefore this is not repeated here. Important
software aspects are treated by IEC 61508-3, many software-related requirements do
however also occur in IEC 61508-2, mostly overlapping IEC 61508-3 requirements.
Knowledge of IEC 61508-2 is mainly needed for those software specialists who seek
compatibility between hardware and software. The IEC 61508-2 requirements are grouped
into the following categories:

Table E.1 — Categories of IEC 61508-2 requirements

Software Both for users of the standard dealing with hardware and for users dealing with
software.

Application software Users dealing with software that is for solving a related safety function as
such; not for operating system software or library functions.

System software For users dealing primarily with operating system software, library functions
and the like.

Hardware only Not for those interested in software only.

Mainly hardware Concerns software only marginally.

Table E.2 — Requirements of IEC 61508-2 for software and
their typical relevance to certain types of software

IEC 61508-2 Important to users dealing with Remarks

Requirement

7.2 Software

7.2.3.1 Application software

7.2.3.2t07.2.3.6 Software

7.2.3.3 Hardware only

7.3 Software 7.3.2.2 f) Hardware only
7.4 Software

7.421t07.4.212 Software

7.4.2.13,7.4.2.14 Hardware only

7.4.31t07.4.3.3 Software

7.4.3.4 Hardware only

7.4.4 Hardware only

7.4.5 Hardware only

7.4.6 Software 7.4.6.7 Hardware only
7.4.7 Software 7.4.7.1 a), b) Hardware only
7.4.8 Hardware only

7.491t07.493 Software

7.4.9.4,7.49.5 Hardware only

7.4.9.6,7.4.9.7 Software

7.4.10 Software Mainly system software
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IEC 61508-2 Important to users dealing with Remarks

Requirement

7.4.11 Hardware only

7.5 Software

7.6 Software

7.6.2.1 a) Hardware

7.6.2.4 Mainly hardware

7.7 Software 7.7.2.3, 7.7.2.4 Mainly application
software

7.8 Software

7.9 Mainly Application software

8 Software

Annex A.1 Mainly hardware

Annex A.2 and tables Mainly hardware | Table A.10 Software

Annex A.3 Mainly hardware | Tables A.16, A.17, A.18 Contain some
software aspects

Annex B, all tables Software

Annex C Hardware

Annex D Software D.2.3 Hardware only

Annex E Hardware only

Annex F Hardware only
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Annex F
(informative)

Techniques for achieving non-interference
between software elements on a single computer

F.1 Introduction

Independence of execution between software elements which are hosted on a single
computer system (consisting of one or more processors together with memory and other
hardware devices shared between those processors) can be achieved and demonstrated by
means of a number of different methods. This annex sets out some techniques which can be
used to achieve non-interference (between elements of differing systematic capability,
between elements which are designed to achieve or contribute to the same safety function, or
between software contributing to a safety function and non-safety related software on the
same computer).

NOTE The term “independence of execution” means that elements will not adversely interfere with each other’s
execution behaviour such that a dangerous failure would occur. It is used to distinguish other aspects of
independence which may be required between elements, in particular diversity, to meet other requirements of the
standard.

F.2 Domains of behaviour

Independence of execution should be achieved and demonstrated both in the spatial and
temporal domains.

Spatial: the data used by a one element shall not be changed by a another element. In
particular, it shall not be changed by a non-safety related element.

Temporal: one element shall not cause another element to function incorrectly by taking too
high a share of the available processor execution time, or by blocking execution of the other
element by locking a shared resource of some kind.

F.3 Causal factor analysis

To demonstrate independence of execution, an analysis of the proposed design should be
undertaken to identify all possible causes of execution interference between the notionally
independent (non-interfering) elements in the spatial and temporal domains. The analysis
should consider both normal operation and operation under failure conditions, and should
include (but need not be limited to) the following:

a) shared use of random access memory;

b) shared use of peripheral devices;

c) shared use of processor time (where two or more elements are executed by a single
processor);

d) communications between the elements necessary to achieve the overall design;

e) the possibility that a failure in one element (such as an overflow, or divide by zero
exception, or an incorrect pointer calculation) may cause a consequent failure in other
elements.

The achievement and justification of independence of execution will then have to address all
these identified sources of interference.
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F.4 Achieving spatial independence

Techniques for achieving and demonstrating spatial independence include the following:

a) Use of hardware memory protection between different elements, including elements of
differing systematic capability.

b) Use of an operating system which permits each element to execute in its own process with
its own virtual memory space, supported by hardware memory protection.

c) Use of rigorous design, source code and possibly object code analysis to demonstrate
that no explicit or implicit memory references are made from between software elements
which can result in data belonging to another element being overwritten (for the case
where hardware memory protection is not available).

d) Software protection of the data of a higher integrity element from illegal modification by a
lower integrity element.

Data should not be passed from a lower to a higher integrity element unless the higher
integrity element can verify that the data is of sufficient integrity.

Where data has to be passed between elements which are required to be independent, uni-
directional interfaces such as messages or pipes should be used in preference to shared
memory.

NOTE Ideally the independent elements would not communicate with each other. However, where the design of
the system requires that one element should send data to another element, the design of the communication
mechanism should be such that neither the sending nor the receiving elements should fail or be blocked in
execution if data transmission ceases or is delayed.

Any data resident on permanent storage devices such as magnetic discs shall be taken into
account for spatial partitioning, in addition to transient data in random access memory. For
example, file access protection implemented by an operating system could be used to prevent
one element writing to data areas belonging to another element.

F.5 Achieving temporal independence

Techniques for ensuring temporal independence include

a) Deterministic scheduling methods. For example,

e a cyclic scheduling algorithm which gives each element a defined time slice supported
by worst case execution time analysis of each element to demonstrate statically that
the timing requirements for each element are met;

e time triggered architectures.

b) Strict priority based scheduling implemented by a real-time executive with a means of
avoiding priority inversion.

c) Time fences which will terminate the execution of an element if it over-runs its allotted
execution time or deadline (in such a case, hazard analysis shall be undertaken to show
that termination of an element will not result in a dangerous failure, so this technique may
be best employed for a non-safety related element).

d) An operating system which guarantees that no process can be starved of processor time,
for example by means of time slicing. Such an approach may only be applicable where
there are no hard real time requirements to be met by the safety related elements, and it
is shown that the scheduling algorithm will not result in undue delays to any element.

Where a resource (such as a peripheral device) is shared between elements, the design shall
ensure that the elements will not function incorrectly because the shared resource is locked
by another element. The time required to access a shared resource shall be taken into
account in determining temporal non-interference.
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F.6 Requirements for supporting software

If an operating system, a real-time executive, memory management, timer management or
any other such software is to be used to provide spatial or temporal independence, or both,
then such software shall be of the highest systematic capability of any of the elements which
are required to be independent.

NOTE It is clear that any such software represents a potential common cause of failure of the independent
elements.

F.7 Independence of software modules — programming language aspects
The following Table F.1 is an informal definition of relevant terms.

Table F.1 — Module coupling — definition of terms

Term Informal definition

Cohesion measure of tightness of the connections between data and subprograms within one module

Coupling measure for the tightness of connections between modules

Encapsulation hiding of internal (private) data and subprograms from external access; term primarily used
with object oriented programs

Independence measure of decoupling of software parts; complement of coupling

Module confined software part that performs something and that may have data of its own; Class,
hierarchy of classes, subprogram, unit, module, package, ...according to
programming language

Interface well defined set of heads of subprograms that provide access to a module

Tramp data data that is not used in the receiving module, but only transferred to another module

As a general rule, module independence is enhanced if there is loose coupling between
modules and high cohesion within modules. High cohesion encourages the situation where
identifiable units of functionality correspond clearly with identifiable units of implementing
code, while loose module coupling promotes low interaction and thus high independence
between functionally unrelated modules.

Loose module coupling usually results from achieving high cohesion within modules by putting
the code and data together that are used to perform one particular function. Low cohesion
results, if code and data are assembled in modules only arbitrarily, or because of some timing
sequence or due to some sequence in the control flow.

Several aspects of module coupling can be distinguished, see Table F.2 below.
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Table F.2 — Types of module coupling

Coupling Definition Explanation Rationale Remark
Interface Coupling only via a | Access to the module | The heads of the Mainly for object
coupling, well defined set of or its data only via subprograms (signatures) | oriented programs,

encapsulation

subprograms.

subprograms; any
change of a value of
a variable, any
question about the
value of such a
variable, or any other
service required from
the module is routed
via a subprogram
call.

of a module explain the
available services.

If any changes of a
module are required, a
large amount of these
changes can be done
within that module,
without affecting other
modules.

Promotes loose coupling,
recommended in general.

classes, hierarchies
of classes, packages
of libraries; not for
subprograms.

Data coupling
via parameter
list

Data transfer only

via the parameter

list or the identifier
of subprograms.

Access to the module
or its data only via
variables or objects
that are indicated in
the head of the
subprogram; any
change of a value of
a variable, any
question about the
value of such a
variable is visible.

The head of the
subprograms exhibits the
data or objects involved
with a call of that
subprogram.

Promotes loose coupling,
recommended in general.

Within classes of
object oriented
programs this
principle is normally
not observed. Local
variables may be
accessed directly.
Strict adherence to
that principle may
also lead to tramp
data. The principle
should be violated to
avoid this type of
data.

Structure Data transfer More data are The superfluous data The deficiency can
coupling contains more data | transferred to the provide another module normally easily be
than necessary. receiving subprogram | with information that it corrected.
than necessary for does not require for
performing the fulfilling its purpose.
required function. These data may lead to
misunderstanding the
cooperation between the
modules. It is, however,
not deprecated.
Control Coupling that Data transfer that can | Tighter than the couplings | Cannot always be
coupling exercises only cause a above, as it requires avoided. May be
immediate control branching reaction in immediate action, necessary, e.g. if the
on the receiving the other module; in prescribing the receiving completion of an
module. many cases subprogram to do action is announced,
characterized by something. To be handled | or the validity of a
transfer of a single cautiously; to be avoided, value.
bit. if possible. Not
recommended in general.
Global Coupling via global | Modules can access The heads of the Deprecated in
coupling data. data that are directly subprograms do not general. May be
accessible by other indicate, which data are necessary
modules, or one used and from where. It is | exceptionally, e.g. to
module can directly difficult to understand the avoid tramp data. To
access data subprograms’ functions be used only in very
belonging to another and to predict the effects limited way that
module. of any changes to code. conforms to a clearly
defined and
documented coding
standard.
Content Jumping directly Feasible in assembly | Deprecated. One module In some
coupling into other modules, | language programs; can only be understood programming

influencing
branching goals in
other modules, or
accessing data in
other modules
directly.

not possible in all
higher level
languages. Can
accelerate program
execution and reduce
coding effort.

by understanding its
connected modules as
well. Makes a program
extremely difficult to
understand and extremely
difficult to change.

languages not even
possible. Can always
be avoided.
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Code reading or code review (see 7.9.2.12) should verify whether or not the program modules
are loosely coupled. This analysis normally requires some sort of understanding of the
modules’ purpose and their way of working. Proper coupling can therefore be assessed only
by reading the code and its documentation.

Content coupling should be avoided. Global coupling may be used only exceptionally. Control
coupling and procedural coupling should be avoided. If ever possible, modules should be
connected by interface coupling (encapsulation) and/or data coupling.
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Annex G
(informative)

Guidance for tailoring lifecycles
associated with data driven systems

G.1 Data driven — system part and application part

Many systems are written in two parts. One part provides the underlying system capability.
The other part adapts the system to the specific requirements of the intended application. The
application part may be written in the form of data, that configures the system part. This is
termed “data driven” in this Annex.

The application specific part of the software, may be developed using a variety of
programming tools and programming languages. These languages and tools may constrain
the way the application program can be written.

For instance, where a programming language supports the developer/configurer in describing
the functionality (e.g. the use of ladder logic for simple interlock systems), then the
application software programming task is likely to be fairly simple. However, where the
programming language allows the developer/configurer to describe complex application
behaviour, then the application software programming task is likely to be complex. Where very
simple application software is developed, detailed design may be considered as configuring
rather than programming.

The degree of rigour necessary to achieve the required safety integrity is dependent upon the
degree of configuration complexity available to the developer/configurer and the complexity of
behaviour to be represented in the application. This is represented diagrammatically on the
axes of Figure G.1.

For simplicity the axes have been further divided into classes of complexity as:

a) Variability allowed by the language:
— fixed program;
— limited variability (some industries view the application program as ‘data’ which is
interpreted by the system part);

— full variability (whilst not normally considered as data driven this type of system
may also be used for application development and is included in this annex for
completeness).

b) Ability to configure application:
— limited;
- full.

In reality a particular system may comprise different levels of complexity and configurability.
Further, the complexity may exhibit a sliding scale along the continuum of the two axes. When
attempting to tailor the software lifecycle, the relevant level of complexity should be identified
and the degree of tailoring should be justified.

A description of the typical types of system for each level of complexity is given below.
Guidance on suggested techniques for implementing each type of system is given in
IEC 61508-7.
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Figure G.1 — Variability in complexity of data driven systems

Typical systems in each class of complexity are described in G.2.

G.2 Limited variability configuration, limited application configurability

A proprietary configuration language used with an IEC 61508 compliant system with fixed pre-
delivered functionality.

The configuration language does not allow the programmer to alter the function of the system.
Instead configuration is limited to adjustment of a few (data) parameters to enable the system
to be matched to its application. Examples may include smart sensors and actuators
whereupon specific parameters are entered, network controllers, sequence controllers, small
data logging systems and smart instruments.

The justification of the tailoring of the safety lifecycle should include, but not be limited to, the
following:
a) specification of the input parameters for this application;

b) verification that the parameters have been correctly implemented in the operational
system;

c) validation of all combinations of input parameters;
d) consideration of special and specific modes of operation during configuration;
e) human factors / ergonomics;

f) interlocks, e.g. ensuring that operational
configuration process;

interlocks are not invalidated during the

g) Inadvertent re-configuration, e.g. key switch access, protection devices.



BS EN 61508-3:2010
61508-3 © IEC:2010 - 109 —

G.3 Limited variability configuration, full application configurability

A proprietary configuration language used with an IEC 61508 compliant system with fixed pre-
delivered functionality.

The configuration language does not allow the programmer to alter the function of the system.
Instead, configuration is constrained to creation of extensive static data parameters to enable
the system to be matched to its application. An example may be an air traffic control system
consisting of data with large numbers of data entities each with one or more attributes. An
essential characteristic of the data is that it contains no explicit sequencing, ordering or
branching constructs in the data and does not contain any representation of the combinatorial
states of the application.

In addition to the considerations given in G.2, the justification of the tailoring of the safety
lifecycle should include, but not be limited to, the following:

a) automation tools for creation of data;

b) consistency checking, e.g. the data is self compatible;

c) rules checking, e.g. to ensure the generation of the data meets the defined constraints;
d) validity of interfaces with the data preparation systems.

G.4 Limited variability programming, limited application configurability

A problem-oriented language, used with an IEC 61508 compliant system, where the language
statements contain or resemble the terminology of the application of the user for systems with
limited pre-delivered functionality.

These languages allow the user limited flexibility to customize the functions of the system to
their own specific requirements, based on a range of hardware and software elements.

An essential characteristic of limited variability programming is that data may contain explicit
sequencing, ordering or branching constructs and may invoke combinatorial states of the
application. Examples may include functional block programming, ladder logic, spreadsheet
based systems, and graphical systems.

In addition to the considerations given in G.3, the following elements should be included, but
not limited to:

a) the specification of the application requirements;

b) the permitted language sub-sets for this application;

c) the design methods for combining the language sub-sets;

d) the coverage criteria for verification addressing the combinations of potential system

states.
G.5 Limited variability programming, full application configurability

A problem-oriented language, used with an IEC 61508 compliant system, where the language
statements contain or resemble the terminology of the application of the user for system with
limited pre-delivered functionality.

The essential difference from limited variability programming, limited application
configurability is the complexity of the configuration of the application. Examples may include
graphical systems and SCADA-based batch control systems.
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In addition to the considerations given in G.4, the following elements should be included but
not limited to:

a) the architectural design of the application;

b) the provision of templates;

c) the verification of the individual templates;

d) the verification and validation of the application.

The aspect of the lifecycle outlined in this standard which is most likely to be unnecessary
(depending on the language used) is the lowest level module implementation and testing.

G.6 Full functionality programming/configuration, limited application
configurability

See G.7 below.

G.7 Full functionality programming/configuration, full application
configurability

For these systems the full lifecycle requirements of this standard apply.

Full variability parts of systems are based on general purpose programming languages or
general purpose database languages, or general scientific and simulation packages.
Typically, these parts will be used in conjunction with a computer-based system, equipped
with an operating system which provides system resource allocation and a real time multi-
programming environment. Examples of systems that may be written in full variability
languages may include for example: a dedicated machinery control system, specially
developed flight control systems, or web services for management of safety related services.
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