BS EN 61508-3:2010

Functional safety of electrical/
electronic/programmable
electronic safety-related
systems

Part 3: Software requirements

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

o V¥V o ¥
raising standards worldwide™ EDR

BS EN 61508-3:2010

BRITISH STANDARD

National foreword

This British Standard is the UK implementation of EN 61508-3:2010. It is
identical to IEC 61508-3:2010. It supersedes BS EN 61508-3:2002 which is
withdrawn.

The UK participation in its preparation was entrusted by Technical Committee
GEL/65, Measurement and control, to Subcommittee GEL/65/1, System
considerations.

A list of organizations represented on this committee can be obtained on
request to its secretary.

This publication does not purport to include all the necessary provisions of a
contract. Users are responsible for its correct application.

© BSI 2010
ISBN 978 0 580 56235 8
ICS 13.260; 25.040.40; 29.020; 35.080

Compliance with a British Standard cannot confer immunity from
legal obligations.

This British Standard was published under the authority of the Standards
Policy and Strategy Committee on 30 June 2010.

Amendments issued since publication

Amd. No. Date Text affected

BS EN 61508-3:2010

EUROPEAN STANDARD EN 61508-3
NORME EUROPEENNE

EUROPAISCHE NORM May 2010

ICS 25.040.40 Supersedes EN 61508-3:2001

English version

Functional safety of electrical/electronic/programmable electronic
safety-related systems -
Part 3: Software requirements
(IEC 61508-3:2010)

Sécurité fonctionnelle des systéemes Funktionale Sicherheit sicherheitsbezogener
électriques/électroniques/électroniques elektrischer/elektronischer/programmierbarer
programmables relatifs a la sécurité - elektronischer Systeme -

Partie 3: Exigences concernant Teil 3: Anforderungen an Software

les logiciels (IEC 61508-3:2010)

(CEI 61508-3:2010)

This European Standard was approved by CENELEC on 2010-05-01. CENELEC members are bound to comply
with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard
the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on
application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CENELEC member into its own language and notified
to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus,
the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy,
Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia,
Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europaisches Komitee fiir Elektrotechnische Normung

Management Centre: Avenue Marnix 17, B - 1000 Brussels

© 2010 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Ref. No. EN 61508-3:2010 E

BS EN 61508-3:2010
EN 61508-3:2010 -2-

Foreword

The text of document 65A/550/FDIS, future edition 2 of IEC 61508-3, prepared by SC 65A, System
aspects, of IEC TC 65, Industrial-process measurement, control and automation, was submitted to the
IEC-CENELEC parallel vote and was approved by CENELEC as EN 61508-3 on 2010-05-01.

This European Standard supersedes EN 61508-3:2001.
It has the status of a basic safety publication according to IEC Guide 104.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN and CENELEC shall not be held responsible for identifying any or all such patent
rights.

The following dates were fixed:

— latest date by which the EN has to be implemented
at national level by publication of an identical
national standard or by endorsement (dop) 2011-02-01

— latest date by which the national standards conflicting
with the EN have to be withdrawn (dow) 2013-05-01

Annex ZA has been added by CENELEC.

Endorsement notice

The text of the International Standard IEC 61508-3:2010 was approved by CENELEC as a European
Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

[1] IEC 61511 series NOTE Harmonized in EN 61511 series (not modified).
[2] IEC 62061 NOTE Harmonized as EN 62061.

[3] IEC 61800-5-2 NOTE Harmonized as EN 61800-5-2.

[4] IEC 61508-5:2010 NOTE Harmonized as EN 61508-5:2010 (not modified).
[5] IEC 61508-6:2010 NOTE Harmonized as EN 61508-6:2010 (not modified).
[6] IEC 61508-7:2010 NOTE Harmonized as EN 61508-7:2010 (not modified).
[7] IEC 60601 series NOTE Harmonized in 60601 series (partially modified).

[8] IEC 61131-3 NOTE Harmonized as EN 61131-3.

BS EN 61508-3:2010
-3- EN 61508-3:2010

Annex ZA
(normative)

Normative references to international publications
with their corresponding European publications

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD
applies.

Publication Year Title EN/HD Year

IEC 61508-1 2010 Functional safety of EN 61508-1 2010
electrical/electronic/programmable electronic
safety-related systems -
Part 1: General requirements

IEC 61508-2 2010 Functional safety of EN 61508-2 2010
electrical/electronic/programmable electronic
safety-related systems -
Part 2: Requirements for
electrical/electronic/programmable electronic
safety-related systems

IEC 61508-4 2010 Functional safety of EN 61508-4 2010
electrical/electronic/programmable electronic
safety-related systems -
Part 4: Definitions and abbreviations

IEC Guide 104 1997 The preparation of safety publications and the - -
use of basic safety publications and group
safety publications

ISO/IEC Guide 51 1999 Safety aspects - Guidelines for their inclusion - -
in standards

BS EN 61508-3:2010

-2- 61508-3 © IEC:2010
CONTENTS

INTRODUGCTION ... ettt et e et e e e e e e e e e e e et e e eennes 7
S Yo oY o = Y 9
2 NOIMaAtiVe FEfEIrENCES oot e 12
3 Definitions and abbreviations........ ..o 13
4 Conformance to this standard ..o 13
5 DOCUMENEATION L. e 13
6 Additional requirements for management of safety-related softwarec... 13
0t N O o =T o Y= 13
5.2 REQUINEIMENES it e e 13
7 Software safety lifecycle requIremMents.........oooiiiiii i 14
408 T © 1= 1= - | PP 14
T A1 OB ECHIVE Lo 14
7.1.2 ReQUINrEMENES . e 14
7.2 Software safety requirements specification...............c.cooiiiiii 21
T.2.1 ODJECHIVES ot 21
T7.2.2 ReQUITEMENES 1ot 21
7.3 Validation plan for software aspects of system safety...........ccoooii. 24
T.3.1 OB OCHIVE et 24
7.3.2 ReQUINEMENES 1ot 24
7.4 Software design and development... ... 25
T4.T OB CHIVES ottt 25
7.4.2 General reqUIremMeNnts ..o 26
7.4.3 Requirements for software architecture designcccooiiiiiiinn. 29
7.4.4 Requirements for support tools, including programming languages............ 30

7.4.5 Requirements for detailed design and development — software
SYSEEM A SIgN it 33
7.4.6 Requirements for code implementation............c.ccooiiiiiii 34
7.4.7 Requirements for software module testing ..o 35
7.4.8 Requirements for software integration testingcoooiiiiii i 35
7.5 Programmable electronics integration (hardware and software)............................. 36
T.5. 1 ODJECHIVES ot 36
7.5.2 ReQUINEMENES Lo 36
7.6 Software operation and modification proceduresccocoiiiiiii 37
T.8.1 OBV et 37
7.6.2 ReqUIrEMENES .o e 37
7.7 Software aspects of system safety validation............cc.coii 37
T 7.1 ODJECHIVE e 37
T.7.2 ReQUIrEMENES .o e 38
7.8 Software modificationo 39
T.8.1 OB ECHIVE oot 39
7.8.2 ReEQUINEMENES oot 39
7.9 Software verification 41
T7.9.1 ODJECHIVE oo 41
7.9.2 REQUITEIMENES oot 41
8 Functional safety @assessment.... ... 44

BS EN 61508-3:2010

61508-3 © IEC:2010 -3-

Annex A (normative) Guide to the selection of techniques and measures...............ccoeeeueenn. 46
Annex B (informative) Detailed tablesccviiiiiii 55
Annex C (informative) Properties for software systematic capability.....................ooool. 60
Annex D (normative) Safety manual for compliant items — additional requirements for
SOTIWAIE ElEM NS . e 97
Annex E (informative) Relationships between IEC 61508-2 and IEC 61508-3..................... 100
Annex F (informative) Techniques for achieving non-interference between software

elements 0N a SiNgIE COMPULET .. e e 102
Annex G (informative) Guidance for tailoring lifecycles associated with data driven

SR (=T 1 1= PP PP PP 107
BB O G AP Y et 111
Figure 1 — Overall framework of the IEC 61508 SEIeSooviiviiiiiiieiic e, 11
Figure 2 — Overall safety [IfECYCIE 12
Figure 3 — E/E/PE system safety lifecycle (in realisation phase)..........co.coiiiiiiiiiinin s 16
Figure 4 — Software safety lifecycle (in realisation phase)...........coooviiiiiiiiiiiii e, 16
Figure 5 — Relationship and scope for IEC 61508-2 and IEC 61508-3cooviiieiiineennnnn. 17
Figure 6 — Software systematic capability and the development lifecycle (the V-model) 17
Figure G.1 — Variability in complexity of data driven systemsc..coiiiiiiiiii, 108
Table 1 — Software safety lifeCycCle — OVEIVIEWcooiiiiiii e, 18
Table A.1 — Software safety requirements specification ... 47
Table A.2 — Software design and development — software architecture design..................... 48
Table A.3 — Software design and development — support tools and programming

L= o 11 = Vo PP 49
Table A.4 — Software design and development — detailed design ..., 50
Table A.5 — Software design and development — software module testing and

1L =T = 110} o PP 51
Table A.6 — Programmable electronics integration (hardware and software).......................... 51
Table A.7 — Software aspects of system safety validationcoooiiiiicn e, 52
Table A.8 — MoOdifiCation ... e 52
Table A.9 — Software verification 53
Table A.10 — Functional safety assesSmMeNntcoooiiiiiiiii e 54
Table B.1 — Design and coding standardscooieiiiiiiiii e 55
Table B.2 — Dynamic analysis and teStingcc.oiiiiiiiiii 56
Table B.3 — Functional and black-box testingcoiiiiiiii 56
Table B.4 — Failure analySiS. ...t 57
Table B.5 — MOAEIING ..o e e 57
Table B.6 — Performance testingoouiiiiiii 58
Table B.7 — Semi-formal methods ... 58
Table B.8 — StatiC @analySiS. ..o 59
Table B.9 — Modular @pprOaCh ... 59

Table C.1 — Properties for systematic safety integrity — Software safety requirements
SPECIH At ON Lot 64

BS EN 61508-3:2010
—4— 61508-3 © IEC:2010

Table C.2 — Properties for systematic safety integrity — Software design and
development — software Architecture DeSigncoouiiiiiiiiii 67

Table C.3 — Properties for systematic safety integrity — Software design and
development — support tools and programming 1anguageccvvviiiiiiiiiiiii e 76

Table C.4 — Properties for systematic safety integrity — Software design and
development — detailed design (includes software system design, software module

(o1 T 1o 1o Ir=T o Lo I eTo o 1] s o) A PP 77
Table C.5 — Properties for systematic safety integrity — Software design and

development — software module testing and integrationcocoii 79
Table C.6 — Properties for systematic safety integrity — Programmable electronics

integration (hardware and SOftWAIE)ciiiiiiiii e 81
Table C.7 — Properties for systematic safety integrity — Software aspects of system

Safety Validation 82
Table C.8 — Properties for systematic safety integrity — Software modification 83
Table C.9 — Properties for systematic safety integrity — Software verification........................ 85
Table C.10 — Properties for systematic safety integrity — Functional safety assessment........ 86
Table C.11 — Detailed properties — Design and coding standards.............cc.oooiiiiiiiiinineenn. 87
Table C.12 — Detailed properties — Dynamic analysis and testingcccoviiiiiin, 89
Table C.13 — Detailed properties — Functional and black-box testing..............ccccooeiiiinin, 90
Table C.14 — Detailed properties — Failure analysisoooiiiiiiiii e 91
Table C.15 — Detailed properties — Modelling........coooiiiiiii e 92
Table C.16 — Detailed properties — Performance testingccocoeeiiiiiiiiiiiii, 93
Table C.17 — Detailed properties — Semi-formal methods.............cocoiiiiii 94
Table C.18 — Properties for systematic safety integrity — Static analysisc...coooini. 95
Table C.19 — Detailed properties — Modular approach...........coooiiiiiii i 96
Table E.1 — Categories of IEC 61508-2 requUirements...........cc.viuieiiiiiiiiiiii e 100
Table E.2 — Requirements of IEC 61508-2 for software and their typical relevance to

certain types Of SOftWAIEot 100
Table F.1 — Module coupling — definition of termscooiiiii e, 104

Table F.2 — Types of module COUPIING ..o e 105

BS EN 61508-3:2010
61508-3 © IEC:2010 -7-

INTRODUCTION

Systems comprised of electrical and/or electronic elements have been used for many years to
perform safety functions in most application sectors. Computer-based systems (generically
referred to as programmable electronic systems) are being used in all application sectors to
perform non-safety functions and, increasingly, to perform safety functions. If computer
system technology is to be effectively and safely exploited, it is essential that those
responsible for making decisions have sufficient guidance on the safety aspects on which to
make these decisions.

This International Standard sets out a generic approach for all safety lifecycle activities for
systems comprised of electrical and/or electronic and/or programmable electronic (E/E/PE)
elements that are used to perform safety functions. This unified approach has been adopted
in order that a rational and consistent technical policy be developed for all electrically-based
safety-related systems. A major objective is to facilitate the development of product and
application sector international standards based on the IEC 61508 series.

NOTE 1 Examples of product and application sector international standards based on the IEC 61508 series are
given in the bibliography (see references [1], [2] and [3]).

In most situations, safety is achieved by a number of systems which rely on many
technologies (for example mechanical, hydraulic, pneumatic, electrical, electronic, programmable
electronic). Any safety strategy must therefore consider not only all the elements within an
individual system (for example sensors, controlling devices and actuators) but also all the
safety-related systems making up the total combination of safety-related systems. Therefore,
while this International Standard is concerned with E/E/PE safety-related systems, it may also
provide a framework within which safety-related systems based on other technologies may be
considered.

It is recognized that there is a great variety of applications using E/E/PE safety-related
systems in a variety of application sectors and covering a wide range of complexity, hazard
and risk potentials. In any particular application, the required safety measures will be
dependent on many factors specific to the application. This International Standard, by being
generic, will enable such measures to be formulated in future product and application sector
international standards and in revisions of those that already exist.

This International Standard

— considers all relevant overall, E/E/PE system and software safety lifecycle phases (for
example, from initial concept, through design, implementation, operation and maintenance
to decommissioning) when E/E/PE systems are used to perform safety functions;

— has been conceived with a rapidly developing technology in mind; the framework is
sufficiently robust and comprehensive to cater for future developments;

— enables product and application sector international standards, dealing with E/E/PE
safety-related systems, to be developed; the development of product and application
sector international standards, within the framework of this standard, should lead to a high
level of consistency (for example, of underlying principles, terminology etc.) both within
application sectors and across application sectors; this will have both safety and economic
benefits;

— provides a method for the development of the safety requirements specification necessary
to achieve the required functional safety for E/E/PE safety-related systems;

— adopts a risk-based approach by which the safety integrity requirements can be
determined;

— introduces safety integrity levels for specifying the target level of safety integrity for the
safety functions to be implemented by the E/E/PE safety-related systems;

NOTE 2 The standard does not specify the safety integrity level requirements for any safety function, nor does it
mandate how the safety integrity level is determined. Instead it provides a risk-based conceptual framework and
example techniques.

BS EN 61508-3:2010
-8 - 61508-3 © IEC:2010

sets target failure measures for safety functions carried out by E/E/PE safety-related
systems, which are linked to the safety integrity levels;

sets a lower limit on the target failure measures for a safety function carried out by a
single E/E/PE safety-related system. For E/E/PE safety-related systems operating in

— a low demand mode of operation, the lower limit is set at an average probability of a
dangerous failure on demand of 10-9;

— a high demand or a continuous mode of operation, the lower limit is set at an average
frequency of a dangerous failure of 10=9[h-1];

NOTE 3 A single E/E/PE safety-related system does not necessarily mean a single-channel architecture.

NOTE 4 It may be possible to achieve designs of safety-related systems with lower values for the target safety
integrity for non-complex systems, but these limits are considered to represent what can be achieved for relatively
complex systems (for example programmable electronic safety-related systems) at the present time.

sets requirements for the avoidance and control of systematic faults, which are based on
experience and judgement from practical experience gained in industry. Even though the
probability of occurrence of systematic failures cannot in general be quantified the
standard does, however, allow a claim to be made, for a specified safety function, that the
target failure measure associated with the safety function can be considered to be
achieved if all the requirements in the standard have been met;

introduces systematic capability which applies to an element with respect to its confidence
that the systematic safety integrity meets the requirements of the specified safety integrity
level,

adopts a broad range of principles, techniques and measures to achieve functional safety
for E/E/PE safety-related systems, but does not explicitly use the concept of fail safe.
However, the concepts of “fail safe” and “inherently safe” principles may be applicable and
adoption of such concepts is acceptable providing the requirements of the relevant
clauses in the standard are met.

BS EN 61508-3:2010
61508-3 © IEC:2010 -9-

FUNCTIONAL SAFETY OF ELECTRICAL/ELECTRONIC/
PROGRAMMABLE ELECTRONIC SAFETY-RELATED SYSTEMS -

Part 3: Software requirements

1 Scope

1.1 This part of the IEC 61508 series

a) is intended to be utilized only after a thorough understanding of IEC 61508-1 and
IEC 61508-2;

b) applies to any software forming part of a safety-related system or used to develop a
safety-related system within the scope of IEC 61508-1 and IEC 61508-2. Such software is
termed safety-related software (including operating systems, system software, software in
communication networks, human-computer interface functions, and firmware as well as
application software);

c) provides specific requirements applicable to support tools used to develop and configure a
safety-related system within the scope of IEC 61508-1 and IEC 61508-2;

d) requires that the software safety functions and software systematic capability are
specified;

NOTE 1 If this has already been done as part of the specification of the E/E/PE safety-related systems (see 7.2 of
IEC 61508-2), then it does not have to be repeated in this part.

NOTE 2 Specifying the software safety functions and software systematic capability is an iterative procedure; see
Figures 3 and 6.

NOTE 3 See Clause 5 and Annex A of IEC 61508-1 for documentation structure. The documentation structure
may take account of company procedures, and of the working practices of specific application sectors.

NOTE 4 Note: See 3.5.9 of IEC 61508-4 for definition of the term "systematic capability".

e) establishes requirements for safety lifecycle phases and activities which shall be applied
during the design and development of the safety-related software (the software safety
lifecycle model). These requirements include the application of measures and techniques,
which are graded against the required systematic capability, for the avoidance of and
control of faults and failures in the software;

f) provides requirements for information relating to the software aspects of system safety
validation to be passed to the organisation carrying out the E/E/PE system integration;

g) provides requirements for the preparation of information and procedures concerning
software needed by the user for the operation and maintenance of the E/E/PE safety-
related system;

h) provides requirements to be met by the organisation carrying out modifications to safety-
related software;

i) provides, in conjunction with IEC 61508-1 and IEC 61508-2, requirements for support
tools such as development and design tools, language translators, testing and debugging
tools, configuration management tools;

NOTE 4 Figure 5 shows the relationship between IEC 61508-2 and IEC 61508-3.
j) Does not apply for medical equipment in compliance with the IEC 60601 series.

1.2 |EC 61508-1, IEC 61598-2, IEC 61508-3 and IEC 61508-4 are basic safety publications,
although this status does not apply in the context of low complexity E/E/PE safety-related
systems (see 3.4.3 of IEC 61508-4). As basic safety publications, they are intended for use by
technical committees in the preparation of standards in accordance with the principles
contained in IEC Guide 104 and ISO/IEC Guide 51. IEC 61508-1, IEC 61508-2, IEC 61508-3
and IEC 61508-4 are also intended for use as stand-alone publications. The horizontal safety

BS EN 61508-3:2010
- 10 - 61508-3 © IEC:2010

function of this international standard does not apply to medical equipment in compliance with
the IEC 60601 series.

1.3 One of the responsibilities of a technical committee is, wherever applicable, to make
use of basic safety publications in the preparation of its publications. In this context, the
requirements, test methods or test conditions of this basic safety publication will not apply
unless specifically referred to or included in the publications prepared by those technical
committees.

1.4 Figure 1 shows the overall framework of the IEC 61508 series and indicates the role that
IEC 61508-3 plays in the achievement of functional safety for E/E/PE safety-related systems.

BS EN 61508-3:2010
61508-3 © IEC:2010 -1 -

Technical Requirements

Part1
Development ofthe overall
safety requirements

(concept, scope, definition,
hazard and risk analysis)
71t07.5 Part 5
Example of methods
for the determination
of safety integrity
Part 1 levels
All ocation of the safety requirements
tothe E/E/PE safety related systems
7.6
Part 1

Specification of the system safety
requirements for the E/E/PE
safety-rel ated sy stems

7.10
Part 6
Guidelines for the
application of
M Part2 | Part 3 Parts 2&3
i Realisation phasei‘— Realisationphase
i forE/EPE | for safetyrelated
I safety-related | software
i systems E—’
i ! Part7
Overview of
techniques and
measures
Part 1

Installation, commissioning
& safety validation of E/E/PE
safety-rel ated systems

7.13-7.14

Y

Part 1
Operation, mainte nance, repair,
modification and retrofit,
decommissioning or dis posal of
E/E/PE safety-related systems
7.15-7.17

Other Requirements

Part 4
Definitions &
abbreviations

Part 1
Documentation
Clause 5&
Annex A

Part 1
Manage ment of
functional safety

Clause 6

Part 1
Functional safety
assessment
Clause 8

Figure 1 — Overall framework of the IEC 61508 series

BS EN 61508-3:2010
-12 - 61508-3 © IEC:2010

Concept

/

Overall scope definition

/

Hazard and risk
analysis

/

Overall safety
requirements

/

Overall safety
requirements allocation

Y

Y

E/E/PE system safety

N -NN - -~

- Overall planning requirements specification A
11 Other risk
Overall ydl Overall Overall v reduction measures
operation and safety installation and
maintenance validation commissioning E/E/PE Specification and
planning planning planning safety-related systems Realisation
Realisation
(see E/E/PE system
safety lifecycle)
Y
Overall installation and |
commissioning -
/
> Overall safety Back to appropriate
validation overall safety lifecycle
phase
/
o Overall operation, Overall modification
o maintenance and repair and retrofit
/
Decommissioning or
disposal

Figure 2 — Overall safety lifecycle

2 Normative references

The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.

IEC 61508-1: 2010, Functional safety of electrical/electronic/programmable electronic safety-
related systems — Part 1: General requirements

BS EN 61508-3:2010
61508-3 © IEC:2010 -13 -

IEC 61508-2: 2010, Functional safety of electrical/electronic/programmable electronic safety-
related systems — Part 2: Requirements for electrical/electronic/programmable electronic
safety-related systems

IEC 61508-4: 2010, Functional safety of electrical/electronic/programmable electronic safety-
related systems — Part 4: Definitions and abbreviations

IEC Guide 104:1997, The preparation of safety publications and the use of basic safety
publications and group safety publications

IEC/ISO Guide 51:1999, Safety aspects — Guidelines for their inclusion in standards

3 Definitions and abbreviations

For the purposes of this document, the definitions and abbreviations given in IEC 61508-4
apply.

4 Conformance to this standard

The requirements for conformance to this standard are given in Clause 4 of IEC 61508-1.

5 Documentation

The objectives and requirements for documentation are given in Clause 5 of IEC 61508-1.

6 Additional requirements for management of safety-related software

6.1 Objectives

The objectives are as detailed in 6.1 of IEC 61508-1.

6.2 Requirements

6.2.1 The requirements are as detailed in 6.2 of IEC 61508-1, with the following additional
requirements.

6.2.2 The functional safety planning shall define the strategy for software procurement,
development, integration, verification, validation and modification to the extent required by the
safety integrity level of the safety functions implemented by the E/E/PE safety-related system.

NOTE The philosophy of this approach is to use the functional safety planning as an opportunity to customize this
standard to take account of the required safety integrity for each safety function implemented by the E/E/PE safety-
related system.

6.2.3 Software configuration management shall:

a) apply administrative and technical controls throughout the software safety lifecycle, in
order to manage software changes and thus ensure that the specified requirements for
safety-related software continue to be satisfied;

b) guarantee that all necessary operations have been carried out to demonstrate that the
required software systematic capability has been achieved;

c) maintain accurately and with unique identification all configuration items which are
necessary to meet the safety integrity requirements of the E/E/PE safety-related system.
Configuration items include at least the following: safety analysis and requirements;
software specification and design documents; software source code modules; test plans

BS EN 61508-3:2010
- 14 - 61508-3 © IEC:2010

and results; verification documents; pre-existing software elements and packages which
are to be incorporated into the E/E/PE safety-related system; all tools and development
environments which are used to create or test, or carry out any action on, the software of
the E/E/PE safety-related system;

d) apply change-control procedures:
e to prevent unauthorized modifications; to document modification requests;
e to analyse the impact of a proposed modification, and to approve or reject the request;
e to document the details of, and the authorisation for, all approved modifications;

e to establish configuration baseline at appropriate points in the software development,
and to document the (partial) integration testing of the baseline;

e to guarantee the composition of, and the building of, all software baselines (including
the rebuilding of earlier baselines).

NOTE 1 Management decision and authority is needed to guide and enforce the use of administrative and
technical controls.

NOTE 2 At one extreme, an impact analysis may include an informal assessment. At the other extreme, an
impact analysis may include a rigorous formal analysis of the potential adverse impact of all proposed changes
which may be inadequately understood or implemented. See IEC 61508-7 for guidance on impact analysis.

e) ensure that appropriate methods are implemented to load valid software elements and
data correctly into the run-time system;

NOTE 3 This may include consideration of specific target location systems as well as general systems.
Software other than application might need a safe loading method, e.g. firmware.

f) document the following information to permit a subsequent functional safety audit:
configuration status, release status, the justification (taking account of the impact
analysis) for and approval of all modifications, and the details of the modification;

g) formally document the release of safety-related software. Master copies of the software
and all associated documentation and version of data in service shall be kept to permit
maintenance and modification throughout the operational lifetime of the released software.

NOTE 4 For further information on configuration management, see IEC 61508-7
7 Software safety lifecycle requirements

71 General
711 Objective

The objective of the requirements of this subclause is to structure the development of the
software into defined phases and activities (see Table 1 and Figures 3 to 6).

7.1.2 Requirements

7.1.2.1 A safety lifecycle for the development of software shall be selected and specified
during safety planning in accordance with Clause 6 of IEC 61508-1.

7.1.2.2 Any software lifecycle model may be used provided all the objectives and
requirements of this clause are met.

7.1.2.3 Each phase of the software safety lifecycle shall be divided into elementary activities
with the scope, inputs and outputs specified for each phase.

NOTE See Figures 3, 4 and Table 1.

7.1.2.4 Provided that the software safety lifecycle satisfies the requirements of Table 1, it is
acceptable to tailor the V-model (see Figure 6) to take account of the safety integrity and the
complexity of the project.

BS EN 61508-3:2010
61508-3 © IEC:2010 - 15—

NOTE 1 A software safety lifecycle model which satisfies the requirements of this clause may be suitably
customized for the particular needs of the project or organisation. The full list of lifecycle phases in Table 1 is
suitable for large newly developed systems. In small systems, it might be appropriate, for example, to merge the
phases of software system design and architectural design.

NOTE 2 See Annex G for the characteristics of data-driven systems (e.g. full variability / limited variability
programming languages, extent of data configuration) that may be relevant when customising the software safety
lifecycle.

7.1.2.5 Any customisation of the software safety lifecycle shall be justified on the basis of
functional safety.

7.1.2.6 Quality and safety assurance procedures shall be integrated into safety lifecycle
activities.

7.1.2.7 For each lifecycle phase, appropriate techniques and measures shall be used.
Annexes A and B provide a guide to the selection of techniques and measures, and
references to IEC 61508-6 and IEC 61508-7. IEC 61508-6 and IEC 61508-7 give
recommendations on specific techniques to achieve the properties required for systematic
safety integrity. Selecting techniques from these recommendations does not guarantee by
itself that the required safety integrity will be achieved.

NOTE Success in achieving systematic safety integrity depends on selecting techniques with attention to the
following factors:

— the consistency and the complementary nature of the chosen methods, languages and tools for the whole
development cycle;

— whether the developers use methods, languages and tools they fully understand;

— whether the methods, languages and tools are well-adapted to the specific problems encountered during
development.

7.1.2.8 The results of the activities in the software safety lifecycle shall be documented (see
Clause 5).

NOTE Clause 5 of IEC 61508-1 considers the documented outputs from the safety lifecycle phases. In the
development of some E/E/PE safety-related systems, the output from some safety lifecycle phases may be a
distinct document, while the documented outputs from several phases may be merged. The essential requirement
is that the output of the safety lifecycle phase be fit for its intended purpose.

7.1.2.9 |If at any phase of the software safety lifecycle, a modification is required pertaining
to an earlier lifecycle phase, then an impact analysis shall determine (1) which software
modules are impacted, and (2) which earlier safety lifecycle activities shall be repeated.

NOTE At one extreme, an impact analysis may include an informal assessment. At the other extreme, an impact
analysis may include a rigorous formal analysis of the potential adverse impact of all proposed changes which may
be inadequately understood or implemented. See IEC 61508-7 for guidance on impact analysis.

— 16 —

BS EN 61508-3:2010
61508-3 © IEC:2010

Box 10 in Figure 2

E/E/PE
safety-related
systems

Realisation

(see E/E/PE system
safety lifecycle)

E/EIPE system safety lifecycle (in realisation phase)

E/E/PE system design
requirements specification

v

E/E/PE system safety
validation planning

v

10.3 E/E/PE system design &
- development including
ASICs & software
(see Figure 3 of IEC 61508-2
& this standard)

y

E/E/PE system
integration

One E/E/PE safety
lifecycle for each
E/E/PE safety-related
system

>

E/E/PE system
safety validation

E/E/PE system installation,
commissioning, operation
& maintenance procedures

v

To Box 12 in Figure 2

v

To Box 14 in Figure 2

Figure 3 — E/E/PE system safety lifecycle (in realisation phase)

E/E/PE system
safety lifecycle
(see Figure 3)

AY

10.2

Software safety lifecycle (in realisation phase)

Software safety
requirements specification

v

Validation plan for
software aspects of
system safety

v

10.3 Software design
&
development

v

PE integration
(hardware & software)

>it

10.6
Software aspects of system

safety validation

Software operation
&
maintenance procedures

v

To Box 12 in Figure 2

v

To Box 14 in Figure 2

Figure 4 — Software safety lifecycle (in realisation phase)

BS EN 61508-3:2010
61508-3 © IEC:2010

- 17 -

E/E/PE system

design requirements

specification

Y

E/E/PE
system
architecture

Yy

Scope of
IEC 61508-3

Software safety
requirements

.

Y

Software design
and
development

Y

Hardware safety requirements
specification

Programmable
electronic hardware

Non-programmable
hardware

A

A

Programmable
electronics design
and development

Non-programmable
hardware design
and development

Scope of
IEC 61508-2

(Al /

Programmable electronics E/E/PE
integration (hardware and | system
software) integration

Figure 5 — Relationship and scope for IEC 61508-2 and IEC 61508-3

FIEPE system Software safety Validation Validation Validated
safety requirements testin |
requirements specification 9 software

specification

Integration testing
(components,
subsystems and
programmable
electronics

architecture

Integration
testing (module)

Module
testing

Module
design

— Output

-- -~ Verification

Coding

Figure 6 — Software systematic capability and the development lifecycle (the V-model)

—18 —

BS EN 61508-3:2010
61508-3 © IEC:2010

Table 1 — Software safety lifecycle — overview

Safety lifecycle Objectives Scope Require- Inputs Outputs
phase ments (information |(information
subclause required) produced)
Figure Title
4 box
number
10.1 [Software To specify the requirements for |PE system; 7.2.2 E/E/PE safety [software
safety safety-related software in terms [software requirements [safety
requirements |of the requirements for software |system specification requirements
specification [safety functions and the as developed |specification
requirements for software during
systematic capability; allocation (see
)) IEC 61508-1)
To specify the requirements for
the software safety functions for
each E/E/PE safety-related
system necessary to implement E/E/PE system
the required safety functions; safety
requirements
To specify the requirements for specification
software systematic capability (from
for each E/E/PE safety-related IEC 61508-2)
system necessary to achieve
the safety integrity level
specified for each safety
function allocated to that
E/E/PE safety-related system
10.2 |Validation plan|To develop a plan for validating [PE system; 7.3.2 software safety |validation
for software the software aspects of system [software requirements [plan for
aspects of safety system specification software
system safety aspects of
system
safety
10.3 |[Software Architecture: PE system; 7.4.3 software safety |software
design and software requirements [|architecture
development |70 create a software system specification; [design;
architecture that fulfils the
specified requirements for E/E/PE system [software
safety-related software with hardware architecture
respect to the required safety architecture integration
integrity level; design (from test
. IEC 61508-2) |[specification;
To evaluate the requirements
placed on the software by the software/ PE
hardware architecture of the integration
E/E/PE safety-related system, test
including the significance of specification
E/E/PE hardware/software (also
interactions for safety of the required by
equipment under control IEC 61508-2)
10.3 |[Software Support tools and programming |PE system; 7.4.4 software safety |support tools
design and languages: requirements [and coding
development) software specification; |standards;
To select a suitable set of tools, system;
including languages and ’ software selection of
_compilers, run-time system support architecture development
interfaces, user interfaces, and tools: design tools

data formats and
representations for the required
safety integrity level, over the
whole safety lifecycle of the
software which assists
verification, validation,
assessment and modification

programming
language

BS EN 61508-3:2010
61508-3 © IEC:2010

- 19—

Table 1 (continued)

Safety lifecycle Objectives Scope Require- Inputs Outputs
phase ments (information |(information
subclause required) produced)
Figure Title
4 box
number
10.3 [Software Detailed design and major 7.4.5 software Software
design and development (software system |elements architecture system
development [design): and design; design
)) subsystems specification;
To design and implement of software support tools
software that fulfils the architectural and coding software
specified requirements for design. standards. system
safety-related software with integration
respect to the required safety test
integrity level, which is specification.
analysable and verifiable, and
which is capable of being safely
modified
10.3 [Software Detailed design and software 7.4.5 software software
design and development (individual system system design |module
development [software module design): design specification; |design
. . specification;
To design and implement support tools
software that fulfils the and coding software
specified requirements for standards module test
safety-related software with specification
respect to the required safety
integrity level, which is
analysable and verifiable, and
which is capable of being safely
modified
10.3 |Software Detailed code implementation: [individual 7.4.6 software source code
design and) . software module design |[listing;
development |70 design and implement modules specification;)
software that fulfils the code review
specified requirements for support tools |report
safety-related software with and coding
respect to the required safety standards
integrity level, which is
analysable and verifiable, and
which is capable of being safely
modified
10.3 [Software Software module testing: software 7.4.7 software software
design and .) modules module test module test
development |70 verify that the requirements specification; |results;
for safety-related software (in
terms of the required software source code verified and
safety functions and the listing; tested
software systematic capability)) software
have been achieved code review | oqyles
report
To show that each software
module performs its intended
function and does not perform
unintended functions
To ensure, in so far as it is
appropriate, that configuration
of PE systems by data fulfils the
specified requirements for the
software systematic capability

—-20-—

Table 1 (continued)

BS EN 61508-3:2010
61508-3 © IEC:2010

Safety lifecycle Objectives Scope Require- Inputs Outputs
phase ments (information |(information
subclause required) produced)
Figure Title
4 box
number
10.3 [Software Software integration testing: software 7.4.8 software software
design and .) architecture; system system
development |70 verify that the requirements integration test |integration
for safety-related software (in [software specification test results:
terms of the required software |system
safety functions and the verified and
software systematic capability) tested
have been achieved software
To show that all software system
modules, elements and
subsystems interact correctly to
perform their intended function
and do not perform unintended
functions
To ensure, in so far as it is
appropriate, that configuration
of PE systems by data fulfils the
specified requirements for the
software systematic capability
10.4 |Programmable |To integrate the software onto [program- 7.5.2 software software
electronics the target programmable mable architecture architecture
integration electronic hardware; electronics integration test |integration
. hardware; specification; |test results;
(hardware and |To combine the software and
software) hardware in the safety-related |integrated software/PE programmabl
programmable electronics to software integration test [e electronics
ensure their compatibility and to specification integration
meet the requirements of the (also required [test results;
intended safety integrity level 12)3/ IEC 61508 verified and
tested
Integrated integrated
programmable [programmabl
electronics e electronics
10.5 |[Software To provide information and as above 7.6.2 all above, as |software
operation and |[procedures concerning software relevant operation
modification necessary to ensure that the and
procedures functional safety of the E/E/PE modification
safety-related system is procedures
maintained during operation
and modification
10.6 |Software To ensure that the integrated as above 7.7.2 validation plan |software
aspects of system complies with the for software safety
system safety [specified requirements for aspects of validation
validation safety-related software at the system safety |results;
intended safety integrity level validated
software
— Software To guide corrections, as above 7.8.2 software software
modification enhancements or adaptations to modification modification
the validated software, ensuring procedures; impact
that the required software analysis
systematic capability is software results;
sustained modification
request software

modification
log

BS EN 61508-3:2010
61508-3 © IEC:2010 -21 -

Table 1 (continued)

Safety lifecycle Objectives Scope Require- Inputs Outputs
phase ments (information |(information
subclause required) produced)
Figure Title
4 box
number
- Software To test and evaluate the depends on 7.9.2 appropriate appropriate
verification outputs from a given software |phase verification verification
safety lifecycle phase to ensure plan (depends (report
correctness and consistency on phase) (depends
with respect to the outputs and on phase)
standards provided as input to
that phase
- Software To investigate and arrive at a all above 8 software software
functional judgement on the software phases functional functional
safety aspects of the functional safety safety safety
assessment achieved by the E/E/PE safety- assessment assessment
related systems plan report

7.2 Software safety requirements specification
NOTE This phase is Box 10.1 of Figure 4.

7.21 Objectives

7.21.1 The first objective of the requirements of this subclause is to specify the
requirements for safety-related software in terms of the requirements for software safety
functions and the requirements for software systematic capability.

7.2.1.2 The second objective of the requirements of this subclause is to specify the
requirements for the software safety functions for each E/E/PE safety-related system
necessary to implement the required safety functions.

7.2.1.3 The third objective of the requirements of this subclause is to specify the require-
ments for software systematic capability for each E/E/PE safety-related system necessary to
achieve the safety integrity level specified for each safety function allocated to that E/E/PE
safety-related system.

7.2.2 Requirements

NOTE 1 These requirements will in most cases be achieved by a combination of generic embedded software and
application specific software. It is the combination of both that provides the features that satisfy the following
subclauses. The exact division between generic and application specific software depends on the chosen software
architecture (see 7.4.3).

NOTE 2 For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of the software safety requirements specification should be
considered:

— completeness with respect to the safety needs to be addressed by software;

— correctness with respect to the safety needs to be addressed by software;

— freedom from intrinsic specification faults, including freedom from ambiguity;

— understandability of safety requirements;

— freedom from adverse interference of non-safety functions with the safety needs to be addressed by software;
— capability of providing a basis for verification and validation.

NOTE 3 The safety needs to be addressed by software is the set of safety functions and corresponding safety
integrity requirements assigned to software functions by the design of the E/E/PE system. (The complete set of
system safety needs is a larger set that includes also safety functions that do not depend on software). The

completeness of the software safety requirements specification depends crucially on the effectiveness of earlier
system lifecycle phases.

BS EN 61508-3:2010
- 22 - 61508-3 © IEC:2010

7.2.2.1 If the requirements for safety-related software have already been specified for the
E/E/PE safety-related system (see Clause 7 of IEC 61508-2), then the specification of
software safety requirements need not be repeated.

7.2.2.2 The specification of the requirements for safety-related software shall be derived
from the specified safety requirements of the E/E/PE safety-related system (see IEC 61508-
2, 7), and any requirements of safety planning (see Clause 6). This information shall be made
available to the software developer.

NOTE 1 This requirement does not mean that there will be no iteration between the developer of the E/E/PE
system and the developer of the software (IEC 61508-2 and IEC 61508-3). As the safety-related software
requirements and the software architecture become more precise, there may be an impact on the E/E/PE system
hardware architecture, and for this reason close co-operation between the hardware and software developer is
essential. See Figure 5.

NOTE 2 Where a software design incorporates pre-existing reusable software, that software may have been
developed without taking account of the current system requirement specification. See 7.4.2.12 for the
requirements on the pre-existing software to satisfy the software safety requirements specification.

7.2.2.3 The specification of the requirements for safety-related software shall be sufficiently
detailed to allow the design and implementation to achieve the required safety integrity
(including any requirement for independence, see 7.4.3 of IEC 61508-2), and to allow an
assessment of functional safety to be carried out.

NOTE The level of detail of the specification may vary with the complexity of the application. An adequate
specification of functional behaviour may include requirements for accuracy, timing and performance, capacity,
robustness, overload tolerance, and other characterising properties of the specific application.

7.2.2.4 In order to address independence, a suitable common cause failure analysis shall be
carried out. Where credible failure mechanisms are identified, effective defensive measures
shall be taken.

NOTE See Annex F for techniques for achieving one aspect of independence of software.

7.2.2.5 The software developer shall evaluate the information in 7.2.2.2 to ensure that the
requirements are adequately specified. In particular the software developer shall consider the
following:

a) safety functions;

b) configuration or architecture of the system;

c) hardware safety integrity requirements (programmable electronics, sensors, and
actuators);

d) software systematic capability requirements;
e) capacity and response time;

f) equipment and operator interfaces, including reasonably foreseeable misuse.

NOTE Compatibility with any applications already in existence should be considered.

7.2.2.6 If not already adequately defined in specified safety requirements of the E/E/PE
safety-related system, all relevant modes of operation of the EUC, of the E/E/PE system, and
of any equipment or system connected to the E/E/PE system shall be detailed in the specified
requirements for safety-related software.

7.2.2.7 The software safety requirements specification shall specify and document any
safety-related or relevant constraints between the hardware and the software.

7.2.2.8 To the extent required by the E/E/PE hardware architecture design, and considering
the possible increase in complexity, the software safety requirements specification shall
consider the following:

a) software self-monitoring (for examples see IEC 61508-7);

BS EN 61508-3:2010

61508-3 © IEC:2010 - 23 -

b) monitoring of the programmable electronics hardware, sensors, and actuators;

c) periodic testing of safety functions while the system is running;

d) enabling safety functions to be testable when the EUC is operational;

e) software functions to execute proof tests and all diagnostic tests in order to fulfil the

safety integrity requirement of the E/E/PE safety-related system.
NOTE Increased complexity resulting from the above considerations may require the architecture to be revisited.

7.2.2.9 When the E/E/PE safety-related system is required to perform non-safety functions,
then the specified requirements for safety-related software shall clearly identify the non-safety
functions.

NOTE See 7.4.2.8 and 7.4.2.9 for requirements on non-interference between safety functions and non-safety
functions.

7.2.2.10 The software safety requirements specification shall express the required safety
properties of the product, but not of the project as this is covered by safety planning (see
Clause 6 of 61508-1). With reference to 7.2.2.1 to 7.2.2.9, the following shall be specified as
appropriate:

a) the requirements for the following software safety functions:

1) functions that enable the EUC to achieve or maintain a safe state;

2) functions related to the detection, annunciation and management of faults in the
programmable electronics hardware;

3) functions related to the detection, annunciation and management of sensor and
actuators faults;

4) functions related to the detection, annunciation and management of faults in the
software itself (software self-monitoring);

5) functions related to the periodic testing of safety functions on-line (i.e. in the
intended operational environment);

6) functions related to the periodic testing of safety functions off-line (i.e. in an
environment where the EUC is not being relied upon for its safety function);

7) functions that allow the PE system to be safely modified;
8) interfaces to non safety-related functions;

9) capacity and response time performance;

10) interfaces between the software and the PE system;

NOTE 1 They include both off-line and on-line programming facilities.
11) safety-related communications (see 7.4.11 of IEC 61508-2).
b) the requirements for the software systematic capability:

1) the safety integrity level(s) for each of the functions in a) above;

NOTE 2 See Annex A of IEC 61508-5 for information concerning the allocation of safety integrity to
software elements.

2) independence requirements between functions.
7.2.2.11 Where software safety requirements are expressed or implemented by configuration
data, the data shall be:
a) consistent with the system safety requirements;

b) expressed in terms of the permitted range and authorized combinations of its operational
parameters;

c) defined in a manner which is compatible with the underlying software (for example
sequence of execution, run time, data structures, etc.).

NOTE 1 This requirement on application data is particularly relevant to data-driven applications. These are
characterized as follows: the source code is pre-existing and the primary objective of the development activity is to

BS EN 61508-3:2010
- 24 - 61508-3 © IEC:2010

provide assurance that the configuration data correctly states the behaviour required from the application. There
may be complex dependencies between data items, and the validity of data may change over time.

NOTE 2 See Annex G for guidance on data-driven systems.

7.2.2.12 Where data defines the interface between software and external systems, the
following performance characteristics shall be considered in addition to 7.4.11 of IEC 61508-
2:

[

the need for consistency in terms of data definitions;

[}

invalid, out of range or untimely values;

Q O

best case and worst case execution time, and deadlock;

D

)
)
) response time and throughput, including maximum loading conditions;
)
)

overflow and underflow of data storage capacity.
7.2.2.13 Operational parameters shall be protected against:

a) invalid, out of range or untimely values;
b) unauthorized changes;
c) corruption.

NOTE 1 Protection against unauthorized changes should be considered, taking account of both software-based
and non-software mechanisms. Note that effective protection against unauthorized software changes can have
adverse effects on safety e.g. when changes are needed rapidly and in stressful conditions.

NOTE 2 Although a person can form part of a safety-related system (see Clause 1 of IEC 61508-1), human factor
requirements related to the design of E/E/PE safety-related systems are not considered in detail in this standard.
However, the following human considerations should be addressed where appropriate:

e An operator information system should use the pictorial layout and the terminology the operators are familiar
with. It should be clear, understandable and free from unnecessary details and/or aspects;

e Information about the EUC displayed to the operator should follow closely the physical arrangement of the
EUC;

e |f several display contents to the operator are feasible and/or if the possible operator actions allow interactions
whose consequences cannot be seen at one glance, the information displayed should automatically contain at
each state of a display or an action sequence, which state of the sequence is reached, which operations are
feasible and which possible consequences can be chosen.

7.3 Validation plan for software aspects of system safety
NOTE 1 This phase is Box 10.2 of Figure 4.
NOTE 2 Software usually cannot be validated separately from its underlying hardware and system environment.

7.3.1 Objective

The objective of the requirements of this subclause is to develop a plan for validating the
safety-related software aspects of system safety.

7.3.2 Requirements

7.3.2.1 Planning shall be carried out to specify the steps, both procedural and technical, that
will be used to demonstrate that the software satisfies its safety requirements.

7.3.2.2 The validation plan for software aspects of system safety shall consider the
following:
a) details of when the validation shall take place;
b) details of those who shall carry out the validation;
c) identification of the relevant modes of the EUC operation including:
1) preparation for use including setting and adjustment;
2) start up, teach, automatic, manual, semi-automatic, steady state operation;

BS EN 61508-3:2010
61508-3 © IEC:2010 - 25—

3) re-setting, shut down, maintenance;

4) reasonably foreseeable abnormal conditions and reasonably foreseeable operator
misuse.

d) identification of the safety-related software which needs to be validated for each mode of
EUC operation before commissioning commences;

e) the technical strategy for the validation (for example analytical methods, statistical tests
etc.);

f) in accordance with item e), the measures (techniques) and procedures that shall be used
for confirming that each safety function conforms with the specified requirements for the
safety functions, and the specified requirements for software systematic capability;

g) the required environment in which the validation activities are to take place (for example,
for tests this could include calibrated tools and equipment);

h) the pass/fail criteria;

i) the policies and procedures for evaluating the results of the validation, particularly
failures.

NOTE These requirements are based on the general requirements given in 7.8 of IEC 61508-1.

7.3.2.3 The validation shall give a rationale for the chosen strategy. The technical strategy
for the validation of safety-related software shall include the following information:

a) choice of manual or automated techniques or both;

b) choice of static or dynamic techniques or both;

c) choice of analytical or statistical techniques or both.

d) choice of acceptance criteria based on objective factors or expert judgment or both.

7.3.2.4 As part of the procedure for validating safety-related software aspects, the scope
and contents of the validation plan for software aspects of system safety shall be agreed with
the assessor or with a party representing the assessor, if required by the safety integrity level
(see Clause 8 of IEC 61508-1). This procedure shall also make a statement concerning the
presence of the assessor during testing.

7.3.2.5 The pass/fail criteria for accomplishing software validation shall include:

a) the required input signals with their sequences and their values;
b) the anticipated output signals with their sequences and their values; and

c) other acceptance criteria, for example memory usage, timing and value tolerances.

7.4 Software design and development

NOTE This phase is box 10.3 of Figure 4.
7.4.1 Objectives

7.4.1.1 The first objective of the requirements of this subclause is to create a software
architecture that fulfils the specified requirements for safety-related software with respect to
the required safety integrity level.

7.4.1.2 The second objective of the requirements of this subclause is to evaluate the
requirements placed on the software by the hardware architecture of the E/E/PE safety-
related system, including the significance of E/E/PE hardware/software interactions for safety
of the equipment under control.

7.4.1.3 The third objective of the requirements of this subclause is to select a suitable set of
tools, including languages and compilers, run-time system interfaces, user interfaces, and data
formats and representations for the required safety integrity level, over the whole safety lifecycle
of the software which assists verification, validation, assessment and modification.

BS EN 61508-3:2010
- 26 - 61508-3 © IEC:2010

7.4.1.4 The fourth objective of the requirements of this subclause is to design and implement
software that fulfils the specified requirements for safety-related software with respect to the
required safety integrity level, which is analysable and verifiable, and which is capable of
being safely modified.

7.4.1.5 The fifth objective of the requirements of this subclause is to verify that the
requirements for safety-related software (in terms of the required software safety functions
and the software systematic capability) have been achieved.

7.4.1.6 The sixth objective of the requirements of this subclause is to ensure, in so far as it
is appropriate, that configuration of PE systems by data fulfils the specified requirements for
the software systematic capability.

7.4.2 General requirements

7.4.2.1 Depending on the nature of the software development, responsibility for conformance
with 7.4 can rest with the supplier of a safety related programming environment (e.g. PLC
supplier) alone, or with the user of that environment (e.g. the application software developer)
alone, or with both. The division of responsibility shall be determined during safety planning
(see Clause 6).

NOTE See 7.4.3 for aspects of system and software architecture that are relevant to deciding on a practical
division of responsibility.

7.4.2.2 In accordance with the required safety integrity level and the specific technical
requirements of the safety function, the design method chosen shall possess features that
facilitate:

a) abstraction, modularity and other features which control complexity;

b) the expression of:

1) functionality;

2) information flow between elements;

3) sequencing and time related information;

4) timing constraints;

5) concurrency and synchronized access to shared resources;
6) data structures and their properties;

7) design assumptions and their dependencies;

8) exception handling;

9) design assumptions (pre-conditions, post-conditions, invariants);
10) comments.
c) ability to represent several views of the design including structural and behavioural views;
d) comprehension by developers and others who need to understand the design;
e) verification and validation.
7.4.2.3 Testability and the capacity for safe modification shall be considered during the

design activities in order to facilitate implementation of these properties in the final safety-
related system.

NOTE Examples include maintenance modes in machinery and process plant.

7.4.2.4 The design method chosen shall possess features that facilitate software
modification. Such features include modularity, information hiding and encapsulation.

NOTE SeeF.7.

BS EN 61508-3:2010
61508-3 © IEC:2010 - 27 -

7.4.2.5 The design representations shall be based on a notation which is unambiguously
defined or restricted to unambiguously defined features.

7.4.2.6 As far as practicable the design shall keep the safety-related part of the software
simple.

7.4.2.7 The software design shall include, commensurate with the required safety integrity
level, self-monitoring of control flow and data flow. On failure detection, appropriate actions
shall be taken.

7.4.2.8 Where the software is to implement both safety and non-safety functions, then all of
the software shall be treated as safety-related, unless adequate design measures ensure that
the failures of non-safety functions cannot adversely affect safety functions.

7.4.2.9 Where the software is to implement safety functions of different safety integrity
levels, then all of the software shall be treated as belonging to the highest safety integrity
level, unless adequate independence between the safety functions of the different safety
integrity levels can be shown in the design. It shall be demonstrated either (1) that
independence is achieved by both in the spatial and temporal domains, or (2) that any
violation of independence is controlled. The justification for independence shall be
documented.

NOTE See Annex F for techniques for achieving one aspect of independence of software.

7.4.2.10 Where the systematic capability of a software element is lower than the safety
integrity level of the safety function which the software element supports, the element shall be
used in combination with other elements such that the systematic capability of the
combination equals the safety integrity level of the safety function.

7.4.2.11 Where a safety function is implemented using a combination of software elements
of known systematic capability, the systematic capability requirements of 7.4.3 of IEC 61508-
2, shall apply to the combination of elements.

NOTE Distinguish consistently between (1) the end-to-end safety function that is supported by one or more
elements and (2) the element safety function of each of the supporting elements. Where two elements combine to
achieve a higher systematic capability in combination, each of the paired elements should be capable of
preventing/mitigating the hazardous event, but the paired elements are not required to have identical element
safety functions, and it is not required that each of the paired elements is independently capable of providing the
whole safety functionality demanded from the combination.

EXAMPLE An electronic engine throttle control where the end-to-end safety function is “prevent undemanded
acceleration”. The end-to-end safety function is implemented by two processors. The element safety function of the
primary controller is the ideal demand/response behaviour of the throttle. The element safety function of the
secondary processor is a diverse monitor (see IEC 61508-7 C.3.4) and applies an emergency stop if necessary.
The combination of the two processors gives higher confidence that the end-to-end safety function “prevent
undemanded acceleration” will be achieved.

7.4.2.12 Where a pre-existing software element is reused to implement all or part of a safety
function, the element shall meet both requirements a) and b) below for systematic safety
integrity:

a) meet the requirements of one of the following compliance routes:

— Route 15: compliant development. Compliance with the requirements of this standard
for the avoidance and control of systematic faults in software;

— Route 25: proven in use. Provide evidence that the element is proven in use. See
7.4.10 of IEC 61508-2;

— Route 35:assessment of non-compliant development. Compliance with 7.4.2.13.

NOTE 1 Route 1s, 25 and 3s are the element compliance routes of 7.4.2.2 c) of IEC 61508-2 with particular
reference to software elements. They are reproduced here for convenience only, and to minimize references back
to IEC 61508-2.

BS EN 61508-3:2010
- 28 - 61508-3 © IEC:2010

NOTE 2 See 3.2.8 of IEC 61508-4. The pre-existing software could be a commercially available product, or it
could have been developed by some organisation for a previous product or system. Pre-existing software may or
may not have been developed in accordance with the requirements of this standard.

NOTE 3 Requirements on pre-existing elements apply to a run-time library or an interpreter.

b) provide a safety manual (see Annex D of IEC 61508-2 and Annex D of this standard) that
gives a sufficiently precise and complete description of the element to make possible an
assessment of the integrity of a specific safety function that depends wholly or partly on
the pre-existing software element.

NOTE 4 The safety manual may be derived from the element supplier's own documentation and records of the
element supplier’s development process, or may be created or supplemented by additional qualification activities
undertaken by the developer of the safety related system or by third parties. In some cases, reverse engineering
may be required to create specification or design documentation adequate to meet the requirements of this clause,
subject to the prevailing legal conditions (e.g. copyright or intellectual property rights).

NOTE 5 The justification of the element may be developed during safety planning (see Clause 6).

7.4.213 To comply with Route 3; a pre-existing software element shall meet all of the
following requirements a) to i):

a) The software safety requirements specification for the element in its new application shall
be documented to the same degree of precision as would be required by this standard for
any safety related element of the same systematic capability. The software safety
requirements specification shall cover the functional and safety behaviour as applicable to
the element in its new application and as specified in 7.2. See Table A.1.

b) The justification for use of a software element shall provide evidence that the desirable
safety properties specified in the referenced subclauses (i.e. 7.2.2, 7.4.3, 7.4.4, 7.4.5,
746, 747, 7.5.2, 7.7.2, 7.8.2, 7.9.2, and Clause 8) have been considered, taking
account of the guidance in Annex C.

c) The element’s design shall be documented to a degree of precision, sufficient to provide
evidence of compliance with the requirement specification and the required systematic
capability. See 7.4.3, 7.4.5 and 7.4.6, and Tables A.2 and A.4 of Annex A.

d) The evidence required in 7.4.2.13 a) and 7.4.2.13 b) shall cover the software’s integration
with the hardware. See 7.5 and Table A.6 of Annex A.

e) There shall be evidence that the element has been subject to verification and validation
using a systematic approach with documented testing and review of all parts of the
element’s design and code. See 7.4.7, 7.4.8, 7.5, 7.7 and 7.9 and Tables A.5 to A.7 and
A.9 of Annex A as well as related tables in Annex B.

NOTE 1 Positive operational experience may be used to satisfy black-box and probabilistic testing
requirements [see Tables A.7 and B.3].

f) Where the software element provides functions which are are not required in the safety
related system, then evidence shall be provided that the unwanted functions will not
prevent the E/E/PE system from meeting its safety requirements.

NOTE 2 Ways to meet this requirement include:

e removing the functions from the build;

e disabling the functions;

e appropriate system architecture (e.g. partitioning, wrappers, diversity, checking the credibility of outputs);

e extensive testing.

g) There shall be evidence that all credible failure mechanisms of the software element have
been identified and that appropriate mitigation measures have been implemented.

NOTE 3 Appropriate mitigation measures include:
e appropriate system architecture (e.g. partitioning, wrappers, diversity, credibility of checking of outputs);

e exception handling.

h) The planning for use of the element shall identify the configuration of the software
element, the software and hardware run-time environment and if necessary the
configuration of the compilation / linking system.

BS EN 61508-3:2010
61508-3 © IEC:2010 - 29 -

i) The justification for use of the element shall be valid for only those applications which
respect the assumptions made in the compliant item safety manual for the element (see
Annex D of IEC 61508-2 and Annex D).

7.4.2.14 This Subclause 7.4.2 shall, in so far as it is appropriate, apply to data and data
generation languages.

NOTE See Annex G for guidance on data-driven systems.

a) Where a PE system consists of pre-existing functionality that is configured by data to meet
specific application requirements, the design of the application software shall be
commensurate with the degree of application configurability, pre-delivered existing
functionality and complexity of the PE safety-related system.

b) Where the safety-related functionality of a PE system is determined significantly or
predominantly by configuration data, appropriate techniques and measures shall be used
to prevent the introduction of faults during the design, production, loading and
modification of the configuration data and to ensure that the configuration data correctly
states the application logic.

c) The specification of data structures shall be:

1) consistent with the functional requirements of the system, including the application
data;

2) complete;
3) self consistent;
4) such that the data structures are protected against alteration or corruption.

d) Where a PE System consists of pre-existing functionality that is configured by data to
meet specific application requirements, the configuration process itself shall be
documented appropriately.

7.4.3 Requirements for software architecture design

NOTE 1 The software architecture defines the major elements and subsystems of the software, how they are
interconnected, and how the required attributes, particularly safety integrity, will be achieved. It also defines the
overall behaviour of the software, and how software elements interface and interact. Examples of major software
elements include operating systems, databases, EUC input/output subsystems, communication subsystems,
application program(s), programming and diagnostic tools, etc.

NOTE 2 In certain industrial sectors the software architecture would be called a function description or functional
design specification (although these documents could also include the hardware).

NOTE 3 In some contexts of user application programming, particularly in PLCs (see Annex E of IEC 61508-6),
the software architecture is provided by the supplier as a standard feature of the product. The supplier would,
under this standard, be required to assure the user of the compliance of his products to the requirements of 7.4.
The user tailors the PLC to the application by using the standard programming facilities, for example ladder logic.
The requirements of 7.4.3 to 7.4.8 still apply. The requirement to define and document the software architecture
can be seen as information that the user would use to select the PLC (or equivalent) for the application.

NOTE 4 From a safety viewpoint, the software architecture phase is where the basic safety strategy is developed
for the software.

NOTE 5 Although the IEC 61508 series sets numerical target failure measures for safety functions carried out by
E/E/PE safety-related systems, systematic safety integrity is usually unquantified (see 3.5.6 of IEC 61508-4), and
software safety integrity (see 3.5.5 of IEC 61508-4) is defined as a systematic capability on a confidence scale of
1-4 (see 3.5.9 of IEC 61508-4). This standard recognizes that a software failure can be safe or unsafe depending
on the specific use of the software The system/software architecture needs to be such that unsafe failures of an
element are limited by some architectural constraint, and that development methods should take account of these
constraints. This standard applies development and validation techniques with rigour that is qualitatively consistent
with the required systematic capability.

NOTE 6 For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of the software architecture design should be considered:

— completeness with respect to software safety requirements specification;
— correctness with respect to software safety requirements specification;

— freedom from intrinsic design faults;

BS EN 61508-3:2010
-30 - 61508-3 © IEC:2010

— simplicity and understandability;
— predictability of behaviour;

— verifiable and testable design;
— fault tolerance;

— defence against common cause failure from external events.

7.4.3.1 Depending on the nature of the software development, responsibility for conformance
with 7.4.4 can rest with multiple parties. The division of responsibility shall be documented
during safety planning (see Clause 6 of IEC 61508-1).

7.4.3.2 The software architecture design shall be established by the software supplier and/or
developer, and shall be detailed. The software architecture design shall:

a) select and justify (see 7.1.2.7) an integrated set of techniques and measures necessary
during the software safety lifecycle phases to satisfy the software safety requirements
specification at the required safety integrity level. These techniques and measures include
software design strategies for both fault tolerance (consistent with the hardware) and fault
avoidance, including (where appropriate) redundancy and diversity;

b) be based on a partitioning into elements/subsystems, for each of which the following
information shall be provided:

1) whether the elements/subsystems have been previously verified, and if yes, their
verification conditions;

2) whether each subsystem/element is safety-related or not;
3) software systematic capability of the subsystem/element.

c) determine all software/hardware interactions and evaluate and detail their significance;

NOTE Were the software/hardware interaction is already determined by the system architecture, it is sufficient to
refer to the system architecture.

d) use a notation to represent the architecture which is unambiguously defined or restricted
to unambiguously defined features;

e) select the design features to be used for maintaining the safety integrity of all data. Such
data may include plant input-output data, communications data, operator interface data,
maintenance data and internal database data;

f) specify appropriate software architecture integration tests to ensure that the software
architecture satisfies the software safety requirements specification at the required safety
integrity level.

7.4.3.3 Any changes required to the E/E/PE System Safety Requirements Specification (see
7.2.2) after applying 7.4.3.2 shall be agreed with the E/E/PE developer and documented.

NOTE There will inevitably be iteration between the hardware and software architecture (see Figure 5) and there
is therefore a need to discuss with the hardware developer such issues as the test specification for the integration
of the programmable electronics hardware and the software (see 7.5).

7.4.4 Requirements for support tools, including programming languages

NOTE For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of support tools should be considered:

— the degree to which the tool supports the production of software with the required software properties;
— the clarity of the operation and functionality of the tool;

— the correctness and repeatability of the output.

7.4.4.1 A software on-line support tool shall be considered to be a software element of the safety-
related system

NOTE See 3.2.10 and 3.2.11 of IEC 61508-4 for examples of on-line and off-line tools.

BS EN 61508-3:2010
61508-3 © IEC:2010 -31-

7.4.4.2 Software off-line support tools shall be selected as a coherent part of the software
development activities.

NOTE 1 See 7.1.2 for software development lifecycle requirements.

NOTE 2 Appropriate off-line tools to support the development of software should be used in order to increase the
integrity of the software by reducing the likelihood of introducing or not detecting faults during the development.
Examples of tools relevant to the phases of the software development lifecycle include:

a) transformation or translation tools that convert a software or design representation (e.g. text or a diagram)
from one abstraction level to another level: design refinement tools, compilers, assemblers, linkers,
binders, loaders and code generation tools;

b) verification and validation tools such as static code analysers, test coverage monitors, theorem proving
assistants, and simulators;

c) diagnostic tools used to maintain and monitor the software under operating conditions;
d) infrastructure tools such as development support systems;
e) configuration control tools such as version control tools;

f) application data tools that produce or maintain data which are required to define parameters and to
instantiate system functions. Such data includes function parameters, instrument ranges, alarm and trip
levels, output states to be adopted at failure, geographical layout.

NOTE 3 Off-line support tools should be selected to be integrated. In this context, tools are integrated if they work
co-operatively such that the outputs from one tool have suitable content and format for automatic input to a
subsequent tool, thus minimising the possibility of introducing human error in the reworking of intermediate results.

NOTE 4 Off-line support tools should be selected to be compatible with the needs of the application, of the safety
related system, and of the integrated toolset.

NOTE 5 The availability of suitable tools to supply the services that are necessary over the whole lifetime of the
E/E/PE safety-related system (e.g. tools to support specification, design, implementation, documentation,
modification) should be considered.

NOTE 6 Consideration should be given to the competence of the users of the selected tools. See Clause 6 of
IEC 61508-1 for competence requirements.

7.4.4.3 The selection of the off-line support tools shall be justified.

7.4.4.4 All off-line support tools in classes T2 and T3 shall have a specification or product
documentation which clearly defines the behaviour of the tool and any instructions or
constraints on its use. See 7.1.2 for software development lifecycle requirements, and 3.2.11
of IEC 61508-4 for categories of software off-line support tool.

NOTE This “specification or product documentation” is not a safety manual for compliant items (see Annex D of
61508-2 and also of this standard) for the tool itself. The safety manual for compliant item relates to a pre-existing
element that is incorporated into the executable safety related system. Where a pre-existing element has been
generated by a T3 tool and then incorporated into the executable safety related system, then any relevant
information (e.g. the documentation for an optimising compiler may indicate that the evaluation order of function
parameters is not guaranteed) from the tool’s “specification or product documentation” should be included in the
compliant item safety manual that makes possible an assessment of the integrity of a specific safety function that
depends wholly or partly on the incorporated element.”

7.4.4.5 An assessment shall be carried out for offline support tools in classes T2 and T3 to
determine the level of reliance placed on the tools, and the potential failure mechanisms of
the tools that may affect the executable software. Where such failure mechanisms are
identified, appropriate mitigation measures shall be taken.

NOTE 1 Software HAZOP is one technique to analyse the consequences of potential software tool failures.

NOTE 2 Examples of mitigation measures include: avoiding known bugs, restricted use of the tool functionality,
checking the tool output, use of diverse tools for the same purpose.

7.4.4.6 For each tool in class T3, evidence shall be available that the tool conforms to its
specification or documentation. Evidence may be based on a suitable combination of history
of successful use in similar environments and for similar applications (within the organisation
or other organisations), and of tool validation as specified in 7.4.4.7.

NOTE 1 A version history may provide assurance of maturity of the tool, and a record of the errors / ambiguities
that should be taken into account when the tool is used in the new development environment.

BS EN 61508-3:2010
-32 - 61508-3 © IEC:2010

NOTE 2 The evidence listed for T3 may also be used for T2 tools in judging the correctness of their results.
7.4.4.7 The results of tool validation shall be documented covering the following results:

a) a chronological record of the validation activities;
b) the version of the tool product manual being used;
c) the tool functions being validated;

d) tools and equipment used;

e) the results of the validation activity; the documented results of validation shall state either
that the software has passed the validation or the reasons for its failure;

f) test cases and their results for subsequent analysis;
g) discrepancies between expected and actual results.
7.4.4.8 Where the conformance evidence of 7.4.4.6 is unavailable, there shall be effective

measures to control failures of the executable safety related system that result from faults that
are attributable to the tool.

NOTE An example of a measure would be the generation of diverse redundant code which allows the detection
and control of failures of the executable safety related system as a result of faults that have been introduced into
the executable safety related system by a translator.

7.4.4.9 The compatibility of the tools of an integrated toolset shall be verified.

Note: tools are integrated if they work co-operatively such that the outputs from one tool have suitable content and
format for automatic input to a subsequent tool, thus minimizing the possibility of introducing human error in the
reworking of intermediate results. See IEC 61508-7 B.3.5.

7.4.410 To the extent required by the safety integrity level, the software or design
representation (including a programming language) selected shall:

a) have a translator which has been assessed for fitness for purpose including, where
appropriate, assessment against the international or national standards;

b) use only defined language features;

c) match the characteristics of the application;

d) contain features that facilitate the detection of design or programming mistakes;
e) support features that match the design method.

NOTE 1 A programming language is a class of software or design representations. A translator converts a
software or design representation (e.g. text or a diagram) from one abstraction level to another level. Examples of
translators include: design refinement tools, compilers, assemblers, linkers, binders, loaders and code generation
tools.

NOTE 2 The assessment of a translator may be performed for a specific application project, or for a class of
applications. In the latter case all necessary information on the tool (the “specification or product manual”, see
7.4.4.4) regarding the intended and appropriate use of the tool should be available to the user of the tool. The
assessment of the tool for a specific project may then be reduced to checking general suitability of the tool for the
project and compliance with the “specification or product manual” (i.e. proper use of the tool). Proper use might
include additional verification activities within the specific project.

NOTE 3 A validation suite (i.e. a set of test programs whose correct translation is known in advance) may be used
to evaluate the fitness for purpose of a translator according to defined criteria, which should include functional and
non-functional requirements. For the functional translator requirements, dynamic testing may be a main validation
technique. If possible an automatic testing suite should be used.

7.4.4.11 Where 7.4.4.10 cannot be fully satisfied, the fitness for purpose of the language,
and any additional measures which address any identified shortcomings of the language shall
be justified.

7.4.4.12 Programming languages for the development of all safety-related software shall be
used according to a suitable programming language coding standard.

BS EN 61508-3:2010
61508-3 © IEC:2010 - 33 -

NOTE See IEC 61508-7 for guidance on coding standard aspects that relate to software safety.

7.4.4.13 A programming language coding standard shall specify good programming practice,
proscribe unsafe language features (for example, undefined language features, unstructured
designs, etc.), promote code understandability, facilitate verification and testing, and specify
procedures for source code documentation. Where practicable, the following information shall
be contained in the source code:

a) legal entity (for example company, author(s), etc.);
b) description;

c) inputs and outputs;

d) configuration management history.

7.4.4.14 Where automatic code generation or similar automatic translation takes place, the
suitability of the automatic translator for safety-related system development shall be assessed
at the point in the development lifecycle where development support tools are selected.

7.4.4.15 Where off-line support tools of classes T2 and T3 generate items in the
configuration baseline, configuration management shall ensure that information on the tools is
recorded in the configuration baseline. This includes in particular:

a) the identification of the tool and its version;

b) the identification of the configuration baseline items for which the tool version has been
used;

c) the way the tool was used (including the tool parameters, options and scripts selected) for
each configuration baseline item.

NOTE The objective of this clause is to allow the baseline to be reconstructed.

7.4.4.16 Configuration management shall ensure that for tools in classes T2 and T3, only
qualified versions are used.

7.4.4.17 Configuration management shall ensure that only tools compatible with each other
and with the safety-related system are used.

NOTE The safety-related system hardware may also impose compatibility constraints on software tools e.g. a
processor emulator needs to be an accurate model of the real processor electronics.

7.4.4.18 Each new version of off-line support tool shall be qualified. This qualification may
rely on evidence provided for an earlier version if sufficient evidence is provided that:

a) the functional differences (if any) will not affect tool compatibility with the rest of the
toolset; and

b) the new version is unlikely to contain significant new, unknown faults.

NOTE Evidence that the new version is unlikely to contain significant new, unknown faults may be based on (1) a
clear identification of the changes made, (2) an analysis of the verification and validation actions performed on the
new version, and (3) any existing operational experience from other users that is relevant to the new version.

7.4.4.19 Depending on the nature of the software development, responsibility for
conformance with 7.4.4 can rest with multiple parties. The division of responsibility shall be
documented during safety planning (see Clause 6 of IEC 61508-1).

7.4.5 Requirements for detailed design and development — software system design

NOTE 1 Detailed design is defined here to mean software system design: the partitioning of the major elements in
the architecture into a system of software modules; individual software module design; and coding. In small
applications, software system design and architectural design may be combined.

NOTE 2 The nature of detailed design and development will vary with the nature of the software development
activities and the software architecture (see 7.4.3). In some contexts of application programming, for example
ladder logic and function blocks, detailed design can be considered as configuring rather than programming.

BS EN 61508-3:2010
- 34 - 61508-3 © IEC:2010

However it is still good practice to design the software in a structured way, including organising the software into a
modular structure that separates out (as far as possible) safety-related parts; including range checking and other
features that provide protection against data input mistakes; using previously verified software modules; and
providing a design that facilitates future software modifications.

NOTE 3 For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of the design and development should be considered:

— completeness with respect to software safety requirements specification;
— correctness with respect to software safety requirements specification;
— freedom from intrinsic design faults;

— simplicity and understandability

— predictability of behaviour;

— verifiable and testable design;

— fault tolerance / fault detection;

— freedom from common cause failure.

7.4.5.1 Depending on the nature of the software development, responsibility for conformance
with 7.4.5 can rest with multiple parties. The division of responsibility shall be documented
during safety planning (see Clause 6 of IEC 61508-1).

7.4.5.2 The following information shall be available prior to the start of detailed design: the
specification of requirements for the E/E/PE safety related system; the software architecture
design; the validation plan for software aspects of system safety.

7.4.5.3 The software shall be produced to achieve modularity, testability, and the capability
for safe modification.

7.4.5.4 For each major element/subsystem in the software architecture design, further
refinement of the design shall be based on a partitioning into software modules (i.e. the
specification of the software system design). The design of each software module and the
verification to be applied to each software module shall be specified.

NOTE 1 For pre-existing software elements, see 7.4.2.

NOTE 2 Verification includes testing and analysis.

7.4.5.5 Appropriate software system integration tests shall be specified to ensure that the
software system satisfies the software safety requirements specification at the required safety
integrity level.

7.4.6 Requirements for code implementation

NOTE To the extent required by the safety integrity level, the source code shall possess the following properties
(see Annexes A and B for specific techniques, and see Annex C for guidance on interpretation of properties) of
code should be considered:

e be readable, understandable and testable;
e satisfy the specified requirements for software module design (see 7.4.5);
e satisfy the specified requirements of the coding standards (see 7.4.4);

e satisfy all relevant requirements specified during safety planning (see Clause 6).

7.4.6.1 Each module of software code shall be reviewed. Where the code is produced by an
automatic tool, the requirements of 7.4.4 shall be met. Where the source code consists of
reused pre-existing software, the requirements of 7.4.2 shall be met.

NOTE Code review is a verification activity (see 7.9). Code review can be carried out by means of an inspection
of the code: (1) by an individual; (2) by a software walk-though (see IEC 61508-7 C.5.15); or (3) by a formal
inspection (see IEC 61508-7 C.5.14), in increasing order of rigour.

BS EN 61508-3:2010
61508-3 © IEC:2010 - 35 -

7.4.7 Requirements for software module testing

NOTE 1 Testing that the software module correctly satisfies its test specification is a verification activity (see
7.9). It is the combination of code review and software module testing that provides assurance that a software
module satisfies its associated specification, i.e. it is verified.

NOTE 2 For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of the software module testing should be considered:

— completeness of testing with respect to the software design specification;
— correctness of testing with respect to the software design specification (successful completion);
— repeatability;

— precisely defined testing configuration.

7.4.7.1 Each software module shall be verified as required by the software module test
specification that was developed during software system design (see 7.4.5).

NOTE Verification includes testing and analysis.

7.4.7.2 This verification shall show whether or not each software module performs its
intended function and does not perform unintended functions.

NOTE 1 This does not imply testing of all input combinations, nor of all output combinations. Testing all equi-
valence classes or structure based testing may be sufficient. Boundary value analysis or control flow analysis may
reduce the test cases to an acceptable number. Analysable programs make the requirements easier to fulfil. See
Annex C of IEC 61508-7 for these techniques.

NOTE 2 Where the development uses formal methods, formal proofs or assertions, such tests may be reduced in
scope. See Annex C of IEC 61508-7 for these techniques.

NOTE 3 Although systematic safety integrity is usually unquantified (see 3.5.6 of IEC 61508-4), quantified
statistical evidence (e.g. statistical testing, reliability growth) is acceptable if all the relevant conditions for
statistically valid evidence are satisfied e.g. see Annex D of IEC 61508-7.

NOTE 4 If the module is simple enough to make practicable an exhaustive test, then this can be the most efficient
way to demonstrate conformance.

7.4.7.3 The results of the software module testing shall be documented.
7.4.7.4 The procedures for corrective action on not passing the test shall be specified.

7.4.8 Requirements for software integration testing
NOTE Testing that the software is correctly integrated is a verification activity (see 7.9).

7.4.8.1 Software integration tests shall be specified during the design and development
phase (see 7.4.5).

7.4.8.2 The software system integration test specification shall state the following:

QO

the division of the software into manageable integration sets;

[}

test cases and test data;

o O

)

)

) types of tests to be performed;

) test environment, tools, configuration and programs;
)

D

test criteria on which the completion of the test will be judged,;

—h

) procedures for corrective action on failure of test.

7.4.8.3 The software shall be tested in accordance with the software integration tests
specified in the software system integration test specification. These tests shall show that all
software modules and software elements/subsystems interact correctly to perform their
intended function and do not perform unintended functions.

BS EN 61508-3:2010
- 36 - 61508-3 © IEC:2010

NOTE 1 This does not imply testing of all input combinations, nor of all output combinations. Testing all equi-
valence classes or structure based testing may be sufficient. Boundary value analysis or control flow analysis may
reduce the test cases to an acceptable number. Analysable programs make the requirements easier to fulfil. See
Annex C of IEC 61508-7 for these techniques.

NOTE 2 Where the development uses formal methods, formal proofs or assertions, such tests may be reduced in
scope. See Annex C of IEC 61508-7 for these techniques.

NOTE 3 Although systematic safety integrity is usually unquantified (see 3.5.6 of IEC 61508-4), quantified
statistical evidence (e.g. statistical testing, reliability growth) is acceptable if all the relevant conditions for
statistically valid evidence are satisfied e.g. see Annex D of IEC 61508-7.

7.4.8.4 The results of software integration testing shall be documented, stating the test
results, and whether the objectives and the test criteria have been met. If there is a failed
integration test, the reasons for the failure shall be documented.

7.4.8.5 During software integration, any modification to the software shall be subject to an
impact analysis which shall determine all software modules impacted, and the necessary re-
verification and re-design activities.

7.5 Programmable electronics integration (hardware and software)

NOTE This phase is box 10.4 of Figure 4.
7.5.1 Objectives

7.5.1.1 The first objective of the requirements of this subclause is to integrate the software
onto the target programmable electronic hardware.

7.5.1.2 The second objective of the requirements of this subclause is to combine the
software and hardware in the safety-related programmable electronics to ensure their
compatibility and to meet the requirements of the intended safety integrity level.

NOTE 1 Testing that the software is correctly integrated with the programmable electronic hardware is a
verification activity (see 7.9).

NOTE 2 Depending on the nature of the application, these activities may be combined with 7.4.8.

7.5.2 Requirements

NOTE For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of the integration should be considered:

— completeness of integration with respect to the design specifications;

— correctness of integration with respect to the design specifications (successful completion);

— repeatability;

— precisely defined integration configuration.

7.5.2.1 Integration tests shall be specified during the design and development phase (see

7.4.3) to ensure the compatibility of the hardware and software in the safety-related
programmable electronics.

NOTE Close co-operation with the developer of the E/E/PE system may be required in order to develop the
integration tests.

7.5.2.2 The software/PE integration test specification (hardware and software) shall state the
following:

[

the split of the system into integration levels;

(=)

test cases and test data;

o O

test environment including tools, support software and configuration description;

D

)
)
) types of tests to be performed;
)
)

test criteria on which the completion of the test will be judged.

BS EN 61508-3:2010
61508-3 © IEC:2010 - 37 -

7.5.2.3 The software/PE integration test specification (hardware and software) shall
distinguish between those activities which can be carried out by the developer on his
premises and those that require access to the user's site.

7.5.2.4 The software/PE integration test specification (hardware and software) shall
distinguish between the following activities:

a) merging of the software system on to the target programmable electronic hardware;
b) E/E/PE integration, i.e. adding interfaces such as sensors and actuators;
c) applying the E/E/PE safety-related system to the EUC.

NOTE Items b) and c) are covered by IEC 61508-1 and IEC 61508-2 and are included here to put item a) in
context and for completeness. They are not normally the responsibility of the software developers.

7.5.2.5 The software shall be integrated with the safety-related programmable electronic
hardware in accordance with the software/PE integration test specification (hardware and
software).

7.5.2.6 During the integration testing of the safety-related programmable electronics
(hardware and software), any change to the integrated system shall be subject to an impact
analysis. The impact analysis shall determine all software modules impacted, and the
necessary re-verification activities.

7.5.2.7 Test cases and their expected results shall be documented for subsequent analysis.

7.5.2.8 The integration testing of the safety-related programmable electronics (hardware and
software) shall be documented, stating the test results, and whether the objectives and the
test criteria have been met. If there is a failure, the reasons for the failure shall be
documented. Any resulting modification or change to the software shall be subject to an
impact analysis which shall determine all software elements/modules impacted, and the
necessary re-verification and re-design activities.

7.6 Software operation and modification procedures

NOTE This phase is box 10.5 of Figure 4.
7.6.1 Objective

The objective of the requirements of this subclause is to provide information and procedures
concerning software necessary to ensure that the functional safety of the E/E/PE safety-
related system is maintained during operation and modification.

7.6.2 Requirements

The requirements are given in 7.6 of IEC 61508-2 and in 7.8 of this standard.

NOTE In this standard software (unlike hardware) is not capable of being maintained: it is always modified.

7.7 Software aspects of system safety validation

NOTE 1 This phase is box 10.6 of Figure 4.

NOTE 2 Software usually cannot be validated separately from its underlying hardware and system environment.

7.71 Objective

The objective of the requirements of this subclause is to ensure that the integrated system
complies with the software safety requirements specification at the required safety integrity
level.

BS EN 61508-3:2010
- 38 - 61508-3 © IEC:2010

7.7.2 Requirements

NOTE For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of safety validation should be considered:

— completeness of validation with respect to the software design specification;

— correctness of validation with respect to the software design specification (successful completion);

— repeatability;

— precisely defined validation configuration.

7.7.2.1 If the compliance with the requirements for safety-related software has already been

established in the safety validation planning for the E/E/PE safety-related system (see 7.7 of
IEC 61508-2), then the validation need not be repeated.

7.7.2.2 The validation activities shall be carried out as specified the in validation plan for
software aspects of system safety.

7.7.2.3 Depending on the nature of the software development, responsibility for conformance
with 7.7 can rest with multiple parties. The division of responsibility shall be documented
during safety planning (see Clause 6 of IEC 61508-1).

7.7.2.4 The results of validating the software aspects of system safety shall be documented.

7.7.2.5 For each safety function, software safety validation shall document the following
results:

a) a chronological record of the validation activities that will permit the sequence of activities
to be retraced;

NOTE When recording test results, it is important to be able to retrace the sequence of activities. The
emphasis of this requirement is on retracing a sequence of activities, and not on producing a timed/dated list
of documents.

b) the version of the validation plan for software aspects of system safety (see 7.3) being
used;

c) the safety function being validated (by test or analysis), together with reference to the
validation plan for software aspects of system safety;

d) tools and equipment used together with calibration data;

e) the results of the validation activity;

f) discrepancies between expected and actual results.

7.7.2.6 When discrepancies occur between expected and actual results, the analysis made
and the decisions taken on whether to continue the validation, or to issue a change request

and return to an earlier part of the development lifecycle, shall be documented as part of the
results of validating the software aspects of system safety.

NOTE The requirements of 7.7.2.2 to 7.7.2.6 are based on the general requirements given in 7.14 of IEC 61508-
1.

7.7.2.7 The validation of safety-related software aspects of system safety shall meet the
following requirements:

a) testing shall be the main validation method for software; analysis, animation and
modelling may be used to supplement the validation activities;
b) the software shall be exercised by simulation of:
1) input signals present during normal operation;
2) anticipated occurrences;
3) undesired conditions requiring system action;

BS EN 61508-3:2010
61508-3 © IEC:2010 -39 -

c) the supplier and/or developer (or the multiple parties responsible for compliance) shall
make available the documented results of the validation of software aspects of system
safety and all pertinent documentation to the system developer to enable his product to
meet the requirements of IEC 61508-1 and IEC 61508-2.

7.7.2.8 Software tools shall meet the requirements of 7.4.4.

7.7.2.9 The results of the validation of safety-related software aspects of system safety shall
meet the following requirements:

a) the tests shall show that all of the specified requirements for safety-related software (see
7.2) are correctly met and the software does not perform unintended functions;

b) test cases and their results shall be documented for subsequent analysis and independent
assessment (see Clause 8 of IEC 61508-1) as required by the safety integrity level;

c) the documented results of validating the software aspects of system safety shall state
either (1) that the software has passed the validation or (2) the reasons for not passing
the validation.

7.8 Software modification

NOTE This phase is Box 10.5 of Figure 4.
7.8.1 Objective

The objective of the requirements of this subclause is to guide corrections, enhancements or
adaptations to the validated software, ensuring that the required software systematic
capability is sustained.

7.8.2 Requirements

NOTE For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of the software modification should be considered:

— completeness of modification with respect to its requirements;
— correctness of modification with respect to its requirements;
— freedom from introduction of intrinsic design faults;

— avoidance of unwanted behaviour;

— verifiable and testable design;

— regression testing and verification coverage.

7.8.2.1 Prior to carrying out any software modification, software modification procedures
shall be made available (see 7.16 of IEC 61508-1).

NOTE 1 Subclauses 7.8.2.1 to 7.8.2.9 apply primarily to changes occurring during the operational phase of the
software. They may also apply during the programmable electronics integration and overall installation and
commissioning phases (see 7.13 of IEC 61508-1).

NOTE 2 An example of a modification procedure model is shown in Figure 9 of IEC 61508-1.

7.8.2.2 A modification shall be initiated only on the issue of an authorized software
modification request under the procedures specified during safety planning (see Clause 6)
which details the following:

a) the hazards which may be affected;

b) the proposed modification;

c) the reasons for modification.

NOTE A request for modification could arise from, for example

e functional safety is found to be less than required by the safety requirements specification;

e systematic fault experience;

BS EN 61508-3:2010
—-40 - 61508-3 © IEC:2010

e new or amended safety legislation;

e modifications to the EUC or its use;

e modification to the overall safety requirements;

e analysis of operations and maintenance performance, indicating that the performance is below target;

e routine functional safety audits.

7.8.2.3 An analysis shall be carried out on the impact of the proposed software modification
on the functional safety of the E/E/PE safety-related system:

a) to determine whether or not a hazard and risk analysis is required;
b) to determine which software safety lifecycle phases will need to be repeated.

7.8.2.4 The impact analysis results obtained in 7.8.2.3 shall be documented.

7.8.2.5 All modifications which have an impact on the functional safety of the E/E/PE safety-
related system shall initiate a return to an appropriate phase of the software safety lifecycle.
All subsequent phases shall then be carried out in accordance with the procedures specified
for the specific phases in accordance with the requirements in this standard. Safety planning
(see Clause 6) shall detail all subsequent activities.

NOTE It may be necessary to implement a full hazard and risk analysis, which may generate a need for different
safety integrity levels than currently specified for the safety functions implemented by the E/E/PE safety-related
systems.

7.8.2.6 The safety planning for the modification of safety-related software shall meet the
requirements given in Clause 6 of IEC 61508-1. In particular:

a) identification of staff and specification of their required competency;

b) detailed specification for the modification;

c) verification planning;

d) scope of revalidation and testing of the modification to the extent required by the safety

integrity level.
NOTE Depending on the nature of the application, involvement of domain experts may be important.

7.8.2.7 Modification shall be carried out as planned.

7.8.2.8 Details of all modifications shall be documented, including references to:

a) the modification/retrofit request;

b) the results of the impact analysis which assesses the impact of the proposed software
modification on the functional safety, and the decisions taken with associated
justifications;

c) software configuration management history;
d) deviation from normal operations and conditions;
e) all documented information affected by the modification activity.

7.8.2.9 Information on the details of all modifications shall be documented. The
documentation shall include the re-verification and re-validation of data and results.

7.8.2.10 The assessment of the required modification or retrofit activity shall be dependent
on the results of the impact analysis and the software systematic capability.

BS EN 61508-3:2010
61508-3 © IEC:2010 - 41 -

7.9 Software verification
7.9.1 Objective

The objective of the requirements of this subclause is, to the extent required by the safety
integrity level, to test and evaluate the outputs from a given software safety lifecycle phase to
ensure correctness and consistency with respect to the inputs to that phase.

NOTE 1 This subclause considers the generic aspects of verification which are common to several safety lifecycle
phases. This subclause does not place additional requirements for the testing element of verification in 7.4.7
(software module testing), 7.4.8 (software integration) and 7.5 (programmable electronics integration) because
these are verification activities in themselves. Nor does this subclause require verification in addition to software
validation (see 7.7), because in this standard software validation is the demonstration of conformance to the safety
requirements specification. Checking whether the safety requirements specification is itself correct is carried out by
domain experts.

NOTE 2 Depending on the software architecture, responsibility for the verification activity may be split between all
organisations involved in the development and modification of the software.

7.9.2 Requirements

NOTE For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of the data verification should be considered:

— completeness of verification with respect to the previous phase;
— correctness of verification with respect to the previous phase (successful completion);
— repeatability;

— precisely defined verification configuration.

7.9.2.1 The verification of software shall be planned (see 7.3) concurrently with the develop-
ment, for each phase of the software safety lifecycle, and shall be documented.

7.9.2.2 The software verification planning shall refer to the criteria, techniques and tools to
be used in the verification activities, and shall address:

a) the evaluation of the safety integrity requirements;

b) the selection and documentation of verification strategies, activities and techniques;

c) the selection and utilisation of verification tools (test harness, special test software,
input/output simulators etc.);

d) the evaluation of verification results;
e) the corrective actions to be taken.

7.9.2.3 The software verification shall be performed as planned.

NOTE Selection of techniques, measures for verification and the degree of independence of the verification
activities will depend upon a number of factors and may be specified in application sector standards. The factors
could include, for example:

. size of project;

. degree of complexity;

. degree of novelty of design;

. degree of novelty of technology.

7.9.2.4 Evidence shall be documented to show that the phase being verified has, in all
respects, been satisfactorily completed.

7.9.2.5 After each verification, the verification documentation shall include:

a) identification of items to be verified;

b) identification of the information against which the verification has been done;

NOTE 1 Information against which the verification has been performed includes but is not limited to input from the
previous lifecycle phase, design standards, coding standards and tools used.

BS EN 61508-3:2010
-42 - 61508-3 © IEC:2010

c) non-conformances.

NOTE 2 Examples of non-conformances include software modules, data structures, and algorithms poorly
adapted to the problem.

7.9.2.6 All essential information from phase N of the software safety lifecycle needed for the
correct execution of the next phase N+1 shall be available and shall be verified. Outputs from
phase N include:
a) adequacy of the specification, design, or code in phase N for:
1) functionality;
2) safety integrity, performance and other requirements of safety planning (see Clause 6);
3) readability by the development team;
4) testability for further verification;
5) safe modification to permit further evolution;

b) adequacy of the validation planning and/or tests specified for phase N for specifying and
describing the design of phase N;

c) check for incompatibilities between:
1) the tests specified in phase N, and the tests specified in the previous phase N-1;
2) the outputs within phase N.

7.9.2.7 Subject to the choice of software development lifecycle (see 7.1), the following
verification activities shall be performed:

a) verification of software safety requirements;
b) verification of software architecture;

c) verification of software system design;

d) verification of software module design;

e) verification of code;

f) verification of data;

g) verification of timing performance;

h) software module testing (see 7.4.7);

i) software integration testing (see 7.4.8);

j) programmable electronics integration testing (see 7.5);

k) software aspects of system safety validation (see 7.7).

NOTE For requirements a) to g) see below.

7.9.2.8 Verification of software safety requirements: after the software safety requirements
specification has been completed, and before the next phase of software design and
development begins, verification shall:

a) consider whether the software safety requirements specification adequately fulfils the
E/E/PE system safety requirements specification (see 7.10 of IEC 61508-1 and 7.2 of
IEC 61508-2) for functionality, safety integrity, performance, and any other requirements
of safety planning;

b) consider whether the validation plan for software aspects of system safety adequately
fulfils the software safety requirements specification;

c) check for incompatibilities between:

1) the software safety requirements specification, and the E/E/PE system safety
requirements specification (see 7.10 of IEC 61508-1 and 7.2 of IEC 61508-2);

2) the software safety requirements specification, and the validation plan for software
aspects of system safety.

BS EN 61508-3:2010
61508-3 © IEC:2010 - 43 -

7.9.2.9 Verification of software architecture: after the software architecture design has been
completed, verification shall:

a) consider whether the software architecture design adequately fulfils the software safety
requirements specification;

b) consider whether the integration tests specified in the software architecture design are
adequate;

c) consider whether the attributes of each major element/subsystem are adequate with
reference to:

1) feasibility of the safety performance required;
2) testability for further verification;
3) readability by the development and verification team;
4) safe modification to permit further evolution.
d) check for incompatibilities between the following:
1) the software architecture design, and the software safety requirements specification;
2) the software architecture design and its integration tests;
3) the software architecture design integration tests and the validation plan for software
aspects of system safety.

7.9.2.10 Verification of software system design: after the software system design has been
completed, verification shall:

a) consider whether the software system design (see 7.4.5) adequately fulfils the software
architecture design;

b) consider whether the specified tests of the software system integration (see 7.4.5)
adequately fulfil the software system design (see 7.4.5);

c) consider whether the attributes of each major element of the software system design
specification (see 7.4.5) are adequate with reference to:

1) feasibility of the safety performance required;

2) testability for further verification;

3) readability by the development and verification team;
4) safe modification to permit further evolution.

NOTE The software system integration tests may be specified as part of the software architecture integration
tests.

d) check for incompatibilities between:

1) the software system design specification (see 7.4.5), and the software architecture
design;

2) the software system design specification (see 7.4.5), and the software system
integration test specification (see.4.5);

3) the tests required by the software system integration test specification (see 7.4.5) and
the software architecture integration test specification (see 7.4.3).

7.9.2.11 \Verification of software module design: after the design of each software module
has been completed, verification shall:

a) consider whether the software module design specification (see 7.4.5) adequately fulfils
the software system design specification (see 7.4.5);

b) consider whether the software module test specification (see 7.4.5) is adequate for the
software module design specification (see 7.4.5);

c) consider whether the attributes of each software module are adequate with reference to:

1) feasibility of the safety performance required (see software safety requirements
specification);

BS EN 61508-3:2010
— 44 — 61508-3 © IEC:2010

2) testability for further verification;
3) readability by the development and verification team;
4) safe modification to permit further evolution.

d) check for incompatibilities between:

1) the software module design specification (see 7.4.5), and the software system design
specification (see 7.4.5);

2) (for each software module) the software module design specification (see 7.4.5), and
the software module test specification (see 7.4.5);

3) the software module test specification (see 7.4.5), and the software system integration
test specification (see 7.4.5).

7.9.2.12 \Verification of code: the source code shall be verified by static methods to ensure
conformance to the software module design specification (see 7.4.5), the required coding
standards (see 7.4.4), and the validation plan for software aspects of system safety.

NOTE In the early phases of the software safety lifecycle, verification is static (for example inspection, review,
formal proof, etc). Code verification includes such techniques as software inspections and walk-throughs. It is the
combination of the results of code verification and software module testing that provides assurance that each
software module satisfies its associated specification. From then onwards testing becomes the primary means of
verification.

7.9.2.13 Verification of data.

a) The data structures shall be verified.
b) The application data shall be verified for:
1) consistency with the data structures;
2) completeness against the application requirements;

3) compatibility with the underlying system software (for example, sequence of execution,
run-time, etc.); and

4) correctness of the data values.
c) All operational parameters shall be verified against the application requirements.

d) All plant interfaces and associated software (i.e. sensors and actuators and off-line
interfaces: see 7.2.2.12) shall be verified for:

1) detection of anticipated interface failures;
2) tolerance to anticipated interface failures.

e) All communication interfaces and associated software shall be verified for an adequate
level of:

1) failure detection;
2) protection against corruption;
3) data validation.

7.9.2.14 Verification of timing performance: predictability of behaviour in the time domain
shall be verified.

NOTE Timing behaviour may include: performance, resources, response time, worst case execution time,
thrashing, dead-lock free, run-time system.

8 Functional safety assessment

NOTE For the selection of appropriate techniques and measures (see Annexes A and B) to implement the
requirements of this clause, the following properties (see Annex C for guidance on interpretation of properties, and
Annex F of IEC 61508-7 for informal definitions) of the functional safety assessment should be considered:

— completeness of functional safety assessment with respect to this standard;

— correctness of functional safety assessment with respect to the design specifications (successful completion);

BS EN 61508-3:2010
61508-3 © IEC:2010 - 45—

— traceable closure of all identified issues;

— the ability to modify the functional safety assessment after change without the need for extensive re-work of
the assessment;

— repeatability;
— timeliness;

— precisely defined configuration.

8.1 The objective and requirements of Clause 8 of IEC 61508-1 apply to the assessment of
safety-related software.

8.2 Unless otherwise stated in application sector international standards, the minimum level
of independence of those carrying out the functional safety assessment shall be as specified
in Clause 8 of IEC 61508-1.

8.3 An assessment of functional safety may make use of the results of the activities of
Table A.10.

NOTE Selecting techniques from Annexes A and B does not guarantee by itself that the required safety integrity
will be achieved (see 7.1.2.7). The assessor should also consider:

e the consistency and the complementary nature of the chosen methods, languages and tools for the whole
development cycle;

e whether the developers use methods, languages and tools they fully understand;

e whether the methods, languages and tools are well-adapted to the specific problems encountered during
development.

BS EN 61508-3:2010
— 46 - 61508-3 © IEC:2010

Annex A
(normative)

Guide to the selection of techniques and measures

Some of the subclauses of this standard have an associated table, for example 7.2 (software
safety requirements specification) is associated with Table A.1. More detailed tables in Annex
B expand upon some of the entries in the tables of Annex A. For example, Table B.2 expands
on the topic of dynamic analysis and testing in Table A.5.

See IEC 61508-7 for an overview of the specific techniques and measures referenced in
Annexes A and B.

With each technique or measure in the tables there is a recommendation for safety integrity
levels 1 to 4. These recommendations are as follows.

HR the technique or measure is highly recommended for this safety integrity level. If this
technique or measure is not used then the rationale behind not using it should be
detailed with reference to Annex C during the safety planning and agreed with the
assessor.

R the technique or measure is recommended for this safety integrity level as a lower
recommendation to a HR recommendation.

--- the technique or measure has no recommendation for or against being used.

NR the technique or measure is positively not recommended for this safety integrity level. If
this technique or measure is used then the rationale behind using it should be detailed
with reference to Annex C during the safety planning and agreed with the assessor.

Appropriate techniques/measures shall be selected according to the safety integrity level.
Alternate or equivalent techniques/measures are indicated by a letter following the number.
Only one of the alternate or equivalent techniques/measures has to be satisfied.

Other measures and techniques may be applied providing that the requirements and
objectives have been met. See Annex C for guidance on selecting techniques.

The ranking of the techniques and measures is linked to the concept of effectiveness used in
IEC 61508-2. For all other factors being equal, techniques which are ranked HR will be more
effective in either preventing the introduction of systematic faults during software
development, or (for the case of the software architecture) more effective in controlling
residual faults in the software revealed during execution than techniques ranked as R.

Given the large number of factors that affect software systematic capability it is not possible
to give an algorithm for combining the techniques and measures that will be correct for any
given application. Guidance on a rationale for selecting specific techniques to achieve
software systematic capability is given in Annex C.

For a particular application, the appropriate combination of techniques or measures are to be
stated during safety planning, with appropriate techniques or measures being selected unless
the note attached to the table makes other requirements.

Initial guidance in the form of two worked examples on the interpretation of the tables is given
in IEC 61508-6.

BS EN 61508-3:2010
61508-3 © IEC:2010 - 47 -

Table A.1 — Software safety requirements specification

(See 7.2)
Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
1a | Semi-formal methods Table B.7 R R HR HR
1b | Formal methods B.2.2,C.2.4 --- R R HR
2 Forward traceability between the system safety C.2.11 R R HR HR
requirements and the software safety requirements

3 Backward traceability between the safety C.2.11 R R HR HR
requirements and the perceived safety needs

4 Computer-aided specification tools to support B.2.4 R R HR HR
appropriate techniques/measures above

NOTE 1 The software safety requirements specification will always require a description of the problem in natural
language and any necessary mathematical notation that reflects the application.

NOTE 2 The table reflects additional requirements for specifying the software safety requirements clearly and
precisely.

NOTE 3 See Table C.1.

NOTE 4 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.

BS EN 61508-3:2010
- 48 - 61508-3 © IEC:2010

Table A.2 — Software design and development —
software architecture design

(see 7.4.3)
Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
Architecture and design feature
1 Fault detection C.3.1 --- R HR HR
2 Error detecting codes C.3.2 R R HR
3a [Failure assertion programming C.3.3 R R HR
3b | Diverse monitor techniques (with independence between c3.4 --- R —---
the monitor and the monitored function in the same
computer)
3c | Diverse monitor techniques (with separation between the c3.4 --- R R HR
monitor computer and the monitored computer)
3d | Diverse redundancy, implementing the same software C.3.5 --- --- --- R
safety requirements specification
3e [Functionally diverse redundancy, implementing different €35 --- --- R HR
software safety requirements specification
3f Backward recovery C.3.6 R R --- NR
3g | Stateless software design (or limited state design) C.2.12 --- --- R HR
4a | Re-try fault recovery mechanisms C.3.7 R R --- ---
4b | Graceful degradation C.3.8 R R HR HR
5 Artificial intelligence - fault correction C.3.9 --- NR NR NR
6 Dynamic reconfiguration C.3.10 --- NR NR NR
7 Modular approach Table B.9 HR HR HR HR
8 Use of trusted/verified software elements (if available) C.2.10 R HR HR HR
9 Forward traceability between the software safety C.2.11 R R HR HR
requirements specification and software architecture
10 | Backward traceability between the software safety C.2.11 R R HR HR
requirements specification and software architecture
11a | Structured diagrammatic methods ** C.21 HR HR HR HR
11b | Semi-formal methods ** Table B.7 R R HR HR
11c | Formal design and refinement methods ** B.2.2, C.2.4 --- R HR
11d | Automatic software generation C.4.6 R R R
12 | Computer-aided specification and design tools B.2.4 R R HR HR
13a | Cyclic behaviour, with guaranteed maximum cycle time C.3.11 R HR HR HR
13b | Time-triggered architecture C.3.11 R HR HR HR
13c | Event-driven, with guaranteed maximum response time C.3.11 R HR HR -
14 | Static resource allocation C.2.6.3 - R HR HR
15 | Static synchronisation of access to shared resources C.2.6.3 - - R HR

BS EN 61508-3:2010
61508-3 © IEC:2010 - 49 —

NOTE 1 Some of the methods given in Table A.2 are about design concepts, others are about how the design is
represented.

NOTE 2 The measures in this table concerning fault tolerance (control of failures) should be considered with the
requirements for architecture and control of failures for the hardware of the programmable electronics in IEC 61508-
2.

NOTE 3 See Table C.2.
NOTE 4 The group 13 measures apply only to systems and software with safety timing requirements.

NOTE 5 Measure 14. The use of dynamic objects (for example on the execution stack or on a heap) may impose
requirements on both available memory and also execution time. Measure 14 does not need to be applied if a
compiler is used which ensures a) that sufficient memory for all dynamic variables and objects will be allocated
before runtime, or which guarantees that in case of memory allocation error, a safe state is achieved; b) that
response times meet the requirements.

NOTE 6 Measure 4a. Re-try fault recovery is often appropriate at any SIL but a limit should be set on the number
of retries.

NOTE 7 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or equivalent
techniques/measures are indicated by a letter following the number. It is intended the only one of the alternate or
equivalent techniques/measures should be satisfied. The choice of alternative technique should be justified in
accordance with the properties, given in Annex C, desirable in the particular application.

** Group 11, “Structured methods”. Use measure 11a only if 11b is not suited to the domain for SIL 3+4.

Table A.3 — Software design and development —
support tools and programming language

(See 7.4.4)
Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
1 Suitable programming language C.4.5 HR HR HR HR
2 Strongly typed programming language C.4.1 HR HR HR HR
3 Language subset C.4.2 - --- HR HR
4a | Certified tools and certified translators C.4.3 R HR HR HR
4b | Tools and translators: increased confidence from use C4.4 HR HR HR HR

NOTE 1 See Table C.3.

NOTE 2 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.

BS EN 61508-3:2010
-50 - 61508-3 © IEC:2010

Table A.4 — Software design and development —
detailed design

(See 7.4.5 and 7.4.6)

(Includes software system design, software module design and coding)

Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
1a | Structured methods ** C.21 HR HR HR HR
1b [Semi-formal methods ** Table B.7 R HR HR HR
1c | Formal design and refinement methods ** B.2.2, C.24 --- R R HR
2 Computer-aided design tools B.3.5 R R HR HR
3 Defensive programming C.2.5 - R HR HR
4 Modular approach Table B.9 HR HR HR HR
5 Design and coding standards C.2.6 R HR HR HR

Table B.1
6 Structured programming C.2.7 HR HR HR HR
7 Use of trusted/verified software elements (if available) C.2.10 R HR HR HR
8 Forward traceability between the software safety C.2.11 R R HR HR
requirements specification and software design

NOTE 1 See Table C.4.

NOTE 2 There is still debate about the suitability of OO software development for safety-related systems. See
Annex G of IEC 61508-7 for guidance on object oriented architecture and design.

NOTE 3 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*

*k

Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.

Group 1, “Structured methods”. Use measure 1a only if 1b is not suited to the domain for SIL 3+4.

BS EN 61508-3:2010
61508-3 © IEC:2010 - 51—

Table A.5 — Software design and development —
software module testing and integration

(See 7.4.7 and 7.4.8)

Technique/Measure * Ref. SIL1(SIL2|SIL3| SIL4
1 Probabilistic testing C.5.1 --- R R R
2 Dynamic analysis and testing B.6.5 R HR HR HR
Table B.2
3 Data recording and analysis C.5.2 HR HR HR HR
Functional and black box testing B.5.1 HR HR HR HR
B.5.2
Table B.3
5 Performance testing Table B.6 R HR HR
6 Model based testing C.5.27 R HR HR
7 Interface testing C.5.3 R HR HR
8 Test management and automation tools c.4.7 R HR HR HR
9 Forward traceability between the software design specification C.2.11 R HR HR
and the module and integration test specifications
10 Formal verification C.5.12 --- --- R R

NOTE 1 Software module and integration testing are verification activities (see Table B.9).
NOTE 2 See Table C.5.

NOTE 3 Technique 9. Formal verification may reduce the amount and extent of module and integration testing
required.

NOTE 4 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate techniques/measures shall be selected according to the safety integrity level.

Table A.6 — Programmable electronics integration (hardware and software)

(See 7.5)
Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
1 Functional and black box testing B.5.1 HR HR HR HR
B.5.2
Table B.3

2 Performance testing Table B.6 R R HR HR
3 Forward traceability between the system and software C.2.11 R R HR HR

design requirements for hardware/software

integration and the hardware/software integration test

specifications

NOTE 1 Programmable electronics integration is a verification activity (see Table A.9).
NOTE 2 See Table C.6.

NOTE 3 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate techniques/measures shall be selected according to the safety integrity level.

BS EN 61508-3:2010
-52 - 61508-3 © IEC:2010

Table A.7 — Software aspects of system safety validation

(See 7.7)
Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
1 Probabilistic testing C.5.1 --- R R HR
2 Process simulation C.5.18 R R HR HR
3 Modelling Table B.5 R R HR HR
4 Functional and black-box testing B.5.1 HR HR HR HR
B.5.2
Table B.3

5 Forward traceability between the software safety C.2.11 R R HR HR

requirements specification and the software safety

validation plan
6 Backward traceability between the software safety C.2.11 R R HR HR

validation plan and the software safety requirements

specification

NOTE 1 See Table C.7.

NOTE 2 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level.

Table A.8 — Modification

(See 7.8)
Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4

1 Impact analysis C.5.23 HR HR HR HR
2 Reverify changed software module C.5.23 HR HR HR HR
3 Reverify affected software modules C.5.23 R HR HR HR
4a | Revalidate complete system Table A.7 --- R HR HR
4b [Regression validation C.5.25 R HR HR HR
5 Software configuration management C.5.24 HR HR HR HR
6 Data recording and analysis C.5.2 HR HR HR HR
7 Forward traceability between the Software safety C.2.1 R R HR HR

requirements specification and the software

modification plan (including reverification and

revalidation)
8 Backward traceability between the software C.2.11 R R HR HR

modification plan (including reverification and

revalidation)and the software safety requirements

specification

NOTE 1 See Table C.8.
NOTE 2 Techniques group 4. Impact analysis is a necessary part of regression validation. See IEC 61508-7.

NOTE 3 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.

BS EN 61508-3:2010
61508-3 © IEC:2010 - 53 -

Table A.9 — Software verification

(See 7.9)
Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
1 Formal proof C.5.12 --- R R HR
2 Animation of specification and design C.5.26 R R R R
3 Static analysis B.6.4 R HR HR HR
Table B.8
4 Dynamic analysis and testing B.6.5 R HR HR HR
Table B.2
5 Forward traceability between the software design C.2.11 R R HR HR
specification and the software verification (including
data verification) plan
6 Backward traceability between the software C.2.11 R R HR HR
verification (including data verification) plan and
the software design specification
7 Offline numerical analysis C.2.13 R R HR HR
Software module testing and integration See Table A.5
Programmable electronics integration testing See Table A.6
Software system testing (validation) See Table A.7

NOTE 1 For convenience all verification activities have been drawn together under this table. However, this does
not place additional requirements for the dynamic testing element of verification in Table A.5 and Table A.6 which
are verification activities in themselves. Nor does this table require verification testing in addition to software
validation (see Table B.7), which in this standard is the demonstration of conformance to the safety requirements
specification (end-end verification).

NOTE 2 Verification crosses the boundaries of IEC 61508-1, IEC 61508-2 and IEC 61508-3. Therefore the first
verification of the safety-related system is against the earlier system level specifications.

NOTE 3 In the early phases of the software safety lifecycle verification is static, for example inspection, review,
formal proof. When code is produced dynamic testing becomes possible. It is the combination of both types of
information that is required for verification. For example code verification of a software module by static means
includes such techniques as software inspections, walk-throughs, static analysis, formal proof. Code verification
by dynamic means includes functional testing, white-box testing, statistical testing. It is the combination of both
types of evidence that provides assurance that each software module satisfies its associated specification.

NOTE 4 See Table C.9.

NOTE 5 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate techniques/measures shall be selected according to the safety integrity level.

BS EN 61508-3:2010
- 54 - 61508-3 © IEC:2010

Table A.10 — Functional safety assessment

(see Clause 8)

Assessment/Technique * Ref. SIL 1 SIL 2 SIL 3 SIL 4

1 Checklists B.2.5 R R R R
2 Decision/truth tables C.6.1 R R R R
3 Failure analysis Table B.4 R R HR HR
4 Common cause failure analysis of diverse software (if C.6.3 --- R HR HR

diverse software is actually used)
5 Reliability block diagram C.6.4 R R R
6 Forward traceability between the requirements of C.2.11 R R HR HR

Clause 8 and the plan for software functional safety

assessment

NOTE 1 See Table C.10.

NOTE 2 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate techniques/measures shall be selected according to the safety integrity level.

BS EN 61508-3:2010
61508-3 © IEC:2010 - 55 -

Annex B
(informative)

Detailed tables

Table B.1 — Design and coding standards

(Referenced by Table A.4)

Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
1 Use of coding standard to reduce likelihood of errors C.2.6.2 HR HR HR HR
2 No dynamic objects C.2.6.3 R HR HR HR
3a | No dynamic variables C.2.6.3 --- R HR HR
3b [Online checking of the installation of dynamic variables C.2.6.4 --- R HR HR
4 Limited use of interrupts C.2.6.5 R R HR HR
5 Limited use of pointers C.2.6.6 - R HR HR
6 Limited use of recursion C.2.6.7 --- R HR HR
7 No unstructured control flow in programs in higher level C.2.6.2 R HR HR HR
languages
8 No automatic type conversion C.2.6.2 R HR HR HR

NOTE 1 Measures 2, 3a and 5. The use of dynamic objects (for example on the execution stack or on a heap)
may impose requirements on both available memory and also execution time. Measures 2, 3a and 5 do not need to
be applied if a compiler is used which ensures a) that sufficient memory for all dynamic variables and objects will
be allocated before runtime, or which guarantees that in case of memory allocation error, a safe state is achieved;
b) that response times meet the requirements.

NOTE 2 See Table C.11.

NOTE 3 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.

BS EN 61508-3:2010
- 56 - 61508-3 © IEC:2010

Table B.2 — Dynamic analysis and testing

(Referenced by Tables A.5 and A.9)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4

1 Test case execution from boundary value analysis C.5.4 R HR HR HR
2 Test case execution from error guessing C.5.5 R R R

3 Test case execution from error seeding C.5.6 --- R R

4 Test case execution from model-based test case C.5.27 R R HR HR

generation

5 Performance modelling C.5.20 R R R HR
6 Equivalence classes and input partition testing C.5.7 R R R HR
7a | Structural test coverage (entry points) 100 % ** C.5.8 HR HR HR HR
7b | Structural test coverage (statements) 100 %** C.5.8 R HR HR HR
7c | Structural test coverage (branches) 100 %** C.5.8 R R HR HR
7d | Structural test coverage (conditions, MC/DC) 100 %** C.5.8 R R R HR

NOTE 1 The analysis for the test cases is at the subsystem level and is based on the specification and/or the
specification and the code.

NOTE 2 See Table C.12.

NOTE 3 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate techniques/measures shall be selected according to the safety integrity level.

*k

Where 100 % coverage cannot be achieved (e.g. statement coverage of defensive code), an appropriate
explanation should be given.

Table B.3 — Functional and black-box testing

(Referenced by Tables A.5, A.6 and A.7)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4
1 Test case execution from cause consequence diagrams B.6.6.2 --- --- R R
2 Test case execution from model-based test case C.5.27 R R HR HR
generation
3 Prototyping/animation C.5.17 --- ---
4 Equivalence classes and input partition testing, C.5.7 R HR HR HR
including boundary value analysis C.5.4
5 Process simulation C.5.18 R R R R

NOTE 1 The analysis for the test cases is at the software system level and is based on the specification only.

NOTE 2 The completeness of the simulation will depend upon the safety integrity level, complexity and
application.

NOTE 3 See Table C.13.

NOTE 4 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate techniques/measures shall be selected according to the safety integrity level.

BS EN 61508-3:2010
61508-3 © IEC:2010 - 57 -

Table B.4 — Failure analysis

(Referenced by Table A.10)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4
1a | Cause consequence diagrams B.6.6.2 R R R R
1b | Event tree analysis B.6.6.3 R R R R
2 Fault tree analysis B.6.6.5 R R R R
3 Software functional failure analysis B.6.6.4 R R R R

NOTE 1 Preliminary hazard analysis should have already taken place in order to categorize the software into the
most appropriate safety integrity level.

NOTE 2 See Table C.14.

NOTE 3 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.

Table B.5 — Modelling

(referenced by Table A.7)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4
1 Data flow diagrams C.2.2 R R R R
2a | Finite state machines B.2.3.2 --- R HR HR
2b | Formal methods B.2.2, C24 --- R R HR
2c | Time Petri nets B.2.3.3 --- R HR HR
3 Performance modelling C.5.20 R HR HR HR
4 Prototyping/animation C.5.17 R R R R
5 Structure diagrams C.2.3 R R R HR

NOTE 1 |If a specific technique is not listed in the table, it should not be assumed that it is excluded from
consideration. It should conform to this standard.

NOTE 2 Quantification of probabilities is not required.
NOTE 3 See Table C.15.

NOTE 4 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.

BS EN 61508-3:2010
- 58 - 61508-3 © IEC:2010

Table B.6 — Performance testing

(referenced by Tables A.5 and A.6)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4
1 Avalanche/stress testing C.5.21 R R HR HR
2 Response timings and memory constraints C.5.22 HR HR HR HR
3 Performance requirements C.5.19 HR HR HR HR

NOTE 1 See Table C.16.

NOTE 2 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate
detailed descriptions of techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level.

Table B.7 — Semi-formal methods

(Referenced by Tables A.1, A.2 and A.4)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4
1 Logic/function block diagrams See Note 1 R R HR HR
2 Sequence diagrams see Note 1 R R HR HR
3 Data flow diagrams C.2.2 R R R R
4a | Finite state machines/state transition diagrams B.2.3.2 R R HR HR
4b | Time Petri nets B.2.3.3 R R HR HR
5 Entity-relationship-attribute data models B.2.4.4 R R R
6 Message sequence charts C.2.14 R R R
7 Decision/truth tables C.6.1 R R HR HR
8 UML C.3.12 R R R R

NOTE 1 Logic/function block diagrams and sequence diagrams are described in IEC 61131-3.
NOTE 2 See Table C.17.

NOTE 3 The references “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate detailed descriptions of
techniques/measures given in Annexes B and C of IEC 61508-7.

* Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.

BS EN 61508-3:2010
61508-3 © IEC:2010 - 59 -

Table B.8 — Static analysis

(Referenced by Table A.9)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4
1 Boundary value analysis C.5.4 R R HR HR
2 Checklists B.2.5 R R R R
3 Control flow analysis C.5.9 R HR HR HR
4 Data flow analysis C.5.10 R HR HR HR
5 Error guessing C.5.5 R R R
6a | Formal inspections, including specific criteria C.5.14 R HR HR
6b | Walk-through (software) C.5.15 R R
7 Symbolic execution C.5.11 --- --- R R
8 Design review C.5.16 HR HR HR HR
9 Static analysis of run time error behaviour B.2.2, C.2.4 R R R HR
10 | Worst-case execution time analysis C.5.20 R R R R

NOTE 1 See Table C.18.

NOTE 2 The references “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate detailed descriptions of
techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. It is intended the only one of the
alternate or equivalent techniques/measures should be satisfied. The choice of alternative technique should be
justified in accordance with the properties, given in Annex C, desirable in the particular application.

Table B.9 — Modular approach

(Referenced by Table A.4)

Technique/Measure * Ref SIL 1 SIL 2 SIL 3 SIL 4
1 Software module size limit C.2.9 HR HR HR HR
2 Software complexity control C.5.13 R R HR HR
3 Information hiding/encapsulation C.2.8 R HR HR HR
4 Parameter number limit / fixed number of subprogram C.2.9 R R R R
parameters
5 One entry/one exit point in subroutines and functions C.2.9 HR HR HR HR
6 Fully defined interface C.2.9 HR HR HR HR

NOTE 1 See Table C.19.

NOTE 2 The references “B.x.x.x”, “C.x.x.x” in column 3 (Ref.) indicate detailed descriptions of
techniques/measures given in Annexes B and C of IEC 61508-7.

*

Appropriate techniques/measures shall be selected according to the safety integrity level. No single technique
is likely to be sufficient. All appropriate techniques shall be considered.

BS EN 61508-3:2010

- 60— 61508-3 © IEC:2010

Annex C
(informative)

Properties for software systematic capability

C.1 Introduction

Given the large number of factors that affect software systematic capability it is not possible
to give an algorithm for combining the techniques and measures that will be correct for any
given application. The purpose of Annex C is:

— to give guidance on selecting specific techniques from Annexes A and B to achieve
software systematic capability;

— to outline a rationale for justifying the use of techniques that are not explicitly listed in
Annexes A and B.

Annex C is supplementary to Annexes A and B tables.

Cc.1.1 Structure of Annex C, relating to Annexes A and B

The outputs from each phase of the software safety lifecycle are defined in Table 1. For
example, consider the software safety requirements specification.

Table A.1 (“Software safety requirements specification”) of Annex A recommends specific
techniques for developing the software safety requirements specification.

Technique/Measure * Ref. SIL 1 SIL2 | SIL3 SIL 4
1a Semi-formal methods Table B.7 R R HR HR
1b Formal methods B.2.2,C.24 --- R R HR
2 Forward traceability between the system safety C.2.11 R R HR HR
requirements and the software safety requirements

3 Backward traceability between the safety C.2.11 R R HR HR
requirements and the perceived safety needs

4 Computer-aided specification tools to support B.2.4 R R HR HR
appropriate techniques/measures above

Annex C Table C.1 (“Properties for systematic safety integrity — Software safety requirements
specification”) states that the software safety requirements specification is characterized by
the following desirable properties (which are informally defined in Annex F of IEC 61508-7):

Properties
Completeness | Correctness | Freedom from | Understandability | Freedom from | Capability of
with respect to | with respect intrinsic of safety adverse providing a
the safety to the safety | specification requirements interference basis for
needs to be needs to be faults, of non-safety | verification
addressed by addressed including functions with and
software by software | freedom from the safety validation
ambiguity needs to be
addressed by
software

BS EN 61508-3:2010
61508-3 © IEC:2010

- 61—

Annex C Table C.1 also ranks on an informal scale R1/R2/R3 the effectiveness of specific
techniques in achieving these desirable properties.

Properties
Completeness | Correctness | Freedom from | Understandability | Freedom from | Capability of
with respect to | with respect intrinsic of safety adverse providing a
Technique/ the safety to the safety | specification requirements interference basis for
needs to be needs to be faults, of non-safety | verification
Measure addressed by addressed including functions with and
software by software | freedom from the safety validation
ambiguity needs to be
addressed by
software
1a | Semi- R1 R1 R1 R1 _ R2
formal L L)))
methods Application- Application- Method and Defined notation Defined
friendly or friendly or notation that that restricts notation that
domain domain helps avoid or opportunity for reduces
specific specific detect internal | misunderstanding ambiguity in
specification [specification | inconsistency, specification
method and method and missing R2
notation used notation behaviour or Application of
by domain used by mathematically complexity limits
experts domain inconsistent in specification
experts expressions.
R2 R2
Verification | Verification of
of specification
specification | according to
according to coverage
coverage criteria
criteria
R3

Verification of
specification
based on
systematic
analysis, and /
or systematic
avoidance of
particular
types of
intrinsic
specification
faults

The confidence that can be placed in the software safety requirements specification as a
basis for safe software depends on the rigour of the techniques by which the desirable
properties of the software safety requirements specification have been achieved. The rigour of
a technique is informally ranked on a scale R1 to R3, where R1 is the least rigorous and R3
the most rigorous.

R1 without objective acceptance criteria, or with limited objective acceptance
criteria. E.g., black-box testing based on judgement, field trials.

R2 with objective acceptance criteria that can give a high level of confidence that the
required property is achieved (exceptions to be identified & justified); e.g., test or
analysis techniques with coverage metrics, coverage of checklists.

R3 with objective, systematic reasoning that the required property is achieved.

E.g. formal proof, demonstrated adherence to architectural constraints that
guarantee the property.

this technique is not relevant to this property.

- 62—

BS EN 61508-3:2010
61508-3 © IEC:2010

A technique may achieve one of several R1/R2/R3 rankings relating to a particular property,
depending on the level of rigour that the technique satisfies.

Properties
Completeness | Correctness | Freedom from | Understandability | Freedom from | Capability of
with respect to | with respect intrinsic of safety adverse providing a
Technique/ the safety to the safety | specification requirements interference basis for
needs to be needs to be faults, of non-safety | verification
Measure addressed by addressed including functions with and
software by software | freedom from the safety validation
ambiguity needs to be
addressed by
software
1a [Semi- R1
formal
methods Defined notation

that restricts
opportunity for
misunderstanding

R2

Application of
complexity limits
in specification

In this example, a semi-formal method achieves rigour R1 by providing a restricted notation
that improves accurate expression, and achieves R2 by further restricting the complexity of
specification which might otherwise cause confusion.

Cc.1.2 Method of use — 1

For guidance purposes, if it can be convincingly demonstrated that the desirable properties
have been achieved in the development of the software safety requirements specification,
then confidence is justified that the software safety requirements specification is an adequate
basis for developing software that has sufficient systematic safety integrity.

Annex C Table C.1 says that each of the Annex A Table A.1 techniques typically achieves, to
a greater or lesser extent, one or more of the above Table C.1 properties that are relevant to
the software safety requirements specification.

However, it is important to note that although Annex A Table A.1 recommends specific
techniques, these recommendations are not prescriptive, and in fact Annex A states clearly
that “Given the large number of factors that affect software systematic capability it is not
possible to give an algorithm for combining the techniques and measures that will be correct
for any given application”.

In practice the techniques by which the software safety requirements specification is
developed are selected subject to several practical constraints (see 7.1.2.7) in addition to the
inherent capabilities of the techniques. Such constraints may include:

— the consistency and the complementary nature of the chosen methods, languages and
tools for the whole development cycle;

— whether the developers use methods, languages and tools they fully understand;

— whether the methods, languages and tools are well-adapted to the specific problems
encountered during development.

Table C.1 may be used to compare the relative effectiveness of the specific Annex A
Table A.1 techniques in achieving the desirable properties of the software safety requirements
specification lifecycle, while at the same time factoring in the practical constraints of the
particular development project.

BS EN 61508-3:2010
61508-3 © IEC:2010 - 63 -

For example, a formal method is capable of giving a better basis (R3) for verification and
validation than is a semi-formal method (R2), but other project constraints (e.g. the availability
of sophisticated computer support tools, or the very specialized expressiveness of a formal
notation) may favour a semi-formal approach.

In this way, the Table C.1 desirable properties can provide the basis of a reasoned and
practical comparison of the alternative techniques that Annex A Table A.1 recommends for
developing the software safety requirements specification. Or more generally, a reasoned
selection from the several alternative techniques recommended by Annex A for a particular
lifecycle phase can be made by considering the desirable properties listed in the
corresponding Annex C table.

But note carefully that due to the nature of systematic behaviour, these Annex C properties
may not be achievable or demonstrable with the highest rigour. Rather, they are goals to be
aimed for. Their achievement may even necessitate trade-offs between different properties
e.g. between defensive design and simplicity.

Finally, in addition to defining R1/R2/R3 criteria, it is useful for guidance purposes to make an
informal link between (1) the increasing level of rigour of the R1 to R3 progression and (2) an
increased confidence in the correctness of the software. As a general and informal
recommendation, the following minimum levels of rigour should be aimed for when Annex A
requires the corresponding SIL performance:

SIL Rigour R
1/2 R1

3 R2 where available

4 highest rigour available

Cc.1.3 Method of use — 2

Although Annex A recommends specific techniques, it is also permitted to apply other
measures and techniques, providing that the requirements and objectives of the lifecycle
phase have been met.

It has already been noted that many factors affect software systematic capability, and it is not
possible to give an algorithm for selecting and combining the techniques in a way that is
guaranteed in any given application to achieve the desirable properties.

There may be several effective ways to achieve the desirable properties, and it should be
recognized that system developers may be able to provide alternative evidence. The
information in these Annex C tables can be used as the basis of a reasoned argument to
justify the selection of techniques other than those given in the Annex A tables.

BS EN 61508-3:2010
61508-3 © IEC:2010

—64 -

s}inej uoneoloads
oIsuldiul Jo sadA} Jeinoijied jo aoueploAe
o1jewa}sAs 1o / pue ‘sisAjeue o1jewalsAs

Uo paseq Uo1}eD1}108dS JO UOIBDILIBA el19)110 9681900

03 Buipioooe
ed uoleolyoads
uoljeolyoads JO UOIIBOIJIIBA
ul spwl| Alxajdwoo

el19}110 abelanoo
0} Buipioooe uoljediyoads JO UOIIBDIIIBA

Jo uoneoddy ¢y
uoleolyoads zy cd sjadxe ulewop sjadxa ulewop
ul AynBiqwe ‘suolssaldxa Aq pasn uoljejou pue | Ag pasn uoljejou pue
saonpal Buipuejsiapunsiw 1o} | 1us)sisuooul Ajjeoljewayjew Jo Jnoineyaq | poylaw uoneoiioads poyjaw uoljeoiioads
jey} uoljejou Ajunpoddo sjouysal Buissiw ‘Aous}sisuodul |eudajul }08}8p o1j109ds ulewop 1o o1j109ds ulewop
pauljaqg Jey} uolnejou paulaQ 10 ploAe sd|ay }ey} uoljejou pue poyis\ Alpuaij-uoneoiddy | Jo Ajpusuj-uoneosiddy spoueL
¢y B L L 22| L [ewJoj-lWeg | Bl
alemypos
Kq passaippe
aq o} spaau A}ajes
uoljepljeA pue | ayj yjim suoiouny alemyjos alemyjos
UuoI}edI}1I9A Kyajes-uou Aq passaippe Aq passaippe ainseapy/anbiuyoa
10} siseq }O @ouaJapiIajul sjuawaliinbai AynBique aq o0} spaau Ajajes aq 0} spaau '
e Buipinoad asianpe Kyajes jo woJj wopaaly Buipnjoul ‘syjney a9y} o} }oadsal Kyajes ayj} o3 joadsau
j0 Kyijiqeden wol} wopaaiq Kyjiqepuelsiapun uoljeoiyioads d1suLIjul WOJ) WOopPaadd4 U}IM SSau}oa1i0) yjim ssauajajdwon

saljiadoud

(1'v aiqel Aq paouaisjey 'z, 99S)
uonjesijioads sjuswaainbaua Ajajes asemyjos — Ayabajul Ayajes sljewalsAs 1o} saljladoud — ') ajqeL

"MO|8q 8|ge)} JUBA8|al 8y} Ul papiAoid SI 8)0U B ‘SI8yjo Uo S}08yie aAllisod pue saijuadoid 8WOS UO S}08))8 8sIaApe aAey Aew poylew

e alaypp "ysep e Aq sajge} Buimolo) syl ui umoys si siy} ‘Aladold e Jo jJuswaAslydoe ay) 0} 81NglIJU0D JoU SB0P Poylaw B alaypp "8ouapine BulduiAuod
Bunelsuab Joj pue sanjuadoisd Ajubajul Ayajes onewsisAs oyl Buiasiyoe o} sanbiuyosy oiy10eds sajedlpul /-805L9 DJ| Ul pue alay aosuepinb ay]

Ayibajul Ayajes o1jewa)sAs uoj sanuadoud z'9

BS EN 61508-3:2010
61508-3 © IEC:2010

— 65 —

Ayigepuelsiapun
saoueyus
spaau Ajajes ON3J
8y} 0} Ayjiqesoel |

Alxajdwod
Alessadauun ou
sulejuoo uoleolyoads
sjuawalinbal
Alojes aiemyos
Y] jey} sduspljuod

spaau
Alojes panleolad

a8y} pue uoljeolyoads
sjuawalinbal

Alajes alem)jos ay}
usamiaq Ajljiqesdel)

Lo 2| kS| 2| piemioeg | ¢
sjuswalinbai Ajsjes
walsAs ay) sessalppe
uoneoyoads sjuawalinbal
sjuswalinbal Alajes aiemijos
f1eyes siemyos 8y} pue uoljeoljoads
U3 1B} 8OUBPIIUOD sjuswalinbal A}ajes
_ _ _ _ _ wolsAs ay} usamiaq
(2] Ayligesoeyy premioq | g
Jnoiaeyaq
40 sjoadse pajuwl|
UO SSBU}08.I0D
sj|ney uoleolyloads 10 @9juelEND
olsulul Jo sadA) Jejnojjied jo aoueploae
o1jewa)sAg 10 / pue ‘sisAjeue oljewalsAs €y
uo paseq uolieolyloads Jo uoleodlIIBA e1I91110 96eJan00
03} Buipioooe
ed uoleolyoads
e149}140 abelanoo JO UolBOY B A
0} Buipioooe uoljedlyoads JO UOIIBDIIIBA
‘oly109ds ujewop 4o ¢
A|pusiiy-uonjeoijdde cd ‘sjladxa ulewop spadxe urewop
jou s poylsw ‘suolssaldxa Aq pesn uoinejou pue | Aq pesn uolejou pue
‘uoljeoljoads au) J1 Apadoud sIU} | yusysisuoour AjjedijeWwayew 10 JINOIABYS] | poyjew uonesyioads poylew uoljeolyoads
ul AyinBiqwe J0 JudwdAslydE 3y} Buissiw ‘Aouslsisuooul |eulajul }0818p olj108ds ulewop Jo o1j108ds ulewop
saonpay ajedl|dwod Aepy :9}oN 10 ploAe d[ay Jey) uoliejou pue poylsp Apusuy-uoneonddy | 1o Ajpusii-uoneoiddy
€y (2| [2S] [2S spoyjsw |ewltod | qi
alemjjos
Kq passaippe
aq 0} spaau Ajajes
uoljepijeA pue | ayj yym suonouny alemyjos alemyjos
TETF-EIITREYN Kyages-uou Kq passalppe Aq passaippe ainseapy/enbiuyoay
10} siseq JO 92Ud43}43}Ul sjuawaliinbai AynBique aq 0} spaau A}ajes 9q 0} spaau
e Buipinoad asianpe Kyojes jo woli} wopaaly Buipnjoul ‘syney a9y} o} joadsau Kyajes ay) o) 3oadsal
jo fyijiqeden woJij wopaaiq fy1iqepuelsiapun uonjeoyyioads oIsulIjuUl WOLY WOpPadl] Y}IM SSau}oa.1109 yjm ssauajajdwon

saljiadoud

BS EN 61508-3:2010
61508-3 © IEC:2010

— 66 —

abelanoo
pue Ajljigeaoes
10 JuBwWaInses|

e119}140 abeianod
paynsnl pue
pauljap o} Buipioooe
uolje|nwis [euolouny

EIETNS
pue paynsnl ‘paulep
SI UoIBIBPISU0D
ojul uaye)] aq
0} S8NSS| JO }SI1}08Y0 J|

cd

cd
cd
JUSWUOIIAUS 9IBM)JOS
abeianod suonouny Ajajes uoneosyoads ay) Jo pue ON3J ay) ®A0QeE S
pue Ajjigeases; | -uou pue Alojes | ayj yBnouyy Buismouq paljsijes aJe sa|nJ JUBAS|J BU) Jey) sanbiuyoay 4o aBpajmouy ujewop | SINsesw/senbiuyosy
s)sIssy JO UoljeOIIUSP| 10 ‘JO uonjeWIUY 2INSUd 0} S)08YD J1}0BJUAS pue DJUBWSS | UOIEINWIS [EUOIOUNS jo uonensdeoug ejeudoidde jioddns
0} s|00} uolealyoads
Y Y Y 2y Y Y papre-seindwog | ¥
alemyjos
Kq passaippe
aq 0} spaau A}ajes
uoljepijea pue | ayj yym suonouny alemyjos alemyjos
UOIJBOIIIBA Ajages-uou Kq pessalppe Kq passaippe aanseapy/onbiuyoa)
10} siseq J0 8dUBJ8IB}UI sjuawalinbai AynBique aq 0} spaau Ajases aq 0} spaau
e Buipinoad asianpe Kyojes jo wouj wopaaly Buipnjoul ‘syjney a9y} o} joadsau Kyajes ay) o) 3oadsal
J0 Ayj1qeden wouj wopaaly Kyj1qepuelsiapun uoljeoslyioads d1sulIIUl WOIY WOPIdIH U}IM SSau}d9.110) yym ssauajajdwon

saljiadoud

BS EN 61508-3:2010

— 67 —

61508-3 © IEC:2010

(raw
pue paynsnl
‘paulyep
ale sjablie)
abelanod JI zy)

(1ow pue
paunsnl ‘paulyep
ale sjablie)
abetanod J1 zy)

sjuswalinbal
A1ajes
wnuwiulw ayj
Ajuo syuawa|dwi
Jojluow 8siaAIq

sjuswalinbal
Ayajes wnwiuiw
ayy Ajuo
Jauuew a|dwis
e ul sjuswa|dwi
Jojluow 8siaAIq

ISTESSEYA]o)
y1o11dwi 4o} sapiaoid
Jojluow a8siaAIq

sjuawalinbal
Aojes
wnuwiuiw ayj
Ajuo sjuawa|dwi
Jojluow asiaAIq

(4@3ndwoo awes ay}

ul uolouNy paJoyuow
8y} pue Jojluow ay}
usamjaq aouspuadapul
yym) sanbiuyos)

2| (2s] cd cd cd cd Jojluow asJ9AIg ae
aoeds
1S9] paJinbal sindino sjuawalinbal
ay} aouay a|qejdadoe pajiejap
sauin|iey pue aoeds / pajoadxe yyum aoueldwod
pajabuey sain|ie} pajabiey ndui 8y} ywi| 10} ¥998y9d aoeds jndul ay} 3o8yo Aew
9y} 4o} 9AI309) T | By} Jo) BAI08YHT suol}losse-ald | suolllesse-}sod | }wl| suoljasse-aid Suol}Jesse-}sod
Buiwwesboud
€d €d cd cd cd B cd - uoljlesse alinjie4 eg
swwoo ejep ‘69
seale uoleoldde
ol10ads
10} 8AIOSHT
Swwod
ejep "6 seale (3ow pue ‘Ayadoud siyy
uoneoldde paunsnl ‘paulyep 10 JuswWaAalyoe ‘Apadoud
olj10ads ale sjebie) 9y} | Sy} Jo Juswanalyoe
10} BAI}0843 abelanod jI zy) ajeoldwoo Aepy | ayy eeordwoos Aepy
Y] RS - - - - - - sapoo Bunoslep Joug Z
(yow pue Ayngejoipaud
paynsnl ‘paulyep Joj sepinoid Apadoud
ale sjabie) Buriojuow Mmolj | Siyy Jo Juswanalyoe
abelanod Jl zy) welboud |eo1607 | ay} a1eoldwod Aepy
Tio Ly (RS - (RS B B B B uonoslep yned | |
S UEYVY)
|eu1a)xa uoljesyjioads uoljesyjloads
wouy ainjiey sjuawaliinbai sjuawaiinbai
9sned uowwod ubisap sjney ubisap K)ajes asemyjos K)ajes asemyjos ainseap/enbiuyosa]
jsuiebe a|qe}sa)} inolAeyaq jo Ayjigepuejsiapun alsuliul 0} }oadsau 03} }0adsai yym
@oudjaq 9oueJa|o} }ine4 | pue ajqeyldap | Ajjigeloipaid pue o1 dwig woJ} wopaaid | YllM ssaujoalio) ssaudja|dwo)n

saljadouad

(z'V @lgeL Aq peousisjey "¢t/ 9983)

ubBisaq a1n3jo98}1Yyoly aiemijos — jusawdojarap pue ubisap aiemyyos — Aibajul A}ajes onjewalsAs uoy saluadoad — z'o 9|qel

BS EN 61508-3:2010
61508-3 © IEC:2010

— 68 —

siiney
uoneolyoads
sjuawalinbal
1suiebe 109304d
jou s8oQ

oW
pue paynsn(
‘paulep
ale sjablie)
abelanoo j|

cd

SJay}o ay)
109)je A|josianpe
Jjou saop
weuboid suo

s}iney
uoleolyoads
sjuawalinbal
jsuiebe
109104d J0U S90(

12W pue

paynsnl ‘paulyep
ale sjeblie)
abelanoo |

¢d

SJ9y}o sy}
109)je A|osianpe
Jou saop
weiboid suo

‘alem)jos
a|geinoaxa

awes ay} uiyym
auop JI Ajadoud
SIY} JO JuswaAalyoe
ay) ayeoldwoo

uoneoioads
sjuawalinbal

. A}ojes aiemyos awes
0 ainjiej ayy 4| 40 ainjiej ayy 4| Ke|y 810N ou) Bunuswa|dwl
L 32| B - - - N - ‘Aouepunpal aslaAlq pg
(syuswauinbau
(3ow syjuswalinbas | A}jajes wnwiuiw sjuswalinbal
pue paunsn((1ow pue Aojes ayy Ajuo Alajes (4e3ndwoo
‘paulep paunsn(‘paulyep wnwiulw ay) | Jsuuew sidwis ISTEIEYN]S) wnwiulw ay} paJojiuow syj pue

ale sjoblie)
abelanod Jl zo)

ale sjoblie)
abeianod J1 zy)

Ajuo syusws|dwi
Jojluow 8sIaAIq

e ul sjuswadwi
Jojuow 8s1aAIq

11011dwi 4o} sapiaoud
Jojluow asiaAIq

Ajuo syuswa|dw
Jojluow asianIq

J9Indwoo Jojuow ayy
usamjaq uoljesedas
yim) senbiuyoay

L [2<] cd cd cd cd - Jojluow 8siaAIg o€
SJUaAd
|eu1a)xa uoljesyjioads uoljesyjloads
wou} ainjiey sjuawaliinbai sjuawaliinbai
asheds uowwod ubisap sj|nej ubisap K)ojes asemyjos A1ojes asemyjos ainseap/enbjuyosay
jsuiebe a|qe}sa) InoljAeyaq jo Ayjigepuejsiapun alsuliul 0} }oadsau 03} }0adsai yym
aouajag aoueliajo} }ine4 | pue ajqeylddp | Ayjigeloipaid pue Ayo1dwig woJ} wopadi4d | Y}IM ssaujoalio) ssauaja|dwon

saljadoug

BS EN 61508-3:2010

— 69 —

61508-3 © IEC:2010

(1ow
pue paynsn|
‘paulyep
ale sjabie)
obelanod J1 zy)

(3ow pue
paynisnl ‘paulyep
ale sjablie)
abeltanod Ji zy)

Auedoud siyy
10 JuswaAslyoe
ay)

swsiueyosw

Y| RS ayeoldwoo Aepy Alanooal jney Alj-ay ey
sajels
Buijesy a|qissod ay) sojels
-J|@s 1o} Jaw Buijesy 10 9beI9A0D }S9) 10 Jaquinu
pue paunsn(-J]9s Jo} oW pue / UOI}BDI}IIBA a|qissod ay) S9)B)S JO Jaquinu
‘paulep pauinsnl ‘paulyep ay) Joj 1ow Buipiebas yow a|qissod ay)
ale sjable) J| ale sjable) J| pue pauisn(pue pauisn(Buipiebal Jow pue
zy 7y ‘paulyep ‘paulyap Uw_u—:w:.— ‘paulyap ajels pajuwi)
ale sjobuey §| aJe sywi| | 8Je spwi | 10 ssa|ale]s ajels paywi| 2)els paywl|
ubisep ubisap os|e ale 10 ssa|oje)s os|e 10 ssa|oje)s os|e
2d 2d zd
Buljeay-j|es Buleay-j|es sjuawalinbal aJe sjuswalinbal aJe sjuswalinbal
e 0} spea| s| e 0} spea| s| A)ajes papiaol K1ejes papiaol Kyejes papiaol
} spes| siyj 4| } spes| siyj 4| 18jes papinold 18jes papinoid }9jes papinoid (uBisop o1E}s payWI|
(R 1y S| [BY (S rAS| rAS| rAS| Jo) ubisep ssajejeis | Bg
(tew
pue paunsn(‘Ajadoud siyy ‘Ajadoud siyy
‘paulyep 10 Juswanalyoe 10 Juswanalyoe
ale s)abiey ay) ajeoljdwod ay) ajeoljdwod
abesanod Jl zgy) Ae|\ 810N Ae|\ 910N
Y| 2y - - - - - - A1anooa1 plemyoeqg 1€
s}nej g so|diound
uoleolyoads . eoisAyd juaiayl
alemyos [BJISAyd jualsjip
Jsujebe sjo9j0.d m_QmSonw uo Buneisado siosuss
"sJay}0 8y} "s1aY}0 2y} awes ayj ulym 95?8 AlleordAy
109))e Ajoslanpe | 109ye Ajosianpe auop JI Apadoud ™ s1y L "uoneoyioads
10U seop 10U S80p SIY} JO JUSWaASIYDE sjuswauinbal
wesbBoid suo wesbosd suo ay) ajeodwos N wﬂmhmw ME%MSw
0 ainjiey o 0 ainjiey o Kepy :910 usJsyip buguswsiaw!
| |ley ayy 4| | Iley ayy 4| N 810N “fouepunpei
S| (RS - - - (RS - - 8sJoAlp Ajjeuoouny | 8¢
SJUDAD
|eu1a)xa uoljesyjioads uoljesyjloads
wou} ainjiey sjuawaliinbai sjuawaliinbai
9sned uowwood uBisap sj|nej ubisap K)ajes asemyjos K)ajes asemyjos ainseapy/anbiuyoay
jsuiebe a|qe}sa) InoljAeyaq jo Ayjigepuejsiapun alsuliul 0} }oadsau 03} }0adsai yym
aouajaqg aouelsajo} }ine4 | pue ajqenap | Ajligeysipaid pue o1 dwig wouy wopaai4 | YjIm ssaujoalion ssauaja|dwon

saljadoug

BS EN 61508-3:2010
61508-3 © IEC:2010

— 70 -

‘Aadoud sy ‘Auadoud sy} Apadoud Apadoud sy Apadoud
JO JUBWBASIYDE | JO JUBWSASIYOE | SIY} JO JUBWSASIYDE | JO JUBWSASIYOE [SIY} JO JUBWSASIYDE
ay} ajeoldwoo | oy} ajeoldwoos ay) ajeoldwoo a2y} ajeoldwoo ay) ajeoldwoo
Aely 910N Aep\ 810N Ae|y 910N Aep\ 810N Ae|y 910N
uoljeinbiyuoosal
- - - - - - - - ojweuiq 9
‘Auiedoud siyy ‘Aedoud siyy ‘Apadoud ‘Apadoud sy} Apadoud
JO JUBWABABIYOE | JO JUBWSASBIYOE | Sy} JO JUBWSASIYDOE | JO JUBWSASIYOE [SIY} JO JUBWSASIYDE
ay) a1eoldwos | oy} a1eoldwod ay) ajeoldwos | ayj ayesldwod ay} ayeoldwod
Aepy 910 Aep 810 Aepy 910 Ae| 810 Aep :910
N 910N Nl *310N N 910N N :310N N ‘810N U01105.1100 JNE}
- - - - - - - - - oouabijeiul [eOYIMY | G
ow
pue pausn(oW pue ‘Apadoud siyy
‘paulyep paynisnl ‘paulyep J0 JuswaAalyoe
ale s)ablie) ale s)ablie) ay) ajeoljdwod
abelanod I gy abelanoo Jl gy Ae|\ 910N
1y RS} - - - - - - uonepeibap |nyeoeis | qy
SJUDAD
|eu1a)xa uoljesyjioads uoljesyjloads
wou} ainjiey sjuawaliinbai sjuawaliinbai
asneds uowwod ubisap sjney ubisap K)ajes asemyjos K)ajes asemyjos ainseap/enbjuyosay
jsuiebe a|qe}sa) InoljAeyaq jo Ayjigepuejsiapun alsuliul 0} }oadsau 03} }0adsai yym
aouajaq aouela|o} }jne4q pue ajqenuap | Amjiqejoipaig pue fAyo1dwig wouj wopaald | Y}m ssauj}oalion ssaudjajdwon

saljadoug

BS EN 61508-3:2010

—-71 -

61508-3 © IEC:2010

Buluoseal
snoJobu
e Aq payuoddns
aq ueo
SJUDAS |BUIBIXD
Je|noijed
0} 90UeI9|0} §|

€d

uol}eoIjIIeA
ybnoioyy
03 109lgns pue

Buluoseau
snoJobil e Aq
pauoddns aq ueo
sjiney Jejnoijed
0} 90UEBID|0} §|

ubBisap Jejnpow
uo paseq
Buluoseal
snoJobi
e Aq pauoddns
ag ued
s}iney} ubisap
2ISUlUI JO
sadA} se|noijed
wolj} wopaaly §|

€d

peyuep! aie ed Panalyoe S|
“A]JUSLINOUOD Jow jow 1Y Ajuo ‘asimiaylo
sjeuueyd pue paynsn(pue paynsn(ainpow yoes oy | 10w Pue paynsn(
a|dninw K1onooal pauljep pauljep low pue paynsn| Anpuspuadepul pauljsp ale
108} UBed jeu) / uonebw ul ale sjabuey ale sjabuey ‘paulyep aie sjobiey polIIeA 8 Ued syabiey Ajuenpow
SJUBA® |BUIBIX® | BJnqIjuod ajnpow | AlEInpow y| Ayaenpow 4| Ayeinpow 4| syney ubisap 3l PaAdIyde S| Y
Aq paouanjjul e Jo ain|iey oIsulul Jo
aq ueo ay) Aq pajoaye cd cd cd sadA} se|noijed cd
Jey} sa|npow §| Jou sa|npow j| WwoJ) Wopaaly §|
(RS (RS (RS (RS (RS RS (RS B yoeoidde JejnpoN | 2
SJUaAd
|eu1a)xa uoljesyjioads uoljesyjloads
wou} ainjiey sjuawaliinbai sjuawaliinbai
9sned uowwod ubisap sj|nej ubisap K)ojes asemyjos A1ojes asemyjos ainseapy/anbiuyoay
jsuiebe a|qe}sa) InoljAeyaq jo Ayjigepuejsiapun alsuliul 0} }oadsau 03} }0adsai yym
aouajag aoueliajo} }ine4 | pue ajqeylddp | Ayjigeloipaid pue o1 dwig woJ} wopadi4d | Y}IM ssaujoalio) ssauaja|dwon

saljadoug

BS EN 61508-3:2010
61508-3 © IEC:2010

- 72 —

(3s93) pue (pueislapun
AJluaA 0} Jaised 0} JaIsed
ale subisap ale suondiosap
painionnsg) |eoiydeln)
spoyjaw oljewuwelsbelp
Lo 3] 3] painjoning | el
Ayxadwood
Alessaosauun uoneoyoads
OU SUIBIUO0D sjuawalinbal
0_309_;8@ Ayojes alemyos
2y} jey} aduapluo)d a2y} pue ainjosliyole
81eM}JOS 8y} UsdaM}a(q
- - B B h h 22| B Awiqesoesy premyoeg oL
sjuawalinbal
Alajes aiemijos
oy} sassalppe 91Nnj08}1ydJe aIem}os
aJnjoayiyole pue uoljeolyoads
8y} Jey} 80UBPIHUOD sjuawalinbaui Alojes
91BM}JOS 9y} UsdIM}(
B B B B B B B 32| Ayjqesoeuy piemiod 6
Juswsal|d
ay} punole
Hng st ke
aAISUBJap B 4l Jo
‘pasn A;3osuai00
ale pue SVETIETE]
juawsald a8y} Agq |8y} punose }jinq
papinoid Ajipeal | s1 JaAe| aoueus|o}
ale S|ouueyd | }nej e 1 Jo ‘pasn
a|diyinw | Aj3o81400 aue pue pasn A|3081109 s|
Ajjusuunouoo [Juswsld ayy Aq sjun juawald ay} pue ‘sjuswsalinbal
joayje p|nod | papiaoid Ajipeal a|gepuejsiapun ojul | Joj pannsnl aq Ayajes tejnoijied
ey sjuans | aue salljiqeded Ayxajdwoo |jesano | |reys Ajjigedes 0} s8jnqguuo0d
|eusaixe jsulebe 90UeI9|0} SUETEIE) sasodwooap yong ‘sjuswa|d Ajueoyiubis (o1qEIIBA. J1) SIUBWA|E
saouajep J| z¥ | Hney 1 24 uanoid sasnay | yoeousdde uenpoly | usroid sasn-ay Juswa|a auy} 4| DUE S8[NPOLL 1EMJOS
¢dly cdld B €d ¢y Lo 23] €d 2d Ld €d 2d Ld - payliaA/pajsni} Jo asn 8
SJUaAd
|eu1a)xa uoljesyjioads uoljesyjloads
wou} ainjiey sjuawaliinbai sjuawaliinbai
9sned uowwod ubisap sjney ubisap K)ajes asemyjos K)ajes asemyjos ainseap/enbjuyosay
jsuiebe a|qe}sa) InoljAeyaq jo Ayjigepuejsiapun alsuliul 0} }oadsau 03} }0adsai yym
aouajag aoueliajo} }ine4 | pue ajqeylddp | Ayjigeloipaid pue o1 dwig woJ} wopadi4d | Y}IM ssaujoalio) ssauaja|dwon

saljadoug

BS EN 61508-3:2010

— 73 -

61508-3 © IEC:2010

oaibipad
ojelidoidde
aney
0} UMOys ale
$]00} uoljelauab

oaibipad
ajeldoidde aney
0} UMOUS a.Je s|00})
uoljesauab ayy 4|

oaibipad
ajelndoidde aney
0} UMOUS a.Je s|00)
uoljesauab ayj 4|

au I ¢ ¢
cd
10914409 9q 919|dw09 aq
0} UMOYS Udd8q Sey | 0} UMOYs uaaq sey
s}ine} 1ey) ubisep e wody | 1ey) ubisep e woly
uBisep a1sulul JO ‘uoljeoiyoads JO ‘uoljeoiyoads
Jenojyied sjuawalinbal sjuawalinbal
pajeiausb 10 @oueploAe wouyj pajesauab wouyj pajesauab
Ajleonewoine oojuelsenb Ajjeoljewolne Ajjeoljewolne
ale saljl|iqeded s|00} uoljetausb S| 9Jemyos S| aJem}yos
90UelD|0} }|NkY §| ayl | 9|qBeNoaxa §| 9|qeINoaxa §| UonEIeUsD
a €d ¢y Lo a a - 1 1 (A 9lemyos dljewolny | piLi
suolssaldxa
Juajsisuodu| ujlewop
Ajjeonjewayiew ayj o) ajendoidde uoljejou
10 Jnoiaeyaq g 0} spaau pue poyjaw
‘Apadoud Buissiw yolym Jnoireyeq uoneoljoads
SIY} JO JusWaAdIyoE | Jo ADua)sIsuooul Jo syoadse olj10ads
Ayjqejoipald Joy ay} ajeol|dwood |eusajul pajiwl| jo uoliuyap | urewop Jo Ajpually
joolud sapinoid Kep\ 010N 10919p uen as10a1d sapinold uoleoldde uy SpoUlaL JusWwaUla
B B cd cd a €d 1 1 pue ubisep |ewso4 | 0L}
suolssaldxa
Juajsisuooul
(jopow Alleonewsayjew uoljejou uoljejou
ubisep ay} 10 Jnoineyaq pue poyjow pue poyjaw
JO ©0U9]SISU0d Buissiw uoljeolyoads uoneolyoads
Jauul (Ayigeyoipaud 10 Aouajsisuooul oly10ads ol10ads
10} 9OUBPIAD 10} 90UdBPINS |eulajul ujewop Jo Ajpually | urewop 4o A|puaiy
SOpIN0Id) SOpIn0ld) 10919p uen -uoneoldde uy -uoneoldde uy
B B cd cd a cd 1y 1 spoyjaw jewloj-lwes | qli
SJUaAd
|eu1a)xa uoljesyjioads uoljesyjloads
wou} ainjiey sjuawaliinbai sjuawaliinbai
9sned uowwod ubisap sj|nej ubisap K)ojes asemyjos A1ojes asemyjos ainseap/enbjuyosay
jsuiebe a|qe}sa) InoljAeyaq jo Ayjigepuejsiapun alsuliul 0} }oadsau 03} }0adsai yym
aouajag aoueliajo} }ine4 | pue ajqeylddp | Ayjigeloipaid pue Ayo1dwig woJ} wopadi4d | Y}IM ssaujoalio) ssauaja|dwon

saljadoug

BS EN 61508-3:2010
61508-3 © IEC:2010

—74 -

Buluoseau Buluoseal Buluoseal
snoJobu snoJobu snoJobu
Ag paysiigeise | Aq paysijgeisa Aq paysiigeise | Buluoseas snolobu
awl} 9|94Ao aw|} 9|94Ao awl} 9|9A2 Aq paysi|ge}sa awl}
wnuwixew | wnuwixew | wnuwixew j| 91942 wnuwixew j|
€d €d €d €d
uoneolyoads uolneolyoads uoleolyoads uoleolyoads awi} 9|2Ao
10 s)oadse 10 s)oadse 10 sjoadse 10 syoadse wnuwixew pasajueienb
B - Butwiy Joy 1Y Butwiy Joy 1Y - Burwiy Joy 1y Burwiy Joy 1y - yim ‘anoiaeyaq o119 | egy
elI9}110
abesanoo paynsn(
pue pauljep
o0} Buipioooe p818A00
uoneINwIs pue psl nsnl
Jeuorjoun4 psuysp sJe
UOoI}BJaPISUOD O}ul
24 uaye} aq 0} sanss|
sonbiuyos) 40 3S1499Y92 §|
uonenuis cd
paljsijes ale paljsijes ale jeuonouny
Sa|NnJ JueAs|al S9|NnJ Juens|al JUBWUOIIAUD
ay} jey) ainsua ay} jey} ainsua AjljIgeadely 91BM}J0S B}
0} s)29y0 0} $)}29Yy9 sjuawalinbal JO pue QN3 auy} jo
o1j0ejUAS Buismouq oljoejuAs piemyoeq abpajmouy ulewop

pue ojjuewss

pue uolewIuY

pue ojjuBWaS

JO Juswaoioyuy

10 uolie|nsdeouy

s|oo) ubisap
pue uojeoyloads

cd 1 cd 1 1 paple-seindwod | ZlL
SJUaAd
|eu1a)xa uoljesyjioads uoljesyjloads
wou} ainjiey sjuawaliinbai sjuawaliinbai
asheds uowwod ubisap sj|nej ubisap K)ojes asemyjos A1ojes asemyjos ainseap/enbjuyosay
jsuiebe a|qe}sa) InoljAeyaq jo Ayjigepuejsiapun alsuliul 0} }oadsau 03} }0adsai yym i
aouajag aoueliajo} }ine4 | pue ajqeylddp | Ayjigeloipaid pue Ayo1dwig woJ} wopadi4d | Y}IM ssaujoalio) ssauaja|dwon

saljadoug

BS EN 61508-3:2010
61508-3 © IEC:2010

— 75 —

UOI1BSIUOJYOUAS
JO SS9U}081I0D

0} se Bujuoseal a|gepuejsiapun

uol}esiuoJyouAs
]O SS8UJ084100
0} se Bujuoseal

SS920k 83Jn0sal Ul

snoJobli Aq alow snoJobii Aq Ajigejoipald senln $82J4nosal
_ _ _ papoddns ji ¢y | uBisep ay) sexepy | peyoddns ji gy _ paleys o} ss8a0. Jo
Ly Ly Ly RS uoljesiuolyouAs onjeis | Gl
abesn aoinosal
a|qejolpald Buluiyep a|gepuelsiapun
aiow ainjosiyole alow
Bunsey sexep UM ubisep ayj saxepn
uoleodo|e
- - Lo cd I 1y 1y 1y 8dinosalolels| i
A
Mliqipue}siapun Ajl1gipuelsiapun
a|gejolpald Japuly Aew Japuly
aiow sa.njoayiyole Aew sainjoaliyole o) ssuodsal
Buiyse) sexepn UBALIP JUBA] UBALIP JudA] WNWIXEW paejUEIEnd
B B Lo cd 1 B B B UHM ‘UsAlIp-juaAl [Og)
sy sej
|eonio-Ajases
03} Ajiond sanib
yolym ajnpayos wolsAs yoeolidde
poJabbiy ayy buihyipueo ERIEIEINEMI oI se Ajjigeloipasd
-awl} 8y} yum pue Bulysal ‘urewop awl} ul ‘Algelapisuod syiney Buiwiy (sanadoud Buiwn (sanuadoud Buiwn
919}J9}u| JoUUED 90UBlJS8|0}-}|NkY 104 pasinbau uoneledss |ejo} | Buipuejsiepunsiw | oIsulul jsuiebe | uoy Ajuo) uoneosoje | Joj Ajuo) uoneooje
sydnuiajul 10 uoneyuswa|dwi 1oe ay) RRIVESEIREMI]] saonpal aojuelsenb Aqg pasjueient Aqg pasjueient
|eusayx3 juasedsuel | saonpal Ajjealo 9slanpy uoljejou pauiaqd snoJobiy S| SS8U}084I0D sI ssauala|dwo)
2injo8}iyole
€d cd €d € 1 €d €d €d patebbly-awil | qgl
SJUaAd
|eu1a)xa uoljesyjioads uoljesyjloads
wou} ainjiey sjuawaliinbai sjuawaliinbai
9sned uowwod ubisap sj|nej ubisap K)ajes asemyjos K)ajes asemyjos ainseap/enbjuyosay
jsuiebe a|qe}sa) InoljAeyaq jo Ayjigepuejsiapun alsuliul 0} }oadsau 03} }0adsai yym i
aouajag aoueliajo} }ine4 | pue ajqeylddp | Ayjigeloipaid pue o1 dwig woJ} wopadi4d | Y}IM ssaujoalio) ssauaja|dwon

saljadoug

BS EN 61508-3:2010
61508-3 © IEC:2010

— 76 —

"9}INs Uolepl|eA
Jaildwoo e "6 9 aouewlojiad
|00} 8y} 0} 8oUBPIAS
uolnepleA 9A1399[qO S| 818y} 4|

‘ulewop wsjqouid
ay} o0} pazijeroads Ajjueoiiubis
s| yoddns |00} 8y} 4|

cd

"2ouewloylad |00} 8y} 10} DOUBPIAS

uonepljeA 8ARd3[qo S| 818y} |
zd

pauljap AjjeoljewalsAs si siolid

snoJoBl 10} SOlUBWSS paulap I

€d

"UOISIBAUOD
adA} pajouysal ‘buidAy Buouis Ji

¢d

abenbue| Buiwweibolid a|geyng

2y ‘urewop wajqo.d ay} 0} oiy10ads
_uou s| poddns 00} o J| welboid pajosalep Jo sse|o ay) 4|

1y LN asn wouly

[RY| 9oU8plU0D pasealsoul :sjool | qy
¢y cd B S|00} pajedlie] | ey

19sgns uasoyo uo Buipuadaqg 19sgns uasoyo uo Buipuadag

1y

2y 2y 1osgns abenbueT I
abenbue|
- - 2y Buiwwesboid padAy AjBuons z
Buluoseal

j3ndino jo Ajljiqejeadau
pue ssauj}o9.1i0)

100} 8y} jo Ajljeuonouny
pue uoijeiado ayj} jo Ajue|o

saljiadoud atemyjos
paiinbai ayj} yjim aiemyjos
jo uononpoud ayj Jyoddng

saljiadold

ainseay/onbiuysay

abenbue| Buiwweiboid pue sjoo) poddns — Juswdojarap pue ubisap aiem)yog — AyubBajul A}ajes onjewalsAs uoj saluadouad — €9 9|qel

(¢'V 8lgeL Aq peousisjey vt/ 9983)

BS EN 61508-3:2010

77 -

61508-3 © IEC:2010

SIT=ETTTREY
olje]s pue
abelanod 1s9)
uoddns o} |00}

paljsijes ale sajnJ
JueAd|al 8y} jey)
2INsud 0} s)}29Y9d
o1joejuAs pue
onjuewss buiAjdde
|00} uoljeoly0ads
paple

paljsiies
ale sa|nJ Juens|al
ay} }ey} ainsua o}
$)08Y9 21}0BIUAS pue
onjuewss BuiAjdde
|00} uonesiyoads

38vyD uodn J191ndw o9 8y} paple Jo1ndwo)
juepuadaq uodn juspuadaqg ay) uodn juspuadaq 500}
- - ¢y B B As) (25} cd uBisep papie-1endwon 4
‘Auedoud
Ayngeyoipald SIY} JO JudWaAdIYOe
10} 90UBPIAD ay) a1eolldwoo
SapIAO. Ae\ 810
pinoid W 910N spoyjaw juswaulel
B B rAS| €Y - €Y €Y - pue ubissp |ewlod | 9}
- - cd cd B [As] cd A4S spoyjsw |ewloj-lwes | gl
a|qe}sa]
pue 8a|qelylIaA
A|ipeas aiow
ale subisap
painjonig
B B [As! - - [AS! (R A spoyjow painjonis | ej
uoljesyjioads
alnjiej asnes uol1}03}ap sjuawalinbai uoljesiyioads
uowwod }Iney uBisap sj|ney K)ajes asemyjos | sjusawaainbai Ayajes
wouy | @2uela|0} a|qe}sa} inoiaeyaq Aylligepueysiapun | uBisep oisulijul | o3 30adsal yum | aiemyjos o} }oadsau ainsea/enbiuyoss]
wopaaiq }Iney pue ajqenylia A | Jo Ayjigeloipaid pue Ao1dwig wouy wopaald SS9U}991i09 yym ssauajajdwon

saljadouad

(v'v e1qeL Aq peousisjey "9’y / pue G ¢/ 88S)

(Buipod pue ubisap ajnpow aisem)jos ‘ubisop walsAs asemijos sapnjoul)
ubBisap pojiejap — juawdojanap pue ubisap asem)jos — Ajabajul Ayajes s1jewalsAs 1oy} saljuadoad — 9 ajgqeL

BS EN 61508-3:2010
61508-3 © IEC:2010

78 -

sjuawalinbal
Alojes aiemyos
ay) sassalppe ubisep
9] jey} sduspljuod

ld

ubisep aiemyjos

pue uoleolloads
sjuswalinbai Ayajes
91BM}JOS B} USOM}a(]
Ayiqeaoed) pJemio

umouy Apealje
S| Juswale ay)
JO InoiAeyaqg ay |

suun

a|gepuejsiapun ojul
Ayxa|dwoo [jelano

sasodwooap

yoeoudde Jeinpopy

sjuswa|e
uanold sasnay

(a1qejieae 1) sjuswsl|d
pue sa|Npow aJemyos

1 1 1y paljlIdA/paIsNl} JO asn
- - [RY] 1Y 1Y Y] 1y - Bulwwelsboid painmoniis
spJepuejs
B B Y] [BY [BY B! - - Buipoo pue ubisaQ
B - 1o R3] R3] RS - - yoeoudde Jenpopy
(row (row
pue payisnl | pue payisnf
‘paulyep ‘paulyep ‘Ajadoud siyy ‘Ajadoud
ale sjoebley ale sjobie) JO JuswaAslyoe | sIy} JO JusWaAaIyoe
abeianod abeianod ay) ayeoldwod ay) ajeoljdwod
J12Y) TAS)) Kepy :ejoN Aepy :e10N
[RS| [RS| - - N N - - Buiwwesboid ealsusjeq
uoljesyjioads
ainjiej asneo uol}09jap sjuawalinbal uoljeaiyioads
uowwod }Iney uBisap sj|ney K)ajes asemyjos | sjusawaainbai Ayajes
wouy | @2uela|0} a|qe}sa} inoiaeyaq Aylligepueysiapun | uBisep oisulijul | o3 30adsal yum | aiemjjos o} }oadsau ainsesy/anbiuyosa]
wopaaiq jIne4 pue ajqenylaa | Jo Ayijige3oipaid pue Ayo1dwig wouy wopaal4 S$S9U}991109 y}m ssauajajdwon

saljadoug

BS EN 61508-3:2010

— 79 —

61508-3 © IEC:2010

(ow pue paynsnf
‘paulyap aJe syndino palinbau ji zy)

1o

Buiyse) souewloylod

(yow pue paynsn(
‘pauljap aJe sindino palinbal ji gy)

(yow pue paynsn|
‘pauljep ale syabie) abeianod
a|ijoid jeuonjetado 4 z2y)

RN RN Bunyse) xo0q ¥oe|g pue [EuoiIuUNS
auljeseq
2JBM]JOS 1O S|IB}@p apn|oul sainpeoold Buise)
sbo| }1s8)/spi008l }ney §| ur Aous}sIsuod sajowold
2y 1y 1y - sisAjeue pue Bulpiooal BleQg

(Yow pue paynsn|
‘paulyap aJe syndino palinbau ji zy)

ld

(yow pue paynsn[‘psuyep sie
s}abie} abeianod |einjonuys ji zy)

Lo

Buiysa) pue sisAjeue olweukqg

(yow pue paynsn(
‘pauljap aJe sindino palinbal ji gy)

1

(yow pue paynsn|
‘pauljep ale syabie) abeianod
a|ijoid jeuoijelado 4 z2y)

Lo

Buiyse) ansijigeqold

uoneinbijuod
Buiysa) paulap Ajasioaid

Ayqejeaday

(uona|dwo9 [njssaosons)
uoneoiyoads ubisap aiemyjos
ayj} o} }0adsau yjm uoljeabajul

pue Bui}sa) Jo sSSaU}23.1I0)

uoljesyioads ubisap asemyjos
ayj o} }0adsau yjim uoiljeabajul
pue Bui}sa} jo ssauajajdwon

saljiadold

ainseay/anbiuysay

(5'v @1qeL Aq peousisjey ‘g'y"/ pue /') 88S)

uonjeibajul pue Bul}sa) sjnpow ailem}os
—juswdojanap pue ubisap aiem)yog — Ayubajul Ayajes sljewalsAs 10} saljladoud — G'9 ajqeL

BS EN 61508-3:2010
61508-3 © IEC:2010

— 80 -

pauoddns |00} §
cd

a|ge|leAeun s|oo} Joddns |

sjuawalinbal
A)ajes aiem)jos ay} jo ||e
Bunyeaw Jo 8oUBPIAG BA1308[qO SBAID

pasioloxe usaq aAey
ubisap jo sjoadse |e 1ey} moys
0} S8SEeD }S9} JO U0I}ONIISU0D
0} paljdde s| Buiuoseas snotobu §|

uoljeoljlJaA |ewlo

23] €Y €y oL
1S9) Japun sjuawalinbal A1ojes aiemyjos suoneoloads 158 uoneiBayUl
sjuawalinbal Jo auljdeseq 9y} sassaippe uoljeolyoads pue w_s.voE .wf pue co:mo_towaw.
Jea|d B U] 80UdPUOYD }S8} 8y} JBy} 82Us8plU0D sjuswalinbal Ajojes aiemyos
ey - - Ly ay} usamjaq Ajljiqeadel) piemio 6
Aousysisuood (3ow pue paynsn(‘paulyep
Buiyse) jo Ajjigeieadas sanlo sajowolid uoljewoiny aJe sjobie) abelanod 1s9} JI z2Y) 500}
2y 1y - 1Y uoljewolne pue juswabeuew }sa| 8
(ow pue paynsnf
‘pauljap aJe sindino palinbal ji gy)
- - RS - Buiysa) aoeyialu| /
Juswainseaw pasn sI (991) uoljesausab
2beIBA0D |8A3| aseo)sa) pue ‘Buijjepow
8p09 82IN0S Y}IM PBUIGIOD a|qissod s| abeianoo 0} paljdde si Buiuoseal snoiobu |
8q 03 3___n_mw.oa m£.£_>> 10 @0U8pIAd BaAI108[go uay) ‘paljdde
BUISB) XOQ YOB|q 0) JE|IWIS s yoeoudde Buijjopow snotoBi J| €y
S| s1s8) pajelausab ayj jo ey sjuswalinbal yum
uoljnoaxs ‘pauljap Ajasioaid s]s9) pajesauab sjels ssaoolad | g\ @y} ‘ubisep
aq 0} sey uoljeinbyuod 10 UOIIND8Xd dljewolne 19N 10 JyoUaq A8y e S| sa}ins }s9) pue uoleoloads ul sannbique
Bunyse) ‘pajewolne si | gN 1e swie (901 yum) 19n uoissalbal pue s}insal Jo uollenjeAn] 10 ainsodxa AjJea smoje 1 g\
2y ey 2y 2y (LgW) Bunsey paseq |spoN | 9

uoneinbijuos
Bunysa) paulyap A|asioaid

Ayqejeaday

(uona|dwoo |nyssasons)
uoneoiyoads ubisap aiemyjos
ayj} o} }0adsau yjm uoijeabajul

pue Bui}sa) Jo SSaU}091I0)

uoljesyioads ubisap asemyjos
ayj o} }0adsau yjim uoijeabajul
pue Bui}sa) jo ssauaja|dwon

saljiadouad

ainsea/enbiuyosa]

BS EN 61508-3:2010

— 81 —

61508-3 © IEC:2010

188}
Japun sjuawsadinbal
JO dul||aseq Jed|d
B U}IM 92Udpluod

sjuawalinbaui uonesbajul
8y} sossalppe suoljeolyioads
1S9} uoljelbajul aiemyjos/alempiey
8y} Jey} eduspljuod

suojjeoljoads

19} uonesbajul aiemyos/aiempley
ay) pue uopeibejul aiemyos/aiempiey
10} syuawalinbal ubisap aiemyos pue

2y R walsAs ay} usamiaq Ajljigeasel) pJemio
(yow pue paynsn(‘paulyep
aJe syndino paJinbail ji zy)
B B (A - Buyse) eouew.loled
(row

(yow pue paynsn(‘paulyep
ale sindino palinbal ji zy)

1

pue pauisn(‘paulep aJe sjoble}
abelanoo a|iyoid [euonelado 4I Zy)

Lo

Buisa) xoq 3oe|q pue [euolouny

uoneinBbiyuod
uoneibajul
pauiap Ajasioaid

Ayqejeaday

(uonsjdwos
|njssaodons) suoljesijioads
uBisap ayj o} }o0adsau
yj}Im uoijeibajul jJo ssaujoalion

suonesyyioads
uBisap ayj} o} joadsal
yim uonelibajul jo ssauajajdwon

saljiadold

ainseay/anbiuysa]

(9'V 8|qe L Aq peousisjey "G/ 88g)

(e1emyjos pue asempiey) uoijeisbajul so1u04}29|9 a|qewwesbold — AyubBajul Ayajes onpewalsAs 104 saluadoid — 9°9 ajqe

BS EN 61508-3:2010
61508-3 © IEC:2010

— 82 —

1s9}
Japun sjuswsalinbal
10 auljeseq Jes|o
e ylIM 80Uspliuo)

cd

Ayxajdwoo Asessadauun
ou sulejuoo ue|d uoljepliea
Kj9jES 91EM}JOS JBY)} BOUBPLUOD

1

uoleolyoads

sjuawalinbal A)ojes alemyos ay)
pue ue|d uoljepiea A}ajes a1em)jos
ay) usamjaq Ayljiqeadel) piemyoeq

188}
Japun sjuswsadinbal
JO aulleseq Jes|d
B U}IM 92Udpluod

¢d

sjuawalinbal
A1ojes aiemyjos ay)
sassalppe ue|d uolepiea A}ajes
2JEM}JOS 9U] 1By} 80USpIU0D

ld

ue|d uonepijen Alajes

alem}jos ay} pue uoljeolyloads
sjuswalinbal A)ajes aiem)jos
ay) usamjaq Ajl|Iqeades} pJemio

(yaw pue paynsnl ‘paulyep
ale sindino palinbal jI gy)

(ow pue paynsnf
‘pauljap ale syabie) abelanod
a|ijoid jeuonelado Ji zY)

(B3] (&3] Bunse} xog-3oe|q pUE [EUOKOUNS
JUBWUOIIAUD
|euisixs ayj jo (yow pue paynsn(‘paulyep
uollulep e SaAlD aJe syndino paldinbai i zy)
FAS| - [RY] RS uolle|NWIs $s820.d

(yow pue paynsn(‘paulyep
ale sindino palinbal jI gy)

1

(ow pue paynsnf
‘pauljop aJe s}obie) abelranoo
a|ijoid jeuonelado Ji zY)

1

Bunse) ansi|igeqold

uoneinBbiyuod
uoljepijea
pauap Ajasioaid

Ayqejeaday

(uonajdwo9 [njssaosons)
uoneoyioadg ubisag
alemjjos ayj} o} }oadsau
Y}IM UOI}EPI|BA JO SSaU}231I0)

uoneoyioadg ubisag
alem}jos ay} o} }3oadsal yjim
uoljepijeA jo ssauajajdwon

salnjiadoud

ainsea/onbiuyosa]

(L'V 8lqel Aq peouslisjey /") 883)

uonepijea A)ajes woajlsAs jo sjoadse aiem)yog — Ayubajul Ayajes onpewalsAs ioj sanuadold — 279 ajqel

BS EN 61508-3:2010
61508-3 © IEC:2010

— 83 —

sisAjeue

1Y 1y pue Buipiooal ejeqg| 9
juswabeuew
[RS] - - - - - uoljeinBbyuoo alemyos | g
(s1eb4e) UOIIROIJIIBA (s1064e) UOIIBOILIBA (s1064e) UOIIBOILIBA (s1064e) UOIIBOILIBA
8A1308[qo 41) 8A1308(q0 41 2Y) aA108[qo J1 zd) 8A1308[q0 41 2Y)
(25} - (2| - (2| (25} uoneplleA uoissaibay | qy
(s1eb4e) UOIIROIJIIBA (s1064e) UOIIBOILIBA (s1064e) UOIIBOILIBA (s1064e) UOIIBOILIBA
8A1308[qo 41) 8A1308(q0 41 2Y) aA108[qo J1 zd) 8A1308[qo 41 2)
wolsAs
s B (RS B (RS [AS! 9)9|dwod sjepljersy | ey
(syebuey uonesiyluan (syebuey uonesiyuan (s10b4e) UOIIBOILIBA (s1064e) UOIJBOILIBA
aAnoalqo aAnoalgo aAnoalqo aAnoalqo i
Ajo8[qo JI 2d) A1308[q0 JI 2d) A1308[q0 JI 2d) 1joalqo Ji gy) SaInpow a1eMj0s
1y B - (RS (RS (S pajoaye Ajlen-ay | ¢
(s1964€) UOIIBOIJIIBA (s1964€) UOIBDIIIBA (syeb.e) uonesLIaA (syeb.e) uonesiylan
aAnoalqo aAnoalgo aAnoalqo aAnoalqo i
A3o8[qo JI 2d) A1308[q0 JI 2d) A1308[q0 JI 2d) 1noalqo Ji gy) oINPOLL SIEMLOS
FASIRS! - - [AS] [RS] (RS pabueys Ajlien-ay | z
1y 1y 1o h - - sisAjeue joedw| | |
s}|ney sjuawaliinbai sjuawalinbai
inoiAeyaq ubBisap 2IsuLiul s3I 0} }00dsal s} 0} }oadsal ainseajy/anbiuyosa)
9beIaA0D UOIJRDIJIIDA uBisap ajqe}sa} pajuemun 40 uoljonpousjul U3}Im uojjeosijipow y}Im uoijeosijipow

pue Buljsa) uoissaibay

pue ajqeyIap

JO @adueploAyY

wo.lj wopaalq

}JO ssaujoallo)

jo ssauajajdwon

saljadouad

(8'V @|qe L Aq peouslisjey 'g"/ 98g)

uoljesjipow asemyjos — Ayabajul Ayajes oljewalsAs 1o} saljiadoud — g°9 ajqeL

BS EN 61508-3:2010
61508-3 © IEC:2010

-84 -

Ayxa|dwoo
Aiessaoauun ou
sulejuod (uolepijeaal
pue UOI}EDIJlIBA
-aJ Buipnjoul) ue|d
uoljeol{ipow 8IeM}os
1ey} 8duspljuod

ld

uoleolyloads
sjuawalinbal

Alajes aiemijos

8y} pue (uoljepijeaas pue
uoljeoljlianal Buipnjoui)
ue|d uoneayipow
2lem}jos ay) usamjaq
AJljIgeaoel) plemyoeqg

sjuawalinbal
Alajes aiemyjos
ay) sassalppe
(uonepijeaal
pue uol}EdIjlIBA
-aJ Buipnjoul) ueld
uoljeolIpoW d1eM}OS
9y} jey} 8duUspljuoy

1

(uonepijeaal

pue uol}edllIaAal
Buipnjour) ueld
uoljeoI{IpoW 8IEM}JOS
ay} pue uoleolyoads
sjuawalinbai Ayojes
alem}jos ay) usamiaq
AJljIqesoel) piemlo

abelanod uoljesijlian

pue Bul)sa) uoissalbay

ubBisap a|ge}sa)
pue a|qelyliap

inoiAeyaq
pajuemun
J0 @adoueploAy

syney

uBisap oisuLul
40 uoionpouul
wo.uy wopaalq

sjuawaliinbau

s}l 0} }0adsau
YHm uoipjeodijipow

JO SSau}2a1l0)

sjuawaiinbai

s}1 0} J0adsau
Yiim uoijedijipow
Jo ssauajajdwon

saljadoug

ainseapy/anbiuysa]

BS EN 61508-3:2010

— 85 —

61508-3 © IEC:2010

(eney40 9ouejdaooe ayjy Ajiisnl o) Buluoseal
o11ewWwalsAs aA1308[qo yiim uoiounfuoo ul pasn
11 €Y "el8}uo soueidesoe aA1309[qo Yim gy)

suole[no|eo
pauoI}IpUOD-[|aM JO AoBINooe |BolIBWNU
paloadxe ay] Ul 80UBPIJUOD pasSEaIoU|

Lo

sisAjeue [eolJaWNU BUIO

1s9} Jopun sjuswalinbai
JO auljeseq
1ea|o e Yylm 8ouapluo)

Axajdwoo Asessadauun
ou sulejuod ueld (uoljesiylian ejep
Buipnjoul) uoljedIIIBA BIEBM}OS JBY) BOUBPIIUOD

uolneolyoads

ubBisap aiem}jos ay} pue

ue|d (uoneouluan eyep Buipnjour)
UOI1BOI}IIBA 81eM]J0S By}

cd (B2} usamiaq Alljigeasely piemyoeg

sjuawalinbal)
1S9] Japun sjuswalinbal A)ojes alem)jos ay} sassalppe ueid
JO auljeseq ue|d (uoneoyuea eyep Buipnjoul) (uoneoyuan eyep buipnjoul)
Jea|o B Y)Im 99UsplU0Y UOIJEDILIBA BIBM}JOS BY} JBY} 80UBPIIU0D uoljeollIeA 81BMYOS 8y} pue
uoneoloadg ubisaq aiemyos
cd B - RY| 8y} ueamiaq Ajljiqesdel} plemio

(yow pue (1ow pue paynsnl ‘pauyyep

paunsnl ‘pauljep aie syndino padinbai ji 2Y)

ale sjobie} abeian0d [einjonss §i 2Y)

(2| [RS| Bunse) pue sisAjeue ojweuiq
(sIsAjeue |ewJoy} [eojjewayjew 0} JUsWa9Iojud
1osgns abenbue| wouy abuel Aew 1nobry)
- B cd/zd/LY - sisAjeue onelg
ubisap
- B R [RY puE UOIIESLIDadS JO UoEWIUY
- B €d - 1004d |EWIOH

uoneinBijuod
UOI}eDIIIA
paupap Ajasioald

Ayqejeaday

(uonajdwoo |nyssasans) aseyd snoiraud ay)
0} }199dsaJ Y}IM UOIJBIIJIIBA JO SSBU}I81I0)

aseyd snoinaud ayj o} }0adsal
Y}IM UOI}Bd1}I49A JO ssaudjajdwo)

saljadouad

ainseay/anbluysay

uoljedijlidA aiemyyos — Ayubajul A}ajes onjewalsAs uoy sauadoid — 6°9 9|qel

(6'V @|qeL Aq peousisjey 6"/ 989)

BS EN 61508-3:2010
61508-3 © IEC:2010

— 86 —

g asne|o €-80519
10 sjuswalinbal
8y} sessalippe
Jjuswissasse
Kyejes |euonouny
aiemyjos Joy ueld
8y} Jey) 8ouapluoD

JUSWISSOSSE
Alajes |euolnjouny
aJemyos Joj ueld
ay} pue g asne|)

€-80G19 O3l
JO sjuawalinbal
9y} usamiaq

Ajll1geaoel} piemio

Lo
— _ — — - weusbelp
ho & %o01q ANgerey
(s1s1| (s1s1] (pasn Ajlenjoe
Jojeniul DO poaalbe Joleniul 9O poalbe S| 81BM}JOS 8SIBAIP
- - uo paseq sl sisAjeue - uo paseq sl sisAjeue 7y zy E. aIEM}}0S mwhm>_v
400 8u} papiroid) 400 8y} papiroid) .v_o siskjeue w_:__.mv.
Ly Ly 9sneo uowwo)
(s1s1] @1njiey (s1s1| @in|iey
_ _ pasaibe uo paseq s| _ paaibe uo paseq s|
sisAleue ainjiey ayy) sisAjeue ainjie} ay]) ¢y cd sisA|eue ain|ie4
Lo 2|
- B 2y - B 2y (RS sa|qe) yjniy/uoisioad
B B Lo B 2| 2| Lo SisIMo9y9
juswissasse (uonejdwos
ay} Jo yiom-ai |nyssaoons)
9AISU3}Xd 10} pasau suonealjioads
ay} noyjim abueys uBisap piepuels
13)je Juswissasse 9y} o} j}oadsau sy} o} }oadsal ainseapy/anbiuyoa
Kyajes |euonouny sanssi Y}IM JUBWISSISSE | Y}IM JUBWISSIsSe :

uoneinBiyuoos ayj Ayipow payuapl ||e jo Kjajes |euojouny | A)ajes jeuorjouny
pauljap Ajasioaid ssauljawi] Kyjigejeaday o} Ayjijiqe ayyl 91NnsSO|2 9|qeddel] | }JO SSdUIIALI0) Jo ssaudajajdwon
saljadoug

(01'V 81geL Aq paousiajey 'g ashe|) 99g)

juawissasse Ajajes |euolloung — Ayabajul Ayajes arjewalsAs 1o} saniadoud — gD a|qel

BS EN 61508-3:2010

— 87 —

61508-3 © IEC:2010

pasn abenbueg|
uo BuipuadaQg

pasn abenbue|
uo Buipuadaqg

pasn abenbueg|
uo BuipuadaQg

uolisinoal

joesn paywr 2
cd/Ld cd/Ld cd/ld
pasn abenbue|| pasn abenbue| 2160] pasn abenbue|
— — uo Buipuadag | uo Buipuadsaq 10 Ajue|0 sasealou| uo BuipuadaQg - - sJejulod S
J0 8sn pajiwiT
cd/1Ld cd/1Ld L cd/ld
pasn abenbue|| pasn abenbue| saouanbas pasn abenbue|
Juana pue 2160| d
- - uo Buipuadaq | uo Buipuadaqg A uo Buipuadaqg - - sjan.isjul v
10 Ajl1e|o sasealou| 40 88N payIWI
cd/Ld cd/1Ld Ly cd/Ld
pasn abenbue|| pasn abenbue| pasn abenbue| sa|qellen
- - uo Buipuadeqg | uo Buipuadeq - uo Buipuadaqg - - olweukp 40 qe
uoljejejsul ayj 4o
cd/1d gd/cd/ Ly cd/cd/lLyd Buiyosayd auljuQ)|
pasn abenbue|| pasn abenbue| pasn abenbueg|
- - uo Buipuadag | uo Buipuadaq - uo BuipuadaQg - - Sa|qellen ee
olweuAp oN
cd/Ly €d/cd/ Ly €d/cd/Ld
pasn abenbue|| pasn abenbue| pasn abenbueg|
- - uo Buipuadag | uo Buipuadsaq - uo BuipuadaQg - - s1o09[qo z
olweuAp oN
cd/ly €d/cd/ L €d/cd/lLd
sjonJisuoo abenbue| S104J9 JO
- - 9]09|9S sajeulw| — - pooyl|ayl| @onpay
R 1y Poo9| 13 R o) prepuery
L Buipoo jo asn
uoljesljioads uoljeoyyioads
aln|iej asnes| uol}09)ap sjuawaliinbai sjuawalinbai
uowwod j|ne4 uBisap s}|ney K)ajes asemyjos | A}ajes asemyjos
wouy | @2ueu9|0} a|ge}s9} InolAeyaq A3j1j1gepuelsiapun ubBisap o1sulaul 03} }0adsau 0} }9adsai yjim ainseap/anbiluysay
wopaaiq jjne4 pue ajqenyladaA | Jo Ayljigeloipaid pue Ao1dwig woJ} wopaald [Y}IM ssaujoallon| ssauajajdwon

saljiadoud

(1°g elqeL Aq peousisjey)

spJepuels buipoo pue ubisaqg — sa1uadoud pajielag — L1°D d|qel

sa|qe} pajie}aqg — Ajubajul Ayajes oljewalsAs 10} saljuadoud

€90

BS EN 61508-3:2010
61508-3 © IEC:2010

— 88 —

slole
Buipunol syusAsld

slole
Buipunol syusAsld

UOISISAUOD

23] Lo adA) onewojne oN
cd ¢y
sabenbue|
pasn abenbue|| pasn abenbue| o160 pasn abenbug| |oAs| Jaybiy
- - uo Buipuadaqg uo Buipuadaq 10 Ajue|o sasealou| uo Buipuadaqg - - ur swelboud

Ul MOJ} [043U0D]

cd/1d cd/1d L cd/lyd
paJnjonJisun oN|
uoljesljioads uoljeoyyioads
alnjiej asnes| uol}093ap sjuawaliinbai sjuawaliinbai
uowwod jne4 ubisap s}|ney K1ajes ausemyjos | A1ajes aisemyjos
wouy | @2ueu9|0} a|ge}s9)} InolAeyaq A3j1j1gepueysiapun uBisap aisuLul 03} }0adsau 0} }9adsai yjm ainseap/anbiluysay
wopaaig j|ne4 pue ajqenlaa | Jo Ayljiqeloipaid pue Ao1jdwig woJ} wopaadid [Y}IM ssaujoallo)| ssauajajdwo)

saljiadoud

BS EN 61508-3:2010

— 89 —

61508-3 © IEC:2010

(s1eb.e)
abelanod |einjonls aAl0alqo si zy)

Lo

Buiyse) peseqg-ainioniig

(yusjeainba AjnJ} aie sse|o
e JO siaqwaw [|e ‘@'l saljlleaul|-uou
ou ulejuod A|qisneid suoijiued ayj)

2=

(@4njonuys
ul a|dwis A|lgeabeuew sI pue pauljap
l1em si o|iyoad eyep indul ayy §|)

1o

Buiysey uoniyed ndul
pue sesse[0 8ous|eAinb]

(sjuswalinbal
aouewJoyiad aA1308[qo 41 ZzY)

Lo

Buljjopow souewWIONSd

Juswalnseaw abeianoo IELE]]
9p02 924N0S Y}IM pauiquod
8q 0} Ajiqissod ay} yum
Buiysa) xoq 3oe|q 0} Jejiwis
S| s}sa) pajelauab ay) jo
uoinoaxa ‘paulyep Ajesioald
aq 0} sey uoneinbiyuoo
Buiyse) ‘pajewolne si | g\

s)s9) pajetausb
JO UOIINOBXd
oljewolne je swie
(901 unm) Lamw

a|qissod s| abeianod
10 90oUdpIASG BA1308[qO uay} ‘paljdde
s yoeoisdde Buijjapow snolobu |

€

sjuawalinbaui paiyoads jo seouanbasuod
J0 Bulpuejsiapun saje}l||oe} Jayuny
3 ‘LN J0 Nyouaq Aoy e si sayins }se}
uolssalbal pue sjnsal Jo uoljenjeAn]

pasn si| (uoljelsusn

ose) Is9]) 9O L pue ‘Buljjepow
0} paljdde si Bujuoseas snoiobu |

€d

juawdojanep pue ubisap
alemyjos Bulinp siodis jo Bulpuly
Allea saje}l||oe) pue sjuswalinbai
yym syels ssaooud | gIN @Yl

uoljesauab
9sEeo 1s9) paseq-|apow

cd € ¢y 2d W04} uol}ndaxe ased 1S9 |

Buipsas Jold

- - [BY - WOJJ UOIINDDXS 9SEeD 18|

Buissanb Jolid

B B (A - WoJ} UoIlNOBXa 8SeD 1S9 |
(synsal

Aiepunoq Joj e1i8}1u0 aA1308[qo I ZY)

Lo

sisAjeue anjea Alepunoq
WoJ) UoI}NOSXd 9SeD 189 |

uoneinBbiyuod
uol}edI}II9A pUe
Buiysa) paulyap Ajasioaid

Aynqejeaday

(uonpajdwo9 [nyssaoons)
suoljeolyioads ubisap aiemyjos
ayj 0} }0adsal Y}IM UOI}BDIJIIdA

pue Bul}sa) Jo sSSaU}23.1I0)

suoljeoiyioads ubisap aiem}jos
9y} 0} }0adsal Y}IM UOI}BIIJIIDA
pue Bui}sa} jo ssauajajdwon

saljiadold

ainsea/enbiuyosa]

(z'g elqeL Aq peousisjey)

Buiysa) pue sisAjeue sjweulqg — saijuadoud pajielaq - ZL'9 9a19el

BS EN 61508-3:2010
61508-3 © IEC:2010

— 90 -

JUBWUOIIAUD |eUIB]}XD
3y} Jo UonIuEP B SBAID

¢d

1

uolje|nwis sse00.id

(yusjeainba Ajnyy
ale sSse|o e Jo siaquiaw
|le "o'I salldeaul|-uou
ou ulejuoo Ajqisne|d
suoped au})

1

(@4nyonuys ul ajdwis Ajgesabeuew si pue
pauyep ||om si a|i01d ejep indul oy §|)

Lo

sisAjeue anjeA Asepunoq
Buipnjour ‘Bunsay uonijed
1ndul pue sasse|o aoua|eAlinbg

Ly

uoljewiue/6uidAjolold

paulep Ajasioald
aq 0} sey uolneinbiyuod
Buiyse) ‘pejewolne si] g\

s}s9) pajelauab
10 UOI}Nd8XS dljewolne
je swie (901 yum) 19N

a|qissod si| abeianod jo

90UBPIAS BA1}03[q0 UBY)
‘pandde si yoeoudde
Buljjepow snoJobu §

€d

‘Sjuswalinbal
(lednoineyaq/jeuojouny
Ajulew) wouy
paAllap s|opow Wa)sAs
uo paseq s! 19N

pasn s| 991 pue ‘Buijjepow
0} paijdde si Buiuoseal snotobu §|

€d

sjuswalinbal palyloads Jo seouanbasuod
Jo Buipuelsiapun pue ainso|osip
Joule Ajues sajeyljioey) 1 ‘Ajjeuornouny
paijoads pue sjuswalinbal walsAs
10 s|opow Buisn sainpasoid/sased
1S9) JULI01440 JO Uollelausb oljeWoOlNE
8y} s buise | paseq-|opoN 19N

uonelsuab aseo 1s8) paseq

cd € cd cd -|opoWw WoOoJ} Uoljndexa ased }sa|
swelbelp @ouanbasuoo
- B 1y (RS 9sSned Wolj Uoi}ndexs aseod 1sa |

uoneanbiyuos uonepijea
pue uoijeibajul ‘Bulysal
paunap Ajasioaid

Ayqejeaday

(uonsjdwoo
|n}ssaosons)
suojljeoiyoads
ubBisap ayj o} }oadsal
U3im uoijeplijeAa pue
uoneibajul ‘Buiysay
JO SSsau}29.1I0)

suojljeolyoads ubisap
ayj o} }0adsaa Yyj}Im uoljepljeA pue
uoneibajul ‘Bulysa) Jo ssauajajdwon

saljuadoud

ainseap/anbiuyosa]

Buijse) xog-yoe|q pue jeuoijoun — saijuadoad pajielag — £1°9 9|gelL

(¢'g 8lqeL Aq peousisjey)

BS EN 61508-3:2010

- 91 -

61508-3 © IEC:2010

_ — — _ — sisA|eug|
cd cd alnjle} [euoljoun) alemyog €
- B B - - 43 2d sisAjeue o813 jne4 4
- - - - - 2y 2y sisA|eue 9al} Juang qL
- - - - - swelbelp e
cd cd @ouanbasuoo asne) b
juswssasse (uonpeojdwos
9y} Jo yiom-al |n}ssaos9ns)
9AISU3}Xd 10} paau suoljeayioads
a2y} Jnoyjim abueyo) uBisap piepuels

uoneinbiyuod
pauiyap Ajasioaid

ssauljawil

Ayqejeaday

19}je juswssasse
Kjajes |euonouny
ay} Aipow
o3 Ayiqe syl

sanssi|
payiuapl |fe jo
2inso|2 a|qeadeld]

a9y} o} }0adsal
U}IM Jusawissasse
Kjajes |euonyouny
JO SSau}09.1I09)

siy} o} }oadsal
U}IM jJuawissasse
Ajajes |euoljouny
Jo ssauaja|dwon

saljiadold

ainseay/enbiuyosa]

(v'g el1qeL Aq peousisjey)

sisAjeue aunjie4 — sanJadoud pajieyaq — 1°9 @|qel

BS EN 61508-3:2010
61508-3 © IEC:2010

— 92 —

1o swelbelp ainyonig S
B - R3] - uonewiue/buidAjojoid ¥
B B 1y - Buijjopow eouewIoNad | €
B B RS - sjou ujad awil | oz
B B €y €Y spoyjew jewto | qz
B B ey Y seulyoeW 9)eys AUy | ez
B B (RS - swelsbelp moj) eleq L

uoneinBbiyuod
uonepljea
paulap
Kjasi1oaid

Aynqejeaday

(uonyajdwo9 [njssaosons)
uoljeolyloads ubisap
alem}jos ay} o} }oadsal yjim
uol}epl|eA Jo SSau}d3lIo)

uoljeoljioads
uBisap aiem}jos ay}
0} jJoadsal yym uoijepijea
Jo ssauajajdwo)n

saljuadoud

ainseap/onbiluyosa]

(g'g 8lqeL Aq peousisjey)

BuijjapoN — sanuadouid pajielaq — 619 dlqelL

BS EN 61508-3:2010

— 93—

61508-3 © IEC:2010

(1os ale
sjobie} aA1308(qo JI ZY)

1

sjuswalinbal souewload | ¢

(1o0s ale
sjobie} aA1309[qo JI ZY)

1

sjulelisuod Alowaw pue sbuiwi} esuodsay | ¢

(1os ale
sjobie} aA1309[qo JI ZY)

1

Buiyse) ssadis/ayouejeay | |

uoijeianBijuod

uoneibajul pue

Bunse) pauyep
Klasioaid

Kyqejeaday

(uonsjdwod
|n}ssaosons)
suopjeaiyioads
ubBisap ayj o) }o0adsal
yj}im uoinyeabajul pue
Buiysa) jJo ssaujoaiio0)

suojljeoiyoads
ubBisap ayj o} }oadsal
yjim uoijeabajul
pue Buiysal
Jo ssauajajdwon

sajiadoud

ainseap/anbiuysa]

(9'g 8|qe L Aq peousisjey)

Buiysa) asuew.oylad — saiyuadoad pajiejag — 91" alqel

BS EN 61508-3:2010
61508-3 © IEC:2010

—94 -

2160]
- - ellojeuiquoo 1o - = S9|qe}
zd 2y |eoeulq 4 2y zd 2y IN/uoISIo8d L
[2S]
_ _ — — s}ieyd aouanbas|
cd cd (2S] cd cd cd obessaly 9
s|epouwl
- - - - - EjEp 9jnqlijje
2| (25} (2| (25} [2S] -diysuone|au S
-Aug
suoljoelalul
2o - - 2y ouw-jead seyyioeds - - 2y 2y 2y sjou mjad swlll ay
(23]
seouanbas
JUBA® JO uonesiyoads w%m%ﬂm
- - 9)9|dwod - - H e
As) 2d Aijeonewe e 2d 2d Zd a1BIS/SAUIYOBW 14
aje}s eyl
(23]
Buissaosoud
_ _ _ uoljoesuel) _ _ swesbeip)
bd 10} ||qeyng Lo ‘o ‘o moy eeq| €
(B3]
_ _ — - sweibelp|
cd cd (2S] cd cd cd sousnbag 4
_ — — — sweibelp 320|q
(23] 2d (B3] 2d 2d 2d uonouny1607 L
alemyjos
SJUDAD Aq passaippe uonesyyioads
sjiney uonjeolyioads
JeuJajxa wouy Uuol}03}ap uBisop aq 0} spaau Ajajes sjuewelnbey uBisep sjuawalinbal sjuewenbes
ain|iej asneod }Ine4 sqeIse) pue inoiAeyaq jo| Ajjigepuejsiapun (ayj yjim suoiouny Kyoses oysuLul Kyayes K10128 BIEMOS
uowwod | @2uela|0} S1qEILIOA Ay1geyoipaid pue fo1dwig Ayajes-uou e|qepuelsIepU(.Em.c * | aiemyjos 0} 01 3oodsos yyum| @insesp/enbiuysey
wo.uy jineq = JE-EIEYEYREI] WoDos. joadsal yym ssousialdwo ’
wopaaiq aslanpe paald S$S3U}091109 iad 0

woJj wopaaiq

saljiadoud

(2°g 8lqeL Aq peousisjey)

spoyjaw |ewuoj-1wag — saljiadoud pajieyaq — L1 @|qel

BS EN 61508-3:2010

— 05 —

61508-3 © IEC:2010

24 ey Y s|sA|eue awl} UOIINDBXd 8SEO-I1SION | 0L
wyjiobie snotobu Ajjeonewsayjew
e Buisn |00} e Aq pawJojiad
J1 10119 JO S8SSE|D UIBlaD 10} €Y
- - Y] - JnolAeyaq Jolia awi} uni jo sisAjeue onels| 6
(e840 8A309[qO YIM) ZH
¢y B 32| cd mainel ubiseq | 8
wyiioble
snoJobui Ajjeonewayjew e Buisn |00}
e Aq pawJioyiad pue suoljipuodlsod
pue suoljipuodaid pauiyep
AllewJoy }X831u0d ay) Ul pasn 1 €Y
- - 24 - uolnoaxa oljoqWAS [2
1d B (S (RS (aiemyjos) ybnoiy-yiem | 99
e119}140
ZY - 2y 2y ol1oads Buipnjoul ‘suoioadsul jewlo4 | B9
- - RS - Buissenb jouug| g
- - RS - sisAleue mojj eleq | ¥
- - RS - sisAjeue moj} [oyuo) | ¢
22| B 22| - sIsIPoeyd | ¢
(synsal
Alepunoq Joj elalluo aAnoalqo Ji zy)
- - Y] - sisAjeue anjeA Alepunog | |
aseyd

uoneinBbiyuoo
UOI}BDIJLIBA
pauljap Ajasioaid

Kyjiqejeaday

(uonpajdwo9 [nyssaooans)
aseyd snoinaid ayj o} 30adsau
U}IM UOI}BDI}1IBA JO SSBU}I3LI0D

snoiAaaid ayj o} }oadsal
Ylim uoijedijlian
J0 ssaudaja|dwon

saljiadoud

ainseap/anbiuyosa]

(8'g 8lqeL Aq peousisjey)

sisAjeue 2a1je}g — A)1bBajul Ay}ajes o1jewalsAs uoj saljuadoid — g1L°9 ajgeL

BS EN 61508-3:2010
61508-3 © IEC:2010

— 96 —

- B Ly Ly [2y B - aoeJI8)UI paulsp Ajn4

suoljouny

pue sauljnoJgns uf

B B S| S| (RS (RS B B jutod 31x® suo/Aijus 8uQ

siayoweled welboidgns

10 Jaquinu paxiy

B B (2| (2| (25} [3S] B B / Hwl Jlsquinu Isjoweled

uolne|nsdeoua/buipiy

B B RS RS [RS] RS B - uolewIoyU|

|0J1U09|

B - S| S| (RS (RS - - Ayixejdwoo aiemyog

— - - - Hwij

L Lo bd bd 9ZIS 9|NpoW 9I1EM}0S|
ainjiey uoljesyjioads uoljesyjioads
asned ubBisap sjjne} ubisap| sjuawaliinbau sjuawaliinbau

uowwod a|qe}sa} o|suLul K)ajes asemyjos | A}ajes alemyjos b

wouy uol13093ap }ne4q pue inoiaeyaq Ajlj1gepuelsiapun wouy 03 joadsal 0} j0adsal yym einsesiy/enbiuyss L

wopaal4 |/ 9ouela|o) }jned| a|qelludp [Jo Ayjiqe)oipasd| pue Ayoldwisg wopaald |Y}Im ssaujloallo)| ssaudlajdwon

saljiadoud

(6'9 @lqeL Aq peousisjey)

yoeoudde sejnpoy — saijuadoud pajieraqg — 619 21qel

BS EN 61508-3:2010
61508-3 © IEC:2010 - 97 -

Annex D
(normative)

Safety manual for compliant items —
additional requirements for software elements

D.1 Purpose of the safety manual

D.1.1 When an element is re-used or is intended to be re-used in one or more other system
developments, it is necessary to ensure that the element is accompanied by a sufficiently
precise and complete description (i.e. functions, constraints and evidence), to make possible
an assessment of the integrity of a specific safety function that depends wholly or partly on
the element. This shall be implemented by means of a safety manual.

D.1.2 The safety manual may consist of the element supplier’s documentation if this is
adequate to meet the requirements of Annex D of IEC 61508-2 and of this annex. Otherwise it
should be created as part of the design of the safety related system.

D.1.3 The safety manual shall define the attributes of an element, which may comprise
hardware constraints and/or software of which the integrator shall be aware and take into
consideration during application. In particular it forms the vehicle for informing the integrator
of its properties and what the element was designed for, its behaviour and characteristics.

NOTE 1 The scope and time of delivery of the safety manual will be dependent upon who it applies to, the type of
integrator, the purpose of the element and who provides and maintains it.

NOTE 2 The person or department or organization that integrates software is called the integrator.
D.2 Contents of the safety manual for a software element

D.2.1 The safety manual shall contain all the information required by IEC 61508-2 Annex D,
that is relevant to the element. E.g. the hardware-related items of IEC 61508-2 Annex D are
not relevant to a purely software element.

D.2.2 The element shall be identified and all necessary instructions for its use shall be
available to the integrator.

NOTE For software this can be demonstrated by clearly identifying the element and demonstrating that its content
is unchanged.

D.2.3 Element configuration:

a) The configuration of the software element, the software and hardware run-time
environment and if necessary the configuration of the compilation / link system shall be
documented in the safety manual.

b) The recommended configuration of the software element shall be documented in the
safety manual and that configuration shall be used in safety application.

c) The safety manual shall include all the assumptions made on which the justification for
use of the element depends.

D.2.4 The following shall be included in the safety manual:

a) Competence: The minimum degree of knowledge expected of the integrator of the element
should be specified, i.e. knowledge of specific application tools.

b) Degree of reliance placed on the element: Details of any certification of the element,
independent assessment performed, integrity to which the integrator may place on the

BS EN 61508-3:2010
- 98 - 61508-3 © IEC:2010

pre-existing element. This should include the integrity to which the element was designed,
the standards that were followed during the design process, and any constraints passed to
the integrator which shall be implemented in support of the systematic capability claimed.
(depending on the functionality of the element, it is conceivable that some requirements
may only be met at the integration phase of a system. In such circumstances, these
requirements shall be identified for further progression by the integrator. Requirements
pertaining to response times and performance are two such examples).

NOTE Unlike IEC 61508-2, IEC 61508-3 does not require software failure modes or quantitative failure rates

in safety manual for compliant items, because the causes of software errors are fundamentally different from
the causes of the random hardware failures of interest in IEC 61508-2 Annex D.

Installation instructions: Details of, or reference to, how to install the pre-existing element
into the integrated system.

The reason for release of the element: Details of whether the pre-existing element has
been subject to release to clear outstanding anomalies, or inclusion of additional
functionality.

Outstanding anomalies: Details of all outstanding anomalies should be given, with
explanation of the anomaly, how it occurs and the mechanisms that the integrator shall
take to mitigate the anomaly should the particular functions be used.

Backward compatibility: Details of whether the element is compatible with previous
releases of the sub-system, and if not, details of the process providing the upgrade path
to be followed.

Compatibility with other systems: A pre-existing element may be dependent upon a
specially developed operating system. In such circumstances, details of the version of the
specially developed operating system should be detailed.

The build standard should also be specified incorporating compiler identification and
version, tools used in creation of the pre-existing element (identification and version), and
test pre-existing element used (again identification and version).

Element configuration: Details of the pre-existing element name(s) and description(s)
should be given, including the version / issue / modification state.

Change control: The mechanism by which the integrator can initiate a change request to
the producer of the software.

Requirements not met: It is conceivable that there may exist specific requirements that
have been specified, but have not been met in the current revision of the element. In such
circumstances, these requirements should be identified for the integrator to consider.

Design safe state: In certain circumstances, upon controlled failure of the system
application, the element may revert to a design safe state. In such circumstances, the
precise definition of design safe state should be specified for consideration by the
integrator.

Interface constraints: Details of any specific constraints, in particular user interface
requirements shall be identified.

Details of any security measures that may have been implemented against listed threats
and vulnerabilities.

Configurable elements: details of the configuration method or methods available for the
element, their use and any constraints on their use shall be provided.

D.3 Justification of claims in the safety manual for compliant items

D.3.1 All claims in the safety manual for compliant items shall be justified by adequate
supporting evidence. See 7.4.9.7 of IEC 61508-2.

NOTE 1 It is essential that the claimed safety performance of an element is supported by sufficient evidence.
Unsupported claims do not help establish the correctness and integrity of the safety function to which the element
contributes.

BS EN 61508-3:2010
61508-3 © IEC:2010 - 99 —
NOTE 2 The supporting evidence may be derived from the element supplier’'s own documentation and records of

the element supplier’'s development process, or may be created or supplemented by additional qualification
activities by the developer of the safety related system or by third parties.

NOTE 3 There may be commercial or legal restrictions on the availability of the evidence (e.g. copyright or
intellectual property rights). These restrictions are outside the scope of this standard.

D.3.2 The supporting evidence that justifies the claims in the safety manual for compliant
items is distinct from the element safety manual.

D.3.3 Where the evidence cannot be made available to facilitate functional safety
assessment, then the element is not suitable for use in E/E/PE safety-related systems.

BS EN 61508-3:2010
- 100 - 61508-3 © IEC:2010

Annex E
(informative)

Relationships between IEC 61508-2 and IEC 61508-3

The following table helps finding which clauses of IEC 61508-2 need consideration by those
who are dealing with software only and which clauses can be neglected. It is well known that
almost all clauses address hardware issues. Therefore this is not repeated here. Important
software aspects are treated by IEC 61508-3, many software-related requirements do
however also occur in IEC 61508-2, mostly overlapping IEC 61508-3 requirements.
Knowledge of IEC 61508-2 is mainly needed for those software specialists who seek
compatibility between hardware and software. The IEC 61508-2 requirements are grouped
into the following categories:

Table E.1 — Categories of IEC 61508-2 requirements

Software Both for users of the standard dealing with hardware and for users dealing with
software.

Application software Users dealing with software that is for solving a related safety function as
such; not for operating system software or library functions.

System software For users dealing primarily with operating system software, library functions
and the like.

Hardware only Not for those interested in software only.

Mainly hardware Concerns software only marginally.

Table E.2 — Requirements of IEC 61508-2 for software and
their typical relevance to certain types of software

IEC 61508-2 Important to users dealing with Remarks

Requirement

7.2 Software

7.2.3.1 Application software

7.2.3.2t07.2.3.6 Software

7.2.3.3 Hardware only

7.3 Software 7.3.2.2 f) Hardware only
7.4 Software

7.421t07.4.212 Software

7.4.2.13,7.4.2.14 Hardware only

7.4.31t07.4.3.3 Software

7.4.3.4 Hardware only

7.4.4 Hardware only

7.4.5 Hardware only

7.4.6 Software 7.4.6.7 Hardware only
7.4.7 Software 7.4.7.1 a), b) Hardware only
7.4.8 Hardware only

7.491t07.493 Software

7.4.9.4,7.49.5 Hardware only

7.4.9.6,7.4.9.7 Software

7.4.10 Software Mainly system software

BS EN 61508-3:2010

61508-3 © IEC:2010 -101 -

IEC 61508-2 Important to users dealing with Remarks

Requirement

7.4.11 Hardware only

7.5 Software

7.6 Software

7.6.2.1 a) Hardware

7.6.2.4 Mainly hardware

7.7 Software 7.7.2.3, 7.7.2.4 Mainly application
software

7.8 Software

7.9 Mainly Application software

8 Software

Annex A.1 Mainly hardware

Annex A.2 and tables Mainly hardware | Table A.10 Software

Annex A.3 Mainly hardware | Tables A.16, A.17, A.18 Contain some
software aspects

Annex B, all tables Software

Annex C Hardware

Annex D Software D.2.3 Hardware only

Annex E Hardware only

Annex F Hardware only

BS EN 61508-3:2010
-102 - 61508-3 © IEC:2010

Annex F
(informative)

Techniques for achieving non-interference
between software elements on a single computer

F.1 Introduction

Independence of execution between software elements which are hosted on a single
computer system (consisting of one or more processors together with memory and other
hardware devices shared between those processors) can be achieved and demonstrated by
means of a number of different methods. This annex sets out some techniques which can be
used to achieve non-interference (between elements of differing systematic capability,
between elements which are designed to achieve or contribute to the same safety function, or
between software contributing to a safety function and non-safety related software on the
same computer).

NOTE The term “independence of execution” means that elements will not adversely interfere with each other’s
execution behaviour such that a dangerous failure would occur. It is used to distinguish other aspects of
independence which may be required between elements, in particular diversity, to meet other requirements of the
standard.

F.2 Domains of behaviour

Independence of execution should be achieved and demonstrated both in the spatial and
temporal domains.

Spatial: the data used by a one element shall not be changed by a another element. In
particular, it shall not be changed by a non-safety related element.

Temporal: one element shall not cause another element to function incorrectly by taking too
high a share of the available processor execution time, or by blocking execution of the other
element by locking a shared resource of some kind.

F.3 Causal factor analysis

To demonstrate independence of execution, an analysis of the proposed design should be
undertaken to identify all possible causes of execution interference between the notionally
independent (non-interfering) elements in the spatial and temporal domains. The analysis
should consider both normal operation and operation under failure conditions, and should
include (but need not be limited to) the following:

a) shared use of random access memory;

b) shared use of peripheral devices;

c) shared use of processor time (where two or more elements are executed by a single
processor);

d) communications between the elements necessary to achieve the overall design;

e) the possibility that a failure in one element (such as an overflow, or divide by zero
exception, or an incorrect pointer calculation) may cause a consequent failure in other
elements.

The achievement and justification of independence of execution will then have to address all
these identified sources of interference.

BS EN 61508-3:2010
61508-3 © IEC:2010 -103 -

F.4 Achieving spatial independence

Techniques for achieving and demonstrating spatial independence include the following:

a) Use of hardware memory protection between different elements, including elements of
differing systematic capability.

b) Use of an operating system which permits each element to execute in its own process with
its own virtual memory space, supported by hardware memory protection.

c) Use of rigorous design, source code and possibly object code analysis to demonstrate
that no explicit or implicit memory references are made from between software elements
which can result in data belonging to another element being overwritten (for the case
where hardware memory protection is not available).

d) Software protection of the data of a higher integrity element from illegal modification by a
lower integrity element.

Data should not be passed from a lower to a higher integrity element unless the higher
integrity element can verify that the data is of sufficient integrity.

Where data has to be passed between elements which are required to be independent, uni-
directional interfaces such as messages or pipes should be used in preference to shared
memory.

NOTE Ideally the independent elements would not communicate with each other. However, where the design of
the system requires that one element should send data to another element, the design of the communication
mechanism should be such that neither the sending nor the receiving elements should fail or be blocked in
execution if data transmission ceases or is delayed.

Any data resident on permanent storage devices such as magnetic discs shall be taken into
account for spatial partitioning, in addition to transient data in random access memory. For
example, file access protection implemented by an operating system could be used to prevent
one element writing to data areas belonging to another element.

F.5 Achieving temporal independence

Techniques for ensuring temporal independence include

a) Deterministic scheduling methods. For example,

e a cyclic scheduling algorithm which gives each element a defined time slice supported
by worst case execution time analysis of each element to demonstrate statically that
the timing requirements for each element are met;

e time triggered architectures.

b) Strict priority based scheduling implemented by a real-time executive with a means of
avoiding priority inversion.

c) Time fences which will terminate the execution of an element if it over-runs its allotted
execution time or deadline (in such a case, hazard analysis shall be undertaken to show
that termination of an element will not result in a dangerous failure, so this technique may
be best employed for a non-safety related element).

d) An operating system which guarantees that no process can be starved of processor time,
for example by means of time slicing. Such an approach may only be applicable where
there are no hard real time requirements to be met by the safety related elements, and it
is shown that the scheduling algorithm will not result in undue delays to any element.

Where a resource (such as a peripheral device) is shared between elements, the design shall
ensure that the elements will not function incorrectly because the shared resource is locked
by another element. The time required to access a shared resource shall be taken into
account in determining temporal non-interference.

BS EN 61508-3:2010
- 104 - 61508-3 © IEC:2010

F.6 Requirements for supporting software

If an operating system, a real-time executive, memory management, timer management or
any other such software is to be used to provide spatial or temporal independence, or both,
then such software shall be of the highest systematic capability of any of the elements which
are required to be independent.

NOTE It is clear that any such software represents a potential common cause of failure of the independent
elements.

F.7 Independence of software modules — programming language aspects
The following Table F.1 is an informal definition of relevant terms.

Table F.1 — Module coupling — definition of terms

Term Informal definition

Cohesion measure of tightness of the connections between data and subprograms within one module

Coupling measure for the tightness of connections between modules

Encapsulation hiding of internal (private) data and subprograms from external access; term primarily used
with object oriented programs

Independence measure of decoupling of software parts; complement of coupling

Module confined software part that performs something and that may have data of its own; Class,
hierarchy of classes, subprogram, unit, module, package, ...according to
programming language

Interface well defined set of heads of subprograms that provide access to a module

Tramp data data that is not used in the receiving module, but only transferred to another module

As a general rule, module independence is enhanced if there is loose coupling between
modules and high cohesion within modules. High cohesion encourages the situation where
identifiable units of functionality correspond clearly with identifiable units of implementing
code, while loose module coupling promotes low interaction and thus high independence
between functionally unrelated modules.

Loose module coupling usually results from achieving high cohesion within modules by putting
the code and data together that are used to perform one particular function. Low cohesion
results, if code and data are assembled in modules only arbitrarily, or because of some timing
sequence or due to some sequence in the control flow.

Several aspects of module coupling can be distinguished, see Table F.2 below.

BS EN 61508-3:2010
61508-3 © IEC:2010

- 105 -

Table F.2 — Types of module coupling

Coupling Definition Explanation Rationale Remark
Interface Coupling only via a | Access to the module | The heads of the Mainly for object
coupling, well defined set of or its data only via subprograms (signatures) | oriented programs,

encapsulation

subprograms.

subprograms; any
change of a value of
a variable, any
question about the
value of such a
variable, or any other
service required from
the module is routed
via a subprogram
call.

of a module explain the
available services.

If any changes of a
module are required, a
large amount of these
changes can be done
within that module,
without affecting other
modules.

Promotes loose coupling,
recommended in general.

classes, hierarchies
of classes, packages
of libraries; not for
subprograms.

Data coupling
via parameter
list

Data transfer only

via the parameter

list or the identifier
of subprograms.

Access to the module
or its data only via
variables or objects
that are indicated in
the head of the
subprogram; any
change of a value of
a variable, any
question about the
value of such a
variable is visible.

The head of the
subprograms exhibits the
data or objects involved
with a call of that
subprogram.

Promotes loose coupling,
recommended in general.

Within classes of
object oriented
programs this
principle is normally
not observed. Local
variables may be
accessed directly.
Strict adherence to
that principle may
also lead to tramp
data. The principle
should be violated to
avoid this type of
data.

Structure Data transfer More data are The superfluous data The deficiency can
coupling contains more data | transferred to the provide another module normally easily be
than necessary. receiving subprogram | with information that it corrected.
than necessary for does not require for
performing the fulfilling its purpose.
required function. These data may lead to
misunderstanding the
cooperation between the
modules. It is, however,
not deprecated.
Control Coupling that Data transfer that can | Tighter than the couplings | Cannot always be
coupling exercises only cause a above, as it requires avoided. May be
immediate control branching reaction in immediate action, necessary, e.g. if the
on the receiving the other module; in prescribing the receiving completion of an
module. many cases subprogram to do action is announced,
characterized by something. To be handled | or the validity of a
transfer of a single cautiously; to be avoided, value.
bit. if possible. Not
recommended in general.
Global Coupling via global | Modules can access The heads of the Deprecated in
coupling data. data that are directly subprograms do not general. May be
accessible by other indicate, which data are necessary
modules, or one used and from where. It is | exceptionally, e.g. to
module can directly difficult to understand the avoid tramp data. To
access data subprograms’ functions be used only in very
belonging to another and to predict the effects limited way that
module. of any changes to code. conforms to a clearly
defined and
documented coding
standard.
Content Jumping directly Feasible in assembly | Deprecated. One module In some
coupling into other modules, | language programs; can only be understood programming

influencing
branching goals in
other modules, or
accessing data in
other modules
directly.

not possible in all
higher level
languages. Can
accelerate program
execution and reduce
coding effort.

by understanding its
connected modules as
well. Makes a program
extremely difficult to
understand and extremely
difficult to change.

languages not even
possible. Can always
be avoided.

BS EN 61508-3:2010
- 106 - 61508-3 © IEC:2010

Code reading or code review (see 7.9.2.12) should verify whether or not the program modules
are loosely coupled. This analysis normally requires some sort of understanding of the
modules’ purpose and their way of working. Proper coupling can therefore be assessed only
by reading the code and its documentation.

Content coupling should be avoided. Global coupling may be used only exceptionally. Control
coupling and procedural coupling should be avoided. If ever possible, modules should be
connected by interface coupling (encapsulation) and/or data coupling.

BS EN 61508-3:2010
61508-3 © IEC:2010 -107 -

Annex G
(informative)

Guidance for tailoring lifecycles
associated with data driven systems

G.1 Data driven — system part and application part

Many systems are written in two parts. One part provides the underlying system capability.
The other part adapts the system to the specific requirements of the intended application. The
application part may be written in the form of data, that configures the system part. This is
termed “data driven” in this Annex.

The application specific part of the software, may be developed using a variety of
programming tools and programming languages. These languages and tools may constrain
the way the application program can be written.

For instance, where a programming language supports the developer/configurer in describing
the functionality (e.g. the use of ladder logic for simple interlock systems), then the
application software programming task is likely to be fairly simple. However, where the
programming language allows the developer/configurer to describe complex application
behaviour, then the application software programming task is likely to be complex. Where very
simple application software is developed, detailed design may be considered as configuring
rather than programming.

The degree of rigour necessary to achieve the required safety integrity is dependent upon the
degree of configuration complexity available to the developer/configurer and the complexity of
behaviour to be represented in the application. This is represented diagrammatically on the
axes of Figure G.1.

For simplicity the axes have been further divided into classes of complexity as:

a) Variability allowed by the language:
— fixed program;
— limited variability (some industries view the application program as ‘data’ which is
interpreted by the system part);

— full variability (whilst not normally considered as data driven this type of system
may also be used for application development and is included in this annex for
completeness).

b) Ability to configure application:
— limited;
- full.

In reality a particular system may comprise different levels of complexity and configurability.
Further, the complexity may exhibit a sliding scale along the continuum of the two axes. When
attempting to tailor the software lifecycle, the relevant level of complexity should be identified
and the degree of tailoring should be justified.

A description of the typical types of system for each level of complexity is given below.
Guidance on suggested techniques for implementing each type of system is given in
IEC 61508-7.

BS EN 61508-3:2010

-108 — 61508-3 © IEC:2010
High
A
LIMITED VARIABILITY LIMITED VARIABILITY FULL FUNCTIONALITY
CONFIGURATION PROGRAMMING PROGRAMMING/CONFIGURATION
FULL FULL APPLICATION FULL APPLICATION FULL APPLICATION
CONFIGURABILITY CONFIGURABILITY CONFIGURABILITY
(G3) (G5) (G7)
APPLICATION LIMITED VARIABILITY LIMITED VARIABILITY FULL FUNCTIONALITY
CONFIGURATION PROGRAMMING PROGRAMMING/CONFIGURATION
LIMITED LIMITED APPLICATION LIMITED APPLICATION LIMITED APPLICATION
CONFIGURABILITY CONFIGURABILITY. CONFIGURABILITY
CONFIGURABILITY (G2) (G4) (G8)
FIXED LIMITED FULL
Low » FUNCTIONALITY » High

Low

PRE-DELIVERED
FUNCTIONALITY

Figure G.1 — Variability in complexity of data driven systems

Typical systems in each class of complexity are described in G.2.

G.2 Limited variability configuration, limited application configurability

A proprietary configuration language used with an IEC 61508 compliant system with fixed pre-
delivered functionality.

The configuration language does not allow the programmer to alter the function of the system.
Instead configuration is limited to adjustment of a few (data) parameters to enable the system
to be matched to its application. Examples may include smart sensors and actuators
whereupon specific parameters are entered, network controllers, sequence controllers, small
data logging systems and smart instruments.

The justification of the tailoring of the safety lifecycle should include, but not be limited to, the
following:
a) specification of the input parameters for this application;

b) verification that the parameters have been correctly implemented in the operational
system;

c) validation of all combinations of input parameters;
d) consideration of special and specific modes of operation during configuration;
e) human factors / ergonomics;

f) interlocks, e.g. ensuring that operational
configuration process;

interlocks are not invalidated during the

g) Inadvertent re-configuration, e.g. key switch access, protection devices.

BS EN 61508-3:2010
61508-3 © IEC:2010 - 109 —

G.3 Limited variability configuration, full application configurability

A proprietary configuration language used with an IEC 61508 compliant system with fixed pre-
delivered functionality.

The configuration language does not allow the programmer to alter the function of the system.
Instead, configuration is constrained to creation of extensive static data parameters to enable
the system to be matched to its application. An example may be an air traffic control system
consisting of data with large numbers of data entities each with one or more attributes. An
essential characteristic of the data is that it contains no explicit sequencing, ordering or
branching constructs in the data and does not contain any representation of the combinatorial
states of the application.

In addition to the considerations given in G.2, the justification of the tailoring of the safety
lifecycle should include, but not be limited to, the following:

a) automation tools for creation of data;

b) consistency checking, e.g. the data is self compatible;

c) rules checking, e.g. to ensure the generation of the data meets the defined constraints;
d) validity of interfaces with the data preparation systems.

G.4 Limited variability programming, limited application configurability

A problem-oriented language, used with an IEC 61508 compliant system, where the language
statements contain or resemble the terminology of the application of the user for systems with
limited pre-delivered functionality.

These languages allow the user limited flexibility to customize the functions of the system to
their own specific requirements, based on a range of hardware and software elements.

An essential characteristic of limited variability programming is that data may contain explicit
sequencing, ordering or branching constructs and may invoke combinatorial states of the
application. Examples may include functional block programming, ladder logic, spreadsheet
based systems, and graphical systems.

In addition to the considerations given in G.3, the following elements should be included, but
not limited to:

a) the specification of the application requirements;

b) the permitted language sub-sets for this application;

c) the design methods for combining the language sub-sets;

d) the coverage criteria for verification addressing the combinations of potential system

states.
G.5 Limited variability programming, full application configurability

A problem-oriented language, used with an IEC 61508 compliant system, where the language
statements contain or resemble the terminology of the application of the user for system with
limited pre-delivered functionality.

The essential difference from limited variability programming, limited application
configurability is the complexity of the configuration of the application. Examples may include
graphical systems and SCADA-based batch control systems.

BS EN 61508-3:2010
- 110 - 61508-3 © IEC:2010

In addition to the considerations given in G.4, the following elements should be included but
not limited to:

a) the architectural design of the application;

b) the provision of templates;

c) the verification of the individual templates;

d) the verification and validation of the application.

The aspect of the lifecycle outlined in this standard which is most likely to be unnecessary
(depending on the language used) is the lowest level module implementation and testing.

G.6 Full functionality programming/configuration, limited application
configurability

See G.7 below.

G.7 Full functionality programming/configuration, full application
configurability

For these systems the full lifecycle requirements of this standard apply.

Full variability parts of systems are based on general purpose programming languages or
general purpose database languages, or general scientific and simulation packages.
Typically, these parts will be used in conjunction with a computer-based system, equipped
with an operating system which provides system resource allocation and a real time multi-
programming environment. Examples of systems that may be written in full variability
languages may include for example: a dedicated machinery control system, specially
developed flight control systems, or web services for management of safety related services.

BS EN 61508-3:2010
61508-3 © IEC:2010 -111 -

(1]

(2]

(3]

(4]

(5]

(6]

[7]
(8]

Bibliography

IEC 61511 (all parts), Functional safety — Safety instrumented systems for the process
industry sector

IEC 62061, Safety of machinery — Functional safety of safety-related electrical,
electronic and programmable electronic control systems

IEC 61800-5-2, Adjustable speed electrical power drive systems — Part 5-2: Safety
requirements — Functional

IEC 61508-5: 2010, Functional safety of electrical/electronic/programmable electronic
safety-related systems — Part 5: Examples of methods for the determination of safety
integrity levels

IEC 61508-6: 2010, Functional safety of electrical/electronic/programmable electronic
safety-related systems — Part 6: Guidelines on the application of IEC 61508-2 and
IEC 61508-3

IEC 61508-7: 2010, Functional safety of electrical/electronic/programmable electronic
safety-related systems — Part 7: Overview of techniques and measures

IEC 60601 (all parts), Medical electrical equipment

IEC 61131-3, Programmable controllers — Part 3: Programming languages

1Sg (0) ‘AdoD pajjonuodun ‘€T:0T 0T0Z/80/GZ ‘[19Un0D sanijioe ABojouydsa | % aouslds :AdoD pasuaolT

This page deliberately left blank

1Sg (0) ‘AdoD pajjonuodun ‘€T:0T 0T0Z/80/GZ ‘[19Un0D sanijioe ABojouydsa | % aouslds :AdoD pasuaolT

This page deliberately left blank

o
O
O
o)
Q
s
=
c
O
O
c
>

British Standards Institution (BSI)

BSI is the independent national body responsible for preparing British Standards
and other standards-related publications, information and services.
It presents the UK view on standards in Europe and at the international level.

It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Stan-
dards should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and serv-
ices. We would be grateful if anyone finding an inaccuracy or ambiguity while
using this British Standard would inform the Secretary of the technical com-
mittee responsible, the identity of which can be found on the inside front
cover.

Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001

BSI offers Members an individual updating service called PLUS which ensures
that subscribers automatically receive the latest editions of standards.

Tel: +44 (0)20 8996 7669 Fax: +44 (0)20 8996 7001
Email: plus@bsigroup.com

Buying standards

You may buy PDF and hard copy versions of standards directly using a

credit card from the BSI Shop on the website www.bsigroup.com/shop.

In addition all orders for BSI, international and foreign standards publications
can be addressed to BSI Customer Services.

Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001
Email: orders@bsigroup.com

In response to orders for international standards, it is BSI policy to
supply the BSI implementation of those that have been published
as British Standards, unless otherwise requested.

BSI Group Headquarters
389 Chiswick High Road London W4 4AL UK

Tel +44 (0)20 8996 9001
Fax +44 (0)20 8996 7001
www.bsigroup.com/standards

raising standards worldwide™

Information on standards

BSI provides a wide range of information on national, European
and international standards through its Knowledge Centre.

Tel: +44 (0)20 8996 7004 Fax: +44 (0)20 8996 7005
Email: knowledgecentre@bsigroup.com

Various BSI electronic information services are also available which
give details on all its products and services.

Tel: +44 (0)20 8996 7111 Fax: +44 (0)20 8996 7048
Email: info@bsigroup.com

BSI Subscribing Members are kept up to date with standards

developments and receive substantial discounts on the purchase price

of standards. For details of these and other benefits contact Membership Ad-
ministration.

Tel: +44 (0)20 8996 7002 Fax: +44 (0)20 8996 7001
Email: membership@bsigroup.com

Information regarding online access to British Standards via British
Standards Online can be found at www.bsigroup.com/BSOL

Further information about BSI is available on the BSI website at www.bsi-
group.com/standards

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright,

in the UK, of the publications of the international standardization bodies. Ex-
cept as permitted under the Copyright, Designs and Patents Act 1988 no ex-
tract may be reproduced, stored in a retrieval system or transmitted in any
form or by any means — electronic, photocopying, recording or otherwise —
without prior written permission from BSI. This does not preclude the free
use, in the course of implementing the standard of necessary details such as
symbols, and size, type or grade designations. If these details are to be used
for any other purpose than implementation then the prior written permission
of BSI must be obtained. Details and advice can be obtained from the Copy-
right & Licensing Manager.

Tel: +44 (0)20 8996 7070
Email: copyright@bsigroup.com

L o ¥V o Y

Do

	iec61508-3{ed2.0}b.pdf
	English
	CONTENTS
	FOREWORD
	INTRODUCTION
	1 Scope
	2 Normative references
	3 Definitions and abbreviations
	4 Conformance to this standard
	5 Documentation
	6 Additional requirements for management of safety-related software
	6.1 Objectives
	6.2 Requirements

	7 Software safety lifecycle requirements
	7.1 General
	7.2 Software safety requirements specification
	7.3 Validation plan for software aspects of system safety
	7.4 Software design and development
	7.5 Programmable electronics integration (hardware and software)
	7.6 Software operation and modification procedures
	7.7 Software aspects of system safety validation
	7.8 Software modification
	7.9 Software verification

	8 Functional safety assessment
	Annex A (normative) Guide to the selection of techniques and measures
	Annex B (informative) Detailed tables
	Annex C (informative) Properties for software systematic capability
	Annex D (normative) Safety manual for compliant items – additional requirements for software elements
	Annex E (informative) Relationships between IEC 61508-2 and IEC 61508-3
	Annex F (informative) Techniques for achieving non-interference between software elements on a single computer
	Annex G (informative) Guidance for tailoring lifecycles associated with data driven systems
	Bibliography
	Figures
	Figure 1 – Overall framework of the IEC 61508 series
	Figure 2 – Overall safety lifecycle
	Figure 3 – E/E/PE system safety lifecycle (in realisation phase)
	Figure 4 – Software safety lifecycle (in realisation phase)
	Figure 5 – Relationship and scope for IEC 61508-2 and IEC 61508-3
	Figure 6 – Software systematic capability and the development lifecycle (the V-model)
	Figure G.1 – Variability in complexity of data driven systems

	Tables
	Table 1 – Software safety lifecycle – overview
	Table A.1 – Software safety requirements specification
	Table A.2 – Software design and development – software architecture design
	Table A.3 – Software design and development – support tools and programming language
	Table A.4 – Software design and development – detailed design
	Table A.5 – Software design and development – software module testing and integration
	Table A.6 – Programmable electronics integration (hardware and software)
	Table A.7 – Software aspects of system safety validation
	Table A.8 – Modification
	Table A.9 – Software verification
	Table A.10 – Functional safety assessment
	Table B.1 – Design and coding standards
	Table B.2 – Dynamic analysis and testing
	Table B.3 – Functional and black-box testing
	Table B.4 – Failure analysis
	Table B.5 – Modelling
	Table B.6 – Performance testing
	Table B.7 – Semi-formal methods
	Table B.8 – Static analysis
	Table B.9 – Modular approach
	Table C.1 – Properties for systematic safety integrity – Software safety requirements specification
	Table C.2 – Properties for systematic safety integrity – Software design and development – software Architecture Design
	Table C.3 – Properties for systematic safety integrity – Software design and development – support tools and programming language
	Table C.4 – Properties for systematic safety integrity – Software design and development – detailed design (includes software system design, software module design and coding)
	Table C.5 – Properties for systematic safety integrity – Software design and development – software module testing and integration
	Table C.6 – Properties for systematic safety integrity – Programmable electronics integration (hardware and software)
	Table C.7 – Properties for systematic safety integrity – Software aspects of system safety validation
	Table C.8 – Properties for systematic safety integrity – Software modification
	Table C.9 – Properties for systematic safety integrity – Software verification
	Table C.10 – Properties for systematic safety integrity – Functional safety assessment
	Table C.11 – Detailed properties – Design and coding standards
	Table C.12 – Detailed properties – Dynamic analysis and testing
	Table C.13 – Detailed properties – Functional and black-box testing
	Table C.14 – Detailed properties – Failure analysis
	Table C.15 – Detailed properties – Modelling
	Table C.16 – Detailed properties – Performance testing
	Table C.17 – Detailed properties – Semi-formal methods
	Table C.18 – Properties for systematic safety integrity – Static analysis
	Table C.19 – Detailed properties – Modular approach
	Table E.1 – Categories of IEC 61508-2 requirements
	Table E.2 – Requirements of IEC 61508-2 for software and their typical relevance to certain types of software
	Table F.1 – Module coupling – definition of terms
	Table F.2 – Types of module coupling

	Français
	SOMMAIRE
	AVANT-PROPOS
	INTRODUCTION
	1 Domaine d’application
	2 Références normatives
	3 Définitions et abréviations
	4 Conformité à la présente norme
	5 Documentation
	6 Exigences supplémentaires pour la gestion du logiciel de sécurité
	6.1 Objectifs
	6.2 Exigences

	7 Exigences concernant le cycle de vie de sécurité du logiciel
	7.1 Généralités
	7.2 Spécification des exigences pour la sécurité du logiciel
	7.3 Planification de la validation de sécurité du logiciel
	7.4 Conception et développement du logiciel
	7.5 Intégration de l’électronique programmable (matériel et logiciel)
	7.6 Procédures d'exploitation et de modification du logiciel
	7.7 Validation de sécurité du logiciel
	7.8 Modification du logiciel
	7.9 Vérification du logiciel

	8 Evaluation de la sécurité fonctionnelle
	Annexe A (normative) Guide de sélection de techniques et mesures
	Annexe B (informative) Tableaux détaillés
	Annexe C (informative) Propriétés relatives à la capabilité systématique du logiciel
	Annexe D (normative) Manuel de sécurité d’article conforme – exigences supplémentaires pour les composants logiciels
	Annexe E (informative) Relation entre la CEI 61508-2 et la CEI 61508-3
	Annexe F (informative) Techniques de réalisation de non interférence entre les composants logiciels d'un seul ordinateur
	Annexe G (informative) Indications relatives à la personnalisation des cycles de vie associés aux systèmes dirigés par les données
	Bibliographie
	Figures
	Figure 1 – Structure générale de la série CEI 61508
	Figure 2 – Cycle de vie de sécurité global
	Figure 3 – Cycle de vie de sécurité du système E/E/PE (en phase de réalisation)
	Figure 4 – Cycle de vie de sécurité du logiciel (en phase de réalisation)
	Figure 5 – Relation et domaine d'application pour la CEI 61508-2 et la CEI 61508-3
	Figure 6 – Capabilité systématique du logiciel et cycle de vie de développement (modèle en V)
	Figure G.1 – Variabilité de complexité des systèmes dirigés par les données

	Tableaux
	Tableau 1 – Cycle de vie de sécurité du logiciel – présentation
	Tableau A.1 – Spécification des exigences pour la sécurité du logiciel
	Tableau A.2 – Conception et développement du logiciel – conception de l’architecture du logiciel
	Tableau A.3 – Conception et développement du logiciel – outils de support et langage de programmation
	Tableau A.4 – Conception et développement du logiciel – conception détaillée
	Tableau A.5 – Conception et développement du logiciel – essai et intégration des modules logiciels
	Tableau A.6 – Intégration de l’électronique programmable (matériel et logiciel)
	Tableau A.7 – Validation de sécurité du logiciel
	Tableau A.8 – Modification
	Tableau A.9 – Vérification du logiciel
	Tableau A.10 – Evaluation de la sécurité fonctionnelle
	Tableau B.1 – Règles de conception et de codage
	Tableau B.2 – Analyse dynamique et essai
	Tableau B.3 – Essais fonctionnels et boîte noire
	Tableau B.4 – Analyse de défaillance
	Tableau B.5 – Modélisation
	Tableau B.6 – Essais de fonctionnement
	Tableau B.7 – Méthodes semi-formelles
	Tableau B.8 – Analyse statique
	Tableau B.9 – Approche modulaire
	Tableau C.1 – Propriétés relatives à l’intégrité systématique – Spécification des exigences pour la sécurité du logiciel
	Tableau C.2 – Propriétés relatives à l’intégrité systématique – Conception et développement du logiciel – Conception de l’architecture logicielle
	Tableau C.3 – Propriétés relatives à l’intégrité systématique - Conception et développement du logiciel – outils de support et langage de programmation
	Tableau C.4 – Propriétés relatives à l’intégrité systématique – Conception et développement du logiciel – conception détaillée (comprend la conception du système logiciel, la conception des modules logiciels et le codage)
	Tableau C.5 – Propriétés relatives à l’intégrité systématique – Conception et développement du logiciel – essai et intégration des modules logiciels
	Tableau C.6 – Propriétés relatives à l’intégrité systématique – Intégration de l’électronique programmable (matériel et logiciel)
	Tableau C.7 – Propriétés relatives à l’intégrité systématique – Validation de sécurité du logiciel
	Tableau C.8 – Propriétés relatives à l’intégrité systématique – Modification du logiciel
	Tableau C.9 – Propriétés relatives à l’intégrité systématique – Vérification du logiciel
	Tableau C.10 – Propriétés relatives à l’intégrité systématique – Évaluation de la sécurité fonctionnelle
	Tableau C.11 – Propriétés détaillées – Conception et règles de codage
	Tableau C.12 – Propriétés détaillées – Analyse dynamique et essais
	Tableau C.13 – Propriétés détaillées – Essais fonctionnels et boîte noire
	Tableau C.14 – Propriétés détaillées – Analyse des défaillances
	Tableau C.15 – Propriétés détaillées – Modélisation
	Tableau C.16 – Propriétés détaillées – Essais de fonctionnement
	Tableau C.17 – Propriétés détaillées – Méthodes semi-formelles
	Tableau C.18 – Propriétés relatives à l’intégrité systématique – Analyse statique
	Tableau C.19 – Propriétés détaillées – Approche modulaire
	Tableau E.1 – Catégories des exigences de la CEI 61508-2
	Tableau E.2 – Exigences de la CEI 61508-2 pour le logiciel et leur pertinence typique pour certains types de logiciels
	Tableau F.1 – Couplage de modules – définition des termes
	Tableau F.2 – Types de couplage de modules

