
BSI Standards Publication

Function blocks

Part 1: Architecture

BS EN 61499-1:2013

National foreword

This British Standard is the UK implementation of EN 61499-1:2013. It is
identical to IEC 61499-1:2012. It supersedes BS EN 61499-1:2005 which is
withdrawn.

The UK participation in its preparation was entrusted to Technical Committee
GEL/65, Measurement and control.

A list of organizations represented on this committee can be obtained on
request to its secretary.

This publication does not purport to include all the necessary provisions of a
contract. Users are responsible for its correct application.

© The British Standards Institution 2013

Published by BSI Standards Limited 2013

ISBN 978 0 580 78490 3

ICS 25.040.40; 35.240.50

Compliance with a British Standard cannot confer immunity from
legal obligations.

This British Standard was published under the authority of the Standards
Policy and Strategy Committee on 30 April 2013.

Amendments issued since publication

Amd. No. Date Text affected

BRITISH STANDARDBS EN 61499-1:2013

http://dx.doi.org/10.3403/30128975

EUROPEAN STANDARD EN 61499-1
NORME EUROPÉENNE

EUROPÄISCHE NORM February 2013

CENELEC
European Committee for Electrotechnical Standardization

Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung

Management Centre: Avenue Marnix 17, B - 1000 Brussels

© 2013 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

 Ref. No. EN 61499-1:2013 E

ICS 25.040; 35.240.50 Supersedes EN 61499-1:2005

English version

Function blocks -
Part 1: Architecture
(IEC 61499-1:2012)

Blocs fonctionnels -
Partie 1: Architecture
(CEI 61499-1:2012)

 Funktionsbausteine für industrielle
Leitsysteme -
Teil 1: Architektur
(IEC 61499-1:2012)

This European Standard was approved by CENELEC on 2012-12-12. CENELEC members are bound to comply
with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard
the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on
application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CENELEC member into its own language and notified
to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus,
the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany,
Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland,
Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

BS EN 61499-1:2013

http://dx.doi.org/10.3403/30128975U
http://dx.doi.org/10.3403/30128975

EN 61499-1:2013 - 2 -

Foreword

The text of document 65B/845/FDIS, future edition 2 of IEC 61499-1, prepared by SC 65B
"Measurement and control devices" of IEC/TC 65 "Industrial-process measurement, control and
automation" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as
EN 61499-1:2013.

The following dates are fixed:

• latest date by which the document has
to be implemented at national level by
publication of an identical national
standard or by endorsement

(dop) 2013-09-12

• latest date by which the national
standards conflicting with the
document have to be withdrawn

(dow) 2015-12-12

This document supersedes EN 61499-1:2005.

EN 61499-1:2013 includes the following significant technical changes with respect to
EN 61499-1:2005:

• Execution control in basic function blocks (5.2) has been clarified and extended:

- dynamic and static parts of the EC transition condition are clearly delineated by using the
ec_transition_event[guard_condition] syntax of the Unified Modeling Language (UML) (5.2.1.3,
B.2.1);

- the terminology "crossing of an EC transition" (3.10) is used preferentially to "clearing" to avoid
the misinterpretation that the entire transition condition corresponds to a Boolean variable that
can be "cleared.";

- operation of the ECC state machine in 5.2.2.2 has been clarified and made more rigorous;
- event and data outputs of adapter instances (plugs and sockets) can be used in EC transition

conditions, and event inputs of adapter instances can be used as EC action outputs.
• Temporary variables (3.97) can be declared (B.2.1) and used in algorithms of basic function blocks.

• Service sequences (6.1.3) can now be defined for basic and composite function block types and
adapter types, as well as service interface types.

• The syntax for mapping of FB instances from applications to resources has been simplified
(Clause B.3).

• Syntax for definition of segment types (7.2.3) for network segments of system configurations has
been added (Clause B.3).

• Function block types for interoperation with programmable controllers are defined (Clause D.6).

• The READ/WRITE management commands (Table 8) now apply only to parameters.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such
patent rights.

BS EN 61499-1:2013

http://dx.doi.org/10.3403/30128975U
http://dx.doi.org/10.3403/30128975
http://dx.doi.org/10.3403/30128975

 - 3 - EN 61499-1:2013

Endorsement notice

The text of the International Standard IEC 61499-1:2012 was approved by CENELEC as a European
Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 61131-5:2000 NOTE Harmonised as EN 61131-5:2001 (not modified).

IEC 61499 Series NOTE Harmonised as EN 61499 Series (not modified).

IEC 61499-2:2012 NOTE Harmonised as EN 61499-2:2013 (not modified).

IEC 61499-4 NOTE Harmonised as EN 61499-4.

BS EN 61499-1:2013

http://dx.doi.org/10.3403/02228747
http://dx.doi.org/10.3403/02228747
http://dx.doi.org/10.3403/30267341
http://dx.doi.org/10.3403/30267341
http://dx.doi.org/10.3403/30126758U
http://dx.doi.org/10.3403/30126758U

EN 61499-1:2013 - 4 -

Annex ZA
(normative)

Normative references to international publications

with their corresponding European publications

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD
applies.

Publication Year Title EN/HD Year

IEC 61131-1 - Programmable controllers -
Part 1: General information

EN 61131-1 -

IEC 61131-3 2003 Programmable controllers -
Part 3: Programming languages

EN 61131-3 2003

ISO/IEC 7498-1 1994 Information technology - Open Systems
Interconnection - Basic Reference Model:
The Basic Model

- -

ISO/IEC 8824-1 2008 Information technology - Abstract Syntax
Notation One (ASN.1): Specification of basic
notation

- -

ISO/IEC 10646 2003 Information technology - Universal multiple-
octet coded character set (UCS)

- -

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00345852U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00345852U
http://dx.doi.org/10.3403/00316105U

 – 2 – 61499-1 © IEC:2012

CONTENTS

INTRODUCTION ... 7
1 Scope ... 8
2 Normative references ... 8
3 Terms and definitions ... 9
4 Reference models .. 18

 System model.. 18 4.1
 Device model .. 19 4.2
 Resource model .. 19 4.3
 Application model .. 21 4.4
 Function block model... 21 4.5

 Characteristics of function block instances .. 21 4.5.1
 Function block type specifications ... 23 4.5.2
 Execution model for basic function blocks ... 23 4.5.3

 Distribution model ... 25 4.6
 Management model ... 25 4.7
 Operational state models ... 27 4.8

5 Specification of function block, subapplication and adapter interface types 27
 Overview ... 27 5.1
 Basic function blocks ... 28 5.2

 Type declaration .. 28 5.2.1
 Behavior of instances .. 30 5.2.2

 Composite function blocks ... 33 5.3
 Type specification .. 33 5.3.1
 Behavior of instances .. 35 5.3.2

 Subapplications ... 36 5.4
 Type specification .. 36 5.4.1
 Behavior of instances .. 37 5.4.2

 Adapter interfaces ... 38 5.5
 General principles ... 38 5.5.1
 Type specification .. 38 5.5.2
 Usage .. 39 5.5.3

 Exception and fault handling.. 41 5.6
6 Service interface function blocks .. 41

 General principles ... 41 6.1
 General ... 41 6.1.1
 Type specification .. 42 6.1.2
 Behavior of instances .. 43 6.1.3

 Communication function blocks ... 45 6.2
 Type specification .. 45 6.2.1
 Behavior of instances .. 46 6.2.2

 Management function blocks ... 47 6.3
 Requirements .. 47 6.3.1
 Type specification .. 47 6.3.2
 Behavior of managed function blocks... 50 6.3.3

7 Configuration of functional units and systems ... 52

BS EN 61499-1:2013

61499-1 © IEC:2012 – 3 –

 Principles of configuration ... 52 7.1
 Functional specification of resource, device and segment types 52 7.2

 Functional specification of resource types ... 52 7.2.1
 Functional specification of device types ... 53 7.2.2
 Functional specification of segment types .. 53 7.2.3

 Configuration requirements ... 53 7.3
 Configuration of systems ... 53 7.3.1
 Specification of applications .. 54 7.3.2
 Configuration of devices and resources ... 54 7.3.3
 Configuration of network segments and links ... 55 7.3.4

Annex A (normative) Event function blocks .. 56
Annex B (normative) Textual syntax ... 63
Annex C (informative) Object models ... 74
Annex D (informative) Relationship to IEC 61131-3 .. 82
Annex E (informative) Information exchange .. 92
Annex F (normative) Textual specifications .. 100
Annex G (informative) Attributes .. 113
Bibliography .. 117

Figure 1 – System model .. 18
Figure 2 – Device model ... 19
Figure 3 – Resource model ... 20
Figure 4 – Application model ... 21
Figure 5 – Characteristics of function blocks ... 22
Figure 6 – Execution model .. 24
Figure 7 – Execution timing ... 24
Figure 8 – Distribution and management models ... 26
Figure 9 – Function block and subapplication types .. 28
Figure 10 – Basic function block type declaration .. 29
Figure 11 – ECC example ... 30
Figure 12 – ECC operation state machine ... 32
Figure 13 – Composite function block PI_REAL example ... 34
Figure 14 – Basic function block PID_CALC example .. 35
Figure 15 – Subapplication PI_REAL_APPL example ... 37
Figure 16 – Adapter interfaces – Conceptual model .. 38
Figure 17 – Adapter type declaration – graphical example .. 39
Figure 18 – Illustration of provider and acceptor function block type declarations.................. 40
Figure 19 – Illustration of adapter connections .. 41
Figure 20 – Example service interface function blocks .. 43
Figure 21 – Example service sequence diagrams .. 44
Figure 22 – Generic management function block type ... 47
Figure 23 – Service primitive sequences for unsuccessful service .. 48
Figure 24 – Operational state machine of a managed function block 51
Figure A.1 – Event split and merge ... 62

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00316105U

 – 4 – 61499-1 © IEC:2012

Figure C.1 – ESS overview ... 74
Figure C.2 – Library elements ... 75
Figure C.3 – Declarations ... 76
Figure C.4 – Function block network declarations ... 77
Figure C.5 – Function block type declarations ... 79
Figure C.6 – IPMCS overview ... 79
Figure C.7 – Function block types and instances .. 81
Figure D.1 – Example of a “simple” function block type ... 82
Figure D.2 – Function block type READ .. 85
Figure D.3 – Function block type UREAD .. 87
Figure D.4 – Function block type WRITE ... 88
Figure D.5 – Function block type TASK ... 90
Figure E.1 – Type specifications for unidirectional transactions .. 93
Figure E.2 – Connection establishment for unidirectional transactions 93
Figure E.3 – Normal unidirectional data transfer ... 93
Figure E.4 – Connection release in unidirectional data transfer ... 94
Figure E.5 – Type specifications for bidirectional transactions .. 94
Figure E.6 – Connection establishment for bidirectional transaction 95
Figure E.7 – Bidirectional data transfer ... 95
Figure E.8 – Connection release in bidirectional data transfer ... 95

Table 1 – States and transitions of ECC operation state machine ... 32
Table 2 – Standard inputs and outputs for service interface function blocks 42
Table 3 – Service primitive semantics ... 45
Table 4 – Variable semantics for communication function blocks .. 46
Table 5 – Service primitive semantics for communication function blocks 46
Table 6 – CMD input values and semantics .. 48
Table 7 – STATUS output values and semantics .. 48
Table 8 – Command syntax ... 49
Table 9 – Semantics of actions in Figure 24 .. 52
Table A.1 – Event function blocks ... 57
Table C.1 – ESS class descriptions .. 75
Table C.2 – Syntactic productions for library elements .. 75
Table C.3 – Syntactic productions for declarations .. 77
Table C.4 – IPMCS classes .. 80
Table D.1 – Semantics of STATUS values .. 83
Table D.2 – Source code of function block type READ .. 86
Table D.3 – Source code of function block type UREAD .. 87
Table D.4 – Source code of function block type WRITE .. 89
Table D.5 – Source code of function block type TASK ... 90
Table D.6 – IEC 61499 interoperability features .. 91
Table E.1 – COMPACT encoding of fixed length data types .. 99
Table G.1 – Elements of attribute definitions ... 114

BS EN 61499-1:2013

61499-1 © IEC:2012 – 7 –

INTRODUCTION

IEC 61499 consists of the following parts, under the general title Function blocks:

• Part 1 (this document) contains:
– general requirements, including scope, normative references, definitions, and

reference models;
– rules for the declaration of function block types, and rules for the behavior of instances

of the types so declared;
– rules for the use of function blocks in the configuration of distributed industrial-process

measurement and control systems (IPMCSs);

– rules for the use of function blocks in meeting the communication requirements of
distributed IPMCSs;

– rules for the use of function blocks in the management of applications, resources and
devices in distributed IPMCSs.

• Part 2 defines requirements for software tools to support the following systems
engineering tasks:
– the specification of function block types;
– the functional specification of resource types and device types;

– the specification, analysis, and validation of distributed IPMCSs;
– the configuration, implementation, operation, and maintenance of distributed IPMCSs;
– the exchange of information among software tools.

• Part 3 (Tutorial information) has been withdrawn due to the widespread current availability
of tutorial and educational materials regarding IEC 61499. However, an updated 2nd
Edition of Part 3 may be developed in the future.

• Part 4 defines rules for the development of compliance profiles which specify the features
of IEC 61499-1 and IEC 61499-2 to be implemented in order to promote the following
attributes of IEC 61499-based systems, devices and software tools:
– interoperability of devices from multiple suppliers;
– portability of software between software tools of multiple suppliers; and
– configurability of devices from multiple vendors by software tools of multiple suppliers.

BS EN 61499-1:2013

http://dx.doi.org/10.3403/30128975U
http://dx.doi.org/10.3403/30128997U

 – 8 – 61499-1 © IEC:2012

FUNCTION BLOCKS –

Part 1: Architecture

1 Scope

This part of IEC 61499 defines a generic architecture and presents guidelines for the use of
function blocks in distributed industrial-process measurement and control systems (IPMCSs).
This architecture is presented in terms of implementable reference models, textual syntax and
graphical representations. These models, representations and syntax can be used for:

• the specification and standardization of function block types;

• the functional specification and standardization of system elements;

• the implementation independent specification, analysis, and validation of distributed
IPMCSs;

• the configuration, implementation, operation, and maintenance of distributed IPMCSs;

• the exchange of information among software tools for the performance of the above
functions.

This part of IEC 61499 does not restrict or specify the functional capabilities of IPMCSs or
their system elements, except as such capabilities are represented using the elements
defined herein. IEC 61499-4 addresses the extent to which the elements defined in this
standard may be restricted by the functional capabilities of compliant systems, subsystems,
and devices.

Part of the purpose of this standard is to provide reference models for the use of function
blocks in other standards dealing with the support of the system life cycle, including system
planning, design, implementation, validation, operation and maintenance. The models given in
this standard are intended to be generic, domain independent and extensible to the definition
and use of function blocks in other standards or for particular applications or application
domains. It is intended that specifications written according to the rules given in this standard
be concise, implementable, complete, unambiguous, and consistent.

NOTE 1 The provisions of this standard alone are not sufficient to ensure interoperability among devices of
different vendors. Standards complying with this part of IEC 61499 can specify additional provisions to ensure such
interoperability.

NOTE 2 Standards complying with this part of IEC 61499 can specify additional provisions to enable the
performance of system, device, resource and application management functions.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any
amendments) applies.

IEC 61131-1, Programmable controllers – Part 1: General

IEC 61131-3:2003, Programmable controllers – Part 3: Programming languages

IEC/ISO 7498-1:1994, Information technology – Open systems interconnection – Basic
reference model: The basic model

BS EN 61499-1:2013

http://dx.doi.org/10.3403/30126758U
http://dx.doi.org/10.3403/00345852U
http://dx.doi.org/10.3403/02829375

61499-1 © IEC:2012 – 9 –

ISO/IEC 8824-1:2008, Information technology – Abstract Syntax Notation One (ASN.1):
Specification of basic notation

ISO/IEC 10646:2003, Information technology – Universal Multiple-Octet Coded Character
Set (UCS)

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

NOTE Terms defined in Clause 3 are italicized where they appear in definitions and Notes to entry of other terms
as well as throughout the body of the document.

 3.1
acceptor
function block instance which provides a socket adapter of a defined adapter interface type

 3.2
adapter connection
connection from a plug adapter to a socket adapter of the same adapter interface type, which
carries the flows of data and events defined by the adapter interface type

 3.3
adapter interface type
type which consists of the definition of a set of event inputs, event outputs, data inputs, and
data outputs, and whose instances are plug adapters and socket adapters

 3.4
algorithm
finite set of well-defined rules for the solution of a problem in a finite number of operations

 3.5
application
software functional unit that is specific to the solution of a problem in industrial-process
measurement and control

Note 1 to entry: An application can be distributed among resources, and might communicate with other
applications.

 3.6
attribute
property or characteristic of an entity, for instance, the version identifier of a function block
type specification

 3.7
basic function block type
function block type that cannot be decomposed into other function blocks and that utilizes an
execution control chart (ECC) to control the execution of its algorithms

 3.8
bidirectional transaction
transaction in which a request and possibly data are conveyed from an requester to a
responder, and in which a response and possibly data are conveyed from the responder back
to the requester

BS EN 61499-1:2013

 – 10 – 61499-1 © IEC:2012

 3.9
character
member of a set of elements that is used for the representation, organization, or control of
data

 3.10
crossing
clearing
<of an EC transition> operation by means of which control is passed from the predecessor EC
state of an EC transition to its successor EC state

Note 1 to entry: This operation consists of de-activation of the predecessor EC state, followed by activation of the
successor EC state.

 3.11
communication connection
connection that utilizes the communication mapping function of one or more resources for the
conveyance of information

 3.12
communication function block
service interface function block that represents the interface between an application and the
communication mapping function of a resource

 3.13
communication function block type
function block type whose instances are communication function blocks

 3.14
component function block
function block instance which is used in the specification of an algorithm of a composite
function block type

Note 1 to entry: A component function block can be of basic, composite or service interface type.

 3.15
component subapplication
subapplication instance that is used in the specification of a subapplication type

 3.16
composite function block type
function block type whose algorithms and the control of their execution are expressed entirely
in terms of interconnected component function blocks, events, and variables

 3.17
concurrent
pertaining to algorithms that are executed during a common period of time during which they
may have to alternately share common resources

 3.18
configuration (of a system or device)
selecting functional units, assigning their locations and defining their interconnections

 3.19
configuration parameter
parameter related to the configuration of a system, device or resource

BS EN 61499-1:2013

61499-1 © IEC:2012 – 11 –

 3.20
confirm primitive
service primitive which represents an interaction in which a resource indicates completion of
some algorithm previously invoked by an interaction represented by a request primitive

 3.21
connection
association established between functional units for conveying information

 3.22
critical region
operation or sequence of operations which is executed under the exclusive control of a
locking object which is associated with the data on which the operations are performed

 3.23
data
reinterpretable representation of information in a formalized manner suitable for
communication, interpretation or processing

 3.24
data connection
association between two function blocks for the conveyance of data

 3.25
data input
interface of a function block which receives data from a data connection

 3.26
data output
interface of a function block which supplies data to a data connection

 3.27
data type
set of values together with a set of permitted operations

 3.28
declaration
mechanism for establishing the definition of an entity

Note 1 to entry: A declaration can involve attaching an identifier to the entity, and allocating attributes such as
data types and algorithms to it.

 3.29
device
independent physical entity capable of performing one or more specified functions in a
particular context and delimited by its interfaces

Note 1 to entry: A programmable controller system as defined in IEC 61131-1 is a device.

 3.30
device management application
application whose primary function is the management of multiple resources within a device

 3.31
entity
particular thing, such as a person, place, process, object, concept, association, or event

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00345852U

 – 12 – 61499-1 © IEC:2012

 3.32
event
instantaneous occurrence that is significant to scheduling the execution of an algorithm

Note 1 to entry: The execution of an algorithm may make use of variables associated with an event.

 3.33
event connection
association among function blocks for the conveyance of events

 3.34
event input
interface of a function block which can receive events from an event connection

 3.35
event output
interface of a function block which can issue events to an event connection

 3.36
exception
event that causes suspension of normal execution

 3.37
execution
process of carrying out a sequence of operations specified by an algorithm

Note 1 to entry: The sequence of operations to be executed may vary from one invocation of a function block
instance to another, depending on the rules specified by the function block's algorithm and the current values of
variables in the function block's data structure.

 3.38
execution control action
EC action
element associated with an execution control state, which identifies an algorithm to be
executed, an event to be issued, or both

Note 1 to entry: Timing of algorithm execution and event issuance are addressed in 5.2.2.

 3.39
execution control chart
ECC
graphical or textual representation of the causal relationships among events at the event
inputs and event outputs of a function block and the execution of the function block's
algorithms, using execution control states, execution control transitions, and execution control
actions

 3.40
execution control initial state
EC initial state
execution control state that is active upon initialization of an execution control chart

 3.41
execution control state
EC state
situation in which the behavior of a basic function block with respect to its variables is
determined by the algorithms associated with a specified set of execution control actions

BS EN 61499-1:2013

61499-1 © IEC:2012 – 13 –

 3.42
execution control transition
EC transition
means by which control passes from a predecessor execution control state to a successor
execution control state

 3.43
fault
abnormal condition that may cause a reduction in, or loss of, the capability of a functional unit
to perform a required function

 3.44
function
specific purpose of an entity or its characteristic action

 3.45
function block
function block instance
software functional unit comprising an individual, named copy of a data structure upon which
associated operations may be performed as specified by a corresponding function block type

Note 1 to entry: Typical operations of a function block include modification of the values of the data in its
associated data structure.

Note 2 to entry: The function block instance and its corresponding function block type defined in IEC 61131-3 are
programming language elements with a different set of features.

 3.46
function block network
network whose nodes are function blocks or subapplications and their parameters and whose
branches are data connections and event connections

Note 1 to entry: This is a generalization of the function block diagram defined in IEC 61131-3.

 3.47
function block type
type whose instances are function blocks

Note 1 to entry: Function block types include basic function block types, composite function block types, and
service interface function block types

 3.48
functional unit
entity of hardware or software, or both, capable of accomplishing a specified purpose

 3.49
hardware
physical equipment, as opposed to programs, procedures, rules and associated
documentation

 3.50
identifier
one or more characters used to name an entity

 3.51
implementation
development phase in which the hardware and software of a system become operational

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U

 – 14 – 61499-1 © IEC:2012

 3.52
indication primitive
service primitive which represents an interaction in which a resource either
a) indicates that it has, on its own initiative, invoked some algorithm; or
b) indicates that an algorithm has been invoked by a peer application

 3.53
information
meaning that is currently assigned to data by means of the conventions applied to that data

 3.54
input variable
variable whose value is supplied by a data input, and which may be used in one or more
operations of a function block

Note 1 to entry: An input parameter of a function block, as defined in IEC 61131-3, is an input variable.

 3.55
instance
functional unit comprising an individual, named entity with the attributes of a defined type

 3.56
instance name
identifier associated with and designating an instance

 3.57
instantiation
creation of an instance of a specified type

 3.58
interface
shared boundary between two functional units, defined by functional characteristics, signal
characteristics, or other characteristics, as appropriate

 3.59
internal operation
<of a function block> operation associated with an algorithm of a function block, with its
execution control, or with the functional capabilities of the associated resource

 3.60
internal variable
variable whose value is used or modified by one or more operations of a function block, but is
not supplied by a data input or to a data output

 3.61
invocation
process of initiating the execution of the sequence of operations specified in an algorithm

 3.62
link
design element describing the connection between a device and a network segment

 3.63
literal
lexical unit that directly represents a value

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00316105U

61499-1 © IEC:2012 – 15 –

 3.64
management function block
function block whose primary function is the management of applications within a resource

 3.65
management resource
resource whose primary function is the management of other resources

 3.66
mapping
set of features or attributes having defined correspondence with the members of another set

 3.67
message
ordered series of characters intended to convey information

 3.68
message sink
part of a communication system in which messages are considered to be received

 3.69
message source
part of a communication system from which messages are considered to originate

 3.70
model
mathematical or physical representation of a system or a process

 3.71
multitasking
mode of operation that provides for the concurrent execution of two or more algorithms

 3.72
network
arrangement of nodes and interconnecting branches

 3.73
operation
well-defined action that, when applied to any permissible combination of known entities,
produces a new entity

 3.74
output variable
variable whose value is established by one or more operations of a function block, and is
supplied to a data output

Note 1 to entry: An output parameter of a function block, as defined in IEC 61131-3, is an output variable.

 3.75
parameter
variable that is given a constant value for a specified application and that may denote the
application

 3.76
plug
plug adapter
instance of an adapter interface type which provides a starting point for an adapter connection
from a provider function block

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00316105U

 – 16 – 61499-1 © IEC:2012

 3.77
provider
function block instance which provides a plug adapter of a defined adapter interface type

 3.78
request primitive
service primitive which represents an interaction in which an application invokes some
algorithm provided by a service

 3.79
requester
functional unit which initiates a transaction via a request primitive

 3.80
resource
functional unit which has independent control of its operation, and which provides various
services to applications, including the scheduling and execution of algorithms

Note 1 to entry: The RESOURCE defined in IEC 61131-3:2003, 1.3.66 is a programming language element
corresponding to the resource defined above.

Note 2 to entry: A device contains one or more resources.

 3.81
resource management application
application whose primary function is the management of a single resource

 3.82
responder
functional unit which concludes a transaction via a response primitive

 3.83
response primitive
service primitive which represents an interaction in which an application indicates that it has
completed some algorithm previously invoked by an interaction represented by an indication
primitive

 3.84
sample, verb
to sense and retain the instantaneous value of a variable for later use

 3.85
scheduling function
function which selects algorithms or operations for execution, and initiates and terminates
such execution

 3.86
segment
physical partition of a communication network

 3.87
service
functional capability of a resource which can be modeled by a sequence of service primitives

 3.88
service interface function block
function block which provides one or more services to an application, based on a mapping of
service primitives to the function block's event inputs, event outputs, data inputs and data
outputs

BS EN 61499-1:2013

http://dx.doi.org/10.3403/02829375

61499-1 © IEC:2012 – 17 –

 3.89
service primitive
abstract, implementation-independent representation of an interaction between an application
and a resource

 3.90
service sequence diagram
diagram representing a sequence of service primitives

 3.91
socket
socket adapter
instance of an adapter interface type which provides an end point for an adapter connection to
an acceptor function block

 3.92
software
intellectual creation comprising the programs, procedures, rules, configurations and any
associated documentation pertaining to the operation of a system

 3.93
software tool
software that is used for the production, inspection or analysis of other software

 3.94
subapplication instance
instance of a subapplication type inside an application or inside a subapplication type

Note 1 to entry: A subapplication instance may be distributed among resources, i.e. its component function blocks
or the content of its component subapplications may be assigned to different resources.

 3.95
subapplication type
functional unit whose body consists of interconnected component function blocks or
component subapplications

Note 1 to entry: A subapplication type enables the creation of substructures of applications in the form of a self-
similar hierarchy.

 3.96
system
set of interrelated elements considered in a defined context as a whole and separated from its
environment

Note 1 to entry: Such elements may be both material objects and concepts as well as the results thereof (e.g.
forms of organisation, mathematical methods, and programming languages).

Note 2 to entry: The system is considered to be separated from the environment and other external systems by an
imaginary surface, which can cut the links between them and the considered system.

 3.97
temporary variable
variable whose value is initialized, used and possibly modified during execution of an
algorithm; that is not visible outside the body of the algorithm, and whose value does not
persist from one execution of the algorithm to the next

 3.98
transaction
unit of service in which a request and possibly data is conveyed from a requester to a
responder, and in which a response and possibly data may also be conveyed from the
responder back to the requester

BS EN 61499-1:2013

 – 18 – 61499-1 © IEC:2012

 3.99
type
software element which specifies the common attributes shared by all instances of the type

 3.100
type name
identifier associated with and designating a type

 3.101
unidirectional transaction
transaction in which a request and possibly data is/are conveyed from an requester to a
responder, and in which a response is not conveyed from the responder back to the requester

 3.102
variable
software entity that may take different values, one at a time

Note 1 to entry: The values of a variable are usually restricted to a certain data type.

Note 2 to entry: Variables may be classified as input variables, output variables, internal variables and temporary
variables.

4 Reference models

 System model 4.1

For the purposes of IEC 61499, an industrial process measurement and control system
(IPMCS) is modeled, as shown in Figure 1, as a collection of devices interconnected and
communicating with each other by means of a communication network consisting of segments
and links. Devices are connected to network segments via links.

 Communication network

Controlled process

Device 2 Device 3 Device 4 Device 1

Application A

Application
C

Application B

segment

link

NOTE The controlled process is not part of the measurement and control system.

Figure 1 – System model

A function performed by the IPMCS is modeled as an application which may reside in a single
device, such as application C in Figure 1, or may be distributed among several devices, such
as applications A and B in Figure 1. For instance, an application may consist of one or more
control loops in which the input sampling is performed in one device, control processing is
performed in another, and output conversion in a third.

BS EN 61499-1:2013

61499-1 © IEC:2012 – 19 –

 Device model 4.2

As illustrated in Figure 2, a device shall contain at least one interface, that is, process
interface or communication interface, and can contain zero or more resources.

NOTE 1 A device is considered to be an instance of a corresponding device type, defined as specified in 7.2.2.

NOTE 2 A device that contains no resources is considered to be functionally equivalent to a resource as defined
in 4.3.

A "process interface" provides a mapping between the physical process (analog
measurements, discrete I/O, etc.) and the resources. Information exchanged with the physical
process is presented to the resource as data or events, or both.

Communication interfaces provide a mapping between resources and the information
exchanged via a communication network. Services provided by communication interfaces may
include:

• presentation of communicated information to the resource as data or events, or both;

• additional services to support programming, configuration, diagnostics, etc.

Communication links may either be associated directly with a device, or with an instance of a
specific resource type (communication resource), onto which part of the distributed
application may or may not be mapped, depending on the resource type.

 Communication link(s)

Resource x

Controlled process

Resource z Resource y

Application B Application C

Application A

Device boundary

Communication interface(s)

Process interface(s)

= Data and event flow

NOTE This figure shows a possible internal structure of Device 2 from Figure 1.

Figure 2 – Device model

 Resource model 4.3

For the purposes of IEC 61499, a resource is considered to be a functional unit, which has
independent control of its operation, contained in a device. It may be created, configured,
parameterized, started up, deleted, etc., without affecting other resources.

NOTE 1 A resource is considered to be an instance of a corresponding resource type, defined as specified in
7.2.1.

NOTE 2 Although a resource has independent control of its operation, its operational states might need to be
coordinated with those of other resources for the purposes of installation, test, etc.

BS EN 61499-1:2013

 – 20 – 61499-1 © IEC:2012

The functions of a resource are to accept data and/or events from the process and/or
communication interfaces, process the data and/or events, and to return data and/or events to
the process and/or communication interfaces, as specified by the applications utilizing the
resource.

NOTE 3 Besides supporting the functions enumerated above, specific types of resources might represent the
capability to implement interface functions such as process interfaces or lower layer communication services over
communication links. Depending on the type of those resources, these services might or might not be the only ones
they are able to provide.

NOTE 4 The consideration of other possible aspects of resources is beyond the scope of this standard.

As illustrated in Figure 3, a resource is modeled by the following.

• One or more "local applications" (or local parts of distributed applications). The variables
and events handled in this part are input and output variables and events at event inputs
and event outputs of function blocks that perform the operations needed by the
application.

• A "process mapping" part whose function is to perform a mapping of data and events
between applications and process interface(s). As shown in Figure 3, this mapping may be
modeled by service interface function blocks specialized for this purpose.

• A "communication mapping" part whose function is to perform a mapping of data and
events between applications and communication interfaces. As shown in Figure 3, this
mapping may be modeled by service interface function blocks specialized for this purpose.

• A scheduling function which effects the execution of, and data transfer between, the
function blocks in the applications, according to the timing and sequence requirements
determined by:
a) the occurrence of events;
b) function block interconnections; and
c) scheduling information such as periods and priorities.

Function
Block

Local application
(or local part of distributed application)Communication mapping

Communication interface(s)

Process interface(s)

Process mapping

Data

Events

Service
Algorithm

Scheduling Function

Interface
Function

Block

Service
Interface

NOTE 1 This figure is illustrative only. Neither the graphical representation nor the location of function blocks is
normative.

NOTE 2 Communication and process interfaces can be shared among resources.

Figure 3 – Resource model

BS EN 61499-1:2013

61499-1 © IEC:2012 – 21 –

 Application model 4.4

For the purposes of this document, an application consists of a function block network, whose
nodes are function blocks or subapplications and their parameters and whose branches are
data connections and event connections.

Subapplications are instances of subapplication types, which like applications consist of
function block networks. Application names, subapplication and function block instance
names may therefore be used to create a hierarchy of identifiers that can uniquely identify
every function block instance in a system.

An application can be distributed among several resources in the same or different devices. A
resource uses the causal relationships specified by the application to determine the
appropriate responses to events which may arise from communication and process interfaces
or from other functions of the resource. These responses may include:

• scheduling and execution of algorithms;

• modification of variables;

• generation of additional events;

• interactions with communication and process interfaces.

In the context of this document, applications are defined by function block networks specifying
event and data flow among function block or subapplication instances, as illustrated in
Figure 4. The event flow determines the scheduling and execution by the associated resource
of the operations specified by each function block's algorithm(s), according to the rules given
in 5.2.2.

Standards, components and systems complying with this standard may utilize alternative
means for scheduling of execution. Such alternative means shall be exactly specified using
the elements defined in this standard.

Event flow

Data flow

∗ ∗ ∗

NOTE 1 "*" represents function block or subapplication instances.

NOTE 2 This figure is illustrative only. The graphical representation is not normative.

Figure 4 – Application model

 Function block model 4.5

 Characteristics of function block instances 4.5.1

A function block (function block instance) is a functional unit of software comprising an
individual, named copy of the data structure specified by a function block type, which persists
from one invocation of the function block to the next. The characteristics of function block
instances are described in 4.5.1, and function block type specifications are described in 4.5.2.

BS EN 61499-1:2013

 – 22 – 61499-1 © IEC:2012

A function block instance exhibits the following characteristic features as illustrated in
Figure 5:

• its type name and instance name;

• a set of event inputs, each of which can receive events from an event connection which
may affect the execution of one or more algorithms;

• a set of event outputs, each of which can issue events to an event connection depending
on the execution of algorithms or on some other functional capability of the resource in
which the function block is located;

• a set of data inputs, which may be mapped to corresponding input variables;

• a set of data outputs, which may be mapped to corresponding output variables;

• internal data, which may be mapped to a set of internal variables;

• functional characteristics which are determined by combining internal data or state
information, or both, with a set of algorithms, functional capabilities of the associated
resource, or both. These functional characteristics are defined in the function block's type
specification.

NOTE Internal state information can be represented by internal variables or by an internal representation of an
execution control state machine.

(Scheduling, communication mapping, process mapping)

Algorithms

Type name

(hidden)

Internal data
(hidden)

Resource capabilities

Data outputs Data inputs

Event outputs Event inputs

Instance name

control
Execution

(hidden)

Data flow

Event flow Event flow

Data flow

NOTE This figure is illustrative only. The graphical representation is not normative.

Figure 5 – Characteristics of function blocks

The algorithms contained within a function block are in principle invisible from the outside of
the function block, except as described formally or informally by the provider of the function
block. Additionally, the function block may contain internal variables or state information, or
both, which persist between invocations of the function block's algorithms, but which are not
accessible by data flow connections from the outside of the function block.

Access to internal variables and state information of function block instances may be provided
by additional functional capabilities of the associated resource.

Means for specifying the causal relationships among event inputs, event outputs, and
execution of algorithms are defined in Clauses 5 and 6.

BS EN 61499-1:2013

61499-1 © IEC:2012 – 23 –

 Function block type specifications 4.5.2

A function block type is a software element which specifies the characteristics of all instances
of the type, including:

• its type name;

• the number, names, type names and order of event inputs and event outputs.

• the number, names, data type and order of input, output and internal variables;

Mechanisms for the declaration of these characteristics are defined in 5.2.1.

In addition, the function block type specification defines the functionality of instances of the
type. This functionality may be expressed as follows:

• For basic function block types, declaration mechanisms are provided in 5.2.1.3 for the
specification of algorithms, which operate on the values of input variables, output
variables, and internal variables to produce new values of output variables and internal
variables. The associations among the invocation of algorithms and the occurrence of
events at event inputs and outputs are expressed in terms of an execution control chart
(ECC), using the declaration mechanisms defined in 5.2.1.4.

• The functionality of an instance of a composite function block type or a subapplication type
is declared, using the mechanisms defined in 5.3.1 and 5.4.1 respectively, in terms of data
connections and event connections among its component function blocks or
subapplications and the event and data inputs and outputs of the composite function block
or the subapplication.

• The functionality of an instance of a service interface function block type is described by a
mapping of service primitives to event inputs, event outputs, data inputs and data outputs,
using the declaration mechanisms defined in 6.1.

• Other means such as natural language text may be used for describing the functionality of
a function block type; however, the specification of such means is beyond the scope of
this standard.

 Execution model for basic function blocks 4.5.3

As shown in Figure 6, the execution of algorithms for basic function blocks is invoked by the
execution control portion of a function block instance in response to events at event inputs.
This invocation takes the form of a request to the scheduling function of the associated
resource to schedule the execution of the algorithm's operations. Upon completion of
execution of an algorithm, the execution control generates zero or more events at event
outputs as appropriate.

Events at event inputs are provided by connection to event outputs of other function block
instances or the same function block instance. Events at these event outputs may be
generated by execution control as described above, or by the "communication mapping",
"process mapping", "scheduling", or other functional capability of the resource.

NOTE 1 Execution control in composite function blocks is achieved via event flow within the function block body.

Figure 6 depicts the order of events and algorithm execution for the case in which a single
event input, a single algorithm, and a single event output are associated. The relevant times
in this diagram are defined as follows:

t1: relevant input variable values (i.e., those associated with the event input by the WITH
qualifier defined in 5.2.1.2) are made available;

t2: the event at the event input occurs;

t3: the execution control function notifies the resource scheduling function to schedule an
algorithm for execution;

BS EN 61499-1:2013

 – 24 – 61499-1 © IEC:2012

t4: algorithm execution begins;

t5: the algorithm completes the establishment of values for the output variables associated
with the event output by the WITH qualifier defined in 5.2.1.2;

t6: the resource scheduling function is notified that algorithm execution has ended;

t7: the scheduling function invokes the execution control function;

t8: the execution control function signals an event at the event output.

As shown in Figure 7, the significant timing delays in this case which are of interest in
application design are:

Tsetup = t2 – t1

Tstart = t4 – t2 (time from event at event input to beginning of algorithm execution)

Talg = t6 – t4 (algorithm execution time)

Tfinish = t8 – t6 (time from end of algorithm execution to event at event output)

Execution control

function

Scheduling function

Algorithm

t2 t8

t1 t5

t4 t6 t3 t7

NOTE This figure is illustrative only. The graphical representation is not normative.

Figure 6 – Execution model

1 2 3 4 5 6 7 8

Tfinish

Talg

Tstart

Tsetup

Tsetup

Tstart

Talg

Tfinish

NOTE The axis labels 1,2,... in the above figure correspond to the times t1, t2,... in Figure 6.

Figure 7 – Execution timing

BS EN 61499-1:2013

61499-1 © IEC:2012 – 25 –

Specific requirements for the graphical representation of function block types are given in
5.2.1.1.

NOTE 2 Depending on the problem to be solved, various requirements might exist for the synchronization of the
values of input variables with the execution of algorithms in order to ensure predictability of the results of algorithm
execution. Such requirements could include, for example:

• assurance that the values of variables used by an algorithm remain stable during the execution of the
algorithm;

• assurance that the values of variables used by an algorithm correspond to the data present upon the
occurrence of the event at the event input which caused the scheduling of the algorithm for execution;

• assurance that the values of variables used by all algorithms scheduled for execution in a function block
correspond to the data present upon the occurrence of the event at the event input which caused the
scheduling of the first such algorithm for execution.

NOTE 3 Resources might need to schedule the execution of algorithms in a multitasking manner. The
specification of attributes to facilitate such scheduling is described in Annex G.

 Distribution model 4.6

As illustrated in Figure 8a, an application or subapplication can be distributed by allocating its
function block instances to different resources in one or more devices. Since the internal
details of a function block are hidden from any application or subapplication utilizing it, a
function block shall form an atomic unit of distribution. That is, all the elements contained in a
given function block instance shall be contained within the same resource.

The functional relationships among the function blocks of an application or subapplication
shall not be affected by its distribution. However, in contrast to an application or
subapplication confined to a single resource, the timing and reliability of communications
functions will affect the timing and reliability of a distributed application or subapplication.

The following clauses apply when applications or subapplications are distributed among
multiple resources:

• Clause 6 defines the requirements for communication services to support distribution of
applications or subapplications among multiple devices;

• Clause 7 defines the requirements for the case where multiple applications or
subapplications are distributed among multiple resources and devices.

 Management model 4.7

Figures 8b and 8c provide a schematic representation of the management of resources and
devices. Figure 8b illustrates a case in which a management resource provides shared
facilities for management of other resources within a device, while Figure 8c illustrates the
distribution of management services among resources within a device. Management
applications may be modeled using implementation-dependent service interface function
blocks and communication function blocks.

NOTE 1 6.3 defines service interface function block types for management of applications, and IEC 61499-2
provides examples of their usage.

NOTE 2 Management applications might contain service interface function block instances representing device or
resource instances for the purpose of querying or modifying device or resource parameters.

BS EN 61499-1:2013

http://dx.doi.org/10.3403/30128997U

 – 26 – 61499-1 © IEC:2012

Figure 8a – Distribution model

 Communication link(s)

Controlled process

Resource z Resource y

Device boundary
Communication interface(s)

Process interface(s)

Management resource

Device management

Resource y management

Resource z management

Application B

Application C

Figure 8b – Shared management model

 Communication link(s)

Controlled process

Resource z Resource y

Device boundary
Communication interface(s)

Process interface(s)

Resource x

application

Resource y
management

application

Resource z
management

application

Resource x
management

Application B Application A
Application C

Figure 8c – Distributed management model

Figure 8 – Distribution and management models

BS EN 61499-1:2013

61499-1 © IEC:2012 – 27 –

 Operational state models 4.8

Any given system has to be designed, commissioned, operated and maintained. This is
modeled through the concept of the system "life cycle". In turn, a system is composed of
several functional units such as devices, resources, and applications, each of which has its
own life cycle.

Different actions may have to be performed to support functional units at each step of the life
cycle. To characterize which action can be done and maintain integrity of functional units,
"operational states" should be defined, e.g., OPERATIONAL, CONFIGURABLE, LOADED,
STOPPED, etc.

Each operational state of a functional unit specifies which actions are authorized, together
with an expected behavior.

A system may be organized in such a way that certain functional units may possess or
acquire the right of modifying the operational states of other functional units.

Examples of the use of operational states are:

• a functional unit in a RUNNING state, i.e., in execution, may not be able to receive a
download action;

• a distributed functional unit may need to maintain a consistent operational state across its
components and develop a strategy to propagate changes of operational state through
them.

Specific operational states for managed function block instances are defined in 6.3.2.

5 Specification of function block, subapplication and adapter interface types

 Overview 5.1

As illustrated in Figure 9, Clause 5 defines the means for the type specification of three kinds
of blocks:

• Subclause 5.2 defines the means for specifying and determining the behavior of instances
of basic function block types, as illustrated in Figure 9a. In this type of function block,
execution control is specified by an execution control chart (ECC), and the algorithms to
be executed are declared as specified in compliant Standards as defined in IEC 61499-4.

• Subclause 5.3 defines the means for specifying composite function block types, as
illustrated in Figure 9b. In this type of function block, algorithms and their execution
control are specified through event and data connections in one or more function block
networks.

• Subclause 5.4 defines the means for specifying subapplication types, as illustrated in
Figure 9c. In this type of block, algorithms and their execution control are specified as for
composite function block types, but with the specific property that component function
blocks of subapplications may be distributed among several resources. Subapplications
may be nested, such that the body of a subapplication may also contain component
subapplications.

Other means may be used for describing the behavior of instances of a function block type.
The specification of such means is beyond the scope of this standard; therefore it is required
that when such means are used, an unambiguous mapping shall be given between their terms
and concepts and the corresponding terms and concepts of this standard.

BS EN 61499-1:2013

http://dx.doi.org/10.3403/30126758U

 – 28 – 61499-1 © IEC:2012

Output variables Input variables

Event inputs

control
Execution

chart

Event outputs

Type identifier

Internal
variables

Algorithms

Type identifier

Output variables

Event outputs

Input variables

Event inputs

 Figure 9a – Basic function block (5.2) Figure 9b – Composite function block (5.3)

Data outputs Data inputs

Event inputs Event outputs

Type identifier

NOTE This figure is illustrative only. The graphical representation is not normative.

Figure 9c – Subapplications (5.4)

Figure 9 – Function block and subapplication types

 Basic function blocks 5.2

 Type declaration 5.2.1

5.2.1.1 General

A basic function block utilizes an execution control chart (ECC) to control the execution of its
algorithms.

As illustrated in Figure 10, a basic function block type can be declared textually according to
the syntax specified in Clause B.2 or graphically according to the following rules:

BS EN 61499-1:2013

61499-1 © IEC:2012 – 29 –

a) the function block type name is shown at the top center of the lower portion of the block;
b) the names and type declarations of input variables and socket adapters are shown at the

left edge of the lower portion of the block;
c) the names and type declarations of output variables and plug adapters are shown at the

right edge of the lower portion of the block;
d) the interface of the function block type to events is declared in the upper portion of the

block as specified in 5.2.1.2;
e) the algorithms associated with the function block type are declared as specified in 5.2.1.3;
f) control of the execution of the associated algorithms is declared as specified in 5.2.1.4.

NOTE 1 See Annex F for a textual declaration of this example.

NOTE 2 This example is illustrative only. Details of the specification are not normative.

Figure 10 – Basic function block type declaration

5.2.1.2 Event interface declaration

As shown in Figure 10, the interface of a basic function block type to events can be declared
textually according to the syntax given in Clause B.2, or graphically according to the following
rules.

a) Event interfaces are located in a distinct area at the top of the block.
b) Event input names are shown at the left-hand side of the upper portion of the block.
c) Event output names are shown at the right-hand side of the upper portion of the block.
d) Event types are shown outside the block adjacent to their associated event inputs or

outputs.

NOTE 1 If no event type is given for an event input or output, it is considered to be of the default type EVENT.

NOTE 2 An event output of type EVENT can be connected to an event input of any type, and an event input of
type EVENT can receive an event of any type.

NOTE 3 An event output of any type other than EVENT can only be connected to an event input of the same type
or of type EVENT.

NOTE 4 An event type is implicitly declared by its use in an event declaration.

As illustrated in Figure 10 and Annex F, the WITH qualifier or a graphical equivalent shall be
used to specify an association among input variables or output variables and an event at the
associated event input or event output, respectively.

Each input variable and output variable appears in zero or more WITH clauses or their
graphical equivalents.

NOTE 5 This information can be used to determine the required communication services when configuring a
distributed application as described in Clause 7.

NOTE 6 An input variable that does not appear in any WITH clause cannot be connected with an output variable
of another function block. The values of such variables either remain at their declared initial values or are
established by management commands such as WRITE, as described in 6.3.2.

BS EN 61499-1:2013

 – 30 – 61499-1 © IEC:2012

NOTE 7 An output variable that does not appear in any WITH clause can be connected to an input variable of
another function block or can be "read" by management commands such as READ, as described in 6.3.2.

NOTE 8 See 4.5.3 for an application of the WITH qualifier to the execution model of a basic function block.

START

EX 1

EXOINIT

INIT

1

INIT MAININITO MAIN

EC initial state

EC transition

EC state algorithm

event
EC action

Figure 11 – ECC example

 Behavior of instances 5.2.2

5.2.2.1 Initialization

Initialization of a basic function block instance by a resource shall be functionally equivalent
to the following procedure:

a) The value of each input, output, and internal variable shall be initialized to the
corresponding initial value given in the function block type specification. If no such
initial value is defined, the value of the variable shall be initialized to the default initial
value defined for the data type of the variable.

b) Any additional algorithm-specific initializations shall be performed; for example, all
initial steps of IEC 61131-3 Sequential Function Charts (SFCs) shall be activated and
all other steps shall be deactivated.

c) The EC initial state of the function block's Execution Control Chart (ECC) shall be
activated, all other EC states shall be deactivated, and the ECC operation state
machine defined in 5.2.2.2 shall be placed in its initial (s0) state.

NOTE The conditions under which a resource performs such initialization are implementation-dependent.

The function block type may also specify an initialization algorithm to be performed upon the
occurrence of an appropriate event, for example the INIT algorithm shown in Figure 11. An
application can then specify the conditions under which this algorithm is to be executed, for
example by connecting an output of an instance of the E_RESTART type defined in Annex A to
an appropriate event input, for example the INIT input shown in Figure 10.

5.2.2.2 Algorithm invocation

Execution of an algorithm associated with a function block instance is invoked by a request to
the scheduling function of the resource to schedule the execution of the algorithm's
operations.

NOTE 1 The operations performed by an algorithm can vary from one execution to the next due to changed
internal states of the function block, even though the function block may have only a single algorithm and a single
event input triggering its execution.

Algorithm invocation for an instance of a basic function block type shall be accomplished by
the functional equivalent of the operation of its execution control chart (ECC). The operation
of the ECC shall exhibit the behavior defined by the state machine in Figure 12 and Table 1.

NOTE 2 It is a consequence of this model that an occurrence of an event at an event input will not cause a
transition containing the event to be crossed, if the transition is not associated with the currently active state, i.e., if
the event is not relevant in the given state. However, sampling of the input variables associated to the event by a
WITH construct will occur in any case.

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00316105U

61499-1 © IEC:2012 – 31 –

5.2.2.3 Algorithm declaration

As shown in Annex F, algorithms associated with a basic function block type may be included
in the function block type declaration according to the rules for declaration of the function
block type specification given in Annex B. Other means may also be used for the specification
of the identifiers and bodies of algorithms; however, the specification of such means is
beyond the scope of this standard.

The declaration of an algorithm may include the declaration of temporary variables that:

• are only visible in the body of the algorithm;

• are initialized upon each invocation of the algorithm;

• may be used and modified during execution of the algorithm; and

• do not have values that persist between executions of the algorithm.

5.2.2.4 Declaration of algorithm execution control

The sequencing of algorithm invocations for basic function block types may be declared in the
function block type specification. If the algorithms of a basic function block type are defined
as specified in 5.2.1.3 (or otherwise identified), then the sequencing of algorithm invocation
for such a function block can be in the form of an Execution Control Chart (ECC) consisting of
EC states, EC transitions, and EC actions. These elements are represented and interpreted
as follows:

a) the ECC is included in an execution control section of the function block type declaration,
considered to reside in the upper portion of the block;

b) the ECC shall contain exactly one EC initial state, represented graphically as a double-
outlined shape with an associated identifier. The EC initial state shall have no associated
EC actions;

c) the ECC shall contain one or more EC states, represented graphically as single-outlined
shapes, each with an associated identifier;

d) the ECC can utilize but not modify variables declared in the function block type
specification;

e) an EC state can have zero or more associated EC actions. The association of the EC
actions with the EC state can be expressed in graphical or textual form;

f) the algorithm (if any) associated with an EC action, and the event (if any) to be issued on
completion of the algorithm, shall be expressed in graphical or textual form;

g) an EC transition is represented graphically or textually as a directed link from one EC
state to another (or to the same state);

h) each EC transition shall have an associated transition condition, containing a reference to
an event, a guard condition, or both, expressed in the syntax defined for the non-terminal
ec_transition_condition in B.2.1.

Figure 11 illustrates the elements of an ECC. Similar textual declarations using the syntax of
Clause B.2 are given in Annex F.

NOTE 1 The notation 1 (one), illustrated in Figure 11, is considered to be equivalent to [TRUE] representing a
transition condition with no associated event and a guard condition that is always TRUE.

NOTE 2 In this restricted domain, the same symbol (e.g., INIT) can be used to represent an EC state and
algorithm name, since the referent of the symbol can be inferred easily from its usage.

NOTE 3 The text in italics is not part of the ECC.

NOTE 4 One-to-one association of events with algorithms, as illustrated in this figure, is frequently encountered
but is not the only possible usage. See Table A.1 for examples of other usages: The E_SPLIT block shows an
association of two event outputs with one state but no algorithms; E_MERGE shows an association of one output
event but no algorithms with two event inputs; E_DEMUX shows any of several algorithms associated with a single
input event; etc.

BS EN 61499-1:2013

 – 32 – 61499-1 © IEC:2012

t2 t1

t4 t3

s0

s1

s2

s0

t1 t2

s1

t4 t3

s2

Figure 12 – ECC operation state machine

Table 1 – States and transitions of ECC operation state machine

State Operations

s0 --

s1 evaluate transitionsc,e

s2 perform actionsd,e

Transition Condition Operations

t1 an input event occursa Sample inputsb,e

t2 no transition is crossed

t3 a transition is crossed

t4 actions completed

a The resource shall ensure that no more than one input event occurs at any given instant in time.
b This operation consists of sampling (or its functional equivalent) of the input variables associated with

the current input event by a WITH declaration as described in 5.2.1.2.
c This operation consists of evaluating the transition conditions at the EC transitions following the active

EC state and crossing the first EC transition (if any) for which a TRUE guard_condition as defined in
B.2.1 is found, according to the following rules:
1 "Crossing the EC transition" shall consist of deactivating its predecessor EC state and activating its

successor EC state.
2 The order in which the transition conditions are evaluated shall correspond to the order in which the

transitions are declared as defined in B.2.1, or equivalently in the XML syntax defined in
IEC 61499-2.

3 The guard_condition of a transition condition containing only an event_input_name shall have the
default value TRUE.

4 If state s1 was entered via t1, only transition conditions associated with the current input event via its
event_input_name as defined in B.2.1, or transition conditions with no event associations, shall be
evaluated.

5 If state s1 was entered via t4, only transition conditions with no event associations shall be
evaluated.

d This operation consists of, for each EC action associated with the active EC step, executing the
associated algorithm, if any, and issuing an event at the associated event output, if any. The order in
which the actions are performed corresponds to the order in which they appear graphically from top to
bottom, or to the order in which they are declared following the textual syntax defined in B.2.1, or
equivalently in the XML syntax defined in IEC 61499-2.

e All operations performed from an occurrence of transition t1 to an occurrence of t2 shall be implemented
as a critical region with a lock on the function block instance.

5.2.2.5 Algorithm execution

Algorithm execution in a basic function block shall consist of the execution of a finite
sequence of operations determined by implementation-dependent rules appropriate to the

BS EN 61499-1:2013

http://dx.doi.org/10.3403/30128997U
http://dx.doi.org/10.3403/30128997U

61499-1 © IEC:2012 – 33 –

language in which the algorithm is written, the resource in which it executes, and the domain
to which it applies. Algorithm execution terminates after execution of the last operation in this
sequence.

If an algorithm implements a state machine, repeated executions of the algorithm are
necessary to recognize or perform state changes. Normally there is no association between
those state changes and the completion of the algorithm. Such associations have to be
created by the event output generation facilities described in 5.2.2.2.

 Composite function blocks 5.3

 Type specification 5.3.1

The declaration of composite function block types shall follow the rules given in 5.2.1 with the
exception that event inputs and event outputs of the component function blocks can be
interconnected with the event inputs and event outputs of the composite function block to
represent the sequencing and causality of function block invocations. The following rules shall
apply to this usage:

a) Each event input of the composite function block is connected to exactly one event input
of exactly one component function block, or to exactly one event output of the composite
function block, with the exception that the graphical shorthand for event splitting shown in
Figure A.1 may be employed.

b) Each event input of a component function block is connected to no more than one event
output of exactly one other component function block, or to no more than one event input
of the composite function block, with the exception that the graphical shorthand for event
merging shown in Figure A.1 may be employed.

c) Each event output of a component function block is connected to no more than one event
input of exactly one other component function block, or to no more than one event output
of the composite function block, with the exception that the graphical shorthand for event
splitting shown in Figure A.1 may be employed.

d) Each event output of the composite function block is connected from exactly one event
output of exactly one component function block, or from exactly one event input of the
composite function block, with the exception that the graphical shorthand for event
merging shown in Figure A.1 may be employed.

e) Use of the WITH qualifier in the declaration of event inputs of composite function block
types is required. Use of the WITH qualifier may result in the sampling of the associated
data inputs as in the case of basic or service interface function blocks, or software tools
may provide means of elimination of redundant sampling in the implementation phase.

f) Instances of subapplication types as defined in 5.4 shall not be used in the specification of
a composite function block type.

Data inputs and data outputs of the component function blocks can be interconnected with the
data inputs and data outputs of the composite function block to represent the flow of data
within the composite function block. The following rules shall apply to this usage:

• Each data input of the composite function block can be connected to zero or more data
inputs of zero or more component function blocks, or to zero or more data outputs of the
composite function block, or both.

• Each data input of a component function block can be connected to no more than one data
output of exactly one other component function block, or to no more than one data input of
the composite function block.

• Each data output of a component function block can be connected to zero or more data
inputs of zero or more component function blocks, or to zero or more data outputs of the
composite function block, or both.

• Each data output of the composite function block shall be connected from exactly one data
output of exactly one component function block, or from exactly one data input of the
composite function block.

BS EN 61499-1:2013

 – 34 – 61499-1 © IEC:2012

NOTE 1 If an element declared in a VAR_INPUT...END_VAR or VAR_OUTPUT...END_VAR construct is
associated with an input or output event, respectively, by a WITH construct, this will result in the creation of an
associated input or output variable, respectively, as in the case of basic function block types. If such an element is
not associated with an input or output event, then the associated data flow is passed directly to or from the
component function blocks via the connections described above.

NOTE 2 The rules for interconnection of the event and variable inputs and outputs of plugs and sockets in the
body of the composite function block are the same as for the interconnection of the inputs and outputs of the
component function blocks. See 5.5 for further requirements regarding adapter interfaces.

Figure 13 illustrates the application of these rules to the example PI_REAL function block.
Figure 13a shows the graphical representation of the external interfaces and 13b shows the
graphical construction of its body. Figure 14 shows the interfaces and execution control for
the function block type PID_CALC used in the body of the PI_REAL example.

Figure 13a – External interface

Figure 13b – Graphical body

NOTE 1 A full textual declaration of this function block type is given in Annex F.

NOTE 2 This example is illustrative only. Details of the specification are not normative.

Figure 13 – Composite function block PI_REAL example

BS EN 61499-1:2013

61499-1 © IEC:2012 – 35 –

Figure 14a – External interface

Figure 14b – Execution control

NOTE This example is illustrative only. Details of the specification are not normative.

Figure 14 – Basic function block PID_CALC example

 Behavior of instances 5.3.2

Invocation and execution of component function blocks in composite function blocks shall be
accomplished as follows.

a) If an event input of the composite function block is connected to an event output of the
block, occurrence of an event at the event input shall cause the generation of an event at
the associated event output.

b) If an event input of the composite function block is connected to an event input of a
component function block, occurrence of an event at the event input of the composite
function block shall cause the scheduling of an invocation of the execution control function
of the component function block, with an occurrence of an event at the associated event
input of the component function block.

c) If an event output of a component function block is connected to an event input of a
second component function block, occurrence of an event at the event output of the first
block shall cause the scheduling of an invocation of the execution control function of the
second block, with an occurrence of an event at the associated event input of the second
block.

d) If an event output of a component function block is connected to an event output of the
composite function block, occurrence of an event at the event output of the component
block shall cause the generation of an event at the associated event output of the
composite function block.

BS EN 61499-1:2013

 – 36 – 61499-1 © IEC:2012

Initialization of instances of composite function blocks shall be equivalent to initialization of
their component function blocks according to the provisions of 5.2.2.1.

 Subapplications 5.4

 Type specification 5.4.1

The declaration of subapplication types is similar to the declaration of composite function
block types as defined in 5.3.1, with the exception that the delimiting keywords shall be
SUBAPPLICATION..END_SUBAPPLICATION. The following rules shall apply to this usage:

a) The WITH qualifier is not used in the declaration of event inputs and event outputs of
subapplication types.

b) Each event input of the subapplication shall be connected to exactly one event input of
exactly one component function block or component subapplication, or to exactly one
event output of the subapplication.

c) Each event input of a component function block or component subapplication is connected
to no more than one event output of exactly one other component function block or
component subapplication, or to no more than one event input of the subapplication.

d) Each event output of a component function block or component subapplication is
connected to no more than one event input of exactly one other component function block
or component subapplication, or to no more than one event output of the subapplication.

e) Each event output of the subapplication is connected from exactly one event output of
exactly one component function block or component subapplication, or from exactly one
event input of the subapplication.

NOTE 1 Component function blocks can include instances of the event processing blocks defined in Annex A, for
example to "split" events using instances of the E_SPLIT block, to "merge" events using instances of the
E_MERGE block, or for both cases, using the equivalent graphical shorthand.

Data inputs and data outputs of the component function blocks or component subapplications
can be interconnected with the data inputs and data outputs of the subapplication to represent
the flow of data within the subapplication. The following rules shall apply to this usage:

• Each data input of the subapplication can be connected to zero or more data inputs of
zero or more component function blocks or component subapplications, or to zero or more
data outputs of the subapplication, or both.

• Each data input of a component function block or component subapplication can be
connected to no more than one data output of exactly one other component function block
or component subapplication, or to no more than one data input of the subapplication.

• Each data output of a component function block or component subapplication can be
connected to zero or more data inputs of zero or more component function blocks or
component subapplications, or to zero or more data outputs of the subapplication, or both.

• Each data output of the subapplication shall be connected from exactly one data output of
exactly one component function block or component subapplication, or from exactly one
data input of the subapplication.

NOTE 2 Although the VAR_INPUT...END_VAR and VAR_OUTPUT...END_VAR constructs are used for the
declaration of the data inputs and outputs of subapplication types, this does not result in the creation of input and
output variables; the data flow is instead passed to the component function blocks or component subapplications
via the connections described above.

NOTE 3 The rules for interconnection of the event and variable inputs and outputs of plugs and sockets in the
body of the subapplication are the same as for the interconnection of the inputs and outputs of the component
function blocks. See 5.5 for further requirements regarding adapter interfaces.

EXAMPLE Figure 15 illustrates the application of these rules to the example PI_REAL_APPL subapplication.
Figure 15a shows the graphical representation of its external interfaces and Figure 15b shows the graphical
construction of its body. The body of the PI_REAL_APPL subapplication example uses the function block type
PID_CALC from the composite function block example in 5.3.1, which is shown in Figure 14.

BS EN 61499-1:2013

61499-1 © IEC:2012 – 37 –

Figure 15a – External interface

Figure 15b – Graphical body

NOTE 1 A full textual declaration of this subapplication type is given in Annex F.

NOTE 2 This example is illustrative only. Details of the specification are not normative.

Figure 15 – Subapplication PI_REAL_APPL example

 Behavior of instances 5.4.2

Invocation of the operations of component function blocks or component subapplications
within subapplications shall be accomplished as follows:

a) If an event input of the subapplication is connected to an event output of the block,
occurrence of an event at the event input shall cause the generation of an event at the
associated event output.

b) If an event input of the subapplication is connected to an event input of a component
function block or component subapplication, occurrence of an event at the event input of
the subapplication shall cause the scheduling of an invocation of the execution control
function of the component function block or component subapplication, with an occurrence
of an event at the associated event input of the component function block or component
subapplication.

c) If an event output of a component function block or component subapplication is
connected to an event input of a second component function block or component
subapplication, occurrence of an event at the event output of the first block shall cause
the scheduling of an invocation of the execution control function of the second block, with
an occurrence of an event at the associated event input of the second block.

BS EN 61499-1:2013

 – 38 – 61499-1 © IEC:2012

d) If an event output of a component function block or component subapplication is
connected to an event output of the subapplication, occurrence of an event at the event
output of the component block shall cause the generation of an event at the associated
event output of the subapplication.

Since subapplications do not explicitly create variables, no specific initialization procedures
are applicable to subapplication instances.

 Adapter interfaces 5.5

 General principles 5.5.1

Adapter interfaces can be used to provide a compact representation of a specified set of
event and data flows. As illustrated in Figure 16, an adapter interface type provides a means
for defining a subset (the plug adapter) of the inputs and outputs of a provider function block
which can be inserted into a matching subset of corresponding outputs and inputs (the socket
adapter) of an acceptor function block. Thus, the adapter interface represents the event and
data paths by which the provider supplies a service to the acceptor, or vice versa, depending
on the patterns of provider/acceptor interactions, which may be represented by sequences of
service primitives as described in 6.1.3.

NOTE A given function block type might function as a provider, an acceptor, or both, or neither, and may contain
more than one plug or socket instance of one or more adapter interface types.

Key

PRT Provider type

PRI Provider instance

ACT Acceptor type

ACI Acceptor instance

ADT Adapter type

PLI Plug instance

SKI Socket instance

NOTE This figure is illustrative only. The graphical representation is not normative.

Figure 16 – Adapter interfaces – Conceptual model

 Type specification 5.5.2

An adapter interface type declaration shall define only the interface type name and its
contained event and data interfaces. These are defined graphically or textually in the same
manner as the type name, event interfaces and data interfaces of a basic function block type
as defined in 5.2.1.1 and 5.2.1.2, with the exception that the keywords for beginning and
ending the textual type declaration shall be ADAPTER...END_ADAPTER. Textual syntax for
the declaration of adapter interfaces is given in Clause B.7.

PRT

ADT

PLI

PRI

ACT

ADT

SKI

ACI

insert adapter connection

PRT

ADT

PLI

PRI

ACT

ADT

SKI

ACI

BS EN 61499-1:2013

61499-1 © IEC:2012 – 39 –

EXAMPLE The adapter interface illustrated in Figure 17 represents the operation of transferring a workpiece from
an "upstream" piece of transfer equipment represented by a provider of the plug adapter to a "downstream" piece
of equipment represented by an acceptor with a corresponding socket adapter. As illustrated in Figure 17b, the
typical operation of this interaction consists of the following sequence:

a) An event in the upstream equipment, e.g., arrival of a workpiece at the unload position, causes a LD event,
typically interpreted as a "load" command, to be transmitted to the downstream equipment. Associated with
this event is a sensor value WO, indicating whether a workpiece is actually present for transfer, plus some
measured property or set of properties of the workpiece, in this case its color.

b) A subsequent event in the downstream equipment, e.g., completion of the load setup, causes an UNLD event,
typically interpreted as a command to release the workpiece, to be sent to the upstream equipment.

c) Subsequently a CNF event, typically interpreted as confirmation of the workpiece release, is passed from the
upstream to the downstream equipment to complete the operation. At this point the WO output is typically
FALSE and the value of the WKPC output has no significance.

 Figure 17a – Interface Figure 17b – Service sequence

NOTE 1 A full textual declaration of this adapter type is given in Annex F.

NOTE 2 This example is illustrative only. Details of the specification are not normative.

NOTE 3 See 6.1.2 for an explanation of service sequences.

Figure 17 – Adapter type declaration – graphical example
 Usage 5.5.3

The usage of adapter interface types and instances shall be according to the following rules:

a) Adapter interface instances to be used as plugs in instances of a function block type shall
be declared in its type declaration in a PLUGS...END_PLUGS block, declaring the
instance name and adapter interface type of each plug. In the graphical representation of
function block types and instances, plugs are shown as output variables with specialized
textual or graphical indication to show that they are not ordinary output variables.

b) Adapter interface instances to be used as sockets in instances of a function block type
shall be declared in its type declaration in a SOCKETS...END_SOCKETS block, declaring
the instance name and adapter interface type of each socket. In the graphical
representation of function block types and instances, sockets are shown as input variables
with specialized textual or graphical indication to show that they are not ordinary input
variables.

c) Inputs and outputs of a plug shall be used within its function block type declaration in the
same manner as inputs and outputs of the function block.

d) Inputs and outputs of a socket shall be used within its function block type declaration in
the same manner as outputs and inputs of the function block, respectively.

e) Insertion of plugs into sockets shall be specified in an ADAPTER_CONNECTIONS ...
END_CONNECTIONS block in the declaration of the application, subapplication, resource
type, resource instance, or composite function block type containing the respective
provider and acceptor instances.

BS EN 61499-1:2013

 – 40 – 61499-1 © IEC:2012

f) In the body of a composite function block type or subapplication, a socket is represented
as a function block with the same inputs and outputs as the corresponding adapter
interface type. Similarly, in this case a plug is represented as a function block with the
inputs and outputs of the corresponding adapter interface type reversed.

g) Insertion of plugs into sockets shall be subject to the following constraints:
1) a plug can only be inserted into a socket of the same adapter interface type;

2) a plug can only be inserted into zero or one socket at a time;
3) a socket can only accept zero or one plug at a time;
4) a plug can only be inserted in a socket if both are in the same composite function

block, resource, application or subapplication.

A connection from a plug to a socket may be shown in an application or subapplication even
though the corresponding function block instances may be mapped to separate resources. In
this case appropriate means, such as communication service interface function blocks as
described in 6.2, shall be used to implement the corresponding transfer of events and data
among resources.

Management function blocks as described in 6.3 may provide facilities for the dynamic
creation, deletion, and querying of adapter connections.

EXAMPLE 1 An instance of the XBAR_MVCA type illustrated in Figure 18 acts as both a provider of a plug
interface (LDU_PLG) and an acceptor with a socket interface (LDU_SKT). In so doing, it serves to abstract and
encapsulate the interactions of an instance of the XBAR_MVC type with "upstream" and "downstream" functional
units.

 Figure 18a – Interface Figure 18b – Body

NOTE 1 A full textual declaration of this example is given in Annex F.

NOTE 2 This example is illustrative only. Details of the specification are not normative.

NOTE 3 Although this example presents only a composite type, provider and acceptor function block types can be
either basic or composite.

Figure 18 – Illustration of provider and acceptor function block type declarations

BS EN 61499-1:2013

61499-1 © IEC:2012 – 41 –

EXAMPLE 2
Figure 19 illustrates a resource configuration containing two instances of the XBAR_MVCA type illustrated in
Figure 18. The SUPPLY instance acts as an acceptor ("downstream unit") for the HMI block and a provider
("upstream unit") for the BORE block, while the TAKEOFF instance fulfills corresponding roles for the BORE and
UNLOAD blocks, respectively.

NOTE 1 This example is illustrative only. Details of the specification are not normative.

NOTE 2 Parameter connections are omitted in this diagram for clarity.

NOTE 3 Type declarations for blocks other than the XBAR_MVCA type are not given in Annex F.

Figure 19 – Illustration of adapter connections

 Exception and fault handling 5.6

Additional facilities for the prevention, recognition and handling of exceptions and faults may
be provided by resources. Such capabilities may be modeled as service interface function
blocks. The definition of specific function block types for prevention, recognition and handling
of exceptions and faults is beyond the scope of this standard. However, INIT-, CNF- and
IND- outputs of service interface function blocks, and the associated STATUS values, may be
used to indicate the occurrence and type of exceptions and faults, as noted in 6.1.3.

6 Service interface function blocks

 General principles 6.1

 General 6.1.1

A service interface function block provides one or more services to an application, based on a
mapping of service primitives to the function block's event inputs, event outputs, data inputs
and data outputs.

The external interfaces of service interface function block types have the same general
appearance as basic function block types. However, some inputs and outputs of service
interface function block types have specialized semantics, and the behavior of instances of
these types is defined through a specialized graphical notation for sequences of service
primitives.

BS EN 61499-1:2013

 – 42 – 61499-1 © IEC:2012

NOTE The specification of the internal operations of service interface function blocks is beyond the scope of this
standard.

 Type specification 6.1.2

Declaration of service interface function block types may use the standard event inputs, event
outputs, data inputs and data outputs listed in Table 2, as appropriate to the particular service
provided. When these are used, their semantics shall be as defined in 6.1.2. The name of the
function block type shall indicate the provided service.

EXAMPLE Figure 20a and Figure 20b show examples of service interface function blocks in which the primary
interaction is initiated by the application and by the resource, respectively.

NOTE 1 Services can provide both resource- and application-initiated interactions in the same service interface
function block.

NOTE 2 Service interface types can also utilize inputs and outputs, including plugs and sockets, with names
different from those given here; in such case their usage is defined in terms of appropriate sequences of service
primitives.

Table 2 – Standard inputs and outputs for service interface function blocks (1 of 2)

Event inputs

INIT

This event input shall be mapped to a request primitive which requests an initialization of the service provided by
the function block instance, e.g., local initialization of a communication connection or a process interface module.

REQ

This event input shall be mapped to a request primitive of the service provided by the function block instance.

RSP

This event input shall be mapped to a response primitive of the service provided by the function block instance.

Event outputs

INITO

This event output shall be mapped to a confirm primitive which indicates completion of a service initialization
procedure.

CNF

This event output shall be mapped to a confirm primitive of the service provided by the function block instance.

IND

This event output shall be mapped to an indication primitive of the service provided by the function block instance.

Data inputs

QI: BOOL

This input represents a qualifier on the service primitives mapped to the event inputs. For instance, if this input is
TRUE upon the occurrence of an INIT event, initialization of the service is requested; if it is FALSE, termination of
the service is requested.

PARAMS: ANY

This input contains one or more parameters associated with the service, typically as elements of an instance of a
structured data type. When this input is present, the function block type specification shall define its data type and
default initial value(s).

A service interface function block type specification may substitute one or more service parameter inputs for this
input.

SD_1, ..., SD_m: ANY

These inputs contain the data associated with request and response primitives. The function block type
specification shall define the data types and default values of these inputs, and shall define their associations with
event inputs in an event sequence diagram as illustrated in 6.1.3.

The function block type specification may define other names for these inputs.

BS EN 61499-1:2013

61499-1 © IEC:2012 – 43 –

Table 2 (2 of 2)

Data outputs

QO: BOOL

This variable represents a qualifier on the service primitives mapped to the event outputs. For instance, a TRUE
value of this output upon the occurrence of an INITO event indicates successful initialization of the service; a
FALSE value indicates unsuccessful initialization.

STATUS: ANY

This output shall be of a data type appropriate to express the status of the service upon the occurrence of an event
output.

A service specification may indicate that the value of this output is irrelevant for some situations,for instance, for
INITO+, IND+ and CNF+ as described in 6.1.3.

RD_1, ..., RD_n: ANY

These outputs contain the data associated with confirm and indication primitives. The function block type
specification shall define the data types and initial values of these outputs, and shall define their associations with
event outputs in an event sequence diagram as described in 6.1.3.

The function block type specification may define other names for these outputs.

Figure 20a – Application-initiated interactions Figure 20b – Resource-initiated interactions

NOTE 1 REQUESTER and RESPONDER represent the particular services provided by instances of the function block
types.

NOTE 2 The data types of the SD_1,...,SD_n inputs and RD_1,...RD_m outputs will typically be fixed as
some non-generic data type, for instance INT or WORD, in concrete implementations of the generic function block
types illustrated here.

NOTE 3 See Annex F for a full textual declaration of the REQUESTER function block type.

Figure 20 – Example service interface function blocks

 Behavior of instances 6.1.3

The behavior of instances of service interface function blocks shall be defined in the
corresponding function block type specification, which can utilize service sequence diagrams
subject to the following rules:

a) The following semantics shall apply:
1) Time increases in the downward direction.
2) Events which are sequentially related are linked together across or within resources.
3) If there is no specific relationship between events, in that it is impossible to foresee

which will occur first but both shall occur within a finite period of time, a tilde (~) or
similar textual notation is used.

BS EN 61499-1:2013

 – 44 – 61499-1 © IEC:2012

b) In the case where the service is represented by a single service interface function block,
the diagram shall be partitioned by a single vertical line into two fields as illustrated in
Figure 21:
1) In the case where the service is provided primarily by an application-initiated

interaction, the application shall be in the left-hand field and the resource in the right-
hand field, as illustrated in Figure 21a.

2) In the case where the service is provided primarily by a resource-initiated interaction,
the resource shall be in the left-hand field and the application in the right-hand field, as
illustrated in Figure 21b.

c) In the case where the service is represented by two or more service interface function
blocks, the notation illustrated in E.2.2 and E.2.3 can be used.

d) Service primitives shall be indicated by horizontal arrows. The name of the event
representing the service primitive shall be written adjacent to the arrow, and means shall
be provided to determine the names of the input and/or output variables representing the
data associated with the primitive.

e) When a QI input is present in the function block type definition, the suffix "+" shall be
used in conjunction with an event input name to indicate that the value of the QI input is
TRUE upon the occurrence of the associated event, and the suffix "-" shall be used to
indicate that it is FALSE.

f) When a QO output is present in the function block type definition, the suffix "+" shall be
used in conjunction with an event output name to indicate that the value of the QO output
is TRUE upon the occurrence of the associated event, and the suffix "-" shall be used to
indicate that it is FALSE.

g) The standard semantics of asserted (+) and negated (-) events shall be as specified in
Table 3.

Figure 21 illustrates normal sequences of service initiation, data transfer, and service
termination. Service interface function block type specifications can utilize similar diagrams to
specify all relevant sequences of service primitives and their associated data under both
normal and abnormal conditions.

NOTE Sequence diagrams can also be used to document the externally observable behaviors of basic and
composite function block types.

Application-initiated
(request/confirmation)

interactions

Resource-initiated
(indication/response)

interactions

Figure 21 – Example service sequence diagrams

BS EN 61499-1:2013

61499-1 © IEC:2012 – 45 –

Table 3 – Service primitive semantics

Primitive Semantics

INIT+ Request for service establishment

INIT- Request for service termination

INITO+ Indication of establishment of normal service

INITO- Rejection of service establishment request or indication of service
termination

REQ+ Normal request for service

REQ- Disabled request for service

CNF+ Normal confirmation of service

CNF- Indication of abnormal service condition

IND+ Indication of normal service arrival

IND- Indication of abnormal service condition

RSP+ Normal response by application

RSP- Abnormal response by application

 Communication function blocks 6.2

 Type specification 6.2.1

Communication function blocks provide interfaces between applications and the
"communication mapping" functions of resources as defined in 4.3; hence, they are service
interface function blocks as described in 6.1.

Like other service interface function blocks, a communication function block may be of either
basic or composite type, as long its operation can be represented by a mapping of service
primitives to the function block's event inputs, event outputs, data inputs and data outputs.

This subclause provides rules for the declaration of communication function block types. 6.2.2
provides rules for the behavior of instances of such function block types. Clause E.2 defines
generic communication function block types for unidirectional and bidirectional transactions,
and gives rules for the implementation-dependent customization of these types.

Declaration of communication function block types shall utilize the means defined in 6.1 for
the declaration of service interface function block types, with the specialized semantics shown
in Table 4 for input and output variables.

BS EN 61499-1:2013

 – 46 – 61499-1 © IEC:2012

Table 4 – Variable semantics for communication function blocks

Variable Semantics

PARAMS This input provides parameters of the communication connection associated
with the communication function block instance. This shall include means of
identifying the communication protocol and communication connection, and
may include other parameters of the communication connection such as timing
constraints, etc.

SD_1,..., SD_m These inputs represent data to be transferred along the communication
connection specified by the PARAMS input upon the occurrence of a REQ+ or
RSP+ primitive, as appropriate. a

STATUS This output represents the status of the communication connection, for
instance:
- Normal completion of initiation, termination, or data transfer
- Reasons for abnormal initiation, termination, or data transfer

RD_1,..., RD_n These outputs represent data received along the communication connection
specified by the PARAMS input upon the occurrence of an IND+ or CNF+
primitive, as appropriate. a

NOTE Communication function block type declarations can define constraints between RD_1,...,RD_n
outputs and the SD_1,..., SD_m inputs of corresponding function block instances. For example. the
number and types of the RD outputs might be constrained to match the number and types of the
corresponding SD inputs.

a Communication function block type declarations define the number and type of the SD_1,..., SD_m
inputs and RD_1,...,RD_n outputs, and can assign them other names.

 Behavior of instances 6.2.2

As illustrated in Clause E.2, the behavior of instances of communication function block types
shall be defined in the corresponding communication function block type declaration, utilizing
the means specified for service interface function blocks in 6.1 with the specialized service
primitive semantics given in Table 5. Such specification shall include service primitive
sequences for:

• normal and abnormal establishment and release of communication connections;

• normal and abnormal data transfer.

Table 5 – Service primitive semantics for communication function blocks

Primitive Semantics

INIT+ Request for communication connection establishment

INIT- Request for communication connection release

INITO+ Indication of communication connection establishment

INITO- Rejection of communication connection establishment request
or indication of communication connection release

REQ+ Normal request for data transfer

REQ- Disabled request for data transfer

CNF+ Normal confirmation of data transfer

CNF- Indication of abnormal data transfer

IND+ Indication of normal data arrival

IND- Indication of abnormal data arrival

RSP+ Normal response by application to data arrival

RSP- Abnormal response by application to data arrival

BS EN 61499-1:2013

61499-1 © IEC:2012 – 47 –

 Management function blocks 6.3

 Requirements 6.3.1

Extending the functional requirements for "application management" in subclause 8.3.2 of
ISO/IEC 7498-1:1994 to the distributed application model of this standard indicates that
services for management of resources and applications in IPMCSs should be able to perform
the following functions:

a) In a resource, create, initialize, start, stop, delete, query the existence and attributes of,
and provide notification of changes in availability and status of:
1) data types
2) function block types and instances
3) connections among function block instances

b) In a device, create, initialize, start, stop, delete, query the existence and attributes of, and
provide notification of changes in availability and status of resources.

NOTE 1 The provisions of this standard are not intended to meet the requirements for system management
addressed in ISO/IEC 7498-4 and ISO/IEC 10040, except as such requirements are addressed by the above listed
functions.

NOTE 2 This standard only deals with item a) above, i.e., the management of applications in resources. A
framework for device management is described in IEC 61499-2.

NOTE 3 The associations among resources, applications, and function block instances are defined in system
configurations as described in 7.3.

NOTE 4 Starting and termination of a distributed application is performed by an appropriate software tool.

 Type specification 6.3.2

Figure 22 illustrates the general form of management function block types whose instances
meet the application management requirements defined above.

NOTE 1 In particular implementations, the type name (MANAGER in this example) might represent the type of the
managed resource.

NOTE 2 For these function block types, the specific CMD and OBJECT inputs and RESULT output replace the
generic SD_1 and SD_2 inputs and RD_1 output described in 6.1.

NOTE 3 The INIT and PARAMS inputs and INITO output might or might not be present in a particular
implementation.

NOTE 4 When present, the type and values of the PARAMS input are implementation-dependent parameters of
the resource type.

NOTE 5 A full textual specification of this function block type, including all service sequences, is given in
Annex F.

Figure 22 – Generic management function block type

The behavior of instances and input/output semantics of management function block types
shall follow the rules given in 6.1 for service interface function block types with application-

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00621095
http://dx.doi.org/10.3403/00227435U
http://dx.doi.org/10.3403/00290093U
http://dx.doi.org/10.3403/30128997U

 – 48 – 61499-1 © IEC:2012

initiated interactions, with the additional behaviors shown in Figure 23 for unsuccessful
service initiation and requests.

NOTE A full textual specification of this function block type, including all service sequences, is given in Annex F.

Figure 23 – Service primitive sequences for unsuccessful service

The management operation to be executed shall be expressed by the value of the CMD input of
a management function block according to the semantics defined in Table 6.

Table 6 – CMD input values and semantics

Value Command Semantics

0 CREATE Create specified object

1 DELETE Delete specified object

2 START Start specified object

3 STOP Stop specified object

4 READ Read parameter data

5 WRITE Write parameter data

6 KILL Make specified object unrunnable

7 QUERY Request information on specified object

8 RESET Reset specified object

The values and corresponding semantics of the STATUS output of a management function
block shall be as described in Table 7 to express the result of performing the specified
command.

Table 7 – STATUS output values and semantics

Value Status Semantics

0 RDY No errors

1 BAD_PARAMS Invalid PARAMS input value

2 LOCAL_TERMINATION Application-initiated termination

3 SYSTEM_TERMINATION System-initiated termination

4 NOT_READY Manager is not able to process the command

5 UNSUPPORTED_CMD Requested command is not supported

6 UNSUPPORTED_TYPE Requested object type is not supported

7 NO_SUCH_OBJECT Referenced object does not exist

8 INVALID_OBJECT Invalid object specification syntax

9 INVALID_OPERATION Commanded operation is invalid for specified
object

10 INVALID_STATE Commanded operation is invalid for current
object state

11 OVERFLOW Previous transaction still pending

BS EN 61499-1:2013

61499-1 © IEC:2012 – 49 –

The actual lengths of the OBJECT input and RESULT output of management function block
instances are implementation-dependent.

The OBJECT input shall specify the object to be operated on according to the CMD input, and
the RESULT output shall contain a description of the object resulting from the operation if
successful. The contents of these strings shall consist of implementation-dependent
encodings of objects defined as non-terminal symbols in Annex B and referenced in Table 8.

NOTE 6 The maximum allowable length of the OBJECT input and RESULT output is an implementation-
dependent parameter; the value of 512 given in Figure 22 is illustrative.

Table 8 – Command syntax

CMD OBJECT RESULT

CREATE type_declaration data_type_name

fb_type_declaration fb_type_name

fb_instance_definition fb_instance_reference

connection_definition connection_start_point

DELETE data_type_name data_type_name

fb_type_name fb_type_name

fb_instance_reference fb_instance_reference

connection_definition connection_definition

START fb_instance_reference fb_instance_reference

application_name application_name

STOP fb_instance_reference fb_instance_reference

application_name application_name

KILL fb_instance_reference fb_instance_reference

QUERY all_data_types data_type_list

all_fb_types fb_type_list

data_type_name type_declaration

fb_type_name fb_type_declaration

fb_instance_reference fb_status

connection_start_point connection_end_points

application_name fb_instance_list

READ parameter_reference parameter

WRITE referenced_parameter parameter_reference

RESET fb_instance_reference fb_status

NOTE See Table 6 for the integer values of the CMD input corresponding to the commands listed above.

It shall be an error, resulting in a STATUS code of INVALID_OBJECT, if a CREATE command
attempts to create

• a function block whose instance name duplicates that of an existing function block within
the same resource,

• a duplicate connection, or

• multiple connections to a data input.

The single exception to the above rule is that a CREATE command can replace a connection of
a parameter to a data input with a new parameter connection.

BS EN 61499-1:2013

 – 50 – 61499-1 © IEC:2012

It shall be an error, resulting in a STATUS code of UNSUPPORTED_TYPE, if a CREATE command
attempts to create a function block instance or parameter of a type which is not known to the
management function block.

It shall be an error, resulting in a STATUS code of INVALID_OPERATION, if a DELETE command
attempts to delete a function block type, function block instance, data type or connection
which is defined in the type specification of the managed resource.

The semantics of the START and STOP commands shall be as follows:

• START and STOP of a function block instance shall be as defined in 6.3.2;

• START and STOP of an application shall be equivalent to START and STOP, respectively, of
all function block instances in the application contained within the managed resource;

• STOP of a management function block instance shall be equivalent to STOP of all function
block instances within the managed resource;

• START of a management function block instance shall be equivalent to START of all function
block instances within the managed resource. If the managed resource was previously
stopped, this shall be followed by issuing of an event at the appropriate output of each
instance of the E_RESTART function block type defined in Annex A. These events shall
occur at the WARM outputs of the E_RESTART blocks if the resource was stopped due to a
previous STOP command, and at the COLD outputs otherwise.

Specialized semantics for the QUERY command shall be as follows:

• when the OBJECT input specifies an event input, event output or data output, the RESULT
output shall contain zero or more opposite end points;

• when the OBJECT input specifies a data input, the RESULT output shall list zero or one
opposite end point;

• when the OBJECT input specifies the name of an application, the RESULT output shall list
the names of all function blocks in the application contained within the managed resource.

 Behavior of managed function blocks 6.3.3

Function blocks that are under the control of a management function block shall exhibit
operational behaviors equivalent to that shown in the state transition diagram of Figure 24,
subject to the following rules.

a) The capitalized transition conditions in Figure 24 refer to a value of the CMD input, as
specified in Table 6, of the management function block upon the occurrence of a REQ+
service primitive.

b) The command_error sequence of primitives for the MANAGER function block type shall
occur, with the indicated value of the STATUS output as defined in Table 7, under the
following conditions:

1) UNSUPPORTED_CMD: No state exists in Figure 24 with a transition condition for the
specified CMD value;

2) INVALID_STATE: The currently active state does not have a transition condition for
the specified CMD value;

3) UNSUPPORTED_TYPE: The CMD value is CREATE, and the function block instance does
not exist, but the function block type is unknown to the MANAGER instance, i.e., the
guard condition type_defined is FALSE;

4) INVALID_OPERATION: The CMD value is DELETE, and the function block instance is in
the STOPPED or KILLED state, but the function block instance is declared in the
device or resource type specification, i.e., the guard condition is_deletable is
FALSE.

BS EN 61499-1:2013

61499-1 © IEC:2012 – 51 –

c) The normal_command_sequence of primitives shown for the MANAGER function block
type shall follow a CMD+ service primitive under all other conditions, with a value of RDY
for the STATUS output as defined in Table 7, and a corresponding value for the RESULT
output as defined in Table 8.

d) The semantics of the actions shown in Figure 24 shall be as shown in Table 9 for
managed basic and service interface function blocks.

e) The actions described in the previous rule apply recursively to all component function
blocks of managed composite function blocks.

NOTE 1 The behaviors of function blocks that are not under the control of management function blocks are
beyond the scope of this standard.

NOTE 2 Specification of the behavior of managed function blocks under conditions of power loss and restoration
is beyond the scope of this standard. Such behavior can be specified by the manufacturer of a compliant device,
for example by reference to an appropriate standard.

NOTE 3 Applications can utilize instances of the E_RESTART block described in Annex A to generate events that
can be used to trigger appropriate algorithms upon power loss and restoration.

NOTE 4 As described in 5.4.2, execution control in subapplications is entirely deferred to the execution control
mechanisms of their component function blocks and component subapplications.

Figure 24 – Operational state machine of a managed function block

BS EN 61499-1:2013

 – 52 – 61499-1 © IEC:2012

Table 9 – Semantics of actions in Figure 24

Action Basic function blocks Service interface function block

initialize

Initialize all variables as defined in 5.2.2.1.

Perform other initialization operations as
defined in 5.2.2.1.

Place service in the proper state to respond
correctly to an INIT+ primitive.

runECC Enable operation of the ECC state
machine defined in 5.2.2.2.

Enable invocation of service primitives by
events at event inputs, and generation of
events at event outputs.

completeAlgorithm Allow the currently active algorithm (if any)
without further generation of output
events.

Allow the currently active service primitive to
complete.

stopAlgorithm Terminate the operations of the currently
active algorithm (if any) immediately.

Terminate all operations of the service
immediately.

7 Configuration of functional units and systems

 Principles of configuration 7.1

Clause 7 contains rules for the configuration of industrial-process measurement and control
systems (IPMCSs) according to the following model:

a) an IPMCS consists of interconnected devices;
b) a device is an instance of a corresponding device type;
c) the functional capabilities of a device type are described in terms of its associated

resources;
d) a resource is an instance of a corresponding resource type;
e) the functional capabilities of a resource type are described in terms of the function block

types which can be instantiated, and the particular function block instances which exist, in
all instances of the resource type.

The configuration of an IPMCS is thus considered to consist of the configuration of its
associated devices and applications, including the allocation of function block instances in
each application to the resources associated with the devices. Clause 7 defines the following
sets of rules to support this process:

• rules for the functional specification of types of resources and devices are defined in 7.2;

• rules for the configuration of an IPMCS in terms of its associated devices and applications
are defined in 7.3.

 Functional specification of resource, device and segment types 7.2

 Functional specification of resource types 7.2.1

The functional specification of a resource type includes:

• the resource type name;

• the instance name, data type, and initialization of each of the resource parameters;

• a declaration of the data types and function block types that each instance of the resource
type is capable of instantiating;

• the instance names, types, and initial values of any function block instances that are
always present in each instance of the resource type;

• any data connections, adapter connections and event connections that are always present
in each instance of the resource type.

BS EN 61499-1:2013

61499-1 © IEC:2012 – 53 –

NOTE 1 Additional information can be supplied with resource type specifications, including:

– the maximum numbers of data connections, adapter connections and event connections that can exist in an
instance of the resource type;

– the time (identified as Talg in Figure 7) required for execution of each algorithm of function blocks of a
specified type in an instance of the resource;

– the maximum number of instances of specified function block types that can exist in each instance of the
resource;

– trade-offs among function block instances, e.g., whether two instances of function block type "A" can be traded
for one instance of type "B", etc.

NOTE 2 The functional specifications of a resource's communication and process interfaces, including the kind and
degree of compliance to applicable standards, is beyond the scope of this standard except as such interfaces are
represented by service interface function blocks.

 Functional specification of device types 7.2.2

The functional specification of a device type includes:

a) the device type name;
b) the instance name, data type, and initialization of each of the device parameters;
c) the instance name, type name, and initialization of each function block instance that is

always present in each instance of the device type;
d) any data connections, adapter connections and event connections that are always present

in each instance of the device type;
e) declarations of the resource instances which are present in each instance of the device

type. Each such declaration shall contain:
1) the resource instance name and type name;
2) the instance name, type name, and initialization of each function block instance that is

always present in the resource instance in each instance of the device type;
3) any data connections, adapter connections and event connections that are always

present in the resource instance in each instance of the device type.

NOTE 1 Items (2) and (3) above are considered to be in addition to the corresponding elements declared in the
resource type specification as defined in 7.2.1.

NOTE 2 The functional specifications of a device's communication and process interfaces, including the kind and
degree of compliance to applicable standards, is beyond the scope of this standard except as such interfaces are
represented by service interface function blocks.

NOTE 3 A device type can contain a function block network only when it is considered to consist of a single
(undeclared) resource; in such a case the device type does not contain any declarations of resource instances.

 Functional specification of segment types 7.2.3

The functional specification of a segment type includes:

• the segment type name;

• the instance name, data type, and initialization of each of the segment parameters.

 Configuration requirements 7.3

 Configuration of systems 7.3.1

The configuration of a system includes:

• the name of the system;

• the specification of each application in the system, as specified in 7.3.2;

• the configuration of each device and its associated resources, as specified in 7.3.3;

BS EN 61499-1:2013

 – 54 – 61499-1 © IEC:2012

• the configuration of each network segment and its associated links to devices or
resources, as specified in 7.3.4.

 Specification of applications 7.3.2

The specification of an application consists of:

• its name in the form of an identifier;

• the instance name, type name, data connections, event connections and adapter
connections of each function block and subapplication in the application.

It shall be an error if the name of an application is not unique within the scope of the system.

 Configuration of devices and resources 7.3.3

The configuration of a device consists of:

• the instance name and type name of the device;

• configuration-specific values for the device parameters;

• the resource types supported by the device instance in addition to those specified for
the device type;

• the instance name and type name of each function block instance that is present in the
device instance in addition to those defined for the device type;

• any data connections, adapter connections and event connections that are present in
the device instance in addition to those defined for the device type;

• the resource types supported by the device instance in addition to those specified for
the device type;

• the configuration of each of the resources in the device. These consist of any resource
instances defined in the device type specification, plus any additional resources
associated with the specific device instance.

NOTE A device instance can contain a function block network only when it is considered to consist of a single
(undeclared) resource; in such a case the declaration of the device instance does not contain any declarations of
resource instances.

It shall be an error if the instance name of each device is not unique within the scope of the
system.

The configuration of a resource consists of:

a) its instance name and type name;
b) the data types and function block types supported by the resource instance;
c) the instance name, type name, and initialization of each function block instance that is

present in the resource instance;
d) any data connections, event connections and adapter connections that are present in the

resource instance.

Resource configuration is subject to the following rules:

– Items b), c), and d) above are considered to be in addition to the corresponding elements
declared in the device and resource type specifications as defined in 7.2.2 and 7.2.1,
respectively.

– Items c) and d) include function block instances, data connections, adapter connections
and event connections from those portions of applications allocated to the resource.

– Items c) and d) include communication function blocks, data connections, event
connections and adapter connections as necessary to establish and maintain the data and
event flows for any associated applications.

BS EN 61499-1:2013

61499-1 © IEC:2012 – 55 –

– The items in Item c) may include the mapping of function block instances in the application
to function block instances existing in the resource as a result of type definition as
described in 7.2.1.

– It shall be an error if the instance name of a resource is not unique within the scope of the
device containing it, or if any function block instance in an application is not allocated to
exactly one resource.

Automated means may be provided to meet the above requirements. Providers of such means
shall either provide unambiguous rules by which their operation can be determined, or shall
provide means by which the results of the application of such means can be examined and
modified.

 Configuration of network segments and links 7.3.4

The configuration of a network segment consists of:

• the instance name and type name of the segment;

• configuration-specific values for the parameters of the network segment.

It shall be an error if the instance name of each network segment is not unique within the
scope of the system, or if the declared values of the segment parameters are inconsistent
with the declaration (if any) of the segment type defined in 7.2.3.

The configuration of a link consists of:

– the name of a device or the hierarchical name of a "communication resource" inside a
device, and the name of the network segment to which the device or the resource is
connected;

– configuration-specific values for the parameters of the link.

BS EN 61499-1:2013

 – 56 – 61499-1 © IEC:2012

Annex A
(normative)

Event function blocks

Instances of the function block types shown in Table A.1 can be used for the generation and
processing of events in composite function blocks; in subapplications; in the definition of
resource and device types; and in the configuration of applications, resources and devices.

Those function block types shown in Annex A which utilize execution control charts are basic
function block types. Where textual declarations of algorithms are given for these function
block types, the language used is the Structured Text (ST) language defined in IEC 61131-3.

Reference implementations for some of the function block types in Annex A are given as
composite function block type definitions. These implementations are normative only in the
sense that the functional behaviors of compliant implementations shall be equivalent to those
of the reference implementation, where the following considerations apply to the timing
parameters defined in 4.5.3.

• The parameters Tsetup, Tstart and Tfinish are considered to be zero (0) for all component
function blocks in the reference implementation.

• The parameter Talg is considered to be equal to the parameter DT for all instances of
E_DELAY type used as component function blocks in the reference implementation, and to
be zero (0) for all other component function blocks in the reference implementation.

All other function block types given in Annex A are service interface function block types.

NOTE Full textual specifications of all function block types shown in Table A.1 are given in Annex F.

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00316105U

61499-1 © IEC:2012 – 57 –

Table A.1 – Event function blocks (1 of 6)

No. Description

Interface ECC/Algorithms/Service sequences

1 Split an event

The occurrence of an event at EI causes the occurrence of events at EO1, EO2,...,EOn (n=2 in the
above example).

2 Merge (OR) of multiple events

The occurrence of an event at any of the inputs EI1, EI2,...,EIn causes the occurrence of an event
at EO (n=2 in the above example).

3 Rendezvous of two events

4 Permissive propagation of an event

5 Selection between two events

BS EN 61499-1:2013

 – 58 – 61499-1 © IEC:2012

Table A.1 (2 of 6)

No. Description

Interface ECC/Algorithms/Service sequences

6 Switching (demultiplexing) an event

7 Delayed propagation of an event

An event at EO is generated at a time interval DT after the occurrence
of an event at the START input. The event delay is cancelled by an
occurrence of an event at the STOP input. If multiple events occur at
the START input before the occurrence of an event at EO, only a single
event occurs at EO, at a time DT after the first event occurrence at the
START input. No event delay will be initiated if an event occurs at the
START input with a value of DT which is not greater than t#0s.

8 Generation of restart events

a) An event is issued at the COLD output upon "cold restart" of the associated resource.

b) An event is issued at the WARM output upon "warm restart" of the associated resource.

c) An event is issued at the STOP output (if possible) prior to "stopping" of the associated resource.

NOTE 1 See IEC 61131-1 for a discussion of "cold restart" and "warm restart".

9 Periodic (cyclic) generation of an event

An event occurs at EO at an interval DT after the occurrence
of an event at START, and at intervals of DT thereafter until
the occurrence of an event at STOP.

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00345852U

61499-1 © IEC:2012 – 59 –

Table A.1 (3 of 6)

No. Description

Interface ECC/Algorithms/Service sequences

10 Generation of a finite train of events

NOTE 2 See table entry 18 for a definition of the E_CTU type.

An event occurs at EO at an interval DT after the occurrence of an event at START, and at intervals of DT
thereafter, until N occurrences have been generated or an event occurs at the STOP input.

NOTE 3 The count CV is reset whenever an event occurs at the START interface, but the delay does not
restart unless it is already stopped. This behavior maintains the inter-EO interval when restarting the count.

11 Generation of a finite train of events (table driven)

An event occurs at EO at an interval DT[0] after the occurrence of an event at START. A second event
occurs at an interval DT[1] after the first, etc., until N occurrences have been generated or an event
occurs at the STOP input. The current event count is maintained at the CV output.

NOTE 4 In this example implementation, N <= 4.

NOTE 5 Implementation using the E_TABLE_CTRL function block type illustrated below is not a normative
requirement. Equivalent functionality can be implemented by various means.

ALGORITHM INIT IN ST:
 CV:= 0;
 DTO:= DT[0];
END_ALGORITHM

ALGORITHM STEP IN ST:
 CV:= CV+1;
 DTO:= DT[CV];
END_ALGORITHM

BS EN 61499-1:2013

 – 60 – 61499-1 © IEC:2012

Table A.1 (4 of 6)

No. Description

Interface ECC/Algorithms/Service sequences

12 Generation of a finite train of separate events (table driven)

An event occurs at EO0 at an interval DT[0] after the occurrence of an event at START. An event occurs
at EO1 an interval DT[1] after the occurrence of the event at EO0, etc., until N occurrences have been
generated or an event occurs at the STOP input.

NOTE 6 In this example implementation, N <= 4.

NOTE 7 Implementation using the E_DEMUX function block type illustrated below is not a normative
requirement. Equivalent functionality can be implemented by various means.

13 Event-driven bistable

The output Q is set to 1 (TRUE) upon the occurrence of an event at the S input, and is reset to 0
(FALSE) upon the occurrence of an event at the R input. An event is issued at the EO output when the
value of Q changes.

ALGORITHM SET IN ST: (* Set Q *)
 Q:= TRUE;
END_ALGORITHM

ALGORITHM RESET IN ST: (* Reset Q *)
 Q:= FALSE;
END_ALGORITHM

BS EN 61499-1:2013

61499-1 © IEC:2012 – 61 –

Table A.1 (5 of 6)

No. Description

Interface ECC/Algorithms/Service sequences

14 Event-driven bistable

The output Q is set to 1 (TRUE) upon the occurrence of an event at the S input, and is reset to 0
(FALSE) upon the occurrence of an event at the R input. An event is issued at the EO output when the
value of Q changes.

NOTE 8 The implementation of this function block type is identical to E_SR. Both E_SR and E_RS are
implemented for consistency with the SR and RS types of IEC 61131-3, although there is no "dominance" of
events as there would be for level-controlled R and S inputs.

15 D (Data latch) bistable

 ALGORITHM LATCH IN ST:
 Q:= D;
END_ALGORITHM

16 Boolean rising edge detection

17 Boolean falling edge detection

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00316105U

 – 62 – 61499-1 © IEC:2012

Table A.1 (6 of 6)

No. Description

Interface ECC/Algorithms/Service sequences

18 Event-driven up counter

ALGORITHM R IN ST: (* Reset *)
 CV:= 0;
 Q:= 0;
END_ALGORITHM

ALGORITHM CU IN ST: (* Count Up *)
 CV:= CV + 1;
 Q:= (CV >= PV);
END_ALGORITHM

Graphical shorthand notations may be substituted for the E_SPLIT and E_MERGE blocks
defined in Table A.1. For example, the shorthand (implicit) representation shown in
Figure A.1b is equivalent to the explicit representation in Figure A.1a.

EO1EI

E_SPLIT

EO2
EO

E_MERGE

EI1
EI2

()

()

 Figure A.1a – Explicit representation Figure A.1b – Implicit representation

NOTE Irrelevant details are suppressed in the above figure.

Figure A.1 – Event split and merge

BS EN 61499-1:2013

61499-1 © IEC:2012 – 63 –

Annex B
(normative)

Textual syntax

B.1 Syntax specification technique

The textual constructs in Annex B are specified in terms of a syntax, which specifies the
allowable combinations of symbols which can be used to define a program; and a set of
semantics, which specify the meanings of the symbol combinations defined by the syntax.

A syntax is defined by a set of terminal symbols to be utilized for program specification; a set
of non-terminal symbols defined in terms of the terminal symbols; and a set of production
rules specifying those definitions.

The terminal symbols for textual specifications of entities defined in this standard consist of
combinations of the characters in the character set given as Table 2 – Row 00 of the "Basic
Latin to CJK Compatibility" table linked to Clause 33 defined in ISO/IEC 10646:2003.

For the purposes of this standard, terminal textual symbols consist of the appropriate
character string enclosed in paired single or double quotes. For example, a terminal symbol
represented by the character string ABC can be represented by either "ABC" or 'ABC'.

This allows the representation of strings containing either single or double quotes; for
instance, a terminal symbol consisting of the double quote itself would be represented by '"'

A special terminal symbol utilized in this syntax is the "null string", that is, a string containing
no characters. This is represented by the terminal symbol NIL.

Non-terminal textual symbols are represented by strings of lower-case letters, numbers, and
the underline character (_), beginning with a lower-case letter. For instance, the strings
nonterm1 and non_term_2 are valid nonterminal symbols, while the strings 3nonterm and
_nonterm4 are not.

The production rules given in this standard form an extended grammar in which each rule
has the form

non_terminal_symbol::= extended_structure

This rule can be read as:

"A non_terminal_symbol can consist of an extended_structure."

Extended structures can be constructed according to the following rules:

a) The null string, NIL, is an extended structure.

b) A terminal symbol is an extended structure.
c) A non-terminal symbol is an extended structure.

d) If S is an extended structure, then the following expressions are also extended structures:

• (S), meaning S itself.

• {S}, closure, meaning zero or more concatenations of S.

BS EN 61499-1:2013

 – 64 – 61499-1 © IEC:2012

• [S], option, meaning zero or one occurrence of S.

e) If S1 and S2 are extended structures, then the following expressions are extended
structures:

• S1 | S2, alternation, meaning a choice of S1 or S2.

• S1 S2, concatenation, meaning S1 followed by S2.

f) Concatenation precedes alternation, that is, S1 | S2 S3 is equivalent to S1 | (S2 S3),
and S1 S2 | S3 is equivalent to (S1 S2) | S3.

Semantics are defined in this standard by appropriate natural language text, accompanying
the production rules, which references the descriptions provided in the appropriate clauses.
Standard options available to the user and vendor are specified in these semantics.

In some cases it is more convenient to embed semantic information in an extended structure.
In such cases, this information is delimited by paired angle brackets, for example, <semantic
information>.

B.2 Function block and subapplication type specification

B.2.1 Function block type specification

The syntax defined in B.2.1 can be used for the textual specification of function block types
according to the rules given in Clauses 5 and 6 of this standard.

SYNTAX:

fb_type_declaration::=
'FUNCTION_BLOCK' fb_type_name
fb_interface_list
[fb_internal_variable_list] <only for basic FB>
[fb_instance_list] <only for composite FB>
[plug_list]
[socket_list]
[fb_connection_list] <only for composite FB>
[fb_ecc_declaration] <only for basic FB>
{fb_algorithm_declaration} <only for basic FB>
[fb_service_declaration]
'END_FUNCTION_BLOCK'

fb_interface_list::=
[event_input_list]
[event_output_list]
[input_variable_list]
[output_variable_list]

event_input_list::=
'EVENT_INPUT'
{event_input_declaration}
'END_EVENT'

event_output_list::=
'EVENT_OUTPUT'
{event_output_declaration}
'END_EVENT'

event_input_declaration::= event_input_name [':' event_type]
['WITH' input_variable_name {',' input_variable_name}] ';'

event_output_declaration::= event_output_name [':' event_type]
['WITH' output_variable_name {',' output_variable_name}] ';'

BS EN 61499-1:2013

61499-1 © IEC:2012 – 65 –

input_variable_list::=
'VAR_INPUT' {input_var_declaration ';'} 'END_VAR'

output_variable_list::=
'VAR_OUTPUT' {output_var_declaration ';'} 'END_VAR'

fb_internal_variable_list::=
'VAR' {internal_var_declaration ';'} 'END_VAR'

input_var_declaration::=
input_variable_name {',' input_variable_name} ':' var_spec_init

output_var_declaration::=
output_variable_name {',' output_variable_name} ':' var_spec_init

internal_var_declaration::=
internal_variable_name {',' internal_variable_name}
':' var_spec_init

var_spec_init::= located_var_spec_init <as specified in IEC 61131-3>

fb_instance_list::= 'FBS'
{fb_instance_definition ';'}
'END_FBS'

fb_instance_definition::= fb_instance_name ':' fb_type_name [parameters]

plug_list::= 'PLUGS'
{plug_name ':' adapter_type_name [parameters] ';'}
'END_PLUGS'

socket_list::= 'SOCKETS'
{socket_name ':' adapter_type_name [parameters] ';'}
'END_SOCKETS'

fb_connection_list::= <may be empty, e.g. for basic FB>
[event_conn_list]
[data_conn_list]
[adapter_conn_list]

event_conn_list::=
'EVENT_CONNECTIONS'
{event_conn}
'END_CONNECTIONS'

event_conn::= event_conn_source 'TO' event_conn_destination ';'

event_conn_source::= ([plug_name '.'] event_input_name)
| ((fb_instance_name | socket_name) '.' event_output_name)

event_conn_destination::= ([plug_name '.'] event_output_name)
| ((fb_instance_name | socket_name) '.' event_input_name)

data_conn_list::=
'DATA_CONNECTIONS'
{data_conn}
'END_CONNECTIONS'

data_conn::= data_conn_source 'TO' data_conn_destination ';'

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00316105U

 – 66 – 61499-1 © IEC:2012

data_conn_source::= ([plug_name '.'] input_variable_name)
| ((fb_instance_name | socket_name) '.' output_variable_name)

data_conn_destination::= ([plug_name '.'] output_variable_name)
| ((fb_instance_name | socket_name) '.' input_variable_name)

adapter_conn_list::=
'ADAPTER_CONNECTIONS'
{adapter_conn}
'END_CONNECTIONS'

adapter_conn::=
((fb_instance_name '.' plug_name) | socket_name)
'TO' ((fb_instance_name '.' socket_name) | plug_name) ';'

fb_ecc_declaration::=
'EC_STATES'
{ec_state} <first state is initial state>
'END_STATES'
'EC_TRANSITIONS'
{ec_transition}
'END_TRANSITIONS'

ec_state::= ec_state_name
[':' ec_action {',' ec_action}] ';'

ec_action::= algorithm_name | ('->' ec_action_output)
| (algorithm_name '->' ec_action_output)

ec_action_output:= ([plug_name '.'] event_output_name)
| (socket_name '.' event_input_name)

ec_transition::=
ec_state_name
'TO' ec_state_name
':=' ec_transition_condition ';'

ec_transition_condition::= '1'
| ec_transition_event | '[' guard_condition ']'
| ec_transition_event '[' guard_condition ']'

ec_transition_event::= ([plug_name '.'] event_input_name)
| (socket_name '.' event_output_name)

guard_condition::= expression <over ec_expression_operand elements>
<as defined in IEC 61131-3>
<Shall evaluate to a BOOL value>

ec_expression_operand::=
([(plug_name | socket_name) '.'] input_variable_name)
| ([(plug_name | socket_name) '.'] output_variable_name)
| internal_variable_name
| constant

fb_algorithm_declaration::=
'ALGORITHM' algorithm_name 'IN' language_type ':'
[temp_var_decls]
algorithm_body
'END_ALGORITHM'

temp_var_decls::= <as defined in IEC 61131-3>

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U

61499-1 © IEC:2012 – 67 –

algorithm_body::= <as defined in compliant standards>

fb_service_declaration::=
'SERVICE' service_interface_name '/' service_interface_name
{service_sequence}
'END_SERVICE'

service_interface_name::= fb_type_name | 'RESOURCE'

service_sequence::=
'SEQUENCE' sequence_name
{service_transaction ';'}
'END_SEQUENCE'

service_transaction::=
[input_service_primitive] '->' output_service_primitive
{'->' output_service_primitive}

input_service_primitive::= service_interface_name '.'
([plug_name '.'] event_input_name
 | socket_name '.' event_output_name)
['+' | '-']
'(' [input_variable_name {',' input_variable_name}] ')'

output_service_primitive::= service_interface_name '.' ('NULL' |
([plug_name '.'] event_output_name
 | socket_name '.' event_input_name)
['+' | '-']
'(' [output_variable_name {',' output_variable_name}] ')')

algorithm_name::= identifier

ec_state_name::= identifier

event_input_name::= identifier

event_output_name::= identifier

event_type::= identifier

fb_instance_name::= identifier

fb_type_name::= identifier

input_variable_name::= identifier

internal_variable_name::= identifier

language_type::= identifier

output_variable_name::= identifier

plug_name::= identifier

sequence_name::= identifier

socket_name::= identifier

BS EN 61499-1:2013

 – 68 – 61499-1 © IEC:2012

B.2.2 Subapplication type specification

The syntax defined in this subclause can be used for the textual specification of
subapplication types according to the rules given in 5.4.1.

The productions given in B.2.1 also apply to this subclause.

SYNTAX:

subapplication_type_declaration::=
'SUBAPPLICATION' subapp_type_name
 subapp_interface_list
 [fb_instance_list]
 [subapp_instance_list]
 [plug_list]
 [socket_list]
 [subapp_connection_list]
'END_SUBAPPLICATION'

subapp_interface_list::=
[subapp_event_input_list]
[subapp_event_output_list]
[input_variable_list]
[output_variable_list]

subapp_event_input_list::=
'EVENT_INPUT'
{subapp_event_input_declaration}
'END_EVENT'

subapp_event_output_list::=
'EVENT_OUTPUT'
{subapp_event_output_declaration}
'END_EVENT'

subapp_event_input_declaration::=
event_input_name [':' event_type] ';'

subapp_event_output_declaration::=
event_output_name [':' event_type] ';'

subapp_instance_list::= 'SUBAPPS'
{subapp_instance_definition ';'}
'END_SUBAPPS'

subapp_instance_definition::= subapp_instance_name ':' subapp_type_name

subapp_connection_list::=
[subapp_event_conn_list]
[subapp_data_conn_list]
[adapter_conn_list]

subapp_event_conn_list::=
'EVENT_CONNECTIONS'
{subapp_event_conn}
'END_CONNECTIONS'

subapp_event_conn::= subapp_event_source 'TO' subapp_event_destination ';'

subapp_event_source:: = ([plug_name '.'] event_input_name)
| ((fb_subapp_name | socket_name) '.' event_output_name

BS EN 61499-1:2013

61499-1 © IEC:2012 – 69 –

subapp_event_destination::= ([plug_name '.'] event_output_name)
| ((fb_subapp_name | socket_name) '.' event_input_name)

fb_subapp_name::= fb_instance_name | subapp_instance_name

subapp_data_conn_list::=
'DATA_CONNECTIONS'
{subapp_data_conn}
'END_CONNECTIONS'

subapp_data_conn::= subapp_data_source 'TO' subapp_data_destination ';'

subapp_data_source::= ([plug_name '.'] input_variable_name)
| ((fb_subapp_name | socket_name) '.' output_variable_name)

subapp_data_destination::= ([plug_name '.'] output_variable_name)
| ((fb_subapp_name | socket_name) '.' input_variable_name)

subapp_type_name::= identifier

subapp_instance_name::= identifier

B.3 Configuration elements

The syntax defined in this clause can be used for the textual specification of resource types,
device types, segment types, applications, and system configurations according to the rules
given in Clause 7.

The productions given in Clause B.2 also apply to this clause.

SYNTAX:

application_configuration::=
'APPLICATION' application_name
[fb_instance_list]
[subapp_instance_list]
[subapp_connection_list]
'END_APPLICATION'

system_configuration::= 'SYSTEM' system_name
 {application_configuration}
 device_configuration
 {device_configuration}
 [mappings]
 [segments]
 [links]
'END_SYSTEM'

segments::= 'SEGMENTS'
 segment
 {segment}
'END_SEGMENTS'

segment::= segment_name ':' segment_type_name [parameters] ';'

links::= 'LINKS'
 link
 {link}
'END_LINKS'

BS EN 61499-1:2013

 – 70 – 61499-1 © IEC:2012

link::= resource_hierarchy '=>' segment_name [parameters] ';'

parameters::= '(' parameter {',' parameter} ')'

parameter::= parameter_name ':='
(constant | enumerated_value | array_initialization |
structure_initialization) ';'
<as defined in IEC 61131-3>

device_configuration::=
'DEVICE' device_name ':' device_type_name [parameters]
[resource_type_list]
{resource_configuration}
[fb_instance_list]
[config_connection_list]
'END_DEVICE'

resource_type_list::= 'RESOURCE_TYPES'
{resource_type_name ';'}
'END_RESOURCE_TYPES'

resource_configuration::=
'RESOURCE' resource_instance_name ':' resource_type_name [parameters]
[fb_type_list]
[fb_instance_list]
[config_connection_list]
'END_RESOURCE'

fb_type_list::= 'FB_TYPES' {fb_type_name ';'} 'END_FB_TYPES'

config_connection_list::=
[config_event_conn_list]
[config_data_conn_list]
[config_adapter_conn_list]

config_event_conn_list::= 'EVENT_CONNECTIONS'
{config_event_conn}
'END_CONNECTIONS'

config_event_conn::= fb_instance_name '.' event_output_name
'TO' fb_instance_name '.' event_input_name ';'

config_data_conn_list::= 'DATA_CONNECTIONS'
{config_data_conn}
'END_CONNECTIONS'

config_data_conn::=
(fb_instance_name '.' output_variable_name | input_variable_name)
'TO'
(fb_instance_name | resource_instance_name)'.' input_variable_name ';'
<resource_instance_name only applies to connections within device_type or
device_configuration declarations>

config_adapter_conn_list::= 'ADAPTER_CONNECTIONS'
{config_adapter_conn}
'END_CONNECTIONS'

config_adapter_conn::= fb_instance_name '.' plug_name
'TO' fb_instance_name '.' socket_name ';'

fb_instance_reference::= [app_hierarchy_name] fb_instance_name

app_hierarchy_name:= application_name '.'{subapp_instance_name '.'}

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00316105U

61499-1 © IEC:2012 – 71 –

device_type_specification::=
'DEVICE_TYPE' device_type_name
[input_variable_list]
[resource_type_list] <if not given, defined by resource instances>
{resource_instance}
[fb_instance_list]
[config_connection_list]
'END_DEVICE_TYPE'

resource_instance::=
'RESOURCE' resource_instance_name ':' resource_type_name
[fb_instance_list]
[config_connection_list]
'END_RESOURCE'

resource_type_specification::= 'RESOURCE_TYPE' resource_type_name
[input_variable_list]
[fb_type_list] <if not given, defined by function block instances>
[fb_instance_list]
config_connection_list
'END_RESOURCE_TYPE'

segment_type_specification::= 'SEGMENT_TYPE' segment_type_name
{parameter_declaration}
'END_SEGMENT_TYPE'

parameter_declaration:= parameter_name ':' var_spec_init ';'

mappings::= 'MAPPINGS' mapping {mapping} 'END_MAPPINGS'

mapping::= fb_instance_reference 'ON' fb_resource_reference ';'

fb_resource_reference::= resource_hierarchy ['.' fb_instance_name]
<When the optional element ['.' fb_instance_name] is not given, the
instance name of the FB in the resource is the same as its instance name
in the corresponding fb_instance_reference of the mapping.>

resource_hierarchy::= device_name ['.' resource_instance_name]

segment_name::= identifier

segment_type_name::= identifier

parameter_name::= identifier

system_name::= identifier

device_name::= identifier

device_type_name::= identifier

application_name::= identifier

resource_instance_name::= identifier

resource_type_name::= identifier

BS EN 61499-1:2013

 – 72 – 61499-1 © IEC:2012

B.4 Common elements

Where syntactic productions are not given for non-terminal symbols in Annex B, the syntactic
productions and corresponding semantics given in Annex B of IEC 61131-3:2003 shall apply.

B.5 Supporting productions for management commands

The syntax defined in this clause is referenced in Table 8.

SYNTAX:

data_type_list::= 'DATA_TYPES' {data_type_name ';'} 'END_DATA_TYPES'

connection_definition::=
connection_start_point ' ' connection_end_point

connection_start_point::= fb_instance_reference '.' attachment_point

connection_end_points::=
connection_end_point {',' connection_end_point}

connection_end_point::= fb_instance_reference '.' attachment_point

attachment_point::= identifier

referenced_parameter::=
[(resource_instance_name | fb_instance_name)'.'] parameter
<resource_instance_name refers to a resource located in the same device
as the MANAGER block defined in 6.3.2>
<fb_instance_name refers to an FB contained in the same device or
resource as the <MANAGER> block>
<if no resource or FB instance name is given, the parameter refers to a
parameter of the device or resource containing the MANAGER block>

parameter_reference::=
[(resource_instance_name | fb_instance_name)'.'] parameter_name
<see above for semantics>

all_data_types::= 'ALL_DATA_TYPES'

all_fb_types::= 'ALL_FB_TYPES'

fb_status::= 'IDLE' | 'RUNNING' | 'STOPPED' | 'KILLED'

BS EN 61499-1:2013

http://dx.doi.org/10.3403/02829375

61499-1 © IEC:2012 – 73 –

B.6 Tagged data types

The syntax defined below shall be used for the assignment of tags as defined in
ISO/IEC 8824-1 to derived data types defined as specified in Annex B and Annex E. As
defined in ISO/IEC 8824-1, the class tags APPLICATION and PRIVATE shall be used except for
types to be used only in context-specific tagging.

SYNTAX:

tagged_type_declaration::=
'TYPE'
asn1_tag type_declaration ';'
{asn1_tag type_declaration ';'}
'END_TYPE'

asn1_tag::= '[' ['APPLICATION' | 'PRIVATE'] (integer | hex_integer) ']'

B.7 Adapter interface types

See 5.5 for the semantics associated with the following syntax.

SYNTAX:

adapter_type_declaration::=
'ADAPTER' adapter_type_name
 fb_interface_list
 [fb_service_declaration]
'END_ADAPTER'

adapter_type_name::= identifier

BS EN 61499-1:2013

 – 74 – 61499-1 © IEC:2012

Annex C
(informative)

Object models

C.1 Model notation

Annex C presents object models for some of the classes which may be used in Engineering
Support Systems (ESS) to support the design, implementation, commissioning and operation
of Industrial-Process Measurement and Control Systems (IPMCSs) constructed according to
the architecture defined in this standard.

The notation used in Annex C is the Unified Modeling Language (UML). References to
extensive documentation of this notation can be found on the Internet at the Uniform
Resource Locator (URL) http://www.omg.org/uml/.

C.2 ESS models

C.2.1 ESS overview

Figure C.1 presents an overview of the major classes in the ESS (Engineering Support
System) for an industrial-process measurement and control system (IPMCS), and their
correspondence to the classes of objects in the IPMCS. Descriptions of the classes in
Figure C.1 are given in Table C.1.

Figure C.1 – ESS overview

BS EN 61499-1:2013

61499-1 © IEC:2012 – 75 –

Table C.1 – ESS class descriptions

Declaration This is the abstract superclass for declarations.

Editor Instances of this class provide the editing functions on declarations necessary to
support the EDIT use case.

LibraryElement This is the abstract superclass of objects which may be stored in repositories and which
may be imported and exported in the textual syntax defined in Annex B, or the XML
syntax defined in IEC 61499-2. Such objects have supplier (vendor, programmer, etc.)
and version(version number, date, etc.) attributes to assist in management, in addition
to a name (inherited from NamedDeclaration – see C.2.2) as a key attribute.

Repository Instances of this class provide persistent storage and retrieval of library elements. They
may also provide version control services.

SystemManager Instances of this class provide the functions necessary to support the INSTALL and
OPERATE use cases.

Tester This class extends the capabilities of the SystemManager class to support the
operations of the TEST use case.

Tool This class models the generic behaviors of software tools for engineering support of
IPMCSs.

C.2.2 Library elements

The subclasses of LibraryElement are shown in Figure C.2. The syntactic production in
Annex B corresponding to each subclass is listed in Table C.2.

Figure C.2 – Library elements

Table C.2 – Syntactic productions for library elements

Class Syntactic production

DataTypeDeclaration type_declaration

FBTypeDeclaration fb_type_declaration

AdapterTypeDeclaration adapter_type_declaration

SubapplicationTypeDeclaration subapplication_type_declaration

ResourceTypeDeclaration resource_type_specification

DeviceTypeDeclaration device_type_specification

SystemConfiguration system_configuration

BS EN 61499-1:2013

http://dx.doi.org/10.3403/30128997U

 – 76 – 61499-1 © IEC:2012

C.2.3 Declarations

Figure C.3 shows the class hierarchy of declarations which may be manipulated by software
tools. The syntactic productions in Annex B corresponding to each of these subclasses are
listed in Table C.3.

NOTE To avoid clutter, classes related to adapter types, instances and connections are not shown in this Figure;
however, they are listed in Table C.3 for reference.

Figure C.3 – Declarations

BS EN 61499-1:2013

61499-1 © IEC:2012 – 77 –

Table C.3 – Syntactic productions for declarations

Class Syntactic production

AdapterConnectionDeclaration adapter_conn

AdapterTypeDeclaration adapter_type_declaration

AlgorithmDeclaration fb_algorithm_declaration

DataConnectionDeclaration data_conn

DeviceConfiguration device_configuration

EventConnectionDeclaration event_conn

EventInputDeclaration event_input_declaration

EventOutputDeclaration event_output_declaration

FBInstanceDeclaration fb_instance_definition

InputVariableDeclaration input_var_declaration

InternalVariableDeclaration internal_var_declaration

OutputVariableDeclaration output_var_declaration

PlugDeclaration Part of plug_list

ResourceConfiguration resource_instance

SocketDeclaration Part of socket_list

C.2.4 Function block network declarations

Figure C.4 shows the relationships among the elements of function block network
declarations. See C.2.2 for definitions of the aggregated classes in this diagram.

Figure C.4 – Function block network declarations

BS EN 61499-1:2013

 – 78 – 61499-1 © IEC:2012

C.2.5 Function block type declarations

Figure C.5 shows the relationships among the elements of function block type declarations.
Syntactic productions for the classes EventInputDeclaration, EventOutputDeclaration,
InputVariableDeclaration, OutputVariableDeclaration, InternalVariableDeclaration, and
the component classes of FBNetworkDeclaration are given in Table C.3. The syntactic
productions fb_ecc_declaration and fb_service_declaration in Clause B.2
correspond to classes ECCDeclaration and ServiceDeclaration, respectively.

NOTE 1 Declarations of subapplications are represented by instances of the class
CompositeFBTypeDeclaration which contain no event WITH data associations.

NOTE 2 NamedDeclaration is the abstract superclass of declarations which have names, e.g., type names or
instance names.

Figure C.5a – Composition

BS EN 61499-1:2013

61499-1 © IEC:2012 – 79 –

Figure C.5b – Class hierarchy

Figure C.5 – Function block type declarations

C.3 IPMCS models

Figure C.6 presents an overview of the major classes in the industrial-process measurement
and control system (IPMCS). Descriptions of the classes in Figure C.6 and their
corresponding objects in the Engineering Support System (ESS) are given in Table C.4.

Figure C.6 – IPMCS overview

BS EN 61499-1:2013

 – 80 – 61499-1 © IEC:2012

Table C.4 – IPMCS classes

IPMCS class Description Corresponding ESS class

DataType An instance of this class is a data type. DataTypeDeclaration

Device An instance of this class represents a device. DeviceConfiguration

FBInstance An instance of this class is a function block
instance.

FBInstanceDeclaration

FBManager An instance of this class provides the
management services defined in Clause 6.

SystemManager

FBType An instance of this class is a function block
type.

FBTypeDeclaration

ManagedConnection Instances of this class can be accessed by an
instance of the FBManager class using the
source and destination combination as a
unique key.

ConnectionDeclaration

ManagedObject This is the abstract superclass of objects
which are managed by an instance of the
FBManager class. Such objects may have
supplier (vendor, programmer, etc.) and
version (version number, date, etc.) attributes
to assist in management.

none

NamedObject This is the abstract superclass of objects
which can be accessed by name by an
instance of the FBManager class.

NamedDeclaration

Resource An instance of this class represents a
resource.

ResourceConfiguration

System An instance of this class represents an
Industrial-Process Measurement and Control
System (IPMCS).

SystemConfiguration

Figure C.7 shows the relationships among the elements of a function block instance and its
associated function block type.

BS EN 61499-1:2013

61499-1 © IEC:2012 – 81 –

Figure C.7 – Function block types and instances

BS EN 61499-1:2013

 – 82 – 61499-1 © IEC:2012

Annex D
(informative)

Relationship to IEC 61131-3

D.1 General

Functions and function blocks as defined in IEC 61131-3 can be used for the declaration of
algorithms in basic function block types as specified in 5.2.1. Clause D.2 defines rules for the
conversion of IEC 61131-3 functions and function block types into simple function block types
so that they can be used in the specification of applications and resource types. Clause D.3
defines event-driven versions of IEC 61131-3 functions and function blocks for the same uses.

D.2 "Simple" function blocks

As illustrated in Figure D.1, IEC 61131-3 functions and function blocks can be converted to
“simple” function blocks according to the following rules:

a) Simple function blocks are represented as service interface function blocks for
application-initiated interactions as shown in Figure 21a.

b) The type name of the simple function block type is the name of the converted IEC 61131-3
function or function block type with the prefix FB_ (for instance, FB_ADD_INT in
Figure D.1). The prefix F_ instead of FB_ may optionally be used for simple function block
types that are the result of conversions of IEC 61131-3 functions.

c) The input and output variables and their corresponding data types are the same as the
corresponding input and output variables of the converted IEC 61131-3 function or
function block type.

d) The INIT event input and INITO event output are used with simple function block types
that have been converted from IEC 61131-3 function block types, and are not used with
simple function block types that have been converted from IEC 61131-3 functions.

NOTE A complete textual declaration of this function block type is given in Annex F.

Figure D.1 – Example of a “simple” function block type

The behavior of instances of simple function block types is according to the following rules:

e) Initialization is as specified in 2.4.2 of IEC 61131-3:2003 for variables, and as specified in
2.6 of IEC 61131-3:2003 for Sequential Function Chart (SFC) elements.

f) The occurrence of an INIT+ service primitive is equivalent to "cold restart" initialization as
defined in the above mentioned subclauses of IEC 61131-3:2003, followed by an INITO+
service primitive with a STATUS value of zero (0).

g) The occurrence of an INIT- or REQ- service primitive has no effect except to cause an
INITO- or CNF-service primitive, respectively, with a STATUS value of one (1).

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/02829375
http://dx.doi.org/10.3403/02829375
http://dx.doi.org/10.3403/02829375

61499-1 © IEC:2012 – 83 –

h) The occurrence of a REQ+ service primitive causes the execution of the algorithm
specified in the function block body, according to the rules given in IEC 61131-3 for the
language in which the algorithm is programmed.

i) Successful execution of the algorithm in response to a REQ+ primitive results in a CNF+
primitive with a STATUS value of zero (0).

j) If an error occurs during the execution of the algorithm, the result is a CNF- primitive with
a STATUS value determined according to Table D.1.

Table D.1 – Semantics of STATUS values

Value Semantics

0 Normal operation

1 INIT- or REQ- propagation

2 Type conversion error

3 Numerical result exceeds range for data type

4 Division by zero

5 Selector (K) out of range for MUX function

6 Invalid character position specified

7 Result exceeds maximum string length

8 Simultaneously true, non-prioritized transitions in a selection divergence

9 Action control contention error

10 Return from function without value assigned

11 Iteration fails to terminate

12 Invalid subscript value

13 Array size error

D.3 Event-driven functions and function blocks

IEC 61131-3 functions can be converted into function blocks for efficient use in event-driven
systems according to the rules given in Clause D.2 with the following modifications:

a) the type name of the event-driven function block type is the same as the name of the
converted IEC 61131-3 function with the additional prefix E_, e.g., E_ADD_INT;

b) a CNF+ or CNF- primitive does not follow execution of the algorithm unless such execution
results in a changed value of the function output.

NOTE If "daisy-chaining" of CNF outputs to REQ inputs is used to implement a sequence of calculations, then the
sequence will stop at the first point where an output value does not change.

In general, since IEC 61131-3 function blocks have internal state information, such blocks
shall be specially converted for use in event-driven systems. For instance, the E_DELAY
function block shown in Table A.1 can be used for many of the delay functions provided by the
timer function blocks in IEC 61131-3. An example of a conversion of the standard
IEC 61131-3 CTU function block is given as Feature 18 of Table A.1.

D.4 Compliance with IEC 61131-3

Implementations of this standard shall comply with the requirements of the subclauses 1.5.1,
2.1, 2.2, 2.3 and 2.4 of IEC 61131-3:2003, and the associated elements of Annex B of
IEC 61131-3:2003 for the syntax and semantics of textual representation of common
elements, with the exceptions and extensions noted in Clause D.5.

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/02829375
http://dx.doi.org/10.3403/02829375

 – 84 – 61499-1 © IEC:2012

Where syntactic productions are not given for non-terminal symbols in Annex B, the
corresponding syntactic productions given in Annex B of IEC 61131-3:2003 shall apply.

D.5 Exceptions

Implementations of this standard shall not utilize the directly represented variable notation
defined in 2.4.1.1 of IEC 61131-3:2003 and related features in other subclauses. However, a
literal of STRING or WSTRING type, containing a string whose syntax and semantics correspond
to the directly represented variable notation, may be used as a parameter of a service
interface function block which provides access to the corresponding variable.

D.6 Interoperation with programmable controllers

D.6.1 Overview

A programmable controller may act as a server, as defined in IEC 61131-5, to a device as
defined in this standard, acting as a client as defined in IEC 61131-5. These services are
provided using the means defined in IEC 61131-5, and are accessed from the IEC 61499
device using instances of the function block types specified in Annex D. These function block
types are modeled as communication function block types as defined in this standard.

The IEC 61499 client device may exist on a communication network along with the
programmable controller acting as a server, or may be an implementer-specific subsystem
within the “main processing unit” of the programmable controller, as illustrated in Figure 4 of
IEC 61131-5:2000. In either case, the interaction between the IEC 61499 client device and the
main processing unit is modelled as occurring over one or more communication connections
as defined in IEC 61499-1, utilizing instances of the function block types defined in Annex D.

D.6.2 Service conventions

Except for the extensions defined in Annex D, the conventions for naming of input and output
variables and events, and for describing the services (as defined in this standard) provided by
instances of the function block types described in Annex D, are as defined in IEC 61499-1 for
the descriptions of service interface function block types and communication function block
types.

For the purposes of Annex D, the PARAMS input of type ANY defined in this standard is
replaced by an ID input of type WSTRING. The contents of this string specify an
implementation-dependent representation of the path to the variable of interest in the
server.

EXAMPLE 1 In the case where the IEC 61499 client device is in logical proximity to the IEC 61131 server, it may
be sufficient to simply name the IEC 61131-3 access path to the desired variable in the ID input, for instance
“CELL_1.CHARLIE” in the example shown in Figure 19a of IEC 61131-3:2003.

EXAMPLE 2 In the case where the IEC 61499 client device is remotely connected to the IEC 61131-3 server via a
communication network, it may be possible to use the ID input to encapsulate a Universal Resource Identifier
(URI) to specify the desired access path, for instance, “http://192.168.0.1:61131/CELL_1.CHARLIE”.

NOTE Where supported by an implementation, the ID input may specify an access path to a status variable, such
as the pre-defined access paths P_PCSTATUS and P_PCSTATE specified in IEC 61131-5.

Where used, the contents of the TYPE input of a function block type defined in Annex D
specify the name of the data type of the data (SD or RD) being transferred. This may be the
name of an elementary data type such as “BOOL” or a derived data type such as “ANALOG_
16_INPUT_DATA”.

BS EN 61499-1:2013

http://dx.doi.org/10.3403/02829375
http://dx.doi.org/10.3403/02829375
http://dx.doi.org/10.3403/02228747U
http://dx.doi.org/10.3403/02228747U
http://dx.doi.org/10.3403/02228747U
http://dx.doi.org/10.3403/02228747
http://dx.doi.org/10.3403/30128975U
http://dx.doi.org/10.3403/30128975U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/02829375
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/02228747U

61499-1 © IEC:2012 – 85 –

Where used, the contents of the TASK input of a function block type defined in Annex D
specify an implementation-dependent representation of the path to the task of interest in the
server.

EXAMPLE 3 In the case where an IEC 61499 client device is in logical proximity to an IEC 61131-3 server
configured as shown in Figure 19a of IEC 61131-3:2003, a path to the task named SLOW_1 in resource STATION_1
could be represented as “CELL_1.STATION_1.SLOW_1”.

Values of the STATUS output of the function block types defined in D.6.3 are as given in
Table 24 of IEC 61131-5:2000.

D.6.3 Function block types

D.6.3.1 READ

An instance of the READ function block type shown graphically in Figure D.2 and textually in
Table D.2 can be used by an IEC 61499 client device to read program or status variable
values from an IEC 61131-3 server.

Figure D.2 – Function block type READ

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/02829375
http://dx.doi.org/10.3403/02228747
http://dx.doi.org/10.3403/00316105U

 – 86 – 61499-1 © IEC:2012

Table D.2 – Source code of function block type READ

FUNCTION_BLOCK READ (* Read server status or program variable *)
EVENT_INPUT
 INIT WITH QI,ID,TYPE; (* Initialize/Terminate Service *)
 REQ WITH QI; (* Service Request *)
END_EVENT

EVENT_OUTPUT
 INITO WITH QO,STATUS; (* Initialize/Terminate Confirm *)
 CNF WITH QO,STATUS,RD; (* Confirmation of Requested Service *)
END_EVENT

VAR_INPUT
 QI: BOOL; (* Event Input Qualifier *)
 ID: WSTRING; (* Path to variable to be read *)
 TYPE: WSTRING; (* Data type of RD variable *)
END_VAR

VAR_OUTPUT
 QO: BOOL; (* 1=Normal operation, 0=Abnormal operation *)
 STATUS: INT;
 RD: ANY; (* Variable data from IEC 61131 device *)
END_VAR

SERVICE CLIENT/SERVER
SEQUENCE normal_establishment
 CLIENT.INIT+(ID,TYPE) -> SERVER.initRead(ID,TYPE) -> CLIENT.INITO+();
END_SEQUENCE

SEQUENCE unsuccessful_establishment
 CLIENT.INIT+(ID,TYPE) -> SERVER.initRead(ID,TYPE) -> CLIENT.INITO-(STATUS);
END_SEQUENCE

SEQUENCE request_read
 CLIENT.REQ+() -> SERVER.reqRead(ID) -> CLIENT.CNF+(RD);
END_SEQUENCE

SEQUENCE request_inhibited
 CLIENT.REQ-() -> CLIENT.CNF-(STATUS);
END_SEQUENCE

SEQUENCE request_error
 CLIENT.REQ+() -> SERVER.reqRead(ID) -> CLIENT.CNF-(STATUS);
END_SEQUENCE

SEQUENCE client_initiated_termination
 CLIENT.INIT-() -> SERVER.terminateRead(ID) -> CLIENT.INITO-(STATUS);
END_SEQUENCE

SEQUENCE server_initiated_termination
 SERVER.readTerminated(ID,STATUS) -> CLIENT.INITO-(STATUS);
END_SEQUENCE
END_SERVICE
END_FUNCTION_BLOCK

D.6.3.2 UREAD

An instance of the UREAD function block type shown graphically in Figure D.3 and textually in
Table D.3 can be used by an IEC 61499 client device to request asynchronous notification of
a change in value of a program or status variable from an IEC 61131-3 server. Notification is
received via the block's IND event output upon completion of the execution of the specified
task when a change in the value of the specified variable (with respect to its value upon
initiation of task execution) is detected.

An instance of this function block type can also be used to receive notification of the
completion of each execution of the specified task by leaving unspecified the ID and TYPE
inputs of the block.

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00316105U

61499-1 © IEC:2012 – 87 –

NOTE The graphical representation of other service sequences listed in Table D.3 is similar to Figure D.2.

Figure D.3 – Function block type UREAD

Table D.3 – Source code of function block type UREAD

FUNCTION_BLOCK UREAD (* Unsolicited read of IEC 61131 program or status variable *)

EVENT_INPUT
 INIT WITH QI,ID,TASK,TYPE; (* Initialize/Terminate Service *)
END_EVENT

EVENT_OUTPUT
 INITO WITH QO,STATUS; (* Initialize/Terminate Confirm *)
 IND WITH QO,STATUS,RD; (* Indication of changed RD value *)
END_EVENT

VAR_INPUT
 QI: BOOL; (* Event Input Qualifier *)
 ID: WSTRING; (* Path to variable to be read *)
 TYPE: WSTRING; (* Data type of RD variable *)
 TASK: WSTRING; (* Path to IEC 61131 TASK triggering read on changed value *)
END_VAR

VAR_OUTPUT
 QO: BOOL; (* 1=Normal operation, 0=Abnormal operation *)
 STATUS: INT;
 RD: ANY; (* Input data from resource *)
END_VAR

SERVICE CLIENT/SERVER
SEQUENCE normal_establishment
 CLIENT.INIT+(ID,TYPE,TASK) -> SERVER.initURead(ID,TYPE,TASK) -> CLIENT.INITO+();
END_SEQUENCE

SEQUENCE unsuccessful_establishment
 CLIENT.INIT+(ID,TYPE,TASK) -> SERVER.initURead(ID,TYPE,TASK)
 -> CLIENT.INITO-(STATUS);
END_SEQUENCE

SEQUENCE data_changed
 SERVER.dataChanged() -> CLIENT.IND+(RD);
END_SEQUENCE

SEQUENCE client_initiated_termination
 CLIENT.INIT-() -> SERVER.terminateURead() -> CLIENT.INITO-(STATUS);
END_SEQUENCE

SEQUENCE server_initiated_termination
 SERVER.UReadTerminated(ID,STATUS) -> CLIENT.INITO-(STATUS);
END_SEQUENCE
END_SERVICE
END_FUNCTION_BLOCK

BS EN 61499-1:2013

 – 88 – 61499-1 © IEC:2012

D.6.3.3 WRITE

An instance of the WRITE function block type shown graphically in Figure D.4 and textually in
Table D.4 can be used by an IEC 61499 client device to write variable data values to an
IEC 61131-3 server.

NOTE The graphical representation of other service sequences listed in Table D.4 is similar to Figure D.2.

Figure D.4 – Function block type WRITE

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00316105U

61499-1 © IEC:2012 – 89 –

Table D.4 – Source code of function block type WRITE

FUNCTION_BLOCK WRITE (* Write a variable value to an IEC 61131 server *)
EVENT_INPUT
 INIT WITH QI,ID,TYPE; (* Initialize/Terminate Service *)
 REQ WITH QI,SD; (* Service Request *)
END_EVENT

EVENT_OUTPUT
 INITO WITH QO,STATUS; (* Initialize/Terminate Confirm *)
 CNF WITH QO,STATUS; (* Confirmation of Requested Service *)
END_EVENT

VAR_INPUT
 QI: BOOL; (* Event Input Qualifier *)
 ID: WSTRING; (* Path to variable to be written *)
 TYPE: WSTRING; (* Data type of SD variable *)
 SD: ANY; (* Variable value to write *)
END_VAR

VAR_OUTPUT
 QO: BOOL; (* 1=Normal operation, 0=Abnormal operation *)
 STATUS: INT;
END_VAR

SERVICE CLIENT/SERVER
SEQUENCE normal_establishment
 CLIENT.INIT+(ID,TYPE) -> SERVER.initWrite(ID,TYPE) -> CLIENT.INITO+();
END_SEQUENCE

SEQUENCE unsuccessful_establishment
 CLIENT.INIT+(ID,TYPE) -> SERVER.initWrite(ID,TYPE) -> CLIENT.INITO-(STATUS);
END_SEQUENCE

SEQUENCE request_write
 CLIENT.REQ+(ID,SD) -> SERVER.reqWrite(ID,SD) -> CLIENT.CNF+();
END_SEQUENCE

SEQUENCE request_inhibited
 CLIENT.REQ-(ID,SD) -> CLIENT.CNF-(STATUS);
END_SEQUENCE

SEQUENCE request_error
 CLIENT.REQ+(ID,SD) -> SERVER.reqWrite(ID,SD) -> CLIENT.CNF-(STATUS);
END_SEQUENCE

SEQUENCE client_initiated_termination
 CLIENT.INIT-() -> SERVER.terminateWrite(ID) -> CLIENT.INITO-(STATUS);
END_SEQUENCE

SEQUENCE server_initiated_termination
 SERVER.writeTerminated(ID,STATUS) -> CLIENT.INITO-(STATUS);
END_SEQUENCE
END_SERVICE
END_FUNCTION_BLOCK

D.6.3.4 TASK

An instance of the TASK function block type shown graphically in Figure D.5 and textually in
Table D.5 can be used by an IEC 61499 client device to request the execution of a task on an
IEC 61131-3 server.

When an implementation supports this feature, no value is configured for either the SINGLE or
INTERVAL input of the corresponding TASK block as defined in Table 50 of
IEC 61131-3:2003; rather, execution of the corresponding task is triggered as shown in the
request_task service sequence shown in Figure D.5.

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/02829375

 – 90 – 61499-1 © IEC:2012

NOTE The graphical representation of other service sequences listed in Table D.5 is similar to Figure D.2.

Figure D.5 – Function block type TASK

Table D.5 – Source code of function block type TASK

FUNCTION_BLOCK TASK (* Trigger IEC 61131 task *)
EVENT_INPUT
 INIT WITH QI,ID; (* Initialize/Terminate Service *)
 REQ WITH QI; (* Service Request *)
END_EVENT

EVENT_OUTPUT
 INITO WITH QO,STATUS; (* Initialize/Terminate Confirm *)
 CNF WITH QO,STATUS; (* Confirmation of Requested Service *)
END_EVENT

VAR_INPUT
 QI: BOOL; (* Event Input Qualifier *)
 ID: WSTRING; (* Path to task to be triggered *)
END_VAR

VAR_OUTPUT
 QO: BOOL; (* 1=Normal operation, 0=Abnormal operation *)
 STATUS: INT;
END_VAR

SERVICE CLIENT/SERVER
SEQUENCE normal_establishment
 CLIENT.INIT+(ID) -> SERVER.initTask(ID) -> CLIENT.INITO+();
END_SEQUENCE

SEQUENCE unsuccessful_establishment
 CLIENT.INIT+(ID) -> SERVER.init(ID) -> CLIENT.INITO-(STATUS);
END_SEQUENCE

SEQUENCE request_task
 CLIENT.REQ+(ID) -> SERVER.reqTask(ID) -> CLIENT.CNF+();
END_SEQUENCE

SEQUENCE request_inhibited
 CLIENT.REQ-() -> CLIENT.CNF-(STATUS);
END_SEQUENCE

SEQUENCE request_error
 CLIENT.REQ+(ID) -> SERVER.reqTask(ID) -> CLIENT.CNF-(STATUS);
END_SEQUENCE

SEQUENCE client_initiated_termination
 CLIENT.INIT-() -> SERVER.terminateTask(ID) -> CLIENT.INITO-(STATUS);
END_SEQUENCE

SEQUENCE server_initiated_termination
 SERVER.taskTerminated(ID,STATUS) -> CLIENT.INITO-(STATUS);
END_SEQUENCE
END_SERVICE
END_FUNCTION_BLOCK

BS EN 61499-1:2013

61499-1 © IEC:2012 – 91 –

D.6.4 Compliance

The specifications given in Annex D may be referenced in compliance profiles according to
the rules given in IEC 61499-4.

When a programmable controller system compliant with IEC 61131-3 supports interoperability
with one or more of the IEC 61499 function block types defined in Annex D, it should include
in its list of supported features a reference to the supported features taken from Table D.6,
and should include specifications of the values for implementation specific features and
parameters as defined in 8.1 and 8.2 of IEC 61131-5:2000, respectively.

Table D.6 – IEC 61499 interoperability features

No. Description

1 READ function block type

2 UREAD function block type

3 WRITE function block type

4 TASK function block type

BS EN 61499-1:2013

http://dx.doi.org/10.3403/30126758U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/02228747

 – 92 – 61499-1 © IEC:2012

Annex E
(informative)

Information exchange

E.1 Use of application layer facilities

Subclause 7.1.3.2 of ISO/IEC 7498-1:1994 identifies a number of facilities provided by
application-entities (i.e., entities in the application layer) to enable application-processes to
exchange information. To provide these facilities, the application-entities use application-
protocols and presentation services. The communication function blocks defined in
Clause E.2 may use these facilities, when provided by appropriate application-entities, in the
following ways.

a) Communication function blocks utilize the information transfer facilities provided by
application-entities to provide the synchronization of cooperating applications represented
by the REQ, CNF, IND, and RSP events and to transfer the data represented by the SD
inputs and RD outputs.

b) The following facilities may be used during service initialization as represented by the
INIT and INITO events, using elements of the PARAMS data structure as necessary:

• identification of the intended communications partners;

• determination of the acceptable quality of service;

• agreement on responsibility for error recovery;

• agreement on security aspects;

• identification of abstract syntax.
c) Facilities for selection of mode of dialog may be used by the specific function block types,

e.g., by a SUBSCRIBER to ensure that it is interacting properly with a PUBLISHER.

Many of the facilities listed above may not be provided by application-entities of industrial-
process measurement and control systems (IPMCSs). In this case, the communication
function blocks shall implement equivalent facilities to provide the required services.

In particular, presentation services are often not provided by IPMCS application-entities.
Therefore, in order to facilitate implementation of these services by communication function
blocks, transfer syntaxes for both information transfer and application management are
defined in Clause E.3.

NOTE 1 See ISO/IEC 7498-1 for definitions of terms used in this annex, but not defined in this standard.

NOTE 2 A resource is an "application-process" as defined in ISO/IEC 7498-1.

NOTE 3 The contents of Annex E could be considered normative in that compliance profiles as defined in
IEC 61499-4, other standards and specifications can specify a context within which some or all of its provisions are
employed.

E.2 Communication function block types

E.2.1 General

This subclause defines generic communication function block types for unidirectional and
bidirectional transactions. Implementation-dependent customizations of these types should
adhere to the following rules:

a) the implementation shall specify the data types and semantics of values of the data inputs
and data outputs of each such function block type;

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00621095
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/30126758U

61499-1 © IEC:2012 – 93 –

b) the implementation shall specify the treatment of abnormal data transfer;
c) the implementation shall specify any differences between the behavior of instances of

such function block types and the behaviors specified in Clause E.2.

E.2.2 Function blocks for unidirectional transactions

Figures E.1 through E.4 provide type declarations and typical service primitive sequences of
function blocks which provide unidirectional transactions over a communication connection.
Such a connection consists of one instance of PUBLISH and one or more instances of
SUBSCRIBE type.

NOTE 1 Full textual specifications of these function block types are not given in Annex F.

NOTE 2 The data types and semantics of the PARAMS input and STATUS output are implementation-dependent.

NOTE 3 The number (m) and types of the received data RD_1,...,RD_m correspond to the number and types of
the transmitted data SD_1,...,SD_m.

NOTE 4 The means by which communication connections are set up are beyond the scope of this standard.

NOTE 5 Data transfer might be required in order to determine whether RD_1,...,RD_m meet the constraints
expressed in Note 3.

NOTE 6 The transfer syntaxes defined in Clause E.3 can be used to make the determination described in Note 5.

NOTE 7 Treatment of abnormal data transfer is implementation-dependent.

Figure E.1 – Type specifications for unidirectional transactions

Figure E.2 – Connection establishment for unidirectional transactions

Figure E.3 – Normal unidirectional data transfer

BS EN 61499-1:2013

 – 94 – 61499-1 © IEC:2012

Figure E.4 – Connection release in unidirectional data transfer

E.2.3 Function blocks for bidirectional transactions

Figures E.5 through E.8 provide type declarations and service primitive sequences of function
blocks which provide bidirectional transactions over a communication connection. Such a
connection consists of one instance of CLIENT type and one instance of SERVER type.

NOTE 1 Full textual specifications of these function block types are not given in Annex F.

NOTE 2 The data types and semantics of the PARAMS input and STATUS output are implementation-dependent.

NOTE 3 The number (m) and types of the received data RD_1,...,RD_m correspond to the number and types of
the transmitted data SD_1,...,SD_m.

NOTE 4 The number (n) and types of the received data RD_1,...,RD_n correspond to the number and types of
the transmitted data SD_1,...,SD_n.

NOTE 5 Data transfer may be required in order to determine whether RD_1,...,RD_m and RD_1,...,RD_n
meet the constraints expressed in Notes 3 and 4.

NOTE 6 The transfer syntaxes defined in Clause E.3 may be used to make the determination described in Note 5.

NOTE 7 Treatment of abnormal data transfer is implementation-dependent.

Figure E.5 – Type specifications for bidirectional transactions

BS EN 61499-1:2013

61499-1 © IEC:2012 – 95 –

Figure E.6 – Connection establishment for bidirectional transaction

Figure E.7 – Bidirectional data transfer

Figure E.8a – Client initiated Figure E.8b – Server initiated Figure E.8c – System initiated

Figure E.8 – Connection release in bidirectional data transfer

E.3 Transfer syntaxes

E.3.1 Background

A transfer syntax is defined in terms of an abstract syntax describing the types of data to be
transferred, and a set of encoding rules for encoded representation of instances of the data
types so defined. Subclause E.3.2 utilizes Abstract Syntax Notation One (ASN.1), as defined
in ISO/IEC 8824-1, to define the IEC61499-FBDATA syntax for data transfer.

Two sets of encoding rules are given in Annex E:

BS EN 61499-1:2013

 – 96 – 61499-1 © IEC:2012

a) Subclause E.3.3.1 defines BASIC encoding rules, utilizing the rules defined in
ISO/IEC 8825-1.

b) Subclause E.3.3.2 utilizes the special characteristics of the data types in the IEC61499-
FBDATA syntax to obtain a set of COMPACT encoding rules according to the following
principles:

• Where the number of "contents octets" is fixed, "length octets" are not used in the
encoding.

• Special encodings are used to minimize the number of octets and encoding/decoding
effort required for fixed length types.

• "Identifier octets" are not used for individual elements of STRUCT and ARRAY data
types, since the type of each element is fixed in the corresponding type declaration.

E.3.2 IEC61499-FBDATA abstract syntax

The transfer syntax obtained by applying the COMPACT encoding rules in E.3.3.2 to the
abstract syntax in E.3.2 is recommended for:

• transferring values from the SD inputs of a communication function block to the RD outputs
of the communication function block(s) at the opposite end of a communication
connection;

• determining whether the constraints on corresponding number and type of variables
between SD inputs and RD outputs are met as noted in Figures E.1 and E.5.

The use of the abstract syntax defined in E.3.2 for the transfer of data expressed as literals
and values of variables is subject to the following semantic RULES:

a) Where the name of a data type in this module (for example, BOOL) corresponds to the
name of a data type defined in IEC 61131-3, the type definition given is intended for the
transfer of data of the corresponding IEC 61131-3 data type.

b) The values of "VisibleString" for the data types DATE and TIME_OF_DAY is restricted to the
textual syntax for these data types as defined in IEC 61131-3.

c) The notation [typeID] implies that the tag of the data consists of the value of the ASN.1
tag of the corresponding derived data type, established as specified in Annex A of
IEC 61499-2:2005 or by other means beyond the scope of this standard.

d) The value of an EnumeratedData item consists of the cardinal position (beginning at zero)
of the corresponding identifier in the sequence of identifiers defined for the corresponding
enumerated data type, established as specified in IEC 61131-3.

e) The specific type of a SubrangeData item is as for its particular subrange data type,
declared as specified in IEC 61131-3.

f) The type of the elements of an ARRAY data item is established as specified for array data
types in IEC 61131-3.

g) The types of the elements of a STRUCT data item are established as specified for
structured data types in IEC 61131-3.

ASN.1 MODULE

IEC61499-FBDATA DEFINITIONS::=

BEGIN

EXPORTS FBDataSequence, FBData, ElementaryData, BOOL, FixedLengthInteger,
FixedLengthReal, TIME, AnyDate, AnyString, FixedLengthBitString,
SignedInteger, UnsignedInteger, REAL, LREAL, DATE, TIME_OF_DAY,
DATE_AND_TIME, STRING, WSTRING, BYTE, WORD, DWORD, LWORD,
DirectlyDerivedData, EnumeratedData, SubrangeData, ARRAY, STRUCT;

FBDataSequence::= [APPLICATION 23] IMPLICIT SEQUENCE OF FBData

FBData::= CHOICE{ElementaryData, DerivedData}

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/30128997
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U

61499-1 © IEC:2012 – 97 –

ElementaryData::= CHOICE{
BOOL,
FixedLengthInteger,
FixedLengthReal,
TIME,
AnyDate,
AnyString,
FixedLengthBitString}

FixedLengthInteger::= CHOICE{SignedInteger, UnsignedInteger}

SignedInteger::= CHOICE{SINT, INT, DINT, LINT}

UnsignedInteger::= CHOICE{USINT, UINT, UDINT, ULINT}

FixedLengthReal::= CHOICE{REAL, LREAL}

AnyDate::= CHOICE{DATE, TIME_OF_DAY, DATE_AND_TIME}

AnyString::= CHOICE{STRING, WSTRING}

FixedLengthBitString::= CHOICE{BYTE, WORD, DWORD, LWORD}

BOOL::= CHOICE{BOOL0, BOOL1}

BOOL0::= [APPLICATION 0] IMPLICIT NULL

BOOL1::= [APPLICATION 1] IMPLICIT NULL

SINT::= [APPLICATION 2] IMPLICIT INTEGER(-128..127)

INT::= [APPLICATION 3] IMPLICIT INTEGER(-32768..32767)

DINT::= [APPLICATION 4] IMPLICIT INTEGER(-2147483648..2147483647)

LINT::= [APPLICATION 5]
IMPLICIT INTEGER(-9223372036854775808..9223372036854775807)

USINT::= [APPLICATION 6] IMPLICIT INTEGER(0..255)

UINT::= [APPLICATION 7] IMPLICIT INTEGER(0..65535)

UDINT::= [APPLICATION 8] IMPLICIT INTEGER(0..4294967295)

ULINT::= [APPLICATION 9] IMPLICIT INTEGER(0..18446744073709551615)

REAL::= [APPLICATION 10] IMPLICIT OCTET STRING (SIZE(4))

LREAL::= [APPLICATION 11] IMPLICIT OCTET STRING (SIZE(8))

TIME::= [APPLICATION 12] IMPLICIT LINT -- Duration in 1µs units

DATE::= [APPLICATION 13] IMPLICIT ULINT -- See Table E.1.

TIME_OF_DAY::= [APPLICATION 14] IMPLICIT ULINT -- See Table E.1.

DATE_AND_TIME::= [APPLICATION 15] IMPLICIT ULINT -- See Table E.1.

STRING::= [APPLICATION 16] IMPLICIT OCTET STRING -- 1 octet/char

BYTE::= [APPLICATION 17] IMPLICIT BIT STRING (SIZE(8))

WORD::= [APPLICATION 18] IMPLICIT BIT STRING (SIZE(16))

DWORD::= [APPLICATION 19] IMPLICIT BIT STRING (SIZE(32))

LWORD::= [APPLICATION 20] IMPLICIT BIT STRING (SIZE(64))

WSTRING::= [APPLICATION 21] IMPLICIT OCTET STRING -- 2 octets/char

DerivedData::= CHOICE{
DirectlyDerivedData,
EnumeratedData,
SubrangeData,
ARRAY,
STRUCT}

BS EN 61499-1:2013

 – 98 – 61499-1 © IEC:2012

DirectlyDerivedData::= [typeID] IMPLICIT ElementaryData

EnumeratedData::= [typeID] IMPLICIT UINT

SubrangeData::= [typeID] IMPLICIT FixedLengthInteger

ARRAY::= CHOICE {ArrayVariable, TypedArray}

ArrayVariable::= [APPLICATION 22] IMPLICIT FBDataSequence -- same type

TypedArray::= [typeID] IMPLICIT FBDataSequence - same type

STRUCT::= [typeID] IMPLICIT SEQUENCE -- different types

END

E.3.3 Encoding rules

E.3.3.1 BASIC encoding

This encoding shall be the result of applying the basic encoding rules of ISO/IEC 8825-1 to
variables of the types defined in E.3.2.

E.3.3.2 COMPACT encoding

This encoding shall be the result of modifying the rules for BASIC encoding given in E.3.3.1
as follows.

a) "Length octets" shall not be included in the encoding of values of the data types shown in
Table E.1.

b) The length (in octets) and encoding of the "contents octets" described in ISO/IEC 8825-1
shall be as defined in Table E.1 for values of the data types shown there.

c) Encoding of variables of TIME, DirectlyDerivedData, EnumeratedData, or
SubrangeData types shall follow the same encoding rules as the base type.

d) "Type octets" shall not be included in the encoding of individual elements of STRUCT
types, except for the encoding of elements of type BOOL, which shall be encoded
according to rule (1) of Table E.1.

e) The encoding of values of STRING and WSTRING types shall be primitive.

f) The encoding of ARRAY elements shall be constructed in the sense of ISO/IEC 8825-1,
with the following provisions for COMPACT encoding:

1) The "length" subfield of the ARRAY element shall be encoded as a value of the UINT
type without identifier or length octets, i.e., as a 16-bit unsigned integer;

 NOTE 1 This would appear to restrict the maximum number of elements of an ARRAY to 65535. However,
the actual length may be further restricted by the maximum number of octets that can be transferred by the
underlying transport protocol.

 EXAMPLE For UDP messages with a maximum number of is 65508 octets, the maximum transmittable
length of an ARRAY of BYTE elements would be (maximum octets - tag octets - length octets - element type
octets)/(element length) = (65508-1-2-1)/1 = 65504 elements.

2) COMPACT encoding shall be used for the first element of the "values" field;
3) Subsequent elements, if any, shall be encoded using the COMPACT syntax without an

"identifier" subfield, except for elements of type BOOL, which shall be encoded
according to rule (1) of Table E.1;

4) If the specified length of the received ARRAY is less than the locally allocated space,
the remaining elements of the local array are unaffected; if the length of the received
ARRAY is greater than the locally allocated space, the remaining received elements are
ignored.

NOTE 2 Since ARRAY is a subclass of FBData, a multidimensional ARRAY can be encoded recursively as an
ARRAY whose elements are ARRAY elements.

BS EN 61499-1:2013

61499-1 © IEC:2012 – 99 –

Table E.1 – COMPACT encoding of fixed length data types

Data type Contents octets

 Length Encoding rule

BOOL 0 (1)

SINT 1 (2)

INT 2 (2)

DINT 4 (2)

LINT 8 (2)

USINT 1 (3)

UINT 2 (3)

UDINT 4 (3)

ULINT 8 (3)

REAL 4 (4)

LREAL 8 (4)

DATE 8 (5)

TIME 8 (7)

TIME_OF_DAY 12 (5)

DATE_AND_TIME 20 (5)

BYTE 1 (6)

WORD 2 (6)

DWORD 4 (6)

LWORD 8 (6)

ENCODING RULES FOR TABLE E.1

(1) Values of this data type shall be encoded as a single identifier octet containing the tag encoding for the
BOOL0 or BOOL1 class, as defined in E.3.2, corresponding to values of FALSE (0) or TRUE (1),
respectively.

(2) Values of these SignedInteger data types shall be encoded in the same manner as an
UnsignedInteger of the same length as the SignedInteger type with a value of N – Nmin, where N
is the value of the SignedInteger variable to be encoded and Nmin is the lower end point of the value
range of the SignedInteger subtype as defined in E.3.2.

(3) Values of these UnsignedInteger data types shall be encoded by numbering the bits in the contents
octets, starting with bit 1 of the last octet as bit zero and ending the numbering with bit 8 of the first
octet. Each bit is assigned a value of 2N, where N is its position in the above numbering sequence. The
value of the unsigned integer is obtained by summing the numerical values assigned to each bit for
those bits which are set to one.

(4) Values of these data types shall be encoded as 32-bit single format and 64-bit double format numbers,
respectively, as defined in ISO/IEC/IEEE 60559, where the "lsb" defined in ISO/IEC/IEEE 60559
corresponds to "bit zero" as defined in Rule (3).

(5) Values of these types shall be encoded as for type ULINT, representing the number of milliseconds
since midnight for TIME_OF_DAY, the number of milliseconds since 1970-01-01-00:00:00.000
for DATE_AND_TIME, or the number of milliseconds from 1970-01-01-00:00:00.000 to YYYY-
MM-DD-00:00:00.000 for DATE, where YYYY-MM_DD is the current date.

(6) Encoding of values of these FixedLengthBitString data types shall be primitive, and shall be
obtained by placing the bits in the bitstring, commencing with the first bit and proceeding to the trailing
bit, in bits 8 to 1 of the first contents octet, followed in turn by bits 8 to 1 of each of the subsequent
octets, where the notation "first bit" and "trailing bit" is specified in ISO/IEC 8824-1.

(7) Encoding of values of this data type shall be the same as for values of type LINT, representing a time
interval in units of 1 µs.

BS EN 61499-1:2013

 – 100 – 61499-1 © IEC:2012

Annex F
(normative)

Textual specifications

Annex F provides textual specifications, in the syntax defined in Annex B, for all function
block and adapter types illustrated in this standard. The contents of Annex F are normative to
the extent defined in the description of each such function block type or adapter type in this
standard.

NOTE The specifications are listed alphabetically by type name.

==
FUNCTION_BLOCK E_CTU (* Event-Driven Up Counter *)
EVENT_INPUT
 CU WITH PV; (* Count Up *)
 R; (* Reset *)
END_EVENT
EVENT_OUTPUT
 CUO WITH Q,CV; (* Count Up Output Event *)
 RO WITH Q,CV; (* Reset Output Event *)
END_EVENT
VAR_INPUT
 PV: UINT; (* Preset Value *)
END_VAR
VAR_OUTPUT
 Q: BOOL; (* CV>=PV *)
 CV: UINT;
END_VAR
EC_STATES
 START;
 CU: CU -> CUO;
 R: R -> RO;
END_STATES
EC_TRANSITIONS
 START TO CU:= CU [CV<65535];
 CU TO START:= 1;
 START TO R:= R;
 R TO START:= 1;
END_TRANSITIONS
ALGORITHM CU IN ST: (* Count Up *)
CV:= CV + 1;
Q:= (CV >= PV);
END_ALGORITHM
ALGORITHM R IN ST: (* Reset *)
CV:= 0;
Q:= FALSE;
END_ALGORITHM
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK E_CYCLE (* Periodic (cyclic) Generation of an Event *)
EVENT_INPUT
 START WITH DT;
 STOP;
END_EVENT
EVENT_OUTPUT
 EO; (* Periodic event at period DT, starting at DT after GO *)
END_EVENT
VAR_INPUT
 DT: TIME; (* Period between events *)
END_VAR
FBS
 DLY: E_DELAY;
END_FBS
EVENT_CONNECTIONS
 START TO DLY.START;

BS EN 61499-1:2013

61499-1 © IEC:2012 – 101 –

 STOP TO DLY.STOP;
 DLY.EO TO DLY.START;
 DLY.EO TO EO;
END_CONNECTIONS
DATA_CONNECTIONS
 DT TO DLY.DT;
END_CONNECTIONS
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK E_D_FF (* Event-driven Data(D)Latch *)
EVENT_INPUT
 CLK WITH D; (* Data Clock *)
END_EVENT
EVENT_OUTPUT
 EO WITH Q; (* Output Event when Q output changes *)
END_EVENT
VAR_INPUT
 D: BOOL; (* Data Input *)
END_VAR
VAR_OUTPUT
 Q: BOOL; (* Latched Data *)
END_VAR
EC_STATES
 Q0; (* Q is FALSE initially *)
 RESET: LATCH -> EO; (* Reset Q and issue EO *)
 SET: LATCH -> EO; (* Latch and issue EO *)
END_STATES
EC_TRANSITIONS
 Q0 TO SET:= CLK [D];
 SET TO RESET:= CLK [NOT D];
 RESET TO SET:= CLK [D];
END_TRANSITIONS
ALGORITHM LATCH IN ST:
Q:=D;
END_ALGORITHM
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK E_DELAY
 (* Delayed propagation of an event - Cancellable *)
EVENT_INPUT
 START WITH DT; (* Begin Delay *)
 STOP; (* Cancel Delay *)
END_EVENT
EVENT_OUTPUT
 EO; (* Delayed Event *)
END_EVENT
VAR_INPUT
 DT: TIME; (* Delay Time *)
END_VAR
SERVICE E_DELAY/RESOURCE
SEQUENCE event_delay
 E_DELAY.START(DT) ->E_DELAY.EO();
END_SEQUENCE
SEQUENCE delay_canceled
 E_DELAY.START(DT);
 E_DELAY.STOP();
END_SEQUENCE
SEQUENCE no_multiple_delay
 E_DELAY.START(DT);
 E_DELAY.START(DT);
 ->E_DELAY.EO();
END_SEQUENCE
END_SERVICE
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK E_DEMUX (* Event demultiplexer *)
EVENT_INPUT
 EI WITH K; (* Event to demultiplex *)
END_EVENT

BS EN 61499-1:2013

 – 102 – 61499-1 © IEC:2012

EVENT_OUTPUT
 EO0;
 EO1;
 EO2;
 EO3; (* Number of outputs is implementation dependent *)
END_EVENT
VAR_INPUT
 K: UINT; (* Event index, maximum is implementation dependent *)
END_VAR
EC_STATES
 START; (* Initial State *)
 TRIGGERED; (* Intermediate state after EI arrives *)
 EO0: -> EO0;
 EO1: -> EO1;
 EO2: -> EO2;
 EO3: -> EO3;
END_STATES
EC_TRANSITIONS
 START TO TRIGGERED:= EI;
 TRIGGERED TO EO0:= [K=0];
 TRIGGERED TO EO1:= [K=1];
 TRIGGERED TO EO2:= [K=2];
 TRIGGERED TO EO3:= [K=3];
 TRIGGERED TO START:= [K>3];
 EO0 TO START:= 1;
 EO1 TO START:= 1;
 EO2 TO START:= 1;
 EO3 TO START:= 1;
END_TRANSITIONS
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK E_F_TRIG (* Boolean falling edge detection *)
EVENT_INPUT
 EI WITH QI; (* Event Input *)
END_EVENT
EVENT_OUTPUT
 EO; (* Event Output *)
END_EVENT
VAR_INPUT
 QI: BOOL; (* Boolean input for falling edge detection *)
END_VAR
FBS
 D: E_D_FF;
 SW: E_SWITCH;
END_FBS
EVENT_CONNECTIONS
 EI TO D.CLK;
 D.EO TO SW.EI;
 SW.EO0 TO EO;
END_CONNECTIONS
DATA_CONNECTIONS
 QI TO D.D;
 D.Q TO SW.G;
END_CONNECTIONS
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK E_MERGE (* Merge (OR) of multiple events *)
EVENT_INPUT
 EI1; (* First input event *)
 EI2; (* Second input event *)
 END_EVENT
EVENT_OUTPUT EO; (* Output Event *)
END_EVENT
EC_STATES
 START; (* Initial State *)
 EO: (* Issue EO Event *)
 ->EO;
END_STATES
EC_TRANSITIONS
 START TO EO:= EI1;

BS EN 61499-1:2013

61499-1 © IEC:2012 – 103 –

 START TO EO:= EI2;
 EO TO START:= 1;
END_TRANSITIONS
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK E_N_TABLE (* Generation of a finite train of separate events,
table driven *)
EVENT_INPUT
 START WITH DT, N;
 STOP;
END_EVENT
EVENT_OUTPUT
 EO0; (* N events at periods DT, starting at DT[0] after START *)
 EO1;
 EO2;
 EO3; (* Extensible *)
END_EVENT
VAR_INPUT
 DT: TIME[3]; (* Periods between events *)
 N: UINT; (* Number of events to generate (=3 in this example) *)
END_VAR
SERVICE E_N_TABLE/RESOURCE
SEQUENCE typical_operation
 E_N_TABLE.START(DT,N) -> E_N_TABLE.EO0() -> E_N_TABLE.EO1() ->
E_N_TABLE.EO2() -> E_N_TABLE.EO3();
END_SEQUENCE
END_SERVICE
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK E_PERMIT (* Permissive propagation of an event *)
EVENT_INPUT EI WITH PERMIT; (* Event input *)
END_EVENT
EVENT_OUTPUT EO; (* Event output *)
END_EVENT
VAR_INPUT PERMIT: BOOL; END_VAR
EC_STATES
 START; (* Initial State *)
 EO: (* Issue EO Event *)
 ->EO;
END_STATES
EC_TRANSITIONS
 START TO EO:= EI [PERMIT];
 EO TO START:= 1;
END_TRANSITIONS
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK E_R_TRIG (* Boolean rising edge detection *)
EVENT_INPUT
 EI WITH QI; (* Event Input *)
END_EVENT
EVENT_OUTPUT
 EO; (* Event Output *)
END_EVENT
VAR_INPUT
 QI: BOOL; (* Boolean input for rising edge detection *)
END_VAR
FBS
 D: E_D_FF;
 SW: E_SWITCH;
END_FBS
EVENT_CONNECTIONS
 EI TO D.CLK;
 D.EO TO SW.EI;
 SW.EO1 TO EO;
END_CONNECTIONS
DATA_CONNECTIONS
 QI TO D.D;
 D.Q TO SW.G;
END_CONNECTIONS

BS EN 61499-1:2013

 – 104 – 61499-1 © IEC:2012

END_FUNCTION_BLOCK
==
FUNCTION_BLOCK E_REND (* Rendezvous of two events *)
EVENT_INPUT
 EI1; (* First Event Input *)
 EI2; (* Second Event Input *)
 R; (* Reset Event *)
END_EVENT
EVENT_OUTPUT
 EO; (* Rendezvous Output Event *)
END_EVENT
EC_STATES
 START; (* Initial State *)
 EI1; (* EI1 has arrived, wait for EI2 or R *)
 EO: (* Issue rendezvous event *)
 ->EO;
 EI2; (* EI2 has arrived, wait for EI1 or R *)
END_STATES
EC_TRANSITIONS
 START TO EI1:= EI1;
 EI1 TO START:= R;
 START TO EI2:= EI2;
 EI2 TO START:= R;
 EI1 TO EO:= EI2;
 EI2 TO EO:= EI1;
 EO TO START:= 1;
END_TRANSITIONS
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK E_RESTART (* Generation of Restart Events *)
EVENT_OUTPUT
 COLD; (* Cold Restart *)
 WARM; (* Warm Restart *)
END_EVENT
SERVICE RESOURCE/E_RESTART
SEQUENCE cold_restart ->E_RESTART.COLD(); END_SEQUENCE
SEQUENCE warm_restart ->E_RESTART.WARM(); END_SEQUENCE
END_SERVICE
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK E_RS (* Event-driven bistable *)
EVENT_INPUT
 S; (* Set Event *)
 R; (* Reset Event *)
END_EVENT
EVENT_OUTPUT
 EO WITH Q; (* Output Event *)
END_EVENT
VAR_OUTPUT
 Q: BOOL; (* Current Output State *)
END_VAR
EC_STATES
 Q0; (* Q is FALSE initially *)
 RESET: RESET -> EO; (* Reset Q and issue EO *)
 SET: SET -> EO; (* Set Q and issue EO *)
END_STATES
EC_TRANSITIONS
 Q0 TO SET:= S;
 SET TO RESET:= R;
 RESET TO SET:= S;
END_TRANSITIONS
ALGORITHM SET IN ST: (* Set Q *)
Q:=TRUE;
END_ALGORITHM
ALGORITHM RESET IN ST: (* Reset Q *)
Q:=FALSE;
END_ALGORITHM
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK E_SELECT (* Selection between two events *)

BS EN 61499-1:2013

61499-1 © IEC:2012 – 105 –

EVENT_INPUT
 EI0 WITH G; (* Input event, selected when G=0 *)
 EI1 WITH G; (* Input event, selected when G=1 *)
END_EVENT
EVENT_OUTPUT EO; (* Output Event *)
END_EVENT
VAR_INPUT G: BOOL; (* Select EI0 when G=0, EI1 when G=1 *)
END_VAR
EC_STATES
 START; (* Initial State *)
 EO: -> EO; (* Issue Output Event *)
END_STATES
EC_TRANSITIONS
 START TO EO:= EI0 [NOT G];
 START TO EO:= EI1 [G];
 EO TO START:= 1;
END_TRANSITIONS
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK E_SPLIT (* Split an event *)
EVENT_INPUT
 EI; (* Input event *)
END_EVENT
EVENT_OUTPUT
 EO1; (* First output event *)
 EO2; (* Second output event, etc. *)
END_EVENT
EC_STATES
 START; (* Initial State *)
 EO: (* Extensible *)
 ->EO1, (* Output first event *)
 ->EO2; (* Output second event, etc. *)
END_STATES
EC_TRANSITIONS
 START TO EO:= EI;
 EO TO START:= 1;
END_TRANSITIONS
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK E_SWITCH (* Switch (demultiplex) an event *)
EVENT_INPUT EI WITH G; (* Event Input *)
END_EVENT
EVENT_OUTPUT
 EO0; (* Output, switched from EI when G=0 *)
 EO1; (* Output, switched from EI when G=1 *)
END_EVENT
VAR_INPUT G: BOOL; (* Switch EI to EI0 when G=0, to EI1 when G=1 *)
END_VAR
EC_STATES
 START; (* Initial State *)
 G0: (* Issue EO0 when EI arrives with G=0 *)
 ->EO0;
 G1: (* Issue EO1 when EI arrives with G=1 *)
 ->EO1;
END_STATES
EC_TRANSITIONS
 START TO G0:= EI [NOT G];
 G0 TO START:= 1;
 START TO G1:= EI [G];
 G1 TO START:= 1;
END_TRANSITIONS
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK E_TABLE (* Generation of a finite train of events, table
driven *)
EVENT_INPUT
 START WITH DT, N;
 STOP; (* Cancel *)
END_EVENT

BS EN 61499-1:2013

 – 106 – 61499-1 © IEC:2012

EVENT_OUTPUT
 EO WITH CV; (* N events at periods DT, starting at DT[0] after START *)
END_EVENT
VAR_INPUT
 DT: TIME[4]; (* Periods between events *)
 N: UINT; (* Number of events to generate *)
END_VAR
VAR_OUTPUT
 CV: UINT; (* Current event index, 0..N-1 *)
END_VAR
FBS
 CTRL: E_TABLE_CTRL;
 DLY: E_DELAY;
END_FBS
EVENT_CONNECTIONS
 START TO CTRL.INIT;
 CTRL.CLKO TO DLY.START;
 DLY.EO TO EO;
 DLY.EO TO CTRL.CLK;
 STOP TO DLY.STOP;
END_CONNECTIONS
DATA_CONNECTIONS
 DT TO CTRL.DT;
 N TO CTRL.N;
 CTRL.DTO TO DLY.DT;
 CTRL.CV TO CV;
END_CONNECTIONS
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK E_TABLE_CTRL (* Control for E_TABLE *)
EVENT_INPUT
 INIT WITH DT, N;
 CLK;
END_EVENT
EVENT_OUTPUT
 CLKO WITH DTO, CV;
END_EVENT
VAR_INPUT
 DT: TIME[4]; (* Array length is implementation dependent *)
 N: UINT; (* Actual number of time steps *)
END_VAR
VAR_OUTPUT
 DTO: TIME; (* Current delay interval *)
 CV: UINT; (* Current event index, 0..N-1 *)
END_VAR
EC_STATES
 START;
 INIT0: INIT;
 INIT1: -> CLKO;
 STEP: STEP -> CLKO;
END_STATES
EC_TRANSITIONS
 START TO INIT0:= INIT;
 INIT0 TO INIT1:= [N>0];
 INIT0 TO START:= [N=0]; (* Don't run if N=0 *)
 INIT1 TO START:= 1;
 START TO STEP:= CLK [CV < MIN(3,N-1)];
 STEP TO START:= 1;
END_TRANSITIONS
ALGORITHM STEP IN ST:
 CV:= CV+1;
 DTO:= DT[CV];
END_ALGORITHM
ALGORITHM INIT IN ST:
 CV:= 0;
 DTO:= DT[0];
END_ALGORITHM
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK E_TRAIN (* Generation of a finite train of events *)

BS EN 61499-1:2013

61499-1 © IEC:2012 – 107 –

EVENT_INPUT
 START WITH DT, N;
 STOP;
END_EVENT
EVENT_OUTPUT
 EO WITH CV; (* N events at period DT, starting at DT after START *)
END_EVENT
VAR_INPUT
 DT: TIME; (* Period between events *)
 N: UINT; (* Number of events to generate *)
END_VAR
VAR_OUTPUT
 CV: UINT; (* EO index (0..N-1) *)
END_VAR
FBS
 CTR: E_CTU;
 GATE: E_SWITCH;
 DLY: E_DELAY;
END_FBS
EVENT_CONNECTIONS
 START TO CTR.R;
 STOP TO DLY.STOP;
 DLY.EO TO EO;
 DLY.EO TO CTR.CU;
 CTR.CUO TO GATE.EI;
 CTR.RO TO GATE.EI;
 GATE.EO0 TO DLY.START;
END_CONNECTIONS
DATA_CONNECTIONS
 DT TO DLY.DT;
 N TO CTR.PV;
 CTR.Q TO GATE.G;
 CTR.CV TO CV;
END_CONNECTIONS
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK FB_ADD_INT (* INT Addition *)
EVENT_INPUT
 REQ WITH QI, IN1, IN2;
END_EVENT
EVENT_OUTPUT
 CNF WITH QO, STATUS, OUT;
END_EVENT
VAR_INPUT
 QI: BOOL; (* Event Qualifier *)
 IN1: INT; (* Augend *)
 IN2: INT; (* Addend *)
END_VAR
VAR_OUTPUT
 QO: BOOL; (* Output Qualifier *)
 STATUS: UINT; (* Operation Status *)
 OUT: INT; (* Sum *)
END_VAR
VAR
 RESULT: DINT;
END_VAR
EC_STATES
 START;
 REQ: REQ -> CNF;
END_STATES
EC_TRANSITIONS
 START TO REQ:= REQ;
 REQ TO START:= 1;
END_TRANSITIONS
ALGORITHM REQ IN ST:
 QO:= QI;
 IF QI THEN
 STATUS:= 0;
 RESULT:= INT_TO_DINT(IN1) + INT_TO_DINT(IN2);

BS EN 61499-1:2013

 – 108 – 61499-1 © IEC:2012

 IF (RESULT > 32767) OR (RESULT < -32768) THEN
 QO = FALSE;
 STATUS = 3;
 IF (RESULT > 32767) THEN OUT:= 32767;
 ELSE OUT:= -32768;
 END_IF;
 ELSE OUT:= RESULT;
 END_IF;
 ELSE STATUS = 1;
 END_IF;
END_ALGORITHM
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK INTEGRAL_REAL
EVENT_INPUT
 INIT: INIT_EVENT WITH CYCLE;
 EX WITH HOLD, XIN;
END_EVENT
EVENT_OUTPUT
 INITO: INIT_EVENT WITH XOUT;
 EXO WITH XOUT;
END_EVENT
VAR_INPUT
 HOLD: BOOL; (* 0 = Run, 1 = Hold *)
 XIN: REAL; (* Integrand *)
 CYCLE: TIME; (* Sampling period *)
END_VAR
VAR_OUTPUT
 XOUT: REAL; (* Integrated output *)
END_VAR
VAR DT: REAL; END_VAR
EC_STATES
 START; (* EC Initial state *)
 INIT:INIT -> INITO; (* EC State with Algorithm and EC Action *)
 MAIN: MAIN -> EXO;
END_STATES
EC_TRANSITIONS
 START TO INIT:= INIT; (* An EC Transition *)
 START TO MAIN:= EX;
 INIT TO START:= 1;
 MAIN TO START:= 1;
END_TRANSITIONS
ALGORITHM INIT IN ST:
 XOUT:= 0.0;
 DT:= TIME_TO_REAL(CYCLE);
END_ALGORITHM
ALGORITHM MAIN IN ST:
 IF NOT HOLD THEN
 XOUT:= XOUT + XIN * DT;
 END_IF;
END_ALGORITHM
END_FUNCTION_BLOCK
==
ADAPTER LD_UNLD (* LOAD/UNLOAD Adapter Interface *)
EVENT_INPUT
 UNLD; (* UNLOAD Request *)
END_EVENT
EVENT_OUTPUT
 LD WITH WO,WKPC; (* LOAD Request *)
 CNF WITH WO,WKPC; (* UNLD Confirm *)
END_EVENT
VAR_OUTPUT
 WO: BOOL; (* Workpiece present *)
 WKPC: COLOR; (* Workpiece Color *)
END_VAR
SERVICE PLUG/SOCKET
SEQUENCE normal_operation
 PLUG.LD(WO,WKPC) -> SOCKET.LD(WO,WKPC);
 SOCKET.UNLD() -> PLUG.UNLD();
 PLUG.CNF() -> SOCKET.CNF();

BS EN 61499-1:2013

61499-1 © IEC:2012 – 109 –

END_SEQUENCE
END_SERVICE
END_ADAPTER
===
FUNCTION_BLOCK MANAGER (* Management Service Interface *)
EVENT_INPUT
 INIT WITH QI, PARAMS; (* Service Initialization *)
 REQ WITH QI, CMD, OBJECT; (* Service Request *)
END_EVENT
EVENT_OUTPUT
 INITO WITH QO, STATUS; (* Initialization Confirm *)
 CNF WITH QO, STATUS, RESULT; (* Service Confirmation *)
END_EVENT
VAR_INPUT
 QI: BOOL; (* Event Input Qualifier *)
 PARAMS: WSTRING; (* Service Parameters *)
 CMD: UINT; (* Enumerated Command *)
 OBJECT: BYTE[512]; (* Command Object *)
END_VAR
VAR_OUTPUT
 QO: BOOL; (* Event Output Qualifier *)
 STATUS: UINT; (* Service Status *)
 RESULT: BYTE[512]; (* Result Object *)
END_VAR
SERVICE MANAGER/resource
SEQUENCE normal_establishment
 MANAGER.INIT+(PARAMS) -> resource.initManagement() -> MANAGER.INITO+();
END_SEQUENCE
SEQUENCE unsuccessful_establishment
 MANAGER.INIT+(PARAMS) -> resource.initManagement(PARAMS) -> MANAGER.INITO-
(STATUS);
END_SEQUENCE
SEQUENCE normal_command_sequence
 MANAGER.REQ+(CMD,OBJECT) -> resource.performCommand(CMD,OBJECT) ->
MANAGER.CNF+(STATUS,RESULT);
END_SEQUENCE
SEQUENCE command_error
 MANAGER.REQ+(CMD,OBJECT) -> resource.performCommand(CMD,OBJECT) ->
MANAGER.IND-(STATUS);
END_SEQUENCE
SEQUENCE application_initiated_termination
 MANAGER.INIT-() -> resource.terminateService() -> MANAGER.INITO-(STATUS);
END_SEQUENCE
SEQUENCE resource_initiated_termination
 resource.serviceTerminated(STATUS) -> MANAGER.INITO-(STATUS);
END_SEQUENCE
END_SERVICE
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK PI_REAL
EVENT_INPUT
 INIT WITH KP, KI, CYCLE;
 EX WITH HOLD, PV, SP, KP, KI, CYCLE;
END_EVENT
EVENT_OUTPUT
 INITO WITH XOUT;
 EXO WITH XOUT;
END_EVENT
VAR_INPUT
 HOLD: BOOL; (* Hold when TRUE *)
 PV: REAL; (* Process variable *)
 SP: REAL; (* Set point *)
 KP: REAL; (* Proportionality constant *)
 KI: REAL; (* Integral constant,1/s *)
 CYCLE: TIME; (* Sampling period *)
END_VAR
VAR_OUTPUT
 XOUT: REAL;
END_VAR

BS EN 61499-1:2013

 – 110 – 61499-1 © IEC:2012

FBS
 CALC: PID_CALC;
 INTEGRAL_TERM: INTEGRAL_REAL;
END_FBS
EVENT_CONNECTIONS
 INIT TO CALC.INIT;
 EX TO CALC.PRE;
 CALC.POSTO TO EXO;
 INTEGRAL_TERM.INITO TO INITO;
 CALC.INITO TO INTEGRAL_TERM.INIT;
 CALC.PREO TO INTEGRAL_TERM.EX;
 INTEGRAL_TERM.EXO TO CALC.POST;
END_CONNECTIONS
DATA_CONNECTIONS
 HOLD TO INTEGRAL_TERM.HOLD;
 PV TO CALC.PV;
 SP TO CALC.SP;
 KP TO CALC.KP;
 KI TO CALC.KI;
 CYCLE TO INTEGRAL_TERM.CYCLE;
 CALC.XOUT TO XOUT;
 CALC.ETERM TO INTEGRAL_TERM.XIN;
 INTEGRAL_TERM.XOUT TO CALC.ITERM;
 0 TO CALC.TD;
 0 TO CALC.DTERM;
END_CONNECTIONS
END_FUNCTION_BLOCK
==
SUBAPPLICATION PI_REAL_APPL (* A Subapplication *)
EVENT_INPUT
 INIT;
 EX;
END_EVENT
EVENT_OUTPUT
 INITO;
 EXO;
END_EVENT
VAR_INPUT
 HOLD: BOOL; (* Hold when TRUE *)
 PV: REAL; (* Process variable *)
 SP: REAL; (* Set point *)
 KP: REAL; (* Proportional gain *)
 KI: REAL; (* Integral gain = Sample period/Reset time *)
 X0: REAL; (* Initial integrator output *)
END_VAR
VAR_OUTPUT XOUT: REAL; END_VAR
FBS
 ETERM: FB_SUB_REAL;
 INTEGRATOR: ACCUM_REAL;
 CALC: PI_CALC;
END_FBS
EVENT_CONNECTIONS
 INIT TO INTEGRATOR.INIT;
 INTEGRATOR.INITO TO INITO;
 EX TO ETERM.REQ;
 ETERM.CNF TO INTEGRATOR.EX;
 INTEGRATOR.EXO TO CALC.EX;
 CALC.EXO TO EXO;
END_CONNECTIONS
DATA_CONNECTIONS
 X0 TO INTEGRATOR.X0;
 HOLD TO INTEGRATOR.HOLD;
 PV TO ETERM.IN1;
 SP TO ETERM.IN2;
 KP TO CALC.KP;
 KI TO CALC.KI;
 ETERM.OUT TO INTEGRATOR.XIN;
 ETERM.OUT TO CALC.ETERM;
 INTEGRATOR.XOUT TO CALC.ITERM;
 CALC.XOUT TO XOUT;

BS EN 61499-1:2013

61499-1 © IEC:2012 – 111 –

 1 TO ETERM.QI;
END_CONNECTIONS
END_SUBAPPLICATION
==
FUNCTION_BLOCK REQUESTER
 (* Service Requester Interface *)
EVENT_INPUT
 INIT WITH QI, PARAMS; (* Service Initialization *)
 REQ WITH QI, SD_1, SD_m; (* Service Request *)
END_EVENT
EVENT_OUTPUT
 INITO WITH QO, STATUS; (* Initialization Confirm *)
 CNF WITH QO, STATUS, RD_1, RD_n; (* Service Confirmation *)
END_EVENT
VAR_INPUT
 QI: BOOL; (* Event Input Qualifier *)
 PARAMS: ANY; (* Service Parameters *)
 SD_1: ANY; (* Data to transfer, extensible *)
 SD_m: ANY; (* Last data item to transfer *)
END_VAR
VAR_OUTPUT
 QO: BOOL; (* Event Output Qualifier *)
 STATUS: ANY; (* Service Status *)
 RD_1: ANY; (* Received data, extensible *)
 RD_n: ANY; (* Last received data item *)
END_VAR
SERVICE REQUESTER/RESOURCE
SEQUENCE normal_establishment
 REQUESTER.INIT+(PARAMS) -> REQUESTER.INITO+();
END_SEQUENCE
SEQUENCE unsuccessful_establishment
 REQUESTER.INIT+(PARAMS) -> REQUESTER.INITO-(STATUS);
END_SEQUENCE
SEQUENCE normal_data_transfer
 REQUESTER.REQ+(SD_1,...,SD_m) -> REQUESTER.CNF+(RD_1,...,RD_n);
END_SEQUENCE
SEQUENCE data_transfer_error
 REQUESTER.REQ+(SD_1,...,SD_m) -> REQUESTER.CNF-(STATUS);
END_SEQUENCE
SEQUENCE application_initiated_termination
 REQUESTER.INIT-() -> REQUESTER.INITO-(STATUS);
END_SEQUENCE
SEQUENCE resource_initiated_termination
 -> REQUESTER.INITO-(STATUS);
END_SEQUENCE
END_SERVICE
END_FUNCTION_BLOCK
==
FUNCTION_BLOCK XBAR_MVCA (* XBAR_MVC + Adapters *)
EVENT_INPUT
 INIT WITH VF,VR,DTL,DT,BKGD,LEN,DIA,DIR; (* Initialize *)
END_EVENT
EVENT_OUTPUT
 INITO;
END_EVENT
VAR_INPUT
 VF: INT:= 20; (* ADVANCE speed in +%/s *)
 VR: INT:= -40; (* RETRACT speed in -%/s *)
 DTL: TIME:= t#750ms; (* LOAD Delay *)
 DT: TIME:= t#250ms; (* Simulation Interval *)
 BKGD: COLOR:= COLOR#blue; (* Transfer Bar Color *)
 LEN: UINT:= 5; (* Bar Length in Diameters *)
 DIA: UINT:= 20; (* Workpiece diameter *)
 DIR: UINT; (* Orientation: 0=L/R, 1=T/B, 2=R/L, 3=B/T *)
END_VAR
SOCKETS
 LDU_SKT: LD_UNLD;
END_SOCKETS
PLUGS

BS EN 61499-1:2013

 – 112 – 61499-1 © IEC:2012

 LDU_PLG: LD_UNLD;
END_PLUGS
FBS
 MVC: XBAR_MVC;
END_FBS
EVENT_CONNECTIONS
 INIT TO MVC.INIT;
 MVC.INITO TO INITO;
 MVC.LOADED TO LDU_SKT.UNLD;
 LDU_SKT.LD TO MVC.LOAD;
 MVC.ADVANCED TO LDU_PLG.LD;
 LDU_PLG.UNLD TO MVC.UNLOAD;
 MVC.UNLOADED TO LDU_PLG.CNF;
END_CONNECTIONS
DATA_CONNECTIONS
 LDU_SKT.WO TO MVC.WI;
 LDU_SKT.WKPC TO MVC.LDCOL;
 MVC.WO TO LDU_PLG.WO;
 MVC.WKPC TO LDU_PLG.WKPC;
 VF TO MVC.VF;
 VR TO MVC.VR;
 DTL TO MVC.DTL;
 DT TO MVC.DT;
 BKGD TO MVC.BKGD;
 LEN TO MVC.LEN;
 DIA TO MVC.DIA;
 DIR TO MVC.DIR;
END_CONNECTIONS
END_FUNCTION_BLOCK
==

BS EN 61499-1:2013

61499-1 © IEC:2012 – 113 –

Annex G
(informative)

Attributes

G.1 General principles

Attributes may be associated with data types, variables, applications, and types and instances
of function blocks, devices, resources, and their component elements. Attributes have values
that may be modified and accessed at various points in the life cycle of the function block type
or instance.

In addition to the descriptions of function block algorithms, supplementary information is
necessary to support the use of a function block during the course of its software life cycle.
This information may be provided by attaching attributes to the component elements of
function block types or instances.

Attributes can be applied to elements such as data types, variables, and parameters that are
used in the specification of function block types or instances. Graphical language elements
may require additional attributes for holding information such as position, color, size, etc.

Attributes can also be applied directly to function block types and instances, for instance to
hold the version of a function block type specification.

Certain attributes may be used throughout the life cycle of a function block. For instance, an
attribute related to a function block type specification may be accessed when the function
block type is selected from a library, when an instance of the function block type is queried,
etc.

Other attributes may only exist at certain points in the life cycle. For instance, text defining the
purpose of a particular function block instance might be applied only when the function block
is instantiated, and might be modified during the life of the function block instance.

Certain function block attributes may be installed in associated resources and be accessible
during the lifetime of the distributed application. Such attributes are typically used to support
access to function block parameter values by external devices, e.g., to restrict the values of
parameters that may be set using a hand-held configurator to predefined safe limits.

G.2 Attribute definitions

An attribute definition provides the information specified in Table G.1. Each attribute has a
name and a data type of its associated value. An attribute may have a default value that will
be used until a value is given at some point in the software life cycle. In the example given in
G.1, the DESCRIPTION attribute has an initial value of '' (the empty string) that may be
overwritten with a more meaningful description when a function block instance is configured
or even during its active use.

Attributes themselves may require additional information to that shown in Table G.1. Such
information is designated as sub-attributes.

BS EN 61499-1:2013

 – 114 – 61499-1 © IEC:2012

Table G.1 – Elements of attribute definitions

Element Example

Name DESCRIPTION

Data type WSTRING(30)

Default value ""

Associated element Function block types Function block instances

Usage Configuration Run-time

G.3 Examples

NOTE The following examples are for the purpose of illustrating the use of attributes and are not to be considered
as normative definitions of standard attributes.

An example of a data type attribute is:

• Max_System_Value - This attribute defines the maximum supported value of a numeric
data type. It is applied to the generic data type ANY_NUM, so that all numeric types such
as INT and REAL will inherit this attribute. Note that each specific data type will have its
own value for this attribute, and that standard values for this attribute for some data types
are given in Table E.1.

Examples of attributes that apply to variables are:

• Diagnostic_Access – This determines whether the value of a variable is accessible by
a run-time diagnostic system.

• Write_Access – This defines the access level required to change the value of a variable,
e.g., 'Operator', 'System', 'Diagnostics'.

• Units – The dimensional units that apply to a variable, e.g., 'l', 'm/s', 'cm'.

• Usage – A multi-line textual description of the usage of the associated variable.

Examples of function block type attributes are:

• Usage_Class – This describes the general usage of the function block, e.g., 'Input',
'Output', 'Control'.

• Version – This describes the version number of the function block type definition, e.g.,
'1.2'.

• Help – A multi-line textual description that may be accessed at various points in the life
cycle.

Attributes which are relevant to the scheduling of algorithms for execution include:

• ExecutionTime – This attribute, of type TIME, specifies the worst-case time for
execution of a particular algorithm of a specified function block type in a particular
resource type.

• Priority – This attribute is associated with a particular event connection within a
resource, and may be inherited from the resource type. This attribute may be used by a
resource which supports pre-emptive multitasking to determine the priority of execution of
an algorithm invoked by an EC action associated with an EC state which is activated by an
event with the specified priority.

BS EN 61499-1:2013

61499-1 © IEC:2012 – 115 –

G.4 Attribute sources

Attributes may come from the following main sources:

• Implicit attributes such as function block type names, instance names, variable names
and their data types, are defined as part of the normal declaration process for the function
block.

• Standard attributes are those which are required as part of a standard, such function
block type versions, maximum range of parameters, parameter descriptions, etc.

• Product-specific attributes are those which a system vendor has provided, such as
function block type product codes, hardware addresses of function block instances, etc.

• Application-specific attributes are those which a system developer specifies to support
the use of a particular data type or function block in an application, such as an additional
function block instance identifier to fit a customer's desired style, a fail-safe default value
for output parameters, an alternative parameter description in a national language, etc.

G.5 Attribute inheritance

Function block elements will inherit attributes from more primitive elements. For instance, a
variable within a function block type declaration will inherit attributes of its associated data
type, and a function block instance will inherit attributes of the associated function block type.

Data types will inherit attributes down the generic type hierarchy defined in IEC 61131-3. For
example, attributes applied to ANY_REAL will also apply to LREAL and REAL.

G.6 Declaration syntax

The assignment of an attribute value to a declared element is similar to assigning a value to
an instance of an attribute type in which the instance has the same name as the type.

The declaration of an attribute type uses the same syntax as the declaration of a data type as
defined in IEC 61131-3, with the exception that the delimiting keywords are
ATTRIBUTE...END_ATTRIBUTE instead of TYPE...END_TYPE. For instance, the declaration of
the attribute type DESCRIPTION in Table G.1 would be:

ATTRIBUTE DESCRIPTION: WSTRING(30); END_ATTRIBUTE

The assignment of a value to an attribute instance uses the same syntax as that for assigning
an initial value to a variable as described in IEC 61131-3, with the following extensions:

a) the name of the attribute instance is the same as the name of the corresponding attribute
type;

b) no data type is specified for the attribute instance;
c) the value assignment is enclosed in the pragma construct defined in IEC 61131-3;

d) multiple attribute value assignments, separated by semicolons, may be included in the
pragma construct;

e) the pragma construct shall be located in such a manner that the declaration to which it
applies can be determined unambiguously.

An example of the application of these rules is:

BS EN 61499-1:2013

http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U

 – 116 – 61499-1 © IEC:2012

FUNCTION_BLOCK PID
{DESCRIPTION:= "Proportional + Integral + Derivative Control;
 AUTHOR:= "JHC"; VERSION:= "19990103/JHC"}
INPUT_EVENT
 INIT WITH QI, PARAMS; {DESCRIPTION:= "Initialization Request"}
...etc.

BS EN 61499-1:2013

61499-1 © IEC:2012 – 117 –

Bibliography

IEC 60050-351:2006, International Electrotechnical Vocabulary – Part 351: Control
technology

IEC 61131-5:2000, Programmable controllers – Part 5: Communications

IEC 61499 (all parts), Function blocks

IEC 61499-2:2012, Function blocks – Part 2: Software tools requirements

IEC 61499-4, Function blocks – Part 4: Rules for compliance profiles

ISO/IEC 7498-4, Information processing systems – Open systems interconnection – Basic
reference model – Part 4: Management framework

ISO/IEC 8825-1:2008, Information technology – ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules
(DER)

ISO/IEC 10040:1998, Information technology – Open Systems Interconnection – Systems
management overview

ISO/IEC/IEEE 60559, Information technology – Microprocessor systems – Floating-point
arithmetic

ISO 2382 (all parts), Information technology – Vocabulary

BS EN 61499-1:2013

http://dx.doi.org/10.3403/02228747
http://dx.doi.org/10.3403/30267341
http://dx.doi.org/10.3403/30126758U
http://dx.doi.org/10.3403/00227435U

This page deliberately left blank

BSI is the national body responsible for preparing British Standards and other
standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization
products are published by BSI Standards Limited.

British Standards Institution (BSI)

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

About us
We bring together business, industry, government, consumers, innovators
and others to shape their combined experience and expertise into standards
-based solutions.

The knowledge embodied in our standards has been carefully assembled in
a dependable format and refined through our open consultation process.
Organizations of all sizes and across all sectors choose standards to help
them achieve their goals.

Information on standards
We can provide you with the knowledge that your organization needs
to succeed. Find out more about British Standards by visiting our website at
bsigroup.com/standards or contacting our Customer Services team or
Knowledge Centre.

Buying standards
You can buy and download PDF versions of BSI publications, including British
and adopted European and international standards, through our website at
bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development
Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions
Our range of subscription services are designed to make using standards
easier for you. For further information on our subscription products go to
bsigroup.com/subscriptions.

With British Standards Online (BSOL) you’ll have instant access to over 55,000
British and adopted European and international standards from your desktop.
It’s available 24/7 and is refreshed daily so you’ll always be up to date.

You can keep in touch with standards developments and receive substantial
discounts on the purchase price of standards, both in single copy and subscription
format, by becoming a BSI Subscribing Member.

PLUS is an updating service exclusive to BSI Subscribing Members. You will
automatically receive the latest hard copy of your standards when they’re
revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits
of membership, please visit bsigroup.com/shop.

With a Multi-User Network Licence (MUNL) you are able to host standards
publications on your intranet. Licences can cover as few or as many users as you
wish. With updates supplied as soon as they’re available, you can be sure your
documentation is current. For further information, email bsmusales@bsigroup.com.

Revisions
Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your
business. If you find an inaccuracy or ambiguity within a British Standard or other
BSI publication please inform the Knowledge Centre.

Copyright
All the data, software and documentation set out in all British Standards and
other BSI publications are the property of and copyrighted by BSI, or some person
or entity that owns copyright in the information used (such as the international
standardization bodies) and has formally licensed such information to BSI for
commercial publication and use. Except as permitted under the Copyright, Designs
and Patents Act 1988 no extract may be reproduced, stored in a retrieval system
or transmitted in any form or by any means – electronic, photocopying, recording
or otherwise – without prior written permission from BSI. Details and advice can
be obtained from the Copyright & Licensing Department.

Useful Contacts:
Customer Services
Tel: +44 845 086 9001
Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions
Tel: +44 845 086 9001
Email: subscriptions@bsigroup.com

Knowledge Centre
Tel: +44 20 8996 7004
Email: knowledgecentre@bsigroup.com

Copyright & Licensing
Tel: +44 20 8996 7070
Email: copyright@bsigroup.com

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

www.bsigroup.com/standards
www.bsigroup.com/shop
www.bsigroup.com/shop
www.bsigroup.com/subscriptions

	30274788-VOR.pdf
	English
	CONTENTS
	FOREWORD
	INTRODUCTION
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Reference models
	4.1 System model
	4.2 Device model
	4.3 Resource model
	4.4 Application model
	4.5 Function block model
	4.5.1 Characteristics of function block instances
	4.5.2 Function block type specifications
	4.5.3 Execution model for basic function blocks

	4.6 Distribution model
	4.7 Management model
	4.8 Operational state models

	5 Specification of function block, subapplication and adapter interface types
	5.1 Overview
	5.2 Basic function blocks
	5.2.1 Type declaration
	5.2.2 Behavior of instances

	5.3 Composite function blocks
	5.3.1 Type specification
	5.3.2 Behavior of instances

	5.4 Subapplications
	5.4.1 Type specification
	5.4.2 Behavior of instances

	5.5 Adapter interfaces
	5.5.1 General principles
	5.5.2 Type specification
	5.5.3 Usage

	5.6 Exception and fault handling

	6 Service interface function blocks
	6.1 General principles
	6.1.1 General
	6.1.2 Type specification
	6.1.3 Behavior of instances

	6.2 Communication function blocks
	6.2.1 Type specification
	6.2.2 Behavior of instances

	6.3 Management function blocks
	6.3.1 Requirements
	6.3.2 Type specification
	6.3.3 Behavior of managed function blocks

	7 Configuration of functional units and systems
	7.1 Principles of configuration
	7.2 Functional specification of resource, device and segment types
	7.2.1 Functional specification of resource types
	7.2.2 Functional specification of device types
	7.2.3 Functional specification of segment types

	7.3 Configuration requirements
	7.3.1 Configuration of systems
	7.3.2 Specification of applications
	7.3.3 Configuration of devices and resources
	7.3.4 Configuration of network segments and links

	Annex A (normative) Event function blocks
	Annex B (normative) Textual syntax
	Annex C (informative) Object models
	Annex D (informative) Relationship to IEC 61131-3
	Annex E (informative) Information exchange
	Annex F (normative) Textual specifications
	Annex G (informative) Attributes
	Bibliography
	Figures
	Figure 1 – System model
	Figure 2 – Device model
	Figure 3 – Resource model
	Figure 4 – Application model
	Figure 5 – Characteristics of function blocks
	Figure 6 – Execution model
	Figure 7 – Execution timing
	Figure 8 – Distribution and management models
	Figure 9 – Function block and subapplication types
	Figure 10 – Basic function block type declaration
	Figure 11 – ECC example
	Figure 12 – ECC operation state machine
	Figure 13 – Composite function block PI_REAL example
	Figure 14 – Basic function block PID_CALC example
	Figure 15 – Subapplication PI_REAL_APPL example
	Figure 16 – Adapter interfaces – Conceptual model
	Figure 17 – Adapter type declaration – graphical example
	Figure 18 – Illustration of provider and acceptor function block type declarations
	Figure 19 – Illustration of adapter connections
	Figure 20 – Example service interface function blocks
	Figure 21 – Example service sequence diagrams
	Figure 22 – Generic management function block type
	Figure 23 – Service primitive sequences for unsuccessful service
	Figure 24 – Operational state machine of a managed function block
	Figure A.1 – Event split and merge
	Figure C.1 – ESS overview
	Figure C.2 – Library elements
	Figure C.3 – Declarations
	Figure C.4 – Function block network declarations
	Figure C.5 – Function block type declarations
	Figure C.6 – IPMCS overview
	Figure C.7 – Function block types and instances
	Figure D.1 – Example of a “simple” function block type
	Figure D.2 – Function block type READ
	Figure D.3 – Function block type UREAD
	Figure D.4 – Function block type WRITE
	Figure D.5 – Function block type TASK
	Figure E.1 – Type specifications for unidirectional transactions
	Figure E.2 – Connection establishment for unidirectional transactions
	Figure E.3 – Normal unidirectional data transfer
	Figure E.4 – Connection release in unidirectional data transfer
	Figure E.5 – Type specifications for bidirectional transactions
	Figure E.6 – Connection establishment for bidirectional transaction
	Figure E.7 – Bidirectional data transfer
	Figure E.8 – Connection release in bidirectional data transfer

	Tables
	Table 1 – States and transitions of ECC operation state machine
	Table 2 – Standard inputs and outputs for service interface function blocks (1 of 2)
	Table 3 – Service primitive semantics
	Table 4 – Variable semantics for communication function blocks
	Table 5 – Service primitive semantics for communication function blocks
	Table 6 – CMD input values and semantics
	Table 7 – STATUS output values and semantics
	Table 8 – Command syntax
	Table 9 – Semantics of actions in Figure 24
	Table A.1 – Event function blocks (1 of 6)
	Table C.1 – ESS class descriptions
	Table C.2 – Syntactic productions for library elements
	Table C.3 – Syntactic productions for declarations
	Table C.4 – IPMCS classes
	Table D.1 – Semantics of STATUS values
	Table D.2 – Source code of function block type READ
	Table D.3 – Source code of function block type UREAD
	Table D.4 – Source code of function block type WRITE
	Table D.5 – Source code of function block type TASK
	Table D.6 – IEC€61499 interoperability features
	Table E.1 – COMPACT encoding of fixed length data types
	Table G.1 – Elements of attribute definitions

	Français
	SOMMAIRE
	AVANT-PROPOS
	INTRODUCTION
	1 Domaine d’application
	2 Références normatives
	3 Termes and définitions
	4 Modèles de référence
	4.1 Modèle pour un système
	4.2 Modèle pour un équipement
	4.3 Modèle pour une ressource
	4.4 Modèle pour une application
	4.5 Modèle de bloc fonctionnel
	4.5.1 Caractéristiques des instances de bloc fonctionnel
	4.5.2 Spécifications des types de bloc fonctionnel
	4.5.3 Modèle d'exécution pour les blocs fonctionnels de base

	4.6 Modèle de distribution
	4.7 Modèle de gestion
	4.8 Modèles d'état opérationnel

	5 Spécification des types de bloc fonctionnel, de sous-application et d’adaptateurs d’interface
	5.1 Vue d'ensemble
	5.2 Blocs fonctionnels de base
	5.2.1 Déclaration du type
	5.2.2 Comportement des instances

	5.3 Blocs fonctionnels composés
	5.3.1 Spécification de type
	5.3.2 Comportement d’instances

	5.4 Sous-applications
	5.4.1 Spécification de type
	5.4.2 Comportement d’instances

	5.5 Adaptateur d’interface
	5.5.1 Principes généraux
	5.5.2 Spécification de type
	5.5.3 Usage

	5.6 Traitement des exceptions et des défauts

	6 Blocs fonctionnels interface de service
	6.1 Principes généraux
	6.1.1 Généralités
	6.1.2 Spécification de type
	6.1.3 Comportement des instances

	6.2 Blocs fonctionnels de communication
	6.2.1 Spécification de type
	6.2.2 Comportement des instances

	6.3 Blocs fonctionnels de gestion
	6.3.1 Exigences
	6.3.2 Spécification de type
	6.3.3 Comportement des blocs fonctionnels gérés

	7 Configuration d'unités fonctionnelles et de systèmes
	7.1 Principes de configuration
	7.2 Spécification fonctionnelle des types de ressources, d’équipements et de segments
	7.2.1 Spécification fonctionnelle des types de ressources
	7.2.2 Spécification fonctionnelle des types d’équipements
	7.2.3 Spécification fonctionnelle des types de segments

	7.3 Exigences relatives à la configuration
	7.3.1 Configuration des systèmes
	7.3.2 Spécification d’applications
	7.3.3 Configuration des équipements et des ressources
	7.3.4 Configuration des segments et des liaisons réseau

	Annexe€A (normative)Blocs fonctionnels d’événements
	Annexe B (normative) Syntaxe textuelle
	Annexe C (informative) Modèles d’objets
	Annexe D (informative) Relation à la CEI 61131-3
	Annexe E (informative) Echange d’informations
	Annexe F (normative) Spécifications textuelles
	Annexe G (informative) Attributs
	Bibliographie
	Figures
	Figure 1 – Modèle de système
	Figure 2 – Modèle d’un équipement
	Figure 3 – Modèle d’une ressource
	Figure 4 – Modèle d’application
	Figure 5 – Caractéristiques des blocs fonctionnels
	Figure 6 – Modèle d’exécution
	Figure 7 – Temporisation de l'exécution
	Figure 8 – Modèles de distribution et de gestion
	Figure 9 – Types de bloc fonctionnel et de sous-application
	Figure 10 – Déclaration du type de bloc fonctionnel de base
	Figure 11 – Exemple d’ECC
	Figure 12 – Diagrammes d'états des opérations de l'ECC
	Figure 13 – Exemple de bloc fonctionnel composé PI_REAL
	Figure 14 – Exemple de bloc fonctionnel de base PID_CALC
	Figure 15 – Exemple de sous-application PI_REAL_APPL
	Figure 16 – Adaptateur d’interface – Modèle conceptuel
	Figure 17 – Déclaration du type d'adaptateur – Exemple graphique
	Figure 18 – Illustration des déclarations des types de bloc fonctionnelfournisseur et utilisateur
	Figure 19 – Illustration des connexions d'adaptateur
	Figure 20 – Exemples de blocs fonctionnels interface de service
	Figure 21 – Exemples de diagrammes des séquences de service
	Figure 22 – Type générique d’un bloc fonctionnel de gestion
	Figure 23 – Séquences des primitives de service pour un service infructueux
	Figure 24 – Diagramme d’états opérationnels d'un bloc fonctionnel géré
	Figure A.1 – Division et fusion d’événements
	Figure C.1 – Vue d’ensemble du système ESS
	Figure C.2 – Eléments bibliothèques
	Figure C.3 – Déclarations
	Figure C.4 – Déclarations des réseaux de blocs fonctionnels
	Figure C.5 – Déclarations des types de blocs fonctionnels
	Figure C.6 – Vue d’ensemble du système IPMCS
	Figure C.7 – Types et instances de bloc fonctionnel
	Figure D.1 – Exemple de type de bloc fonctionnel "simple"
	Figure D.2 – Type de bloc fonctionnel READ
	Figure D.3 – Type de bloc fonctionnel UREAD
	Figure D.4 – Type de bloc fonctionnel WRITE
	Figure D.5 – Type de bloc fonctionnel TASK
	Figure E.1 – Spécifications du type pour les transactions unidirectionnelles
	Figure E.2 – Établissement de connexion pour les transactions unidirectionnelles
	Figure E.3 – Transfert unidirectionnel normal de données
	Figure E.4 – Libération de connexion pour le transfert unidirectionnel de données
	Figure E.5 – Spécifications du type pour les transactions bidirectionnelles
	Figure E.6 – Établissement de connexion pour une transaction bidirectionnelle
	Figure E.7 – Transfert de données bidirectionnel
	Figure E.8 – Libération de connexion dans le transfert bidirectionnel de données

	Tableaux
	Tableau 1 – États et transitions du diagramme d'états des opérations de l'ECC
	Tableau 2 – Entrées et sorties normalisées pour les blocs fonctionnels interface de service (1 de 2)
	Tableau 3 – Sémantique des primitives de service
	Tableau 4 – Sémantique des variables pour les blocsfonctionnels de communication
	Tableau 5 – Sémantique des primitives de service pourles blocs fonctionnels de communication
	Tableau 6 – Valeurs et sémantique de l'entrée CMD
	Tableau 7 – Valeurs et sémantique de la sortie STATUS
	Tableau 8 – Syntaxe de commande
	Tableau 9 – Sémantique des actions de la Figure 24
	Tableau A.1 – Blocs fonctionnels d’événements (1 de 7)
	Tableau C.1 – Descriptions des classes ESS
	Tableau C.2 – Productions syntaxiques pour les éléments des bibliothèques
	Tableau C.3 – Productions syntaxiques pour les déclarations
	Tableau C.4 – Classes des IPMCS
	Tableau D.1 – Sémantique des valeurs de STATUS
	Tableau D.2 – Code source du type de bloc fonctionnel READ
	Tableau D.3 – Code source du type de bloc fonctionnel UREAD
	Tableau D.4 – Code source du type de bloc fonctionnel WRITE
	Tableau D.5 – Code source du type de bloc fonctionnel TASK
	Tableau D.6 – Caractéristiques d’interopérabilité de la CEI€61499
	Tableau E.1 – Codage COMPACT des types de données de longueur fixe
	Tableau G.1 – Eléments de définitions d'attributs

