
BSI Standards Publication

Industrial communication
networks — Fieldbus
specifications

Part 4-12: Data-link layer protocol
specification — Type 12 elements

BS EN 61158-4-12:2014

National foreword

This British Standard is the UK implementation of EN 61158-4-12:2014. It is
identical to IEC 61158-4-12:2014. It supersedes BS EN 61158-4-12:2012
which is withdrawn.

The UK participation in its preparation was entrusted to Technical
Committee AMT/7, Industrial communications: process measurement and
control, including fieldbus.

A list of organizations represented on this committee can be obtained on
request to its secretary.

This publication does not purport to include all the necessary provisions of
a contract. Users are responsible for its correct application.

© The British Standards Institution 2014.

Published by BSI Standards Limited 2014

ISBN 978 0 580 79443 8

ICS 25.040.40; 35.100.20; 35.110

Compliance with a British Standard cannot confer immunity from
legal obligations.

This British Standard was published under the authority of the
Standards Policy and Strategy Committee on 30 November 2014.

Amendments/corrigenda issued since publication

Date Text affected

BRITISH STANDARDBS EN 61158-4-12:2014

http://dx.doi.org/10.3403/30227838

EUROPEAN STANDARD

NORME EUROPÉENNE

EUROPÄISCHE NORM

EN 61158-4-12

October 2014

ICS 25.040.40; 35.100.20; 35.110 Supersedes EN 61158-4-12:2012

English Version

Industrial communication networks - Fieldbus specifications -
Part 4-12: Data-link layer protocol specification - Type 12

elements
(IEC 61158-4-12:2014)

Réseaux de communication industriels - Spécifications des
bus de terrain - Partie 4-12: Spécification du protocole de la

couche liaison de données - Éléments de type 12
(CEI 61158-4-12:2014)

Industrielle Kommunikationsnetze - Feldbusse - Teil 4-12:
Protokollspezifikation des Data Link Layer

(Sicherungsschicht) - Typ 12-Elemente
(IEC 61158-4-12:2014)

This European Standard was approved by CENELEC on 2014-09-19. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia,
Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique

Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2014 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

Ref. No. EN 61158-4-12:2014 E

http://dx.doi.org/10.3403/30175966U
http://dx.doi.org/10.3403/30227838

EN 61158-4-12:2014 - 2 -

Foreword

The text of document 65C/762/FDIS, future edition 3 of IEC 61158-4-12, prepared by SC 65C
“Industrial networks” of IEC/TC 65 “Industrial-process measurement, control and automation" was
submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 61158-4-12:2014.

The following dates are fixed:

• latest date by which the document has
to be implemented at national level by
publication of an identical national
standard or by endorsement

(dop) 2015-06-19

• latest date by which the national
standards conflicting with the
document have to be withdrawn

(dow) 2017-09-19

This document supersede EN 61158-4-12 :2012.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such
patent rights.

This document has been prepared under a mandate given to CENELEC by the European Commission
and the European Free Trade Association.

Endorsement notice

The text of the International Standard IEC 61158-4-12:2014 was approved by CENELEC as a
European Standard without any modification.

In the official version, for bibliography, the following notes have to be added for the standards indicated:

IEC 61131-2 NOTE Harmonised as EN 61131-2

IEC 61131-3 NOTE Harmonised as EN 61131-3

IEC 61158-1:2014 NOTE Harmonised as EN 61158-1:2014

IEC 61158-2:2014 NOTE Harmonised as EN 61158-2:2014

IEC 61158-5-12:2014 NOTE Harmonised as EN 61158-5-12:2014

IEC 61158-6-12 NOTE Harmonised as EN 61158-6-12

IEC 61784-1 NOTE Harmonised as EN 61784-1

IEC 61784-2 NOTE Harmonised as EN 61784-2

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/30175966U
http://dx.doi.org/10.3403/30175966U
http://dx.doi.org/10.3403/02223378U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/30264902
http://dx.doi.org/10.3403/30264902
http://dx.doi.org/10.3403/30264906
http://dx.doi.org/10.3403/30264906
http://dx.doi.org/10.3403/30266013
http://dx.doi.org/10.3403/30266013
http://dx.doi.org/10.3403/30176150U
http://dx.doi.org/10.3403/30176150U
http://dx.doi.org/10.3403/03101355U
http://dx.doi.org/10.3403/03101355U
http://dx.doi.org/10.3403/30101776U
http://dx.doi.org/10.3403/30101776U

 - 3 - EN 61158-4-12:2014

Annex ZA
(normative)

Normative references to international publications

with their corresponding European publications

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 When an International Publication has been modified by common modifications, indicated by (mod), the relevant
EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here:
www.cenelec.eu.

Publication Year Title EN/HD Year

IEC 61158-3-12 - Industrial communication networks -
Fieldbus specifications
Part 3-12: Data-link layer service definition -
Type 12 elements

EN 61158-3-12 -

IEC 61588 - Precision clock synchronization protocol for
networked measurement and control
systems

- -

ISO/IEC 7498-1 - Information technology - Open Systems
Interconnection - Basic reference model:
The basic model

- -

ISO/IEC 7498-3 - Information technology - Open Systems
Interconnection - Basic reference model:
Naming and addressing

- -

ISO/IEC 8802-3 2000 Information technology -
Telecommunications and information
exchange between systems - Local and
metropolitan area networks - Specific
requirements
Part 3: Carrier sense multiple access with
collision detection (CSMA/CD) access
method and physical layer specifications

- -

ISO/IEC 9899 - Information technology - Programming
languages - C

- -

ISO/IEC 10731 - Information technology - Open Systems
Interconnection - Basic Reference Model -
Conventions for the definition of OSI
services

- -

IEEE 802.1Q - IEEE Standard for Local and metropolitan
area networks - Media Access Control
(MAC) Bridges and Virtual Bridges

- -

IETF RFC 768 - User Datagram Protocol - -

IETF RFC 791 - Internet Protocol - DARPA Internet Program
Protocol Specification

- -

BS EN 61158-4-12:2014

http://www.cenelec.eu/advsearch.html
http://dx.doi.org/10.3403/30175910U
http://dx.doi.org/10.3403/30175910U
http://dx.doi.org/10.3403/03205792U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/01108987U
http://dx.doi.org/10.3403/00327038U
http://dx.doi.org/10.3403/01060285U

 – 2 – IEC 61158-4-12:2014 © IEC 2014

CONTENTS

NTRODUCTION .. 9
1 Scope ... 10

1.1 General ... 10
1.2 Specifications .. 10
1.3 Procedures .. 10
1.4 Applicability ... 10
1.5 Conformance ... 10

2 Normative references ... 11
3 Terms, definitions, symbols, abbreviations and conventions ... 11

3.1 Reference model terms and definitions .. 11
3.2 Service convention terms and definitions ... 12
3.3 Common terms and definitions .. 13
3.4 Additional Type 12 definitions .. 13
3.5 Common symbols and abbreviations ... 16
3.6 Additional Type 12 symbols and abbreviations .. 17
3.7 Conventions .. 18

4 Overview of the DL-protocol ... 23
4.1 Operating principle .. 23
4.2 Topology ... 23
4.3 Frame processing principles .. 23
4.4 Data-link layer overview .. 24
4.5 Error detection overview .. 25
4.6 Node reference model ... 25
4.7 Operation overview ... 26

5 Frame structure .. 27
5.1 Frame coding principles .. 27
5.2 Data types and encoding rules .. 27
5.3 DLPDU structure ... 29
5.4 Type 12 DLPDU structure .. 32
5.5 Network variable structure ... 48
5.6 Type 12 mailbox structure ... 48

6 Attributes .. 50
6.1 Management ... 50
6.2 Statistics ... 65
6.3 Watchdogs .. 68
6.4 Slave information interface .. 71
6.5 Media independent interface (MII) ... 75
6.6 Fieldbus memory management unit (FMMU) .. 79
6.7 Sync manager ... 82
6.8 Distributed clock .. 89

7 DL-user memory ... 93
7.1 Overview ... 93
7.2 Mailbox access type .. 94
7.3 Buffered access type ... 96

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 3 –

8 Type 12: FDL protocol state machines ... 97
8.1 Overview of slave DL state machines .. 97
8.2 State machine description ... 98

Annex A (informative) Type 12: Additional specifications on DL-Protocol state
machines .. 106

A.1 DHSM ... 106
A.2 SYSM .. 124
A.3 RMSM ... 136

Bibliography .. 140

Figure 1 – Type description example .. 19
Figure 2 – Common structure of specific fields .. 20
Figure 3 – Frame structure.. 24
Figure 4 – Mapping of data in a frame ... 25
Figure 5 – Slave node reference model ... 26
Figure 6 – Type 12 PDUs embedded in Ethernet frame ... 27
Figure 7 – Type 12 PDUs embedded in UDP/IP .. 27
Figure 8 – DL information type description .. 52
Figure 9 – Address type description .. 54
Figure 10 – DL control type description ... 55
Figure 11 – DL status type description .. 58
Figure 12 – Successful write sequence to DL-user control register 59
Figure 13 – Successful read sequence to the DL-user status register 60
Figure 14 – RX error counter type description ... 66
Figure 15 – Lost link counter type description ... 67
Figure 16 – Additional counter type description ... 68
Figure 17 – Watchdog divider type description .. 68
Figure 18 – DLS-user Watchdog divider type description .. 69
Figure 19 – Sync manager watchdog type description ... 69
Figure 20 – Sync manager watchdog status type description .. 70
Figure 21 – Watchdog counter type description ... 71
Figure 22 – Slave information interface access type description ... 71
Figure 23 – Slave information interface control/status type description 73
Figure 24 – Slave information interface address type description .. 74
Figure 25 – Slave information interface data type description ... 75
Figure 26 – MII control/status type description .. 76
Figure 27 – MII address type description .. 78
Figure 28 – MII data type description .. 78
Figure 29 – MII access type description .. 79
Figure 30 – FMMU mapping example .. 80
Figure 31 – FMMU entity type description ... 81
Figure 32 – SyncM mailbox interaction .. 83
Figure 33 – SyncM buffer allocation .. 83
Figure 34 – SyncM buffer interaction .. 84

BS EN 61158-4-12:2014

 – 4 – IEC 61158-4-12:2014 © IEC 2014

Figure 35 – Handling of write/read toggle with read mailbox ... 85
Figure 36 – Sync manager channel type description ... 87
Figure 37 – Distributed clock local time parameter type description 91
Figure 38 – Successful write sequence to mailbox .. 94
Figure 39 – Bad write sequence to mailbox ... 95
Figure 40 – Successful read sequence to mailbox ... 95
Figure 41 – Bad read sequence to mailbox ... 96
Figure 42 – Successful write sequence to buffer ... 96
Figure 43 – Successful read sequence to buffer.. 97
Figure 44 – Structuring of the protocol machines of an slave .. 98
Figure 45 – Slave information interface read operation ... 100
Figure 46 – Slave information interface write operation ... 101
Figure 47 – Slave information interface reload operation .. 102
Figure 48 – Distributed clock .. 104
Figure 49 – Delay measurement sequence ... 105

Table 1 – PDU element description example ... 19
Table 2 – Example attribute description .. 20
Table 3 – State machine description elements .. 22
Table 4 – Description of state machine elements .. 22
Table 5 – Conventions used in state machines ... 22
Table 6 – Transfer Syntax for bit sequences ... 28
Table 7 – Transfer syntax for data type Unsignedn ... 28
Table 8 – Transfer syntax for data type Integern ... 29
Table 9 – Type 12 frame inside an Ethernet frame .. 30
Table 10 – Type 12 frame inside an UDP PDU .. 30
Table 11 – Type 12 frame structure containing Type 12 PDUs .. 31
Table 12 – Type 12 frame structure containing network variables ... 31
Table 13 – Type 12 frame structure containing mailbox .. 32
Table 14 – Auto increment physical read (APRD) .. 32
Table 15 – Configured address physical read (FPRD) ... 33
Table 16 – Broadcast read (BRD) ... 35
Table 17 – Logical read (LRD) .. 36
Table 18 – Auto Increment physical write (APWR) .. 37
Table 19 – Configured address physical write (FPWR) .. 38
Table 20 – Broadcast write (BWR) .. 39
Table 21 – Logical write (LWR) ... 40
Table 22 – Auto increment physical read write (APRW) .. 41
Table 23 – Configured address physical read write (FPRW) .. 42
Table 24 – Broadcast read write (BRW) .. 44
Table 25 – Logical read write (LRW) ... 45
Table 26 – Auto increment physical read multiple write (ARMW) ... 46
Table 27 – Configured address physical read multiple write (FRMW) 47

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 5 –

Table 28 – Network variable ... 48
Table 29 – Mailbox ... 49
Table 30 – Error Reply Service Data ... 49
Table 31 – DL information ... 52
Table 32 – Configured station address .. 54
Table 33 – DL control ... 55
Table 34 – DL status ... 58
Table 35 – DLS-user specific registers .. 60
Table 36 – DLS-user event ... 62
Table 37 – DLS-user event mask .. 63
Table 38 – External event ... 64
Table 39 – External event mask .. 65
Table 40 – RX error counter .. 66
Table 41 – Lost link counter .. 67
Table 42 – Additional counter ... 68
Table 43 – Watchdog divider ... 69
Table 44 – DLS-user watchdog ... 69
Table 45 – Sync manager channel watchdog .. 70
Table 46 – Sync manager watchdog Status .. 70
Table 47 – Watchdog counter ... 71
Table 48 – Slave information interface access .. 71
Table 49 – Slave information interface control/status .. 73
Table 50 – Actual slave information interface address .. 75
Table 51 – Actual slave information interface data .. 75
Table 52 – MII control/status ... 76
Table 53 – Actual MII address... 78
Table 54 – Actual MII data .. 78
Table 55 – MII access ... 79
Table 56 – Fieldbus memory management unit (FMMU) entity .. 81
Table 57 – Fieldbus memory management unit (FMMU) .. 82
Table 58 – Sync manager channel .. 87
Table 59 – Sync manager Structure .. 89
Table 60 – Distributed clock local time parameter ... 91
Table 61 – Distributed clock DLS-user parameter ... 93
Table A.1 – Primitives issued by DHSM to PSM .. 106
Table A.2 – Primitives issued by PSM to DHSM .. 106
Table A.3 – Parameters used with primitives exchanged between DHSM and PSM 106
Table A.4 – Identifier for the octets of a Ethernet frame .. 107
Table A.5 – DHSM state table ... 109
Table A.6 – DHSM function table ... 124
Table A.7 – Primitives issued by SYSM to DHSM .. 124
Table A.8 – Primitives issued by DHSM to SYSM .. 125
Table A.9 – Primitives issued by DL-User to SYSM ... 125

BS EN 61158-4-12:2014

 – 6 – IEC 61158-4-12:2014 © IEC 2014

Table A.10 – Primitives issued by SYSM to DL-User ... 125
Table A.11 – Parameters used with primitives exchanged between SYSM and DHSM 125
Table A.12 – SYSM state table ... 127
Table A.13 – SYSM function table .. 136
Table A.14 – Primitives issued by RMSM to SYSM ... 136
Table A.15 – Primitives issued by SYSM to RMSM ... 137
Table A.16 – Parameters used with primitives exchanged between RMSM and SYSM 137
Table A.17 – RMSM state table... 138
Table A.18 – RMSM function table ... 139

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 9 –

NTRODUCTION

This part of IEC 61158 is one of a series produced to facilitate the interconnection of
automation system components. It is related to other standards in the set as defined by the
“three-layer” fieldbus reference model described in IEC 61158-1:2013.

The data-link protocol provides the data-link service by making use of the services available
from the physical layer. The primary aim of this standard is to provide a set of rules for
communication expressed in terms of the procedures to be carried out by peer data-link
entities (DLEs) at the time of communication. These rules for communication are intended to
provide a sound basis for development in order to serve a variety of purposes:

a) as a guide for implementors and designers;
b) for use in the testing and procurement of equipment;
c) as part of an agreement for the admittance of systems into the open systems environment;
d) as a refinement to the understanding of time-critical communications within OSI.

This standard is concerned, in particular, with the communication and interworking of sensors,
effectors and other automation devices. By using this standard together with other standards
positioned within the OSI or fieldbus reference models, otherwise incompatible systems may
work together in any combination.

NOTE Use of some of the associated protocol types is restricted by their intellectual-property-right holders. In all
cases, the commitment to limited release of intellectual-property-rights made by the holders of those rights permits
a particular data-link layer protocol type to be used with physical layer and application layer protocols in Type
combinations as specified explicitly in the profile parts. Use of the various protocol types in other combinations
may require permission from their respective intellectual-property-right holders.

The International Electrotechnical Commission (IEC) draws attention to the fact that it is
claimed that compliance with this document may involve the use of patents concerning
Type 12 elements and possibly other types given as follows:

EP 1 590 927 B1 [BE] Koppler für ein Netzwerk mit Ringtopologie und ein auf Ethernet basierten Netzwerk

EP 1 789 857 B1 [BE] Datenübertragungsverfahren und automatisierungssystem zum Einsatz eines
solchen Datenübertragungsverfahrens

DE 102007017835.4 [BE] Paketvermittlungsvorrichtung und lokales Kommunikationsnetz mit einer solchen
Paketvermittlungsvorrichtung

EP 1 456 722 B1 [BE] Datenübertragungsverfahren, serielles Bussystem und Anschalteinheit für einen
passiven Busteilnehmer

IEC takes no position concerning the evidence, validity and scope of these patent rights.

The holder of these patent rights has assured the IEC that he/she is willing to negotiate
licences either free of charge or under reasonable and non-discriminatory terms and
conditions with applicants throughout the world. In this respect, the statement of the holder of
these patent rights is registered with IEC. Information may be obtained from:

 [BE]: Beckhoff Automation GmbH
Eiserstraße 5
33415 Verl,
Germany

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights other than those identified above. IEC shall not be held responsible for
identifying any or all such patent rights.

ISO (www.iso.org/patents) and IEC (http://patents.iec.ch) maintain on-line databases of
patents relevant to their standards. Users are encouraged to consult the databases for the
most up to date information concerning patents.

BS EN 61158-4-12:2014

http://www.iso.org/patents

 – 10 – IEC 61158-4-12:2014 © IEC 2014

INDUSTRIAL COMMUNICATION NETWORKS –
FIELDBUS SPECIFICATIONS –

Part 4-12: Data-link layer protocol specification –

Type 12 elements

1 Scope

1.1 General

The data-link layer provides basic time-critical messaging communications between devices in
an automation environment.

This protocol provides communication opportunities to all participating data-link entities

a) in a synchronously-starting cyclic manner, and
b) in a cyclic or acyclic asynchronous manner, as requested each cycle by each of those

data-link entities.

Thus this protocol can be characterized as one which provides cyclic and acyclic access
asynchronously but with a synchronous restart of each cycle.

1.2 Specifications

This standard specifies

a) procedures for the transfer of data and control information from one data-link user entity to
one or more user entity;

b) the structure of the DLPDUs used for the transfer of data and control information by the
protocol of this standard, and their representation as physical interface data units.

1.3 Procedures

The procedures are defined in terms of

a) the interactions between DL-entities (DLEs) through the exchange of DLPDUs;
b) the interactions between a DL-service (DLS) provider and a DLS-user in the same system

through the exchange of DLS primitives;
c) the interactions between a DLS-provider and the MAC services of ISO/IEC 8802-3.

1.4 Applicability

These procedures are applicable to instances of communication between systems which
support time-critical communications services within the data-link layer of the OSI reference
model, and which require the ability to interconnect in an open systems interconnection
environment.

Profiles provide a simple multi-attribute means of summarizing an implementation’s
capabilities, and thus its applicability to various time-critical communications needs.

1.5 Conformance

This standard also specifies conformance requirements for systems implementing these
procedures. This part of this standard does not contain tests to demonstrate compliance with
such requirements.

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/00327038U

IEC 61158-4-12:2014 © IEC 2014 – 11 –

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any
amendments) applies.

NOTE All parts of the IEC 61158 series, as well as IEC 61784-1 and IEC 61784-2 are maintained simultaneously.
Cross-references to these documents within the text therefore refer to the editions as dated in this list of normative
references.

IEC 61158-3-12, Industrial communication networks – Fieldbus specifications – Part 3-12:
Data-link layer service definition – Type 12 elements

IEC 61588, Precision clock synchronization protocol for networked measurement and control
systems

ISO/IEC 7498-1, Information technology – Open Systems Interconnection – Basic Reference
Model: The Basic Model

ISO/IEC 7498-3, Information technology – Open Systems Interconnection – Basic Reference
Model: Naming and addressing

ISO/IEC 8802-3:2000, Information technology – Telecommunications and information
exchange between systems – Local and metropolitan area networks – Specific requirements –
Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and
physical layer specifications

ISO/IEC 9899, Information technology – Programming Languages – C

ISO/IEC 10731, Information technology – Open Systems Interconnection – Basic Reference
Model – Conventions for the definition of OSI services

IEEE 802.1Q, IEEE Standard for Local and metropolitan Area Networks – Virtual Bridged
Local Area Networks, available at <http://www.ieee.org>

IETF RFC 768, User Datagram Protocol (UDP), available at <http://www.ietf.org>

IETF RFC 791, Internet protocol DARPA internet program protocol specification, available at
<http://www.ietf.org>

3 Terms, definitions, symbols, abbreviations and conventions

For the purposes of this document, the following terms, definitions, symbols, abbreviations
and conventions apply.

3.1 Reference model terms and definitions

This standard is based in part on the concepts developed in ISO/IEC 7498-1 and
ISO/IEC 7498-3, and makes use of the following terms defined therein.

3.1.1 DL-duplex-transmission [ISO/IEC 7498-1]

3.1.2 DL-protocol [ISO/IEC 7498-1]

3.1.3 DL-protocol-data-unit [ISO/IEC 7498-1]

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/03101355U
http://dx.doi.org/10.3403/30101776U
http://dx.doi.org/10.3403/30175910U
http://dx.doi.org/10.3403/03205792U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/01108987U
http://dx.doi.org/10.3403/01060285U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/01108987U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00621095U

 – 12 – IEC 61158-4-12:2014 © IEC 2014

3.1.4 (N)-entity
 DL-entity
 Ph-entity

[ISO/IEC 7498-1]

3.1.5 (N)-interface-data-unit
 DL-service-data-unit (N=2)
 Ph-interface-data-unit (N=1)

[ISO/IEC 7498-1]

3.1.6 (N)-layer
 DL-layer (N=2)
 Ph-layer (N=1)

[ISO/IEC 7498-1]

3.1.7 (N)-service
 DL-service (N=2)
 Ph-service (N=1)

[ISO/IEC 7498-1]

3.1.8 (N)-service-access-point
 DL-service-access-point (N=2)
 Ph-service-access-point (N=1)

[ISO/IEC 7498-1]

3.1.9 (N)-service-access-point-address
 DL-service-access-point-address (N=2)
 Ph-service-access-point-address (N=1)

[ISO/IEC 7498-1]

3.1.10 peer-entities [ISO/IEC 7498-1]

3.1.11 Ph-interface-data [ISO/IEC 7498-1]

3.1.12 primitive name [ISO/IEC 7498-3]

3.1.13 reassembling [ISO/IEC 7498-1]

3.1.14 recombining [ISO/IEC 7498-1]

3.1.15 reset [ISO/IEC 7498-1]

3.1.16 routing [ISO/IEC 7498-1]

3.1.17 segmenting [ISO/IEC 7498-1]

3.1.18 sequencing [ISO/IEC 7498-1]

3.1.19 splitting [ISO/IEC 7498-1]

3.1.20 systems-management [ISO/IEC 7498-1]

3.2 Service convention terms and definitions

This standard also makes use of the following terms defined in ISO/IEC 10731 as they apply
to the data-link layer:

3.2.1 asymmetrical service

3.2.2 confirm (primitive);
 requestor.deliver (primitive)

3.2.3 deliver (primitive)

3.2.4 DL-service-primitive;
 primitive

3.2.5 DL-service-provider

3.2.6 DL-service-user

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/01108987U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00621095U
http://dx.doi.org/10.3403/00527826U

IEC 61158-4-12:2014 © IEC 2014 – 13 –

3.2.7 indication (primitive)
 acceptor.deliver (primitive)

3.2.8 request (primitive);
 requestor.submit (primitive)

3.2.9 requestor

3.2.10 response (primitive);
 acceptor.submit (primitive)

3.2.11 submit (primitive)

3.2.12 symmetrical service

3.3 Common terms and definitions

NOTE Many definitions are common to more than one protocol Type; they are not necessarily used by all protocol
Types.

For the purpose of this document, the following definitions also apply:

3.3.1
frame
denigrated synonym for DLPDU

3.3.2
group DL-address
DL-address that potentially designates more than one DLSAP within the extended link

Note 1 to entry: A single DL-entity may have multiple group DL-addresses associated with a single DLSAP.

Note 2 to entry: A single DL-entity also may have a single group DL-address associated with more than one
DLSAP.

3.3.3
node
single DL-entity as it appears on one local link

3.3.4
receiving DLS-user
DL-service user that acts as a recipient of DLS-user-data

Note 1 to entry: A DL-service user can be concurrently both a sending and receiving DLS-user.

3.3.5
sending DLS-user
DL-service user that acts as a source of DLS-user-data

3.4 Additional Type 12 definitions

3.4.1
application
function or data structure for which data is consumed or produced

[SOURCE: IEC 61158-5-12, 3.3.1]

3.4.2
application objects
multiple object classes that manage and provide a run time exchange of messages across the
network and within the network device

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/30176030U

 – 14 – IEC 61158-4-12:2014 © IEC 2014

3.4.3
basic slave
slave device that supports only physical addressing of data

3.4.4
bit
unit of information consisting of a 1 or a 0

Note 1 to entry: This is the smallest data unit that can be transmitted.

3.4.5
client
1) object which uses the services of another (server) object to perform a task

2) initiator of a message to which a server reacts

3.4.6
connection
logical binding between two application objects within the same or different devices

3.4.7
cyclic
events which repeat in a regular and repetitive manner

3.4.8
cyclic redundancy check
CRC
residual value computed from an array of data and used as a representative signature for the
array

3.4.9
data
generic term used to refer to any information carried over a Fieldbus

3.4.10
data consistency
means for coherent transmission and access of the input- or output-data object between and
within client and server

3.4.11
device
physical entity connected to the fieldbus composed of at least one communication element
(the network element) and which may have a control element and/or a final element
(transducer, actuator, etc.)

[SOURCE: IEC 61158-2, 3.1.13]

3.4.12
distributed clocks
method to synchronize slaves and maintain a global time base

3.4.13
error
discrepancy between a computed, observed or measured value or condition and the specified
or theoretically correct value or condition

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/01173281U

IEC 61158-4-12:2014 © IEC 2014 – 15 –

3.4.14
event
instance of a change of conditions

3.4.15
fieldbus memory management unit
function that establishes one or several correspondences between logical addresses and
physical memory

3.4.16
fieldbus memory management unit entity
single element of the fieldbus memory management unit: one correspondence between a
coherent logical address space and a coherent physical memory location

3.4.17
full slave
slave device that supports both physical and logical addressing of data

3.4.18
interface
shared boundary between two functional units, defined by functional characteristics, signal
characteristics, or other characteristics as appropriate

3.4.19
master
device that controls the data transfer on the network and initiates the media access of the
slaves by sending messages and that constitutes the interface to the control system

3.4.20
mapping
correspondence between two objects in that way that one object is part of the other object

3.4.21
medium
cable, optical fibre, or other means by which communication signals are transmitted between
two or more points

Note 1 to entry: "media" is used as the plural of medium.

3.4.22
message
ordered series of octets intended to convey information

Note 1 to entry: Normally used to convey information between peers at the application layer.

3.4.23
network
set of nodes connected by some type of communication medium, including any intervening
repeaters, bridges, routers and lower-layer gateways

3.4.24
node
end-point of a link in a network or a point at which two or more links meet

[SOURCE: IEC 61158-2, 3.1.31, with some wording adjustment]

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/01173281U

 – 16 – IEC 61158-4-12:2014 © IEC 2014

3.4.25
object
abstract representation of a particular component within a device

Note 1 to entry: An object can be

1) an abstract representation of the capabilities of a device. Objects can be composed of any or all of the
following components:

a) data (information which changes with time);

b) configuration (parameters for behavior);

c) methods (things that can be done using data and configuration).

2) a collection of related data (in the form of variables) and methods (procedures) for operating on that data
that have clearly defined interface and behavior.

3.4.26
process data
data object containing application objects designated to be transferred cyclically or acyclically
for the purpose of processing

3.4.27
server
object which provides services to another (client) object

3.4.28
service
operation or function than an object and/or object class performs upon request from another
object and/or object class

3.4.29
slave
DL-entity accessing the medium only after being initiated by the preceding slave or the master

3.4.30
Sync manager
collection of control elements to coordinate access to concurrently used objects

3.4.31
Sync manager channel
single control elements to coordinate access to concurrently used objects

3.4.32
switch
MAC bridge as defined in IEEE 802.1D

3.5 Common symbols and abbreviations

NOTE Many symbols and abbreviations are common to more than one protocol Type; they are not necessarily
used by all protocol Types.

DL- Data-link layer (as a prefix)

DLC DL-connection

DLCEP DL-connection-end-point

DLE DL-entity (the local active instance of the data-link layer)

DLL DL-layer

DLPCI DL-protocol-control-information

DLPDU DL-protocol-data-unit

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 17 –

DLM DL-management

DLME DL-management Entity (the local active instance of DL-management)

DLMS DL-management Service

DLS DL-service

DLSAP DL-service-access-point

DLSDU DL-service-data-unit

FIFO First-in first-out (queuing method)

OSI Open systems interconnection

Ph- Physical layer (as a prefix)

PhE Ph-entity (the local active instance of the physical layer)

PhL Ph-layer

QoS Quality of service

3.6 Additional Type 12 symbols and abbreviations

AL Application layer

DLSDU Data-link protocol data unit

APRD Auto increment physical read

APRW Auto increment physical read write

APWR Auto increment physical write

ARMW Auto increment physical read multiple write

BRD Broadcast read

BRW Broadcast read write

BWR Broadcast write

CAN Controller area network

CoE CAN application protocol over Type 12 services

CSMA/CD Carrier sense multiple access with collision detection

DC Distributed clocks

DCSM DC state machine

DHSM (DL) PDU handler state machine

Type 12 Prefix for DL services and protocols

E²PROM Electrically erasable programmable read only memory

EoE Ethernet tunneled over Type 12 services

ESC Type 12 slave controller

FCS frame check sequence

FMMU Fieldbus memory management unit

FoE File access with Type 12 services

FPRD Configured address physical read

FPRW Configured address physical read write

FPWR Configured address physical write

FRMW Configured address physical read multiple write

HDR Header

ID Identifier

IP Internet protocol

LAN Local area network

LRD Logical memory read

LRW Logical memory read write

BS EN 61158-4-12:2014

 – 18 – IEC 61158-4-12:2014 © IEC 2014

LWR Logical memory write

MAC Media access control

MDI Media dependent interface (specified in ISO/IEC 8802-3)

MDX Mailbox data exchange

MII Media independent interface (specified in ISO/IEC 8802-3)

PDI Physical device interface (a set of elements that allows access to DL services from
the DLS-user)

PDO Process data object

PHY Physical layer device (specified in ISO/IEC 8802-3)

PNV Publish network variable

RAM Random access memory

RMSM Resilient mailbox state machine

Rx Receive

SDO Service data object

SII Slave information interface

SIISM SII state machine

SyncM Synchronization manager

SYSM Sync manager state machine

TCP Transmission control protocol

Tx Transmit

UDP User datagram protocol

WKC Working counter

3.7 Conventions

3.7.1 General concept

The services are specified in IEC 61158-3-12. The service specification defines the services
that are provided by the Type 12 DL. The mapping of these services to ISO/IEC 8802-3 is
described in this international Standard.

This standard uses the descriptive conventions given in ISO/IEC 10731.

3.7.1.1 Abstract syntax conventions

The DL syntax elements related to PDU structure are described as shown in the example of
Table 1.

Frame part denotes the element that will be replaced by this reproduction.

Data field is the name of the elements.

Data Type denotes the type of the terminal symbol.

Value/Description contains the constant value or the meaning of the parameter.

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/00327038U
http://dx.doi.org/10.3403/00327038U
http://dx.doi.org/10.3403/00327038U
http://dx.doi.org/10.3403/30175910U
http://dx.doi.org/10.3403/00327038U
http://dx.doi.org/10.3403/00527826U

IEC 61158-4-12:2014 © IEC 2014 – 19 –

Table 1 – PDU element description example

Frame part Data Field Data Type Value/Description

Type 12 xxx CMD Unsigned8 0x01

 IDX Unsigned8 Index

 ADP Unsigned16 Auto Increment Address

 ADO Unsigned16 Physical Memory Address

 LEN Unsigned11 Length of data of YYY in octets

 Reserved Unsigned4 0x00

 NEXT Unsigned1 0x00: last Type 12 PDU

0x01: Type 12 PDU follows

 IRQ Unsigned16 Reserved for future use

 YYY next element

 WKC Unsigned16 Working Counter

The attribute types are described in C language notations (ISO/IEC 9899) as shown in
Figure 1. BYTE and WORD are elements of type unsigned char and unsigned short.

typedef struct
{
 Unsigned8 Type;
 Unsigned8 Revision;
 Unsigned16 Build;
 Unsigned8 NoOfSuppFmmuChannels;
 Unsigned8 NoOfSuppSyncManChannels;
 Unsigned8 RamSize;
 Unsigned8 Reserved1;
 unsigned FmmuBitOperationNotSupp: 1;
 unsigned Reserved2: 7;
 unsigned Reserved3: 8;
} TDLINFORMATION;

Figure 1 – Type description example

The attributes itself are described in a form as shown in Table 2.

Parameter describes a single element of the attribute.

Physical address denotes the location in physical address space.

Data Type denotes the type of this element.

Access type Type 12 DL/PDI shows the access right to this element. R means read access
right, W means write access right. If neither Type 12 DL nor PDI has write access, this
variable will be initialised and maintained by DL itself.

Value/Description contains the constant value and/or the meaning of the parameter.

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/01060285U

 – 20 – IEC 61158-4-12:2014 © IEC 2014

Table 2 – Example attribute description

Parameter Physical
Address

Data Type Access
type

Access
Type
PDI

Value/Description

State 0x0120 Unsigned4 RW R 0x01: Init Request

0x02: Pre-Operational
Request

0x03: Bootstrap Mode
Request

0x04: Safe Operational
Request

0x08: Operational
Request

Acknowledge 0x0120 Unsigned1 RW R 0x00: no acknowledge

0x01 acknowledge (shall
be a positive edge)

Reserved 0x0120 Unsigned3 RW R 0x00

Application Specific 0x0121 Unsigned8 RW R

3.7.1.2 Convention for the encoding of reserved bits and octets

The term "reserved" may be used to describe bits in octets or whole octets. All bits or octets
that are reserved should be set to zero at the sending side and shall not be tested at the
receiving side except it is explicitly stated or if the reserved bits or octets are checked by a
state machine.

The term "reserved" may also be used to indicate that certain values within the range of a
parameter are reserved for future extensions. In this case the reserved values should not be
used at the sending side and shall not be tested at the receiving side except it is explicitly
stated or if the reserved values are check by a state machine.

3.7.1.3 Conventions for the common coding s of specific field octets

DLSDUs may contain specific fields that carry information in a primitive and condensed way.
These fields shall be coded in the order according to Figure 2.

 msb lsb

Octet 7 6 5 4 3 2 1 0 Bit Identification

 Bit 0

 Bit 1

 Bit 2

 Bit 3

 Bit 4

 Bit 5

 Bit 6

 Bit 7

Figure 2 – Common structure of specific fields

Bits may be grouped as group of bits. Each bit or group of bits shall be addressed by its Bit
Identification (e.g. Bit 0, Bit 1 to 4). The position within the octet shall be according to the
figure above. Alias names may be used for each bit or group of bits or they may be marked as

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 21 –

reserved. The grouping of individual bits shall be in ascending order without gaps. The values
for a group of bits may be represented as binary, decimal or hexadecimal values. This value
shall only be valid for the grouped bits and can only represent the whole octet if all 8 bits are
grouped. Decimal or hexadecimal values shall be transferred in binary values so that the bit
with the highest number of the group represents the msb concerning the grouped bits.

EXAMPLE Description and relation for the specific field octet

Bit 0: reserved.

Bit 1-3: Reason_Code The decimal value 2 for the Reason_Code means general error.

Bit 4-7: shall always set to one.

The octet that is constructed according to the description above looks as follows:

(msb) Bit 7 = 1,

Bit 6 = 1,

Bit 5 = 1,

Bit 4 = 1,

Bit 3 = 0,

Bit 2 = 1,

Bit 1 = 0,

(lsb) Bit 0 = 0.

This bit combination has an octet value representation of 0xf4.

3.7.2 State machine conventions

The protocol sequences are described by means of State Machines.

In state diagrams states are represented as boxes state transitions are shown as arrows.
Names of states and transitions of the state diagram correspond to the names in the textual
listing of the state transitions.

The textual listing of the state transitions is structured as follows, see also Table 3.

– The first column contains the name of the transition.
– The second column in define the current state.
– The third column contains an optional event followed by Conditions starting with a “/” as

first line character and finally followed by the actions starting with a “=>” as first line
character.

– The last column contains the next state.

If the event occurs and the conditions are fulfilled the transition fires, i.e. the actions are
executed and the next state is entered.

The layout of a Machine description is shown in Table 3. The meaning of the elements of a
State Machine Description are shown in Table 4.

BS EN 61158-4-12:2014

 – 22 – IEC 61158-4-12:2014 © IEC 2014

Table 3 – State machine description elements

Current
state

Event
/Condition
 => Action

Next
state

Table 4 – Description of state machine elements

Description element Meaning

Current state

Next state

Name of the given states.

Name or number of the state transition.

Event Name or description of the event.

/Condition Boolean expression. The preceding “\” is not part of the condition.

=> Action List of assignments and service or function invocations. The preceding “=>” is not part
of the action.

The conventions used in the state machines are shown in Table 5.

Table 5 – Conventions used in state machines

Convention Meaning

= Value of an item on the left is replaced by value of an item on the right. If an item on the right is
a parameter, it comes from the primitive shown as an input event.

axx A parameter name if a is a letter.

EXAMPLE

 Identifier = reason

 means value of a 'reason' parameter is assigned to a parameter called 'Identifier.'

"xxx" Indicates fixed visible string.

EXAMPLE

 Identifier = "abc"

 means value "abc" is assigned to a parameter named 'Identifier.'

nnn if all elements are digits, the item represents a numerical constant shown in decimal
representation

0xnn if all elements nn are digits, the item represents a numerical constant shown in hexadecimal
representation

== A logical condition to indicate an item on the left is equal to an item on the right.

< A logical condition to indicate an item on the left is less than the item on the right.

> A logical condition to indicate an item on the left is greater than the item on the right.

!= A logical condition to indicate an item on the left is not equal to an item on the right.

&& Logical "AND"

|| Logical "OR"

! Logical "NOT"

+ - * / Arithmetic operators

; Separator of expressions

Readers are strongly recommended to refer to the subclauses for the attribute definitions, the
local functions, and the FDL-PDU definitions to understand protocol machines. It is assumed

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 23 –

that readers have sufficient knowledge of these definitions and they are used without further
explanations.

Further constructs as defined in C language notation (ISO/IEC 9899) can be used to describe
conditions and actions.

4 Overview of the DL-protocol

4.1 Operating principle

Type 12 DL is a Real Time Ethernet technology that aims to maximize the utilization of the full
duplex Ethernet bandwidth. Medium access control employs the Master/Slave principle, where
the master node (typically the control system) sends the Ethernet frames to the slave nodes,
which extract data from and insert data into these frames.

From an Ethernet point of view, a Type 12 segment is a single Ethernet device, which
receives and sends standard ISO/IEC 8802-3 Ethernet frames. However, this Ethernet device
is not limited to a single Ethernet controller with downstream microprocessor, but may consist
of a large number of Type 12 slave devices. These process the incoming frames directly and
extract the relevant user data, or insert data and transfer the frame to the next slave device.
The last Type 12 slave device within the segment sends the fully processed frame back, so
that it is returned by the first slave device to the master as response frame.

This procedure utilizes the full duplex mode of Ethernet: both communication directions are
operated independently. Direct communication without switch between a master device and a
Type 12 segment consisting of one or several slave devices may be established.

4.2 Topology

The topology of a communication system is one of the crucial factors for the successful
application in automation. The topology has significant influence on the cabling effort,
diagnostic features, redundancy options and hot-plug-and-play features.

The star topology commonly used for Ethernet leads to enhanced cabling effort and
infrastructure costs. Especially for automation applications a line or tree topology is
preferable.

The slave node arrangement represents an open ring bus. At the open end, the master device
sends frames, either directly or via Ethernet switches, and receives them at the other end
after they have been processed. All frames are relayed from the first node to the next ones.
The last node returns the PDU back to the master. Utilizing the full duplex capabilities of
Ethernet, the resulting topology is a physical line.

Branches, which in principle are possible anywhere, can be used to enhance the line structure
into a tree structure from. A tree structure supports very simple wiring; individual branches,
for example, can branch into control cabinets or machine modules, while the main line runs
from one module to the next.

4.3 Frame processing principles

In order to achieve maximum performance, the Ethernet frames should be processed directly
“on the fly”. If it is implemented this way, the slave node recognizes relevant commands and
executes them accordingly while the frames are already passed on.

NOTE 1 Type 12 DL can be implemented using standard Ethernet controllers without direct processing. The
influence of the forwarding mechanism implementation on communication performance is detailed in the profile
parts.

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/01060285U
http://dx.doi.org/10.3403/00327038U

 – 24 – IEC 61158-4-12:2014 © IEC 2014

The nodes have an addressable memory that can be accessed with read or write services,
either each node consecutively or several nodes simultaneously. Several Type 12 PDUs can
be embedded within an Ethernet frame, each PDU addressing a cohesive data section. As
shown in Figure 3, the Type 12 PDUs are either transported:

a) directly in the data area of the Ethernet frame,
b) within the data section of a UDP datagram transported via IP.

SourceDestination HeaderEtherType … FCS

16 Bit16 Bit48 Bit48 Bit 32 Bit

Ethernet H. IP Header UDP H. Header

Embedded directly in Ethernet
Frame w. EtherType 0x88A4

Or: via UDP/IP
with UDP Port 0x88A4

TypeRes.Length

… FCS

1 Bit 4 Bit11 Bit

160 Bit 64 Bit

0 11 12 15

1..n EtherCAT
PDU

Figure 3 – Frame structure

Variant a) is limited to one Ethernet subnet, since associated frames are not relayed by
routers. For machine control applications this usually does not represent a constraint. Multiple
Type 12 segments can be connected to one or several switches. The Ethernet MAC address
of the first node within the segment is used for addressing the Type 12 segment.

NOTE 2 Further addressing details are given in the data-link layer service definition (see IEC 61158-3-12).

Variant b) via UDP/IP generates a slightly larger overhead (IP and UDP header), but for less
time-critical applications such as building automation it allows using IP routing. On the master
side any standard UDP/IP implementation can be used.

4.4 Data-link layer overview

Several nodes can be addressed individually via a single Ethernet frame carrying several
Type 12 PDUs. The Type 12 PDUs are packed without gaps. The frame is terminated with the
last Type 12 PDU, unless the frame size is less than 64 octets, in which case the frame will
be padded to 64 octets in length.

Compared with one frame per node this leads to a better utilization of the Ethernet bandwidth.
However, for e.g. a 2 channel digital input node with just 2 bit of user data, the overhead of a
single Type 12 PDU is still excessive.

Therefore the slave nodes may also support logical address mapping. The process data can
be inserted anywhere within a logical address space. If a Type 12 PDU is sent that contains
read or write services for a certain process image area located at the corresponding logical
address, instead of addressing a particular node, the nodes insert the data at or extract the
data from the right place within the process data, as noted in Figure 4.

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/30175910U

IEC 61158-4-12:2014 © IEC 2014 – 25 –

Ethernet HDR Type12
HDR Process Data FCSFrame

HDR WKC

Figure 4 – Mapping of data in a frame

All other nodes that also detect an address match with the process image also insert their
data, so that many nodes can be addressed simultaneously with a single Type 12 PDU. The
master can assemble completely sorted logical process images via a single Type 12 PDU.
Additional mapping is no longer required in the master, so that the process data can be
assigned directly to the different control tasks. Each task can create its own process image
and exchange it within its own timeframe. The physical order of the nodes is completely
arbitrary and is only relevant during the first initialization phase.

The logical address space is 232 Bytes = 4 GByte. Type 12 DL can be considered to be a
serial backplane for automation systems that enables connection to distributed process data
for both large and very small automation devices. Using a standard Ethernet controller and a
standard Ethernet cable, a very large number of I/O channels without practical restrictions on
the distribution can be connected to automation devices, which can be accessed with high
bandwidth, minimum delay and near-optimum usable data rate. At the same time, devices
such as fieldbus scanners can be connected as well, thus preserving existing technologies
and standards.

4.5 Error detection overview

Type 12 DL checks by the Ethernet frame check sequence (FCS) whether a frame was
transmitted correctly. Since one or several slaves modify the frame during the transfer, the
FCS is recalculated by each slave. If a slave detects a checksum error, the slave does not
repair the FCS but flags the master by incrementing the error counter, so that a fault can be
located precisely.

When reading data from or writing data to a Type 12 PDU, the addressed slave increments a
working counter (WKC) positioned at the end of each Type 12 PDU. Analyzing the working
counter allows the master to check if the expected number of nodes has processed the
corresponding Type 12 PDU.

4.6 Node reference model

4.6.1 Mapping onto OSI basic reference model

Type 12 DL is described using the principles, methodology and model of ISO/IEC 7498
Information processing systems — Open Systems Interconnection — Basic Reference Model
(OSI). The OSI model provides a layered approach to communications standards, whereby
the layers can be developed and modified independently. The Type 12 DL specification
defines functionality from top to bottom of a full OSI stack, and some functions for the users of
the stack. Functions of the intermediate OSI layers, layers 3 – 6, are consolidated into either
the Type 12 DL data-link layer or the Type 12 DL Application layer. Likewise, features
common to users of the Fieldbus Application layer may be provided by the Type 12 DL
Application layer to simplify user operation, as noted in Figure 5.

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/BSENISOIEC7498

 – 26 – IEC 61158-4-12:2014 © IEC 2014

CANopen over EtherCAT

Physical Layer

Type12 Data Link Layer

SDO

Process DataMailbox

Object Dictionary

AL Control/
AL Status

Application

PDO Mapping
IP

UDPTCP

HTTP,
FTP, …

DL

AL

Slave
Address

DL
Info

Sync Mngr
Settings

S
la

ve
In

fo
rm

at
io

n

FMMUFMMUFMMUFMMU n

DL Control/
DL Status

File
Access

over
EtherCAT

Files

Layer
Management

Ethernet
over EtherCAT

DL-User

Figure 5 – Slave node reference model

4.6.2 Data-link Layer features

The data link layer provides basic time critical support for data communications among
devices connected via Type 12 DL. The term “time-critical” is used to describe applications
having a time-window, within which one or more specified actions are required to be
completed with some defined level of certainty. Failure to complete specified actions within
the time window risks failure of the applications requesting the actions, with attendant risk to
equipment, plant and possibly human life.

The data link layer has the task to compute, compare and generate the frame check sequence
and provide communications by extracting data from and/or including data into the Ethernet
frame. This is done depending on the data link layer parameters which are stored at pre-
defined memory locations. The application data is made available to the application layer in
physical memory, either in a mailbox configuration or within the process data section.

4.7 Operation overview

4.7.1 Relation to ISO/IEC 8802-3

This part specifies data link layer services in addition to those specified in ISO/IEC 8802-3.

4.7.2 Frame structure

A Type 12 Ethernet frame contains one or several Type 12 PDUs (as shown in Figure 6), each
addressing individual devices and/or memory areas. The Type 12 frame is recognized by the
combination of the EtherType 0x88A41 and the corresponding Type 12 frame header or, when
transported via UDP/IP according to IETF RFC 791/IETF RFC 768 (as shown in Figure 7) by
the Destination UDP port 34980=0x88A42 and the Type 12 frame header. Fragmentation of IP
packets will be ignored. The UDP checksum may be set to 0 by Slaves and could be ignored.

1 The EtherType 0x88A4 was assigned for Type 12 (EtherCAT) by the IEEE Registration Authority.

2 The UDP Port 34980 was assigned for Type 12 (EtherCAT) by the Internet Assigned Numbers Authority (IANA).

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/00327038U
http://dx.doi.org/10.3403/00327038U

IEC 61158-4-12:2014 © IEC 2014 – 27 –

No check on IP type of service, IP header checksum, IP packet length and UDP length is
required.

Each Type 12 PDU consists of a Type 12 header, the data area and a subsequent counter
area (working counter), which is incremented by all nodes that were addressed by the
Type 12 PDU and have exchanged associated data.

DA SA Ether
TypePre Frame

HDR FCS
Ethernet Header Type12 Enet

(6) (6) (2)(8) (2) (4)

Type12
HDR Data Type12

HDR Data
Typ12 PDU Type12 PDU

(10) (1….1486) (10) (34….1474)(2) (2)

W
K

C

W
K

C

Figure 6 – Type 12 PDUs embedded in Ethernet frame

DA SA Ether
TypePre Frame

HDR FCS
Ethernet Header Type12 Enet

(6) (6) (2)(8) (2) (4)

HDR
IP

(20)

HDR
UDP

(8)

Type12
HDR Data Type12

HDR Data
Type12 PDU Type12 PDU

(10) (1….1458) (10) (1….1446)(2) (2)

W
KC

W
KC

Figure 7 – Type 12 PDUs embedded in UDP/IP

5 Frame structure

5.1 Frame coding principles

Type 12 DL uses a standard ISO/IEC 8802-3 Ethernet frame structure for transporting
Type 12 PDUs. The PDUs may alternatively be sent via UDP/IP. The Type 12 specific
protocol parts are identical in both cases.

5.2 Data types and encoding rules

5.2.1 General description of data types and encoding rules

To be able to exchange meaningful data, the format of this data and its meaning have to be
known by the producer and consumer(s). This specification models this by the concept of data
types.

The encoding rules define the representation of values of data types and the transfer syntax
for the representations. Values are represented as bit sequences. Bit sequences are
transferred in sequences of octets (bytes). For numerical data types the encoding is little
endian style as shown in Table 6.

The data types and encoding rules shall be valid for the DL services and protocols as well as
for the AL services and protocols specified. The encoding rules for the Ethernet frame are
specified in ISO/IEC 8802-3. The DLSDU of Ethernet is an octet string. The transmission
order within octets depends upon MAC and PhL encoding rules.

5.2.2 Transfer syntax for bit sequences

For transmission across Type 12 DL a bit sequence is reordered into a sequence of octets.
Hexadecimal notation is used for octets as specified in ISO/IEC 9899. Let b = b0...bn-1 be a
bit sequence. Denote k a non-negative integer such that 8(k - 1) < n < 8k. Then b is
transferred in k octets assembled as shown in Table 6. The bits bi, i > n of the highest
numbered octet are do not care bits.

Octet 1 is transmitted first and octet k is transmitted last. Hence the bit sequence is
transferred as follows across the network (transmission order within an octet is determined by
ISO/IEC 8802-3):

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/00327038U
http://dx.doi.org/10.3403/00327038U
http://dx.doi.org/10.3403/01060285U
http://dx.doi.org/10.3403/00327038U

 – 28 – IEC 61158-4-12:2014 © IEC 2014

 b7, b6, ..., b0, b15, ..., b8, ...

Table 6 – Transfer Syntax for bit sequences

Octet number 1. 2. k.

 b7 .. b0 b15 .. b8 b8k –1 .. b8k -8

EXAMPLE

Bit 9 ... Bit 0

10b 0001b 1100b

0x2 0x1 0xC

 = 0x21C

The bit sequence b = b0 .. b9 = 0011 1000 01b represents an Unsigned10 with the value 0x21C and is transferred
in two octets: First 0x1C and then 0x02.

5.2.3 Unsigned Integer

Data of basic data type Unsignedn has values in the non-negative integers. The value range
is 0, ..., 2n-1. The data is represented as bit sequences of length n. The bit sequence

 b = b0 ...bn-1

is assigned the value

 Unsignedn(b) = bn-1×2n-1+ ...+ b1×21 + b0×20

The bit sequence starts on the left with the least significant byte.

EXAMPLE The value 266 = 0x10A with data type Unsigned16 is transferred in two octets, first 0x0A and then
0x01.

The Unsignedn data types are transferred as specified in Table 7. Unsigned data types as
Unsigned1 to Unsigned7 and Unsigned 9 to Unsigned15 will be used too. In this case the next
element will start at the first free bit position as denoted in 3.7.1.

Table 7 – Transfer syntax for data type Unsignedn

octet number 1. 2. 3. 4. 5. 6. 7. 8.

Unsigned8 b7..b0

Unsigned16 b7..b0 b15..b8

Unsigned32 b7..b0 b15..b8 b23..b16 b31..b24

Unsigned64 b7..b0 b15..b8 b23..b16 b31..b24 b39..b32 b47..b40 b55..b48 b63..b56

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 29 –

5.2.4 Signed Integer

Data of basic data type Integern has values in the integers. The value range is from -2n-1 to
2n-1-1. The data is represented as bit sequences of length n. The bit sequence

 b = b0 .. bn-1

is assigned the value

 Integern(b) = bn-2×2n-2 + ...+ b1×21 + b0×20 if bn-1 = 0

and, performing two's complement arithmetic,

 Integern(b) = - Integern(^b) - 1 if bn-1 = 1

NOTE The bit sequence starts on the left with the least significant bit.

EXAMPLE The value –266 = 0xFEF6 with data type Integer16 is transferred in two octets, first 0xF6 and then
0xFE.

The Integern data types are transferred as specified in Table 8. Integer data types as Integer1
to Integer7 and Integer9 to Integer15 will be used too. In this case the next element will start
at the first free bit position as denoted in 3.7.1.

Table 8 – Transfer syntax for data type Integern

Octet number 1. 2. 3. 4. 5. 6. 7. 8.

Integer8 b7..b0

Integer16 b7..b0 b15..b8

Integer32 b7..b0 b15..b8 b23..b16 b31..b24

Integer64 b7..b0 b15..b8 b23..b16 b31..b24 b39..b32 b47..b40 b55..b48 b63..b56

5.2.5 Octet String

The data type OctetStringlength is defined below; length is the length of the octet string.

ARRAY [length] OF Unsigned8 OctetStringlength

5.2.6 Visible String

The data type VisibleStringlength is defined below. The admissible values of data of type
VISIBLE_CHAR are 0h and the range from 0x20 to 0x7E. The data are interpreted as 7-bit
coded characters. length is the length of the visible string.

Unsigned8 VISIBLE_CHAR

ARRAY [length] OF VISIBLE_CHAR VisibleStringlength

There is no 0x0 necessary to terminate the string.

5.3 DLPDU structure

5.3.1 Type 12 frame inside an Ethernet frame

The frame structure in consists of the following data entries as specified in Table 9.

BS EN 61158-4-12:2014

 – 30 – IEC 61158-4-12:2014 © IEC 2014

Table 9 – Type 12 frame inside an Ethernet frame

Frame part Data field Data type Value/description

Ethernet Dest MAC BYTE[6] Destination MAC Address as specified in
ISO/IEC 8802-3

 Src MAC BYTE[6] Source MAC Address as specified in
ISO/IEC 8802-3

(optional) VLAN Tag BYTE[4] 0x81, 0x00 and two bytes Tag Control Information
as specified in IEEE 802.1Q

 Ether Type BYTE[2] 0x88, 0xA4 (Type 12)

 Type 12
frame

 specified in 5.3.3

 Padding BYTE[n] shall be inserted if DL PDU is shorter than 64
octets as specified in ISO/IEC 8802-3

Ethernet FCS FCS Unsigned32 Standard Ethernet Checksum coding as specified
in ISO/IEC 8802-3

5.3.2 Type 12 frame inside a UDP datagram

The frame structure in consists of the following data entries as specified in Table 10.

Table 10 – Type 12 frame inside an UDP PDU

Frame part Data field Data type Value/description

Ethernet Dest MAC BYTE[6] See Table 9

 Src MAC BYTE[6] See Table 9

(optional) VLAN Tag BYTE[4] See Table 9

 Ether Type BYTE[2] 0x08, 0x00 (IP)

IP VersionHL BYTE 0x45 (IP Version(4) header length (5*4 octets))

 Service BYTE 0x00 (IP Type of service)

 TotalLength Unsigned16 (IP total length of service) - not checked within Type 12
segment

 Identification Unsigned16 (IP identification packet for fragmented service) - not
checked within Type 12 segment

 Flags BYTE (IP flags – they will not be considered but a
fragmentation of Type 12 frame will result in an error) -
not checked within Type 12 segment

 Fragments BYTE (IP fragment number - fragmentation of Type 12 frame
will result in an error) - not checked within Type 12
segment

 Ttl BYTE (IP time to live – only checked at routers) - not checked
within Type 12 segment

 Protocol BYTE 0x11 (IP sub-protocol – this value is reserved for UDP)

 Header
checksum

Unsigned16 (IP header checksum) - not checked within Type 12
segment

 Source IP
address

BYTE[4] (IP source address of the originator) - not checked
within Type 12 segment

 Destination
IP address

BYTE[4] (IP destination address of the target of the frame –
within a Type 12 segment usually a multicast address as
an individual address requires the Address Resolution
Protocol ARP) - not checked within Type 12 segment

UDP Src port WORD (UDP Source Port) - not checked within Type 12
segment

 Dest port WORD 0x88A4 (UDP Source Port)

 Length WORD (UDP length of frame)) - not checked within Type 12

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/00327038U
http://dx.doi.org/10.3403/00327038U
http://dx.doi.org/10.3403/00327038U
http://dx.doi.org/10.3403/00327038U

IEC 61158-4-12:2014 © IEC 2014 – 31 –

Frame part Data field Data type Value/description
segment

 Checksum WORD (UDP checksum of frame) – will be set to 0 for Type 12
frames but without checking

 Type 12
frame

 specified in 5.3.3

 Padding BYTE[n] shall be inserted if DL PDU is shorter than 64 octets as
specified in ISO/IEC 8802-3

Ethernet FCS FCS Unsigned32 Standard Ethernet Checksum coding as specified in
ISO/IEC 8802-3

NOTE 1 IP packet structure and coding requirements are as specified in IETF RFC 791.

NOTE 2 The ordering of octets in multi-octet values is encoded differently in IETF protocols (see IETF RFC 768
and RFC 791) than it is within the Type 12 DL-protocol.

5.3.3 Type 12 frame structure

The Type 12 frame structure in shall consist one of the structures specified in Table 11,
Table 12 and Table 13.

Table 11 – Type 12 frame structure containing Type 12 PDUs

Frame part Data field Data type Value/description

Type 12 Frame Length unsigned11 Length of this frame (minus 2 octets)

 Reserved unsigned 1 0

 Type unsigned4 Protocol Type = Type 12 DLPDUs (0x01)

 Type 12 PDU 1 specified in 5.4

 … specified in 5.4

 Type 12 PDU n specified in 5.4

Table 12 – Type 12 frame structure containing network variables

Frame part Data field Data type Value/description

Type 12 frame Length unsigned11 Length of this frame (minus 2 octets)

 reserved unsigned 1 0

 Type unsigned4 Protocol type = network variables (0x04)

Publisher header PubID BYTE[6] Publisher ID

 CntNV Unsigned16 Number of Network variables contained in this
Type 12 frame

 CYC Unsigned16 Cycle Number of the publisher side

 reserved BYTE[2] 0x00, 0x00

 Network variable 1 Specified in 5.5

 … Specified in 5.5

 Network variable n Specified in 5.5

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/00327038U
http://dx.doi.org/10.3403/00327038U

 – 32 – IEC 61158-4-12:2014 © IEC 2014

Table 13 – Type 12 frame structure containing mailbox

Frame part Data field Data type Value/description

Type 12 frame Length unsigned11 Length of this frame (minus 2 octets)

 reserved unsigned 1 0

 Type unsigned4 Protocol type = mailbox (0x05)

 Mailbox Specified in 5.6

5.4 Type 12 DLPDU structure

5.4.1 Read

5.4.1.1 Overview

With the read services a master reads data to memory of one or many slaves. The working
counter shall be incremented by each slave if at least one of the addressed attribute is
present.

5.4.1.2 Auto increment physical read (APRD)

The auto increment physical read (APRD) coding is specified in Table 14. Each slave
increments the address ADP. The slave that receives an auto-increment address with value
zero executes the requested read operation.

Table 14 – Auto increment physical read (APRD)

Frame part Data field Data type Value/description

Type 12 PDU CMD Unsigned8 0x01 (command APRD)

 IDX Unsigned8 Index

 ADP WORD Auto increment address

 ADO WORD Physical memory or register address

 LEN Unsigned11 Length of the DATA data field

 reserved Unsigned3 0x00

 C Unsigned1 Circulating frame
0: Frame is not circulating,
1: Frame has circulated once

 NEXT Unsigned1 0x00: last Type 12 PDU in Type 12 frame

0x01: Type 12 PDU in Type 12 frame follows

 IRQ WORD External event

 DATA OctetString
LEN

Data, structure as specified in 5.6, Clause 6 or by
DLS-user

 WKC WORD Working counter

CMD

The parameter Command shall contain the service command.
IDX

The parameter Index is the local identifier in the master of the service and shall not be
changed by the slave.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 33 –

ADP
Each slave shall increment this parameter and the slave that receives this parameter
with a value of zero shall perform the read access.

NOTE That means, the parameter contains the negative position of the slave in the logical loop
beginning with 0 at the master side (e.g. –7 means that seven slaves are between the master and the
addressed slave). At the confirmation this parameter contains the value of the request incremented by the
number of transited slave devices.

ADO
This parameter shall contain the start address in the physical memory of the slave
where the data to be read is stored

LEN
This parameter shall contain the size in octets of the data to be read.

C
This Parameter shall indicate that the frame has circulated in the network and shall not
be forwarded.

NEXT
This parameter shall specify if there is another Type 12 PDU in the frame.

IRQ
This parameter shall contain the External event (see Table 38) masked by the External
event mask (see Table 39).

DATA
This parameter shall contain the read data if the access is valid at the addressed
slaves site. Otherwise the value send out with the request remains unchanged.

WKC
This parameter shall be incremented by one if the data was successfully read.

5.4.1.3 Configured address physical read (FPRD)

The configured address physical read (FPRD) coding is specified in Table 15.

Table 15 – Configured address physical read (FPRD)

Frame part Data field Data type Value/description

Type 12 PDU CMD Unsigned8 0x04 (command FPRD)

 IDX Unsigned8 Index

 ADP WORD Configured station address or configured station
alias

 ADO WORD Physical memory or register address

 LEN Unsigned11 Length of the DATA data field

 reserved Unsigned3 0x00

 C Unsigned1 Circulating frame
0: Frame is not circulating,
1: Frame has circulated once

 NEXT Unsigned1 0x00: last Type 12 PDU in Type 12 frame

0x01: Type 12 PDU in Type 12 frame follows

 IRQ WORD External event

 DATA OctetString
LEN

Data, structure as specified in 5.6, Clause 6 or by
DLS-user

 WKC WORD Working counter

BS EN 61158-4-12:2014

 – 34 – IEC 61158-4-12:2014 © IEC 2014

CMD
The parameter Command shall contain the service command.

IDX
The parameter Index is the local identifier in the master of the service; it shall not be
changed by the slave.

ADP
The slave which has the value of D_address as station address or station address
alias shall execute a read action.

ADO
This parameter shall contain the start address in the physical memory of the slave
where the data to be read is stored.

LEN
This parameter shall contain the size in octets of the data to be read.

C
This Parameter shall indicate that the frame has circulated in the network and shall not
be forwarded.

NEXT
This parameter shall specify if there is another Type 12 PDU in the frame.

IRQ
This parameter shall contain the External event (see Table 38) masked by the External
event mask (see Table 39).

DATA
This parameter shall contain the read data if the access is valid at the addressed
slaves site. Otherwise the value send out with the request remains unchanged.

WKC
This parameter shall be incremented by one if the data was successfully read.

5.4.1.4 Broadcast read (BRD)

The broadcast read (BRD) coding is specified in Table 16.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 35 –

Table 16 – Broadcast read (BRD)

Frame part Data field Data type Value/description

Type 12 PDU CMD Unsigned8 0x07 (command BRD)

 IDX Unsigned8 Index

 ADP WORD Parameter incremented by 1 at each station
forwarding BRD PDU

 ADO WORD Physical memory or register address

 LEN Unsigned11 Length of the DATA data field

 reserved Unsigned3 0x00

 C Unsigned1 Circulating frame
0: Frame is not circulating,
1: Frame has circulated once

 NEXT Unsigned1 0x00: last Type 12 PDU in Type 12 frame

0x01: Type 12 PDU in Type 12 frame follows

 IRQ WORD External event

 DATA OctetString
LEN

Data, structure as specified in 5.6, Clause 6 or by
DLS-user

 WKC WORD Working counter

CMD

The parameter Command shall contain the service command.
IDX

The parameter Index is the local identifier in the master of the service; it shall not be
changed by the slave.

ADP
This parameter shall be incremented by one at each slave.

ADO
This parameter shall contain the start address in the physical memory where the data
to be read is stored. Each slave who supports the requested physical memory area
(physical memory address and length) shall respond to this service.

LEN
This parameter shall contain the size in octets of the data to be read.

C
This Parameter shall indicate that the frame has circulated in the network and shall not
be forwarded.

NEXT
This parameter shall specify if there is another Type 12 PDU in the frame.

IRQ
This parameter shall contain the External event (see Table 38) masked by the External
event mask (see Table 39).

DATA
This parameter shall contain the read data collected before entry or default values of
the master. This parameter shall contain the result of the bitwise-OR operation
between the parameter data of the request and the addressed data in the slave.

WKC
This parameter shall be incremented by one by all slaves which made the bitwise-OR
of the requested data.

BS EN 61158-4-12:2014

 – 36 – IEC 61158-4-12:2014 © IEC 2014

5.4.1.5 Logical read (LRD)

The logical read (LRD) coding is specified in Table 17. The slave copies only data to the
parameter data that are mapped by an FMMU entity from the logical address space to a
physical address.

Table 17 – Logical read (LRD)

Frame part Data field Data type Value/description

Type 12 PDU CMD Unsigned8 0x0A (command LRD)

 IDX Unsigned8 Index

 ADR DWORD Logical address

 LEN Unsigned11 Length of the DATA data field

 reserved Unsigned3 0x00

 C Unsigned1 Circulating frame
0: Frame is not circulating,
1: Frame has circulated once

 NEXT Unsigned1 0x00: last Type 12 PDU in Type 12 frame

0x01: Type 12 PDU in Type 12 frame follows

 IRQ WORD reserved for future use

 DATA OctetString
LEN

Data, structure as specified by DLS-user

 WKC WORD Working counter

CMD
The parameter Command shall contain the service command.

IDX
The parameter Index is the local identifier in the master of the service; it shall not be
changed by the slave.

ADR
This parameter shall contain the start address in the logical memory where the data to
be read is located. All slaves which have one or more address matches of the
requested logical memory area (logical memory address and length) in their FMMU
entities shall map the requested data to the data parameter as described by the FMMU
entity settings and increment the working counter.

LEN
This parameter shall contain the size in octets of the data to be read.

C
This Parameter shall indicate that the frame has circulated in the network and shall not
be forwarded.

NEXT
This parameter shall specify if there is another Type 12 PDU in the frame.

IRQ
This parameter shall contain the External event (see Table 38) masked by the External
event mask (see Table 39).

DATA
On confirm this parameter specifies the data read from the device. Each slave which
detects an address match of the requested logical memory area puts the data of the
corresponding physical memory area in the correct part of this parameter.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 37 –

WKC
This parameter shall be incremented by one by all slaves which detect an address
match of the requested logical memory area.

5.4.2 Write

5.4.2.1 Overview

With the write services a master writes data to register or memory of one or many slaves. The
working counter is incremented if the addressed attribute is present. The working counter can
be incremented by one if at least one part of the data can be written.

5.4.2.2 Auto increment physical write (APWR)

The auto increment physical write (APWR) coding is specified in Table 18. Each slave
increments the address. The slave that receives a zero value at auto-increment address
parameter will execute the requested write operation.

Table 18 – Auto Increment physical write (APWR)

Frame part Data field Data type Value/description

Type 12 PDU CMD Unsigned8 0x02 (command APWR)

 IDX Unsigned8 Index

 ADP WORD Auto increment address

 ADO WORD Physical memory or register address

 LEN Unsigned11 Length of the DATA data field

 reserved Unsigned3 0x00

 C Unsigned1 Circulating frame
0: Frame is not circulating,
1: Frame has circulated once

 NEXT Unsigned1 0x00: last Type 12 PDU in Type 12 frame

0x01: Type 12 PDU in Type 12 frame follows

 IRQ WORD External event

 DATA OctetString
LEN

Data, structure as specified in 5.6, Clause 6 or by
DLS-user

 WKC WORD Working counter

CMD

The parameter Command shall contain the service command.
IDX

The parameter Index is the local identifier in the master of the service; it shall not be
changed by the slave.

ADP
The slave will be addressed by its position in the segment. Each slave shall increment
this parameter, the slave who receives the value zero of this parameter shall respond
to this service.

NOTE That means, the parameter contains the negative position of the slave in the logical ring beginning
with 0 at the master side (e.g. -7 means 7 slaves are between master and the addressed slave). At the
confirmation this parameter contains the value of the request incremented by the number of transited slave
devices.

ADO
This parameter shall contain the start address in the physical memory of the slave
where the data to be written is stored.

BS EN 61158-4-12:2014

 – 38 – IEC 61158-4-12:2014 © IEC 2014

LEN
This parameter shall contain the size in octets of the data to be written.

C
This Parameter shall indicate that the frame has circulated in the network and shall not
be forwarded.

NEXT
This parameter shall specify if there is another Type 12 PDU in the frame.

IRQ
This parameter shall contain the External event (see Table 38) masked by the External
event mask (see Table 39).

DATA
This parameter shall contain the data to be written.

WKC
This parameter shall be incremented by one if the data can be successfully written.

5.4.2.3 Configured address physical write (FPWR)

The configured address physical write (FPWR) coding is specified in Table 19.

Table 19 – Configured address physical write (FPWR)

Frame part Data field Data type Value/description

Type 12 PDU CMD Unsigned8 0x05 (command FPWR)

 IDX Unsigned8 Index

 ADP WORD Configured station address or configured station
alias

 ADO WORD Physical memory or register address

 LEN Unsigned11 Length of the DATA data field

 reserved Unsigned3 0x00

 C Unsigned1 Circulating frame
0: Frame is not circulating,
1: Frame has circulated once

 NEXT Unsigned1 0x00: last Type 12 PDU in Type 12 frame

0x01: Type 12 PDU in Type 12 frame follows

 IRQ WORD External event

 DATA OctetString
LEN

Data, structure as specified in 5.6, Clause 6 or by
DLS-user

 WKC WORD Working counter

CMD

The parameter Command shall contain the service command.
IDX

The parameter Index is the local identifier in the master of the service; it shall not be
changed by the slave.

ADP
The slave which has the value of D_address as station address or station address
alias shall execute a write action.

ADO
This parameter shall contain the start address in the physical memory of the slave
where the data to be written is stored.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 39 –

LEN
This parameter shall contain the size in octets of the data to be written.

C
This Parameter shall indicate that the frame has circulated in the network and shall not
be forwarded.

NEXT
This parameter shall specify if there is another Type 12 PDU in the frame.

IRQ
This parameter shall contain the External event (see Table 38) masked by the External
event mask (see Table 39).

DATA
This parameter shall contain the data to be written.

WKC
This parameter shall be incremented by one if the data was successfully written.

5.4.2.4 Broadcast write (BWR)

The broadcast write (BWR) coding is specified in Table 20.

Table 20 – Broadcast write (BWR)

Frame part Data field Data type Value/description

Type 12 PDU CMD Unsigned8 0x08 (command BWR)

 IDX Unsigned8 Index

 ADP WORD Parameter incremented by 1 at each station
forwarding BWR PDU

 ADO WORD Physical memory or register address

 LEN Unsigned11 Length of the DATA data field

 reserved Unsigned3 0x00

 C Unsigned1 Circulating frame
0: Frame is not circulating,
1: Frame has circulated once

 NEXT Unsigned1 0x00: last Type 12 PDU in Type 12 frame

0x01: Type 12 PDU in Type 12 frame follows

 IRQ WORD External event

 DATA OctetString
LEN

Data, structure as specified in 5.6, Clause 6 or by
DLS-user

 WKC WORD Working counter

CMD

The parameter Command shall contain the service command.
IDX

The parameter Index is the local identifier in the master of the service; it shall not be
changed by the slave.

ADP
This parameter shall be incremented by one at each slave.

ADO
This parameter shall contain the start address in the physical memory where the data
to be written is stored. Each slave who supports the requested physical memory area
(physical memory address and length) shall respond to this service.

BS EN 61158-4-12:2014

 – 40 – IEC 61158-4-12:2014 © IEC 2014

LEN
This parameter shall contain the size in octets of the data to be written.

C
This Parameter shall indicate that the frame has circulated in the network and shall not
be forwarded.

NEXT
This parameter shall specify if there is another Type 12 PDU in the frame.

IRQ
This parameter shall contain the External event (see Table 38) masked by the External
event mask (see Table 39).

DATA
This parameter shall contain the data to be written.

WKC
This parameter shall be incremented by one by all slaves which write data in their
physical memory.

5.4.2.5 Logical write (LWR)

The logical write (LWR) coding is specified in Table 21. The slave copies only data to the
memory or register that are mapped by an FMMU entity from the logical address space to a
physical address.

Table 21 – Logical write (LWR)

Frame part Data field Data type Value/description

Type 12 PDU CMD Unsigned8 0x0B (command LWR)

 IDX Unsigned8 Index

 ADR DWORD Logical address

 LEN Unsigned11 Length of the DATA data field

 reserved Unsigned3 0x00

 C Unsigned1 Circulating frame
0: Frame is not circulating,
1: Frame has circulated once

 NEXT Unsigned1 0x00: last Type 12 PDU in Type 12 frame

0x01: Type 12 PDU in Type 12 frame follows

 IRQ WORD reserved for future use

 DATA OctetString
LEN

Data, structure as specified by DLS-user

 WKC WORD Working counter

CMD

The parameter Command shall contain the service command.
IDX

The parameter Index is the local identifier in the master of the service; it shall not be
changed by the slave.

ADR
This parameter shall contain the start address in the logical memory where the data to
be written is located. All slaves which have one or more address matches of the
requested logical memory area (logical memory address and length) in their FMMUs
shall respond to this service.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 41 –

LEN
This parameter shall contain the size in octets of the data to be written.

C
This Parameter shall indicate that the frame has circulated in the network and shall not
be forwarded.

NEXT
This parameter shall specify if there is another Type 12 PDU in the frame.

IRQ
This parameter shall contain the External event (see Table 38) masked by the External
event mask (see Table 39).

DATA
This parameter shall contain the data to be written. Each slave which detects an
address match of the requested logical memory area will put the data of the correct
part of this parameter in the corresponding physical memory area.

WKC
This parameter shall be incremented by one by all slaves who detect an address match
of the requested logical memory area and if the data was successfully written

5.4.3 Read write

5.4.3.1 Auto increment physical read write (APRW)

The optional auto increment physical read write (APRW) coding is specified in Table 22. Each
slave increments the address. The slave that receives a zero value at auto-increment address
parameter will execute the requested operation.

Table 22 – Auto increment physical read write (APRW)

Frame part Data field Data type Value/description

Type 12 PDU CMD Unsigned8 0x03 (command APRW)

 IDX Unsigned8 Index

 ADP WORD Auto increment address

 ADO WORD Physical memory or register address

 LEN Unsigned11 Length of the DATA data field

 reserved Unsigned3 0x00

 C Unsigned1 Circulating frame
0: Frame is not circulating,
1: Frame has circulated once

 NEXT Unsigned1 0x00: last Type 12 PDU in Type 12 frame

0x01: Type 12 PDU in Type 12 frame follows

 IRQ WORD External event

 DATA OctetString
LEN

Data, structure as specified in 5.6, Clause 6 or by
DLS-user

 WKC WORD Working counter

CMD

The parameter Command shall contain the service command.
IDX

The parameter Index is the local identifier in the master of the service; it shall not be
changed by the slave.

BS EN 61158-4-12:2014

 – 42 – IEC 61158-4-12:2014 © IEC 2014

ADP
The slave will be addressed by its position in the segment. Each slave shall increment
this parameter, the slave who receives the value zero of this parameter shall respond
to this service.

NOTE That means, the parameter contains the negative position of the slave in the logical ring beginning
with 0 at the master side (e.g. -7 means 7 slaves are between master and the addressed slave). At the
confirmation this parameter contains the value of the request incremented by the number of transited slave
devices.

ADO
This parameter shall contain the start address in the physical memory of the slave
where data to be read and written is stored.

LEN
This parameter shall contain the size in octets of the data to be written and read.

C
This Parameter shall indicate that the frame has circulated in the network and shall not
be forwarded.

NEXT
This parameter shall specify if there is another Type 12 PDU in the frame.

IRQ
This parameter shall contain the External event (see Table 38) masked by the External
event mask (see Table 39).

DATA
This parameter shall contain the data to be written and the data read from the
addressed slave if the service can be executed successfully.

WKC
This parameter shall be incremented by two if the data was successfully written and
additionally by one if the data was successfully read.

5.4.3.2 Configured address physical read write (FPRW)

The optional configured address physical read write (FPRW) coding is specified in Table 23.

Table 23 – Configured address physical read write (FPRW)

Frame part Data field Data type Value/description

Type 12 PDU CMD Unsigned8 0x06 (command FPRW)

 IDX Unsigned8 Index

 ADP WORD Configured station address or configured station
alias

 ADO WORD Physical memory or register address

 LEN Unsigned11 Length of the DATA data field

 reserved Unsigned3 0x00

 C Unsigned1 Circulating frame
0: Frame is not circulating,
1: Frame has circulated once

 NEXT Unsigned1 0x00: last Type 12 PDU in Type 12 frame

0x01: Type 12 PDU in Type 12 frame follows

 IRQ WORD External event

 DATA OctetString
LEN

Data, structure as specified in 5.6, Clause 6 or by
DLS-user

 WKC WORD Working counter

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 43 –

CMD

The parameter Command shall contain the service command.
IDX

The parameter Index is the local identifier in the master of the service; it shall not be
changed by the slave.

ADP
The slave which has the value of D_address as station address or station address
alias shall execute a read action followed by a write action.

ADO
This parameter shall contain the start address in the physical memory of the slave
where the data to be read and written is stored.

LEN
This parameter shall contain the size in octets of the data to be written and read.

C
This Parameter shall indicate that the frame has circulated in the network and shall not
be forwarded.

NEXT
This parameter shall specify if there is another Type 12 PDU in the frame.

IRQ
This parameter shall contain the External event (see Table 38) masked by the External
event mask (see Table 39).

DATA
This parameter shall contain the data to be written and the data read from the
addressed slave if the service can be executed successfully.

WKC
This parameter shall be incremented by two if the data was successfully written and
additionally by one if the data was successfully read.

5.4.3.3 Broadcast read write (BRW)

The optional broadcast read write (BRW) coding is specified in Table 24.

BS EN 61158-4-12:2014

 – 44 – IEC 61158-4-12:2014 © IEC 2014

Table 24 – Broadcast read write (BRW)

Frame part Data field Data type Value/description

Type 12 PDU CMD Unsigned8 0x09 (command BRW)

 IDX Unsigned8 Index

 ADP WORD Parameter incremented by 1 at each station
forwarding BRW PDU

 ADO WORD Physical memory or register address

 LEN Unsigned11 Length of the DATA data field

 reserved Unsigned3 0x00

 C Unsigned1 Circulating frame
0: Frame is not circulating,
1: Frame has circulated once

 NEXT Unsigned1 0x00: last Type 12 PDU in Type 12 frame

0x01: Type 12 PDU in Type 12 frame follows

 IRQ WORD External event

 DATA OctetString
LEN

Data, structure as specified in 5.6, Clause 6 or by
DLS-user

 WKC WORD Working Counter

CMD

The parameter Command shall contain the service command.
IDX

The parameter Index is the local identifier in the master of the service; it shall not be
changed by the slave.

ADP
This parameter shall be incremented by one at each slave.

ADO
This parameter shall contain the start address in the physical memory where the data
to be read and written is stored. Each slave who supports the requested physical
memory area (physical memory address and length) shall respond to this service.

LEN
This parameter shall contain the size in octets of the data to be written and read.

C
This Parameter shall indicate that the frame has circulated in the network and shall not
be forwarded.

NEXT
This parameter shall specify if there is another Type 12 PDU in the frame.

IRQ
This parameter shall contain the External event (see Table 38) masked by the External
event mask (see Table 39).

DATA
This parameter shall contain the data before entry and will be the written. A read
operation is performed before write. This parameter shall contain the result of the
bitwise-OR operation between the parameter data of the request and the addressed
data in the slave.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 45 –

WKC
This parameter shall be incremented by two by all slaves if the data was successfully
written and additionally by one by all slaves which made the bitwise-OR of the
requested data.

5.4.3.4 Logical read write (LRW)

The optional logical read write (LRW) coding is specified in Table 25. A slave device can
retrieve data with this service (write operation) and put data with this service (read operation).
The slave will copy in or out only data to or from the parameter data that are mapped by an
FMMU entity from the logical address space to a physical address. . It is highly recommended
to support this command for better system performance.

Table 25 – Logical read write (LRW)

Frame part Data field Data type Value/description

Type 12 PDU CMD Unsigned8 0x0C (command LRW)

 IDX Unsigned8 Index

 ADR DWORD Logical address

 LEN Unsigned11 Length of the DATA data field

 reserved Unsigned3 0x00

 C Unsigned1 Circulating frame
0: Frame is not circulating,
1: Frame has circulated once

 NEXT Unsigned1 0x00: last Type 12 PDU in Type 12 frame

0x01: Type 12 PDU in Type 12 frame follows

 IRQ WORD Reserved for future use

 DATA OctetString
LEN

Data, structure as specified by DLS-user

 WKC WORD Working counter

CMD

The parameter Command shall contain the service command.
IDX

The parameter Index is the local identifier in the master of the service; it shall not be
changed by the slave.

ADR
This parameter shall contain the start address in the logical memory where the data to
be read or written is located. All slaves which have one or more address matches of
the requested logical memory area (logical memory address and length) in their FMMU
shall respond to this service.

LEN
This parameter shall contain the size in octets of the data to be written and read.

C
This Parameter shall indicate that the frame has circulated in the network and shall not
be forwarded.

NEXT
This parameter shall specify if there is another Type 12 PDU in the frame.

IRQ
This parameter shall contain the External event (see Table 38) masked by the External
event mask (see Table 39).

BS EN 61158-4-12:2014

 – 46 – IEC 61158-4-12:2014 © IEC 2014

DATA
This parameter shall contain the data to be written. Each slave who detects an address
match of the requested logical memory area will put the data of the correct part of this
parameter in the corresponding physical memory area. With the confirmation this
parameter shall contain the read data. Each slave who detects an address match of
the addressed logical memory area will put the data of the corresponding physical
memory area in the correct part of this parameter.

WKC
This parameter shall be incremented by each slave by two if a piece of data was
successfully written and additional incremented by one if a piece of data was
successfully read.

5.4.3.5 Auto increment physical read multiple write (ARMW)

The auto increment physical read multiple write (ARMW) coding is specified in Table 26.

Table 26 – Auto increment physical read multiple write (ARMW)

Frame part Data field Data type Value/description

Type 12 PDU CMD Unsigned8 0x0D (command ARMW)

 IDX Unsigned8 Index

 ADP WORD Auto increment or register address

 ADO WORD Physical memory or register address

 LEN Unsigned11 Length of the DATA data field

 reserved Unsigned3 0x00

 C Unsigned1 Circulating frame
0: Frame is not circulating,
1: Frame has circulated once

 NEXT Unsigned1 0x00: last Type 12 PDU in Type 12 frame

0x01: Type 12 PDU in Type 12 frame follows

 IRQ WORD External event

 DATA OctetString
LEN

Data, structure as specified in 5.6, Clause 6 or by
DLS-user

 WKC WORD Working counter

CMD

The parameter Command shall contain the service command.
IDX

The parameter Index is the local identifier in the master of the service; it shall not be
changed by the slave.

ADP
The slave will be addressed by its position in the segment. Each slave shall increment
this parameter, the slave who receives the value zero of this parameter shall execute a
read action – the other slaves shall execute a write action.

NOTE That means, the parameter contains the negative position of the slave in the logical ring beginning
with 0 at the master side (e.g. -7 means 7 slaves are between master and the addressed slave). At the
confirmation this parameter contains the value of the request incremented by the number of transited slave
devices.

ADO
This parameter shall contain the start address in the physical memory of the slave
where data to be read and written is stored.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 47 –

LEN
This parameter shall contain the size in octets of the data to be written and read.

C
This Parameter shall indicate that the frame has circulated in the network and shall not
be forwarded.

NEXT
This parameter shall specify if there is another Type 12 PDU in the frame.

IRQ
This parameter shall contain the External event (see Table 38) masked by the External
event mask (see Table 39).

DATA
This parameter shall contain the data to be written and the data read from the
addressed slave if the service can be executed successfully.

WKC
This parameter shall be incremented by one by each slave if the data was successfully
read or written.

5.4.3.6 Configured address physical read multiple write (FRMW)

The configured address physical read multiple write (FRMW) coding is specified in Table 27.

Table 27 – Configured address physical read multiple write (FRMW)

Frame part Data field Data type Value/description

Type 12 PDU CMD Unsigned8 0x0E (command FRMW)

 IDX Unsigned8 Index

 ADP WORD Configured station address or configured station
alias

 ADO WORD Physical memory address

 LEN Unsigned11 Length of the DATA data field

 reserved Unsigned3 0x00

 C Unsigned1 Circulating frame
0: Frame is not circulating,
1: Frame has circulated once

 NEXT Unsigned1 0x00: last Type 12 PDU in Type 12 frame

0x01: Type 12 PDU in Type 12 frame follows

 IRQ WORD External event

 DATA OctetString
LEN

Data, structure as specified in 5.6, Clause 6 or by
DLS-user

 WKC WORD Working counter

CMD

The parameter Command shall contain the service command.
IDX

The parameter Index is the local identifier in the master of the service; it shall not be
changed by the slave.

ADP
The slave which has the value of D_address as station address or station address
alias shall execute a read action - the other slaves shall execute a write action.

BS EN 61158-4-12:2014

 – 48 – IEC 61158-4-12:2014 © IEC 2014

ADO
This parameter shall contain the start address in the physical memory of the slave
where data to be read and written is stored.

LEN
This parameter shall contain the size in octets of the data to be written and read.

C
This Parameter shall indicate that the frame has circulated in the network and shall not
be forwarded.

NEXT
This parameter shall specify if there is another Type 12 PDU in the frame.

IRQ
This parameter shall contain the External event (see Table 38) masked by the External
event mask (see Table 39).

DATA
This parameter shall contain the data to be written and the data read from the
addressed slave if the service can be executed successfully.

WKC
This parameter shall be incremented by one by all slaves if the data was successfully
read or written.

5.5 Network variable structure

The network variable coding is specified in Table 28.

Table 28 – Network variable

Frame part Data field Data type Value/description

Network variable Index Unsigned16 Index to a DLS-user object

 HASH Unsigned16 Hash algorithm over the data structure of the data
to detect changes

 LEN Unsigned16 Length

 Q Unsigned16 Quality

 DATA OctetString
[LEN]

Data, structure as specified by DLS-user

5.6 Type 12 mailbox structure

The mailbox coding is specified in Table 29. The mailbox encoding shall be used in
conjunction with Type 12 mailbox memory elements or as coding for data structures
conveying mailboxes via Ethernet DL or via IP.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 49 –

Table 29 – Mailbox

Frame part Data field Data type Value/description

Mailbox Length Unsigned16 Length of the Mailbox Service Data

 Address WORD Station Address of the source, if a master is
client, Station Address of the destination, if a
slave is client or data are transmitted outside the
target Type 12 segment

 Channel Unsigned6 0x00 (Reserved for future)

 Priority Unsigned2 0x00: lowest priority

…

0x03: highest priority

 Type Unsigned4 0x00: error(ERR)

0x01: reserved

0x02: Ethernet over Type 12 (EoE)

0x03: CAN application protocol over Type 12
(CoE)

0x04: File Access over Type 12 (FoE)

0x05: Servo Drive profile over Type 12 (SoE)

0x06 -0x0e: reserved

0x0f: vendor specific

 Cnt Unsigned3 Counter of the mailbox services (0 reserved, 1 is
start value, next value after 7 is 1.

The Slave shall increment the Cnt value for each
new mailbox service, the Master shall check this
for detection of lost mailbox services. The Master
shall change (should increment) the Cnt value.
The slave shall check this for detection of a write
repeat service. The Slave shall not check the
sequence of the Cnt value. The master and the
slave Cnt values are independent

 reserved Unsigned1 0x00

 Service
Data

OctetString
[Length]

Mailbox Service Data

The encoding of Service Data in case of an error reply is specified in Table 30.

Table 30 – Error Reply Service Data

Frame part Data field Data type Value/description

Service Data Type Unsigned16 0x01: Mailbox Command

 Detail Unsigned16 0x01: MBXERR_SYNTAX
Syntax of 6 octet Mailbox Header is wrong

0x02: MBXERR_UNSUPPORTEDPROTOCOL
The Mailbox protocol is not supported

0x03: MBXERR_INVALIDCHANNEL
Channel Field contains wrong value (a slave can
ignore the channel field)

0x04: MBXERR_SERVICENOTSUPPORTED
the service in the Mailbox protocol is not
supported

0x05: MBXERR_INVALIDHEADER
The mailbox protocol header of the mailbox
protocol is wrong (without the 6 octet mailbox
header)

0x06: MBXERR_SIZETOOSHORT

BS EN 61158-4-12:2014

 – 50 – IEC 61158-4-12:2014 © IEC 2014

Frame part Data field Data type Value/description
length of received mailbox data is too short

0x07: MBXERR_NOMOREMEMORY
Mailbox protocol cannot be processed because of
limited ressources

0x08: MBXERR_INVALIDSIZE
the length of data is inconsistent

6 Attributes

6.1 Management

6.1.1 DL Information

The DL information registers contain type, version and supported resources of the slave
controller (ESC).

Parameter
Type

This parameter shall contain the type of the slave controller.
Revision (major revision)

This parameter shall contain the revision of the slave controller.
Build (minor revision)

This parameter shall contain the build number of the slave controller.
Number of supported FMMU entities

This parameter shall contain the number of supported FMMU entities of the slave
controller.

Number of supported sync manager channels
This parameter shall contain the number of supported sync manager channels (or
entities) of the slave controller.

RAM size
This parameter shall contain the RAM size in Kbyte supported by the slave controller
(smaller size than an even number will be rounded down).

Port descriptor
Port 0 Physical Layer

This parameter should indicate the physical layer used for this port.
Port 1 Physical Layer

This parameter should indicate the physical layer used for this port.
Port 2 Physical Layer

This parameter should indicate the physical layer used for this port.
Port 3 Physical Layer

This parameter should indicate the physical layer used for this port.
Features supported

FMMU bit operation not supported
This parameter shall indicate whether the FMMU in the slave controller supports bit
operations operations without restrictions or with documented restrictions (e.g. only
bitwise mapping on specific memory areas).
This feature bit does not affect mappability of SM.WriteEvent flag (MailboxIn)

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 51 –

DC supported
This parameter is set to 1 if at least distributed clock receive times are supported.

DC range
This parameter shall indicate the clock value range (0: 32 bit/1:64 bit).

Low jitter EBUS
This parameter shall indicate that the low jitter feature is available.

Enhanced link detection EBUS
This parameter shall indicate that the enhanced link detection is availablefor EBUS
ports.

Enhanced link detection MII
This parameter shall indicate that the enhanced link detection is availablefor MII
ports.

Separate Handling of FCS errors
This parameter shall indicate that the errors induced by another type 12 slave will
be counted separately.

Enhanced DC Sync Activation
This parameter shall indicate that enhanced DC Sync Activation is available.

LRW not supported
This parameter shall indicate that LRW is not supported.

BRW, APRW, FPRW not supported
This parameter shall indicate that BRW, APRW, FPRW is not supported.

Special FMMU/Sync manager configuration
This parameter shall indicate that a special FMMU/Sync manager configuration is
used:
FMMU 0 is used for RxPDO (no bit mapping)
FMMU 1 is used for TxPDO (no bit mapping)
FMMU 2 is used for Mailbox write event bit of Sync manager 1 (FMMU bit operation
is supported for this bit)
Sync manager 0 is used for write mailbox
Sync manager 1 is used for read mailbox
Sync manager 2 is used as Buffer for RxPDO
Sync manager 3 is used as Buffer for TxPDO

The attribute types of DL information are described in Figure 8.

BS EN 61158-4-12:2014

 – 52 – IEC 61158-4-12:2014 © IEC 2014

typedef struct
{
 BYTE Type;
 BYTE Revision;
 WORD Build;
 BYTE NoOfSuppFmmuEntities;
 BYTE NoOfSuppSyncManChannels;
 BYTE RamSize;
 BYTE PortDescr;
 unsigned FmmuBitOperationNotSupp: 1;
 unsigned Reserved2: 1;
 unsigned DCSupp: 1;
 unsigned DCRange: 1;
 unsigned LowJEBUS: 1;
 unsigned EnhLDEBUS: 1;
 unsigned EnhLDMII: 1;
 unsigned FCSsERR: 1;
 unsigned EnhancedDcSyncAct: 1;
 unsigned NotSuppLRW: 1;
 unsigned NotSuppBAFRW: 1;
 unsigned sFMMUSyMC: 1;
 unsigned Reserved4: 4;
} TDLINFORMATION;

Figure 8 – DL information type description

The DL Information coding is specified in Table 31.

Table 31 – DL information

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Type 0x0000 BYTE R R

Revision 0x0001 BYTE R R

Build 0x0002 WORD R R

Number of supported
FMMU entities

0x0004 BYTE R R 0x0001-0x0010

Number of supported
Sync Manager channels

0x0005 BYTE R R 0x0001-0x0010

RAM Size 0x0006 BYTE R R RAM size in koctet means
1024 octets (1-60)

Port0 Descriptor 0x0007 unsigned2 R R optional
00: Not implemented
01: Not configured
10: EBUS
11: MII/RMII

Port1 Descriptor 0x0007 unsigned2 R R optional
00: Not implemented
01: Not configured
10: EBUS
11: MII/RMII

Port2 Descriptor 0x0007 unsigned2 R R optional
00: Not implemented
01: Not configured
10: EBUS
11: MII/RMII

Port3 Descriptor 0x0007 unsigned2 R R optional
00: Not implemented
01: Not configured
10: EBUS
11: MII/RMII

FMMU Bit Operation
Not Supported

0x0008 unsigned1 R R 0: bit operation supported

1: bit operation not

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 53 –

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

supported

This feature bit does not
affect mappability of
SM.WriteEvent flag
(MailboxIn)

Reserved 0x0008 unsigned1 R R

DC Supported 0x0008 unsigned1 R R 0: DC not supported

1: DC supported

DC Range 0x0008 unsigned1 R R 0: 32 bit
1: 64 bit for system time,
system time offset and
receive time time
processing unit

Low Jitter EBUS 0x0008 unsigned1 R R 0: not available
1: available

Enhanced Link
Detection EBUS

0x0008 unsigned1 R R 0: not available
1: available

Enhanced Link
Detection MII

0x0008 unsigned1 R R 0: not available
1: available

Separate Handling of
FCS errors

0x0008 unsigned1 R R 0: not active
1: active, Frames with
modified FCS (additional
nibble) should be counted
separately in RX-Error
Previous counter

Enhanced DC Sync
Activation

0x0009 unsigned1 R R 0: not available
1: available

This feature refers to
registers 0x981[7:3],
0x0984

LRW not supported 0x0009 unsigned1 R R 0: LRW supported
1: LRW not supported

BRW, APRW; FPRW
not supported

0x0009 unsigned1 R R 0: BRW, APRW; FPRW
supported
1: BRW, APRW; FPRW
not supported

Special FMMU Syc
manager configuration

0x0009 unsigned1 R R 0: not active
1: active,
FMMU 0 is used for
RxPDO (no bit mapping)
FMMU 1 is used for
TxPDO (no bit mapping)
FMMU 2 is used for
Mailbox write event bit of
Sync manager 1
Sync manager 0 is used
for write mailbox
Sync manager 1 is used
for read mailbox
Sync manager 2 is used
as Buffer for incoming
data
Sync manager 3 is used
as Buffer for outgoing
data

Reserved 0x0009 unsigned4 R R

6.1.2 Station address

The configured station address register contains the station address of the slave which will be
set to activate the FPRD, FPRW, FRMW and FPWR service in the slave controller.

BS EN 61158-4-12:2014

 – 54 – IEC 61158-4-12:2014 © IEC 2014

Parameter
Configured station address

This parameter shall contain the configured station address of the slave controller
which is set up by the master at start up.

Configured station alias
This parameter shall contain the configured station alias of the slave controller which is
set up by DL-user at start up.

The attribute types of station address are described in Figure 9

typedef struct
{
 WORD ConfiguredStationAddress;
 WORD ConfiguredStationAlias;
} TFIXEDSTATIONADDRESS;

Figure 9 – Address type description

The station address coding is specified in Table 32.

Table 32 – Configured station address

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Configured Station
Address

0x0010 WORD RW R

Configured Station Alias 0x0012 WORD RW RW Initialized with SII word 4

6.1.3 DL control

The DL control register is used to control the operation of the DL ports of the slave controller
by the master.

Parameter
Forwarding rule

This parameter shall enable direct forwarding or restricted forwarding. Restricted
forwarding will destroy non Type 12 frames.

Temporary loop control
This optional parameter enables temporary use of the loop control parameters written
in the same frame for about one second. After this timeout, the original Loop control
settings are restored automatically.

Loop control port 0
This parameter shall contain the information if there is an automatic activation of the
port in case of a physical link or if the port is opened and or closed by commands of
the master.

Loop control port 1
This parameter shall contain the information if there is an automatic activation of the
port in case of a physical link or if the port is opened and or closed by commands of
the master.

Loop control port 2
This parameter shall contain the information if there is an automatic activation of the
port in case of a physical link or if the port is opened and or closed by commands of
the master.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 55 –

Loop control port 3
This parameter shall contain the information if there is an automatic activation of the
port in case of a physical link or if the port is opened and or closed by commands of
the master.

Transmit buffer size
This optional parameter should be used to optimize the delay within a station. If this
station and its neighbours have a stable rate of transmitting, this parameter may be
reduced. The default settings are determined by the required clock accuracy of
ISO/IEC 8802-3.

Low jitter EBUS
This optional parameter indicates that the reduction of frame forwarding jitter for EBUS
is enabled.

Enable alias address
This optional parameter should be used to enable the alias name.

The attribute types of DL Control are described in Figure 10.

typedef struct
{
 unsigned ForwardingRule: 1;
 unsigned TemporaryLoopControl: 1;
 unsigned Reserved0: 6;
 unsigned LoopControlPort0: 2;
 unsigned LoopControlPort1: 2;
 unsigned LoopControlPort2: 2;
 unsigned LoopControlPort3: 2;
 unsigned TxBufferSize: 3;
 unsigned LowJitterEBUS: 1;
 unsigned Reserved1: 4;
 unsigned EnableAliasAddress: 1;
 unsigned Reserved2: 7;
} TDLCONTROL;

Figure 10 – DL control type description

The DL Control coding is specified in Table 33.

Table 33 – DL control

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Forwarding rule 0x0100 Unsigned1 RW R 0: EtherCAT frames are
processed, Non-
EtherCAT frames are
forwarded without
processing,
SOURCE_MAC[1] may be
set to 1 – locally
administered address

1: EtherCAT frames are
processed, Non-
EtherCAT frames are
destroyed,
SOURCE_MAC[1] shall
be set to 1 – locally
administered address

Temporary Loop control 0x0100 Unsigned1 RW R 0:permanent setting
1: temporary use of Loop
Control Settings for ~1
second

reserved 0x0100 Unsigned6 RW R 0x00

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/00327038U

 – 56 – IEC 61158-4-12:2014 © IEC 2014

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Loop control port 0 0x0101 Unsigned2 RW R 0: Auto
 => closed at “link down”,
open with “link up”
1: Auto close
 => closed at “link down”,
open with writing 1 after
“link up” (or receiving a
valid Ethernet frame at
the closed port)
2: Always open
3: Always closed

Loop control port 1 0x0101 Unsigned2 RW R 0: Auto
 => closed at “link down”,
open with “link up”
1: Auto close
 => closed at “link down”,
open with writing 1 1 after
“link up” (or receiving a
valid Ethernet frame at
the closed port)
2: Always open
3: Always closed

Loop control port 2 0x0101 Unsigned2 RW R 0: Auto
 => closed at “link down”,
open with “link up”
1: Auto close
 => closed at “link down”,
open with writing 1 1 after
“link up” (or receiving a
valid Ethernet frame at
the closed port)
2: Always open
3: Always closed

Loop control port 3 0x0101 Unsigned2 RW R 0: Auto
 => closed at “link down”,
open with “link up”
1: Auto close
 => closed at “link down”,
open with writing 1 1 after
“link up” (or receiving a
valid Ethernet frame at
the closed port)
2: Always open
3: Always closed

TransmitBufferSize 0x0102 Unsigned3 RW R Buffer between
preparation and send.
Send will be if buffer is
half full (7).

Low Jitter EBUS 0x0102 Unsigned1 RW R 0: not active
1: active

reserved 0x0102 Unsigned4 RW R 0x00

EnableAliasAddress 0x0103 Unsigned1 RW R 0: Disable the station
alias address

1: Enable the station alias
address

reserved 0x0103 Unsigned7 RW R 0x00

NOTE Loop open means sending over this port and waiting for a reaction at the receiving port is enabled – the
received data will be forwarded to the peer port. Loop closed means that data, that should be forwarded are
directly mirrored and thus they will be forwarded to the peer port. A closed port will discard all received data.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 57 –

6.1.4 DL status

The DL status register is used to indicate the state of the DL ports and the state of the
interface between DL-user and DL.

Parameter
DL-user operational

This parameter shall contain the information if a DL-user is connected to the process
data interface of the slave controller.

DL-user watchdog status
This parameter shall contain the status of the process data interface watchdog.

Extended link detection
This parameter shall contain the status of the activation of the extended link detection.

Link status port 0
This parameter indicates physical link on this port.

Link status port 1
This parameter indicates physical link on this port.

Link status port 2
This parameter indicates physical link on this port.

Link status port 3
This parameter indicates physical link on this port.

Loop back port 0
This parameter indicates forwarding on the same port i.e. loop back.

Signal detection port 0
This parameter indicates if there is a signal detected on Rx-Port.

Loop back port 1
This parameter indicates forwarding on the same port i.e. loop back.

Signal detection port 1
This parameter indicates if there is a signal detected on Rx-Port.

Loop back port 2
This parameter indicates forwarding on the same port i.e. loop back.

Signal detection port 2
This parameter indicates if there is a signal detected on Rx-Port.

Loop back port 3
This parameter indicates forwarding on the same port i.e. loop back.

Signal detection port 3
This parameter indicates if there is a signal detected on Rx-Port.

The attribute types of DL Status are described in Figure 11.

BS EN 61158-4-12:2014

 – 58 – IEC 61158-4-12:2014 © IEC 2014

typedef struct
{
 unsigned PdiOperational: 1;
 unsigned DLSuserWatchdogStatus: 1;
 unsigned ExtendedLinkDetection: 1;
 unsigned Reserved1: 1;
 unsigned LinkStatusPort0: 1;
 unsigned LinkStatusPort1: 1;
 unsigned LinkStatusPort2: 1;
 unsigned LinkStatusPort3: 1;
 unsigned LoopStatusPort0: 1;
 unsigned SignalDetectionPort0: 1;
 unsigned LoopStatusPort1: 1;
 unsigned SignalDetectionPort1: 1;
 unsigned LoopStatusPort2: 1;
 unsigned SignalDetectionPort2: 1;
 unsigned LoopStatusPort3: 1;
 unsigned SignalDetectionPort3: 1;
} TDLSTATUS;

Figure 11 – DL status type description

The DL Status coding is specified in Table 34.

Table 34 – DL status

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

DLS-user operational 0x0110 Unsigned1 R R 0x00: DLS-user not
operational

0x01: DLS-user
operational

DLS-user watchdog
status

0x0110 Unsigned1 R R 0x00: DLS-user watchdog
expired

0x01: DLS-user watchdog
not expired

Extended link detection 0x0110 Unsigned1 R R 0: Deactivated
1: Activated for at least
one port

Reserved 0x0110 Unsigned1 R R 0x00

Link status port 0 0x0110 Unsigned1 R R 0x00: no physical link on
this port

0x01: physical link on this
port

Link status port 1 0x0110 Unsigned1 R R 0x00: no physical link on
this port

0x01: physical link on this
port

Link status port 2 0x0110 Unsigned1 R R 0x00: no physical link on
this port

0x01: physical link on this
port

Link status port 3 0x0110 Unsigned1 R R 0x00: no physical link on
this port

0x01: physical link on this
port

Loop status port 0 0x0111 Unsigned1 R R 0x00: loop not active

0x01: loop active

Signal detection port 0 0x0111 Unsigned1 R R 0x00: signal not detected
on RX-port

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 59 –

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

0x01: signal detected on
RX-port

Loop status port 1 0x0111 Unsigned1 R R 0x00: loop not active

0x01: loop active

Signal detection port 1 0x0111 Unsigned1 R R 0x00: signal not detected
on RX-port

0x01: signal detected on
RX-port

Loop status port 2 0x0111 Unsigned1 R R 0x00: loop not active

0x01: loop active

Signal detection port 2 0x0111 Unsigned1 R R 0x00: signal not detected
on RX-port

0x01: signal detected on
RX-port

Loop status port 3 0x0111 Unsigned1 R R 0x00: loop not active

0x01: loop active

Signal detection port 3 0x0111 Unsigned1 R R 0x00: signal not detected
on RX-port

0x01: signal detected on
RX-port

6.1.5 DLS-user specific registers

6.1.5.1 DL-user control register

Figure 12 shows the primitives between master, DL and DL-user in case of a successful write
sequence to the DL-user control register (R1).

DL write (WKC = x)

Master Slave

DL write (WKC = x+1)

Read local

Event

DLL DL-user

Figure 12 – Successful write sequence to DL-user control register

The master sends a write service with the working counter (WKC = x), the DL (slave
controller) of the slave write the received data in the register area, increments the working
counter (WKC = x + 1) and generates an event and the DL-user reads the control register. If
the control register is not read out, the next write to this register will be ignored (is not
changed).

The control register is used to pass control information from the master to the slave.

BS EN 61158-4-12:2014

 – 60 – IEC 61158-4-12:2014 © IEC 2014

6.1.5.2 DL-user status register

Figure 13 shows the primitives between master, DL and DL-user in case of a successful read
sequence to the DL-user status register (R3).

DL read (WKC = x)

Master Slave

DL read (WKC = x+1)

Write local

DLL DL-user

Figure 13 – Successful read sequence to the DL-user status register

The DL-user of the slave writes the DL-user status register locally. The master sends a read
service with the working counter (WKC = x), the DL (slave controller) of the slave sends the
data from the register area and increments the working counter (WKC = x + 1).

6.1.5.3 DL-user specific registers

There is a set of DL-user specific registers R2, R4 to R8. The meaning of the contents is
defined by DL-user.

6.1.5.4 DL-user attributes

The DLS-user specific register structure and access type is described in Table 35.

Table 35 – DLS-user specific registers

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

DLS-user R1 0x0120 Unsigned8 RW R 0x01

DLS-user R2 0x0121 Unsigned8 RW R 0x00

DLS-user R3 0x0130 Unsigned8 R RW 0x01

DLS-user R4 0x0131 Unsigned8 R RW 0x00

reserved 0x0132 Unsigned16

DLS-user R6 0x0134 Unsigned16 R RW 0x00

DLS-user R7 0x0140 Unsigned8 R R 0x00

Copy 0x0141 Unsigned1 R R 0x00: no specific action

0x01: Copy DLS-user R1
to DLS-user R3

DLS-user R9 0x0141 Unsigned7 R R 0x00

DLS-user R10 0x0142 Unsigned16 R R 0x00

DLS-user R8 0x0150 Unsigned32 R R 0x00

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 61 –

6.1.6 Event parameter

The event registers are used to indicate an event to the DL-user. The event shall be
acknowledged if the corresponding event source is read. The events can be masked.

Parameter
DL-user Event

DL-user R1 Chg
This parameter is set if an write service to the DL-user control register is invoked and
is reset when the DL-user control register is read local.

DC Event 0
This parameter is set if DC Event 0 is active.

DC Event 1
This parameter is set if DC Event 1 is active.

DC Event 2
This parameter is set if DC Event 2 is active.

Sync manager change event
This parameter is set if a write service to the Sync manager area occurs and will be
reset if the DL-user reads out the event register.

Sync manager channel access events (0 to 15)
This parameter is set if an write service to an application memory area configured as
write by the master or an read service to an application memory area configured as
read by the master is received and will be reset when the application memory area will
be read (read local) or written (write local).

DL-user Event Mask
If the corresponding attribute is set the DL-user event will be enabled and disabled
otherwise.

External Event
DC Event 0

This parameter is set if DC Event 0 is active.
DL Status Chg

This parameter is set if the DL Status register is changed and is reset when a Type 12
read to DL Status register is invoked.

DL-user R3 Chg
This parameter is set if a write local service to the DL-user status register is invoked
and is reset when a Type 12 read to DL-user status register is invoked.

Sync manager channel access events (0 to 7)
This parameter is set if an write service to an application memory area configured as
write by the slave or an read service to an application memory area configured as read
by the slave is received and will be reset when the application memory area will be
read or written by Type 12 services.

Event Event Mask
If the corresponding attribute is set the external event will be enabled and disabled
otherwise.

The Event structure as seen by the DLS-user and access type is described in Table 36.

BS EN 61158-4-12:2014

 – 62 – IEC 61158-4-12:2014 © IEC 2014

Table 36 – DLS-user event

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

DLS-user R1 chg 0x0220 unsigned1 R r 0x00: no event active

0x01: event active R1
was written)

DC event 0 0x0220 unsigned1 R r 0x00: no event active

0x01 event active (at
least one latch event
occurred)

DC event 1 0x0220 unsigned1 R r 0x00: sync signal is not
active

0x01 sync signal is active

DC event 2 0x0220 unsigned1 R r 0x00: sync signal is not
active

0x01 sync signal is active

Sync manager change
event

0x0220 unsigned1 R r 0x00: no event active

0x01: event active (one or
more sync manager
channels were changed)

EEPROM Emulation 0x0220 unsigned1 R r 0x00: No command
pending

0x01: EEPROM command
pending

DLE specific 0x0220 Unsigned2 R r 0x00:

Sync manager channel
0 event

0x0221 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed)

Sync manager channel
1 event

0x0221 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed)

Sync manager channel
2 event

0x0221 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed)

Sync manager channel
3 event

0x0221 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed)

Sync manager channel
4 event

0x0221 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed)

Sync manager channel
5 event

0x0221 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed)

Sync manager channel
6 event

0x0221 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed)

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 63 –

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Sync manager channel
7 event

0x0221 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed)

Sync manager channel
8 event

0x0222 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed)

Sync manager channel
9 event

0x0222 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed)

Sync manager channel
10 event

0x0222 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed)

Sync manager channel
11 event

0x0222 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed)

Sync manager channel
12 event

0x0222 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed)

Sync manager channel
13 event

0x0222 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed)

Sync manager channel
14 event

0x0222 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed)

Sync manager channel
15 event

0x0222 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed)

DLE specific 0x0223 Unsigned8 R r 0x00

The DLS-user Event Mask is related to DLS-user Event and coding is specified Table 37.

Table 37 – DLS-user event mask

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Event mask 0x0204 array [0..31]
of
unsigned1

R rw For each element:

0: disable event

1: enable event

The Event structure as seen by remote partner and access type is described in Table 38. The
external event is mapped to IRQ parameter of all Type 12 PDUs accessing this slave. If an
event is set and the associated mask is set the corresponding bit in the IRQ parameter of a
PDU is set.

BS EN 61158-4-12:2014

 – 64 – IEC 61158-4-12:2014 © IEC 2014

Table 38 – External event

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

DC Event 0 0x0210 unsigned1 R r 0x00: no event active

0x01: DC event 0 active

reserved 0x0210 unsigned1 R r 0x00

DL Status change 0x0210 unsigned1 R r 0x00: no event active

0x01: DL status register
was changed active

R3 Chg 0x0210 unsigned1 R r 0x00: no event active

0x01: event active (R3
was written)

Sync manager channel
0 event

0x0211 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed by slave)

Sync manager channel
1 event

0x0211 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed by slave)

Sync manager channel
2 event

0x0211 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed by slave)

Sync manager channel
3 event

0x0211 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed by slave)

Sync manager channel
4 event

0x0211 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed by slave)

Sync manager channel
5 event

0x0211 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed by slave)

Sync manager channel
6 event

0x0211 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed by slave)

Sync manager channel
7 event

0x0211 unsigned1 R r 0x00: no event active

0x01: event active (sync
manager channel was
accessed by slave)

Reserved 0x0211 Unsigned4 R r 0x00

The External Event Mask is related to External Event and coding is specified in Table 39.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 65 –

Table 39 – External event mask

Parameter Physical
address Data type Access

type
Access type

PDI Value/description

Event
mask

0x0200 array [0..15] of
unsigned1

RW r For each element:

0: disable event

1: enable event

6.2 Statistics

6.2.1 RX error counter

The RX error counter registers contain information about physical layer errors and frame
errors (e.g. length, FCS). All counters will be cleared if one counter is written. The counting is
stopped when the maximum value of a counter (255) is reached.

Parameter
Port 0 physical layer error count

This parameter counts the occurrences of RX errors at the physical layer.
Port 0 frame error count

This parameter counts the occurrences of frame errors (including RX errors within
frame).

Port 1 physical layer error count
This parameter counts the occurrences of RX errors at the physical layer.

Port 1 frame error count
This parameter counts the occurrences of frame errors (including RX errors within
frame).

Port 2 physical layer error count
This parameter counts the occurrences of RX errors at the physical layer.

Port 2 frame error count
This parameter counts the occurrences of frame errors (including RX errors within
frame).

Port 3 physical layer error count
This parameter counts the occurrences of RX errors at the physical layer.

Port 3 frame error count
This parameter counts the occurrences of frame errors (including RX errors within
frame).

NOTE The frames will be processed during forwarding procedure. Thus, an RX error or frame error will occur at
any stations beyond the erroneous station simultaneously. The master will obtain a true picture by subtracting the
counts of the previous port.

The attribute types of RX Error Counter are described in Figure 14.

BS EN 61158-4-12:2014

 – 66 – IEC 61158-4-12:2014 © IEC 2014

typedef struct
{
 Unsigned8 FrameErrorCountPort0;
 Unsigned8 PhyErrorCountPort0;
 Unsigned8 FrameErrorCountPort1;
 Unsigned8 PhyErrorCountPort1;
 Unsigned8 FrameErrorCountPort2;
 Unsigned8 PhyErrorCountPort2;
 Unsigned8 FrameErrorCountPort3;
 Unsigned8 PhyErrorCountPort3;
} TRXERRORCOUNTER;

Figure 14 – RX error counter type description

The RX Error Counter coding is specified in Table 40.

Table 40 – RX error counter

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Frame error count port 0 0x0300 unsigned8 RW -- A write to one counter will
reset all counters

Physical error count port 0 0x0301 unsigned8 RW -- A write to one counter will
reset all counters

Frame error count port 1 0x0302 unsigned8 RW -- A write to one counter will
reset all counters

Physical error count port 1 0x0303 unsigned8 RW -- A write to one counter will
reset all counters

Frame error count port 2 0x0304 unsigned8 RW -- A write to one counter will
reset all counters

Physical error count port 2 0x0305 unsigned8 RW -- A write to one counter will
reset all counters

Frame error count port 3 0x0306 unsigned8 RW -- A write to one counter will
reset all counters

Physical error count port 3 0x0307 unsigned8 RW -- A write to one counter will
reset all counters

6.2.2 Lost link counter

The optional lost link counter registers contain information about link down sequences. All
counters will be cleared if one counter is written. The counting is stopped when the maximum
value of a counter (255) is reached.

Parameter
Port 0 lost link count

This parameter counts the occurrences of link down.
Port 1 lost link count

This parameter counts the occurrences of link down.
Port 2 lost link count

This parameter counts the occurrences of link down.
Port 3 lost link count

This parameter counts the occurrences of link down.

The attribute types of Lost Link Counter are described in Figure 15.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 67 –

typedef struct
{
 Unsigned8 LostLinkCountPort0;
 Unsigned8 LostLinkCountPort1;
 Unsigned8 LostLinkCountPort2;
 Unsigned8 LostLinkCountPort3;
} TLOSTLINKCOUNTER;

Figure 15 – Lost link counter type description

The Lost Link Counter coding is specified in Table 41.

Table 41 – Lost link counter

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Lost link count port 0 0x0310 unsigned8 RW R A write to one counter will
reset all link lost counters

Lost link count port 1 0x0311 unsigned8 RW R A write to one counter will
reset all link lost counters

Lost link count port 2 0x0312 unsigned8 RW R A write to one counter will
reset all link lost counters

Lost link count port 3 0x0313 unsigned8 RW R A write to one counter will
reset all link lost counters

6.2.3 Additional counter

The optional previous error counter registers contain information about error frames that
indicate a problem on the predecessor links. As frames with error have a specific type of
checksum this could be detected and reported. All counters will be cleared if one counter is
written. The counting is stopped when the maximum value of a counter (255) is reached.

Parameter
Port 0 previous error count

This parameter counts the occurrences of errors detected by predecessor.
Port 1 previous error count

This parameter counts the occurrences of errors detected by predecessor.
Port 2 previous error count

This parameter counts the occurrences of errors detected by predecessor.
Port 3 previous error count

This parameter counts the occurrences of errors detected by predecessor.

The optional wrong Type 12 frame counter counts frames with i.e. wrong datagram structure.
Counter will be cleared if one of the counters is written. The counting is stopped when the
maximum value of a counter (255) is reached.

Parameter
Wrong Type 12 frame counter

This parameter counts the occurrences of wrong Type 12 frames.

The optional local problem counter counts occurrence of local problems. Counter will be
cleared if the counter is written. The counting is stopped when the maximum value of a
counter (255) is reached.

BS EN 61158-4-12:2014

 – 68 – IEC 61158-4-12:2014 © IEC 2014

Parameter
Local problem counter

This parameter counts the occurrences of communication problems within a slave.

The attribute types of Additional Counter are described in Figure 16.

typedef struct
{
 Unsigned8 PreviousErrCountPort0;
 Unsigned8 PreviousErrCountPort1;
 Unsigned8 PreviousErrCountPort2;
 Unsigned8 PreviousErrCountPort3;
 Unsigned8 MalformatErrorCount;
 Unsigned8 LocalProblemCount;
} ADDCOUNTER;

Figure 16 – Additional counter type description

The Additional Counter coding is specified in Table 42.

Table 42 – Additional counter

Parameter Physical
Address Data Type Access

type
Access

Type
PDI

Value/Description

Previous Error Count
Port 0

0x0308 unsigned8 RW R A write to one counter will
reset all counters

Previous Error Count
Port 1

0x0309 unsigned8 RW R A write to one counter will
reset all counters

Previous Error Count
Port 2

0x030A unsigned8 RW R A write to one counter will
reset all counters

Previous Error Count
Port 3

0x030B unsigned8 RW R A write to one counter will
reset all counters

Malformat frame Count 0x030C unsigned8 RW R A write to this counter will
reset this counter

Local Problem Count 0x030D unsigned8 RW R A write to this counter will
reset this counter

6.3 Watchdogs

6.3.1 Watchdog divider

The system clock of the slave controller is divided by the watchdog divider.

Parameter
Watchdog divider

This parameter shall contain the number of 40 ns intervals (minus 2) that represents
the basic watchdog increment. (default value is 100 µs = 2 498).

The attribute type of watchdog divider is described in Figure 17.

typedef struct
{
 WORD WatchdogDivider;
} TWATCHDOGDIVIDER;

Figure 17 – Watchdog divider type description

The Watchdog Divider coding is specified in Table 43.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 69 –

Table 43 – Watchdog divider

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Watchdog divider 0x0400 WORD RW R 40 ns intervals used for
other watchdog timers

6.3.2 DLS-user watchdog

The DL-user is monitored with the value of the DL-user watchdog. Each access from the DL-
user to the slave controller shall reset this watchdog.

Parameter
DL-user watchdog

This parameter shall contain the watchdog to monitor the DL-user (default value 1000
with watchdog divider 100 µs means 100 ms watchdog).

The attribute type of DLS-user watchdog is described in Figure 18.

typedef struct
{
 WORD DLSuserWatchdog;
} TDLUSERWATCHDOG;

Figure 18 – DLS-user Watchdog divider type description

The DLS-user watchdog coding is specified in Table 44.

Table 44 – DLS-user watchdog

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

DLS-user watchdog 0x0410 WORD RW R

6.3.3 Sync manager watchdog

Each Sync manager entity is monitored with the value of the sync manager watchdog. Each
write access to the DL-user memory area configured in the sync manager shall reset this
watchdog if the watchdog option is enabled by this sync manager.

Parameter
Sync manager watchdog

This parameter shall contain the watchdog to monitor the Sync manager.

The attribute type of sync manager watchdog is described in Figure 19.

typedef struct
{
 WORD SyncManChannelWatchdog;
} TSYNCMANCHANNELWATCHDOG;

Figure 19 – Sync manager watchdog type description

The sync manager watchdog coding is specified in Table 45.

BS EN 61158-4-12:2014

 – 70 – IEC 61158-4-12:2014 © IEC 2014

Table 45 – Sync manager channel watchdog

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Sync manager
watchdog

0x0420 WORD RW R

6.3.4 Sync manager watchdog status

The status of each Sync manager watchdog is included in the Sync manager watchdog status.

Parameter
Sync manager watchdog status

This parameter shall contain the watchdog status of all Sync manager watchdogs.

The attribute types of sync manager watchdog status are described in Figure 20.

typedef struct
{
 unsigned SyncManChannelWdStatus: 1;
 unsigned Reserved: 15;
} TSYNCMANCHANNELWDSTATUS;

Figure 20 – Sync manager watchdog status type description

The sync manager watchdog status encoding is specified in Table 46.

Table 46 – Sync manager watchdog Status

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Sync manager channel
watchdog status

0x0440 Unsigned1 R R There is only one WD for
all Sync managers

0: WD expired

1: WD active or not
enabled

reserved 0x0440 Unsigned15 R R

6.3.5 Watchdog counter

The expiration of Watchdog is counted in this optional parameter.

Parameter
Sync manager watchdog counter

This parameter counts the expiration of all Sync manager watchdogs.
DL-user watchdog counter

This parameter counts the expiration of DL-user watchdogs.

The attribute types of watchdog counter are described in Figure 21.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 71 –

typedef struct
{
 Unsigned8 SyncMWDCounter;
 Unsigned8 PDIWDCounter;
} WDCOUNTER;

Figure 21 – Watchdog counter type description
The watchdog counter coding is specified in Table 47.

Table 47 – Watchdog counter

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Sync manager WD count 0x0442 unsigned8 RW R A write will reset the
watchdog counters

PDI WD count 0x0443 unsigned8 RW R A write will reset the
watchdog counters

6.4 Slave information interface

6.4.1 Slave information interface area

The Slave Information Interface Area coding is DLS-user specific.

6.4.2 Slave information interface access

The attribute types of Slave Information Interface Access are described in Figure 22.

typedef struct
{
 unsigned Owner: 1;
 unsigned Lock: 1;
 unsigned Reserved1: 6;
 unsigned AccPDI: 1;
 unsigned Reserved2: 7;
} TSIIACCESS;

Figure 22 – Slave information interface access type description
The Slave Information Interface Access coding is specified in Table 48.

Table 48 – Slave information interface access

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Owner 0x0500 Unsigned1 RW R 0: Type 12 DL

1: PDI

Lock 0x0500 Unsigned1 RW R Reset Access to SII

0: no action

1: cancel access

Setting this bit will reset
Register 501.0

reserved 0x0500 Unsigned6 RW R

Access PDI 0x0501 Unsigned1 R RW 0: no access

1: PDI access active

reserved 0x0501 Unsigned7 R RW

BS EN 61158-4-12:2014

 – 72 – IEC 61158-4-12:2014 © IEC 2014

6.4.3 Slave information interface control/status

With the slave information interface control/status register the read or write operation to the
slave information interface is controlled.

Parameter
Slave information interface assign

This parameter shall contain the information about assignment of interface to DL or
DL-user.

Reset slave information interface access
This parameter resets access to slave information interface.

Slave information interface access
This parameter shall contain the information about slave information interface activity.

Slave information interface read size
This parameter shall contain the information about the number of octets (4 or 8) that
can be read with one command.

Slave information interface write access
This parameter shall contain the information, if a write access to the slave information
interface is allowed.

Slave information interface address algorithm
This parameter shall contain the information, if the protocol to the slave information
interface contains one or two address octets.

Read operation
This parameter will be written from the master to start the read operation of 32 bits/64
bits in the slave information interface. This parameter will be read from the master to
check if the read operation is finished.

Write operation
This parameter will be written from the master to start the write operation of 16 bits in
the slave information interface. This parameter will be read from the master to check if
the write operation is finished. There is no consistence guarantee for write operation. A
break down during write can produce inconsistent values and should be avoided.

Reload operation
This parameter will be written from the master to start the reload operation of the first
128 bits in the slave information interface. This parameter will be read from the master
to check if the reload operation is finished.

SII error
This parameter shall contain the information the read access of the SII parameter
needed at start up failed.

Error command
This parameter shall contain the information if the last access to the slave information
interface was successful.

Busy
This parameter contains the information if an access operation is ongoing.

The attribute types of Slave Information Interface Control/Status are described in Figure 23.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 73 –

typedef struct
{
 unsigned WriteAccess: 1;
 unsigned Reserved1: 4;
 unsigned EEPROM_Emulation 1;
 unsigned ReadSize: 1;
 unsigned AddressAlgorithm: 1;
 unsigned ReadOperation: 1;
 unsigned WriteOperation: 1;
 unsigned ReloadOperation: 1;
 unsigned CheckSErrDLu: 1;
 unsigned DeviceInfoError: 1;
 unsigned CommandError: 1;
 unsigned WriteError: 1;
 unsigned Busy: 1;
} TSIICONTROL;

Figure 23 – Slave information interface control/status type description

The Slave Information Interface Control/Status coding is specified in Table 49.

Table 49 – Slave information interface control/status

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

SII write access 0x0502 Unsigned1 RW R 0x00: only read access to SII

0x01: read and write access to
SII

reserved 0x0502 Unsigned4 R R 0x00

EEPROM emulation 0x0502 Unsigned1 R R 0x00: Normal operation (I²C
interface used)

0x01: PDI emulates EEPROM
(I²C not used)

SII Read Size 0x0502 Unsigned1 R R 0x00: 4 octet read with one
transaction

0x01: 8 octet read with one
transaction

SII Address
Algorithm

0x0502 Unsigned1 R R 0x00: 1 octet used as address

0x01: 2 octets used as address

Read operation 0x0503 Unsigned1 RW RW 0x00: no read operation
requested (parameter write) or
read operation not busy
(parameter read)

0x01: read operation requested
(parameter write) or read
operation busy (parameter
read)

To start a new read operation
there shall be a positive edge
on this parameter

Write operation 0x0503 Unsigned1 RW RW 0x00: no write operation
requested (parameter write) or
write operation not busy
(parameter read)

0x01: write operation requested
(parameter write) or write
operation busy (parameter
read)

To start a new write operation
there shall be a positive edge
on this parameter

BS EN 61158-4-12:2014

 – 74 – IEC 61158-4-12:2014 © IEC 2014

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Reload operation 0x0503 Unsigned1 RW RW 0x00: no reload operation
requested (parameter write) or
reload operation not busy
(parameter read)

0x01: reload operation
requested (parameter write) or
reload operation busy
(parameter read)

To start a new reload operation
there shall be a positive edge
on this parameter

Checksum Error 0x0503 Unsigned1 R R 0x00: no checksum error
loading DL-user information at
startup

0x01: checksum error while
reading at startup

Device info error 0x0503 Unsigned1 R R 0x00: no error on reading
Device Information at start-up

0x01: error on reading Device
Information

Command error 0x0503 Unsigned1 R R (W) 0x00: no error on last command

0x01: error on last command

PDI Write only in SII emulation
mode

Write error 0x0503 Unsigned1 R R 0x00: no error on last write
operation

0x01: error on last write
operation

Busy 0x0503 Unsigned1 R R 0x00: operation is finished

0x01: operation is ongoing

6.4.4 Actual slave information interface address

The actual slave information interface address register contains the actual address in the
slave information interface which is accessed by the next read or write operation (by writing
the slave information interface control/status register).

Parameter
Address

This parameter shall contain the address of the 16 bit word which is accessed by the
next read or write operation.

The attribute type of slave information interface address is described in Figure 24.

typedef struct
{
 DWORD SIIAddress;
} TSIIADDRESS;

Figure 24 – Slave information interface address type description

The actual slave information interface address coding is specified in Table 50.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 75 –

Table 50 – Actual slave information interface address

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Address 0x0504 DWORD RW RW 16-Bit word address

6.4.5 Actual slave information interface data

The actual slave information interface Data register contains the data (16 bit) to be written in
the slave information interface with the next write operation or the read data (32 bit/64 bit)
with the last read operation.

Parameter
Data

The master will write this parameter with the data (16 bit) to be written in the slave
information interface with the next write operation. The master will receive the last read
data (32 bit/64 bit) from the slave information interface when reading this parameter.

The attribute type of slave information interface data is described in Figure 25.

typedef struct
{
 DWORD SIIData;
} TSIIDATA;

Figure 25 – Slave information interface data type description

The actual slave information interface data coding is specified in Table 51.

Table 51 – Actual slave information interface data

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Data 0x0508 DWORD RW RW For the write operation
only the lower 16 Bit
(0x508-0x509) will be
used

6.5 Media independent interface (MII)

6.5.1 MII control/status

The MII management contains a set of optional attributes. With the MII control/status register
the read or write operation to the MII is controlled.

Parameter
MII write access

This parameter shall contain the information, if a write access to the MII is allowed.
Read should be always enabled if MII management is supported.

Address offset
This parameter shall contain the information about the offset between port number and
MII address.

BS EN 61158-4-12:2014

 – 76 – IEC 61158-4-12:2014 © IEC 2014

Read operation
This parameter will be written from the master to start the read operation of 16 bits in
the MII. This parameter will be read from the master to check if the read operation is
finished.

Write operation
This parameter will be written from the master to start the write operation of 16 bits in
the MII. This parameter will be read from the master to check if the write operation is
finished. There is no consistence guarantee for write operation. A break down during
write can produce inconsistent values and should be avoided omission critical
operations.

Error command
This parameter shall contain the information if the last access to the MII was
successful.

Busy
This parameter contains the information if an access operation is ongoing.

The attribute types of MII control/status are described in Figure 26.

typedef struct
{
 unsigned WriteAccess: 1;
 unsigned Reserved1: 6;
 unsigned PHYoffset: 1;
 unsigned ReadOperation: 1;
 unsigned WriteOperation: 1;
 unsigned Reserved2: 4;
 unsigned WriteError: 1;
 unsigned Busy: 1;
} TMIICONTROL;

Figure 26 – MII control/status type description

The MII control/status coding is specified in Table 52.

Table 52 – MII control/status

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Write access 0x0510 Unsigned1 RW R 0x00: only read
access to MII

0x01: read and write
access to MII

Access PDI 0x0510 Unsigned1 R R 0x00: Only ECAT
0x01: PDI access
possible

Link Detection
via MII
management
interface

0x0510 Unsigned1 R R 0x00: Not active
0x01: Active

PHYoffset 0x0510 Unsigned5 R R 0x00 (Default)
offset to be added to
MII address
Set up by local
configuration

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 77 –

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Read operation 0x0511 Unsigned1 RW R 0x00: no read
operation requested
(parameter write) or
read operation not
busy (parameter
read)

0x01: read operation
requested (parameter
write) or read
operation busy
(parameter read)

To start a new read
operation there shall
be a positive edge on
this parameter

Write operation 0x0511 Unsigned1 RW R 0x00: no write
operation requested
(parameter write) or
write operation not
busy (parameter
read)

0x01: write operation
requested (parameter
write) or write
operation busy
(parameter read)

To start a new write
operation there shall
be a positive edge on
this parameter

reserved 0x0511 Unsigned3 R R 0x00

Read error 0x0511 Unsigned1 R R 0x00: no error on last
read operation
0x01: error on last
read operation

Write error 0x0511 Unsigned1 R R 0x00: no error on last
write operation

0x01: error on last
write operation

Busy 0x0511 Unsigned1 R R 0x00: operation is
finished

0x01: operation is
ongoing

6.5.2 Actual MII address

The actual MII address register contains the actual address in the MII register of the slave
which is accessed by the next read or write operation (by writing the MII control/status
register).

Parameter
Address PHY

This parameter shall contain the address of the PHY which is accessed by the next
read or write operation.

Address PHY register
This parameter shall contain the address of the PHY register which is accessed by the
next read or write operation. PHY registers can be found in Clause 22 of
ISO/IEC 8802-3:2000.

BS EN 61158-4-12:2014

 – 78 – IEC 61158-4-12:2014 © IEC 2014

The attribute types of MII address are described in Figure 27.

typedef struct
{
 Byte PHYAddress;
 Byte RegAddress;
} TMIIADDRESS;

Figure 27 – MII address type description

The actual MII address coding is specified in Table 53.

Table 53 – Actual MII address

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Address PHY 0x0512 Unsigned8 RW RW Address of the PHY
(0-63)

Address register 0x0513 Unsigned8 RW RW Address of the PHY
Registers

6.5.3 Actual MII data

The actual MII data register contains the data (16 bit) to be written in the MII with the next
write operation or the read data (16 bit) with the last read operation.

Parameter
Data

The master will write this parameter with the data to be written in the MII with the next
write operation. The master will receive the last read data from the MII when reading
this parameter.

The attribute type of MII data is described in Figure 28.

typedef struct
{
 Word MIIData;
} TMIIDATA;

Figure 28 – MII data type description

The actual MII data coding is specified in Table 54.

Table 54 – Actual MII data

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

Data 0x0514 Unsigned16 RW RW

6.5.4 MII access

The optional MII access registers mangages the MII access from ECAT and from PDI.

Parameter
Access MII

The control of the MII management

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 79 –

Access State
The register reflects the current access state

Access Reset
Reset Access State register

The attribute type of MII access is described in Figure 29.

typedef struct
{
 unsigned MIIAccess: 1;
 unsigned Reserved1: 7;
 unsigned MIIAccessState: 1;
 unsigned MIIAccessReset: 1;
 unsigned Reserved2: 6;
} TMIIAccess;

Figure 29 – MII access type description

The MII access coding is specified in Table 55.

Table 55 – MII access

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

MII Access 0x0516 Unsigned1 RW R 0: PDI control possible

1: No PDI control

reserved 0x0516 Unsigned7 R R

Access State 0x0517 Unsigned1 R RW 0: ECAT access active

1: PDI access active

Access Reset 0x0517 Unsigned1 RW R 0: no action

1: reset 0x0517.0

reserved 0x0517 Unsigned6 R R

6.6 Fieldbus memory management unit (FMMU)

6.6.1 General

The fieldbus memory management unit (FMMU) converts logical addresses into physical
addresses by the means of internal address. Thus, FMMUs allow one to use logical
addressing for data segments that span several slave devices: one DLPDU addresses data
within several arbitrarily distributed devices. The FMMUs optionally support bit wise mapping.
A DLE may contain several FMMU entities. Each FMMU entity maps one cohesive logical
address space to one cohesive physical address space.

The FMMU consists of up to 16 entities. Each entity describes one memory translation
between the logical memory of the Type 12 communication network and the physical memory
of the slave.

Figure 30 shows an example mapping of logical address 0x14711.3 to 0x14712.0 to memory-
octet 0xF01.1 to 0xF01.6.

NOTE The representation of bit values from left as the least significant bit to right as most significant bit does not
imply an ordering scheme on transmission line.

BS EN 61158-4-12:2014

 – 80 – IEC 61158-4-12:2014 © IEC 2014

 Octet 0x14711 Octet 0x14712 Octet 0x14713

6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3

6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3

 Octet 0x0F01 Octet 0x0F02 Octet 0x0F03

Figure 30 – FMMU mapping example

6.6.2 FMMU attributes
Parameter

Logical start address
This parameter shall contain the start address in octets in the logical memory area of
the memory translation.

Logical start bit
This parameter shall contain the bit offset of the logical start address.

Logical end bit
This parameter shall contain the bit offset of the logical end address.

Physical start address
This parameter shall contain the start address in octets in the physical memory area of
the memory translation.

Physical start bit
This parameter shall contain the bit offset of the physical start address.

Length
This parameter shall contain the size in octets of the memory translation from the first
byte to the last byte in the logical address space (Length is 2 for the mapping).

Read enable
This parameter shall contain the information if a read operation (physical memory is
source, logical memory is destination) is enabled.

Write enable
This parameter shall contain the information if a write operation (logical memory is
source, physical memory is destination) is enabled.

Enable
This parameter shall contain the information if the memory translation is active or not.

The attribute types of FMMU entity are described in Figure 31.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 81 –

typedef struct
{
 DWORD LogicalStartAddress;
 WORD Length;
 unsigned LogicalStartBit: 3;
 unsigned Reserved1: 5;
 unsigned LogicalEndBit: 3;
 unsigned Reserved2: 5;
 WORD PhysicalStartAddress;
 unsigned PhysicalStartBit: 3;
 unsigned Reserved3: 5;
 unsigned ReadEnable: 1;
 unsigned WriteEnable: 1;
 unsigned Reserved4: 6;
 unsigned Enable: 1;
 unsigned Reserved5: 7;
 unsigned Reserved6: 8;
 WORD Reserved7;
} TFMMU;

Figure 31 – FMMU entity type description

A FMMU entity is specified in Table 56. Table 57 shows the FMMU structure.

Table 56 – Fieldbus memory management unit (FMMU) entity

Parameter
relative
address
(offset)

Data type Access
type

Access
type
PDI

Value/description

Logical start address 0x0000 DWORD RW R

Length 0x0004 WORD RW R

Logical start bit 0x0006 Unsigned3 RW R

reserved 0x0006 Unsigned5 RW R 0x00

Logical end bit 0x0007 Unsigned3 RW R

reserved 0x0007 Unsigned5 RW R 0x00

Physical start address 0x0008 WORD RW R

Physical start bit 0x000A Unsigned3 RW R

reserved 0x000A Unsigned5 RW R 0x00

Read enable 0x000B Unsigned1 RW R 0x00: entity will be
ignored for read service

0x01: entity will be used
for read service

Write enable 0x000B Unsigned1 RW R 0x00: entity will be
ignored for write service

0x01: entity will be used
for write service

reserved 0x000B Unsigned6 RW R 0x00

Enable 0x000C Unsigned1 RW R 0x00: entity not active

0x01: entity active

reserved 0x000C Unsigned7 RW R 0x00

reserved 0x000D Unsigned24 R R 0x0000

BS EN 61158-4-12:2014

 – 82 – IEC 61158-4-12:2014 © IEC 2014

Table 57 – Fieldbus memory management unit (FMMU)

Parameter Physical
address Data type Access

type
Access

type
PDI

Value/description

FMMU entity 0 0x0600 TFMMU RW R

FMMU entity 1 0x0610 TFMMU RW R

FMMU entity 2 0x0620 TFMMU RW R

FMMU entity 3 0x0630 TFMMU RW R

FMMU entity 4 0x0640 TFMMU RW R

FMMU entity 5 0x0650 TFMMU RW R

FMMU entity 6 0x0660 TFMMU RW R

FMMU entity 7 0x0670 TFMMU RW R

FMMU entity 8 0x0680 TFMMU RW R

FMMU entity 9 0x0690 TFMMU RW R

FMMU entity 10 0x06A0 TFMMU RW R

FMMU entity 11 0x06B0 TFMMU RW R

FMMU entity 12 0x06C0 TFMMU RW R

FMMU entity 13 0x06D0 TFMMU RW R

FMMU entity 14 0x06E0 TFMMU RW R

FMMU entity 15 0x06F0 TFMMU RW R

6.7 Sync manager

6.7.1 Sync manager overview

The sync manager controls the access to the DL-user memory. Each channel defines a
consistent area of the DL-user memory.

There are two ways of data exchange between master and PDI:

• Handshake mode (mailbox): one entity fills data in and cannot access the area until the
other entity reads out the data.

• Buffered mode: the interaction between both producer of data and consumer of data is
uncorrelated – each entity expects access at any time, always providing the consumer
with the newest data.

The Handshake mode is implemented with one buffer: an interrupt or a status flag indicates
whether a buffer is empty or full.

The interchange of a buffer is valid only if the FCS of the frames that carries the read or
writes command is valid. The principle of interaction is shown in Figure 32.

The actions of exchange buffers are coupled on the first octet and on the last octet:

• writing data in the first octet enables writing to the buffer if buffer is empty

• the buffer state will be set to full by writing the last octet of the buffer

• reading data out of the first octet prepares buffer for reading

• the buffer state will be set to empty by reading out the last octet of the buffer

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 83 –

 Remote DLS-user Local DLS-user

 DL write Mailbox full

Mailbox empty

 Read local

DL read

Mailbox full

Mailbox empty

 Write local

Figure 32 – SyncM mailbox interaction

If a mailbox is full, it cannot be written again until it is read out (i.e. last octet of mailbox will
be read out). It does not matter how long it takes to read out the data (there may be timing
constraints at the layers above).

For cyclic data there is a different concept implemented to ensure consistency and availability
of data. This is accomplished by a set of buffers, which allows writing and reading data
simultaneously without interference. Two buffers are allocated to the sender and to the
receiver; a spare buffer helps as intermediate store.

This means that, in this mode, the buffers need to be triplicated. Figure 33 demonstrates a
configuration with start address of 0x1000 and length of 0x100. The other buffers are virtually
not available. Access is done always with addresses in the range of buffer 1. Reading the last
octet or writing the last octet results in an automatic buffer exchange (from DL side only if the
frame with the buffer data is received correctly).

 0x1000 Buffer 1
(visible)

 0x1100 Buffer 2
(invisible is not used)

Only Buffer 1 is
configured

 0x1200 Buffer 3
(invisible is not used)

 0x1300 Next buffer

Figure 33 – SyncM buffer allocation

BS EN 61158-4-12:2014

 – 84 – IEC 61158-4-12:2014 © IEC 2014

Figure 34 shows the principle of sync manager buffer interaction.

Remote DLS-user Type 12 NEXT USER Local DLS-user

Write begin

Load next buffer
if new data available

 Read begin

Write end

Exchange buffer
(if frame is ok)

 Read end

Exchange buffer

 Write begin

 Write end

Read begin

Read end

Load next buffer
if new data available

Figure 34 – SyncM buffer interaction

This scheme allows access to a buffer independent of the read or write frequencies.
Therefore, the slave can be implemented independent of the speed of the master.

Figure 35 shows an example interaction with a read mailbox error.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 85 –

Mailbox read

psReadMbx = psRepeatMbx

Master Slave

FPRD response got los.,
Master starts a repeating
sequence and does not
read the mailbox again
before the repeating
sequence Is finished

Slave puts the mailbox read service
In the send mailbox and stores
the actual sent buffer

Write SM activate(toggle repeat)

Slave receives mailbox read event
and stores the sent buffer for a
possible repeat

Master sends FPRD service
to read the mailbox

Slave detects the mailbox repeat
request by checking the SM activate
puts the psRepeatMbx buffer in the
send mailbox again and toggles the
SM-read-toggle

Master reads cyclically
the SM DL-user CTRL to
check if the slave has
finished the repeat request

Read SM DL-user CTRL (toggle repeat Ack)

When the SM DL-user CTRL
has toggled, the master reads
the send mailbox again, detects
an unchanged counter and
discards the mailbox

Mailbox read (counter=1)

Mailbox read

Mailbox read (counter=1)

Mailbox read

WKC=0, no send mailbox available

The send mailbox was
read succesfully

Master sends FPRD service
to read the mailbox

psReadMbx = pMbx

psRepeatMbx = psReadMbx

Figure 35 – Handling of write/read toggle with read mailbox

The toggle bits are used to resynchronize mailbox communication if a Type 12 DLPDU is lost,
i.e. a previously lost read-mailbox entry will be loaded again.

6.7.2 Sync Manager Attributes
Parameter

Physical start address
This parameter shall contain the start address in octets in the physical memory of the
consistent DL-user memory area.

Length
This parameter shall contain the size in octets of the consistent DL-user memory area.

Operation mode
This parameter shall contain the information if the consistent DL-user memory area is
of mailbox access type or buffered access type.

Direction
This parameter shall contain the information if the consistent DL-user memory area is
read or written by the master.

Ecat Event enable
This parameter shall contain the information if an event is generated if there is new
data available in the consistent DL-user memory area which was written by the master
(direction write) or if the new data from the DL-user was read by the master (direction
read).

DLS-user Event enable
This parameter shall contain the information if an event is generated if there is new
data available in the consistent DL-user memory area which was written by DLS-user
or if the new data from the Master was read by the DLS-user.

BS EN 61158-4-12:2014

 – 86 – IEC 61158-4-12:2014 © IEC 2014

Watchdog trigger enable
This optional parameter shall contain the information if the monitoring of an access to
the consistent DL-user memory area is enabled.

Write event
This parameter shall contain the information if the consistent DL-user memory
(direction write) has been written by the master and the event enable parameter is set.

Read event
This parameter shall contain the information if the consistent DL-user memory
(direction read) has been read by the master and the event enable parameter is set.

Mailbox access type state
This parameter shall contain the state (buffer read, buffer written) of the consistent DL-
user memory if it is of mailbox access type.

Buffered access type state
This optional parameter shall contain the state (buffer number, locked) of the
consistent DL-user memory if it is of buffered access type.

Read buffer state
This optional parameter indicates the current read buffer state

Write buffer state
This optional parameter indicates the current write buffer state

Channel enable
This parameter shall contain the information if the sync manager channel is active.

Repeat
A change in this parameter indicates a repeat request. This is primarily used to repeat
the last mailbox interactions.

DC Event 0 with Type 12 write
This optional parameter shall contain the information if the DC 0 Event shall be
invoked in case of a Type 12 write.

DC Event 0 with local write
This optional parameter shall contain the information if the DC 0 Event shall be
invoked in case of a local write.

Channel enable PDI
This parameter shall contain the information if the sync manager channel is active.

Repeat Ack
A change in this parameter indicates a repeat request acknowledge. After setting the
value of Repeat in the parameter repeat acknowledge.

The attribute types of a sync manager channel are described in Figure 36.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 87 –

typedef struct
{
 WORD PhysicalStartAddress;
 WORD Length;
 unsigned OperationMode: 2;
 unsigned Direction: 2;
 unsigned EcatEventEnable: 1;
 unsigned DLSuserEventEnable: 1;
 unsigned WatchdogEnable: 1;
 unsigned Reserved2: 1;
 unsigned WriteEvent: 1;
 unsigned ReadEvent: 1;
 unsigned Reserved3: 1;
 unsigned mailboxState: 1;
 unsigned bufferState: 2;
 unsigned ReadBufferState: 1;
 unsigned WriteBufferState: 1;
 unsigned ChannelEnable: 1;
 unsigned Repeat: 1;
 unsigned Reserved5: 4;
 unsigned DCEvent0wBusw: 1;
 unsigned DCEvent0wlocw: 1;
 unsigned ChannelEnablePDI: 1;
 unsigned RepeatAck: 1;
 unsigned Reserved6: 6;
} TSYNCMAN;

Figure 36 – Sync manager channel type description

A sync manager channel is specified in Table 58.
Table 59 shows the sync manager structure.

Table 58 – Sync manager channel

Parameter
relative
address
(offset)

Data type Access
type

Access
type
PDI

Value/description

Physical start address 0x0000 WORD RW R

Length 0x0002 WORD RW R

Buffer type 0x0004 Unsigned2 RW R 0x00: buffered

0x02: mailbox

Direction 0x0004 Unsigned2 RW R 0x00: area shall be read
from the master

0x01: area shall be
written by the master

ECAT event enable 0x0004 Unsigned1 RW R 0x00: event is not active

0x01: event is active

DLS-user event enable 0x0004 Unsigned1 RW R 0x00: DLS-user event is
not active

0x01: DLS-user event is
active

Watchdog enable 0x0004 Unsigned1 RW R 0x00: watchdog disabled

0x01: watchdog enabled

reserved 0x0004 Unsigned1 RW R 0x00

Write event 0x0005 Unsigned1 R R 0x00: no write event

0x01: write event

Read event 0x0005 Unsigned1 R R 0x00: no read event

0x01: read event

BS EN 61158-4-12:2014

 – 88 – IEC 61158-4-12:2014 © IEC 2014

Parameter
relative
address
(offset)

Data type Access
type

Access
type
PDI

Value/description

reserved 0x0005 unsigned1 R R 0x00

Mailbox state 0x0005 Unsigned1 R R 0x00: mailbox empty

0x01: mailbox full

Buffered state 0x0005 Unsigned2 R R 0x00: first buffer

0x01: second buffer

0x02: third buffer

0x03: buffer locked

Read buffer state 0x0005 Unsigned1 R R 0x00: read buffer is not
open
0x01: read buffer is open

Write buffer state 0x0005 Unsigned1 R R 0x00: write buffer is not
open
0x01: write buffer is open

Channel enable 0x0006 Unsigned1 RW R 0x00: channel disabled

0x01: channel enabled

Repeat 0x0006 Unsigned1 RW R

reserved 0x0006 Unsigned4 RW R 0x00

DC Event 0 with Bus
access

0x0006 Unsigned1 RW R 0x00: no Event

0x01: DC Event if master
completes buffer access

DC Event 0 with local
access

0x0006 Unsigned1 RW R 0x00: no Event

0x01: DC Event if DL-
user completes buffer
access

Channel enable PDI 0x0007 Unsigned1 R RW 0x00: channel enabled

0x01: channel disabled

RepeatAck 0x0007 Unsigned1 R RW shall follow repeat after
data recovery

reserved 0x0007 Unsigned6 R RW 0x00

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 89 –

Table 59 – Sync manager Structure

Parameter Physical
address Data type Access

type
Access

type
 PDI

Value/description

Sync manager channel 0 0x0800 TSYNCMAN RW R Last Byte PDI writeable

Sync manager channel 1 0x0808 TSYNCMAN RW R Last Byte PDI writeable

Sync manager channel 2 0x0810 TSYNCMAN RW R Last Byte PDI writeable

Sync manager channel 3 0x0818 TSYNCMAN RW R Last Byte PDI writeable

Sync manager channel 4 0x0820 TSYNCMAN RW R Last Byte PDI writeable

Sync manager channel 5 0x0828 TSYNCMAN RW R Last Byte PDI writeable

Sync manager channel 6 0x0830 TSYNCMAN RW R Last Byte PDI writeable

Sync manager channel 7 0x0838 TSYNCMAN RW R Last Byte PDI writeable

Sync manager channel 8 0x0840 TSYNCMAN RW R Last Byte PDI writeable

Sync manager channel 9 0x0848 TSYNCMAN RW R Last Byte PDI writeable

Sync manager channel 10 0x0850 TSYNCMAN RW R Last Byte PDI writeable

Sync manager channel 11 0x0858 TSYNCMAN RW R Last Byte PDI writeable

Sync manager channel 12 0x0860 TSYNCMAN RW R Last Byte PDI writeable

Sync manager channel 13 0x0868 TSYNCMAN RW R Last Byte PDI writeable

Sync manager channel 14 0x0870 TSYNCMAN RW R Last Byte PDI writeable

Sync manager channel 15 0x0878 TSYNCMAN RW R Last Byte PDI writeable

The Sync Manager channels shall be used in the following way:

• Sync Manager channel 0: mailbox write

• Sync Manager channel 1: mailbox read

• Sync Manager channel 2: process data write (may be used for process data read if no
process data write supported)

• Sync Manager channel 3: process data read

If mailbox is not supported, it shall be used in the following way:

• Sync Manager channel 0: process data write (may be used for process data read if no
process data write supported)

• Sync Manager channel 1: process data read

6.8 Distributed clock

6.8.1 General

DC is used for very precise timing requirements and for using timing signals that can be
generated independent of the communication cycle. Systems with not so high requirements on
synchronization may be synchronized by sharing a service (preferable LRW or LRD or LWR)
or using the same Ethernet frame for access to buffers.

6.8.2 Delay measurement

Delay measurement needs time stamping information which is related to a single frame. The
slave just provides means for time stamping, the calculation of the delay is the task of the
master.

BS EN 61158-4-12:2014

 – 90 – IEC 61158-4-12:2014 © IEC 2014

Parameter
Receive time port 0

This parameter shall contain the receiving time of a special datagram’s beginning on
port 0. The special datagram shall be a write access to this parameter. The receiving
time of this frame will be written in this parameter at the end of this datagram if the
receiving was correctly. Additionally the latch for the receive time port 1, 2 and 3
registers will be enabled for the same datagram.

Receive time port 1
This parameter shall contain the receiving time of a special datagram’s beginning on
port 1. The special datagram shall be a write access to the receive time port 0 register.
The receiving time of this frame will be written in this parameter at the end of this
datagram if the receiving was correctly.

Receive time port 2
This parameter shall contain the receiving time of a special datagram’s beginning on
port 2. The special datagram shall be a write access to the receive time port 0 register.
The receiving time of this frame will be written in this parameter at the end of this
datagram if the receiving was correctly.

Receive time port 3
This parameter shall contain the receiving time of a special datagram’s beginning on
port 3. The special datagram shall be a write access to the receive time port 0 register.
The receiving time of this frame will be written in this parameter at the end of this
datagram if the receiving was correctly.

6.8.3 Local time parameter

The local time parameter contains the local system time and parameter for the control loop
which are dedicate to implement a control loop for coordinating the local system time with a
global time.

Parameter
Local system time

This parameter shall contain the local system time latched when a datagram is
received. A write access to this parameter shall start a comparison of the latched local
system time with the written reference system time. The result of this comparison shall
be an input of the PLL for the local system time.

System time offset
This parameter shall contain the offset between the local system time and the global
time.

System time transmission delay
This parameter shall contain the transmission delay from the slave controller with the
reference system time to the local slave controller.

System time difference
This parameter shall contain the result of the last compare between local system time
and time of last write minus system time offset and minus system time transmission
delay.

Control loop parameters
This implementation specific parameters shall contain the setting parameters for the
local system time control loop.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 91 –

6.8.4 DL-user time parameter

The DL-user time parameter contains the local time parameter DC user P1 to P12 for DL-
user.

NOTE The meaning of the parameters is not defined in this scope. The access rights are specified in
IEC 61158-5-12.

6.8.5 DC attributes

The attribute types of distributed clock delay measurement is included in local time parameter
which is described in Figure 37.

typedef struct
{
 DWORD ReceiveTimePort0;
 DWORD ReceiveTimePort1;
 DWORD ReceiveTimePort2;
 DWORD ReceiveTimePort3;
 UINT64 LocalSystemTime;
 BYTE Reserved2[8];
 UINT64 SystemTimeOffset;
 DWORD SystemTimeTransmissionDelay;
 DWORD SystemTimeDifference;
 WORD ControlLoopParameter1;
 WORD ControlLoopParameter2;
 WORD ControlLoopParameter3;
 BYTE Reserved3[74];
} TDCTRANSMISSION;

Figure 37 – Distributed clock local time parameter type description

The distributed clock local time parameter is specified in Table 60.

Table 60 – Distributed clock local time parameter

Parameter
Physical
address
(offset)

Data type Access
type

Access
type
PDI

Value/description

Receive time port 0 0x0900 DWORD R R A write access latches
the local time (in ns) at
receive begin (start first
element of preamble) on
Port 0 of this PDU in this
parameter (if the PDU
was received correctly)
and enables the latch of
Port 1 - 3

Receive time port 1 0x0904 DWORD R R Local time (in ns) at
receive begin on Port 1
when a PDU containing
a write access to
Receive time port 0
register was received
correctly

Receive time port 2 0x0908 DWORD R R Local time (in ns) at
receive begin on Port 1
when a PDU containing
a write access to
Receive time port 0
register was received
correctly

Receive time port 3 0x090C DWORD R R Local time (in ns) at
receive begin on Port 1
when a PDU containing
a write access to
Receive time port 0
register was received

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/30176030U

 – 92 – IEC 61158-4-12:2014 © IEC 2014

Parameter
Physical
address
(offset)

Data type Access
type

Access
type
PDI

Value/description

correctly

System time 0x0910 UINT64 RW R A write access compares
the latched local system
time (in ns) at receive
begin at the processing
unit of this PDU with the
written value (lower 32
bit; if the PDU was
received correctly), the
result will be the input of
DC PLL

Receive time
processing unit

0x0918 UINT64 RW R Local time (in ns) at
receive begin at the
processing unit of a PDU
containing a write
access to Receive time
port 0 (if the PDU was
received correctly)

System time offset 0x0920 UINT64 RW R Offset between the local
time (in ns) and the local
system time (in ns)

System time
transmission delay

0x0928 DWORD RW R Offset between the
reference system time
(in ns) and the local
system time (in ns)

System time
difference

0x092C DWORD RW R Bit 30..0:

Mean difference
between local copy of
System Time and
received System Time
values

Bit 31:

0: Local copy of
System Time greater
than or equal received
System Time

1: Local copy of
System Time smaller
than received System
Time

Control Loop
Parameter 1

0x0930 WORD R(W) R(W) Implementation Specific

Control Loop
Parameter 2

0x0932 WORD R R Implementation Specific

Control Loop
Parameter 3

0x0934 WORD R(W) R(W) Implementation Specific

The Distributed Clock DLS-user parameter encoding is described in Table 61.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 93 –

Table 61 – Distributed clock DLS-user parameter

Parameter
Physical
address
(offset)

Data type Access
type

Access
type
PDI

Value/description

reserved 0x0980 BYTE RW R 0

DC user P1 0x0981 BYTE RW R Implementation Specific

DC user P2 0x0982 Unsigned16 R R Implementation Specific

DC user P13 0x0983 BYTE R R Implementation Specific

DC user P14 0x0984 BYTE R R Implementation Specific

reserved 0x0985 BYTE[8] RW R

DC user P3 0x098E Unsigned16 R R Implementation Specific

DC user P4 0x0990 DWORD RW R Implementation Specific

reserved 0x0994 BYTE[12] R R

DC user P5 0x09A0 DWORD RW R Implementation Specific

DC user P6 0x09A4 DWORD RW R Implementation Specific

DC user P7 0x09A8 Unsigned16 RW R Implementation Specific

reserved 0x09AA BYTE[4] R R

DC user P8 0x09AE Unsigned1 R R Implementation Specific

DC user P9 0x09B0 DWORD R R Implementation Specific

reserved 0x09B4 BYTE[4] R R

DC user P10 0x09B8 DWORD R R Implementation Specific

reserved 0x09BC BYTE[4] R R

DC user P11 0x09C0 DWORD R R Implementation Specific

reserved 0x09C4 BYTE[4] R R

DC user P12 0x09C8 DWORD R R Implementation Specific

reserved 0x09CC BYTE[4] R R

7 DL-user memory

7.1 Overview

After reset, when DLS-user is operational, memory can be used in principle from
communication and from local DL-user without any restrictions and there is a communication
possible via this area. But there is no consistent handling of data possible via that
mechanism.

With SYNC manager, it is possible to use the memory area in a coordinated fashion. Because
the SYNC manager is established by the master, a slave does not use this area that is
dedicated to communication.

The following two coordinated ways of communication are supported.

• A buffered mode which allows consistent reading and writing in both directions – three
memory areas are needed to support that. The local update rate and the communication
cycle can be set up independently.

• A mailbox mode with a single buffer that enables interlocked communication. One entity
(communication or DL-user) fills in the data and the memory area is locked until the other
entity will read out the data.

BS EN 61158-4-12:2014

 – 94 – IEC 61158-4-12:2014 © IEC 2014

7.2 Mailbox access type

7.2.1 Mailbox transfer

Mailbox transfer services are described from the point of master regarding the direction (write
means write of data from the master and read means read out of data by the master) and from
the slave regarding the service description. The interaction includes a handshake procedure,
i.e. the master has to wait for an action of the slave after issuing a service request and vice
versa.

The data-link layer specifies resilient services for reading and writing of one shot data.

With the write service a master (client) requests a change in a memory area of the slave. A
write service will be acknowledged if the addressed slave is available and the write mailbox is
empty. A sequence count is present to detect duplicates. Consecutive writes with the same
sequence count value will be indicated only once.

The read update data will be stored until there is a read data indication for the next read
update.

7.2.2 Write access from master

Figure 38 shows the primitives between master, DLL and DL-user in case of a successful
write sequence.

DL write (WKC = x)

Master Slave

DL write (WKC = x+1)

Read local

AL event

Figure 38 – Successful write sequence to mailbox

The master sends a write service with the working counter (WKC = x), the DLL (slave
controller) of the slave write the received data in the DL-user memory area, increments the
working counter (WKC = x + 1) and generates an event. The corresponding sync manager
channel locks the DL-user memory area until it will be read by the DL-user. The master
receives a successful write response because the WKC was incremented. The DL-user reads
the DL-user memory area and the corresponding sync manager channel unlocks the DL-user
memory area so that it can be written again by the master.

Figure 39 shows the primitives between master, DLL and DL-user in case of a bad write
sequence.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 95 –

DL write (WKC = x)

Master Slave

DL write (WKC = x+1)

Read local

AL event

DL write (WKC = x)

DL write (WKC = x)

Figure 39 – Bad write sequence to mailbox

The master sends a write service with the working counter (WKC = x), the DLL (slave
controller) of the slave write the received data in the DL-user memory area, increments the
working counter (WKC = x + 1) and generates an event. The corresponding sync manager
channel locks the DL-user memory area until it will be read from the DL-user. The master
receives a successful write response because the WKC was incremented. Before the DL-user
reads the DL-user memory area the master writes the same area again with the working
counter (WKC = x). Because the DL-user memory area is still locked, the DLL of the slave will
ignore the received data and will not increment the working counter. The master receives a
bad write response because the WKC was not incremented. Later the DL-user reads the DL-
user memory area and the corresponding sync manager channel unlocks the DL-user memory
area so that it can be written again by the master.

7.2.3 Read access from master

Figure 40 shows the primitives between master, DLL and DL-user in case of a successful read
sequence.

DL read (WKC = x)

Master Slave

DL read (WKC = x+1)

Write local

AL event

Figure 40 – Successful read sequence to mailbox

The DL-user updates the DL-user memory area. The corresponding sync manager channel
locks the DL-user memory area until it will be read from the master. The master sends a read
service with the working counter (WKC = x), the DLL (slave controller) of the slave sends the
data of the DL-user memory area, increments the working counter (WKC = x + 1) and
generates an event to the DL-user. The master receives a successful read response because
the WKC was incremented. The corresponding sync manager channel unlocks the DL-user
memory area that it can be written by the DL-user again.

BS EN 61158-4-12:2014

 – 96 – IEC 61158-4-12:2014 © IEC 2014

Figure 41 shows the primitives between master, DLL and DL-user in case of a bad read
sequence.

DL read (WKC = x)

Master Slave

DL read (WKC = x+1)

1. Write local

AL event

2. Write local

Figure 41 – Bad read sequence to mailbox

The DL-user updates the DL-user memory area (1. write Local). The corresponding sync
manager channel locks the DL-user memory area until it will be read from the master. The DL-
user updates the DL-user memory area again (2. write Local), but this update will be ignored
by the corresponding sync manager channel because the old data was not read by the
master. When the master sends a read request with the working counter (WKC = x), the DLL
(slave controller) of the slave sends the data of the DL-user memory area, increments the
working counter (WKC = x + 1) and generates an event to the DL-user. The master receives a
successful read response because the WKC was incremented. The corresponding sync
manager channel now unlocks the DL-user memory area so that it can be written again by the
DL-user.

7.3 Buffered access type

7.3.1 Write access from master

Figure 42 shows the primitives between master, DLL and DL-user in case of a write
sequence. The example shows a fast master with a slave reacting at a slower rate.

DL write (WKC = x)

Master Slave

DL write (WKC = x+1)

Read local

AL event

DL write (WKC = x)

DL write (WKC = x+1)

Figure 42 – Successful write sequence to buffer

The master sends a write request with the working counter (WKC = x), the DLL (slave
controller) of the slave writes the received data in the DL-user memory area, increments the
working counter (WKC = x + 1) and generates an event to the DL-user. The master receives a

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 97 –

successful write response because the WKC was incremented. Before the DL-user reads the
DL-user memory area the master writes the same area again with the working counter (WKC
= x). Because the buffered access type DL-user memory area is never locked, the DLL of the
slave overwrites the received data in the DL-user memory area, increments the working
counter (WKC = x + 1) and generates again an event to the DL-user. The master receives a
successful write response because the WKC was incremented. Later the DL-user reads the
DL-user memory area.

7.3.2 Read access from master

Figure 43 shows the primitives between master, DLL and DL-user in case of a successful read
sequence. The slave updates data several times before the master reads out the data.

DL read (WKC = x)

Master Slave

DL read (WKC = x+1)

1. Write local

AL event

2. Write local

Figure 43 – Successful read sequence to buffer

The DL-user updates the DL-user memory area (1. write Local). The DL-user updates the DL-
user memory area again with new values (2. write Local), because buffered type DL-user
memory areas will never be locked, the corresponding sync manager channel overwrites the
old data. Then the master sends a read service with the working counter (WKC = x), the DLL
(slave controller) of the slave sends the data of the DL-user memory area, increments the
working counter (WKC = x + 1) and generates an event to the DL-user. The master receives a
successful read response because the WKC was incremented.

8 Type 12: FDL protocol state machines

8.1 Overview of slave DL state machines

Figure 44 illustrates the general structure of the DL of a slave by showing its state machines
and their interaction.

BS EN 61158-4-12:2014

 – 98 – IEC 61158-4-12:2014 © IEC 2014

 MII SII DC Register Buffer
Memory Mailbox

MIISM SIISM DCSM RMSM

Access to register/ unprotected memory SYMSM

DHSM

PSM PSM

Slave

Controller
Port 0 Port 1

RX TX RX TX

Figure 44 – Structuring of the protocol machines of an slave

8.2 State machine description

8.2.1 Port state machine (PSM)

The PSM co-ordinate the underlying port state machines used for processing of MAC frames
and for passing it octet by octet to the PDU handler. There exists one state machine for each
DL of the two or more DL interfaces of a slave named as ports. There is no explicit state
machine for ports as it follows the rules defined for ports in ISO/IEC 8802-3 with the
exceptions:

a) the message is passed at an octet by octet base instead of passing the whole frame
at the DL interface.

b) if a port has no link a Tx.req primitive will result in an Rx.ind primitive (provided the
port is in automatic mode or the loop is closed by a command)

Additionally, the statistic counters as defined in IEC 61158-3-12 will be handled by PSM.

8.2.2 PDU handler state machine (DHSM)

The DHSM will process the Ethernet frames by splitting it up to individual Type 12 PDUs at
the primary port and the Receive Time 0 write request at the secondary port and map it to the
individual registers or to the SYSM(sync manager state machine) or to the DCSM (DC state
machine). The FMMU as a mapping of the global address space to the physical addressing,
the activation of the SIISM and MIISM by register access are also located to the DHSM. A
more detailed specification of DHSM can be found in Clause A.1.

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/00327038U
http://dx.doi.org/10.3403/30175910U

IEC 61158-4-12:2014 © IEC 2014 – 99 –

8.2.3 Synch manager state machine (SYSM)

Synch manager state machine will handle the memory areas covered by SynchM as
mailboxes and buffers. The mailbox services are forwarded to a state machine that handles
retries (resilient mailbox state machine – RMSM). There exists a SYSM for each sync
manager. The access to the memory is passed from SYSM to SYSM as long as no SYSM is
activated for this address. If no SYSM is activated for a specific memory address a request to
a memory area or register is done. Some specific access rules apply to registers – they are
described at the register attributes in IEC 61158-3-12. A more detailed specification of SYSM
can be found in Clause A.2.

8.2.4 Resilient mailbox state machine (RMSM)

The mandatory RMSM is responsible for mailbox retries in the read mailbox and checking of
sequence numbers in the write mailbox. A retry of mailbox write is a write to the mailbox with
the same sequence number.

The retry mechanism of read mailbox uses the Repeat and RepeatAck parameter of the Sync
Manager channel. A toggle in the Repeat parameter triggers the slave to retry the last read.
Clause A.3 describes the read mailbox behaviour.

8.2.5 SII state machine (SIISM)

8.2.5.1 Slave information interface access flow charts

SIISM is responsible for access to SII. There are read, write and reload operations specified
for this interface. The master can activate this operation by following the specific procedural
sequence.

8.2.5.2 Read operation

Figure 45 shows the flow of a read operation.

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/30175910U

 – 100 – IEC 61158-4-12:2014 © IEC 2014

Write SII Control (Physical Memory
0x502-0x503)

Finished

Read Operation (0x503.0) ==
1?

yes

no

SII operation running (Busy
(0x503.7) == 1)?

no

Store 32 Data Bits in Actual SII Data
(0x508-0x50B)

yes

no

Reading Completed?

yes

Busy = 1

Read 32 or 64Bits from the SII on the
Address (Actual SII Address (0x504-

0x507))

Busy = 0
Read Operation = 0

Figure 45 – Slave information interface read operation

8.2.5.3 Write operation

Figure 46 shows the flow of a write operation.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 101 –

Write SII Control (Physical Memory
0x502-0x503)

Finished

Write Operation
(0x503.1) == 1

AND Write Enabled
(0x502.0) == 1?

yes

no

SII operation running (Busy
(0x503.7) == 1)?

no

yes

no

Writing Completed ?

yes

Busy = 1

Write 16 Data Bits from the Actual SII
Data (0x508-0x509) to the SII on the
Address (Actual SII Address (0x504-

0x507))

Busy = 0
Write Operation = 0

Figure 46 – Slave information interface write operation

8.2.5.4 Reload operation

Figure 47 shows the flow of a reload operation.

BS EN 61158-4-12:2014

 – 102 – IEC 61158-4-12:2014 © IEC 2014

Write SII Control
(Physical Memory 0x502-0x503)

Reload operation (0x503.2) == 1?

SII operation running
(Busy (0x503.7) == 1)?

yes

Busy = 1

Read 128 data bit from the SII starting on
address 0

Read completed?

no

no

CRC correct?

yes

Finished

no

Set Error Flag = 1

Store Word 0x00..0x03 and Word
0x05..0x06 in DLS-user Registers

NOTE: This step may be omitted if it is not
possible for an ESC to realize functionally

the related internal changes during runtime
(eg. reconfiguration of hardware pins)

First reload (Power on Reset)?
NOTE: This is an automatically driven

load after power-on and not
initiated by the EtherCAT master

Store Word 0x04 DLS-user Registers in
Configured Station Alias(0x0012)

no

yes

yes

Busy = 0
Reload operation = 0

yes

no

Figure 47 – Slave information interface reload operation

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 103 –

8.2.6 MII state machine (MIISM)

MIISM is responsible for access to MII (the media independent interface according to
ISO/IEC 8802-3). The flow follows the structure as specified in 8.2.5 with distinct addresses
for command, address and data buffer.

8.2.7 DC state machine (DCSM)

8.2.7.1 Description of the DC structure

DCSM handles the coordination of the local clock and the local clocks synchronization and
time stamping capabilities. The DC registers are described in IEC 61158-3-12.

Distributed clocks enable all slave devices to have the same time. The first slave device
within the segment that contains a clock is the clock reference. Its clock is used to
synchronize the slave clocks of the other slave devices and of the master device. The master
device sends a synchronisation PDU at certain intervals (as required in order to avoid the
slave clock diverging beyond application specific limits), in which the slave device containing
the reference clock enters its current time. The slave devices with slave clocks then read the
time from the same PDU with ARMW service. Due to the logical ring structure this is possible
since the reference clock is located before the slave clocks in the segment.

Since each slave introduces a small delay in the outgoing and return direction (within the
device and also on the physical link), the propagation delay time between reference clock and
the respective slave clock shall be considered during the synchronisation of the slave clocks.
For measuring the propagation delay, the master device sends a broadcast write to a special
address (the receive time register of port 0), which causes each slave device to save the time
when the PDU was received (or its local clock time) in the outgoing direction and on the way
back. The master can read these saved times and set up a delay register accordingly.

Definition of a reference clock
One slave will be used as a reference clock. The reference clock is the first clock between
master and all the slaves to be synchronized. Reference clock distributes its clock cyclically
with ARMW or FRMW command. The reference clock is adjustable from a “global” reference
clock – such as IEC 61588.

Precondition
There is no mechanism to calculate the residence time. Thus, no significant jitter of residence
time is allowed for all Type 12 slave devices.

Key features:
• Drift compensation to Reference Clock

• Propagation delay measurement
Each slave controller measures the delay between the two directions of a frame
Master calculates the propagation delays between all slaves

• Offset compensation to Reference Clock (System Time)
Same absolute system time in all devices (jitter below 1 µs)

Figure 48 gives a structural overview of the DC element. It assumes a local clock rate of
100 MHz but a clock resolution of 1ns. This allows to adjust the local clock in small steps to
the global clock rate and avoids jumps in the time scale.

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/00327038U
http://dx.doi.org/10.3403/30175910U
http://dx.doi.org/10.3403/03205792U

 – 104 – IEC 61158-4-12:2014 © IEC 2014

Local
Clock

Local
Clock (SOF)

Start of Frame (SOF)

DcRecvTimeP0
DcRecvTimeP1

Write to DcRecvTimePx

DC Control

DcSysTimeOffs+

DcSysTime

+-

-DcDelayTime

Write to DcSysTime

Sync Unit
Latch Unit

Add 9/10/11
Every 10ns

Figure 48 – Distributed clock

SOF is the beginning of the preamble of the Ethernet frame.

The local clock is incremented by 10 every 10 ns and depending on the drift of the clock by 9
or 11 on a regular time base specified in DC-control (for drift compensation).

The SysTimeOffset allows adaptation without changing the free running local clock. The delay
as the second offset is used to compensate the delays from reference clock to slave clock.

External synchronisation is accomplished by mechanisms specified in IEC 61588. Any device
with external communication interfaces may contain a boundary clock. The slave with the
master clock is synchronized to the boundary clock. A Type 12 segment shall have only one
active boundary clock at any time in order to meet the IEC 61588 topology requirements.

DC is used for very precise timing requirements. Systems with synchronisation needs in the
range of 10 µs and higher or with other means of delay compensation may be synchronized
by sharing a Type 12 PDUs accessing write buffers of the devices to be synchronized.

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/03205792U
http://dx.doi.org/10.3403/03205792U

IEC 61158-4-12:2014 © IEC 2014 – 105 –

8.2.7.2 Delay measurement

Clock
Master

Clock
Slave 1

Clock
Slave 2

Clock
Slave 3

T1 WR Systime
T2(cl.1)

T2(cl.1)

T2(cl.3)

T3(cl.3)

T3(cl.2)

T3(cl.1)

T4

T1,T4
RD Systime

T2,T3(cl.1)

T2,T3(cl.2)

T2,T3(cl.3)
Delay = (T4-T1-T3+T2-localDelayMaster-localDelaySlave)/2

Figure 49 – Delay measurement sequence

Figure 49 shows the principle of delay measurement.

T1(of the clock master) and T2(of the various slave clocks 1,2,3 here denoted as cl.1, cl.2 and
cl.3) refers to Receive time Port 0, T3(of the various slave clocks 1,2,3 here denoted as cl.1,
cl.2 and cl.3) and T4 refers to Receive time Port 1. T2=T3 for the last slave clock. This model
assumes symmetric connection i.e. the path from A to B is as long as the path from B to A.
Different line delays and different propagation delays in the Ethernet PHYs may result in an
constant time offset.

BS EN 61158-4-12:2014

 – 106 – IEC 61158-4-12:2014 © IEC 2014

Annex A
(informative)

Type 12: Additional specifications on DL-Protocol state machines

NOTE 1 This annex specifies a number of finite state machines used by the DLE to provide its low-level and high-
level protocol functions. This specification is complementary to the textual specification in the body of this
standard; in case of conflict the requirements of the textual specification take precedence.

NOTE 2 The finite state machine descriptions given here are necessarily less than a complete description of an
implementation. Additional requirements and considerations are found in the textual specification.

A.1 DHSM

A.1.1 Primitive definitions

A.1.1.1 Primitive exchanged between PSM and DHSM

Table A.1 shows primitives issued by DHSM to the PSM.

Table A.1 – Primitives issued by DHSM to PSM

Primitive name Associated parameters

Tx request Port,
Byte,
Data

Table A.2 shows primitives issued by the PSM to the DHSM.

Table A.2 – Primitives issued by PSM to DHSM

Primitive name Associated parameters

Rx indication Port,
Byte,
Data

A.1.1.2 Parameters of PSM Primitives

Table A.3 shows all parameters used with primitives between the DHSM and the PSM.

Table A.3 – Parameters used with primitives exchanged between DHSM and PSM

Parameter name Description

Port Identifier of the local port, starting with 0 as the primary port

Byte Identifier of the octet received/transmitted as specified in Table A.4

Data Value of the octet received/transmitted

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 107 –

Table A.4 – Identifier for the octets of a Ethernet frame

Parameter name Description

0 first octet of Preamble

1 further octet of Preamble

2 first octet of DA

3 further octet of DA

4 first octet of SA

5 further octet of SA

6 first octet of VLAN

7 further octet of VLAN

8 first octet of Ethertype

9 second octet of Ethertype

10 First Octet of Ethernet SDU

10+ n (n+1)-th Octet of Ethernet SDU

0xffff (END) end of frame with correct FCS

0xfffe (ERR) abort frame with error

State machine description

There exist exactly one DHSM per slave device.

The DHSM forms the interface between remote interaction and local memory. Each frame
octets will be passed from port to port by DHSM.

If a Type 12 command is recognized an interaction with the SYM state machines will be
issued if the local memory is addressed. The local actions will be invoked if the indication was
issued at port 0. The only local action issued on the other ports is the time stamping of
incoming frames.

This state machine describes the interpretation of Ethernet frames with a specific real time
Ethertype or with a specific UDP destination port. Specific Type 12 handling as detection of
circulating frames, incrementing auto increment address, updating of WKC and FCS will be
done by DHSM.

The Error Handling is described at a logical level. For better localization of erroneous links the
station detecting an error will forward with the damaged FCS a 4 bit physical symbol which
would cause an alignment error. This alignment error in combination with a FCS which is
inverted in the last 2 bits is a signal that the problem occurred on a different link. Each
detected error causes an additional entry in the appropriate statistics attributes.

Local Constants
LASTP
Identifier of the last Ethernet port. Ports are numbered from 0 to LASTP.

END
Indicator of end of Ethernet frame.

ERR
Indicator of end of Ethernet frame due to an error condition.

Local Variables
CMD
Command identifier of a Type 12 PDU.

BS EN 61158-4-12:2014

 – 108 – IEC 61158-4-12:2014 © IEC 2014

Etype1
First octet of Ethertype.

Length
Length of a Type 12 PDU.

MF
Indicates last Type 12 PDU in an Ethernet frame.

RxTimeLatch[0..LASTP]
Length of a Type 12 PDU.

AdL
First address octet of an Type 12 PDU.

AdH
Second address octet of a Type 12 PDU.

DaL
Third address octet of a Type 12 PDU.

DaH
Forth address octet of a Type 12 PDU.

LeL
First length octet of a Type 12 PDU.

LeH
Second length octet of a Type 12 PDU.

wkc
Local additive factor to be added to WKC in Type 12 PDU.

RData
Local data octet of memory element.

WData
Data octet of a Type 12 PDU to be written.

Overflow
Indicates overflow of an addition of two octets treated as unsigned integer.

State table nomenclature
The standard suffixes “.req”, “.cnf” and “.ind” are used to indicate the request, confirm and
indication primitives, respectively.

DHSM table

The DHSM State table is shown in Table A.5.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 109 –

Table A.5 – DHSM state table

Current
state

Event
 /condition
 ⇒action

Next state

1 ETH

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

ETH

2 ETH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte = 0
=>
RxTimeLatch[Port] = CT
Port = 1
Tx.req(Port,Byte,Data)

ETH

3 ETH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte = 1
=>
Port = 1
Tx.req(Port,Byte,Data)

ETH

4 ETH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == 2
=>
Port = 1
INIT_FCS(Data)
Tx.req(Port,Byte,Data)

ETH

5 ETH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == 3
=>
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

ETH

6 ETH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte = 4
=>
Port = 1
Data = Data | 2
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

ETH

7 ETH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte > 4 && Byte < 8
=>
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

ETH

8 ETH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte = 8
=>
Port = 1
Etype1 = Data
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

ETH

9 ETH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte = 9 && (Data== 0xA4 && Etype1== 0x88)
=>
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

ECAT

10 ETH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte = 9 && (Data== 0x00 && Etype1== 0x08)
=>
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EIP

BS EN 61158-4-12:2014

 – 110 – IEC 61158-4-12:2014 © IEC 2014

Current
state

Event
 /condition
 ⇒action

Next state

11 ETH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte = 9 && (Data != 0xA4 || Etype1 != 0x88) &&
(Data != 0x00 || Etype1 != 0x08)
=>
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

ETH

12 ETH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte > 9
=>
Port = 1
Tx.req(Port,Byte,Data)

ETH

13 EIP

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

EIP

14 EIP

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte < 10
=>
Port = 1
Byte = ERR
Tx.req(Port,Byte,Data)

ETH

15 EIP

Rx.ind(Port,Byte,Data)
/Port == 0 && (Byte == END || Byte == ERR)
=>
Port = 1
Tx.req(Port,Byte,Data)

ETH

16 EIP

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == 10 && Data == 0x45
=>
Port = 1
Tx.req(Port,Byte,Data)

EIP

17 EIP

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == 10 && Data !=0x45
=>
Port = 1
Tx.req(Port,Byte,Data)

ETH

18 EIP

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte > 10 && Byte < 19
=>
Port = 1
Tx.req(Port,Byte,Data)

EIP

19 EIP

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == 19 && Data == 0x11
=>
Port = 1
Tx.req(Port,Byte,Data)

EIP

20 EIP

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == 19 && Data !=0x11
=>
Port = 1
Tx.req(Port,Byte,Data)

ETH

21 EIP

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte > 19 && Byte < 32
=>
Port = 1
Tx.req(Port,Byte,Data)

EIP

22 EIP

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == 32 && Data == 0x88
=>
Port = 1
Tx.req(Port,Byte,Data)

EIP

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 111 –

Current
state

Event
 /condition
 ⇒action

Next state

23 EIP

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == 32 && Data != 0x88
=>
Port = 1
Tx.req(Port,Byte,Data)

ETH

24 EIP

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == 33 && Data == 0xA4
=>
Port = 1
Tx.req(Port,Byte,Data)

EIP

25 EIP

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == 33 && Data != 0xA4
=>
Port = 1
Tx.req(Port,Byte,Data)

ETH

26 EIP

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte > 33 && Byte < 36
=>
Port = 1
Tx.req(Port,Byte,Data)

EIP

27 EIP

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == 36
=>
Port = 1
Data = 0
Tx.req(Port,Byte,Data)

EIP

28 EIP

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == 37
=>
Port = 1
Data = 0
Tx.req(Port,Byte,Data)

ECAT

29 ECAT

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

ECAT

30 ECAT

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte < 10
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

31 ECAT

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == 10
=>
Len = Data
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

ECAT

32 ECAT

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == 11&& (Data & 0xf0 == 0x10)
=>
Len = Len + (Data*256 & 0x0f)
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

ECMD

33 ECAT

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == 11&& (Data & 0xf0 != 0x10)
=>
Port = 1
Tx.req(Port,Byte,Data)

ETH

BS EN 61158-4-12:2014

 – 112 – IEC 61158-4-12:2014 © IEC 2014

Current
state

Event
 /condition
 ⇒action

Next state

34 ECAT

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

35 ECAT

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == ERR
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

36 ECMD

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

ECMD

37 ECMD

Rx.ind(Port,Byte,Data)
/Port == 0
=>
CMD = Data
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EIDX

38 ECMD

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

39 ECMD

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == ERR
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

40 EIDX

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

EIDX

41 EIDX

Rx.ind(Port,Byte,Data)
/Port == 0
=>
Cmd = Data
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EADL

42 EIDX

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 113 –

Current
state

Event
 /condition
 ⇒action

Next state

43 EIDX

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == ERR
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

44 EADL

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

EADL

45 EADL

Rx.ind(Port,Byte,Data)
/Port == 0 && CMD == BRD, BWR, BRW, APRD, APWR, APRW,ARMW
=>
AdL = Data
Data = Data + 1
Port 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EADH

46 EADL

Rx.ind(Port,Byte,Data)
/Port == 0 && CMD == other
=>
AdL = Data
Port 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EADH

47 EADL

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

48 EADL

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == ERR
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

49 EADH

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

EADH

50 EADH

Rx.ind(Port,Byte,Data)
/Port == 0 && CMD == BRD, BWR, BRW
=>
AdH = Data
if AdL == 0xff then Data = Data + 1
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EDAL

BS EN 61158-4-12:2014

 – 114 – IEC 61158-4-12:2014 © IEC 2014

Current
state

Event
 /condition
 ⇒action

Next state

51 EADH

Rx.ind(Port,Byte,Data)
/Port == 0 && CMD == APRD, APWR, APRW,ARMW
=>
AdH = Data
if AdL == 0xff then Data = Data + 1
if Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EDAL

52 EADH

Rx.ind(Port,Byte,Data)
/Port == 0 && CMD == FPRD, FPWR, FPRW,FRMW
=>
AdH = Data
Port 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EDAL

53 EADH

Rx.ind(Port,Byte,Data)
/Port == 0 && CMD == LRD, LWR, LRW
=>
AdH = Data
Port 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EDAL

54 EADH

Rx.ind(Port,Byte,Data)
/Port == 0 && CMD == other
=>
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EDAL

55 EADH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

56 EADH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == ERR
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

57 EDAL

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

EDAL

58 EDAL

Rx.ind(Port,Byte,Data)
/Port == 0
=>
DaL = Data
Port 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EDAH

59 EDAL

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 115 –

Current
state

Event
 /condition
 ⇒action

Next state

60 EDAL

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == ERR
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

61 EDAH

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

EDAH

62 EDAH

Rx.ind(Port,Byte,Data)
/Port == 0
=>
DaH = Data
Port 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

ELEL

63 EDAH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

64 EDAH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == ERR
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

65 ELEL

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

ELEL

66 ELEL

Rx.ind(Port,Byte,Data)
/Port == 0
=>
LeL = Data
Port 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

ELEH

67 ELEL

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

68 ELEL

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == ERR
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

BS EN 61158-4-12:2014

 – 116 – IEC 61158-4-12:2014 © IEC 2014

Current
state

Event
 /condition
 ⇒action

Next state

69 ELEH

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

ELEH

70 ELEH

Rx.ind(Port,Byte,Data)
/Port == 0 && (!Closed[Port] || Data & 0x40 == 0)
=>
if Closed[Port] then LeH = Data | 0x40 else LeH = Data
MF = LeH & 0x80
Length = LeL + 256 * (LeH & 0x0f)
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EIRL

71 ELEH

Rx.ind(Port,Byte,Data)
/Port == 0 && (Closed[Port] && Data & 0x40 != 0)
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

72 ELEH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

73 ELEH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == ERR
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

74 EIRL

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

EIRL

75 EIRL

Rx.ind(Port,Byte,Data)
/Port == 0
=>
if Ena then Data == Data | (EventH & EventMskH)
Port 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EIRH

76 EIRL

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 117 –

Current
state

Event
 /condition
 ⇒action

Next state

77 EIRL

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == ERR
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

78 EIRH

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

EIRH

79 EIRH

Rx.ind(Port,Byte,Data)
/Port == 0 && Length == 0
=>
wkc = 0
Port 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EWKL

80 EIRH

Rx.ind(Port,Byte,Data)
/Port == 0 && Length != 0 && !Ena
=>
wkc = 0
Length --
Port 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EDTI

81 EIRH

Rx.ind(Port,Byte,Data)
/Port == 0 && Length != 0 && Ena
=>
wkc = 0
Length --
Port 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EDTA

82 EIRH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

83 EIRH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == ERR
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

84 EDTI

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

EDTI

85 EDTI

Rx.ind(Port,Byte,Data)
/Port == 0 && Length == 0
=>
Port 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EWKL

BS EN 61158-4-12:2014

 – 118 – IEC 61158-4-12:2014 © IEC 2014

Current
state

Event
 /condition
 ⇒action

Next state

86 EDTI

Rx.ind(Port,Byte,Data)
/Port == 0 && Length != 0
=>
Length --
Port 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EDTI

87 EDTI

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

88 EDTI

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == ERR
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

89 EDTA

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

EDTA

90 EDTA

Rx.ind(Port,Byte,Data)
/Port == 0 && CMDL && R_FMMUMATCH(LOGADD)
=>
MemoryAddress = RFMMUMAP (LOGADD)
WKC = 0
WData= Data
Read.ind (Address, Data, WKC)

WSYLR

91 EDTA

Rx.ind(Port,Byte,Data)
/Port == 0 && CMDL && W_FMMUMATCH(LOGADD)
=>
MemoryAddress = WFMMUMAP (LOGADD)
WKC = 0
RData= Data
Write.ind (Address, Data, WKC)

WSYLW

92 EDTA

Rx.ind(Port,Byte,Data)
/Port == 0 && CMDL && N_FMMUMATCH(LOGADD) && Length == 0
=>
INC(LOGADD)
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EWKL

93 EDTA

Rx.ind(Port,Byte,Data)
/Port == 0 && CMDL && N_FMMUMATCH(LOGADD) && Length != 0
=>
Length --
INC(LOGADD)
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EDTA

94 EDTA

Rx.ind(Port,Byte,Data)
/Port == 0 && CMDPR
=>
WKC = 0
RData= Data
Read.ind (Address, Data, WKC)

WSYPR

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 119 –

Current
state

Event
 /condition
 ⇒action

Next state

95 EDTA

Rx.ind(Port,Byte,Data)
/Port == 0 && CMDPW
=>
WKC = 0
WData= Data
Write.ind (Address, Data, WKC)

WSYPW

96 EDTA

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

97 EDTA

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == ERR
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

98 WSYLR

Read.rsp (MemoryAddress, Data, WKC)
/W_FMMUMATCH(LOGADD)
=>
wkc = wkc | WKC
MemoryAddress = WFMMUMAP (LOGADD)
RData = Data
Data = WData
WKC = 0
Write.ind (Address, Data, WKC)

WSYLW

99 WSYLR

Read.rsp (MemoryAddress, Data, WKC)
/!W_FMMUMATCH(LOGADD) && Length == 0
=>
wkc = wkc | WKC
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EWKL

100 WSYLR

Read.rsp (MemoryAddress, Data, WKC)
/!W_FMMUMATCH(LOGADD) && Length != 0
=>
Length --
INC(LOGADD)
wkc = wkc | WKC
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EDTA

101 WSYLW

Write.rsp (MemoryAddress, Data, WKC)
/Length == 0
=>
INC(LOGADD)
wkc = wkc | (WKC * CMDLRW)
Data = RData
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EWKL

102 WSYLW

Write.rsp (MemoryAddress, Data, WKC)
/Length != 0
=>
Length --
INC(LOGADD)
wkc = wkc | (WKC * CMDLRW)
Data = RData
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EDTA

BS EN 61158-4-12:2014

 – 120 – IEC 61158-4-12:2014 © IEC 2014

Current
state

Event
 /condition
 ⇒action

Next state

103 WSYPR

Read.rsp (MemoryAddress, Data, WKC)
/CMDPW
=>
wkc = wkc | WKC
if OR then Data = WData | Data
RData = Data
Data = WData
WKC = 0
Write.ind (Address, Data, WKC)

WSYPW

104 WSYPR

Read.rsp (MemoryAddress, Data, WKC)
/!CMDPW && Length == 0
=>
if OR then Data = WData | Data
wkc = wkc | WKC
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EWKL

105 WSYPR

Read.rsp (MemoryAddress, Data, WKC)
/!CMDPW && Length != 0
=>
Length --
if OR then Data = WData | Data
wkc = wkc | WKC
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EDTA

106 WSYPW

Write.rsp (MemoryAddress, Data, WKC)
/Length == 0
=>
INC(LOGADD)
wkc = wkc | (WKC * CMDPRMW)
Data = RData
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EWKL

107 WSYPW

Write.rsp (MemoryAddress, Data, WKC)
/Length != 0
=>
Length --
INC(LOGADD)
wkc = wkc | (WKC * CMDLRW)
Data = RData
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EDTA

108 EWKL

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

EWKL

109 EWKL

Rx.ind(Port,Byte,Data)
/Port == 0
=>
Overflow, Data = Data + wkc
Port 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EWKH

110 EWKL

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 121 –

Current
state

Event
 /condition
 ⇒action

Next state

111 EWKL

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == ERR
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

112 EWKH

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

ECMD

113 EWKH

Rx.ind(Port,Byte,Data)
/Port == 0 && MF
=>
Data = Data + Overflow
Port = 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EWKL

114 EWKH

Rx.ind(Port,Byte,Data)
/Port == 0 && !MF
=>
Data = Data + Overflow
Port 1
UPD_FCS(Data)
Tx.req(Port,Byte,Data)

EFCS1

115 EWKH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

116 EWKH

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == ERR
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

117 EFCS1

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

EFCS1

118 EFCS1

Rx.ind(Port,Byte,Data)
/Port == 0
=>
Data = FCS1
Port 1
Tx.req(Port,Byte,Data)

EFCS2

119 EFCS1

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

BS EN 61158-4-12:2014

 – 122 – IEC 61158-4-12:2014 © IEC 2014

Current
state

Event
 /condition
 ⇒action

Next state

120 EFCS1

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == ERR
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

121 EFCS2

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

EFCS2

122 EFCS2

Rx.ind(Port,Byte,Data)
/Port == 0
=>
Data = FCS2
Port 1
Tx.req(Port,Byte,Data)

EFCS3

123 EFCS2

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

124 EFCS2

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == ERR
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

125 EFCS3

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

EFCS3

126 EFCS3

Rx.ind(Port,Byte,Data)
/Port == 0
=>
Data = FCS3
Port 1
Tx.req(Port,Byte,Data)

EFCS4

127 EFCS3

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

128 EFCS3

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == ERR
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 123 –

Current
state

Event
 /condition
 ⇒action

Next state

129 EFCS4

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

EFCS4

130 EFCS4

Rx.ind(Port,Byte,Data)
/Port == 0
=>
Data = FCS4
Port 1
Tx.req(Port,Byte,Data)

EFCS5

131 EFCS4

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

132 EFCS4

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == ERR
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

133 EFCS5

Rx.ind(Port,Byte,Data)
/Port != 0
=>
if Byte == 0 then RxTimeLatch[Port] = CT
Port = (Port +1) MOD (LASTP +1)
Tx.req(Port,Byte,Data)

EFCS5

134 EFCS5

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte == END
=>
Port = 1
Byte = END
Success = TRUE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

135 EFCS5

Rx.ind(Port,Byte,Data)
/Port == 0 && Byte != END
=>
Port = 1
Byte = ERR
Success = FALSE
Tx.req(Port,Byte,Data)
Terminate.ind (success)

ETH

Functions

The DHSM Functions are summarized in Table A.6.

BS EN 61158-4-12:2014

 – 124 – IEC 61158-4-12:2014 © IEC 2014

Table A.6 – DHSM function table

Function name Operations

INIT_FCS(Data) Initiate FCS with 0xFFFFFFFF

UPD_FCS(Data) Updates FCS according to ISO/IEC 8802-3

CMDL Cmd == LRD, LRW, LWR

CMDPR Cmd == BRD, BRW ||
(Cmd == ARD, ARW, ARMW && AdH, AdL == 0) ||
(Cmd == FRD, FRW, FRMW && AdH, AdL==ConfiguredStationAddress,
ConfiguredStationAlias if Alias enabled)

CMDPW Cmd == BWR; BRW ||
(Cmd == AWR, ARW && (AdH, AdL-1) == 0) ||
(Cmd == FWR, FRW && AdH, AdL==ConfiguredStationAddress,
ConfiguredStationAlias if Alias enabled) ||
(Cmd == ARMW && (AdH, AdL-1) != 0) ||
(Cmd == FRMW && AdH, AdL != ConfiguredStationAddress,
ConfiguredStationAlias if Alias enabled)

CMDLRW if Cmd == LRW then 2 else 1

CMDRMW if Cmd == ARMW,FRMW then 0 else 1

RFMMUMAP (LOGADD) Map LOGADD to Address in memory space using read FMMU

WFMMUMAP (LOGADD) Map LOGADD to Address in memory space using write FMMU

R_FMMUMATCH (LOGADD) LOGADD can be mapped onto a read to an address in memory && Cmd ==
LRD, LRW

W_FMMUMATCH (LOGADD) LOGADD can be mapped onto a write to an address in memory && Cmd ==
LWR, LRW

N_FMMUMATCH (LOGADD) !W_FMMUMATCH (LOGADD) && !R_FMMUMATCH (LOGADD)

OR Cmd == BRD, BRW

INC(LOGADD) Overflow, AdL = AdL+ 1
Overflow, AdH= AdH + Overflow
Overflow, DaL= DaL + Overflow
Overflow, DaH= DaH + Overflow

A.2 SYSM

A.2.1 Primitive definition

A.2.1.1 Primitive exchanged between DHSM and SYSM

Table A.7 shows primitives issued by SYSM to the DHSM.

Table A.7 – Primitives issued by SYSM to DHSM

Primitive name Associated parameters

Read response Address,
Data,
WKC

Write response Address,
Data,
WKC

Table A.8 shows primitives issued by the DHSM to the SYSM.

BS EN 61158-4-12:2014

http://dx.doi.org/10.3403/00327038U

IEC 61158-4-12:2014 © IEC 2014 – 125 –

Table A.8 – Primitives issued by DHSM to SYSM

Primitive name Associated parameters

Read indication Address,
Data,
WKC

Write indication Address,
Data,
WKC

Terminate indication Success

A.2.1.2 Primitive exchanged between DL-User and SYSM

Table A.9 shows primitives issued by the DL-User to the SYSM.

Table A.9 – Primitives issued by DL-User to SYSM

Primitive name Associated parameters

DL-Read local request Address,
Length

DL-Write local request Address,
Length,
Data

Table A.10 shows primitives issued by SYSM to the DL-User.

Table A.10 – Primitives issued by SYSM to DL-User

Primitive name Associated parameters

DL-Read local confirmation L-Status,
Data

DL-Write local confirmation L-Status

NOTE Local events are not modeled as they do not have impact to SYSM.

A.2.1.3 Parameters of DHSM Primitives

Table A.11 shows all parameters used with primitives between the SYSM and the DHSM.

Table A.11 – Parameters used with primitives exchanged between SYSM and DHSM

Parameter name Description

WKC Working counter of local access

Address Identifier of the physical memory area

Data Value of the octet received/transmitted

State machine description

There exist a SYSM for each sync manager channel. The abstract model is that Type 12
Read/Write indication primitives and Read/Write Local request primitives are passed to the
first SYSM and executed if there is an address match or passed to the next SYSM. If no
SYSM respond to the service primitive a physical memory handler will execute the service
request if the memory or register is present and the service type is enabled for this register. A
register write access will be done if the Ethernet frame is parsed successfully by DHSM. Read
access to the first octet of word or double word registers are executed in an atomic way, i.e.
reading the first octet will freeze the value for further access.

BS EN 61158-4-12:2014

 – 126 – IEC 61158-4-12:2014 © IEC 2014

There are buffered types and mailbox type SYSM. The local requests are modelled in that
way, that the read/write access is completely within the boundary or completely outside the
boundary of a sync manager area.

The SM events are generated when the associated sync manager channel register area is
written.

Local variables
eact
Activation of a buffer by master.

uact
Activation of a buffer by DLS-user.

Terminate
Indicates the Termination of a mailbox or buffer transaction.

User
Contains user buffer.

Buffer
Contains buffer used for communication.

Next
Contains buffer filled for next use.

Free
Contains free buffer.

p1, p2, p3
Memory location of the three buffer, first is located as specified by SM, others are filled on the
following locations.

act
Contains activity code of a mailbox.

State table nomenclature

The standard suffixes “.req”, “.cnf” and “.ind” are used to indicate the request, confirm and
indication primitives, respectively.

SYSM table

The SYSM State Table is shown in Table A.12.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 127 –

Table A.12 – SYSM state table

Current
State

Event
 /Condition
 =>Action

Next State

1 any state SM Event
/(SM.ChannelEnable && !SM.ChannelDisable) && SM.Buffer Type == 0 &&
SM.Direction == 0
=>
SM.Toggle = SM.Repeat
if (SM.Watchdog enable) then start WD timer
eact, uact = FALSE
Terminate = FALSE
next=NIL,buffer=p0,user=p1,free=p2
SM.bufferedState=3
if (AL Event Enable) then Enable SM Event (Toggle)

BR-IDLE

2 any state SM Event
/(SM.ChannelEnable && !SM.ChannelDisable) && SM.Buffer Type == 0 &&
SM.Direction == 1
=>
SM.Toggle = SM.Repeat
if (SM.Watchdog enable) then start WD timer
eact, uact = FALSE
Terminate = FALSE
next=NIL, buffer =p0,user=p1,free=p2
SM.bufferedState=3
if (AL Event Enable) then Enable SM Event (Toggle)

BW-IDLE

3 any state SM Event
/(SM.ChannelEnable && !SM.ChannelDisable) && SM.Buffer Type == 2 &&
SM.Direction == 0
=>
SM.Toggle = SM.Repeat
if (SM.Watchdog enable) then start WD timer
Terminate = FALSE
act = 0
SM.mailboxState=0
if (AL Event Enable) then Enable SM Event (Toggle)

MR-IDLE

4 any state SM Event
/(SM.ChannelEnable && !SM.ChannelDisable) && SM.Buffer Type == 2 &&
SM.Direction == 1
=>
SM.Toggle = SM.Repeat
if (SM.Watchdog enable) then start WD timer
Terminate = FALSE
act = 0
SM.mailboxState=0
if (AL Event Enable) then Enable SM Event (Toggle)

MW-IDLE

5 any state SM Event
/(!SM.ChannelEnable || SM.ChannelDisable) || SM.Buffer Type == 1,3
=>

OFF

6 OFF DL-Write Local.req (Address, Length, Data)
=>
pass next

OFF

7 OFF DL-Read Local.req (Address, Length)
=>
pass next

OFF

8 OFF Write.ind (Address, Data, WKC)
=>
pass next

OFF

9 OFF Read.ind (Address, Data, WKC)
=>
pass next

OFF

10 OFF Terminate.ind(Success)
=>
pass next

OFF

BS EN 61158-4-12:2014

 – 128 – IEC 61158-4-12:2014 © IEC 2014

Current
State

Event
 /Condition
 =>Action

Next State

11 BR-IDLE DL-Write Local.req (Address, Length, Data)
/A&&NE && !uact
=>
(user. Address) = Data
L-Status = OK
uact = TRUE
SM.ReadEvent = 0
DL-Write Local.cnf (L-Status)

BR-IDLE

12 BR-IDLE DL-Write Local.req (Address, Length, Data)
/A&&NE && uact
=>
(user. Address) = Data
L-Status = OK
SM.ReadEvent = 0
DL-Write Local.cnf (L-Status)

BR-IDLE

13 BR-IDLE DL-Write Local.req (Address, Length, Data)
/A&&E && !uact
=>
(user. Address) = Data
if next == NIL then next = user, user = free, free = NIL else user <=> next
SM.bufferedState=next buffer number
L-Status = OK
SM.ReadEvent = 0
SM.WriteEvent = 1
DL-Write Local.cnf (L-Status)

BR-IDLE

14 BR-IDLE DL-Write Local.req (Address, Length, Data)
/A&&E && uact
=>
(user. Address) = Data
if next == NIL then next = user, user = free, free = NIL else user <=> next
SM.bufferedState=next buffer number
L-Status = OK
uact = FALSE
SM.ReadEvent = 0
SM.WriteEvent = 1
DL-Write Local.cnf (L-Status)

BR-IDLE

15 BR-IDLE DL-Write Local.req (Address, Length, Data)
/NA&&AE && !uact
=>
L-Status = WRNGSEQ
DL-Write Local.cnf (L-Status)

BR-IDLE

16 BR-IDLE DL-Write Local.req (Address, Length, Data)
/ NA&&E && uact
=>
(user. Address) = Data
if next == NIL then next = user, user = free, free = NIL else user <=> next
SM.bufferedState=next buffer number
L-Status = OK
uact = FALSE
SM.WriteEvent = 1
DL-Write Local.cnf (L-Status)

BR-IDLE

17 BR-IDLE DL-Write Local.req (Address, Length, Data)
/ NA&&NE && uact
=>
(user. Address) = Data
L-Status = OK
DL-Write Local.cnf (L-Status)

BR-IDLE

18 BR-IDLE DL-Write Local.req (Address, Length, Data)
/ Address < SM.PhysicalStartAddress ||
Address >= (SM.PhysicalStartAddress+SM.Length)
=>
pass next

BR-IDLE

19 BR-IDLE DL-Read Local.req (Address, Length)
=>
pass next

BR-IDLE

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 129 –

Current
State

Event
 /Condition
 =>Action

Next State

20 BR-IDLE Write.ind (Address, Data, WKC)
=>
pass next

BR-IDLE

21 BR-IDLE Read.ind (Address, Data, WKC)
/A&&NE && !eact
=>
if next != NIL then free = buffer, buffer = next, next = NIL
Data = (buffer. Address)
eact = TRUE
WKC = WKC +1
SM.WriteEvent = 0
Read.rsp (Address, Data, WKC)

BR-IDLE

22 BR-IDLE Read.ind (Address, Data, WKC)
/A&&NE && eact
=>
Data = (buffer. Address)
WKC = WKC +1
SM.WriteEvent = 0
Read.rsp (Address, Data, WKC)

BR-IDLE

23 BR-IDLE Read.ind (Address, Data, WKC)
/A&&E && !eact
=>
if next != NIL then free = buffer, buffer = next, next = NIL
Data = (buffer. Address)
WKC = WKC +1
eact = TRUE
Terminate = TRUE
SM.WriteEvent = 0
Read.rsp (Address, Data, WKC)

BR-IDLE

24 BR-IDLE Read.ind (Address, Data, WKC)
/A&&E && eact
=>
/*Buffer exchange possible*/
Data = (buffer. Address)
WKC = WKC +1
Terminate = TRUE
SM.WriteEvent = 0
Read.rsp (Address, Data, WKC)

BR-IDLE

25 BR-IDLE Read.ind (Address, Data, WKC)
/NA&&AE && !eact
=>
Read.rsp (Address, Data, WKC)

BR-IDLE

26 BR-IDLE Read.ind (Address, Data, WKC)
/ NA&&E && eact
=>
Data = (buffer. Address)
WKC = WKC +1
Terminate = TRUE
Read.rsp (Address, Data, WKC)

BR-IDLE

27 BR-IDLE Read.ind (Address, Data, WKC)
/ NA&&NE && eact
=>
Data = (buffer. Address)
WKC = WKC +1
Read.rsp (Address, Data, WKC)

BR-IDLE

28 BR-IDLE Read.ind (Address, Data, WKC)
/ Address < SM.PhysicalStartAddress || Address >=
(SM.PhysicalStartAddress+SM.Length)
=>
pass next

BR-IDLE

BS EN 61158-4-12:2014

 – 130 – IEC 61158-4-12:2014 © IEC 2014

Current
State

Event
 /Condition
 =>Action

Next State

29 BR-IDLE Terminate.ind(Success)
/Success && Terminate
=>
eact = FALSE
Terminate = FALSE
SM.ReadEvent = 1
pass next

BR-IDLE

30 BR-IDLE Terminate.ind(Success)
/!Terminate
=>
if (!success && eact) then eact = FALSE
pass next

BR-IDLE

31 BR-IDLE Terminate.ind(Success)
/(!Success && Terminate)
=>
Terminate = FALSE
eact = FALSE
pass next

BR-IDLE

32 BW-IDLE DL-Write Local.req (Address, Length, Data)
=>
pass next

BW-IDLE

33 BW-IDLE DL-Read Local.req (Address, Length)
/A&&NE && !uact
=>
if next != NIL then free = user, user = next, next = NIL
Data = (user. Address)
L-Status = OK
uact = TRUE
SM.WriteEvent = 0
DL-Read Local.cnf (L-Status, Data)

BW-IDLE

34 BW-IDLE DL-Read Local.req (Address, Length)
/A&&NE && uact
=>
Data = (user. Address)
L-Status = OK
SM.WriteEvent = 0
DL-Read Local.cnf (L-Status, Data)

BW-IDLE

35 BW-IDLE DL-Read Local.req (Address, Length)
/A&&E && !uact
=>
if next != NIL then free = user, user = next, next = NIL
Data = (user. Address)
L-Status = OK
SM.WriteEvent = 0
SM.ReadEvent = 1
DL-Read Local.cnf (L-Status, Data)

BW-IDLE

36 BW-IDLE DL-Read Local.req (Address, Length)
/A&&E && uact
=>
Data = (user. Address)
L-Status = OK
uact = FALSE
SM.WriteEvent = 0
SM.ReadEvent = 1
DL-Read Local.cnf (L-Status, Data)

BW-IDLE

37 BW-IDLE DL-Read Local.req (Address, Length)
/NA&&AE && !uact
=>
L-Status = WRNGSEQ
DL-Read Local.cnf (L-Status, Data)

BW-IDLE

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 131 –

Current
State

Event
 /Condition
 =>Action

Next State

38 BW-IDLE DL-Read Local.req (Address, Length)
/ NA&&E && uact
=>
Data = (user. Address)
L-Status = OK
uact = FALSE
SM.ReadEvent = 1
DL-Read Local.cnf (L-Status, Data)

BW-IDLE

39 BW-IDLE DL-Read Local.req (Address, Length)
/ NA&&NE && uact
=>
Data = (user. Address)
L-Status = OK
DL-Read Local.cnf (L-Status, Data)

BW-IDLE

40 BW-IDLE DL-Read Local.req (Address, Length)
/ Address < SM.PhysicalStartAddress || Address >=
(SM.PhysicalStartAddress+SM.Length)
=>
pass next

BW-IDLE

41 BW-IDLE Write.ind (Address, Data, WKC)
/A&&NE && !eact
=>
(buffer. Address) = data
eact = TRUE
WKC = WKC +1
SM.ReadEvent = 0
Write.rsp (Address, Data, WKC)

BW-IDLE

42 BW-IDLE Write.ind (Address, Data, WKC)
/A&&NE && eact
=>
(buffer. Address) = data
WKC = WKC +1
SM.ReadEvent = 0
Write.rsp (Address, Data, WKC)

BW-IDLE

43 BW-IDLE Write.ind (Address, Data, WKC)
/A&&E && !eact
=>
(buffer. Address) = data
WKC = WKC +1
eact = TRUE
Terminate = TRUE
SM.ReadEvent = 0
Write.rsp (Address, Data, WKC)

BW-IDLE

44 BW-IDLE Write.ind (Address, Data, WKC)
/A&&E && eact
=>
(buffer. Address) = data
Terminate = TRUE
WKC = WKC +1
SM.ReadEvent = 0
Write.rsp (Address, Data, WKC)

BW-IDLE

45 BW-IDLE Write.ind (Address, Data, WKC)
/NA&&AE && !eact
=>
Write.rsp (Address, Data, WKC)

BW-IDLE

46 BW-IDLE Write.ind (Address, Data, WKC)
/ NA&&E && eact
=>
(buffer. Address) = data
WKC = WKC +1
Terminate = TRUE
Write.rsp (Address, Data, WKC)

BW-IDLE

BS EN 61158-4-12:2014

 – 132 – IEC 61158-4-12:2014 © IEC 2014

Current
State

Event
 /Condition
 =>Action

Next State

47 BW-IDLE Write.ind (Address, Data, WKC)
/ NA&&NE && eact
=>
(buffer. Address) = data
WKC = WKC +1
Write.rsp (Address, Data, WKC)

BW-IDLE

48 BW-IDLE Write.ind (Address, Data, WKC)
/ Address < SM.PhysicalStartAddress || Address >=
(SM.PhysicalStartAddress+SM.Length)
=>
pass next

BW-IDLE

49 BW-IDLE Read.ind (Address, Data, WKC)
=>
pass next

BW-IDLE

50 BW-IDLE Terminate.ind(Success)
/Success && Terminate
=>
eact = FALSE
Terminate = FALSE
if next == NIL then next = buffer, buffer = free, free = NIL else user <=> next
SM.bufferedState=next buffer number
SM.WriteEvent = 1
pass next

BW-IDLE

51 BW-IDLE Terminate.ind(Success)
/!Terminate
=>
if (!success && eact) then eact = FALSE
pass next

BW-IDLE

52 BW-IDLE Terminate.ind(Success)
/(!Success && Terminate)
=>
Terminate = FALSE
eact = FALSE
pass next

BW-IDLE

53 MR-IDLE DL-Write Local.req (Address, Length, Data)
/A&&NE && act ==0
=>
(user. Address) = Data
act = 1
L-Status = OK
SM.ReadEvent = 0
DL-Write Local.cnf (L-Status)

MR-IDLE

54 MR-IDLE DL-Write Local.req (Address, Length, Data)
/A&&AE && act != 0
=>
L-Status = NODATA
DL-Write Local.cnf (L-Status)

MR-IDLE

55 MR-IDLE DL-Write Local.req (Address, Length, Data)
/A&&E && act == 0
=>
(user. Address) = Data
act = 2
SM.mailboxState=1
L-Status = OK
SM.ReadEvent = 0
SM.WriteEvent = 1
DL-Write Local.cnf (L-Status)

MR-IDLE

56 MR-IDLE DL-Write Local.req (Address, Length, Data)
/ NA&&AE && && act != 1
=>
L-Status = NODATA
DL-Write Local.cnf (L-Status)

MR-IDLE

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 133 –

Current
State

Event
 /Condition
 =>Action

Next State

57 MR-IDLE DL-Write Local.req (Address, Length, Data)
/ NA&&E && act == 1
=>
(user. Address) = Data
act = 2
SM.mailboxState=1
L-Status = OK
SM.WriteEvent = 1
DL-Write Local.cnf (L-Status)

MR-IDLE

58 MR-IDLE DL-Write Local.req (Address, Length, Data)
/ NA&&NE && act == 1
=>
(user. Address) = Data
L-Status = OK
DL-Write Local.cnf (L-Status)

MR-IDLE

59 MR-IDLE DL-Write Local.req (Address, Length, Data)
/ Address < SM.PhysicalStartAddress || Address >=
(SM.PhysicalStartAddress+SM.Length)
=>
pass next

MR-IDLE

60 MR-IDLE DL-Read Local.req (Address, Length)
=>
pass next

MR-IDLE

61 MR-IDLE Write.ind (Address, Data, WKC)
=>
pass next

MR-IDLE

62 MR-IDLE Read.ind (Address, Data, WKC)
/A&&NE && act ==2
=>
Data = (buffer. Address)
act = 3
WKC = WKC +1
SM.WriteEvent = 0
Read.rsp (Address, Data, WKC)

MR-IDLE

63 MR-IDLE Read.ind (Address, Data, WKC)
/A&&AE && act != 2
=>
Read.rsp (Address, Data, WKC)

MR-IDLE

64 MR-IDLE Read.ind (Address, Data, WKC)
/A&&E && act == 2
=>
Data = (buffer. Address)
WKC = WKC +1
act = 4
Terminate = TRUE
SM.WriteEvent = 0
Read.rsp (Address, Data, WKC)

MR-IDLE

65 MR-IDLE Read.ind (Address, Data, WKC)
/ NA&&AE && && act != 3
=>
Read.rsp (Address, Data, WKC)

MR-IDLE

66 MR-IDLE Read.ind (Address, Data, WKC)
/ NA&&E && act == 3
=>
Data = (buffer. Address)
WKC = WKC +1
act = 4
Terminate = TRUE
Read.rsp (Address, Data, WKC)

MR-IDLE

67 MR-IDLE Read.ind (Address, Data, WKC)
/ NA&&NE && act == 3
=>
Data = (buffer. Address)
WKC = WKC +1
Read.rsp (Address, Data, WKC)

MR-IDLE

BS EN 61158-4-12:2014

 – 134 – IEC 61158-4-12:2014 © IEC 2014

Current
State

Event
 /Condition
 =>Action

Next State

68 MR-IDLE Read.ind (Address, Data, WKC)
/ Address < SM.PhysicalStartAddress || Address >=
(SM.PhysicalStartAddress+SM.Length)
=>
pass next

MR-IDLE

69 MR-IDLE Terminate.ind(Success)
/Success && Terminate
=>
Terminate = FALSE
act = 0
SM.mailboxState=0
SM.ReadEvent = 1
pass next

MR-IDLE

70 MR-IDLE Terminate.ind(Success)
/!Terminate
=>
if (!success && act == 3) then act = 2
pass next

MR-IDLE

71 MR-IDLE Terminate.ind(Success)
/(!Success && Terminate)
=>
Terminate = FALSE
act = 2
pass next

MR-IDLE

72 MW-IDLE DL-Write Local.req (Address, Length, Data)
=>
pass next

MW-IDLE

73 MW-IDLE DL-Read Local.req (Address, Length)
/A&&NE && act ==3
=>
Data = (User. Address)
L-Status = OK
act = 4
SM.WriteEvent = 0
DL-Read Local.cnf (L-Status, Data)

MW-IDLE

74 MW-IDLE DL-Read Local.req (Address, Length)
/A&&AE && act != 3
=>
L-Status = NODATA
DL-Read Local.cnf (L-Status, Data)

MW-IDLE

75 MW-IDLE DL-Read Local.req (Address, Length)
/A&&E && act == 3
=>
Data = (User. Address)
L-Status = OK
act = 0
SM.mailboxState=0
SM.WriteEvent = 0
SM.ReadEvent = 1
DL-Read Local.cnf (L-Status, Data)

MW-IDLE

76 MW-IDLE DL-Read Local.req (Address, Length)
/ NA&&AE && && act != 4
=>
L-Status = NODATA
DL-Read Local.cnf (L-Status, Data)

MW-IDLE

77 MW-IDLE DL-Read Local.req (Address, Length)
/ NA&&E && act == 4
=>
Data = (User. Address)
L-Status = OK
act = 0
SM.mailboxState=0
SM.ReadEvent = 1
DL-Read Local.cnf (L-Status, Data)

MW-IDLE

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 135 –

Current
State

Event
 /Condition
 =>Action

Next State

78 MW-IDLE DL-Read Local.req (Address, Length)
/ NA&&NE && act == 4
=>
Data = (User. Address)
L-Status = OK
DL-Read Local.cnf (L-Status, Data)

MW-IDLE

79 MW-IDLE DL-Read Local.req (Address, Length)
/ Address < SM.PhysicalStartAddress || Address >=
(SM.PhysicalStartAddress+SM.Length)
=>
pass next

MW-IDLE

80 MW-IDLE Write.ind (Address, Data, WKC)
/A&&NE && act ==0
=>
(buffer. Address) = Data
act = 1
WKC = WKC +1
SM.ReadEvent = 0
Write.rsp (Address, Data, WKC)

MW-IDLE

81 MW-IDLE Write.ind (Address, Data, WKC)
/A&&AE && act != 0
=>
Write.rsp (Address, Data, WKC)

MW-IDLE

82 MW-IDLE Write.ind (Address, Data, WKC)
/A&&E && act == 0
=>
(buffer. Address) = Data
act = 2
Terminate = TRUE
WKC = WKC +1
SM.ReadEvent = 0
Write.rsp (Address, Data, WKC)

MW-IDLE

83 MW-IDLE Write.ind (Address, Data, WKC)
/ NA&&AE && && act != 1
=>
Write.rsp (Address, Data, WKC)

MW-IDLE

84 MW-IDLE Write.ind (Address, Data, WKC)
/ NA&&E && act == 1
=>
(buffer. Address) = Data
act = 2
Terminate = TRUE
WKC = WKC +1
Write.rsp (Address, Data, WKC)

MW-IDLE

85 MW-IDLE Write.ind (Address, Data, WKC)
/ NA&&NE && act == 1
=>
(buffer. Address) = Data
WKC = WKC +1
Write.rsp (Address, Data, WKC)

MW-IDLE

86 MW-IDLE Write.ind (Address, Data, WKC)
/ Address < SM.PhysicalStartAddress || Address >=
(SM.PhysicalStartAddress+SM.Length)
=>
pass next

MW-IDLE

87 MW-IDLE Read.ind (Address, Data, WKC)
=>
pass next

MW-IDLE

BS EN 61158-4-12:2014

 – 136 – IEC 61158-4-12:2014 © IEC 2014

Current
State

Event
 /Condition
 =>Action

Next State

88 MW-IDLE Terminate.ind(Success)
/Success && Terminate
=>
Terminate = FALSE
act = 3
SM.mailboxState=1
SM.WriteEvent = 1
pass next

MW-IDLE

89 MW-IDLE Terminate.ind(Success)
/!Terminate
=>
if (!success && act == 1) then act = 0
pass next

MW-IDLE

90 MW-IDLE Terminate.ind(Success)
/(!Success && Terminate)
=>
Terminate = FALSE
act = 0
pass next

MW-IDLE

Functions

The SYSM Functions are summarized in Table A.13.

Table A.13 – SYSM function table

Function name Operations

A Address == SM.PhysicalStartAddress

NA Address > SM.PhysicalStartAddress

E Address + Length == SM.PhysicalStartAddress + SM.Length
// Length = 1 if Length no service primitive parameter

NE Address + Length < SM.PhysicalStartAddress + SM.Length
// Length = 1 if Length no service primitive parameter

AE Address + Length =< SM.PhysicalStartAddress + SM.Length
// Length = 1 if Length no service primitive parameter

A.3 RMSM

A.3.1 Primitive definitions

A.3.1.1 Primitive exchanged between SYSM and RMSM

Table A.14 shows primitive issued by the RMSM to the SYSM.

Table A.14 – Primitives issued by RMSM to SYSM

Primitive name Associated parameters

DL-Write local request Address,
Length,
Data

Table A.15 shows primitive issued by SYSM to the RMSM.

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 137 –

Table A.15 – Primitives issued by SYSM to RMSM

Primitive name Associated parameters

DL-Write local confirmation L-Status

NOTE Local events are not modeled as they do not have impact to RMSM.

A.3.1.2 Parameters of SYSM Primitives

Table A.16 shows all parameters used with primitives between the RMSM and the SYSM.

Table A.16 – Parameters used with primitives exchanged between RMSM and SYSM

Parameter name Description

Address Identifier of the physical memory area

Length Length of the octets transmitted

Data Value of the octet transmitted

State machine description

There exist a RMSM for each read mailbox sync manager channel.

The RMSM writes the read mailbox on user request. Only one user request (Read Upd) is
accepted. If the data are read by the master the RMSM will store the data in an auxiliary
buffer.

A change in the toggle will result in an restore of the old mailbox data (even if there was a
new mailbox update in between).

Local variables
Tggl
Contains Toggle Flag at the last SM Event.

Boxstate
Signals State of the Box.

BackupBox
Storage of the mailbox PDU for backup purposes.

ActualBox
Virtual storage of the actual mailbox PDU.

SeqN
Contains the sequence number for the next service.

State table nomenclature
The standard suffixes “.req”, “.cnf” and “.ind” are used to indicate the request, confirm and
indication primitives, respectively.

RMSM table

The RMSM State Table is shown in Table A.17.

BS EN 61158-4-12:2014

 – 138 – IEC 61158-4-12:2014 © IEC 2014

Table A.17 – RMSM state table

Current
state

Event
 /condition
 ⇒action

Next state

1 OFF

Enable SM Event (Toggle)
=>
Tggl=Toggle
Boxstate = 0
SeqN = 0
BackupBox = ERR PDU with no Error(0,0,0,0)

IDLE

2 OFF Disable SM Event
=> OFF

3 IDLE Enable SM Event (Toggle)
=> IDLE

4 IDLE
Disable SM Event
=>
Terminate Segmented Services

OFF

5 IDLE
Toggle SM Event (Toggle)
/Tggl != Toggle
=>

IDLE

6 IDLE

Toggle SM Event (Toggle)
/Tggl == Toggle
=>
ActualBox = BackupBox
Address = SM1.PhysicalStartAddress
Length = SM1.Length
Data = encode Mailbox Read
Boxstate = 1
Tggl = Toggle
DL-Write Local.req(Address, Length, Data)
write SM status(Toggle)

SEND

7 IDLE

DL-Mailbox Read Upd.req (Length, D_address, Channel, Priority, Type, Service
Data Unit)
=>
ActualBox = Parameter from event service primitive
Update (SeqN)
Address = SM1.PhysicalStartAddress
Length = SM1.Length
Data = encode Mailbox Read
Boxstate = 0
DL-Write Local.req(Address, Length, Data)

SEND

8 IDLE
DL-Write Local.cnf (L-Status)
=>
ignore

IDLE

9 SEND Enable SM Event (Toggle)
=> IDLE

10 SEND
Disable SM Event
=>
Terminate Segmented Services

OFF

11 SEND
Toggle SM Event (Toggle)
/Tggl != Toggle
=>

SEND

12 SEND

Toggle SM Event (Toggle)/Tggl == Toggle && Boxstate == 0=>ActualBox <=>
BackupBox (Exchange) Address = SM1.PhysicalStartAddress Length =
SM1.LengthData = encode Mailbox ReadBoxstate = 2DL-Write Local.req(Address,
Length, Data)write SM status(Toggle)

SEND

13 SEND

Toggle SM Event (Toggle)
/Tggl == Toggle && Boxstate == 1, 2
=>
write SM status(Toggle)

SEND

BS EN 61158-4-12:2014

IEC 61158-4-12:2014 © IEC 2014 – 139 –

Current
state

Event
 /condition
 ⇒action

Next state

14 SEND

DL-Mailbox Read Upd.req (Length, D_address, Channel, Priority, Type, Service
Data Unit)
/Boxstate == 1
=>
BackupBox = Parameter from event service primitive
Update (SeqN)
Boxstate = 2

SEND

15 SEND

DL-Mailbox Read Upd.req (Length, D_address, Channel, Priority, Type, Service
Data Unit)
/Boxstate == 0, 2
=>
invalid user sequence

SEND

16 SEND

DL-Write Local.cnf (L-Status)
/Boxstate == 0
=>
DL_status = L-Status
BackupBox =ActualBox
DL-Mailbox Read Upd.cnf (DL_status)

IDLE

17 SEND

DL-Write Local.cnf (L-Status)
/Boxstate == 1
=>
DL_status = L-Status
DL-Mailbox Read Upd.cnf (DL_status)

IDLE

18 SEND

DL-Write Local.cnf (L-Status)
/Boxstate == 2
=>
ActualBox = BackupBox
Address = SM1.PhysicalStartAddress
Length = SM1.Length
Data = encode Mailbox Read
DL_status = L-Status
Boxstate = 0
DL-Mailbox Read Upd.cnf (DL_status)
DL-Write Local.req(Address, Length, Data)

SEND

Functions

The RMSM Functions are summarized in Table A.18.

Table A.18 – RMSM function table

Function name Operations

Update (SeqN) if (SeqN < 7) then SeqN = SeqN + 1 else SeqN = 1

BS EN 61158-4-12:2014

 – 140 – IEC 61158-4-12:2014 © IEC 2014

Bibliography

IEC 61131-2, Programmable controllers – Part 2: Equipment requirements and tests

IEC 61131-3, Programmable controllers – Part 3: Programming languages

IEC 61158-1:2014, Industrial communication networks – Fieldbus specifications –
Part 1: Overview and guidance for the IEC 61158 and IEC 61784 series

IEC 61158-2:2014, Industrial communication networks – Fieldbus specifications – Part 2:
Physical layer specification and service definition

IEC 61158-5-12:2014, Industrial communication networks – Fieldbus specifications –
Part 5-12: Application layer service definition – Type 12 elements

IEC 61158-6-12, Industrial communication networks – Fieldbus specifications – Part 6-12:
Application layer protocol specification – Type 12 elements

IEC 61784-1, Industrial communication networks – Profiles – Part 1: Fieldbus profiles

IEC 61784-2, Industrial communication networks – Profiles – Part 2: Additional fieldbus
profiles for real-time networks based on ISO/IEC 8802-3

ISO/IEC/TR 8802-1, Information technology – Telecommunications and information exchange
between systems – Local and metropolitan area networks – Specific requirements – Part 1:
Overview of Local Area Network Standards

ISO/IEC 15802-1, Information technology – Telecommunications and information exchange
between systems – Local and metropolitan area networks – Common specifications – Part 1:
Medium Access Control (MAC) service definition

ITU-T V.41, Code-independent error-control system

ANSI X3.66 (R1990), Advanced data communication control procedures (ADCCP)

IEEE 802.1D, IEEE Standard for Local and metropolitan area networks – Media Access
Control (MAC) Bridges, available at <http://www.ieee.org>

IETF RFC 1213, Management Information Base for Network Management of TCP/IP-based
internets : MIB-II, available at <http://www.ietf.org>

IETF RFC 1643, Definitions of Managed Objects for the Ethernet-like Interface Types,
available at <http://www.ietf.org>

BS EN 61158-4-12:2014

http://www.ietf.org/
http://www.ietf.org/
http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/30264902
http://dx.doi.org/10.3403/30264906
http://dx.doi.org/10.3403/30266013
http://dx.doi.org/10.3403/30176150U
http://dx.doi.org/10.3403/03101355U
http://dx.doi.org/10.3403/30101776U
http://dx.doi.org/10.3403/00327038U
http://dx.doi.org/10.3403/00748288U

This page deliberately left blank

BSI is the national body responsible for preparing British Standards and other
standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization
products are published by BSI Standards Limited.

British Standards Institution (BSI)

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

About us
We bring together business, industry, government, consumers, innovators
and others to shape their combined experience and expertise into standards
-based solutions.

The knowledge embodied in our standards has been carefully assembled in
a dependable format and refined through our open consultation process.
Organizations of all sizes and across all sectors choose standards to help
them achieve their goals.

Information on standards
We can provide you with the knowledge that your organization needs
to succeed. Find out more about British Standards by visiting our website at
bsigroup.com/standards or contacting our Customer Services team or
Knowledge Centre.

Buying standards
You can buy and download PDF versions of BSI publications, including British
and adopted European and international standards, through our website at
bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development
Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions
Our range of subscription services are designed to make using standards
easier for you. For further information on our subscription products go to
bsigroup.com/subscriptions.

With British Standards Online (BSOL) you’ll have instant access to over 55,000
British and adopted European and international standards from your desktop.
It’s available 24/7 and is refreshed daily so you’ll always be up to date.

You can keep in touch with standards developments and receive substantial
discounts on the purchase price of standards, both in single copy and subscription
format, by becoming a BSI Subscribing Member.

PLUS is an updating service exclusive to BSI Subscribing Members. You will
automatically receive the latest hard copy of your standards when they’re
revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits
of membership, please visit bsigroup.com/shop.

With a Multi-User Network Licence (MUNL) you are able to host standards
publications on your intranet. Licences can cover as few or as many users as you
wish. With updates supplied as soon as they’re available, you can be sure your
documentation is current. For further information, email bsmusales@bsigroup.com.

Revisions
Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your
business. If you find an inaccuracy or ambiguity within a British Standard or other
BSI publication please inform the Knowledge Centre.

Copyright
All the data, software and documentation set out in all British Standards and
other BSI publications are the property of and copyrighted by BSI, or some person
or entity that owns copyright in the information used (such as the international
standardization bodies) and has formally licensed such information to BSI for
commercial publication and use. Except as permitted under the Copyright, Designs
and Patents Act 1988 no extract may be reproduced, stored in a retrieval system
or transmitted in any form or by any means – electronic, photocopying, recording
or otherwise – without prior written permission from BSI. Details and advice can
be obtained from the Copyright & Licensing Department.

Useful Contacts:
Customer Services
Tel: +44 845 086 9001
Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions
Tel: +44 845 086 9001
Email: subscriptions@bsigroup.com

Knowledge Centre
Tel: +44 20 8996 7004
Email: knowledgecentre@bsigroup.com

Copyright & Licensing
Tel: +44 20 8996 7070
Email: copyright@bsigroup.com

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

www.bsigroup.com/standards
www.bsigroup.com/shop
www.bsigroup.com/shop
www.bsigroup.com/subscriptions

	30312045-VOR.pdf
	English
	FOREWORD
	NTRODUCTION
	1 Scope
	1.1 General
	1.2 Specifications
	1.3 Procedures
	1.4 Applicability
	1.5 Conformance

	2 Normative references
	3 Terms, definitions, symbols, abbreviations and conventions
	3.1 Reference model terms and definitions
	3.2 Service convention terms and definitions
	3.3 Common terms and definitions
	3.4 Additional Type 12 definitions
	3.5 Common symbols and abbreviations
	3.6 Additional Type€12 symbols and abbreviations
	3.7 Conventions

	4 Overview of the DLprotocol
	4.1 Operating principle
	4.2 Topology
	4.3 Frame processing principles
	4.4 Data-link layer overview
	4.5 Error detection overview
	4.6 Node reference model
	4.7 Operation overview

	5 Frame structure
	5.1 Frame coding principles
	5.2 Data types and encoding rules
	5.3 DLPDU structure
	5.4 Type€12 DLPDU structure
	5.5 Network variable structure
	5.6 Type€12 mailbox structure

	6 Attributes
	6.1 Management
	6.2 Statistics
	6.3 Watchdogs
	6.4 Slave information interface
	6.5 Media independent interface (MII)
	6.6 Fieldbus memory management unit (FMMU)
	6.7 Sync manager
	6.8 Distributed clock

	7 DL-user memory
	7.1 Overview
	7.2 Mailbox access type
	7.3 Buffered access type

	8 Type€12: FDL protocol state machines
	8.1 Overview of slave DL state machines
	8.2 State machine description

	Bibliography
	Annex A (informative) Type 12: Additional specifications on DL-Protocol state machines
	A.1 DHSM
	A.2 SYSM
	A.3 RMSM

	Figures
	Figure€1 – Type description example
	Figure 2 – Common structure of specific fields
	Figure 3 – Frame structure
	Figure 4 – Mapping of data in a frame
	Figure 5 – Slave node reference model
	Figure 6 – Type€12 PDUs embedded in Ethernet frame
	Figure€7 – Type€12 PDUs embedded in UDP/IP
	Figure 8 – DL information type description
	Figure 9 – Address type description
	Figure 10 – DL control type description
	Figure 11 – DL status type description
	Figure 12 – Successful write sequence to DL-user control register
	Figure 13 – Successful read sequence to the DL-user status register
	Figure 14 – RX error counter type description
	Figure 15 – Lost link counter type description
	Figure 16 – Additional counter type description
	Figure 17 – Watchdog divider type description
	Figure 18 – DLS-user Watchdog divider type description
	Figure 19 – Sync manager watchdog type description
	Figure 20 – Sync manager watchdog status type description
	Figure 21 – Watchdog counter type description
	Figure 22 – Slave information interface access type description
	Figure 23 – Slave information interface control/status type description
	Figure 24 – Slave information interface address type description
	Figure 25 – Slave information interface data type description
	Figure 26 – MII control/status type description
	Figure 27 – MII address type description
	Figure 28 – MII data type description
	Figure 29 – MII access type description
	Figure 30 – FMMU mapping example
	Figure 31 – FMMU entity type description
	Figure 32 – SyncM mailbox interaction
	Figure 33 – SyncM buffer allocation
	Figure 34 – SyncM buffer interaction
	Figure 35 – Handling of write/read toggle with read mailbox
	Figure 36 – Sync manager channel type description
	Figure 37 – Distributed clock local time parameter type description
	Figure 38 – Successful write sequence to mailbox
	Figure 39 – Bad write sequence to mailbox
	Figure 40 – Successful read sequence to mailbox
	Figure 41 – Bad read sequence to mailbox
	Figure 42 – Successful write sequence to buffer
	Figure 43 – Successful read sequence to buffer
	Figure 44 – Structuring of the protocol machines of an slave
	Figure 45 – Slave information interface read operation
	Figure 46 – Slave information interface write operation
	Figure 47 – Slave information interface reload operation
	Figure 48 – Distributed clock
	Figure 49 – Delay measurement sequence

	Tables
	Table 1 – PDU element description example
	Table 2 – Example attribute description
	Table 3 – State machine description elements
	Table 4 – Description of state machine elements
	Table 5 – Conventions used in state machines
	Table 6 – Transfer Syntax for bit sequences
	Table 7 – Transfer syntax for data type Unsignedn
	Table 8 – Transfer syntax for data type Integern
	Table 9 – Type€12 frame inside an Ethernet frame
	Table 10 – Type€12 frame inside an UDP PDU
	Table 11 – Type€12 frame structure containing Type€12 PDUs
	Table€12 – Type€12 frame structure containing network variables
	Table 13 – Type€12 frame structure containing mailbox
	Table 14 – Auto increment physical read (APRD)
	Table 15 – Configured address physical read (FPRD)
	Table 16 – Broadcast read (BRD)
	Table 17 – Logical read (LRD)
	Table 18 – Auto Increment physical write (APWR)
	Table 19 – Configured address physical write (FPWR)
	Table 20 – Broadcast write (BWR)
	Table 21 – Logical write (LWR)
	Table 22 – Auto increment physical read write (APRW)
	Table 23 – Configured address physical read write (FPRW)
	Table 24 – Broadcast read write (BRW)
	Table 25 – Logical read write (LRW)
	Table 26 – Auto increment physical read multiple write (ARMW)
	Table 27 – Configured address physical read multiple write (FRMW)
	Table 28 – Network variable
	Table 29 – Mailbox
	Table 30 – Error Reply Service Data
	Table 31 – DL information
	Table 32 – Configured station address
	Table 33 – DL control
	Table 34 – DL status
	Table 35 – DLSuser specific registers
	Table 36 – DLSuser event
	Table 37 – DLSuser event mask
	Table 38 – External event
	Table 39 – External event mask
	Table 40 – RX error counter
	Table 41 – Lost link counter
	Table 42 – Additional counter
	Table 43 – Watchdog divider
	Table 44 – DLSuser watchdog
	Table 45 – Sync manager channel watchdog
	Table 46 – Sync manager watchdog Status
	Table 47 – Watchdog counter
	Table 48 – Slave information interface access
	Table 49 – Slave information interface control/status
	Table 50 – Actual slave information interface address
	Table 51 – Actual slave information interface data
	Table 52 – MII control/status
	Table 53 – Actual MII address
	Table 54 – Actual MII data
	Table 55 – MII access
	Table 56 – Fieldbus memory management unit (FMMU) entity
	Table 57 – Fieldbus memory management unit (FMMU)
	Table 58 – Sync manager channel
	Table 59 – Sync manager Structure
	Table 60 – Distributed clock local time parameter
	Table 61 – Distributed clock DLSuser parameter
	Table A.1 – Primitives issued by DHSM to PSM
	Table A.2 – Primitives issued by PSM to DHSM
	Table A.3 – Parameters used with primitives exchanged between DHSM and PSM
	Table A.4 – Identifier for the octets of a Ethernet frame
	Table A.5 – DHSM state table
	Table A.6 – DHSM function table
	Table A.7 – Primitives issued by SYSM to DHSM
	Table A.8 – Primitives issued by DHSM to SYSM
	Table A.9 – Primitives issued by DL-User to SYSM
	Table A.10 – Primitives issued by SYSM to DL-User
	Table A.11 – Parameters used with primitives exchanged between SYSM and DHSM
	Table A.12 – SYSM state table
	Table A.13 – SYSM function table
	Table A.14 – Primitives issued by RMSM to SYSM
	Table A.15 – Primitives issued by SYSM to RMSM
	Table A.16 – Parameters used with primitives exchanged between RMSM and SYSM
	Table A.17 – RMSM state table
	Table A.18 – RMSM function table

	Français
	SOMMAIRE
	AVANT-PROPOS
	INTRODUCTION
	1 Domaine d'application
	1.1 Généralités
	1.2 Spécifications
	1.3 Procédures
	1.4 Applicabilité
	1.5 Conformité

	2 Références normatives
	3 Termes, définitions, symboles, abréviations et conventions
	3.1 Termes et définitions du modèle de référence
	3.2 Termes et définitions de convention de service
	3.3 Termes et définitions communs
	3.4 Définitions Type 12 supplémentaires
	3.5 Symboles et abréviations communs
	3.6 Symboles et abréviations supplémentaires de Type 12
	3.7 Conventions

	4 Vue d'ensemble du protocole DL
	4.1 Principe de fonctionnement
	4.2 Topologie
	4.3 Principes de traitement de trame
	4.4 Vue d'ensemble de la couche de liaison de données
	4.5 Vue d'ensemble de la détection des erreurs
	4.6 Modèle de référence de nœud
	4.7 Vue d'ensemble du fonctionnement

	5 Structure de trame
	5.1 Principes de codage de trame
	5.2 Types de données et règles de codage
	5.3 Structure DLPDU
	5.4 Structure DLPDU de type 12
	5.5 Structure de variable de réseau
	5.6 Structure de boîte aux lettres de type 12

	6 Attributs
	6.1 Gestion
	6.2 Statistiques
	6.3 Chiens de garde
	6.4 Interface d’informations de l’esclave
	6.5 Interface indépendante du support (MII)
	6.6 Unité de gestion de mémoire de bus de terrain (FMMU)
	6.7 Gestionnaire de synchronisation
	6.8 Horloge distribuée

	7 Mémoire de l’utilisateur de DL
	7.1 Vue d'ensemble
	7.2 Type d’accès à la boîte aux lettres
	7.3 Type d’accès en mémoire tampon

	8 Type€12: Diagrammes d'états du protocole FDL
	8.1 Vue d'ensemble des diagrammes d’états DL esclaves
	8.2 Description du diagramme d’états

	Annexe A (informative) Type 12: Spécifications supplémentaires relatives aux diagrammes d’états de protocole DL
	A.1 DHSM
	A.2 SYSM

	Bibliographie
	Figures
	Figure€1 – Exemple de description de type
	Figure 2 – Structure commune des champs spécifiques
	Figure 3 – Structure d’une trame
	Figure 4 – Mapping des données dans une trame
	Figure 5 – Modèle de référence du nœud esclave
	Figure 6 – PDU Type 12 intégrées dans une trame Ethernet
	Figure€7 – PDU Type 12 intégrées dans UDP/IP
	Figure 8 – Description du type d’informations DL
	Figure 9 – Description du type d’adresse
	Figure 10 – Description du type de commande DL
	Figure 11 – Description du type d'état DL
	Figure 12 – Séquence d’écriture réussie dans le registrede commande de l’utilisateur de DL
	Figure 13 – Séquence de lecture réussie dans le registre d’état de l’utilisateur de DL
	Figure 14 – Description du type de compteur d’erreurs RX
	Figure 15 – Description du type de compteur de liaisons perdues
	Figure 16 – Description du type de compteur supplémentaire
	Figure 17 – Description du type de diviseur du chien de garde
	Figure 18 – Description du type de diviseur du chien de garde de l'utilisateur de DLS
	Figure 19 – Description du type du chien de garde du gestionnaire de synchronisation
	Figure 20 – Description du type de l'état du chien de gardedu gestionnaire de synchronisation
	Figure 21 – Description du type de compteur du chien de garde
	Figure 22 – Description du type d’accès à l’interface d’informations de l’esclave
	Figure 23 – Description du type de contrôle/d’état de l’interfaced’informations de l’esclave
	Figure 24 – Description du type de l'adresse d'interface d’informations de l’esclave
	Figure 25 – Description du type des données d'interface d’informations de l’esclave
	Figure 26 – Description du type de contrôle/d’état MII
	Figure 27 – Description du type d’adresse MII
	Figure 28 – Description du type de données MII
	Figure 29 – Description du type d’accès MII
	Figure 30 – Exemple de mapping FMMU
	Figure 31 – Description du type d’entité FMMU
	Figure 32 – Interaction de boîte aux lettres SyncM
	Figure 33 – Allocation de mémoire tampon SyncM
	Figure 34 – Interaction de mémoire tampon SyncM
	Figure 35 – Traitement du basculement écriture/lectureavec la boîte aux lettres en lecture
	Figure 36 – Description du type de canal du gestionnaire de synchronisation
	Figure 37 – Description du type de paramètre de temps local de l’horloge distribuée
	Figure 38 – Séquence d’écriture réussie dans la boîte aux lettres
	Figure 39 – Séquence d’écriture erronée dans la boîte aux lettres
	Figure 40 – Séquence de lecture réussie dans la boîte aux lettres
	Figure 41 – Séquence de lecture erronée dans la boîte aux lettres
	Figure 42 – Séquence d’écriture réussie dans la mémoire tampon
	Figure 43 – Séquence de lecture réussie dans la mémoire tampon
	Figure 44 – Structure des diagrammes d’états de protocole d’un esclave
	Figure 45 – Opération de lecture de l’interface d’informations de l’esclave
	Figure 46 – Opération d'écriture de l’interface d’informations de l’esclave
	Figure 47 – Opération de recharge de l’interface d’informations de l’esclave
	Figure 48 – Horloge distribuée
	Figure 49 – Séquence de mesure du délai

	Tableaux
	Tableau 1 – Exemple de description d’élément PDU
	Tableau 2 – Exemple de description d’attribut
	Tableau 3 – Éléments de description d’un diagramme d’états
	Tableau 4 – Description des éléments d'un diagramme d’états
	Tableau 5 – Conventions utilisées dans les diagrammes d’états
	Tableau 6 – Syntaxe de transfert des séquences binaires
	Tableau 7 – Syntaxe de transfert du type de données Unsignedn
	Tableau 8 – Syntaxe de transfert du type de données Integern
	Tableau 9 – Trame Type 12 à l’intérieur d’une trame Ethernet
	Tableau 10 – Trame Type 12 à l’intérieur d’une PDU UDP
	Tableau 11 – Structure de trame Type 12 contenant des PDU Type 12
	Tableau€12 – Structure de trame Type 12 contenant des variables de réseau
	Tableau 13 – Structure de trame Type 12 contenant une boîte aux lettres
	Tableau 14 – Lecture physique à incrément automatique (APRD)
	Tableau 15 – Lecture physique de l’adresse configurée (FPRD)
	Tableau 16 – Lecture de diffusion (BRD)
	Tableau 17 – Lecture logique (LRD)
	Tableau 18 – Écriture physique à incrément automatique (APWR)
	Tableau 19 – Écriture physique de l’adresse configurée (FPWR)
	Tableau 20 – Écriture de diffusion (BWR)
	Tableau 21 – Écriture logique (LWR)
	Tableau 22 – Lecture/écriture physiques à incrément automatique (APRW)
	Tableau 23 – Écriture/lecture physiques de l’adresse configurée (FPRW)
	Tableau 24 – Lecture/écriture de diffusion (BRW)
	Tableau 25 – Lecture/écriture logique (LRW)
	Tableau 26 – Écriture multiple/lecture physique à incrément automatique (ARMW)
	Tableau 27 – Écriture multiple/lecture physique de l’adresse configurée (FRMW)
	Tableau 28 – Variable de réseau
	Tableau 29 – Boîte aux lettres
	Tableau 30 – Données de service de réponse d’erreur
	Tableau 31 – Informations DL
	Tableau 32 – Adresse de station configurée
	Tableau 33 – Commande DL
	Tableau 34 – État DL
	Tableau 35 – Registres spécifiques à l’utilisateur DLS
	Tableau 36 – Événement de l’utilisateur DLS
	Tableau 37 – Masque d'événement de l’utilisateur de DLS
	Tableau 38 – Événement externe
	Tableau 39 – Masque d'événement externe
	Tableau 40 – Compteur d’erreurs RX
	Tableau 41 – Compteur de liaisons perdues
	Tableau 42 – Compteur supplémentaire
	Tableau 43 – Diviseur du chien de garde
	Tableau 44 – Chien de garde de l’utilisateur de DLS
	Tableau 45 – Chien de garde du canal du gestionnaire de synchronisation
	Tableau 46 – État de chien de garde du gestionnaire de synchronisation
	Tableau 47 – Compteur du chien de garde
	Tableau 48 – Accès à l’interface d’informations de l’esclave
	Tableau 49 – Contrôle/état de l’interface d’informations de l’esclave
	Tableau 50 – Adresse réelle de l’interface d’informations de l’esclave
	Tableau 51 – Données réelles de l’interface d’informations de l’esclave
	Tableau 52 – Contrôle/état MII
	Tableau 53 – Adresse MII réelle
	Tableau 54 – Données MII réelles
	Tableau 55 – Accès MII
	Tableau 56 – Entité Unité de gestion de mémoire du bus de terrain Entité (FMMU)
	Tableau 57 – Unité de gestion de mémoire de bus de terrain (FMMU)
	Tableau 58 – Canal du gestionnaire de synchronisation
	Tableau 59 – Structure du gestionnaire de synchronisation
	Tableau 60 – Paramètre de temps local de l’horloge distribuée
	Tableau 61 – Paramètre d’horloge distribuée de l’utilisateur DLS
	Tableau A.1 – Primitives émises par DHSM au PSM
	Tableau A.2 – Primitives émises par le PSM au DHSM
	Tableau A.3 – Paramètres utilisés avec les primitives échangées entre DHSM et PSM
	Tableau A.4 – Identificateur des octets d’une trame Ethernet
	Tableau A.5 – Table d’états DHSM
	Tableau A.6 – Table de fonctions DHSM
	Tableau A.7 – Primitives émises par SYSM au DHSM
	Tableau A.8 – Primitives émises par DHSM au SYSM
	Tableau A.9 – Primitives émises par l'utilisateur au SYSM
	Tableau A.10 – Primitives émises par SYSM à l'utilisateur de DL
	Tableau A.11 – Paramètres utilisés avec les primitives échangées entre SYSM et DHSM
	Tableau A.12 – Table d’états SYSM
	Tableau A.13 – Table de fonctions SYSM
	Tableau A.14 – Primitives émises par RMSM au SYSM
	Tableau A.15 – Primitives émises par SYSM au RMSM
	Tableau A.16 – Paramètres utilisés avec les primitives échangées entre RMSM et SYSM
	Tableau A.17 – Table d’états RMSM
	Tableau A.18 – Table de fonctions RMSM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

