
BSI Standards Publication

Programmable controllers
Part 3: Programming languages

BS EN 61131-3:2013

National foreword

This British Standard is the UK implementation of EN 61131-3:2013. It is
identical to IEC 61131-3:2013. It supersedes BS EN 61131-3:2003, which will
be withdrawn on 27 March 2016.

The UK participation in its preparation was entrusted by Technical Committee
GEL/65, Measurement and control, to Subcommittee GEL/65/2, Elements of
systems.

A list of organizations represented on this committee can be obtained on
request to its secretary.

This publication does not purport to include all the necessary provisions of a
contract. Users are responsible for its correct application.

© The British Standards Institution 2013.

Published by BSI Standards Limited 2013

ISBN 978 0 580 76605 3

ICS 25.040.40; 35.060; 35.240.50

Compliance with a British Standard cannot confer immunity from
legal obligations.

This British Standard was published under the authority of the Standards
Policy and Strategy Committee on 31 May 2013.

Amendments issued since publication

Date Text affected

BRITISH STANDARDBS EN 61131-3:2013

http://dx.doi.org/10.3403/02829375

EUROPEAN STANDARD EN 61131-3
NORME EUROPÉENNE

EUROPÄISCHE NORM May 2013

CENELEC
European Committee for Electrotechnical Standardization

Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung

Management Centre: Avenue Marnix 17, B - 1000 Brussels

© 2013 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

 Ref. No. EN 61131-3:2013 E

ICS 25.040; 35.240.50 Supersedes EN 61131-3:2003

English version

Programmable controllers -
Part 3: Programming languages

(IEC 61131-3:2013)

Automates programmables -
Partie 3: Langages de programmation
(CEI 61131-3:2013)

 Speicherprogrammierbare Steuerungen -
Teil 3: Programmiersprachen
(IEC 61131-3:2013)

This European Standard was approved by CENELEC on 2013-03-27. CENELEC members are bound to comply
with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard
the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on
application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CENELEC member into its own language and notified
to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus,
the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany,
Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland,
Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

BS EN 61131-3:2013

http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/02829375

EN 61131-3:2013 - 2 -

Foreword

The text of document 65B/858/FDIS, future edition 3 of IEC 61131-3, prepared by IEC TC 65 "Industrial-
process measurement, control and automation" was submitted to the IEC-CENELEC parallel vote and
approved by CENELEC as EN 61131-3:2013.

The following dates are fixed:

• latest date by which the document has
to be implemented at national level by
publication of an identical national
standard or by endorsement

(dop) 2013-12-27

• latest date by which the national
standards conflicting with the
document have to be withdrawn

(dow) 2016-03-27

This document supersedes EN 61131-3:2003.

EN 61131-3:2013 includes the following significant technical changes with respect to EN 61131-3:2003:

EN 61131-3:2013 is a compatible extension of EN 61131-3:2003. The main extensions are new data types
and conversion functions, references, name spaces and the object oriented features of classes abd function
blocks. See Annex B.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent
rights.

Endorsement notice

The text of the International Standard IEC 61131-3:2013 was approved by CENELEC as a European
Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:
IEC 60848 NOTE Harmonised as EN 60848.

IEC 61499 series NOTE Harmonised in EN 61499 series.

BS EN 61131-3:2013

http://dx.doi.org/10.3403/00316105U
http://dx.doi.org/10.3403/02829375
http://dx.doi.org/10.3403/02829375
http://dx.doi.org/10.3403/02829375
http://dx.doi.org/10.3403/00316574U
http://dx.doi.org/10.3403/02574880U

 - 3 - EN 61131-3:2013

Annex ZA
(normative)

Normative references to international publications

with their corresponding European publications

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD
applies.

Publication Year Title EN/HD Year

IEC 61131-1 - Programmable controllers -
Part 1: General information

EN 61131-1 -

IEC 61131-5 - Programmable controllers -
Part 5: Communications

EN 61131-5 -

ISO/IEC 10646 2012 Information technology -
Universal Coded Character Set (UCS)

- -

ISO/IEC/IEEE 60559 - Information technology - Microprocessor
Systems - Floating-Point arithmetic

- -

BS EN 61131-3:2013

http://dx.doi.org/10.3403/00345852U
http://dx.doi.org/10.3403/02228747U
http://dx.doi.org/10.3403/00345852U
http://dx.doi.org/10.3403/02228747U

 – 2 – 61131-3 © IEC:2013

CONTENTS

1 Scope ... 9
2 Normative references ... 9
3 Terms and definitions ... 9
4 Architectural models ... 18

4.1 Software model ... 18
4.2 Communication model ... 19
4.3 Programming model .. 20

5 Compliance .. 22
5.1 General ... 22
5.2 Feature tables ... 22
5.3 Implementer’s compliance statement ... 22

6 Common elements .. 24
6.1 Use of printed characters .. 24

6.1.1 Character set ... 24
6.1.2 Identifiers .. 24
6.1.3 Keywords .. 24
6.1.4 Use of white space .. 25
6.1.5 Comments ... 25

6.2 Pragma ... 26
6.3 Literals – External representation of data .. 26

6.3.1 General ... 26
6.3.2 Numeric literals and string literals .. 26
6.3.3 Character string literals ... 28
6.3.4 Duration literal ... 29
6.3.5 Date and time of day literal .. 30

6.4 Data types ... 30
6.4.1 General ... 30
6.4.2 Elementary data types (BOOL, INT, REAL, STRING, etc.) 30
6.4.3 Generic data types .. 33
6.4.4 User-defined data types ... 34

6.5 Variables ... 47
6.5.1 Declaration and initialization of variables ... 47
6.5.2 Variable sections ... 49
6.5.3 Variable length ARRAY variables .. 51
6.5.4 Constant variables ... 53
6.5.5 Directly represented variables (%) ... 54
6.5.6 Retentive variables (RETAIN, NON_RETAIN) .. 56

6.6 Program organization units (POUs) ... 58
6.6.1 Common features for POUs ... 58
6.6.2 Functions... 70
6.6.3 Function blocks ... 99
6.6.4 Programs ... 117
6.6.5 Classes ... 118

BS EN 61131-3:2013

61131-3 © IEC:2013 – 3 –

6.6.6 Interface .. 137
6.6.7 Object oriented features for function blocks ... 146
6.6.8 Polymorphism .. 152

6.7 Sequential Function Chart (SFC) elements .. 155
6.7.1 General ... 155
6.7.2 Steps ... 155
6.7.3 Transitions .. 157
6.7.4 Actions .. 160
6.7.5 Rules of evolution .. 168

6.8 Configuration elements .. 176
6.8.1 General ... 176
6.8.2 Tasks .. 180

6.9 Namespaces ... 186
6.9.1 General ... 186
6.9.2 Declaration .. 186
6.9.3 Usage .. 192
6.9.4 Namespace directive USING .. 192

7 Textual languages .. 195
7.1 Common elements ... 195
7.2 Instruction list (IL) ... 195

7.2.1 General ... 195
7.2.2 Instructions .. 195
7.2.3 Operators, modifiers and operands .. 196
7.2.4 Functions and function blocks .. 198

7.3 Structured Text (ST) .. 201
7.3.1 General ... 201
7.3.2 Expressions ... 201
7.3.3 Statements .. 203

8 Graphic languages ... 208
8.1 Common elements ... 208

8.1.1 General ... 208
8.1.2 Representation of variables and instances ... 209
8.1.3 Representation of lines and blocks .. 211
8.1.4 Direction of flow in networks .. 212
8.1.5 Evaluation of networks .. 213
8.1.6 Execution control elements .. 214

8.2 Ladder diagram (LD) ... 215
8.2.1 General ... 215
8.2.2 Power rails .. 216
8.2.3 Link elements and states ... 216
8.2.4 Contacts .. 216
8.2.5 Coils .. 218
8.2.6 Functions and function blocks .. 219
8.2.7 Order of network evaluation ... 219

8.3 Function Block Diagram (FBD) .. 219
8.3.1 General ... 219
8.3.2 Combination of elements ... 219
8.3.3 Order of network evaluation ... 220

Annex A (normative) Formal specification of the languages elements 221

BS EN 61131-3:2013

 – 4 – 61131-3 © IEC:2013

Annex B (informative) List of major changes and extensions of the third edition 228
Bibliography .. 229

Figure 1 – Software model .. 18
Figure 2 – Communication model .. 20
Figure 3 – Combination of programmable controller language elements 21
Figure 4 – Implementer’s compliance statement (Example) ... 23
Figure 5 – Hierarchy of the generic data types .. 34
Figure 6 – Initialization by literals and constant expressions (Rules) 35
Figure 7 – Variable declaration keywords (Summary) .. 50
Figure 8 – Usage of VAR_GLOBAL, VAR_EXTERNAL and CONSTANT (Rules) 51
Figure 9 – Conditions for the initial value of a variable (Rules) .. 57
Figure 10 – Formal and non-formal representation of call (Examples) 63
Figure 11 – Data type conversion rules – implicit and/or explicit (Summary) 67
Figure 12 – Supported implicit type conversions ... 68
Figure 13 – Usage of function block input and output parameters (Rules) 108
Figure 14 – Usage of function block input and output parameters (Illustration of rules) 109
Figure 15 – Standard timer function blocks – timing diagrams (Rules) 116
Figure 16 – Overview of inheritance and interface implementation 119
Figure 17 – Inheritance of classes (Illustration) ... 128
Figure 18 – Interface with derived classes (Illustration) ... 138
Figure 19 – Inheritance of interface and class (Illustration) ... 143
Figure 20 – Function block with optional body and methods (Illustration) 149
Figure 21 – Inheritance of function block body with SUPER() (Example) 151
Figure 22 – ACTION_CONTROL function block – External interface (Summary) 165
Figure 23 – ACTION_CONTROL function block body (Summary)... 166
Figure 24 – Action control (Example) .. 168
Figure 25 – SFC evolution (Rules) .. 174
Figure 26 – SFC errors (Example) .. 175
Figure 27 – Configuration (Example) ... 177
Figure 28 – CONFIGURATION and RESOURCE declaration (Example) 180
Figure 29 – Accessibility using namespaces (Rules) ... 189
Figure 30 – Common textual elements (Summary) .. 195

Table 1 – Character set .. 24
Table 2 – Identifiers .. 24
Table 3 – Comments ... 25
Table 4 – Pragma ... 26
Table 5 – Numeric literals ... 27
Table 6 – Character string literals ... 28
Table 7 – Two-character combinations in character strings ... 29
Table 8 – Duration literals ... 29
Table 9 – Date and time of day literals .. 30

BS EN 61131-3:2013

61131-3 © IEC:2013 – 5 –

Table 10 – Elementary data types ... 31
Table 11 – Declaration of user-defined data types and initialization 35
Table 12 – Reference operations .. 46
Table 13 – Declaration of variables ... 48
Table 14 – Initialization of variables .. 49
Table 15 – Variable-length ARRAY variables .. 52
Table 16 – Directly represented variables ... 54
Table 17 – Partial access of ANY_BIT variables ... 60
Table 18 – Execution control graphically using EN and ENO .. 65
Table 19 – Function declaration .. 72
Table 20 – Function call .. 74
Table 21 – Typed and overloaded functions .. 76
Table 22 – Data type conversion function ... 78
Table 23 – Data type conversion of numeric data types .. 80
Table 24 – Data type conversion of bit data types ... 82
Table 25 – Data type conversion of bit and numeric types ... 83
Table 26 – Data type conversion of date and time types ... 85
Table 27 – Data type conversion of character types .. 86
Table 28 – Numerical and arithmetic functions .. 87
Table 29 – Arithmetic functions ... 88
Table 30 – Bit shift functions ... 89
Table 31 – Bitwise Boolean functions .. 89
Table 32 – Selection functions d .. 90
Table 33 – Comparison functions .. 91
Table 34 – Character string functions .. 92
Table 35 – Numerical functions of time and duration data types .. 93
Table 36 – Additional functions of time data types CONCAT and SPLIT 94
Table 37 – Function for endianess conversion .. 98
Table 38 – Functions of enumerated data types .. 98
Table 39 – Validate functions .. 99
Table 40 – Function block type declaration ... 100
Table 41 – Function block instance declaration ... 104
Table 42 – Function block call ... 105
Table 43 – Standard bistable function blocksa ... 112
Table 44 – Standard edge detection function blocks ... 113
Table 45 – Standard counter function blocks ... 113
Table 46 – Standard timer function blocks .. 115
Table 47 – Program declaration .. 117
Table 48 – Class ... 120
Table 49 – Class instance declaration ... 122
Table 50 – Textual call of methods – Formal and non-formal parameter list 125
Table 51 – Interface .. 137
Table 52 – Assignment attempt ... 146

BS EN 61131-3:2013

 – 6 – 61131-3 © IEC:2013

Table 53 – Object oriented function block ... 147
Table 54 – SFC step ... 156
Table 55 – SFC transition and transition condition .. 158
Table 56 – SFC declaration of actions .. 160
Table 57 – Step/action association ... 162
Table 58 – Action block ... 163
Table 59 – Action qualifiers ... 163
Table 60 – Action control features ... 168
Table 61 – Sequence evolution – graphical ... 169
Table 62 – Configuration and resource declaration ... 178
Table 63 – Task .. 182
Table 64 – Namespace ... 191
Table 65 – Nested namespace declaration options ... 192
Table 66 – Namespace directive USING .. 194
Table 67 – Parenthesized expression for IL language ... 197
Table 68 – Instruction list operators .. 197
Table 69 – Calls for IL language ... 199
Table 70 – Standard function block operators for IL language ... 201
Table 71 – Operators of the ST language .. 202
Table 72 – ST language statements .. 203
Table 73 – Graphic execution control elements ... 215
Table 74 – Power rails and link elements .. 216
Table 75 – Contacts .. 217
Table 76 – Coils .. 218

BS EN 61131-3:2013

61131-3 © IEC:2013 – 9 –

PROGRAMMABLE CONTROLLERS –

Part 3: Programming languages

1 Scope

This part of IEC 61131 specifies syntax and semantics of programming languages for pro-
grammable controllers as defined in Part 1 of IEC 61131.

The functions of program entry, testing, monitoring, operating system, etc., are specified in
Part 1 of IEC 61131.

This part of IEC 61131 specifies the syntax and semantics of a unified suite of programming
languages for programmable controllers (PCs). This suite consists of two textual languages,
Instruction List (IL) and Structured Text (ST), and two graphical languages, Ladder Diagram
(LD) and Function Block Diagram (FBD).

An additional set of graphical and equivalent textual elements named Sequential Function
Chart (SFC) is defined for structuring the internal organization of programmable controller
programs and function blocks. Also, configuration elements are defined which support the in-
stallation of programmable controller programs into programmable controller systems.

In addition, features are defined which facilitate communication among programmable control-
lers and other components of automated systems.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amend-
ments) applies.

IEC 61131-1, Programmable controllers – Part 1: General information

IEC 61131-5, Programmable controllers – Part 5: Communications

ISO/IEC 10646:2012, Information technology – Universal Coded Character Set (UCS)

ISO/IEC/IEEE 60559, Information technology – Microprocessor Systems – Floating-Point
arithmetic

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 61131-1 and the
following apply.

3.1
absolute time
combination of time of day and date information

BS EN 61131-3:2013

http://dx.doi.org/10.3403/00345852U
http://dx.doi.org/10.3403/02228747U
http://dx.doi.org/10.3403/00345852U

 – 10 – 61131-3 © IEC:2013

3.2
access path
association of a symbolic name with a variable for the purpose of open communication

3.3
action
Boolean variable or a collection of operations to be performed, together with an associated
control structure

3.4
action block
graphical language element which utilizes a Boolean input variable to determine the value of a
Boolean output variable or the enabling condition for an action, according to a predetermined
control structure

3.5
aggregate
structured collection of data objects forming a data type

[SOURCE: ISO/AFNOR:1989]

3.6
array
aggregate that consists of data objects, with identical attributes, each of which may be
uniquely referenced by subscripting

[SOURCE: ISO/AFNOR:1989]

3.7
assignment
mechanism to give a value to a variable or to an aggregate

[SOURCE: ISO/AFNOR:1989]

3.8
base type
data type, function block type or class from which further types are inherited/derived

3.9
based number
number represented in a specified base other than ten

3.10
binary coded decimal
BCD
encoding for decimal numbers in which each digit is represented by its own binary sequence

3.11
bistable function block
function block with two stable states controlled by one or more inputs

3.12
bit string
data element consisting of one or more bits

3.13
bit string literal
literal that directly represents a bit string value of data type BOOL, BYTE, WORD, DWORD, or
LWORD

BS EN 61131-3:2013

61131-3 © IEC:2013 – 11 –

3.14
body
set of operations of the program organization unit

3.15
call
language construct causing the execution of a function, function block, or method

3.16
character string
aggregate that consists of an ordered sequence of characters

3.17
character string literal
literal that directly represents a character or character string value of data type CHAR,
WCHAR, STRING, or WSTRING

3.18
class
program organization unit consisting of:

• the definition of a data structure,

• a set of methods to be performed upon the data structure, and

3.19
comment
language construct for the inclusion of text having no impact on the execution of the program

[SOURCE: ISO/AFNOR:1989]

3.20
configuration
language element corresponding to a programmable controller system

3.21
constant
language element which declares a data element with a fixed value

3.22
counter function block
function block which accumulates a value for the number of changes sensed at one or more
specified inputs

3.23
data type
set of values together with a set of permitted operations

[SOURCE: ISO/AFNOR:1989]

3.24
date and time
date within the year and the time of day represented as a single language element

3.25
declaration
mechanism for establishing the definition of a language element

BS EN 61131-3:2013

 – 12 – 61131-3 © IEC:2013

3.26
delimiter
character or combination of characters used to separate program language elements

3.27
derived class
class created by inheritance from another class
Note 1 to entry: Derived class is also named extended class or child class.

3.28
derived data type
data type created by using another data type

3.29
derived function block type
function block type created by inheritance from another function block type

3.30
direct representation
means of representing a variable in a programmable controller program from which an imple-
mentation-specified correspondence to a physical or logical location may be determined di-
rectly

3.31
double word
data element containing 32 bits

3.32
dynamic binding
situation in which the instance of a method call is retrieved during runtime according to the
actual type of an instance or interface

3.33
evaluation
process of establishing a value for an expression or a function, or for the outputs of a network
or function block instance, during program execution

3.34
execution control element
language element which controls the flow of program execution

3.35
falling edge
change from 1 to 0 of a Boolean variable

3.36
function
language element which, when executed, typically yields one data element result and possibly
additional output variables

3.37
function block instance
instance of a function block type

3.38
function block type
language element consisting of:

BS EN 61131-3:2013

61131-3 © IEC:2013 – 13 –

− the definition of a data structure partitioned into input, output, and internal variables; and
− a set of operations or a set of methods to be performed upon the elements of the data

structure when an instance of the function block type is called

3.39
function block diagram
network in which the nodes are function block instances, graphically represented functions or
method calls, variables, literals, and labels

3.40
generic data type
data type which represents more than one type of data

3.41
global variable
variable whose scope is global

3.42
hierarchical addressing
direct representation of a data element as a member of a physical or logical hierarchy

EXAMPLE A point within a module which is contained in a rack, which in turn is contained in a cubicle, etc.

3.43
identifier
combination of letters, numbers, and underscore characters which begins with a letter or un-
derscore and which names a language element

3.44
implementation
product version of a PLC or the programming and debugging tool provided by the Implementer

3.45
Implementer
manufacturer of the PLC or the programming and debugging tool provided to the user to pro-
gram a PLC application

3.46
inheritance
creation of a new class, function block type or interface based on an existing class, function
block type or interface, respectively

3.47
initial value
value assigned to a variable at system start-up

3.48
in-out variable
variable which is used to supply a value to a program organization unit and which is addition-
ally used to return a value from the program organization unit

3.49
input variable
variable which is used to supply a value to a program organization unit except for class

BS EN 61131-3:2013

 – 14 – 61131-3 © IEC:2013

3.50
instance
individual, named copy of the data structure associated with a function block type, class, or
program type, which keeps its values from one call of the associated operations to the next

3.51
instance name
identifier associated with a specific instance

3.52
instantiation
creation of an instance

3.53
integer
integer number which may contain positive, null, and negative values

3.54
integer literal
literal which directly represents an integer value

3.55
interface
language element in the context of object oriented programming containing a set of method
prototypes

3.56
keyword
lexical unit that characterizes a language element

3.57
label
language construction naming an instruction, network, or group of networks, and including an
identifier

3.58
language element
any item identified by a symbol on the left-hand side of a production rule in the formal specifi-
cation

3.59
literal
lexical unit that directly represents a value

[SOURCE: ISO/AFNOR:1989]

3.60
logical location
location of a hierarchically addressed variable in a schema which may or may not bear any
relation to the physical structure of the programmable controller's inputs, outputs, and
memory

3.61
long real
real number represented in a long word

BS EN 61131-3:2013

61131-3 © IEC:2013 – 15 –

3.62
long word
64-bit data element

3.63
method
language element similar to a function that can only be defined in the scope of a function
block type and with implicit access to static variables of the function block instance or class
instance

3.64
method prototype
language element containing only the signature of a method

3.65
named element
element of a structure which is named by its associated identifier

3.66
network
arrangement of nodes and interconnecting branches

3.67
numeric literal
literal which directly represents a numeric value i.e. an integer literal or real literal

3.68
operation
language element that represents an elementary functionality belonging to a program organi-
zation unit or method

3.69
operand
language element on which an operation is performed

3.70
operator
symbol that represents the action to be performed in an operation

3.71
override
keyword used with a method in a derived class or function block type for a method with the
same signature as a method of the base class or function block type using a new method
body

3.72
output variable
variable which is used to return a value from the program organization unit except for classes

3.73
parameter
variable which is used to provide a value to a program organization unit (as input or in-out pa-
rameter) or a variable which is used to return a value from a program organization unit (as
output or in-out parameter)

BS EN 61131-3:2013

 – 16 – 61131-3 © IEC:2013

3.74
reference
user-defined data containing the location address to a variable or to an instance of a function
block of a specified type

3.75
power flow
symbolic flow of electrical power in a ladder diagram, used to denote the progression of a log-
ic solving algorithm

3.76
pragma
language construct for the inclusion of text in a program organization unit which may affect
the preparation of the program for execution

3.77
program
to design, write, and test user programs

3.78
program organization unit
function, function block, class, or program

3.79
real literal
literal directly representing a value of type REAL or LREAL

3.80
resource
language element corresponding to a “signal processing function” and its “man-machine inter-
face” and “sensor and actuator interface functions”, if any

3.81
result
value which is returned as an outcome of a program organization unit

3.82
return
language construction within a program organization unit designating an end to the execution
sequences in the unit

3.83
rising edge
change from 0 to 1 of a Boolean variable

3.84
scope
set of program organization units within which a declaration or label applies

3.85
semantics
relationships between the symbolic elements of a programming language and their meanings,
interpretation and use

3.86
semigraphic representation
representation of graphic information by the use of a limited set of characters

BS EN 61131-3:2013

61131-3 © IEC:2013 – 17 –

3.87
signature
set of information defining unambiguously the identity of the parameter interface of a METHOD
consisting of its name and the names, types, and order of all its parameters (i.e. inputs, out-
puts, in-out variables, and result type)

3.88
single-element variable
variable which represents a single data element

3.89
static variable
variable whose value is stored from one call to the next one

3.90
step
situation in which the behavior of a program organization unit with respect to its inputs and
outputs follows a set of rules defined by the associated actions of the step

3.91
structured data type
aggregate data type which has been declared using a STRUCT or FUNCTION_BLOCK declara-
tion

3.92
subscripting
mechanism for referencing an array element by means of an array reference and one or more
expressions that, when evaluated, denote the position of the element

3.93
task
execution control element providing for periodic or triggered execution of a group of associat-
ed program organization units

3.94
time literal
literal representing data of type TIME, DATE, TIME_OF_DAY, or DATE_AND_TIME

3.95
transition
condition whereby control passes from one or more predecessor steps to one or more suc-
cessor steps along a directed link

3.96
unsigned integer
integer number which may contain positive and null values

3.97
unsigned integer literal
integer literal not containing a leading plus (+) or minus (-) sign

3.98
user-defined data type
data type defined by the user

EXAMPLE Enumeration, array or structure.

BS EN 61131-3:2013

 – 18 – 61131-3 © IEC:2013

3.99
variable
software entity that may take different values, one at a time

4 Architectural models

4.1 Software model

The basic high-level language elements and their interrelationships are illustrated in Figure 1.

These consist of elements which are programmed using the languages defined in this stand-
ard, that is, programs and function block types, classes, functions, and configuration ele-
ments, namely, configurations, resources, tasks, global variables, access paths, and instance-
specific initializations, which support the installation of programmable controller programs into
programmable controller systems.

 CONFIGURATION

RESOURCE

TASK TASK

PROGRAM PROGRAM

FB FB

RESOURCE

TASK TASK

PROGRAM PROGRAM

FB FB

GLOBAL and DIRECTLY REPRESENTED VARIABLES
and INSTANCE-SPECIFIC INITIALIZATIONS

ACCESS PATHS

Execution control path

Variable access path

FB Function block

Variable

or
Communication functions (See IEC 61131-5)

Key:

NOTE 1 Figure 1 is illustrative only. The graphical representation is not normative.

NOTE 2 In a configuration with a single resource, the resource need not be explicitly represented.

Figure 1 – Software model

A configuration is the language element which corresponds to a programmable controller sys-
tem as defined in IEC 61131-1. A resource corresponds to a “signal processing function” and
its “man-machine interface” and “sensor and actuator interface” functions (if any) as defined in
IEC 61131-1.

BS EN 61131-3:2013

http://dx.doi.org/10.3403/02228747U
http://dx.doi.org/10.3403/00345852U
http://dx.doi.org/10.3403/00345852U

61131-3 © IEC:2013 – 19 –

A configuration contains one or more resources, each of which contains one or more pro-
grams executed under the control of zero or more tasks.

A program may contain zero or more function block instances or other language elements as
defined in this part of IEC 61131.

A task is capable of causing, e.g. on a periodic basis, the execution of a set of programs and
function block instances.

Configurations and resources can be started and stopped via the “operator interface”, “pro-
gramming, testing, and monitoring”, or “operating system” functions defined in IEC 61131-1.
The starting of a configuration shall cause the initialization of its global variables, followed by
the starting of all the resources in the configuration. The starting of a resource shall cause the
initialization of all the variables in the resource, followed by the enabling of all the tasks in the
resource. The stopping of a resource shall cause the disabling of all its tasks, while the stop-
ping of a configuration shall cause the stopping of all its resources.

Mechanisms for the control of tasks are defined in 6.8.2, while mechanisms for the starting
and stopping of configurations and resources via communication functions are defined in
IEC 61131-5.

Programs, resources, global variables, access paths (and their corresponding access privi-
leges), and configurations can be loaded or deleted by the “communication function” defined
in IEC 61131-1. The loading or deletion of a configuration or resource shall be equivalent to
the loading or deletion of all the elements it contains.

Access paths and their corresponding access privileges are defined in this standard.

The mapping of the language elements onto communication objects shall be as defined in
IEC 61131-5.

4.2 Communication model

Figure 2 illustrates the ways that values of variables can be communicated among software
elements.

As shown in Figure 2a), variable values within a program can be communicated directly by
connection of the output of one program element to the input of another. This connection is
shown explicitly in graphical languages and implicitly in textual languages.

Variable values can be communicated between programs in the same configuration via global
variables such as the variable x illustrated in Figure 2b). These variables shall be declared as
GLOBAL in the configuration, and as EXTERNAL in the programs.

As illustrated in Figure 2c), the values of variables can be communicated between different
parts of a program, between programs in the same or different configurations, or between a
programmable controller program and a non-programmable controller system, using the com-
munication function blocks defined in IEC 61131-5.

In addition, programmable controllers or non-programmable controller systems can transfer
data which is made available by access paths, as illustrated in Figure 2d), using the mecha-
nisms defined in IEC 61131-5.

BS EN 61131-3:2013

http://dx.doi.org/10.3403/00345852U
http://dx.doi.org/10.3403/02228747U
http://dx.doi.org/10.3403/00345852U
http://dx.doi.org/10.3403/02228747U
http://dx.doi.org/10.3403/02228747U
http://dx.doi.org/10.3403/02228747U

 – 20 – 61131-3 © IEC:2013

 PROGRAM A

FB_X

a

FB1

FB_Y

b

FB2

a) Data flow connection within a program

a

FB_Y

b x x

CONFIGURATION C

VAR_GLOBAL
 x: BOOL;
END_VAR

FB2 FB1

FB_X

PROGRAM A
 VAR_EXTERNAL
 x: BOOL;
END_VAR

PROGRAM B
 VAR_EXTERNAL
 x: BOOL;
END_VAR

b) Communication via GLOBAL variables

c) Communication function blocks

d) Communication via access paths

NOTE 1 Figure 2 is illustrative only. The graphical representation is not normative.

NOTE 2 In these examples, configurations C and D are each considered to have a single resource.

NOTE 3 The details of the communication function blocks are not shown in Figure 2.

NOTE 4 Access paths can be declared on directly represented variables, global variables, or input, output, or
internal variables of programs or function block instances.

NOTE 5 IEC 61131-5 specifies the means by which both PC and non-PC systems can use access paths for read-
ing and writing of variables.

Figure 2 – Communication model

4.3 Programming model

In Figure 3 are the PLC Languages elements summarized. The combination of these elements
shall obey the following rules:

1. Data types shall be declared, using the standard data types and any previously defined
data types.

2. Functions can be declared using standard or user-defined data types, the standard func-
tions and any previously defined functions.

 This declaration shall use the mechanisms defined for the IL, ST, LD or FBD language.
3. Function block types can be declared using standard and user-defined data types, func-

tions, standard function block types and any previously defined function block types.
 These declarations shall use the mechanisms defined for the IL, ST, LD, or FBD language,

and can include Sequential Function Chart (SFC) elements.
 Optionally, one may define object oriented function block types or classes which use

methods and interfaces.
4. A program shall be declared using standard or user-defined data types, functions, function

blocks and classes.
 This declaration shall use the mechanisms defined for the IL, ST, LD, or FBD language,

and can include Sequential Function Chart (SFC) elements.
5. Programs can be combined into configurations using the elements that is, global variables,

resources, tasks, and access paths.

PROGRAM A
FB_X

FB1

a Z

VAR_ACCESS
CSX: P1.Z : REAL READ_ONLY;

PROGRAM B

FB_Y
b

FB2

CONFIGURATION C CONFIGURATION D

READ
TO_FB2

RD1
'CSX' VAR_1

P1

PROGRAM A

FB1

CONFIGURATION C

SEND
send1

a

SD1
FB_Y
b

FB2

CONFIGURATION D

RCV
rcv1

RD1

PROGRAM B

FB-X

http://dx.doi.org/10.3403/02228747U

61131-3 © IEC:2013 – 21 –

Reference to “previously defined” data types, functions, and function blocks in the above rules
is intended to imply that once such a previously defined element has been declared, its defini-
tion is available, for example, in a “library” of previously defined elements, for use in further
definitions.

A programming language other than one of those defined in this standard may be used for
programming of a function, function block type and methods.

 Previously defined elements
and library elements

Production User defined elements

Data type
- Standard
- User defined

Function
- Standard
- User defined

Functionblock
class, interface
- Standard
- User defined

Program

Resource

Declaration in
IL, ST, LD, FB,
others

Declaration
Global variables
Access paths
Tasks

User defined
data types

User defined
function

User defined
function block, class,
interface

Program

Configuration

Declaration

(1)

(2)

(3)

(4)

(5)

Method
- User defined

Declaration in
IL, ST, LD, FB,
SFC elements
others

Declaration in
IL, ST, LD, FB,
SFC elements

LD: Ladder Diagram

FBD: Function Block Diagram

IL: Instruction List

ST: Structured Text

Others: Other programming languages

NOTE 1 The parenthesized numbers (1) to (5) refer to the corresponding paragraphs 1) through 5) above.

NOTE 2 Data types are used in all productions. For clarity, the corresponding linkages are omitted in this figure.

Figure 3 – Combination of programmable controller language elements

BS EN 61131-3:2013

 – 22 – 61131-3 © IEC:2013

5 Compliance

5.1 General

A PLC programming and debugging tool (PADT), as defined in IEC 61131-1, which claims to
comply, wholly or partially, with the requirements of this part of IEC 61131 shall do only as
described below.

a) shall provide a subset of the features and provide the corresponding Implementer’s com-
pliance statement as defined below.

b) shall not require the inclusion of substitute or additional language elements in order to ac-
complish any of the features.

c) shall provide a document that specifies all Implementer specific extensions. These are any
features accepted by the system that are prohibited or not specified.

d) shall provide a document that specifies all Implementer specific dependencies. This in-
cludes the implementation dependencies explicitly designated in this part of IEC 61131
and the limiting parameters like maximum length, number, size and range of value which
are not explicitly here.

e) shall provide a document that specifies all errors that are detectable and reported by the
implementation. This includes the errors explicitly designated in this part and the errors
detectable during preparation of the program for execution and during execution of the
program.

NOTE Errors occurring during execution of the program are only partially specified in this part of IEC 61131.

f) shall not use any of the standard names of data types, function or function block names
defined in this standard for implementation-defined features whose functionality differs
from that described in this part of IEC 61131.

5.2 Feature tables

All tables in this part of IEC 61131 are used for a special purpose in a common way. The first
column contains the “feature number”, the second column gives the “feature description”, the
following columns may contain examples or further information. This table structure is used in
the Implementer’s compliance statement.

5.3 Implementer’s compliance statement

The Implementer may define any consistent subset of the features listed in the feature tables
and shall declare the provided subset in the “Implementer’s compliant statement”.

The Implementer’s compliance statement shall be included in the documentation accompany-
ing the system, or shall be produced by the system itself.

The format of the Implementer’s compliance statement shall provide the following information.
Figure 4 shows an example.

• The general information including the Implementer name and address, the product name
and version, the controller type and version and the date of issue.

• For each implemented feature the number of the corresponding feature table, the feature
number and the applicable programming language.
Optional is the title and subtitle of the feature table, the feature description, examples, Im-
plementer’s note etc.

Not implemented tables and features may be omitted.

BS EN 61131-3:2013

http://dx.doi.org/10.3403/00345852U

61131-3 © IEC:2013 – 23 –

IEC 61131-3 “PLC Programming Languages”

Implementer: Company name, address, etc.
Product: Product name, version, etc. Controller type specific subset, etc.
.
Date: 2012-05-01
This Product complies with the requirements of the standard for the following language features:

Feature
No.

Table number and title /

Feature description

Compliantly
implemented

in the language ()

Implementer’s note

 LD FB
D

ST IL

 Table 1 – Character set

1 ISO/IEC 10646:2012, Information technology – Universal
Coded Character Set (UCS)

2a Lower case characters a: a, b, c, … No “ß, ü, ä, ö”

2b Number sign: # See Table 5

2c Dollar sign: $ See Table 6

 Table 2 – Identifiers

1 Upper case letters and numbers: IW215

2 Upper and lower case letters, numbers, embedded under-
score

3 Upper and lower case, numbers, leading or embedded under-
score

 Table 3 – Comments

1 Single-line comment //…

2a Multi-line comment (* … *)

2b Multi-line comment /* … */

3a Nested comment (* ..(* .. *) ..*)

3b Nested comment /* .. /* .. */ .. */

 Table 4 – Pragma

1 Pragma with curly brackets { … }

 Table 5 – Numeric literals

1 Integer literal: -12

2 Real literal: -12.0

3 Real literals with exponent: -1.34E-12

4 Binary literal: 2#1111_1111

5 Octal literal: 8#377

6 Hexadecimal literal: 16#FF

7 Boolean zero and one

8 Boolean FALSE and TRUE

9 Typed literal: INT#-123

 Etc.

Figure 4 – Implementer’s compliance statement (Example)

BS EN 61131-3:2013

http://dx.doi.org/10.3403/00316105U

 – 24 – 61131-3 © IEC:2013

6 Common elements

6.1 Use of printed characters

6.1.1 Character set

Table 1 shows the character set of the textual languages and textual elements of graphic lan-
guages. The characters are represented in terms of the ISO/IEC 10646.

Table 1 – Character set

No. Description

1 “ISO/IEC 10646

2a Lower case characters a: a, b, c

2b Number sign: # See Table 5

2c Dollar sign: $ See Table 6
a When lower-case letters are supported, the case of letters shall not be significant in language elements except

within comments as defined in 6.1.5, string literals as defined in 6.3.3, and variables of type STRING and
WSTRING as defined in 6.3.3.

6.1.2 Identifiers

An identifier is a string of letters, digits, and underscores which shall begin with a letter or un-
derscore character.

The case of letters shall not be significant in identifiers, for example, the identifiers abcd,
ABCD, and aBCd shall be interpreted identically.

The underscore character shall be significant in identifiers, for example, A_BCD and AB_CD
shall be interpreted as different identifiers. Multiple leading or multiple embedded underlines
are not allowed; for example, the character sequences __LIM_SW5 and LIM__SW5 are not
valid identifiers. Trailing underscores are not allowed; for example, the character sequence
LIM_SW5_ is not a valid identifier.

At least six characters of uniqueness shall be supported in all systems which support the use
of identifiers, for example, ABCDE1 shall be interpreted as different from ABCDE2 in all such
systems. The maximum number of characters allowed in an identifier is an Implementer spe-
cific dependency.

Identifier features and examples are shown in Table 2.

Table 2 – Identifiers

No. Description Examples

1 Upper case letters and numbers: IW215 IW215 IW215Z QX75 IDENT

2 Upper and lower case letters, numbers, embedded underscore All the above plus:
LIM_SW_5 LimSw5 abcd ab_Cd

3 Upper and lower case, numbers, leading or embedded under-
score

All the above plus: _MAIN _12V7

6.1.3 Keywords

Keywords are unique combinations of characters utilized as individual syntactic elements.
Keywords shall not contain embedded spaces. The case of characters shall not be significant

BS EN 61131-3:2013

61131-3 © IEC:2013 – 25 –

in keywords; for instance, the keywords FOR and for are syntactically equivalent. They shall
not be used for any other purpose, for example, variable names or extensions.

6.1.4 Use of white space

The user shall be allowed to insert one or more characters of “white space” anywhere in the
text of programmable controller programs except within keywords, literals, enumerated val-
ues, identifiers, directly represented variables or delimiter combinations for example, for
comments. “White space” is defined as the SPACE character with encoded value 32 decimal,
as well as non-printing characters such as tab, newline, etc. for which no encoding is given in
IEC/ISO 10646.

6.1.5 Comments

There are different kinds of user comments listed in Table 3:

1. Single line comments start with the character combination // and end at the next following
line feed, new line, form feed (page), or carriage return.

 In single-line comments the special character combinations (* and *) or /* and */
have no special meaning.

2. Multi-line comments shall be delimited at the beginning and end by the special character
combinations (* and *), respectively.
An alternative multi-line comment may be provided using the special character combina-
tions /* and */.

In multi-line comments the special character combination // has no special meaning.

Comments shall be permitted anywhere in the program where spaces are allowed, except
within character string literals.

Comments shall have no syntactic or semantic significance in any of the languages defined in
this standard. They are treated like a white space.

Nested comments use corresponding

• pairs of (*, *), e.g. (* ... (* NESTED *)... *) or

• pairs of /*, */, e.g. /* ... /* NESTED */... */.

Table 3 – Comments

No. Description Examples

1 Single-line comment with
// …

X:= 13; // comment for one line
// a single line comments can start at
// the first character position.

2a Multi-line comment
with (* … *)

(* comment *)

(***************************
 A framed comment on three line
****************************)

2b Multi-line comment
with /* … */

/* comment in one
or more lines */

3a Nested comment
with (* .. (* .. *) ..*)

(* (* NESTED *) *)

3b Nested comment

with /* .. /* .. */ .. */

/* /* NESTED */ */

BS EN 61131-3:2013

 – 26 – 61131-3 © IEC:2013

6.2 Pragma

As illustrated in Table 4, pragmas shall be delimited at the beginning and end by curly brack-
ets { and }, respectively. The syntax and semantics of particular pragma constructions are
Implementer specific. Pragmas shall be permitted anywhere in the program where spaces are
allowed, except within character string literals.

Table 4 – Pragma

No. Description Examples

1 Pragma
with { … }
curly brackets

{VERSION 2.0}
{AUTHOR JHC}
{x:= 256, y:= 384}

6.3 Literals – External representation of data

6.3.1 General

External representations of data in the various programmable controller programming lan-
guages shall consist of numeric literals, character string literals, and time literals.

The need to provide external representations for two distinct types of time-related data is rec-
ognized:

• duration data for measuring or controlling the elapsed time of a control event,

• and time of day data which may also include date information for synchronizing the begin-
ning or end of a control event to an absolute time reference.

6.3.2 Numeric literals and string literals

There are two kinds of numeric literals: integer literals and real literals. A numeric literal is
defined as a decimal number or a based number. The maximum number of digits for each kind
of numeric literal shall be sufficient to express the entire range and precision of values of all
the data types which are represented by the literal in a given implementation.

Single underscore characters “_” inserted between the digits of a numeric literal shall not be
significant. No other use of underscore characters in numeric literals is allowed.

Decimal literals shall be represented in conventional decimal notation. Real literals shall be
distinguished by the presence of a decimal point. An exponent indicates the integer power of
ten by which the preceding number is to be multiplied to obtain the value represented. Deci-
mal literals and their exponents can contain a preceding sign “+“ or “-“.

Literals can also be represented in base 2, 8, or 16. The base shall be in decimal notation.
For base 16, an extended set of digits consisting of the letters A through F shall be used, with
the conventional significance of decimal 10 through 15, respectively. Based numbers shall not
contain a leading sign “+” or “-“. They are interpreted as bit string literals.

Numeric literals which represent a positive integer may be used as bit string literals.

Boolean data shall be represented by integer literals with the value zero (0) or one (1), or the
keywords FALSE or TRUE, respectively.

Numeric literal features and examples are shown in Table 5.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 27 –

The data type of a Boolean or numeric literal can be specified by adding a type prefix to the
literal, consisting of the name of an elementary data type and the “#” sign. For examples, see
feature 9 in Table 5.

Table 5 – Numeric literals

No. Description Examples Explanation

1 Integer literal -12, 0, 123_4, +986

2 Real literal 0.0, 0.4560,

3.14159_26

3 Real literals with exponent -1.34E-12, -1.34e-12

 1.0E+6, 1.0e+6

 1.234E6, 1.234e6

4 Binary literal

2#1111_1111

2#1110_0000

Base 2 literal

255 decimal

224 decimal

5 Octal literals

8#377

8#340

Base 8 literal

255 decimal

224 decimal

6 Hexadecimal literal

16#FF or 16#ff

16#E0 or 16#e0

Base 16 literal

255 decimal

224 decimal

7 Boolean zero and one 0 or 1

8 Boolean FALSE and TRUE FALSE TRUE

9 Typed literal INT#-123 INT representation of the decimal value -
123

INT#16#7FFF INT representation of the decimal value
32767

WORD#16#AFF WORD representation of the hexadecimal
value 0AFF

WORD#1234 WORD representation of the decimal value
1234=16#4D2

UINT#16#89AF UINT representation of the hexadecimal
value 89AF

CHAR#16#41 CHAR representation of the ‘A’

BOOL#0

BOOL#1

BOOL#FALSE

BOOL#TRUE

NOTE 1 The keywords FALSE and TRUE correspond to Boolean values of 0 and 1, respectively.

NOTE 2 The feature 5 ‘Octal literals’ is deprecated and may not be included in the next edition of this part of
IEC 61131.

BS EN 61131-3:2013

 – 28 – 61131-3 © IEC:2013

6.3.3 Character string literals

Character string literals include single-byte or double-byte encoded characters.

• A single-byte character string literal is a sequence of zero or more characters prefixed and
terminated by the single quote character ('). In single-byte character strings, the three-
character combination of the dollar sign ($) followed by two hexadecimal digits shall be in-
terpreted as the hexadecimal representation of the eight-bit character code, as shown in
feature 1 of Table 6.

• A double-byte character string literal is a sequence of zero or more characters from the
ISO/IEC 10646 character set prefixed and terminated by the double quote character ("). In
double-byte character strings, the five-character combination of the dollar sign “$” fol-
lowed by four hexadecimal digits shall be interpreted as the hexadecimal representation of
the sixteen-bit character code, as shown in feature 2 of Table 6.

NOTE Relation of ISO/IEC 10646 and Unicode:

Although the character codes and encoding forms are synchronized between Unicode and ISO/IEC 10646, the
Unicode Standard imposes additional constraints on implementations to ensure that they treat characters uniformly
across platforms and applications. To this end, it supplies an extensive set of functional character specifications,
character data, algorithms and substantial background material that is not in ISO/IEC 10646.

Two-character combinations beginning with the dollar sign shall be interpreted as shown in
Table 7 when they occur in character strings.

Table 6 – Character string literals

No. Description Examples

 Single-byte characters or character strings with ‘ ‘

1a Empty string (length zero) ''

1b String of length one or character CHAR containing a single character 'A'

1c String of length one or character CHAR containing the “space” character ' '

1d String of length one or character CHAR containing the “single quote” character '$''

1e String of length one or character CHAR containing the “double quote” character '"'

1f Support of two character combinations of Table 7 'RL'

1g Support of a character representation with ‘$’ and two hexadecimal characters '$0A'

 Double-byte characters or character strings with "" (NOTE)

2a Empty string (length zero) ""

2b String of length one or character WCHAR containing a single character "A"

2c String of length one or character WCHAR containing the “space” character " "

2d String of length one or character WCHAR containing the “single quote” character "'"

2e String of length one or character WCHAR containing the “double quote” character "$""

2f Support of two character combinations of Table 7 "RL"

2h Support of a character representation with ‘$’ and four hexadecimal characters "$00C4"

 Single-byte typed characters or string literals with #

3a Typed string STRING#'OK'

3b Typed character CHAR#'X'

 Double-byte typed string literals with # (NOTE)

4a Typed double-byte string (using “double quote” character) WSTRING#"OK"

4b Typed double-byte character (using “double quote” character) WCHAR#"X"

4c Typed double-byte string (using “single quote” character) WSTRING#'OK'

4d Typed double-byte character (using “single quote” character) WCHAR#'X'

BS EN 61131-3:2013

61131-3 © IEC:2013 – 29 –

No. Description Examples

NOTE If a particular implementation supports feature 4 but not feature 2, the Implementer may specify Implementer
specific syntax and semantics for the use of the double-quote character.

Table 7 – Two-character combinations in character strings

No. Description Combinations

1 Dollar sign $$

2 Single quote $'

3 Line feed $L or $l

4 Newline $N or $n

5 Form feed (page) $P or $p

6 Carriage return $R or $r

7 Tabulator $T or $t

8 Double quote $"

NOTE 1 The “newline” character provides an implementation-independent means of defining the end of a line of data;
for printing, the effect is that of ending a line of data and resuming printing at the beginning of the next line.

NOTE 2 The $' combination is only valid inside single quoted string literals.

NOTE 3 The $" combination is only valid inside double quoted string literals.

6.3.4 Duration literal

Duration data shall be delimited on the left by the keyword T#, TIME# or LTIME#. The repre-
sentation of duration data in terms of days, hours, minutes, seconds, and fraction of a second,
or any combination thereof, shall be supported as shown in Table 8. The least significant time
unit can be written in real notation without an exponent.

The units of duration literals can be separated by underscore characters.

“Overflow” of the most significant unit of a duration literal is permitted, for example, the nota-
tion T#25h_15m is permitted.

Time units, for example, seconds, milliseconds, etc., can be represented in upper- or lower-
case letters.

As illustrated in Table 8, both positive and negative values are allowed for durations.

Table 8 – Duration literals

No. Description Examples

 Duration abbreviations

1a d Day

1b h Hour

1c m Minute

1d s Second

1e ms Millisecond

1f us (no μ available) Microsecond

1g ns Nanoseconds

BS EN 61131-3:2013

 – 30 – 61131-3 © IEC:2013

No. Description Examples

 Duration literals without underscore

2a short prefix T#14ms T#-14ms LT#14.7s T#14.7m
T#14.7h t#14.7d t#25h15m
lt#5d14h12m18s3.5ms
t#12h4m34ms230us400ns

2b long prefix TIME#14ms TIME#-14ms time#14.7s

 Duration literals with underscore

3a short prefix t#25h_15m t#5d_14h_12m_18s_3.5ms
LTIME#5m_30s_500ms_100.1us

3b long prefix TIME#25h_15m
ltime#5d_14h_12m_18s_3.5ms
LTIME#34s_345ns

6.3.5 Date and time of day literal

Prefix keywords for time of day and date literals shall be as shown in Table 9.

Table 9 – Date and time of day literals

No. Description Examples

1a Date literal (long prefix) DATE#1984-06-25, date#2010-09-22

1b Date literal (short prefix) D#1984-06-25

2a Long date literal (long prefix) LDATE#2012-02-29

2b Long date literal (short prefix) LD#1984-06-25

3a Time of day literal (long prefix) TIME_OF_DAY#15:36:55.36

3b Time of day literal (short prefix) TOD#15:36:55.36

4a Long time of day literal (short prefix) LTOD#15:36:55.36

4b Long time of day literal (long prefix) LTIME_OF_DAY#15:36:55.36

5a Date and time literal (long prefix) DATE_AND_TIME#1984-06-25-15:36:55.360227400

5b Date and time literal (short prefix) DT#1984-06-25-15:36:55.360_227_400

6a Long date and time literal (long prefix) LDATE_AND_TIME#1984-06-25-15:36:55.360_227_400

6b Long date and time literal (short prefix) LDT#1984-06-25-15:36:55.360_227_400

6.4 Data types

6.4.1 General

A data type is a classification which defines for literals and variables the possible values, the
operations that can be done, and the way the values are stored.

6.4.2 Elementary data types (BOOL, INT, REAL, STRING, etc.)

6.4.2.1 Specification of elementary data types

A set of (pre-defined) elementary data types is specified by this standard.

The elementary data types, keyword for each data type, number of bits per data element, and
range of values for each elementary data type shall be as shown in Table 10.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 31 –

Table 10 – Elementary data types

No. Description Keyword Default initial value N (bits) a

1 Boolean BOOL 0, FALSE 1 h

2 Short integer SINT 0 8 c

3 Integer INT 0 16 c

4 Double integer DINT 0 32 c

5 Long integer LINT 0 64 c

6 Unsigned short integer USINT 0 8 d

7 Unsigned integer UINT 0 16 d

8 Unsigned double integer UDINT 0 32 d

9 Unsigned long integer ULINT 0 64 d

10 Real numbers REAL 0.0 32 e

11 Long reals LREAL 0.0 64 f

12a Duration TIME T#0s -- b

12b Duration LTIME LTIME#0s 64 m, q

13a Date (only) DATE NOTE -- b

13b Long Date (only) LDATE LDATE#1970-01-01 64 n

14a Time of day (only) TIME_OF_DAY or TOD TOD#00:00:00 -- b

14b Time of day (only) LTIME_OF_DAY or LTOD LTOD#00:00:00 64 o, q

15a Date and time of Day DATE_AND_TIME or DT NOTE -- b

15b Date and time of Day LDATE_AND_TIME or
LDT

LDT#1970-01-01-00:00:00 64 p, q

16a Variable-length
single-byte character string

STRING '' (empty) 8 i, g, k, l

16b Variable-length double-byte
character string

WSTRING "" (empty) 16 i, g, k, l

17a Single-byte character CHAR '$00' 8g, l

17b Double-byte character WCHAR "$0000" 16 g, l

18 Bit string of length 8 BYTE 16#00 8 j, g

19 Bit string of length 16 WORD 16#0000 16 j, g

20 Bit string of length 32 DWORD 16#0000_0000 32 j, g

21 Bit string of length 64 LWORD 16#0000_0000_0000_0000 64 j, g

NOTE Implementer specific because of special starting date different than 0001-01-01.

BS EN 61131-3:2013

 – 32 – 61131-3 © IEC:2013

No. Description Keyword Default initial value N (bits) a
a Entries in this column shall be interpreted as specified in the table footnotes.
b The range of values and precision of representation in these data types is Implementer specific.
c The range of values for variables of this data type is from -(2N-1) to (2N-1)-1.
d The range of values for variables of this data type is from 0 to (2N)-1.
e The range of values for variables of this data type shall be as defined in IEC 60559 for the basic single width

floating-point format. Results of arithmetic instructions with denormalized values, infinity, or not-a-number val-
ues are Implementer specific.

f The range of values for variables of this data type shall be as defined in IEC 60559 for the basic double width
floating-point format. Results of arithmetic instructions with denormalized values, infinity, or not-a-number val-
ues are Implementer specific.

g A numeric range of values does not apply to this data type.
h The possible values of variables of this data type shall be 0 and 1, corresponding to the keywords FALSE and

TRUE, respectively.
i The value of N indicates the number of bits/character for this data type.
j The value of N indicates the number of bits in the bit string for this data type.

k The maximum allowed length of STRING and WSTRING variables is Implementer specific.

l The character encoding used for CHAR, STRING, WCHAR, and WSTRING is ISO/IEC 10646 (see 6.3.3).

m The data type LTIME is a signed 64-bit integer with unit of nanoseconds.

n The data type LDATE is a signed 64-bit integer with unit of nanoseconds with starting date 1970-01-01.

o The data type LDT is a signed 64-bit integer with unit of nanoseconds with starting date 1970-01-01-00:00:00.

p The data type LTOD is a signed 64-bit integer with unit of nanoseconds with starting time midnight with
TOD#00:00:00.

q The update accuracy of the values of this time format is Implementer specific, i.e. the value is given in nano-
seconds, but it may be updated every microsecond or millisecond.

6.4.2.2 Elementary data type strings (STRING, WSTRING)

The supported maximum length of elements of type STRING and WSTRING shall be Imple-
menter specific values and define the maximum length of a STRING and WSTRING which is
supported by the programming and debugging tool.

The explicit maximum length is specified by a parenthesized maximum length (which shall not
exceed the Implementer specific supported maximum value) in the associated declaration.

Access to single characters of a string using elements of the data type CHAR or WCHAR shall
be supported using square brackets and the position of the character in the string, starting
with position 1.

It shall be an error if double byte character strings are accessed using single byte characters
or if single byte character strings are accessed using double byte characters.

BS EN 61131-3:2013

http://dx.doi.org/10.3403/00218955U
http://dx.doi.org/10.3403/00218955U

61131-3 © IEC:2013 – 33 –

EXAMPLE 1 STRING, WSTRING and CHAR, WCHAR

a) Declaration
VAR

 String1: STRING[10]:= 'ABCD';
 String2: STRING[10]:= '';

 aWStrings: ARRAY [0..1] OF WSTRING:= [“1234”, “5678”];
 Char1: CHAR;
 WChar1: WCHAR;

END_VAR
b) Usage of STRING and CHAR
 Char1:= String1[2]; //is equivalent to Char1:= 'B';

 String1[3]:= Char1; //results in String1:= 'ABBD '

 String1[4]:= 'B'; //results in String1:= 'ABBB'

 String1[1]:= String1[4]; //results in String1:= 'BBBB'

 String2:= String1[2]; (*results in String2:= 'B'
 if implicit conversion CHAR_TO_STRING has been implemented*)

c) Usage of WSTRING and WCHAR
 WChar1:= aWStrings[1][2]; //is equivalent to WChar1:= '6';

 aWStrings[1][3]:=WChar1; //results in aWStrings[1]:= "5668"

 aWStrings[1][4]:= "6"; //results in aWStrings[1]:= "5666"

 aWStrings[1][1]:= aWStrings[1][4]; //results in String1:= "6666"

 aWStrings[0]:= aWStrings[1][4]; (* results in aWStrings[0]:= "6";
 if implicit conversion WCHAR_TO_WSTRING has been implemented *)

d) Equivalent functions (see 6.6.2.5.11)
 Char1:= String1[2];

 is equivalent to

 Char1:= STRING_TO_CHAR(Mid(IN:= String1, L:= 1, P:= 2));

 aWStrings[1][3]:= WChar1;

 is equivalent to

 REPLACE(IN1:= aWStrings[1], IN2:= WChar1, L:= 1, P:=3);

e) Error cases
 Char1:= String1[2]; //mixing WCHAR, STRING

 String1[2]:= String2;
 //requires implicit conversion STRING_TO_CHAR which is not allowed

NOTE The data types for single characters (CHAR and WCHAR) can only contain one character. Strings can contain
several characters; therefore strings may require additional management information which is not needed for single
characters.

EXAMPLE 2

If type STR10 is declared by

TYPE STR10: STRING[10]:= 'ABCDEF'; END_TYPE

then maximum length of STR10 is 10 characters, default initial value is 'ABCDEF',
and the initial length of data elements of type STR10 is 6 characters.

6.4.3 Generic data types

In addition to the elementary data types shown in Table 10, the hierarchy of generic data
types shown in Figure 5 can be used in the specification of inputs and outputs of standard
functions and function blocks. Generic data types are identified by the prefix “ANY”.

The use of generic data types is subject to the following rules:

1. The generic type of a directly derived type shall be the same as the generic type of the
elementary type from which it is derived.

2. The generic type of a subrange type shall be ANY_INT.

3. The generic type of all other derived types defined in Table 11 shall be ANY_DERIVED.

BS EN 61131-3:2013

 – 34 – 61131-3 © IEC:2013

The usage of generic data types in user-declared program organization units is beyond the
scope of this standard.

Generic data types Generic data
types

Groups of elementary data types

ANY g)

 ANY_DERIVED

 ANY_ELEMENTARY

 ANY_MAGNITUDE

 ANY_NUM

 ANY_REAL h) REAL, LREAL

 ANY_INT ANY_UNSIGNED USINT, UINT, UDINT, ULINT

 ANY_SIGNED SINT, INT, DINT, LINT

 ANY_DURATION TIME, LTIME

 ANY_BIT BOOL, BYTE, WORD, DWORD, LWORD

 ANY_CHARS

 ANY_STRING STRING, WSTRING

ANY_CHAR CHAR, WCHAR

ANY_DATE DATE_AND_TIME, LDT, DATE, TIME_OF_DAY, LTOD

Figure 5 – Hierarchy of the generic data types

6.4.4 User-defined data types

6.4.4.1 Declaration (TYPE)

6.4.4.1.1 General

The purpose of the user-defined data types is to be used in the declaration of other data types
and in the variable declarations.

A user-defined type can be used anywhere a base type can be used.

User-defined data types are declared using the TYPE...END_TYPE textual construct.

A type declaration consists of

• the name of the type

• a ‘:’ (colon)

• the declaration of the type itself as defined in the following clauses.

EXAMPLE Type declaration

TYPE
 myDatatype1: <data type declaration with optional initialization>;
END_TYPE

6.4.4.1.2 Initialization

User-defined data types can be initialized with user-defined values. This initialization has pri-
ority over the default initial value.

The user-defined initialization follows the type declaration and starts with the assignment op-
erator ‘:=’ followed by the initial value(s).

BS EN 61131-3:2013

61131-3 © IEC:2013 – 35 –

Literals (e.g. -123, 1.55, “abc”) or constant expressions (e.g. 12*24) may be used. The initial
values used shall be of a compatible type i.e. the same type or a type which can be converted
using implicit type conversion.

The rules according to Figure 6 shall apply for the initialization of data types.

Generic Data Type Initialized by literal Result

ANY_UNSIGNED Non-negative integer literal or

non-negative constant expression

Non-negative integer value

ANY_SIGNED Integer literal or

constant expression

Integer value

ANY_REAL Numeric literal or

constant expression

Numeric value

ANY_BIT Unsigned integer literal or

unsigned constant expression

Unsigned integer value

ANY_STRING String literal String value

ANY_DATE Date and Time of Day literal Date and Time of Day value

ANY_DURATION Duration literal Duration value

Figure 6 – Initialization by literals and constant expressions (Rules)

Table 11 defines the features of the declaration of user-defined data types and initialization.

Table 11 – Declaration of user-defined data types and initialization

No. Description Example Explanation

1a

1b

Enumerated data
types

TYPE
 ANALOG_SIGNAL_RANGE:
 (BIPOLAR_10V,
 UNIPOLAR_10V,
 UNIPOLAR_1_5V,
 UNIPOLAR_0_5V,
 UNIPOLAR_4_20_MA,
 UNIPOLAR_0_20_MA)
 := UNIPOLAR_1_5V;
END_TYPE

Initialization

2a

2b

Data types with
named values

TYPE

 Colors: DWORD
 (Red := 16#00FF0000,
 Green:= 16#0000FF00,
 Blue := 16#000000FF,
 White:= Red OR Green OR Blue,
 Black:= Red AND Green AND Blue)
 := Green;

END_TYPE

Initialization

3a

3b

Subrange data
types

TYPE
 ANALOG_DATA: INT(-4095 .. 4095):= 0;
END_TYPE

4a

4b

Array data types TYPE ANALOG_16_INPUT_DATA:
 ARRAY [1..16] OF ANALOG_DATA
 := [8(-4095), 8(4095)];
END_TYPE

ANALOG_DATA see above.

Initialization

5a

5b

FB types and clas-
ses as array ele-
ments

TYPE
 TONs: ARRAY[1..50] OF TON
 := [50(PT:=T#100ms)];
END_TYPE

FB TON as array element
Initialization

BS EN 61131-3:2013

 – 36 – 61131-3 © IEC:2013

No. Description Example Explanation

6a

6b

Structured data
type

TYPE ANALOG_CHANNEL_CONFIGURATION:
 STRUCT
 RANGE: ANALOG_SIGNAL_RANGE;
 MIN_SCALE: ANALOG_DATA:= -4095;
 MAX_SCALE: ANALOG_DATA:= 4095;
 END_STRUCT;
END_TYPE

ANALOG_SIGNAL_RANGE
see above

7a

7b

FB types and clas-
ses as structure
elements

TYPE
 Cooler: STRUCT
 Temp: INT;
 Cooling: TOF:= (PT:=T#100ms);
END_TYPE

FB TOF as structure ele-
ment

8a

8b

Structured data
type with relative
addressing AT

TYPE

 Com1_data: STRUCT

 head AT %B0: INT;
 length AT %B2: USINT:= 26;
 flag1 AT %X3.0: BOOL;
 end AT %B25: BYTE;
 END_STRUCT;

END_TYPE

Explicit layout without
overlapping

9a Structured data
type with relative
addressing AT and
OVERLAP

TYPE

 Com2_data: STRUCT OVERLAP

 head AT %B0: INT;
 length AT %B2: USINT;

 flag2 AT %X3.3: BOOL;
 data1 AT %B5: BYTE;
 data2 AT %B5: REAL;
 end AT %B19: BYTE;

 END_STRUCT;

END_TYPE

Explicit layout with over-
lapping

10a

10b

Directly represent-
ed elements of a
structure – partly
specified using
 “ * ”

TYPE

 HW_COMP: STRUCT;
 IN AT %I*: BOOL;
 OUT_VAR AT %Q*: WORD:= 200;
 ITNL_VAR: REAL:= 123.0; // not located
 END_STRUCT;

END_TYPE

Assigns the components of
a structure to not yet lo-
cated inputs and outputs,
see NOTE 2

11a

11b

Directly derived
data types

TYPE
 CNT: UINT;
 FREQ: REAL:= 50.0;
 ANALOG_CHANNEL_CONFIG:
 ANALOG_CHANNEL_CONFIGURATION
 := (MIN_SCALE:= 0, MAX_SCALE:= 4000);
END_TYPE

Initialization

new initialization

12 Initialization using
constant expres-
sions

TYPE
 PIx2: REAL:= 2 * 3.1416;
END_TYPE

Uses a constant expres-
sion

The declaration of data type is possible without initialization (feature a) or with (feature b) initialization. If only fea-
ture (a) is supported, the data type is initialized with the default initial value. If feature (b) is supported, the data
type shall be initialized with the given value or default initial value, if no initial value is given.

Variables with directly represented elements of a structure – partly specified using “ * ” may not be used in the
VAR_INPUT or VAR_IN_OUT sections.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 37 –

6.4.4.2 Enumerated data type

6.4.4.2.1 General

The declaration of an enumerated data type specifies that the value of any data element of
that type can only take one of the values given in the associated list of identifiers, as illustrat-
ed in Table 11.

The enumeration list defines an ordered set of enumerated values, starting with the first iden-
tifier of the list, and ending with the last one.

Different enumerated data types may use the same identifiers for enumerated values. The
maximum allowed number of enumerated values is Implementer specific.

To enable unique identification when used in a particular context, enumerated literals may be
qualified by a prefix consisting of their associated data type name and the hash sign (number
sign) '#', similar to typed literals. Such a prefix shall not be used in an enumeration list.

It is an error if sufficient information is not provided in an enumerated literal to determine its
value unambiguously (see example below).

EXAMPLE Enumerated date type

TYPE
 Traffic_light: (Red, Amber, Green);
 Painting_colors: (Red, Yellow, Green, Blue):= Blue;
END_TYPE

VAR
 My_Traffic_light: Traffic_light:= Red;
END_VAR

IF My_Traffic_light = Traffic_light#Amber THEN ... // OK
IF My_Traffic_light = Traffic_light#Red THEN ... // OK
IF My_Traffic_light = Amber THEN ... // OK - Amber is unique
IF My_Traffic_light = Red THEN ... // ERROR - Red is not unique

6.4.4.2.2 Initialization

The default initial value of an enumerated data type shall be the first identifier in the associat-
ed enumeration list.

The user can initialize the data type with a user-defined value out of the list of its enumerated
values. This initialization has priority.

As shown in Table 11 for ANALOG_SIGNAL_RANGE, the user-defined default initial value of
the enumerated data type is the assigned value UNIPOLAR_1_5V.

The user-defined assignment of the initial value of the data type is a feature in Table 11.

6.4.4.3 Data type with named values

6.4.4.3.1 General

Related to the enumeration data type – where the values of enumerated identifiers are not
known by the user – is an enumerated data type with named values. The declaration specifies
the data type and assigns the values of the named values, as illustrated in Table 11.

Declaring named values does not limit the use of the value range of variables of these data
types; i.e. other constants can be assigned, or can arise through calculations.

BS EN 61131-3:2013

 – 38 – 61131-3 © IEC:2013

To enable unique identification when used in a particular context, named values may be quali-
fied by a prefix consisting of their associated data type name and the hash sign (number sign)
'#', similar to typed literals.

Such a prefix shall not be used in a declaration list. It is an error if sufficient information is not
provided in an enumerated literal to determine its value unambiguously (see example below).

EXAMPLE Data type with named values

TYPE
 Traffic_light: INT (Red:= 1, Amber := 2, Green:= 3):= Green;
 Painting_colors: INT (Red:= 1, Yellow:= 2, Green:= 3, Blue:= 4):= Blue;
END_TYPE

VAR
 My_Traffic_light: Traffic_light;
END_VAR

My_Traffic_light:= 27; // Assignment from a constant
My_Traffic_light:= Amber + 1; // Assignment from an expression
 // Note: This is not possible for enumerated values
My_Traffic_light:= Traffic_light#Red + 1;

IF My_Traffic_light = 123 THEN ... // OK
IF My_Traffic_light = Traffic_light#Amber THEN ... // OK
IF My_Traffic_light = Traffic_light#Red THEN ... // OK
IF My_Traffic_light = Amber THEN ... // OK because Amber is unique
IF My_Traffic_light = Red THEN ... // Error because Red is not unique

6.4.4.3.2 Initialization

The default value for a date type with named values is the first data element in the enumera-
tion list. In the example above for Traffic_light this element is Red.

The user can initialize the data type with a user-defined value. The initialization is not restrict-
ed to named values, any value from within the range of the base data type may be used. This
initialization has priority.

In the example, the user-defined initial value of the enumerated data type for Traf-
fic_light is Green.

The user-defined assignment of the initial value of the data type is a feature in Table 11.

6.4.4.4 Subrange data type

6.4.4.4.1 General

A subrange declaration specifies that the value of any data element of that type can only take
on values between and including the specified upper and lower limits, as illustrated in
Table 11.

The limits of a subrange shall be literals or constant expressions.

EXAMPLE

TYPE
 ANALOG_DATA: INT(-4095 .. 4095):= 0;
END_TYPE

6.4.4.4.2 Initialization

The default initial values for data types with subrange shall be the first (lower) limit of the
subrange.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 39 –

The user can initialize the data type with a user-defined value out of the subrange. This initial-
ization has priority.

For instance, as shown in the example in Table 11, the default initial value of elements of type
ANALOG_DATA is -4095, while with explicit initialization, the default initial value is zero (as
declared).

6.4.4.5 Array data type

6.4.4.5.1 General

The declaration of an array data type specifies that a sufficient amount of data storage shall
be allocated for each element of that type to store all the data which can be indexed by the
specified index subrange(s), as illustrated in Table 11.

An array is a collection of data elements of the same data type. Elementary and user-defined
data types, function block types and classes can be used as type of an array element. This
collection of data elements is referenced by one or more subscripts enclosed in brackets and
separated by commas. It shall be an error if the value of a subscript is outside the range spec-
ified in the declaration of the array.

NOTE This error can be detected only at runtime for a computed index.

The maximum number of array subscripts, maximum array size and maximum range of sub-
script values are Implementer specific.

The limits of the index subrange(s) shall be literals or constant expressions. Arrays with vari-
able length are defined in 6.5.3.

In the ST language a subscript shall be an expression yielding a value corresponding to one
of the sub-types of generic type ANY_INT.

The form of subscripts in the IL language and the graphic languages defined in Clause 8 is
restricted to single-element variables or integer literals.

EXAMPLE

a) Declaration of an array
 VAR myANALOG_16: ARRAY [1..16] OF ANALOG_DATA

 := [8(-4095), 8(4095)]; // user-defined initial values
END_VAR

b) Usage of array variables in the ST language could be:
 OUTARY[6,SYM]:= INARY[0] + INARY[7] - INARY[i] * %IW62;

6.4.4.5.2 Initialization

The default initial value of each array element is the initial value defined for the data type of
the array elements.

The user can initialize an array type with a user-defined value. This initialization has priority.

The user-defined initial value of an array is assigned in form of a list which may use parenthe-
ses to express repetitions.

During initialization of the array data types, the rightmost subscript of an array shall vary most
rapidly with respect to filling the array from the list of initialization values.

BS EN 61131-3:2013

 – 40 – 61131-3 © IEC:2013

EXAMPLE Initialization of an array

 A: ARRAY [0..5] OF INT:= [2(1, 2, 3)]
 is equivalent to the initialization sequence 1, 2, 3, 1, 2, 3.

If the number of initial values given in the initialization list exceeds the number of array en-
tries, the excess (rightmost) initial values shall be ignored. If the number of initial values is
less than the number of array entries, the remaining array entries shall be filled with the de-
fault initial values for the corresponding data type. In either case, the user shall be warned of
this condition during preparation of the program for execution.

The user-defined assignment of the initial value of the data type is a feature in Table 11.

6.4.4.6 Structured data type

6.4.4.6.1 General

The declaration of a structured data type (STRUCT) specifies that this data type shall contain a
collection of sub-elements of the specified types which can be accessed by the specified
names, as illustrated in Table 11.

An element of a structured data type shall be represented by two or more identifiers or array
accesses separated by single periods “.“. The first identifier represents the name of the struc-
tured element, and subsequent identifiers represent the sequence of element names to ac-
cess the particular data element within the data structure. Elementary and user-defined data
types, function block types and classes can be used as type of a structure element.

For instance, an element of data type ANALOG_CHANNEL_CONFIGURATION as declared in
Table 11 will contain a RANGE sub-element of type ANALOG_SIGNAL_RANGE, a MIN_SCALE
sub-element of type ANALOG_DATA, and a MAX_SCALE element of type ANALOG_DATA.

The maximum number of structure elements, the maximum amount of data that can be con-
tained in a structure, and the maximum number of nested levels of structure element address-
ing are Implementer specific.

Two structured variables are assignment compatible only if they are of the same data type.

EXAMPLE Declaration and usage of a structured data type and structured variable

a) Declaration of a structured data type

TYPE
 ANALOG_SIGNAL_RANGE:
 (BIPOLAR_10V,
 UNIPOLAR_10V);

 ANALOG_DATA: INT (-4095 .. 4095);

 ANALOG_CHANNEL_CONFIGURATION:
 STRUCT
 RANGE: ANALOG_SIGNAL_RANGE;
 MIN_SCALE: ANALOG_DATA;
 MAX_SCALE: ANALOG_DATA;
 END_STRUCT;

END_TYPE

b) Declaration of a structured variable

VAR
 MODULE_CONFIG: ANALOG_CHANNEL_CONFIGURATION;
 MODULE_8_CONF: ARRAY [1..8] OF ANALOG_CHANNEL_CONFIGURATION;
END_VAR

BS EN 61131-3:2013

61131-3 © IEC:2013 – 41 –

c) Usage of structured variables in the ST language:

 MODULE_CONFIG.MIN_SCALE:= -2047;
MODULE_8_CONF[5].RANGE:= BIPOLAR_10V;

6.4.4.6.2 Initialization

The default values of the components of a structure are given by their individual data types.

The user can initialize the components of the structure with user-defined values. This initiali-
zation has priority.

The user can also initialize a previously defined structure using a list of assignments to the
components of the structure. This initialization has a higher priority than the default initializa-
tion and the initialization of the components.

EXAMPLE Initialization of a structure

a) Declaration with initialization of a structured data type
TYPE
 ANALOG_SIGNAL_RANGE:
 (BIPOLAR_10V,
 UNIPOLAR_10V):= UNIPOLAR_10V;
 ANALOG_DATA: INT (-4095 .. 4095);
 ANALOG_CHANNEL_CONFIGURATION:
 STRUCT
 RANGE: ANALOG_SIGNAL_RANGE;
 MIN_SCALE: ANALOG_DATA:= -4095;
 MAX_SCALE: ANALOG_DATA:= 4096;
 END_STRUCT;
 ANALOG_8BI_CONFIGURATION:
 ARRAY [1..8] OF ANALOG_CHANNEL_CONFIGURATION
 := [8((RANGE:= BIPOLAR_10V))];
END_TYPE

b) Declaration with initialization of a structured variable
VAR
 MODULE_CONFIG: ANALOG_CHANNEL_CONFIGURATION
 := (RANGE:= BIPOLAR_10V, MIN_SCALE:= -1023);
 MODULE_8_SMALL: ANALOG_8BI_CONFIGURATION
 := [8 ((MIN_SCALE:= -2047, MAX_SCALE:= 2048))];
END_VAR

6.4.4.7 Relative location for elements of structured data types (AT)

6.4.4.7.1 General

The locations (addresses) of the elements of a structured type can be defined relative to the
beginning of the structure.

In this case the name of each component of this structure shall be followed by the keyword AT
and a relative location. The declaration may contain gaps in the memory layout.

The relative location consists of a ‘%’ (percent), the location qualifier and a bit or byte location.
A byte location is an unsigned integer literal denoting the byte offset. A bit location consists
of a byte offset, followed by a ‘.’ (point), and the bit offset as unsigned integer literal out of the
range of 0 to 7. White spaces are not allowed within the relative location.

The components of the structure shall not overlap in their memory layout, except if the key-
word OVERLAP has been given in the declaration.

Overlapping of strings is beyond the scope of this standard.

BS EN 61131-3:2013

 – 42 – 61131-3 © IEC:2013

NOTE Counting of bit offsets starts with 0 at the rightmost bit. Counting of byte offsets starts at the beginning of
the structure with byte offset 0.

EXAMPLE Relative location and overlapping in a structure

TYPE
 Com1_data: STRUCT
 head AT %B0: INT; // at location 0
 length AT %B2: USINT:= 26; // at location 2
 flag1 AT %X3.0: BOOL; // at location 3.0
 end AT %B25: BYTE; // at 25, leaving a gap
 END_STRUCT;

 Com2_data: STRUCT OVERLAP
 head AT %B0: INT; // at location 0
 length AT %B2: USINT; // at location 2
 flag2 AT %X3.3: BOOL; // at location 3.3
 data1 AT %B5: BYTE; // at locations 5, overlapped
 data2 AT %B5: REAL; // at locations 5 to 8
 end AT %B19: BYTE; // at 19, leaving a gap
 END_STRUCT;

 Com_data: STRUCT OVERLAP // C1 and C2 overlap
 C1 at %B0: Com1_data;
 C2 at %B0: Com2_data;

 END_STRUCT;
END_TYPE

6.4.4.7.2 Initialization

Overlapped structures cannot be initialized explicitly.

6.4.4.8 Directly represented components of a structure – partly specified using “ * ”

The asterisk notation “*” in Table 11 can be used to denote not yet fully specified locations for
directly represented components of a structure.

EXAMPLE Assigning of the components of a structure to not yet located inputs and outputs.

 TYPE

 HW_COMP: STRUCT;
 IN AT %I*: BOOL;
 VAL AT %I*: DWORD;
 OUT AT %Q*: BOOL;
 OUT_VAR AT %Q*: WORD;
 ITNL_VAR: REAL; // not located
 END_STRUCT;

END_TYPE

In the case that a directly represented component of a structure is used in a location assign-
ment in the declaration part of a program, a function block type, or a class, an asterisk “*”
shall be used in place of the size prefix and the unsigned integer(s) in the concatenation to
indicate that the direct representation is not yet fully specified.

The use of this feature requires that the location of the structured variable so declared shall
be fully specified inside the VAR_CONFIG...END_VAR construction of the configuration for
every instance of the containing type.

Variables of this type shall not be used in a VAR_INPUT, VAR_IN_OUT, or VAR_TEMP sec-
tion.

It is an error if any of the full specifications in the VAR_CONFIG...END_VAR construction is
missing for any incomplete address specification expressed by the asterisk notation ”*” in any
instance of programs or function block types which contain such incomplete specifications.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 43 –

6.4.4.9 Directly derived data type

6.4.4.9.1 General

A user-defined data type may be directly derived from an elementary data type or a previously
user-defined data type.

This may be used to define new type-specific initial values.

EXAMPLE Directly derived data type

TYPE
 myInt1123: INT:= 123;
 myNewArrayType: ANALOG_16_INPUT_DATA := [8(-1023), 8(1023)];
 Com3_data: Com2_data:= (head:= 3, length:=40);

END_TYPE

.R1: REAL:= 1.0;
 R2: R1;

6.4.4.9.2 Initialization

The default initial value is the initial value of the data type the new data type is derived from.

The user can initialize the data type with a user-defined value. This initialization has priority.

The user-defined initial value of the elements of structure can be declared in a parenthesized
list following the data type identifier. Elements for which initial values are not listed in the ini-
tial value list shall have the default initial values declared for those elements in the original
data type declaration.

EXAMPLE 1 User-defined data types - usage

Given the declaration of ANALOG_16_INPUT_DATA in Table 11

and the declaration VAR INS: ANALOG_16_INPUT_DATA; END_VAR

the variables INS[1] through INS[16] can be used anywhere a variable of type INT could be used.

EXAMPLE 2

Similarly, given the definition of Com_data in Table 11

and additionally the declaration VAR telegram: Com_data; END_VAR

the variable telegram.length can be used anywhere a variable of type USINT could be used.

EXAMPLE 3

This rule can also be applied recursively:

Given the declarations of ANALOG_16_ INPUT_CONFIGURATION, ANALOG_CHANNEL_CONFIGURATION and
ANALOG_DATA in Table 11

and the declaration VAR CONF: ANALOG_16_INPUT_CONFIGURATION; END_VAR

the variable CONF.CHANNEL[2].MIN_SCALE can be used anywhere that a variable of type INT could be
used.

6.4.4.10 References

6.4.4.10.1 Reference declaration

A reference is a variable that shall only contain a reference to a variable or to an instance of a
function block. A reference may have the value NULL, i.e. it refers to nothing.

BS EN 61131-3:2013

 – 44 – 61131-3 © IEC:2013

References shall be declared to a defined data type using the keyword REF_TO and a data
type – the reference data type. The reference data type shall already be defined. It may be an
elementary data type or a user defined data type.

NOTE References without binding to a data type are beyond the scope of this part of IEC 61131.

EXAMPLE 1

TYPE
 myArrayType: ARRAY[0..999] OF INT;
 myRefArrType: REF_TO myArrayType; // Definition of a reference
 myArrOfRefType: ARRAY [0..12] OF myRefArrType; // Definition of an array of refer-
ences

END_TYPE

VAR
 myArray1: myArrayType;
 myRefArr1: myRefArrType; // Declararion of a reference
 myArrOfRef: myArrOfRefType; // Declararion of an array of refer-
ences

END_VAR

The reference shall reference only variables of the given reference data type. References to
data types which are directly derived are treated as aliases to references to the base data
type. The direct derivation may be applied several times.

EXAMPLE 2

TYPE
 myArrType1: ARRAY[0..999] OF INT;
 myArrType2: myArrType1;
 myRefType1: REF_TO myArrType1;
 myRefType2: REF_TO myArrType2;
END_TYPE
myRefType1 and myRefType2 can reference variables of type ARRAY[0..999] OF INT and of the derived data

types.

The reference data type of a reference can also be a function block type or a class. A refer-
ence of a base type can also refer to instances derived from this base type.

EXAMPLE 3

CLASS F1 ... END_CLASS;
CLASS F2 EXTENDS F1 ... END_CLASS;

TYPE
 myRefF1: REF_TO F1;
 myRefF2: REF_TO F2;
END_TYPE

References of type myRefF1 can reference instances of class F1 and F2 and derivations of both. Where refer-
ences of myRefF2 cannot reference instances of F1, only instances of F2 and derivations of it, because F1 may
not support methods and variables of the extended class F2.

6.4.4.10.2 Initialization of references

References can be initialized using the value NULL (default) or the address of an already de-
clared variable, instance of a function block or class.

EXAMPLE

FUNCTION_BLOCK F1 ... END_FUNCTION_BLOCK;

VAR
 myInt: INT;
 myRefInt: REF_TO INT:= REF(myInt);
 myF1: F1;
 myRefF1: REF_TO F1:= REF(myF1);
END_VAR

BS EN 61131-3:2013

61131-3 © IEC:2013 – 45 –

6.4.4.10.3 Operations on references

The REF() operator returns a reference to the given variable or instance. The reference data
type of the returned reference is the data type of the given variable. Applying the REF() op-
erator to a temporary variable (e.g. variables of any VAR_TEMP section and any variables in-
side functions) is not permitted.

A reference can be assigned to another reference if the reference data type is equal to the
base type or is a base type of the reference data type of the assigned reference.

References can be assigned to parameters of functions, function blocks and methods in a call
if the reference data type of the parameter is equal to the base type or is a base type of the
reference data type. References shall not be used as in-out variables.

If a reference is assigned to a reference of the same data type, then the latter references the
same variable. In this context, a directly derived data type is treated like its base data type.

If a reference is assigned to a reference of the same function block type or of a base function
block type, then this reference references the same instance, but is still bound to its function
block type; i.e. can only use the variables and methods of its reference data type.

Dereferencing shall be done explicitly.

A reference can be dereferenced using a succeeding ‘^’ (caret).

A dereferenced reference can be used in the same way as using a variable directly.

Dereferencing a NULL reference is an error.

NOTE 1 Possible checks of NULL references can be done at compile time, by the runtime system, or by the appli-
cation program.

The construct REF() and the dereferencing operator ‘^’ shall be used in the graphical lan-
guages in the definition of the operands.

NOTE 2 Reference arithmetic is not recommended and is beyond the scope of this part of IEC 61131.

BS EN 61131-3:2013

 – 46 – 61131-3 © IEC:2013

EXAMPLE 1

TYPE
S1: STRUCT
 SC1: INT;
 SC2: REAL;
 END_STRUCT;
A1: ARRAY[1..99] OF INT;
END_TYPE

VAR
 myS1: S1;
 myA1: A1;
 myRefS1: REF_TO S1:= REF(myS1);
 myRefA1: REF_TO A1:= REF(myA1);
 myRefInt: REF_TO INT:= REF(myA1[1]);
END_VAR

myRefS1^.SC1:= myRefA1^[12]; // in this case, equivalent to S1.SC1:= A1[12];
myRefInt:= REF(A1[11]);

S1.SC1:= myRefInt^; // assigns the value of A1[11] to S1.SC1

EXAMPLE 2

Graphical representation of the statements of Example 1

 +----------+
 | MOVE |
------------------|EN ENO|
 myRefA1^[12]---|IN OUT|--- myRefS1^.SC1
 +----------+

 +----------+ +----------+
 | MOVE | | MOVE |
------------------|EN ENO|--------------------------|EN ENO|
 REF(A1[11])---|IN OUT|--- myRefInt myRefInt^---|IN OUT|--- S1.SC1
 +----------+ +----------+

Table 12 defines the features for reference operations.

Table 12 – Reference operations

No Description Example

 Declaration

1 Declaration of a reference type TYPE

 myRefType: REF_TO INT;

END_TYPE

 Assignment and comparison

2a Assignment reference to reference <reference>:= <reference>

myRefType1:= myRefType2;

2b Assignment reference to parameter of func-
tion, function block and method

myFB (a:= myRefS1);

The types shall be equal!

2c Comparison with NULL IF myInt = NULL THEN ...

 Referencing

3a REF(<variable>)

Provides of the typed reference to the vari-
able

myRefA1:= REF (A1);

BS EN 61131-3:2013

61131-3 © IEC:2013 – 47 –

No Description Example

3b REF(<function block instance>)

Provides the typed reference to the function
block or class instance

myRefFB1:= REF(myFB1)

 Dereferencing

4 <reference>^

Provides the content of the variable or the
content of the instance to which the refer-
ence variable contains the reference

myInt:= myA1Ref^[12];

6.5 Variables

6.5.1 Declaration and initialization of variables

6.5.1.1 General

The variables provide a means of identifying data objects whose contents may change, for
example, data associated with the inputs, outputs, or memory of the programmable controller.

In contrast to the literals which are the external representations of data, variables may change
their value over time.

6.5.1.2 Declaration

Variables are declared inside of one of the variable sections.

A variable can be declared using

• an elementary data type or

• a previously user-defined type or

• a reference type or

• an instantly user-defined type within the variable declaration.

A variable can be

• a single-element variable, i.e. a variable whose type is either
– an elementary type or
– a user-defined enumeration or subrange type or
– a user-defined type whose “parentage”, defined recursively, is traceable to an elemen-

tary, enumeration or subrange type.

• a multi-element variable, i.e. a variable which represents an ARRAY or a STRUCT

• a reference, i.e. a variable that refers to another variable or function block instance.

A variable declaration consists of

• a list of variable names which are declared

• a “:” (colon) and

• a data type with an optional variable-specific initialization.

EXAMPLE

TYPE
myType: ARRAY [1..9] OF INT; // previously user-defined data type

END_TYPE

BS EN 61131-3:2013

 – 48 – 61131-3 © IEC:2013

VAR
 myVar1, myVar1a: INT; // two variables using an elementary type
 myVar2: myType; // using a previously user-defined type
 myVar3: ARRAY [1..8] OF REAL; // using an instantly user-defined type
END_VAR

6.5.1.3 Initialization of variables

The default initial value(s) of a variable shall be

1. the default initial value(s) of the underlying elementary data types as defined in Table 10,

2. NULL, if the variable is a reference,

3. the user-defined value(s) of the assigned data type;
this value is optionally specified by using the assignment operator “:=” in the TYPE decla-
ration defined in Table 11,

4. the user-defined value(s) of the variable;
this value is optionally specified by using the assignment operator “:=” in the VAR decla-
ration (Table 14).

This user-defined value may be a literal (e.g. -123, 1.55, “abc”) or a constant expression
(e.g. 12*24).

Initial values cannot be given in VAR_EXTERNAL declarations.

Initial values can also be specified by using the instance-specific initialization feature provid-
ed by the VAR_CONFIG...END_VAR construct. Instance-specific initial values always override
type-specific initial values.

Table 13 – Declaration of variables

No. Description Example Explanation

1 Variable with
elementary data
type

VAR
 MYBIT: BOOL;

 OKAY: STRING[10];

 VALVE_POS AT %QW28: INT;
END_VAR

Allocates a memory bit to the Boolean vari-
able MYBIT.

Allocates memory to contain a string with a
maximum length of 10 characters.

2 Variable with
user-defined data
type

VAR
 myVAR: myType;
END_VAR

Declaration of a variable with a user data
type.

3 Array VAR
 BITS: ARRAY[0..7] OF BOOL;
 TBT: ARRAY [1..2, 1..3] OF INT;
 OUTA AT %QW6: ARRAY[0..9] OF INT;
END_VAR

4 Reference VAR
 myRefInt: REF_TO INT;
END_VAR

Declaration of a variable to be a reference

BS EN 61131-3:2013

61131-3 © IEC:2013 – 49 –

Table 14 – Initialization of variables

No. Description Example Explanation

1 Initialization of a
variable with
elementary data
type

VAR
 MYBIT: BOOL := 1;

 OKAY: STRING[10] := 'OK';

 VALVE_POS AT %QW28: INT:= 100;
END_VAR

Allocates a memory bit to the Boolean vari-
able MYBIT with an initial value of 1.

Allocates memory to contain a string with a
maximum length of 10 characters.
After initialization, the string has a length of
2 and contains the two-byte sequence of
characters 'OK' (decimal 79 and 75 re-
spectively), in an order appropriate for print-
ing as a character string.

2 Initialization of a
variable with
user-defined data
type

TYPE
 myType: ...
END_TYPE

VAR
 myVAR: myType:= … // initialization
END_VAR

Declaration of a user data type with or with-
out an initialization.

Declaration with a prior initialization of a
variable with a user data type.

3 Array VAR
 BITS: ARRAY[0..7] OF BOOL
 :=[1,1,0,0,0,1,0,0];

 TBT: ARRAY [1..2, 1..3] OF INT
 := [9,8,3(10),6];

 OUTARY AT %QW6: ARRAY[0..9] OF
INT := [10(1)];
END_VAR

Allocates 8 memory bits to contain initial
values
 BITS[0]:= 1, BITS[1]:= 1,...,
 BITS[6]:= 0, BITS[7]:= 0.

Allocates a 2-by-3 integer array TBT with
initial values
 TBT[1,1]:= 9, TBT[1,2]:= 8,
 TBT[1,3]:= 10, TBT[2,1]:= 10,
 TBT[2,2]:= 10, TBT[2,3]:= 6.

4 Declaration and
initialization of
constants

VAR CONSTANT
 PI: REAL:= 3.141592;
 PI2: REAL:= 2.0*PI;
END_VAR

constant
symbolic constant PI

5 Initialization us-
ing constant ex-
pressions

VAR
 PIx2: REAL:= 2.0 * 3.1416;
END_VAR

Uses a constant expression

6 Initialization of a
reference

VAR
 myRefInt: REF_TO INT
 := REF(myINT);
END_VAR

Initializes myRefInt to refer to the variable
myINT.

6.5.2 Variable sections

6.5.2.1 General

Each declaration of a program organization unit (POU), i.e. function block, function and pro-
gram and additionally the method, starts with zero or more declaration parts which specify the
names, types (and, if applicable, the physical or logical location and initialization) of the vari-
ables used in the organization unit.

The declaration part of the POU may contain various VAR sections depending on the kind of
the POU.

The variables can be declared within the various VAR ... END_VAR textual constructions
including qualifiers like RETAIN or PUBLIC, if applicable. The qualifiers for variable sections
are summarized in Figure 7.

BS EN 61131-3:2013

 – 50 – 61131-3 © IEC:2013

Keyword Variable usage

VAR sections: depending on the POU type (see for function, function block, program) or method

VAR Internal to entity (function, function block, etc.)

VAR_INPUT Externally supplied, not modifiable within entity

VAR_OUTPUT Supplied by entity to external entities

VAR_IN_OUT Supplied by external entities, can be modified within entity and supplied to external enti-
ty

VAR_EXTERNAL Supplied by configuration via VAR_GLOBAL

VAR_GLOBAL Global variable declaration

VAR_ACCESS Access path declaration

VAR_TEMP Temporary storage for variables in function blocks, methods and programs

VAR_CONFIG Instance-specific initialization and location assignment.

 (END_VAR) Terminates the various VAR sections above.

Qualifiers: may follow the keywords above

RETAIN Retentive variables

NON_RETAIN Non-retentive variables

PROTECTED Only access from inside the own entity and its derivations (default)

PUBLIC Access allowed from all entities

PRIVATE Only access from the own entity

INTERNAL Only access within the same namespace

CONSTANT a Constant (variable cannot be modified)

NOTE The usage of these keywords is a feature of the program organization unit or configuration element in which
they are used.

 a Function block instances shall not be declared in variable sections with a CONSTANT qualifier.

Figure 7 – Variable declaration keywords (Summary)

• VAR

The variables declared in the VAR ... END_VAR section persist from one call of the pro-
gram or function block instance to another.
Within functions the variables declared in this section do not persist from one call of the
function to another.

• VAR_TEMP

Within program organization units, variables can be declared in a VAR_TEMP...END_VAR
section.

For functions and methods, the keywords VAR and VAR_TEMP are equivalent.

These variables are allocated and initialized with a type specific default value at each call,
and do not persist between calls.

• VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT

The variables declared in these sections are the formal parameters of functions, function
block types, programs, and methods.

• VAR_GLOBAL and VAR_EXTERNAL

Variables declared within a VAR_GLOBAL section can be used within another POU if these
are re-declared there within a VAR_EXTERNAL section.

Figure 8 shows the usage of the usage of the VAR_GLOBAL, VAR_EXTERNAL and CONSTANT.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 51 –

Declaration in the element containing the
variable

Declaration in the element using the
variable

Allowed?

VAR_GLOBAL X VAR_EXTERNAL CONSTANT X Yes

VAR_GLOBAL X VAR_EXTERNAL X Yes

VAR_GLOBAL CONSTANT X VAR_EXTERNAL CONSTANT X Yes

VAR_GLOBAL CONSTANT X VAR_EXTERNAL X No

NOTE The use of the VAR_EXTERNAL section in a contained element may lead to unanticipated behaviors, for
instance, when the value of an external variable is modified by another contained element in the same containing
element.

Figure 8 – Usage of VAR_GLOBAL, VAR_EXTERNAL and CONSTANT (Rules)

• VAR_ACCESS

Variables declared within a VAR_ACCESS section can be accessed using the access path
given in the declaration.

• VAR_CONFIG

The VAR_CONFIG...END_VAR construction provides a means to assign instance specific
locations to symbolically represented variables using the asterisk notation “*” or to assign
instance specific initial values to symbolically represented variables, or both.

6.5.2.2 Scope of the declarations

The scope (range of validity) of the declarations contained in the declaration part shall be lo-
cal to the program organization unit in which the declaration part is contained. That is, the de-
clared variables shall not be accessible to other program organization units except by an ex-
plicit parameter passing via variables which have been declared as inputs or outputs of those
units.

The exception to this rule is the case of variables which have been declared to be global.
Such variables are only accessible to a program organization unit via a VAR_EXTERNAL dec-
laration. The type of a variable declared in a VAR_EXTERNAL block shall agree with the type
declared in the VAR_GLOBAL block of the associated program, configuration or resource.

It shall be an error if:

• any program organization unit attempts to modify the value of a variable that has been de-
clared with the CONSTANT qualifier or in a VAR_INPUT section;

• a variable declared as VAR_GLOBAL CONSTANT in a configuration element or program or-
ganization unit (the “containing element”) is used in a VAR_EXTERNAL declaration (without
the CONSTANT qualifier) of any element contained within the containing element as illus-
trated below.

The maximum number of variables allowed in a variable declaration block is Implementer
specific.

6.5.3 Variable length ARRAY variables

Variable-length arrays can only be used

• as input, output or in-out variables of functions and methods,

• as in-out variables of function blocks.

The count of array dimensions of actual and formal parameter shall be the same. They are
specified using an asterisk as an undefined subrange specification for the index ranges.

BS EN 61131-3:2013

 – 52 – 61131-3 © IEC:2013

Variable-length arrays provide the means for programs, functions, function blocks, and me-
thods to use arrays of different index ranges.

To handle variable-length arrays, the following standard functions shall be provided
(Table 15).

Table 15 – Variable-length ARRAY variables

No. Description Examples

1 Declaration using *

ARRAY [*, *, . . .] OF data type

VAR_IN_OUT

 A: ARRAY [*, *] OF INT;

END_VAR;

 Standard functions LOWER_BOUND / UPPER_BOUND

2a Graphical representation Get lower bound of an array:

 +-------------+
 ! LOWER_BOUND !
ARRAY ----! ARR !--- ANY_INT
ANY_INT --! DIM !
 +-------------+

Get upper bound of an array:

 +-------------+
 ! UPPER_BOUND !
ARRAY ----! ARR !--- ANY_INT
ANY_INT---! DIM !
 +-------------+

2b Textual representation Get lower bound of the 2nd dimension of the array A:

low2:= LOWER_BOUND (A, 2);

Get upper bound of the 2nd dimension of the array A:

up2:= UPPER_BOUND (A, 2);

BS EN 61131-3:2013

61131-3 © IEC:2013 – 53 –

EXAMPLE 1

A1: ARRAY [1..10] OF INT:= [10(1)];

A2: ARRAY [1..20, -2..2] OF INT:= [20(5(1))];
 // according array initialization 6.4.4.5.2

LOWER_BOUND (A1, 1) 1
UPPER_BOUND (A1, 1) 10
LOWER_BOUND (A2, 1) 1
UPPER_BOUND (A2, 1) 20
LOWER_BOUND (A2, 2) -2
UPPER_BOUND (A2, 2) 2
LOWER_BOUND (A2, 0) error
LOWER_BOUND (A2, 3) error

EXAMPLE 2 Array Summation

FUNCTION SUM: INT;
VAR_IN_OUT A: ARRAY [*] OF INT; END_VAR;
VAR i, sum2: DINT; END_VAR;

sum2:= 0;
FOR i:= LOWER_BOUND(A,1) TO UPPER_BOUND(A,1)
 sum2:= sum2 + A[i];
END_FOR;
SUM:= sum2;
END_FUNCTION

 // SUM (A1) 10
 // SUM (A2[2]) 5

EXAMPLE 3 Matrix multiplication

FUNCTION MATRIX_MUL
VAR_INPUT
 A: ARRAY [*, *] OF INT;
 B: ARRAY [*, *] OF INT;
END_VAR;

VAR_OUTPUT C: ARRAY [*, *] OF INT; END_VAR;
VAR i, j, k, s: INT; END_VAR;

FOR i:= LOWER_BOUND(A,1) TO UPPER_BOUND(A,1)
 FOR j:= LOWER_BOUND(B,2) TO UPPER_BOUND(B,2)
 s:= 0;
 FOR k:= LOWER_BOUND(A,2) TO UPPER_BOUND(A,2)
 s:= s + A[i,k] * B[k,j];
 END_FOR;
 C[i,j]:= s;
 END_FOR;
END_FOR;
END_FUNCTION

// Usage:
VAR
 A: ARRAY [1..5, 1..3] OF INT;
 B: ARRAY [1..3, 1..4] OF INT;
 C: ARRAY [1..5, 1..4] OF INT;
END_VAR

MATRIX_MUL (A, B, C);

6.5.4 Constant variables

Constant variables are variables which are defined inside a variable section which contains
the keyword CONSTANT. The rules defined for expressions shall apply.

BS EN 61131-3:2013

 – 54 – 61131-3 © IEC:2013

EXAMPLE Constant variables

VAR CONSTANT
 Pi: REAL:= 3.141592;
 TwoPi: REAL:= 2.0*Pi;
END_VAR

6.5.5 Directly represented variables (%)

6.5.5.1 General

Direct representation of a single-element variable shall be provided by a special symbol
formed by the concatenation of

• a percent sign “%”and

• location prefixes I, Q or M and

• a size prefix X (or none), B, W, D, or L and

• one or more (see below hierarchical addressing) unsigned integers that shall be separated
by periods “.”.

EXAMPLE

 %MW1.7.9
 %ID12.6
 %QL20

The Implementer shall specify the correspondence between the direct representation of a var-
iable and the physical or logical location of the addressed item in memory, input or output.

NOTE The use of directly represented variables in the bodies of functions, function block types, methods, and
program types limits the reusability of these program organization unit types, for example between programmable
controller systems in which physical inputs and outputs are used for different purposes.

The use of directly represented variables is permitted in the body of functions, function
blocks, programs, methods, and in configurations and resource.

Table 16 defines the features for directly represented variables.

The use of directly represented variables in the body of POUs and methods is deprecated
functionality.

Table 16 – Directly represented variables

No. Description Example Explanation

 Location (NOTE 1)

1 Input location I %IW215 Input word 215

2 Output location Q %QB7 Output byte 7

3 Memory location M %MD48 Double word at memory loc. 48

 Size

4a Single bit size X %IX1 Input data type BOOL

4b Single bit size None %I1 Input data type BOOL

5 Byte (8 bits) size B %IB2 Input data type BYTE

6 Word (16 bits) size W %IW3 Input data type WORD

7 Double word (32 bits) size D %ID4 Input data type DWORD

8 Long (quad) word (64 bits) size L %IL5 Input data type LWORD

BS EN 61131-3:2013

61131-3 © IEC:2013 – 55 –

No. Description Example Explanation

 Addressing

9 Simple addressing %IX1 %IB0 1 level

10 Hierarchical addressing using “.” %QX7.5 %QX7.5
%MW1.7.9

Implementer defined e.g.:
2 levels, ranges 0..7
3 levels, ranges 1..16

11 Partly specified variables using asterisk ”*”

(NOTE 2)

%M*

NOTE 1 National standardization organizations can publish tables of translations of these prefixes.

NOTE 2 The use of an asterisk in this table needs the feature VAR_CONFIG and vice versa.

6.5.5.2 Directly represented variables – hierarchical addressing

When the simple (1 level) direct representation is extended with additional integer fields sepa-
rated by periods, it shall be interpreted as a hierarchical physical or logical address with the
leftmost field representing the highest level of the hierarchy, with successively lower levels
appearing to the right.

EXAMPLE Hierarchical address

 %IW2.5.7.1

For instance, this variable represents the first “channel” (word) of the seventh “module” in the fifth “rack” of the
second “I/O bus” of a programmable controller system. The maximum number of levels of hierarchical addressing
is Implementer specific.

The use of the hierarchical addressing to permit a program in one programmable controller
system to access data in another programmable controller shall be considered as a Imple-
menter specific extension of the language.

6.5.5.3 Declaration of directly represented variables (AT)

Declaration of the directly represented variables as defined in Table 16 (e.g. %IW6) can be
given a symbolic name and a data type by using the AT keyword.

Variables with user-defined data types e.g. an array can be assigned an “absolute” memory
by using AT. The location of the variable defines the start address of the memory location and
does not need to be of equal or bigger size than the given direct representation, i.e. empty
memory or overlapping is permitted.

EXAMPLE Usage of direct representation.

VAR
 INP_0 AT %I0.0: BOOL;

Name and type for an input

 AT %IB12: REAL;
 PA_VAR AT %IB200: PA_VALUE; Name and user-defined type for an input location be-

ginning at %IB200
 OUTARY AT %QW6: ARRAY[0..9] OF INT;
END_VAR

Array of 10 integers to be allocated to contiguous out-
put locations starting at %QW6

For all kinds of variables defined in Table 13, an explicit (user-defined) memory allocation can
be declared using the keyword AT in combination with the directly represented variables (e.g.
%MW10).

If this feature is not supported in one or more variable declarations, then it should be stated in
the Implementer’s compliance statement.

BS EN 61131-3:2013

 – 56 – 61131-3 © IEC:2013

NOTE Initialization of system inputs (e.g. %IW10) is Implementer specific.

6.5.5.4 Directly represented variables – partly specified using “ * ”

The asterisk notation “*” can be used in address assignments inside programs, and function
block types to denote not yet fully specified locations for directly represented variables.

EXAMPLE

VAR

 C2 AT %Q*: BYTE;

END_VAR

Assigns not yet located output byte to bitstring variable C2 of
one byte length.

In the case that a directly represented variable is used in a location assignment to an internal
variable in the declaration part of a program or a function block type, an asterisk “*” shall be
used in place of the size prefix and the unsigned integer(s) in the concatenation to indicate
that the direct representation is not yet fully specified.

Variables of this type shall not be used in the VAR_INPUT and VAR_IN_OUT section.

The use of this feature requires that the location of the variable so declared shall be fully
specified inside the VAR_CONFIG...END_VAR construction of the configuration for every in-
stance of the containing type.

It is an error if any of the full specifications in the VAR_CONFIG...END_VAR construction is
missing for any incomplete address specification expressed by the asterisk notation “*” in any
instance of programs or function block types which contain such incomplete specifications.

6.5.6 Retentive variables (RETAIN, NON_RETAIN)

6.5.6.1 General

When a configuration element (resource or configuration) is “started” as “warm restart” or
“cold restart” according to Part 1 of the IEC 61131 series, each of the variables associated
with the configuration element and its programs has a value depending on the starting opera-
tion of the configuration element and the declaration of the retain behavior of the variable.

The retentive behavior can declare for all variables contained in the variable sections
VAR_INPUT, VAR_OUTPUT, and VAR of functions blocks and programs to be either retentive
or non-retentive by using the RETAIN or NON_RETAIN qualifier specified in Figure 7. The us-
age of these keywords is an optional feature.

Figure 9 below shows the conditions for the initial value of a variable.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 57 –

Figure 9 – Conditions for the initial value of a variable (Rules)

1. If the starting operation is a “warm restart” as defined in IEC 61131-1, the initial value of
all variables in a variable section with RETAIN qualifier shall be the retained values. The-
se are the values the variables had when the resource or configuration was stopped.

2. If the starting operation is a “warm restart”, the initial value of all variables in a variable
section with NON_RETAIN qualifier shall be initialized.

3. If the starting operation is a “warm restart” and there is no RETAIN and NON_RETAIN
qualifier given, the initial values are Implementer specific.

4. If the starting operation is a “cold restart”, the initial value of all variables in a VAR sec-
tion with RETAIN and NON_RETAIN qualifier shall be initialized as defined below.

6.5.6.2 Initialization

The variables are initialized using the variable-specific user-defined values.

If no value is defined the type-specific user-defined initial value is used. If none is defined the
type-specific default initial value is used, defined in Table 10.

Following further rules apply:

• Variables which represent inputs of the programmable controller system as defined in
IEC 61131-1 shall be initialized in an Implementer specific manner.

• The RETAIN and NON_RETAIN qualifiers may be used for variables declared in static VAR,
VAR_INPUT, VAR_OUTPUT, and VAR_GLOBAL sections but not in VAR_IN_OUT section.

• The usage of RETAIN and NON_RETAIN in the declaration of function block, class, and
program instances is allowed. The effect is that all variables of the instance are treated as
RETAIN or NON_RETAIN, except if:

– the variable is explicitly declared as RETAIN or NON_RETAIN in the function block,
class, or program type definition;

– the variable itself is a function block type or a class. In this case, the retain declaration
of the used function block type or class is applied.

The usage of RETAIN and NON_RETAIN for instances of structured data types is allowed. The
effect is that all structure elements, also those of nested structures, are treated as RETAIN or
NON_RETAIN.

 Starting operation ?
Warm restart

 Retentive ?
RETAIN NON_RETAIN

Cold restart

a) Retained
value

b), d) Initialized value

not declared

c) Implementer
specific value

BS EN 61131-3:2013

http://dx.doi.org/10.3403/00345852U
http://dx.doi.org/10.3403/00345852U

 – 58 – 61131-3 © IEC:2013

EXAMPLE

 VAR RETAIN
 AT %QW5: WORD:= 16#FF00;
 OUTARY AT %QW6: ARRAY[0..9] OF INT:= [10(1)];
 BITS: ARRAY[0..7] OF BOOL:= [1,1,0,0,0,1,0,0];
 END_VAR

 VAR NON_RETAIN
 BITS: ARRAY[0..7] OF BOOL;
 VALVE_POS AT %QW28: INT:= 100;
 END_VAR

6.6 Program organization units (POUs)

6.6.1 Common features for POUs

6.6.1.1 General

The program organization units (POU) defined in this part of IEC 61131 are function, function
block, class, and program. Function blocks and classes may contain methods.

A POU contains for the purpose of modularization and structuring a well-defined portion of the
program. The POU has a defined interface with inputs and outputs and may be called
and executed several times.

NOTE The above mentioned parameter interface is not the same as the interface defined in the context of object
orientation.

POUs and methods can be delivered by the Implementer or programmed by the user.

A POU which has already been declared can be used in the declaration of other POUs as
shown in Figure 3.

The recursive call of POUs and methods is Implementer specific.

The maximum number of POUs, methods and instances for a given resource are Implementer
specific.

6.6.1.2 Assignment and expression

6.6.1.2.1 General

The language constructs of assignment and expression are used in the textual and (partially)
in the graphical languages.

6.6.1.2.2 Assignment

An assignment is used to write the value of a literal, a constant expression, a variable, or an
expression (see below) to another variable. This latter variable may be any kind of variable,
like e.g. an input or an output variable of a function, method, function block, etc.

Variables of the same data type can always be assigned. Additionally the following rules ap-
ply:

• A variable or a constant of type STRING or WSTRING can be assigned to another variable
of type STRING or WSTRING respectively. If the source string is longer than the target
string the result is Implementer specific;

• A variable of a subrange type can be used anywhere a variable of its base type can be
used. It is an error if the value of a subrange type falls outside the specified range
of values;

BS EN 61131-3:2013

61131-3 © IEC:2013 – 59 –

• A variable of a derived type can be used anywhere a variable of its base type can be
used;

• Additional rules for arrays may be defined by the Implementer.

Implicit and explicit data type conversion may be applied to adapt the data type of the source
to the data type of the target:

a) In textual form (also partially applicable to graphical languages) the assignment operator
may be

“:= ” which means the value of the expression on the right side of the operator is written
to the variable on the left side of the operator or

 “ => “ which means the value on the left side of the operator is written to the variable on
the right side of the operator.
The “=>” operator is only used in the parameter list of calls of functions, methods,
function blocks, etc. and only to pass VAR_OUTPUT parameter back to the caller.

EXAMPLE
 A:= B + C/2;
 Func (in1:= A, out2 => x);
 A_struct1:= B_Struct1;

NOTE For assignment of user-defined data types (STUCTURE, ARRAY) see Table 72.

b) In graphical form
the assignment is visualized as a graphical connection line from a source to a target, in
principle from left to right; e.g. from a function block output to a function block input or
from the graphical ”location” of a variable/constant to a function input or from an function
output to the graphical “location” of a variable.

The standard function MOVE is one of the graphical representations of an assignment.

6.6.1.2.3 Expression

An expression is a language construct that consists of a defined combination of operands, like
literals, variables, function calls, and operators like (+, -, *, /) and yields one value
which may be multi-valued.

Implicit and explicit data type conversion may be applied to adapt the data types of an opera-
tion of the expression.

a) In textual form (also partially applicable in graphical languages), the expression is execut-
ed in a defined order depending on the precedence as specified in the language.

EXAMPLE ... B + C / 2 * SIN(x) ...

b) In graphical form, the expression is visualized as a network of graphical blocks (function
blocks, functions, etc.) connected with lines.

6.6.1.2.4 Constant expression

A constant expression is a language construct that consists of a defined combination of oper-
ands like literals, constant variables, enumerated values and operators like (+, -, *) and
yields one value which may be multi-valued.

6.6.1.3 Partial access to ANY_BIT variables

For variables of the data type ANY_BIT (BYTE, WORD, DWORD, LWORD) a partial access to a bit,
byte, word and double word of the variable is defined in Table 17.

In order to address the part of the variable, the symbol ‘%’ and the size prefix as defined for
directly represented variables in Table 16 (X, none, B, W, D, L) are used in combination with

BS EN 61131-3:2013

 – 60 – 61131-3 © IEC:2013

an integer literal (0 to max) for the address within the variable. The literal 0 refers to the least
significant part and max refers to the most significant part. The ‘%X’ is optional in the case of
accessing bits.

EXAMPLE Partial access to ANY_BIT

VAR
 Bo: BOOL;
 By: BYTE;
 Wo: WORD;
 Do: DWORD;
 Lo: LWORD;
END_VAR;

Bo:= By.%X0; // bit 0 of By
Bo:= By.7; // bit 7 of By; %X is the default and may be omitted.
Bo:= Lo.63 // bit 63 of Lo;

By:= Wo.%B1; // byte 1 of Wo;
By:= Do.%B3; // byte 3 of Do;

Table 17 – Partial access of ANY_BIT variables

No. Description Data Type Example and Syntax (NOTE 2)

 Data Type - Access to myVAR_12.%X1; yourVAR1.%W3;

1a BYTE – bit VB2.%X0 BOOL <variable_name>.%X0 to <variable_name>.%X7

1b WORD – bit VW3.%X15 BOOL <variable_name>.%X0 to <variable_name>.%X15

1c DWORD - bit BOOL <variable_name>.%X0 to <variable_name>.%X31

1d LWORD - bit BOOL <variable_name>.%X0 to <variable_name>.%X63

2a WORD – byte VW4.%B0 BYTE <variable_name>.%B0 to <variable_name>.%B1

2b DWORD - byte BYTE <variable_name>.%B0 to <variable_name>.%B3

2c LWORD - byte BYTE <variable_name>.%B0 to <variable_name>.%B7

3a DWORD - word WORD <variable_name>.%W0 to <variable_name>.%W1

3b LWORD - word WORD <variable_name>.%W0 to <variable_name>.%W3

4 LWORD – dword VL5.%D1 DWORD <variable_name>.%D0 to <variable_name>.%D1

The bit access prefix %X may be omitted according to Table 16, e.g. By1.%X7 is equivalent to By1.7.

Partial access shall not be used with a direct variable e.g. %IB10.

6.6.1.4 Call representation and rules

6.6.1.4.1 General

A call is used to execute a function, a function block instance, or a method of a function block
or class. As illustrated in Figure 10 a call can be represented in a textual or graphical form.

1. Where no names are given for input variables of standard functions, the default names
IN1, IN2, ... shall apply in top-to-bottom order. When a standard function has a sin-
gle unnamed input, the default name IN shall apply.

2. It shall be an error if any VAR_IN_OUT variable of any call within a POU is not “properly
mapped”.
A VAR_IN_OUT variable is “properly mapped” if

• it is connected graphically at the left, or

• it is assigned using the “:=” operator in a textual call, to a variable declared (without
the CONSTANT qualifier) in a VAR_IN_OUT, VAR, VAR_TEMP, VAR_OUTPUT, or

BS EN 61131-3:2013

61131-3 © IEC:2013 – 61 –

VAR_ EXTERNAL block of the containing program organization unit, or to a “properly
mapped” VAR_IN_OUT of another contained call.

3. A “properly mapped” (as shown in rule above) VAR_IN_OUT variable of a call can

• be connected graphically at the right, or

• be assigned using the “:=” operator in a textual assignment statement to a variable de-
clared in a VAR, VAR_OUTPUT or VAR_EXTERNAL block of the containing program or-
ganization unit.

It shall be an error if such a connection would lead to an ambiguous value of the variable
so connected.

4. The name of a function block instance may be used as an input if it is declared as a
VAR_INPUT, or as VAR_IN_OUT.

The instance can be used inside the called entity in the following way:

• if declared as VAR_INPUT the function block variables can only be read,

• if declared as VAR_IN_OUT the function block variables can be read and written and
the function block can be called.

6.6.1.4.2 Textual languages

The features for the textual call are defined in Table 20. The textual call shall consist of the
name of the called entity followed by a list of parameters.

In the ST language the parameters shall be separated by commas and this list shall be delim-
ited on the left and right by parentheses.

The parameter list of a call shall provide the actual values and may assign them to the corre-
sponding formal parameters names (if any):

• Formal call
The parameter list has the form of a set of assignments of actual values to the formal pa-
rameter names (formal parameter list), that is:

a) assignments of values to input and in-out variables using the ":=" operator, and

b) assignments of the values of output variables to variables using the "=>" operator.
The formal parameter list may be complete or incomplete. Any variable to which no value
is assigned in the list shall have the initial value, if any, assigned in the declaration of the
called entity, or the default value for the associated data type.
The ordering of parameters in the list shall not be significant.
The execution control parameters EN and ENO may be used.

EXAMPLE 1
 A:= LIMIT(EN:= COND, IN:= B, MN:= 0, MX:= 5, ENO => TEMPL); // Complete

 A:= LIMIT(IN:= B, MX:= 5); // Incomplete

• Non-formal call
The parameter list shall contain exactly the same number of parameters, in exactly the
same order and of the same data types as given in the function definition, except the exe-
cution control parameters EN and ENO.

EXAMPLE 2
 A:= LIMIT(B, 0, 5);

This call is equivalent to the complete call in the example above, but without EN/ENO.

BS EN 61131-3:2013

 – 62 – 61131-3 © IEC:2013

6.6.1.4.3 Graphical languages

In the graphic languages the call of functions shall be represented as graphic blocks accord-
ing to the following rules:

1. The form of the block shall be rectangular.
2. The size and proportions of the block may vary depending on the number of inputs and

other information to be displayed.
3. The direction of processing through the block shall be from left to right (input parameters

on the left and output parameters on the right).
4. The name or symbol of the called entity, as specified below, shall be located inside the

block.
5. Provision shall be made for input and output variable names appearing at the inside left

and right sides of the block respectively.
6. An additional input EN and/or output ENO may be used. If present, they shall be shown at

the uppermost positions at the left and right side of the block, respectively.
7. The function result shall be shown at the uppermost position at the right side of the block,

except if there is an ENO output, in which case the function result shall be shown at the
next position below the ENO output. Since the name of the called entity itself is used for
the assignment of its output value, no output variable name shall be shown at the right
side of the block, i.e. for the function result.

8. Parameter connections (including function result) shall be shown by signal flow lines.
9. Negation of Boolean signals shall be shown by placing an open circle just outside of the

input or output line intersection with the block. In the character set this may be represent-
ed by the upper case alphabetic “O”, as shown in Table 20. The negation is performed
outside the POU.

10. All inputs and outputs (including function result) of a graphically represented function shall
be represented by a single line outside the corresponding side of the block, even though
the data element may be a multi-element variable.

11. Results and outputs (VAR_OUTPUT) can be connected to a variable, used as input to
other calls, or can be left unconnected.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 63 –

Graphical example
(FBD)

Textual example
(ST)

Explanation

a)

 +--------+
 | ADD |
 B---| |--A
 C---| |
 D---| |
 +--------+

A:= ADD(B,C,D); //Function or

A:= B + C + D; // Operators

Non-formal parameter list

(B, C, D)

b)

 +-------+
 | SHL |
 B---|IN |--A
 C---|N |
 +-------+

A:= SHL(IN:= B, N:= C);

Formal parameter names

IN, N

c)

 +-------+
 | SHL |
ENABLE--|EN ENO|O-NO_ERR
 B--|IN |--A
 C--|N |
 +-------+

A:= SHL(
 EN:= ENABLE,
 IN:= B,
 N := C,
 NOT ENO => NO_ERR);

Formal parameter names

Use of EN input
and negated ENO output

d)

 +-------+
 | INC |
 | |--A
 X--|V-----V|--X
 +-------+

A:= INC(V:= X);

User-defined INC function

Formal parameter names V for
VAR_IN_OUT

The examples illustrate both the graphical and equivalent textual use, including the use of a standard function
(ADD) without defined formal parameter names; a standard function (SHL) with defined formal parameter names;
the same function with additional use of EN input and negated ENO output; and a user-defined function (INC) with
defined formal parameter names.

Figure 10 – Formal and non-formal representation of call (Examples)

6.6.1.5 Execution control (EN, ENO)

As shown in Table 18, an additional Boolean EN (Enable) input or ENO (Enable Out) output, or
both, can be provided by the Implementer or the user according to the declarations.

VAR_INPUT EN: BOOL:= 1; END_VAR
VAR_OUTPUT ENO: BOOL; END_VAR

When these variables are used, the execution of the operations defined by the POU shall be
controlled according to the following rules:

1. If the value of EN is FALSE then the POU shall not be executed. In addition, ENO shall be
reset to FALSE. The Implementer shall specify the behavior in this case in detail, see the
examples below.

2. Otherwise, if the value of EN is TRUE, ENO is set to TRUE and the POU implementation
shall be executed. The POU may set ENO to a Boolean value according to the result of
the execution.

3. If any error occurs during the execution of one of the POU, the ENO output of that POU
shall be reset to FALSE (0) by the programmable controller system, or the Implementer
shall specify other disposition of such an error.

4. If the ENO output is evaluated to FALSE (0), the values of all POU outputs
(VAR_OUTPUT, VAR_IN_OUT and function result) are Implementer specific.

5. The input EN shall only be set as an actual value as a part of a call of a POU.
6. The output ENO shall only be transferred to a variable as a part of a call of a POU.
7. The output ENO shall only be set inside its POU.

BS EN 61131-3:2013

 – 64 – 61131-3 © IEC:2013

8. Use of the parameters EN/ENO in the function REF() to get a reference to EN/ENO is an
error.

Behavior different from normal POU execution can be implemented in the case of EN being
FALSE.This shall be specified by the Implementer. See examples below.

EXAMPLE 1 Internal implementation

The input EN is evaluated inside the POU.

If EN is FALSE, ENO is set to False and the POU returns immediately or performs a subset of operations de-
pending on this situation.

All given input and in-out parameters are evaluated and set in the instance of the POU (except for functions).

The validity of the in-out parameters is checked.

EXAMPLE 2 External implementation

The input EN is evaluated outside the POU. If EN is False, only ENO is set to False and the POU is not called.

The input and in-out parameters are not evaluated and not set in the instance of the POU. The validity of the in-out
parameters is not checked.

The input EN is not assigned outside the POU separately from the call.

The following figure and examples illustrate the usage with and without EN/ENO:

 myInst
 +--------+
 cond | myFB | X
 -----| |------|EN ENO|---------()
 v1 ---|A B|--- v2
 v3 ---|C------C|---
 +--------+

EXAMPLE 3 Internal implementation

myInst (EN:= cond, A:= v1, C:= v3, B=> v2, ENO=> X);

where the body of myInst starts in principle with

IF NOT EN THEN... // perform a subset of operations
 // depending on the situation
ENO:= 0; RETURN; END_IF;

EXAMPLE 4 External implementation

IF cond THEN myInst (A:= v1, C:= v3, B=> v2, ENO=> X)
ELSE X:= 0; END_IF;

Table 18 shows the features for the call of POU without and with EN/ENO.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 65 –

Table 18 – Execution control graphically using EN and ENO

No. Description a Exampleb

1 Usage without EN and ENO Shown for a function in FBD and ST

 +------+
 A---| + |---C
 B---| |
 +------+

C:= ADD(IN1:= A, IN2:= B);

2 Usage of EN only

(without ENO)

Shown for a function in FBD and ST

 +------+
ADD_EN----|EN |
 A---| + |---C
 B---| |
 +------+

C:= ADD(EN:= ADD_EN. IN1:= A, IN2:= B);

3 Usage of ENO only

(without EN)

Shown for a function in FBD and ST

 +------+
 | ENO|---ADD_OK
 A---| + |---C
 B---| |
 +------+

C:= ADD(IN1:= A, IN2:= B, ENO => ADD_OK);

4 Usage of EN and ENO Shown for a function in LD and ST

 +-------+ |
| ADD_EN | + | ADD_OK |
+---||---|EN ENO|---()---+
A---		---C
B---		
 +-------+ |

C:= ADD(EN:= ADD_EN, IN1:= a, IN2:= IN2, EN => ADD_OK);

a The Implementer shall specify in which of the languages the feature is supported; i.e. in an implementation it
may be prohibited to use EN and/or ENO.

b The languages chosen for demonstrating the features above are given only as examples.

6.6.1.6 Data type conversion

Data type conversion is used to adapt data types for the use in expressions, assignments and
parameter assignments.

The representation and the interpretation of the information stored in a variable are depend-
ent of the declared data type of the variable. There are two cases where type conversion is
used.

• In an assignment
of a data value of a variable to another variable of a different data type.

This is applicable with the assignment operators “:=” and “=>” and with the assignment of
variables declared as parameters, i.e. inputs, outputs, etc. of functions, function blocks,
methods, and programs. Figure 11 shows the conversion rules from a source data type to
a target data type.

EXAMPLE 1 A:= B; // Variable assignment
 FB1 (x:= z, v => W); // Parameter assignment

• In an expression (see 7.3.2 for ST language)
consisting of operators like “+” and operands like literals and variables with the same or
different data types.

BS EN 61131-3:2013

 – 66 – 61131-3 © IEC:2013

EXAMPLE 2 … SQRT(B + (C * 1.5)); // Expression

• Explicit data type conversion
is done by usage of the conversion functions.

• Implicit data type conversion
has the following application rules:
1. shall keep the value and accuracy of the data types,
2. may be applied for typed functions,
3. may be applied for assignments of an expression to a variable,

EXAMPLE 3

myUDInt:= myUInt1 * myUInt2;
 /* The multiplication has a UINT result
 which is then implicitly converted to an UDINT at the assignment */

4. may be applied for the assignment of an input parameter,
5. may be applied for the assignment of an output parameter,
6. shall not be applied for the assignment to in-out parameters,
7. may be applied so that operands and results of an operation or overloaded function

get the same data type.

EXAMPLE 4

myUDInt:= myUInt1 * myUDInt2;
 // myUInt1 is implicitly converted to a UDINT,the multiplication has a UDINT result

8. The Implementer shall define the rules for non-typed literals.

NOTE The user can use typed literals to avoid ambiguities.

EXAMPLE 5

IF myWord = NOT (0) THEN …; // Ambiguous comparison with 16#FFF, 16#0001, 16#00FF, etc.
IF myWord = NOT (WORD#0) THEN …; // Ambiguous comparison with 16#FFFF

Figure 11 shows the two alternatives “implicit” and “explicit” conversion of the source data
type to a target data type.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 67 –

Source Data Type

Target Data Type

real integer unsigned bit date & times char

 L
R

E
A

L
 R

E
A

L

 L
IN

T

 D
IN

T

 IN
T

 S
IN

T

 U
LI

N
T

 U

D
IN

T

 U
IN

T

 U
S

IN
T

 L
W

O
R

D

 D
W

O
R

D

 W
O

R
D

 B
Y

TE

 B
O

O
L

 L
TI

M
E

 T

IM
E

 L
D

T

 D
T

 L
D

A
TE

 D

A
TE

 L

TO
D

 T

O
D

 W
S

TR
IN

G

 S
TR

IN
G

 W

C
H

A
R

 C
H

A
R

re
al

 LREAL e e e e e e e e e e - - - - - - - - - - - - - - - -

REAL i e e e e e e e e - e - - - - - - - - - - - - - - -

in
te

ge
r

LINT e e e e e e e e e e e e e - - - - - - - - - - - - -

DINT i e i e e e e e e e e e e - - - - - - - - - - - - -

INT i i i i e e e e e e e e e - - - - - - - - - - - - -

SINT i i i i i e e e e e e e e - - - - - - - - - - - - -

un
si

gn
ed

 ULINT e e e e e e e e e e e e e - - - - - - - - - - - - -

UDINT i e i e e e i e e e e e e - - - - - - - - - - - - -

UINT i i i i e e i i e e e e e - - - - - - - - - - - - -

USINT i i i i i e i i i e e e e - - - - - - - - - - - - -

bi
t

LWORD e - e e e e e e e e e e e - - - - - - - - - - - - -

DWORD - e e e e e e e e e i e e - - - - - - - - - - - - -

WORD - - e e e e e e e e i i e - - - - - - - - - - - e -

BYTE - - e e e e e e e e i i i - - - - - - - - - - - - e

BOOL - - e e e e e e e e i i i i - - - - - - - - - - - -

da
te

 &
 ti

m
es

LTIME - - - - - - - - - - - - - - - e - - - - - - - - - -

TIME - - - - - - - - - - - - - - - i - - - - - - - - - -

LDT - - - - - - - - - - - - - - - - - e e e e e - - - -

DT - - - - - - - - - - - - - - - - - i e e e e - - - -

LDATE - - - - - - - - - - - - - - - - - - - e - - - - - -

DATE - - - - - - - - - - - - - - - - - - i - - - - -

LTOD - e - - - -

TOD - i - - - -

ch
ar

WSTRING - - - e - -

STRING (NOTE) - - - e - e

WCHAR - - - - - - - - - - e e e - - - - - - - - - i - e

CHAR (NOTE) - - - - - - - - - e e e e e - - - - - - - - - i e

Key
 No data type conversion necessary

- No implicit or explicit data type conversion defined by this standard.
The implementation may support additional Implementer specific data type conversions.

i Implicit data type conversion; however, explicit type conversion is additionally allowed.

e Explicit data type conversion applied by the user (standard conversion functions) may be used to accept
loss of accuracy, mismatch in the range or to effect possible Implementer dependent behavior.

NOTE Conversions of STRING to WSTRING and CHAR to WCHAR are not implicit, to avoid conflicts with the
used character set.

Figure 11 – Data type conversion rules – implicit and/or explicit (Summary)

BS EN 61131-3:2013

 – 68 – 61131-3 © IEC:2013

The following Figure 12 shows the data type conversions which are supported by implicit type
conversion. The arrows present the possible conversion paths; e.g. BOOL can be converted to
BYTE, BYTE can be converted to WORD, etc.

Figure 12 – Supported implicit type conversions

The following example shows examples of the data type conversion.

EXAMPLE 6 Explicit vs. implicit type conversion

1) Type declaration

VAR
 PartsRatePerHr: REAL;
 PartsDone: INT;
 HoursElapsed: REAL;
 PartsPerShift: INT;
 ShiftLength: SINT;
END_VAR

2) Usage in ST language

 a) Explicit type conversion
PartsRatePerHr:= INT_TO_REAL(PartsDone) / HoursElapsed;
PartsPerShift := REAL_TO_INT(SINT_TO_REAL(ShiftLength)*PartsRatePerHr);

 b) Explicit overloaded type conversion
PartsRatePerHr:= TO_REAL(PartsDone) / HoursElapsed;
PartsPerShift := TO_INT(TO_REAL(ShiftLength)*PartsRatePerHr);

 c) Implicit type conversion
PartsRatePerHr:= PartsDone / HoursElapsed;
PartsPerShift := TO_INT(ShiftLength * PartsRatePerHr);

USINT

SINT INT DINT LINT

UINT UDINT ULINT

REAL LREAL

TIME LTIME

DT LDT

TOD LTOD

CHAR STRING WCHAR WSTRING

BOOL BYTE WORD DWORD LWORD

DATE LDATE

BS EN 61131-3:2013

61131-3 © IEC:2013 – 69 –

3) Usage in FBD language

 a) Explicit type conversion

 +-------------+ +----------+ +---+ +-------------+
PartsDone -| INT_TO_REAL |--| DIV_REAL |---| * |--| REAL_TO_INT |--- PartsPerShift
 +-------------+ | | | | | |
 | | | | +-------------+
HoursElapsed --------------| | | |
 +----------+ | |
 | |
 +--------------+ | |
ShiftLength -| SINT_TO_REAL |---------------| |
 +--------------+ +---+

 b) Explicit overloaded type conversion

 +-------------+ +----------+ +---+ +--------+
PartsDone -| TO_REAL |---| DIV_REAL |---| * |---| TO_INT |--- PartsPerShift
 +-------------+ | | | | | |
 | | | | +--------+
HoursElapsed ------------------| | | |
 +----------+ | |
 | |
 +--------------+ | |
ShiftLength -| TO_REAL |-----------------| |
 +--------------+ +---+

 c) Implicit type conversion with typed functions

 +----------+ +----------+ +--------+
PartsDone -------------| DIV_REAL |---| MUL_REAL |---| TO_INT |--- PartsPerShift
 | | | | | |
 | | | | +--------+
HoursElapsed-----------| | | |
 +----------+ | |
 | |
 | |
ShiftLength --------------------------| |
 +----------+

6.6.1.7 Overloading

6.6.1.7.1 General

A language element is said to be overloaded when it can operate on input data elements of
various types within a generic data type; e.g. ANY_NUM, ANY_INT.

The following standard language elements which are provided by the manufacturer may have
generic overloading as a special feature:

• Standard functions

These are overloaded standard functions (e.g. ADD, MUL) and overloaded standard con-
version functions (e.g. TO_REAL, TO_INT).

• Standard methods
This part of IEC 61131 does not define standard methods within standard classes or func-
tion block types. However, they may be supplied by the Implementer.

• Standard function blocks
This part of IEC 61131 does not define standard function blocks, except some simple ones
like counters.
However, they may be defined by other parts of IEC 61131 and may be supplied by the
Implementer.

• Standard classes
This part of IEC 61131 does not define standard classes. However, they may be defined in
other parts of IEC 61131 and may be supplied by the Implementer.

BS EN 61131-3:2013

 – 70 – 61131-3 © IEC:2013

• Operators
These are e.g. “+” and “*” in ST language; ADD, MUL in IL language.

6.6.1.7.2 Data type conversion

When a programmable controller system supports an overloaded language element, this lan-
guage element shall apply to all suitable data types of the given generic type which are sup-
ported by that system.

The suitable data types for each language element are defined in the related features tables.
The following examples illustrate the details:

EXAMPLE 1

This standard defines for the ADD function the generic data type ANY_NUM for a number of inputs of the same
kind and one result output.
The Implementer specifies for this generic data type ANY_NUM of the PLC system the related elementary data
types REAL and INT.

EXAMPLE 2

This standard defines for the bit-shift function LEFT the generic data type ANY_BIT for one input and the re-
sult output and the generic data type ANY_INT for another input.
The Implementer specifies for these two generic data types of the PLC system:
ANY_BIT represents e.g. the elementary data types BYTE and WORD;
ANY_INT represents e.g. the elementary data types INT and LINT.

An overloaded language element shall operate on the defined elementary data types accord-
ing the following rules:

• The data types of inputs and the outputs/result shall be of the same type; this is applicable
for the inputs and outputs/result of the same kind.
The same kind means parameters, operands and the result equally used like the inputs of
an addition or multiplication.
More complex combinations shall be Implementer specific.

• If the data types of the inputs and outputs of the same kind have not the same type then
the conversion in the language element is Implementer specific.

• The implicit type conversion of an expression and of the assignment follows the sequence
of evaluation of the expression. See example below.

• The data type of the variable to store the result of the overloaded function does not influ-
ence the data type of the result of the function or operation.

 NOTE The user can explicitly specify the result type of the operation by using typed functions.

EXAMPLE 3

int3 := int1 + int2 (* Addition is performed as an integer operation *)
dint1:= int1 + int2; (* Addition is performed as an integer operation, then the result is converted
 to a DINT and assigned to dint1 *)
dint1:= dint2 + int3; (* int3 is converted to a DINT, the addition is performed as a DINT addition *)

6.6.2 Functions

6.6.2.1 General

A function is a programmable organization unit (POU) which does not store its state; i.e. in-
puts, internals and outputs/result.

The common features of POUs apply for functions if not stated otherwise.

The Function execution

BS EN 61131-3:2013

61131-3 © IEC:2013 – 71 –

• delivers typically a temporary result which may be a one-data element or a multi-valued
array or structure,

• delivers possibly output variable(s) which may be multi-valued,

• may change the value of in-out and VAR_EXTERNAL variable(s).

A function with result may be called in an expression or as a statement.

A function without result shall not be called inside an expression.

6.6.2.2 Function declaration

The declaration of a function shall consist of the following elements as defined in Table 19:
These features are declared in a similar manner as described for the function blocks.

Following rules for the declaration of a function shall be applied as given in the Table 19:

1. The declarations begin with the keyword FUNCTION followed by an identifier specifying
the name of the function.

2. If a result is available a colon ‘:‘, and followed by the data type of the value to be returned
by the function shall be given or if no function result is available, the colon and data type
shall be omitted.

3. The constructs with VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT, if required, specify-
ing the names and data types of the function parameters.

4. The values of the variables which are passed to the function via a VAR_EXTERNAL con-
struct can be modified from within the function block.

5. The values of the constants which are passed to the function via a VAR_EXTERNAL
CONSTANT construct cannot be modified from within the function.

6. The values of variables which are passed to the function via a VAR_IN_OUT construct
can be modified from within the function.

7. The variable-length arrays may be used as VAR_INPUT, VAR_OUTPUT and
VAR_IN_OUT.

8. The input, output, and temporary variables may be initialized.
9. EN/ENO inputs and outputs may be used as described.
10. A VAR...END_VAR construct and also the VAR_TEMP...END_VAR, if required, specifying

the names and types of the internal temporary variables.
In contrast to function blocks, the variables declared in the VAR section are not stored.

11. If the generic data types (e.g. ANY_INT) are used in the declaration of standard function
variables, then the rules for using the actual types of the parameters of such functions
shall be part of the function definition.

12. The variable initialization constructs can be used for the declaration of initial values of
function inputs and initial values of their internal and output variables.

13. The keyword END_FUNCTION terminates the declaration.

BS EN 61131-3:2013

 – 72 – 61131-3 © IEC:2013

Table 19 – Function declaration

No. Description Example

1a Without result

FUNCTION ... END_FUNCTION

FUNCTION myFC ... END_FUNCTION

1b With result

FUNCTION <name>: <data type>
END _FUNCTION

FUNCTION myFC: INT ... END_FUNCTION

2a Inputs

VAR_INPUT...END_VAR

VAR_INPUT IN: BOOL; T1: TIME; END_VAR

2b Outputs

VAR_OUTPUT...END_VAR

VAR_OUTPUT OUT: BOOL; ET_OFF: TIME; END_VAR

2c In-outs

VAR_IN_OUT...END_VAR

VAR_IN_OUT A: INT; END_VAR

2d Temporary variables

VAR_TEMP...END_VAR

VAR_TEMP I: INT; END_VAR

2e Temporary variables

VAR...END_VAR

VAR B: REAL; END_VAR

For compatibility reason a difference to function blocks:
VARs are static in function blocks (stored)!

2f External variables

VAR_EXTERNAL...END_VAR

VAR_EXTERNAL B: REAL; END_VAR

 Corresponding to

VAR_GLOBAL B: REAL...

2g External constants

VAR_EXTERNAL CONSTANT...END_VAR

VAR_EXTERNAL CONSTANT B: REAL; END_VAR

 Corresponding to

VAR_GLOBAL B: REAL

3a Initialization of inputs VAR_INPUT MN: INT:= 0;

3b Initialization of outputs VAR_OUTPUT RES: INT:= 1;

3c Initialization of temporary variables VAR I: INT:= 1;

-- EN/ENO inputs and outputs Defined in Table 18

BS EN 61131-3:2013

61131-3 © IEC:2013 – 73 –

EXAMPLE

// Parameter interface specification

 FUNCTION SIMPLE_FUN: REAL
 VAR_INPUT
 A, B: REAL;
 C: REAL:= 1.0;
 END_VAR
 VAR_IN_OUT COUNT: INT;
 END_VAR

// Function body specification

 VAR COUNTP1: INT; END_VAR
 COUNTP1:= ADD(COUNT, 1);
 COUNT := COUNTP1

 SIMPLE_FUN:= A*B/C; // result
 END_FUNCTION

// Parameter interface specification
 FUNCTION
 +-------------+
 | SIMPLE_FUN |
 REAL----|A |----REAL
 REAL----|B |
 REAL----|C |
 INT-----|COUNT---COUNT|----INT
 +-------------+

// Function body specification
 +---+
 |ADD|--- +----+
 COUNT--| |---COUNTP1--|:= |---COUNT
 1--| | +----+
 +---+ +---+
 A---| * | +---+
 B---| |---| / |-SIMPLE_FUN
 +---+ | |
 C-----------| |
 +---+
END_FUNCTION

a) Function declaration and body (ST and FBD) – NOTE

VAR_GLOBAL DataArray: ARRAY [0..100]
OF INT; END_VAR

FUNCTION SPECIAL_FUN

VAR_INPUT
 FirstIndex: INT;
 LastIndex: INT;
END_VAR

VAR_OUTPUT
 Sum: INT;
END_VAR

VAR_EXTERNAL DataArray:
 ARRAY [0..100] OF INT;
END_VAR

VAR I: INT; Sum: INT:= 0; END_VAR

 FOR i:= FirstIndex TO LastIndex
 DO Sum:= Sum + DataArray[i];
 END_FOR

END_FUNCTION

// External interface

// no function result, but output Sum

 +------------------+
 | SPECIAL_FUN |
 INT----|FirstIndex Sum|----INT
 INT----|LastIndex |
 +------------------+

// Function body – Not graphically shown

b) Function declaration and body (without function result – with Var output)

NOTE In a), the input variable is given a defined default value of 1.0 to avoid a “division by zero” error if the input
is not specified when the function is called, for example, if a graphical input to the function is left unconnected.

6.6.2.3 Function call

A call of a function can be represented in a textual or graphical form.

Since the input variables, the output variables and the result of a function are not stored, the
assignment to the inputs, the access to the outputs and to the result shall be immediate with
the call of the function.

If a variable-length array is used as a parameter, the parameter shall be connected to the
static variable.

A function shall not contain any internal state information, i.e.

• it does not store any of the input, internal (temporary) and output element(s) from one call
to the next;

BS EN 61131-3:2013

 – 74 – 61131-3 © IEC:2013

• the call of a function with the same parameters (VAR_INPUT and VAR_IN_OUT) and the
same values of VAR_EXTERNAL will always yield the same value of its output variables,
in-out variables, external variables and its function result, if any.

NOTE 1 Some functions, typically provided as system functions by the Implementer, may yield different values;
e.g. TIME(), RANDOM().

Table 20 – Function call

No. Description Example

1a Complete formal call (textual only)

NOTE 1 This is used if EN/ENO is necessary in
calls.

A:= LIMIT(EN:= COND,
 IN:= B,
 MN:= 0,
 MX:= 5,
 ENO => TEMPL);

1b Incomplete formal call (textual only)

NOTE 2 This is used if EN/ENO is not necessary
in calls.

A:= LIMIT(IN:= B,
 MX:= 5);

NOTE 3 MN variable will have the default value 0 (ze-
ro).

2 Non-formal call (textual only)

(fix order and complete)

NOTE 4 This is used for call of standard func-
tions without formal names.

A:= LIMIT(B, 0, 5);

NOTE 5 This call is equivalent to 1a, but without
EN/ENO.

3 Function without function result FUNCTION myFun // no type declararion
VAR_INPUT x: INT; END_VAR;
VAR_OUTPUT y: REAL; END_VAR;

myFun(150, var); // Call

4 Graphical representation +-------+
 | FUN |
 a --|EN ENO|--
 b --|IN1 |-- result
 c --|IN2 Q1|--out
 | Q2|
 +-------+

5 Usage of negated boolean input and output in
graphical representation

 +-------+
 | FUN |
 a -o|EN ENO|--
 b --|IN1 |-- result
 c --|IN2 Q1|o- out
 | Q2|
 +-------+

NOTE 6 The use of these constructs is forbidden for
in-out variables.

6 Graphical usage of VAR_IN_OUT +------------+
 | myFC1 |
 a --|In1 Out1|-- d
 b --|Inout--Inout|-- c
 +------------+

BS EN 61131-3:2013

61131-3 © IEC:2013 – 75 –

EXAMPLE Function call

Call

VAR
 X, Y, Z, Res1, Res2: REAL;
 En1, V: BOOL;
END_VAR

Res1:= DIV(In1:= COS(X), In2:= SIN(Y), ENO => EN1);
Res2:= MUL(SIN(X), COS(Y));
Z := ADD(EN:= EN1, IN1:= Res1, IN2:= Res2, ENO => V);

 +-----+ +-------+ +------+
 X --+-| COS |--+ -|EN ENO|-----|EN ENO|-- V
 | | | | | | | |
 | +-----+ +---| DIV |-----| ADD |-- Z
 | | | | |
 | +-----+ | | +-| |
 Y -+---| SIN |------| | | +------+
 | | | | +------+ | | |
 | | +-----+ |
 | | |
 | | +-----+ +------+ |
 | +-| SIN |--+ -|EN ENO|- |
 | | | | | | |
 | +-----+ +---| MUL |---+
 | | |
 | +-----+ | |
 +---| COS |------| |
 | | +------+
 +-----+

a) Standard functions call with result and EN/ENO

Declaration

FUNCTION My_function // no type, no result
 VAR_INPUT In1: REAL; END_VAR
 VAR_OUTPUT Out1, Out2: REAL; END_VAR
 VAR_TEMP Tmp1: REAL; END_VAR // VAR_TEMP allowed
 VAR_EXTERNAL Ext: BOOL; END_VAR

 // Function body

END_FUNCTION

Call textual and graphical

My_Function (In1:= a, Out1 => b; Out2 => c);

 +------------+
 | My_Function| // Without result
 a --|In1 Out1|-- b
 | Out2|-- c // With 2 outputs
 +------------+

b) Function declaration and call without result but with output variables

Call textual and graphical

myFC1 (In1:= a, Inout:= b, Out1 => Tmp1); // Usage of a temporary variable
d:= myFC2 (In1:= Tmp1, Inout:= b); // b stored in inout; Assignment to c
c:= b; // b assigned to c

 +------------+ +------------+
 | myFC1 | | myFC2 |
 a --|In1 Out1|------|In1 |-- d // Result
 b --|Inout--Inout|------|Inout--Inout|-- c // Assignment to c
 +------------+ | |
 +------------+

BS EN 61131-3:2013

 – 76 – 61131-3 © IEC:2013

c) Function call with graphical representation of in-out variables

Call textual and graphical

My_Function (In1:= a, Out1+Out2 => d); // not permitted in ST
My_Function (In1:= a, Out1 => Tmp1, Out2 => Tmp2);
d:= Tmp1 + Tmp2;

 +------------+ +---------+
 | My_Function| | + |-- d
 a --|In1 Out1|------|In1 |
 | Out2|------|In2 |
 +------------+ +---------+

d) Function call without result but with expression of output variables

NOTE 2 These examples show two different representations of the same functionality. It is not required to support
any automatic transformation between the two forms of representation.

6.6.2.4 Typed and overloading functions

A function which normally represents an overloaded operator is to be typed. This shall be
done by appending a “_” (underscore) character followed by the required type, as shown in
Table 21. The typed function is performed using the type as data type for its inputs and out-
puts. Implicit or explicit type conversion may apply.

An overloaded conversion function of the form TO_xxx or TRUNC_xxx with xxx as the typed
elementary output type can be typed by preceding the required elementary data and a follow-
ing “underscore” character.

Table 21 – Typed and overloaded functions

No. Description Example

1a Overloaded function

 ADD (ANY_Num to ANY_Num)

 +---------+
 | ADD |
 ANY_NUM --| |-- ANY_NUM
 ANY_NUM --| |
 . --| |
 . --| |
 ANY_NUM --| |
 +---------+

1b Conversion of inputs
 ANY_ELEMENT TO_INT

 +---------+
 ANY_ELEMENTARY---| TO_INT |----INT
 +---------+

2a a Typed functions:
 ADD_INT

 +---------+
 | ADD_INT |
 INT --| |-- INT
 INT --| |
 . --| |
 . --| |
 INT --| |
 +---------+

2b a Conversion:
 WORD_TO_INT

 +-----------+
 WORD----|WORD_TO_INT|---INT
 +-----------+

NOTE The overloading of non-standard functions or function block types is beyond the scope of this standard.

a If feature 2 is supported, the Implementer provides an additional table showing which functions are overload-
ed and which are typed in the implementation.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 77 –

EXAMPLE 1 Typed and overloaded functions

 VAR
 A: INT;
 B: INT;
 C: INT;
 END_VAR

 +---+
 A --| + |-- C
 B --| |
 +---+

 C:= A+B;

NOTE 1 Type conversion is not required in the example shown above.

 VAR
 A: INT;
 B: REAL;
 C: REAL;
 END_VAR

 +-----------+ +---+
 A --|INT_TO_REAL|---| + |-- C
 +-----------+ | |
 B ------------------| |
 +---+

C:= INT_TO_REAL(A)+B;

 +-------+ +---+
 A---|TO_REAL|---|ADD|---C
 +-------+ | |
 B---------------| |
 +---+

C:= TO_REAL(A) + B;

 VAR
 A: INT;
 B: INT;
 C: REAL;
 END_VAR

 +---+ +-----------+
 A --| + |---|INT_TO_REAL|-- C
 B --| | +-----------+
 +---+

C:= INT_TO_REAL(A+B);

 +---+ +-------+
 A---|ADD|---|TO_REAL|-- C
 B---| | +-------+
 +---+

C:= TO_REAL(A+B);

a) Type declaration (ST) b) Usage (FBD and ST)

EXAMPLE 2 Explicit and implicit type conversion with typed functions

 VAR
 A: INT;
 B: INT;
 C: INT;
 END_VAR

 +---------+
 A---| ADD_INT |---C
 B---| |
 +---------+

 C:= ADD_INT(A, B);

NOTE 2 Type conversion is not required in the example shown above.

 VAR
 A: INT;
 B: REAL;
 C: REAL;
 END_VAR

 Explicit type conversion
 +-----------+ +----------+
 A--|INT_TO_REAL|--| ADD_REAL |-- C
 +-----------+ | |
 B-----------------| |
 +----------+

 C:= ADD_REAL(INT_TO_REAL(A), B);

 VAR
 A: INT;
 B: REAL;
 C: REAL;
 END_VAR

 Implicit type conversion
 +----------+
 A --------------| ADD_REAL |-- C
 | |
 B --------------| |
 +----------+

 C:= ADD_REAL(A,B);

 VAR
 A: INT;
 B: INT;
 C: REAL;
 END_VAR

 Explicit type conversion
 +---------+ +-----------+
 A --| ADD_INT |--|INT_TO_REAL|-- C
 | | +-----------+
 B --| |
 +---------|

 C:= INT_TO_REAL(ADD_INT(A, B));

 VAR
 A: INT;
 B: INT;
 C: REAL;
 END_VAR

 Implicit type conversion
 +---------+
 A --| ADD_INT |-- C
 | |
 B --| |
 +---------|

 C:= ADD_INT(A, B);

a) Type declaration (ST) b) Usage (FBD and ST)

BS EN 61131-3:2013

 – 78 – 61131-3 © IEC:2013

6.6.2.5 Standard functions

6.6.2.5.1 General

A standard function specified in this subclause to be extensible is allowed to have two or
more inputs to which the indicated operation is to be applied, for example, extensible addition
shall give at its output the sum of all its inputs. The maximum number of inputs of an extensi-
ble function is an Implementer specific. The actual number of inputs effective in a formal call
of an extensible function is determined by the formal input name with the highest position in
the sequence of variable names.

EXAMPLE 1
 The statement X:= ADD(Y1, Y2, Y3);
 is equivalent to X:= ADD(IN1:= Y1, IN2:= Y2, IN3:= Y3);

EXAMPLE 2
 The statement I:= MUX_INT(K:=3, IN0:= 1, IN2:= 2, IN4:= 3);
 is equivalent to I:= 0;

6.6.2.5.2 Data type conversion functions

As shown in Table 22, type conversion functions shall have the form *_TO_**, where “*” is
the type of the input variable IN, and “**” the type of the output variable OUT, for example,
INT_TO_REAL. The effects of type conversions on accuracy, and the types of errors that may
arise during execution of type conversion operations, are Implementer specific.

Table 22 – Data type conversion function

No. Description Graphical form Usage example

1a Typed conversion

input_TO_output

 +-----------+
 B ---| *_TO_** |--- A
 +-----------+
 (*) - Input data type, e.g., INT
 (**) - Output data type, e.g., REAL

A:= INT_TO_REAL(B);

1ba,b,e Overloaded conversion

TO_output

 +-----------+
 B ---| TO_** |--- A
 +-----------+
 - Input data type, e.g., INT
 (**) - Output data type, e.g., REAL

A:= TO_REAL(B);

2ac “Old” overloaded trun-
cation

TRUNC

 +-----------+
 ANY_REAL ---| TRUNC |--- ANY_INT
 +-----------+

Deprecated

2bc Typed truncation
input_TRUNC_output

 +-----------+
 ANY_REAL ---|*_TRUNC_** |--- ANY_INT
 +-----------+

A:=
 REAL_TRUNC_INT(B);

2cc Overloaded truncation

TRUNC_output

 +-----------+
 ANY_REAL ---| TRUNC_** |--- ANY_INT
 +-----------+

A:= TRUNC_INT(B);

3ad Typed

input_BCD_TO_output

 +-----------+
 * ---|*_BCD_TO_**|--- **
 +-----------+

A:=

WORD_BCD_TO_INT(B);

3bd Overloaded

BCD_TO_output

 +-----------+
 * ----| BCD_TO_** |--- **
 +-----------+

A:= BCD_TO_INT(B);

4ad Typed

input_TO_BCD_output

 +-----------+
 ** ----|**_TO_BCD_*|--- *
 +-----------+

A:=

INT_TO_BCD_WORD(B);

4bd Overloaded

TO_BCD_output

 +-----------+
 * ----| TO_BCD_** |--- **
 +-----------+

A:= TO_BCD_WORD(B);

BS EN 61131-3:2013

61131-3 © IEC:2013 – 79 –

No. Description Graphical form Usage example

NOTE Usage examples are given in the ST language.

a A statement of conformance to feature 1 of this table shall include a list of the specific type conversions support-
ed, and a statement of the effects of performing each conversion.

b Conversion from type REAL or LREAL to SINT, INT, DINT or LINT shall round according to the convention of
IEC 60559, according to which, if the two nearest integers are equally near, the result shall be the nearest even
integer, e.g.:

REAL_TO_INT (1.6) is equivalent to 2
REAL_TO_INT (-1.6) is equivalent to -2

REAL_TO_INT (1.5) is equivalent to 2
REAL_TO_INT (-1.5) is equivalent to -2

REAL_TO_INT (1.4) is equivalent to 1
REAL_TO_INT (-1.4) is equivalent to -1

REAL_TO_INT (2.5) is equivalent to 2
REAL_TO_INT (-2.5) is equivalent to -2.

c The function TRUNC_* is used for truncation toward zero of a REAL or LREAL yielding a variable of one of the
integer types, for instance

TRUNC_INT (1.6) is equivalent to INT#1
TRUNC_INT (-1.6) is equivalent to INT#-1

TRUNC_SINT (1.4) is equivalent to SINT#1
TRUNC_SINT (-1.4) is equivalent to SINT#-1.

d The conversion functions *_BCD_TO_** and **_TO_BCD_* shall perform conversions between variables of type
BYTE, WORD, DWORD, and LWORD and variables of type USINT, UINT, UDINT and ULINT (represented by "*"
and "**" respectively), when the corresponding bit-string variables contain data encoded in BCD format. For ex-
ample, the value of USINT_TO_BCD_BYTE(25) would be 2#0010_0101, and the value of WORD_BCD_TO_UINT
(2#0011_0110_1001) would be 369.

e When an input or output of a type conversion function is of type STRING or WSTRING, the character string data
shall conform to the external representation of the corresponding data, as specified in 6.3.3, in the character set
defined in 6.1.1.

6.6.2.5.3 Data type conversion of numeric data types

Numeric data type conversion uses the following rules:

1. The source data type is extended to its largest data type of the same data type category
holding its value.

2. Then the result is converted to the largest data type of data type category to which the
target data type belongs to.

3. Then the result is converted to the target data type.
If the value of the source variable does not fit into the target data type, i.e. the value
range is too small, then value of the target variable is Implementer specific.

NOTE The implementation of the conversion function can use a more efficient procedure.

EXAMPLE

X:= REAL_TO_INT (70_000.4)

1. REAL value (70_000.4) converted to LREAL value (70_000.400_000..).

2. LREAL value (70_000.4000_000..) converted to LINT value (70_000). Here rounded to an integer.

3. LINT value (70_000) converted to INT value. Here Implementer specific because INT can maximal hold
65.536.

This results in a variable of the target data type which holds the same value as the source
variable, if the target data type is able to hold this value. When converting a floating point

BS EN 61131-3:2013

http://dx.doi.org/10.3403/00218955U

 – 80 – 61131-3 © IEC:2013

number, normal rounding rules are applied i.e. rounding to the nearest integer and if this is
ambiguous, to the nearest even integer.

The data type BOOL used as a source data type is treated like an unsigned integer data type
which can only hold the values 0 and 1.

Table 23 describes the conversion functions with conversion details as result of the rules
above.

Table 23 – Data type conversion of numeric data types

No Conversion Function Conversion Details

1 LREAL _TO_ REAL Conversion with rounding, value range errors give an Implementer specific result

2 LREAL _TO_ LINT Conversion with rounding, value range errors give an Implementer specific result

3 LREAL _TO_ DINT Conversion with rounding, value range errors give an Implementer specific result

4 LREAL _TO_ INT Conversion with rounding, value range errors give an Implementer specific result

5 LREAL _TO_ SINT Conversion with rounding, value range errors give an Implementer specific result

6 LREAL _TO_ ULINT Conversion with rounding, value range errors give an Implementer specific result

7 LREAL _TO_ UDINT Conversion with rounding, value range errors give an Implementer specific result

8 LREAL _TO_ UINT Conversion with rounding, value range errors give an Implementer specific result

9 LREAL _TO_ USINT Conversion with rounding, value range errors give an Implementer specific result

10 REAL _TO_ LREAL Value preserving conversion

11 REAL _TO_ LINT Conversion with rounding, value range errors give an Implementer specific result

12 REAL _TO_ DINT Conversion with rounding, value range errors give an Implementer specific result

13 REAL _TO_ INT Conversion with rounding, value range errors give an Implementer specific result

14 REAL _TO_ SINT Conversion with rounding, value range errors give an Implementer specific result

15 REAL _TO_ ULINT Conversion with rounding, value range errors give an Implementer specific result

16 REAL _TO_ UDINT Conversion with rounding, value range errors give an Implementer specific result

17 REAL _TO_ UINT Conversion with rounding, value range errors give an Implementer specific result

18 REAL _TO_ USINT Conversion with rounding, value range errors give an Implementer specific result

19 LINT _TO_ LREAL Conversion with potential loss of accuracy

20 LINT _TO_ REAL Conversion with potential loss of accuracy

21 LINT _TO_ DINT Value range errors give an Implementer specific result

22 LINT _TO_ INT Value range errors give an Implementer specific result

23 LINT _TO_ SINT Value range errors give an Implementer specific result

24 LINT _TO_ ULINT Value range errors give an Implementer specific result

25 LINT _TO_ UDINT Value range errors give an Implementer specific result

26 LINT _TO_ UINT Value range errors give an Implementer specific result

27 LINT _TO_ USINT Value range errors give an Implementer specific result

28 DINT _TO_ LREAL Value preserving conversion

29 DINT _TO_ REAL Conversion with potential loss of accuracy

30 DINT _TO_ LINT Value preserving conversion

31 DINT _TO_ INT Value range errors give an Implementer specific result

32 DINT _TO_ SINT Value range errors give an Implementer specific result

33 DINT _TO_ ULINT Value range errors give an Implementer specific result

34 DINT _TO_ UDINT Value range errors give an Implementer specific result

35 DINT _TO_ UINT Value range errors give an Implementer specific result

BS EN 61131-3:2013

61131-3 © IEC:2013 – 81 –

No Conversion Function Conversion Details

36 DINT _TO_ USINT Value range errors give an Implementer specific result

37 INT _TO_ LREAL Value preserving conversion

38 INT _TO_ REAL Value preserving conversion

39 INT _TO_ LINT Value preserving conversion

40 INT _TO_ DINT Value preserving conversion

41 INT _TO_ SINT Value range errors give an Implementer specific result

42 INT _TO_ ULINT Value range errors give an Implementer specific result

43 INT _TO_ UDINT Value range errors give an Implementer specific result

44 INT _TO_ UINT Value range errors give an Implementer specific result

45 INT _TO_ USINT Value range errors give an Implementer specific result

46 SINT _TO_ LREAL Value preserving conversion

47 SINT _TO_ REAL Value preserving conversion

48 SINT _TO_ LINT Value preserving conversion

49 SINT _TO_ DINT Value preserving conversion

50 SINT _TO_ INT Value preserving conversion

51 SINT _TO_ ULINT Value range errors give an Implementer specific result

52 SINT _TO_ UDINT Value range errors give an Implementer specific result

53 SINT _TO_ UINT Value range errors give an Implementer specific result

54 SINT _TO_ USINT Value range errors give an Implementer specific result

55 ULINT _TO_ LREAL Conversion with potential loss of accuracy

56 ULINT _TO_ REAL Conversion with potential loss of accuracy

57 ULINT _TO_ LINT Value range errors give an Implementer specific result

58 ULINT _TO_ DINT Value range errors give an Implementer specific result

59 ULINT _TO_ INT Value range errors give an Implementer specific result

60 ULINT _TO_ SINT Value range errors give an Implementer specific result

61 ULINT _TO_ UDINT Value range errors give an Implementer specific result

62 ULINT _TO_ UINT Value range errors give an Implementer specific result

63 ULINT _TO_ USINT Value range errors give an Implementer specific result

64 UDINT _TO_ LREAL Value preserving conversion

65 UDINT _TO_ REAL Conversion with potential loss of accuracy

66 UDINT _TO_ LINT Value preserving conversion

67 UDINT _TO_ DINT Value range errors give an Implementer specific result

68 UDINT _TO_ INT Value range errors give an Implementer specific result

69 UDINT _TO_ SINT Value range errors give an Implementer specific result

70 UDINT _TO_ ULINT Value preserving conversion

71 UDINT _TO_ UINT Value range errors give an Implementer specific result

72 UDINT _TO_ USINT Value range errors give an Implementer specific result

73 UINT _TO_ LREAL Value preserving conversion

74 UINT _TO_ REAL Value preserving conversion

75 UINT _TO_ LINT Value preserving conversion

76 UINT _TO_ DINT Value preserving conversion

77 UINT _TO_ INT Value range errors give an Implementer specific result

78 UINT _TO_ SINT Value range errors give an Implementer specific result

BS EN 61131-3:2013

 – 82 – 61131-3 © IEC:2013

No Conversion Function Conversion Details

79 UINT _TO_ ULINT Value preserving conversion

80 UINT _TO_ UDINT Value preserving conversion

81 UINT _TO_ USINT Value range errors give an Implementer specific result

82 USINT _TO_ LREAL Value preserving conversion

83 USINT _TO_ REAL Value preserving conversion

84 USINT _TO_ LINT Value preserving conversion

85 USINT _TO_ DINT Value preserving conversion

86 USINT _TO_ INT Value preserving conversion

87 USINT _TO_ SINT Value range errors give an Implementer specific result

88 USINT _TO_ ULINT Value preserving conversion

89 USINT _TO_ UDINT Value preserving conversion

90 USINT _TO_ UINT Value preserving conversion

6.6.2.5.4 Data type conversion of bit data types

This data type conversion uses the following rules:

1. Data type conversion is done as binary transfer.
2. If the source data type is smaller than the target data type the source value is stored into

the rightmost bytes of the target variable and the leftmost bytes are set to zero.
3. If the source data type is bigger than the target data type only the rightmost bytes of the

source variable are stored into the target data type.

Table 24 describes the conversion functions with conversion details as result of the rules
above.

Table 24 – Data type conversion of bit data types

No. Conversion Function Conversion Details

1 LWORD _TO_ DWORD Binary transfer of the rightmost bytes into the target

2 LWORD _TO_ WORD Binary transfer of the rightmost bytes into the target

3 LWORD _TO_ BYTE Binary transfer of the rightmost bytes into the target

4 LWORD _TO_ BOOL Binary transfer of the rightmost bit into the target

5 DWORD _TO_ LWORD Binary transfer into the rightmost bytes of the target, leftmost target bytes
are set to zero

6 DWORD _TO_ WORD Binary transfer of the rightmost bytes into the target

7 DWORD _TO_ BYTE Binary transfer of the rightmost bytes into the target

Source:

Destination:

Byte right Byte left

0 0

x y

x y

EXAMPLE

BS EN 61131-3:2013

61131-3 © IEC:2013 – 83 –

No. Conversion Function Conversion Details

8 DWORD _TO_ BOOL Binary transfer of the rightmost bit into the target

9 WORD _TO_ LWORD Binary transfer into the rightmost bytes of the target, leftmost target bytes
are set to zero

10 WORD _TO_ DWORD Binary transfer into the rightmost bytes of the target, leftmost target bytes
are set to zero

11 WORD _TO_ BYTE Binary transfer of the rightmost bytes into the target

12 WORD _TO_ BOOL Binary transfer of the rightmost bit into the target

13 BYTE _TO_ LWORD Binary transfer into the rightmost bytes of the target, leftmost target bytes
are set to zero

14 BYTE _TO_ DWORD Binary transfer into the rightmost bytes of the target, leftmost target bytes
are set to zero

15 BYTE _TO_ WORD Binary transfer into the rightmost bytes of the target, leftmost target bytes
are set to zero

16 BYTE _TO_ BOOL Binary transfer of the rightmost bit into the target

17 BYTE _TO_ CHAR Binary transfer

18 BOOL _TO_ LWORD Results in value 16#0 or 16#1

19 BOOL _TO_ DWORD Results in value 16#0 or 16#1

20 BOOL _TO_ WORD Results in value 16#0 or 16#1

21 BOOL _TO_ BYTE Results in value 16#0 or 16#1

22 CHAR _TO_ BYTE Binary transfer

23 CHAR _TO_ WORD Binary transfer into the rightmost bytes of the target, leftmost target bytes
are set to zero

24 CHAR _TO_ DWORD Binary transfer into the rightmost bytes of the target, leftmost target bytes
are set to zero

25 CHAR _TO_ LWORD Binary transfer into the rightmost bytes of the target, leftmost target bytes
are set to zero

26 WCHAR _TO_ WORD Binary transfer

27 WCHAR _TO_ DWORD Binary transfer into the rightmost bytes of the target, leftmost target bytes
are set to zero

28 WCHAR _TO_ LWORD Binary transfer into the rightmost bytes of the target, leftmost target bytes
are set to zero

6.6.2.5.5 Data type conversion of bit to numeric types

These data type conversions use the following rules:

1. Data type conversion is done as binary transfer.
2. If the source data type is smaller than the target data type the source value is stored into

the rightmost bytes of the target variable and the leftmost bytes are set to zero.

EXAMPLE 1 X: SINT:= 18; W: WORD; W:= SINT_TO_WORD(X); and W gets 16#0012.

3. If the source data type is bigger than the target data type only the rightmost bytes of the
source variable are stored into the target data type.

EXAMPLE 2 W: WORD: = 16#1234; X: SINT; X:= W; and X gets 54 (=16#34).

Table 25 describes the conversion functions with conversion details as result of the rules
above.

Table 25 – Data type conversion of bit and numeric types

No. Conversion Function Conversion Details

1 LWORD _TO_ LREAL Binary transfer

BS EN 61131-3:2013

 – 84 – 61131-3 © IEC:2013

No. Conversion Function Conversion Details

2 DWORD _TO_ REAL Binary transfer

3 LWORD _TO_ LINT Binary transfer

4 LWORD _TO_ DINT Binary transfer of the rightmost bytes into the target

5 LWORD _TO_ INT Binary transfer of the rightmost bytes into the target

6 LWORD _TO_ SINT Binary transfer of the rightmost byte into the target

7 LWORD _TO_ ULINT Binary transfer

8 LWORD _TO_ UDINT Binary transfer of the rightmost bytes into the target

9 LWORD _TO_ UINT Binary transfer of the rightmost bytes into the target

10 LWORD _TO_ USINT Binary transfer of the rightmost byte into the target

11 DWORD _TO_ LINT Binary transfer into the rightmost bytes of the target

12 DWORD _TO_ DINT Binary transfer

13 DWORD _TO_ INT Binary transfer of the rightmost bytes into the target

14 DWORD _TO_ SINT Binary transfer of the rightmost byte into the target

15 DWORD _TO_ ULINT Binary transfer into the rightmost bytes of the target

16 DWORD _TO_ UDINT Binary transfer

17 DWORD _TO_ UINT Binary transfer of the rightmost bytes into the target

18 DWORD _TO_ USINT Binary transfer of the rightmost byte into the target

19 WORD _TO_ LINT Binary transfer into the rightmost bytes of the target

20 WORD _TO_ DINT Binary transfer into the rightmost bytes of the target

21 WORD _TO_ INT Binary transfer

22 WORD _TO_ SINT Binary transfer of the rightmost byte into the target

23 WORD _TO_ ULINT Binary transfer into the rightmost bytes of the target

24 WORD _TO_ UDINT Binary transfer into the rightmost bytes of the target

25 WORD _TO_ UINT Binary transfer

26 WORD _TO_ USINT Binary transfer of the rightmost byte into the target

27 BYTE _TO_ LINT Binary transfer into the rightmost bytes of the target

28 BYTE _TO_ DINT Binary transfer into the rightmost bytes of the target

29 BYTE _TO_ INT Binary transfer into the rightmost bytes of the target

30 BYTE _TO_ SINT Binary transfer

31 BYTE _TO_ ULINT Binary transfer into the rightmost bytes of the target

32 BYTE _TO_ UDINT Binary transfer into the rightmost bytes of the target

33 BYTE _TO_ UINT Binary transfer into the rightmost bytes of the target

34 BYTE _TO_ USINT Binary transfer

35 BOOL _TO_ LINT Results in value 0 or 1

36 BOOL _TO_ DINT Results in value 0 or 1

37 BOOL _TO_ INT Results in value 0 or 1

38 BOOL _TO_ SINT Results in value 0 or 1

39 BOOL _TO_ ULINT Results in value 0 or 1

40 BOOL _TO_ UDINT Results in value 0 or 1

41 BOOL _TO_ UINT Results in value 0 or 1

42 BOOL _TO_ USINT Results in value 0 or 1

43 LREAL _TO_ LWORD Binary transfer

44 REAL _TO_ DWORD Binary transfer

45 LINT _TO_ LWORD Binary transfer

46 LINT _TO_ DWORD Binary transfer of the rightmost bytes into the target

47 LINT _TO_ WORD Binary transfer of the rightmost bytes into the target

BS EN 61131-3:2013

61131-3 © IEC:2013 – 85 –

No. Conversion Function Conversion Details

48 LINT _TO_ BYTE Binary transfer of the rightmost byte into the target

49 DINT _TO_ LWORD Binary transfer into the rightmost bytes of the target, rest = 0

50 DINT _TO_ DWORD Binary transfer

51 DINT _TO_ WORD Binary transfer of the rightmost bytes into the target

52 DINT _TO_ BYTE Binary transfer of the rightmost byte into the target

53 INT _TO_ LWORD Binary transfer into the rightmost bytes of the target, rest = 0

54 INT _TO_ DWORD Binary transfer into the rightmost bytes of the target, rest = 0

55 INT _TO_ WORD Binary transfer

56 INT _TO_ BYTE Binary transfer of the rightmost byte into the target

57 SINT _TO_ LWORD Binary transfer into the rightmost bytes of the target, rest = 0

58 SINT _TO_ DWORD Binary transfer into the rightmost bytes of the target, rest = 0

59 SINT _TO_ WORD Binary transfer

60 SINT _TO_ BYTE Binary transfer

61 ULINT _TO_ LWORD Binary transfer

62 ULINT _TO_ DWORD Binary transfer of the rightmost bytes into the target

63 ULINT _TO_ WORD Binary transfer of the rightmost bytes into the target

64 ULINT _TO_ BYTE Binary transfer of the rightmost byte into the target

65 UDINT _TO_ LWORD Binary transfer into the rightmost bytes of the target, rest = 0

66 UDINT _TO_ DWORD Binary transfer

67 UDINT _TO_ WORD Binary transfer of the rightmost bytes into the target

68 UDINT _TO_ BYTE Binary transfer of the rightmost byte into the target

69 UINT _TO_ LWORD Binary transfer into the rightmost bytes of the target, rest = 0

70 UINT _TO_ DWORD Binary transfer into the rightmost bytes of the target, rest = 0

71 UINT _TO_ WORD Binary transfer

72 UINT _TO_ BYTE Binary transfer of the rightmost byte into the target

73 USINT _TO_ LWORD Binary transfer into the rightmost bytes of the target, rest = 0

74 USINT _TO_ DWORD Binary transfer into the rightmost bytes of the target, rest = 0

75 USINT _TO_ WORD Binary transfer

76 USINT _TO_ BYTE Binary transfer

6.6.2.5.6 Data type conversion of date and time types

Table 26 shows the data type conversion of date and time types.

Table 26 – Data type conversion of date and time types

No. Conversion Function Conversion Details

1 LTIME _TO_ TIME Value range errors give an Implementer specific result and a possible
loss of precision may occur.

BS EN 61131-3:2013

 – 86 – 61131-3 © IEC:2013

No. Conversion Function Conversion Details

2 TIME _TO_ LTIME Value range errors give an Implementer specific result and a possible
loss of precision may occur.

3 LDT _TO_ DT Value range errors give an Implementer specific result and a possible
loss of precision may occur.

4 LDT _TO_ DATE Converts only the contained date, a value range error gives an Imple-
menter specific result.

5 LDT _TO_ LTOD Converts only the contained time of day.

6 LDT _TO_ TOD Converts only the contained time of day, a possible loss of precision
may occur.

7 DT _TO_ LDT Value range errors give an Implementer specific result and a possible
loss of precision may occur.

8 DT _TO_ DATE Converts only the contained date, a value range error gives an Imple-
menter specific result.

9 DT _TO_ LTOD Converts only the contained time of day, a value range error gives an
Implementer specific result.

10 DT _TO_ TOD Converts only the contained time of day, a value range error gives an
Implementer specific result.

11 LTOD _TO_ TOD Value preserving conversion

12 TOD _TO_ LTOD Value range errors give an Implementer specific result and a possible
loss of precision may occur.

6.6.2.5.7 Data type conversion of character types

Table 27 shows the data type conversion of character types.

Table 27 – Data type conversion of character types

No. Conversion Function Conversion Details

1 WSTRING _TO_ STRING
The characters which are supported by the Implementer with the data
type STRING are converted; others are converted in an Implementer-
dependency.

2 WSTRING _TO_ WCHAR The first character of the string is transferred; if the string is empty the
target variable is undefined.

3 STRING _TO_ WSTRING Converts the characters of the string as defined by the implementer to
the appropriate ISO/IEC 10646 (UTF-16) character.

4 STRING _TO_ CHAR The first character of the string is transferred; if the string is empty the
target variable is undefined.

5 WCHAR _TO_ WSTRING Gives a string of actual size of one character.

6 WCHAR _TO_ CHAR
The characters which are supported by the Implementer with the data
type CHAR are converted, the others are converted in an Implementer
specific way.

7 CHAR _TO_ STRING Gives a string of actual size of one character.

8 CHAR _TO_ WCHAR Converts a character as defined by the Implementer to the appropriate
UTF-16 character.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 87 –

6.6.2.5.8 Numerical and arithmetic functions

The standard graphical representation, function names, input and output variable types, and
function descriptions of functions of a single numeric variable shall be as defined in Table 28.
These functions shall be overloaded on the defined generic types, and can be typed. For the-
se functions, the types of the input and output shall be the same.

The standard graphical representation, function names and symbols, and descriptions of
arithmetic functions of two or more variables shall be as shown in Table 29. These functions
shall be overloaded on all numeric types, and can be typed.

The accuracy of numerical functions shall be expressed in terms of one or more Implementer
specific dependencies.

It is an error if the result of evaluation of one of these functions exceeds the range of values
specified for the data type of the function output, or if division by zero is attempted.

Table 28 – Numerical and arithmetic functions

No. Description
(Function name)

I/O type Explanation

 Graphical form Usage example in ST

 +---------+
 * --| ** |-- *
 +---------+

(*) - Input/Output (I/O) type

(**) - Function name

A:= SIN(B);

(ST language)

 General functions

1 ABS(x) ANY_NUM Absolute value

2 SQRT(x) ANY_REAL Square root

 Logarithmic functions

3 LN(x) ANY_REAL Natural logarithm

4 LOG(x) ANY_REAL Logarithm base 10

5 EXP(x) ANY_REAL Natural exponential

 Trigonometric functions

6 SIN(x) ANY_REAL Sine of input in radians

7 COS(x) ANY_REAL Cosine in radians

8 TAN(x) ANY_REAL Tangent in radians

9 ASIN(x) ANY_REAL Principal arc sine

10 ACOS(x) ANY_REAL Principal arc cosine

11 ATAN(x) ANY_REAL Principal arc tangent

12

ATAN2(y, x)

 +-------+
 | ATAN2 |
 ANY_REAL--|Y |--ANY_REAL
 ANY_REAL--|X |
 +-------+

ANY_REAL

Angle in between the positive x-axis of a
plane and the point given by the coordi-
nates (x, y) on it. The angle is positive
for counter-clockwise angles (upper half-
plane, y > 0), and negative for clockwise
angles (lower half-plane, y < 0).

BS EN 61131-3:2013

http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Cartesian_coordinate_system

 – 88 – 61131-3 © IEC:2013

Table 29 – Arithmetic functions

No.

a,b
Description Name Symbol

(Operator)
Explanation

 Graphical form Usage example in ST

 +-----+
 ANY_NUM --| *** |-- ANY_NUM
 ANY_NUM --| |
 . --| |
 . --| |
 ANY_NUM --| |
 +-----+

(***) - Name or Symbol

as function call:

 A:= ADD(B, C, D);

or

as operator (symbol)
 A:= B + C + D;

 Extensible arithmetic functions

1 c Addition ADD + OUT:= IN1 + IN2 +... + INn

2 Multiplication MUL * OUT:= IN1 * IN2 *... * INn

 Non-extensible arithmetic func-
tions

3 c Subtraction SUB - OUT:= IN1 - IN2

4 d Division DIV / OUT:= IN1 / IN2

5 e Modulo MOD OUT:= IN1 modulo IN2

6 f Exponentiation EXPT ** OUT:= IN1IN2

7 g Move MOVE := OUT:= IN

NOTE 1 Non-blank entries in the Symbol column are suitable for use as operators in textual languages.

NOTE 2 The notations IN1, IN2, ..., INn refer to the inputs in top-to-bottom order; OUT refers to the output.

NOTE 3 Usage examples and descriptions are given in the ST language.

a When the representation of a function is supported with a name, this is indicated by the suffix “n” in the compli-
ance statement.
For example, “1n” represents the notation “ADD”.

b When the representation of a function is supported with a symbol, this is indicated by the suffix “s” in the compli-
ance statement. For example, “1s” represents the notation “+”.

c The generic type of the inputs and outputs of these functions is ANY_MAGNITUDE.
d The result of division of integers shall be an integer of the same type with truncation toward zero,

for instance, 7/3 = 2 and (-7)/3 = -2.
e IN1 and IN2 shall be of generic type ANY_INT for this function. The result of evaluating this MOD function shall be

the equivalent of executing the following statements in the ST:

 IF (IN2 = 0)
 THEN OUT:=0;
 ELSE OUT:=IN1 - (IN1/IN2)*IN2;
 END_IF

f IN1 shall be of type ANY_REAL, and IN2 of type ANY_NUM for this EXPT function. The output shall be of the
same type as IN1.

g The MOVE function has exactly one input (IN) of type ANY and one output (OUT) of type ANY.

6.6.2.5.9 Bit string and bitwise Boolean functions

The standard graphical representation, function names and descriptions of shift functions for
a single bit-string variable shall be as defined in Table 30. These functions shall be overload-
ed on all bit-string types, and can be typed.

The standard graphical representation, function names and symbols, and descriptions of bit-
wise Boolean functions shall be as defined in Table 31. These functions shall be extensible,
except for NOT, and overloaded on all bit-string types, and can be typed.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 89 –

Table 30 – Bit shift functions

No. Description Name Explanation

 Graphical form Usage example a

 +-----+
 | *** |
 ANY_BIT --|IN |-- ANY_BIT
 ANY_INT --|N |
 +-----+

(***) - Function Name

A:= SHL(IN:=B, N:=5);

(ST language)

1 Shift left SHL OUT:= IN left-shifted by N bits, zero-filled on right

2 Shift right SHR OUT:= IN right-shifted by N bits, zero-filled on left

3 Rotation left ROL OUT:= IN left-rotated by N bits, circular

4 Rotation right ROR OUT:= IN right-rotated by N bits, circular

NOTE 1 The notation OUT refers to the function output.

EXAMPLE
 IN:= 2#0001_1001 of type BYTE, N = 3

 SHL(IN, 3) = 2#1100_1000
 SHR(IN, 3) = 2#0000_0011
 ROL(IN, 3) = 2#1100_1000
 ROR(IN, 3) = 2#0010_0011

NOTE 2 IN of type BOOL (one bit) does not make sense.

a It is an error if the value of the N input is less than zero.

Table 31 – Bitwise Boolean functions

No.

a,b
Description Name Symbol Explanation (NOTE 3)

 Graphical form Usage examples (NOTE 5)
 +-----+

 ANY_BIT --| *** |-- ANY_BIT
 ANY_BIT --| |
 : --| |
 : --| |
 ANY_BIT --| |
 +-----+

(***) - Name or symbol

 A:= AND(B, C, D);

 or

A:= B & C & D;

1 And AND &
(NOTE 1)

OUT:= IN1 & IN2 &... & INn

2 Or OR >=1
(NOTE 2)

OUT:= IN1 OR IN2 OR... OR INn

3 Exclusive Or XOR =2k+1
(NOTE 2)

OUT:= IN1 XOR IN2 XOR... XOR INn

4 Not NOT OUT:= NOT IN1 (NOTE 4)

NOTE 1 This symbol is suitable for use as an operator in textual languages, as shown in Table 68 and Table 71.

NOTE 2 This symbol is not suitable for use as an operator in textual languages.

NOTE 3 The notations IN1, IN2,..., INn refer to the inputs in top-to-bottom order; OUT refers to the output.

NOTE 4 Graphic negation of signals of type BOOL can also be accomplished.

NOTE 5 Usage examples and descriptions are given in the ST language.
a When the representation of a function is supported with a name, this shall be indicated by the suffix “n” in the

compliance statement. For example, “1n” represents the notation “AND”.
b When the representation of a function is supported with a symbol, this shall be indicated by the suffix “s” in the

compliance statement. For example, “1s” represents the notation “&”.

BS EN 61131-3:2013

 – 90 – 61131-3 © IEC:2013

6.6.2.5.10 Selection and comparison functions

Selection and comparison functions shall be overloaded on all data types. The standard
graphical representations, function names and descriptions of selection functions shall be as
shown in Table 32.

The standard graphical representation, function names and symbols, and descriptions of
comparison functions shall be as defined in Table 33. All comparison functions (except NE)
shall be extensible.

Comparisons of bit string data shall be made bitwise from the leftmost to the rightmost bit,
and shorter bit strings shall be considered to be filled on the left with zeros when compared to
longer bit strings; that is, comparison of bit string variables shall have the same result as
comparison of unsigned integer variables.

Table 32 – Selection functions d

No. Description Na-
me

Graphical form Explanation/ Example

1 Move a, d
(assignment)

MOVE +--------+
 | MOVE |
 ANY --| |- ANY
 +--------+

OUT:= IN

2 Binary selec-
tion d

SEL +-------+
 | SEL |
 BOOL --|G |- ANY
 ANY --|IN0 |
 ANY --|IN1 |
 +-------+

OUT:= IN0 if G = 0
OUT:= IN1 if G = 1

EXAMPLE 1
A:= SEL (G := 0,
 IN0:= X,
 IN1:= 5);

3 Extensible
maximum
function

MAX +-------+
 | MAX |
 ANY_ELEMENTARY --| |- ANY_ELEMENTARY
 : --| |
 ANY_ELEMENTARY --| |
 +-------+

OUT:=
MAX(IN1, IN2, ...,
INn);

EXAMPLE 2
A:= MAX(B, C , D);

4 Extensible
minimum
function

MIN +-------+
 | MIN |
 ANY_ELEMENTARY --| |- ANY_ELEMENTARY
 : --| |
 ANY_ELEMENTARY --| |
 +-------+

OUT:=
MIN (IN1, IN2,...,
Nn)

EXAMPLE 3
A:= MIN(B, C, D);

5 Limiter LIMI
T

 +-------+
 | LIMIT |
 ANY_ELEMENTARY --|MN |- ANY_ELEMENTARY
 ANY_ELEMENTARY --|IN |
 ANY_ELEMENTARY --|MX |
 +-------+

OUT:= MIN
(MAX(IN, MN),MX);

EXAMPLE 4
A:= LIMIT(IN:= B,
 MN:= 0,
 MX:= 5);

BS EN 61131-3:2013

61131-3 © IEC:2013 – 91 –

6 Extensible b,
c, d, e
multiplexer

MUX +-------+
 | MUX |
 ANY_ELEMENTARY --|K |- ANY_ELEMENTARY
 ANY_ELEMENTARY --| |
 ANY_ELEMENTARY --| |
 +-------+

a, b, c:
Select one of N inputs
depending on input K

EXAMPLE 5
A:= MUX(0, B, C,
D);

would have the same
effect as
A:= B;

NOTE 1 The notations IN1, IN2,..., INn refer to the inputs in top-to-bottom order; OUT refers to the output.

NOTE 2 Usage examples and descriptions are given in the ST language.

a The MOVE function has exactly one input IN of type ANY and one output OUT of type ANY.

b The unnamed inputs in the MUX function shall have the default names IN0, IN1,..., INn-1 in top-to-bottom order,
where n is the total number of these inputs. These names may, but need not, be shown in the graphical represen-
tation.

c The MUX function can be typed in the form MUX_*_**, where * is the type of the K input and ** is the type of the
other inputs and the output.

d It is allowed, but not required, that the Implementer support selection among variables of user-defined data types,
in order to claim compliance with this feature.

e It is an error if the actual value of the K input of the MUX function is not within the range {0 … n-1}.

Table 33 – Comparison functions

No. Description Name a Symbol

b
Explanation

(For 2 or more operands extensible)

 Graphical form Usage examples

 +-----+
 ANY_ELEMENTARY --| *** |-- BOOL
 : --| |
 ANY_ELEMENTARY --| |
 +-----+

(***) Name or Symbol

 A:= GT(B, C, D); // Function name
 or
A:= (B>C) & (C>D); // Symbol

1 Decreasing
sequence

GT > OUT:=
(IN1>IN2)& (IN2>IN3) &.. & (INn-1 >
INn)

2 Monotonic
sequence:

GE >= OUT:=
(IN1>=IN2)&(IN2>=IN3)&.. & (INn-1 >=
INn)

3 Equality EQ = OUT:=
(IN1=IN2)&(IN2=IN3) &.. & (INn-1 =
INn)

4 Monotonic
sequence

LE <= OUT:=
(IN1<=IN2)&(IN2<=IN3)&.. & (INn-1 <=
INn)

5 Increasing
sequence

LT < OUT:=
(IN1<IN2)& (IN2<IN3) &.. & (INn-1 <
INn)

6 Inequality NE <> OUT:= (IN1<>IN2) (non-extensible)

NOTE 1 The notations IN1, IN2,..., INn refer to the inputs in top-to-bottom order; OUT refers to the output.

NOTE 2 All the symbols shown in this table are suitable for use as operators in textual languages.

NOTE 3 Usage examples and descriptions are given in the ST language.

NOTE 4 Standard comparison functions may be defined language dependant too e.g. ladder.

BS EN 61131-3:2013

 – 92 – 61131-3 © IEC:2013

a When the representation of a function is supported with a name, this shall be indicated by the suffix “n” in the
compliance statement. For example, “1n” represents the notation “GT”.

b When the representation of a function is supported with a symbol, this shall be indicated by the suffix “s” in the
compliance statement. For example, “1s” represents the notation “>“.

6.6.2.5.11 Character string functions.

Table 33 shall be applicable to character strings. Instead of a single-character string a varia-
ble of data type CHAR or WCHAR respectively may be used.

For the purposes of comparison of two strings of unequal length, the shorter string shall be
considered to be extended on the right to the length of the longer string by characters with the
value zero. Comparison shall proceed from left to right, based on the numeric value of the
character codes in the character set.

EXAMPLE

 The character string 'Z' is greater than the character string 'AZ' ('Z' > 'A'),
 and 'AZ' is greater than 'ABC' ('A' = 'A' and 'Z' > 'B').

The standard graphical representations, function names and descriptions of additional func-
tions of character strings shall be as shown in Table 34.For the purpose of these operations,
character positions within the string shall be considered to be numbered 1, 2, ..., L, begin-
ning with the leftmost character position, where L is the length of the string.

It shall be an error if:

• the actual value of any input designated as ANY_INT in Table 34 is less than zero;

• the evaluation of the function results in an attempt to (1) access a non-existent character
position in a string, or (2) produce a string longer than the Implementer specific maximum
string length;

• the arguments of data type STRING or CHAR and arguments of data type WSTRING or
WCHAR are mixed at the same function.

Table 34 – Character string functions

No. Description Graphical form Example

1 String length +---------+
ANY_STRING--| LEN |-- ANY_INT
 +---------+

String length

A:= LEN('ASTRING');
..is equivalent to A:= 7;

2 Left +---------+
ANY_STRING--| LEN |-- ANY_INT
 +---------+

Leftmost L characters of IN

A:= LEFT(IN:='ASTR', L:=3);
 is equivalent to A:= 'AST';

3 Right +---------+
 | RIGHT |
ANY_STRING--|IN |-- ANY_STRING
ANY_INT --|L |
 +---------+

Rightmost L characters of IN

A:= RIGHT(IN:='ASTR', L:=3);
 is equivalent to A:= 'STR';

4 Middle +---------+
 | MID |
ANY_STRING--|IN |-- ANY_STRING
ANY_INT --|L |
ANY_INT --|P |
 +---------+

L characters of IN, beginning at the P-th
character position

A:= MID(IN:='ASTR', L:=2,
P:=2);
 is equivalent to A:= 'ST';

BS EN 61131-3:2013

61131-3 © IEC:2013 – 93 –

No. Description Graphical form Example

5 Extensible
concatenation

 +---------+
 | CONCAT |
 ANY_CHARS--| |-- ANY_STRING
 : --| |
 ANY_CHARS--| |
 +---------+

Extensible concatenation

A:= CONCAT('AB','CD','E');
 is equivalent to A:= 'ABCDE';

6 Insert +---------+
 | INSERT |
ANY_STRING--|IN1 |-- ANY_STRING
ANY_CHARS --|IN2 |
ANY_INT-----|P |
 +---------+

Insert IN2 into IN1 after the P-th charac-
ter position

A:= INSERT(IN1:='ABC',
IN2:='XY', P=2);
 is equivalent to A:= 'ABXYC';

7 Delete +---------+
 | DELETE |
ANY_STRING--|IN |-- ANY_STRING
ANY_INT --|L |
ANY_INT --|P |
 +---------+

L characters of IN, beginning at the P-th
character position

A:= DELETE(IN:='ABXYC', L:=2,
P:=3);
 is equivalent to A:= 'ABC';

8 Replace +---------+
 | REPLACE |
ANY_STRING--|IN1 |-- ANY_STRING
ANY_CHARS --|IN2 |
ANY_INT --|L |
ANY_INT --|P |
 +---------+

Replace L characters of IN1 by IN2,
starting at the P-th character position.

A:= REPLACE(IN1:='ABCDE',
IN2:='X', L:=2, P:=3);
 is equivalent to A:= 'ABXE';

9 Find +---------+
 | FIND |
ANY_STRING--|IN1 |-- ANY_INT
ANY_CHARS --|IN2 |
 +---------+

Find the character position of the begin-
ning of the first occurrence of IN2 in
IN1. If no occurrence of IN2 is found,
then OUT:= 0.

 A:= FIND(IN1:='ABCBC',
IN2:='BC');
 is equivalent to A:= 2;

NOTE 1 The examples in this table are given in the ST language.

NOTE 2 All inputs of CONCAT are of ANY_CHARS i.e. can also be of type CHAR or WCHAR.

NOTE 3 The input IN2 of the functions INSERT, REPLACE, FIND are of ANY_CHARS i.e. can also be of type CHAR or
WCHAR.

6.6.2.5.12 Date and duration functions

In addition to the comparison and selection functions, the combinations of input and output
time and duration data types shown in Table 35 shall be allowed with the associated func-
tions.

It shall be an error if the result of evaluating one of these functions exceeds the Implementer
specific range of values for the output data type.

Table 35 – Numerical functions of time and duration data types

No. Description
(function name)

Symbol IN1 IN2 OUT

1a ADD + TIME, LTIME TIME, LTIME TIME, LTIME

1b ADD_TIME + TIME TIME TIME

1c ADD_LTIME + LTIME LTIME LTIME

2a ADD + TOD, LTOD LTIME TOD, LTOD

2b ADD_TOD_TIME + TOD TIME TOD

2c ADD_LTOD_LTIME + LTOD LTIME LTOD

3a ADD + DT, LDT TIME, LTIME DT, LDT

3b ADD_DT_TIME + DT TIME DT

BS EN 61131-3:2013

 – 94 – 61131-3 © IEC:2013

No. Description
(function name)

Symbol IN1 IN2 OUT

3c ADD_LDT_LTIME + LDT LTIME LDT

4a SUB - TIME, LTIME TIME, LTIME TIME, LTIME

4b SUB_TIME - TIME TIME TIME

4c SUB_LTIME - LTIME LTIME LTIME

5a SUB - DATE DATE TIME

5b SUB_DATE_DATE - DATE DATE TIME

5c SUB_LDATE_LDATE - LDATE LDATE LTIME

6a SUB - TOD, LTOD TIME, LTIME TOD, LTOD

6b SUB_TOD_TIME - TOD TIME TOD

6c SUB_LTOD_LTIME - LTOD LTIME LTOD

7a SUB - TOD, LTOD TOD, LTOD TIME, LTIME

7b SUB_TOD_TOD - TOD TOD TIME

7c SUB_TOD_TOD - LTOD LTOD LTIME

8a SUB - DT, LDT TIME, LTIME DT, LDT

8b SUB_DT_TIME - DT TIME DT

8c SUB_LDT_LTIME - LDT LTIME LDT

9a SUB - DT, LDT DT, LDT TIME, LTIME

9b SUB_DT_DT - DT DT TIME

9c SUB_LDT_LDT - LDT LDT LTIME

10a MUL * TIME, LTIME ANY_NUM TIME, LTIME

10b MUL_TIME * TIME ANY_NUM TIME

10c MUL_LTIME * LTIME ANY_NUM LTIME

11a DIV / TIME, LTIME ANY_NUM TIME, LTIME

11b DIV_TIME / TIME ANY_NUM TIME

11c DIV_LTIME / LTIME ANY_NUM LTIME

NOTE These standard functions support overloading but only within the both sets of data types (TIME, DT,
DATE, TOD) and (LTIME, LDT, DATE, LTOD).

EXAMPLE

The ST language statements

 X:= DT#1986-04-28-08:40:00;
 Y:= DT_TO_TOD(X);
 W:= DT_TO_DATE(X);

have the same result as the statement with “extracted” data.

 X:= DT#1986-04-28-08:40:00;
 Y:= TIME_OF_DAY#08:40:00;
 W:= DATE#1986-04-28;

Concatenate and split functions as shown in Table 36 are defined to handle date and time.
Additionally, a function to get the day of the week is defined.

It shall be an error if the result of evaluating one of these functions exceeds the Implementer
specific range of values for the output data type.

Table 36 – Additional functions of time data types CONCAT and SPLIT

No. Description Graphical form Example

 Concatenate time data types

BS EN 61131-3:2013

61131-3 © IEC:2013 – 95 –

No. Description Graphical form Example

1a CONCAT_DATE
_TOD

 +-----------------+
 | CONCAT_DATE_TOD |
DATE --|DATE |--DT
 TOD --|TOD |
 +-----------------+

Concatenate a date:

VAR
 myD: DATE;
END_VAR

myD:= CONCAT_DATE_TOD
 (D#2010-03-12, TOD#12:30:00);

1b CONCAT_DATE
_LTOD

 +-----------------+
 | CONCAT_DATE_LTOD|
DATE --|DATE |--LDT
LTOD --|LTOD |
 +-----------------+

Concatenate a date and a time of day:

VAR
 myD: DATE;
END_VAR

myD:= CONCAT_DATE_LTOD
 (D#2010-03-12,
 TOD#12:30:12.1223452);

2 CONCAT_DATE +-------------+
 | CONCAT_DATE |
ANY_INT --|YEAR |--DATE
ANY_INT --|MONTH |
ANY_INT --|DAY |
 +-------------+

Concatenate a date and time of day:

VAR
 myD: DATE;
END_VAR

myD:= CONCAT_DATE (2010,3,12);

3a CONCAT_TOD +-------------+
 | CONCAT_TOD |
ANY_INT --|HOUR |--TOD
ANY_INT --|MINUTE |
ANY_INT --|SECOND |
ANY_INT --|MILLISECOND |
 +-------------+

Concatenate a time of day:

VAR
 myTOD: TOD;
END_VAR

myTD:= CONCAT_TOD (16,33,12,0);

3b CONCAT_LTOD +-------------+
 | CONCAT_LTOD |
ANY_INT --|HOUR |--LTOD
ANY_INT --|MINUTE |
ANY_INT --|SECOND |
ANY_INT --|MILLISECOND |
 +-------------+

Concatenate a time of day:

VAR
 myTOD: LTOD;
END_VAR

myTD:= CONCAT_TOD (16,33,12,0);

4a CONCAT_DT +-------------+
 | CONCAT_DT |
ANY_INT --|YEAR |--DT
ANY_INT --|MONTH |
ANY_INT --|DAY |
ANY_INT --|HOUR |
ANY_INT --|MINUTE |
ANY_INT --|SECOND |
ANY_INT --|MILLISECOND |
 +-------------+

Concatenate a time of day:

VAR
 myDT: DT;
 Day: USINT;
END_VAR

Day := 17;
myDT:= CONCAT_DT
 (2010,3,Day,12,33,12,0);

4b CONCAT_LDT +-------------+
 | CONCAT_LDT |
ANY_INT --|YEAR |--LDT
ANY_INT --|MONTH |
ANY_INT --|DAY |
ANY_INT --|HOUR |
ANY_INT --|MINUTE |
ANY_INT --|SECOND |
ANY_INT --|MILLISECOND |
 +-------------+

Concatenate a time of day:

VAR
 myDT: LDT;
 Day: USINT;
END_VAR

Day := 17;
myDT:= CONCAT_LDT
 (2010,3,Day,12,33,12,0);

BS EN 61131-3:2013

 – 96 – 61131-3 © IEC:2013

No. Description Graphical form Example

 Split time data types

5 SPLIT_DATE +-------------+
 | SPLIT_DATE |
 DATE--|IN YEAR|-- ANY_INT
 | MONTH|-- ANY_INT
 | DAY|-- ANY_INT
 +-------------+

See NOTE 2

Split a date:

VAR
myD: DATE:= DATE#2010-03-10;
 myYear: UINT;
 myMonth,
 myDay: USINT;
END_VAR

SPLIT_DATE
(myD,myYear,myMonth,myDay);

6a SPLIT_TOD +-------------+
 | SPLIT_TOD |
 TOD--|IN HOUR|-- ANY_INT
 | MINUTE|-- ANY_INT
 | SECOND|-- ANY_INT
 | MILLISECOND|-- ANY_INT
 +-------------+

See NOTE 2

Split a time of day:

VAR myTOD: TOD:= TOD#14:12:03;
 myHour, myMin, mySec: USINT;
 myMilliSec: UINT;
END_VAR

SPLIT_TOD(myTOD, myHour, myMin,
mySec,myMilliSec);

6b SPLIT_LTOD +-------------+
 | SPLIT_LTOD |
 LTOD--|IN HOUR|-- ANY_INT
 | MINUTE|-- ANY_INT
 | SECOND|-- ANY_INT
 | MILLISECOND|-- ANY_INT
 +-------------+

See NOTE 2

Split a time of day:

VAR myTOD: LTOD:= TOD#14:12:03;
 myHour, myMin, mySec: USINT;
 myMilliSec: UINT;
END_VAR

SPLIT_TOD(myTOD, myHour, myMin,
mySec,myMilliSec);

7a SPLIT_DT +-------------+
 | SPLIT_DT |
 DT--|IN YEAR|-- ANY_INT
 | MONTH|-- ANY_INT
 | DAY|-- ANY_INT
 | HOUR|-- ANY_INT
 | MINUTE|-- ANY_INT
 | SECOND|-- ANY_INT
 | MILLISECOND|-- ANY_INT
 +-------------+

See NOTE 2

Split a date:

VAR myDT: DT
 := DT#2010-03-10-14:12:03:00;
 myYear, myMilliSec: UINT;
 myMonth, myDay, myHour, myMin,
 mySec: USINT;
END_VAR

SPLIT_DT(myDT, myYear, myMonth,
myDay,

myHour,myMin,mySec,myMilliSec);

7b SPLIT_LDT +-------------+
 | SPLIT_LDT |
 LDT--|IN YEAR|-- ANY_INT
 | MONTH|-- ANY_INT
 | DAY|-- ANY_INT
 | HOUR|-- ANY_INT
 | MINUTE|-- ANY_INT
 | SECOND|-- ANY_INT
 | MILLISECOND|-- ANY_INT
 +-------------+

See NOTE 2

Split a date:

VAR myDT: LDT
 := DT#2010-03-10-14:12:03:00;
 myYear, myMilliSec: UINT;
 myMonth, myDay, myHour, myMin,
 mySec: USINT;
END_VAR

SPLIT_DT(myDT, myYear, myMonth,
myDay,

myHour,myMin,mySec,myMilliSec);

 Get day of the week

8 DAY_OF_WEEK +-------------+
 | DAY_OF_WEEK |
 DATE--|IN |- ANY_INT
 +-------------+

See NOTE 2

Get the day of week:

VAR myD: DATE:= DATE#2010-03-10;
 myDoW: USINT;
END_VAR

myDoW:= DAY_OF_WEEK(myD);

The function DAY_OF_WEEK returns 0 for Sunday, 1 for Monday, …, 6 for Saturday

NOTE 1 The data type at input YEAR is at least a 16 bit type to be able to support a valid year value.

NOTE 2 The Implementer specifies the provided data types for the ANY_INT outputs.

NOTE 3 The Implementer may define additional inputs or outputs according to the supported precision, e.g. micro-
second and nanosecond.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 97 –

6.6.2.5.13 Functions for endianess conversion

The endianess conversion functions convert to and from the Implementer specific, internally
used endianess of the PLC from and to the requested endianess.

Endianess is the ordering of the bytes within a longer data type or variable.

The data values of data in big endian are placed in the memory locations beginning with the
leftmost byte first and the rightmost byte last.

The data values of data in little endian are placed in the memory locations beginning with the
rightmost byte first and the leftmost byte last.

Independently of the endianess the bit offset 0 addresses the rightmost bit of a data type.

Using the partial access with the lower number returns the lower value part independently of
the specified endianess.

EXAMPLE 1 Endianess

TYPE D: DWORD:= 16#1234_5678; END_TYPE;

Memory layout
 for big endian: 16#12, 16#34, 16#56, 16#78
 for little endian: 16#78, 16#56, 16#34, 16#12.

EXAMPLE 2 Endianess

TYPE L: ULINT:= 16#1234_5678_9ABC_DEF0; END_TYPE;

Memory layout
 for big endian: 16#12, 16#34,16#56, 16#78, 16#9A, 16#BC, 16#DE, 16#F0
 for little endian: 16#F0, 16#DE, 16#BC, 16#9A, 16#78, 16#56, 16#34, 16#12.

The following data types shall be supported as inputs or outputs of the endianess conversion
functions:

• ANY_INT with size greater than or equal to 16 bits

• ANY_BIT with size greater than or equal to 16 bits

• ANY_REAL

• WCHAR

• TIME

• arrays of these data types

• structures containing components of these data types

Other data types are not converted but may be contained in the structures to convert.

Table 37 shows the functions for endianess conversion.

BS EN 61131-3:2013

 – 98 – 61131-3 © IEC:2013

Table 37 – Function for endianess conversion

No. Description Graphical form Textual form

1 TO_BIG_ENDIAN +------------------+
 | TO_BIG_ENDIAN |
ANY --|IN |--ANY
 +------------------+

Conversion to big endian data format

A:= TO_BIG_ENDIAN(B);

2 TO_LITTLE_ENDIAN +------------------+
 |.TO_LITTLE_ENDIAN |
ANY --|IN . |--ANY
 +------------------+

Conversion to little endian data format

B:= TO_LITTLE_ENDIAN(A);

3 BIG_ENDIAN_TO +------------------+
 | FROM_BIG_ENDIAN |
ANY --|IN |--ANY
 +------------------+

Conversion from big endian data format

A:= FROM_BIG_ENDIAN(B);

4 LITTLE_ENDIAN_TO +------------------+
 |FROM_LITTLE_ENDIAN|
ANY --|IN |--ANY
 +------------------+

Conversion from little endian data for-
mat

A:= FROM_LITTLE_ENDIAN(B);

The data types on the input and output side shall be the same.

NOTE In the case the variable is already in the requested data format, the function does not change the data repre-
sentation.

6.6.2.5.14 Functions of enumerated data types

The selection and comparison functions listed in Table 38 can be applied to inputs which are
of an enumerated data type.

Table 38 – Functions of enumerated data types

No. Description/
Function name

Symbol Feature No. x in Table y

1 SEL Feature 2, Table 32

2 MUX Feature 6, Table 32

3a EQ = Feature 3, Table 33

4a NE <> Feature 6, Table 33

NOTE The provisions of Notes 1 and 2 of Table 33 apply to this table.

a The provisions of footnotes a and b of Table 33 apply to this feature.

6.6.2.5.15 Validate functions

The validate functions check if the given input parameter contains a valid value.

The overloaded function IS_VALID is defined for the data types REAL and LREAL. In the case
the real number is Not-a-Number (NaN) or infinite (+Inf, -Inf) the result of the validate function
is FALSE.

The Implementer may support additional data types with the validate function IS_VALID. The
result of these extensions is Implementer specific.

The overloaded function IS_VALID_BCD is defined for the data types BYTE, WORD, DWORD,
and LWORD. In the case the value does not conform to the BCD definition, the result of the val-
idate function is FALSE.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 99 –

Table 39 shows the list of features of the the validate functions.

Table 39 – Validate functions

No. Function Graphical form Example

1 IS_VALID +--------------+
 . | IS_VALID |
ANY_REAL--|IN |--BOOL
 +--------------+

Validity of a REAL

VAR R: REAL; END_VAR

IF IS_VALID(R) THEN ...

2 IS_VALID_BCD +--------------+
 | IS_VALID_BCD |
-ANY_BIT--|IN |--BOOL
 +--------------+

Validity test for a BCD word

VAR W: WORD; END_VAR

IF IS_VALID_BCD(W) THEN ...

6.6.3 Function blocks

6.6.3.1 General

A function block is a programmable organization unit (POU) which represents for the purpose
of modularization and structuring a well-defined portion of the program.

The function block concept is realized by the function block type and the function block in-
stance:

• Function block type consists of
– the definition of a data structure partitioned into input, output, and internal variables;

and
– a set of operations to be performed upon the elements of the data structure when an

instance of the function block type is called.

• Function block instance
– It is a multiple, named usage (instances) of a function block type.
– Each instance shall have an associated identifier (the instance name), and a data

structure containing the static input, output, and internal variables.
The static variables shall keep their value from one execution of the function block in-
stance to the next; therefore, call of a function block instance with the same input pa-
rameters need not always yield the same output values.

The common features of POUs apply for function blocks.

• Object oriented function block
The function block can be extended by a set of object oriented features.
The object oriented function block is also a superset of the class.

6.6.3.2 Function block type declaration

The function block type shall be declared in a similar manner as described for functions.

The features of the function block type declaration are defined in Table 40:

1) The keyword FUNCTION_BLOCK, followed by an identifier specifying the name of the
function block being declared.

2) A set of operations that constitutes the body.
3) The terminating keyword END_FUNCTION_BLOCK after the function block body.
4) The construct with VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT, if required, specify-

ing the names and types of the variables.

BS EN 61131-3:2013

 – 100 – 61131-3 © IEC:2013

5) The values of the variables which are declared via a VAR_EXTERNAL construct can be
modified from within the function block.

6) The values of the constants which are declared via a VAR_EXTERNAL CONSTANT con-
struct cannot be modified from within the function block.

7) The variable-length arrays may be used as VAR_IN_OUT.
8) The input, output and static variables may be initialized.

9) EN/ENO inputs and outputs shall be declared similar as input and output variables.

The following features are specific for function blocks (different to functions):

10) A VAR...END_VAR construct and also the VAR_TEMP...END_VAR, if required, specify-
ing the names and types of the function block's internal variables.
In contrast to functions the variables declared in the VAR section are static.

11) Variables of the VAR section (static) may be declared PUBLIC or PRIVATE. The access
specifier PRIVATE is default. A public variable may be accessed from outside the FB us-
ing the syntax like the access to FB outputs.

12) The RETAIN or NON_RETAIN qualifier can be used for and input, output, and internal
variables of a function block, as shown in Table 40.

13) In textual declarations, the R_EDGE and F_EDGE qualifiers shall be used to indicate an
edge-detection function on Boolean inputs. This shall cause the implicit declaration of a
function block of type R_TRIG or F_TRIG, respectively in this function block to perform
the required edge detection. For an example of this construction, see Table 40.

14) In graphical declarations, the falling and rising edges detection the construction illustrat-
ed shall be used. When the character set is used, the “greater than” ‘>‘ or “less than” ‘<‘
character shall be in line with the edge of the function block.

15) The asterisk ‘*‘ notation as defined in Table 16 may be used in the declaration of internal
variables of a function block.

16) If the generic data types are used in the type declaration of standard function block in-
puts and outputs, then the rules for inferring the actual types of the outputs of such func-
tion block types shall be part of the function block type definition.

17) Instances of other function blocks, classes and object oriented function blocks can be
declared in all variable sections except the VAR_TEMP section.

18) A function block instance declared inside a function block type should not use the same
name as a function of the same name scope to avoid ambiguities.

Table 40 – Function block type declaration

No. Description Example

1 Declaration of function block type
FUNCTION_BLOCK ...

END_FUNCTION_BLOCK

FUNCTION_BLOCK myFB ... END_FUNCTION_BLOCK

2a Declaration of inputs
VAR_INPUT ... END_VAR

VAR_INPUT IN: BOOL; T1: TIME; END_VAR

2b Declaration of outputs
VAR_OUTPUT ... END_VAR

VAR_OUTPUT OUT: BOOL; ET_OFF: TIME; END_VAR

2c Declaration of in-outs
VAR_IN_OUT ... END_VAR

VAR_IN_OUT A: INT; END_VAR

2d Declaration of temporary variables
VAR_TEMP ... END_VAR

VAR_TEMP I: INT; END_VAR

2e Declaration of static variables
VAR ... END_VAR

VAR B: REAL; END_VAR

2f Declaration of external variables
VAR_EXTERNAL ... END_VAR

VAR_EXTERNAL B: REAL; END_VAR

 Corresponding to

VAR_GLOBAL B: REAL

BS EN 61131-3:2013

61131-3 © IEC:2013 – 101 –

No. Description Example

2g Declaration of external variables
VAR_EXTERNAL CONSTANT ... END_VAR

VAR_EXTERNAL CONSTANT B: REAL; END_VAR

 Corresponding to

VAR_GLOBAL B: REAL

3a Initialization of inputs VAR_INPUT MN: INT:= 0;

3b Initialization of outputs VAR_OUTPUT RES: INT:= 1;

3c Initialization of static variables VAR B: REAL:= 12.1;

3d Initialization of temporary variables VAR_TEMP I: INT:= 1;

- EN/ENO inputs and outputs Defined in Table 18

4a Declaration of RETAIN qualifier
on input variables

VAR_INPUT RETAIN X: REAL; END_VAR

4b Declaration of RETAIN qualifier
 on output variables

VAR_OUTPUT RETAIN X: REAL; END_VAR

4c Declaration of NON_RETAIN qualifier
 on input variables

VAR_INPUT NON_RETAIN X: REAL; END_VAR

4d Declaration of NON_RETAIN qualifier
on output variables

VAR_OUTPUT NON_RETAIN X: REAL; END_VAR

4e Declaration of RETAIN qualifier
on static variables

VAR RETAIN X: REAL; END_VAR

4f Declaration of NON_RETAIN qualifier
on static variables

VAR NON_RETAIN X: REAL; END_VAR

5a Declaration of RETAIN qualifier
on local FB instances

VAR RETAIN TMR1: TON; END_VAR

5b Declaration of NON_RETAIN qualifier
on local FB instances

VAR NON_RETAIN TMR1: TON; END_VAR

6a Textual declaration of
- rising edge inputs

FUNCTION_BLOCK AND_EDGE
VAR_INPUT X: BOOL R_EDGE;
 Y: BOOL F_EDGE;

END_VAR

VAR_OUTPUT Z: BOOL; END_VAR
 Z:= X AND Y; (* ST language example *)
END_FUNCTION_BLOCK

6b - falling edge inputs (textual) See above

7a Graphical declaration of
- rising edge inputs (>)

FUNCTION_BLOCK
 (* External interface *)
 +----------+
 | AND_EDGE |
 BOOL-->X Z|--BOOL
 | |
 BOOL--<Y |
 | |
 +----------+

 (* FB body *)
 +-----+
 | & |
 X--| |--Z
 Y--| |
 +-----+
END_FUNCTION_BLOCK

7b Graphical declaration of
- falling edge inputs (<)

See above

NOTE The features 1-3 of this table are equivalent to functions, see Table 19.

BS EN 61131-3:2013

 – 102 – 61131-3 © IEC:2013

Examples of FB type declaration are shown below.

EXAMPLE 1 Function block type declaration

FUNCTION_BLOCK DEBOUNCE

(*** External Interface ***)
 VAR_INPUT
 IN: BOOL; (* Default = 0 *)
 DB_TIME: TIME:= t#10ms; (* Default = t#10ms *)
 END_VAR

 VAR_OUTPUT
 OUT: BOOL; (* Default = 0 *)
 ET_OFF: TIME; (* Default = t#0s *)
 END_VAR

 VAR DB_ON: TON; (** Internal Variables **)
 DB_OFF: TON; (** and FB Instances **)
 DB_FF: SR;
 END_VAR

(*** Function Block Body ***)
 DB_ON (IN:= IN, PT:= DB_TIME);
 DB_OFF(IN:= NOT IN, PT:= DB_TIME);
 DB_FF (S1:= DB_ON.Q, R:= DB_OFF.Q);
 OUT:= DB_FF.Q1;
 ET_OFF:= DB_OFF.ET;

 END_FUNCTION_BLOCK

a) Textual declaration (ST language)

FUNCTION_BLOCK

(* External Parameter-Interface *)

 +---------------+
 | DEBOUNCE |
 BOOL---|IN OUT|---BOOL
 TIME---|DB_TIME ET_OFF|---TIME
 +---------------+

(* Function block type body *)

 DB_ON DB_FF
 +-----+ +----+
 | TON | | SR |
 IN----+------|IN Q|-----|S1 Q|---OUT
 | +---|PT ET| +--|R |
 | | +-----+ | +----+
 | | | | |
 | | DB_OFF |
 | | +-----+ |
 | | | TON | |
 +--|--O|IN Q|--+
 DB_TIME--+---|PT ET|--------------ET_OFF
 +-----+

 END_FUNCTION_BLOCK

b) Graphical declaration (FBD language)

The example below shows the declaration and graphical usage of in-out variables in function
blocks as given in Table 40.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 103 –

EXAMPLE 2

 +-------+
 | ACCUM |
 INT---|A-----A|--INT
 INT---|X |
 +-------+
 +---+
 A---| + |---A
 X---| |
 +---+

FUNCTION_BLOCK ACCUM
 VAR_IN_OUT A: INT; END_VAR
 VAR_INPUT X: INT; END_VAR
 A:= A+X;
END_FUNCTION_BLOCK

a) Graphical and textual declaration of function block type and function

 ACC1
 +-------+
 | ACCUM |
 ACC----------|A-----A|---ACC
 +---+ | |
 X1---| * |---|X |
 X2---| | +-------+
 +---+

VAR
 ACC: INT;
 X1: INT;
 X2: INT;
END_VAR

This declaration is assumed: the effect of exe-
cution:

ACC:= ACC+X1*X2;

b) Allowed usage of function block instance and function

 ACC1 ACC2
 +-------+ +-------+
 | ACCUM | | ACCUM |
ACC--------|A-----A|---------------|A-----A|--ACC
 +---+ | | +---+ | |
X1--| * |--|X | X3---| * |---|X |
X2--| | +-------+ X4---| | +-------+
 +---+ +---+

Declarations as in b) are assumed for
ACC, X1, X2, X3, and X4;

the effect of execution is
ACC:= ACC+X1*X2+X3*X4;

c) Allowed usage of function block instance

 ACC1
 +-------+
 | ACCUM |
 X3-----------|A-----A|---X4
 +---+ | |
 X1---| * |---|X |
 X2---| | +-------+
 +---+

VAR
 X1: INT;
 X2: INT;
 X3: INT;
 X4: INT;
END_VAR

The declaration is assumed: the effect of exe-
cution:
X3:= X3+X1*X2;
X4:= X3;

d) Allowed usage of function block instance and function – with assignment to an output

NOT ALLOWED !
Connection to in-out variable A is not a variable
or a function block name (see preceding text)

e) Disallowed usage of FB instance

The following example shows the function block AND_EDGE used in Table 40.

 ACC1
 +---+ +-------+
 X1---| * | | ACCUM |
 X2---| |---|A-----A|---ACC
 +---+ | |
 X3-----------|X |
 +-------+

BS EN 61131-3:2013

 – 104 – 61131-3 © IEC:2013

EXAMPLE 3 Function block type declaration AND_EDGE

The declaration of function block AND_EDGE in the above examples in Table 40 is equivalent to:

 FUNCTION_BLOCK AND_EDGE
 VAR_INPUT
 X: BOOL;
 Y: BOOL;
 END_VAR
 VAR
 X_TRIG: R_TRIG;
 Y_TRIG: F_TRIG;
 END_VAR
 VAR_OUTPUT
 Z: BOOL;
 END_VAR

 X_TRIG(CLK:= X);
 Y_TRIG(CLK:= Y);
 Z:= X_TRIG.Q AND Y_TRIG.Q;
END_FUNCTION_BLOCK

See Table 44 for the definition of the edge detection function blocks R_TRIG and F_TRIG.

6.6.3.3 Function block instance declaration

The function block instance shall be declared in a similar manner as described for structured
variables.

When a function block instance is declared, the initial values for the inputs, outputs or public
variables of the function block instance can be declared in a parenthesized list following the
assignment operator that follows the function block type identifier as shown in Table 41.

Elements for which initial values are not listed in the above described initialization list shall
have the default initial values declared for those elements in the function block type declara-
tion.

Table 41 – Function block instance declaration

No. Description Example

1 Declaration of FB instance(s) VAR
 FB_instance_1, FB_instance_2: my FB_Type;
 T1, T2, T3: TON;
END_VAR

2 Declaration of FB instance
with initialization of its variables

VAR
 TempLoop: PID:= (PropBand:= 2.5,
 Integral:= T#5s);
END_VAR

Allocates initial values to inputs and outputs of a function
block instance.

6.6.3.4 Function block call

6.6.3.4.1 General

The call of an instance of a function block can be represented in a textual or graphical form.

The features of the function block call (including the formal and the non-formal call) are simi-
lar to those of the functions with the following extensions:

1. The textual call of a FB shall consist of the instance name of the function block followed
by a list of parameters.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 105 –

2. In the graphical representation, the instance name of the function block shall be located
above the block.

3. The input variables and output variables of an instance of a function block are stored and
can be represented as elements of structured data types. Therefore the assignment of
the inputs and the access to the outputs of a function block can be
a) immediate within the call of the function block; this is the typical usage or
b) separate from the call. These separate assignments shall become effective with the

next call of the function block.
c) unassigned or unconnected inputs of a function block shall keep their initialized val-

ues or the values from the latest previous call, if any.

It is possible that no actual parameter is specified for an in-out variable or a function block
instance used as an input variable of another function block instance. However, the instance
shall be provided with a valid value which is stored, e.g. via initialization or former call, before
used in the function block (body) or by a method, otherwise it causes a runtime error.

Further rules apply for the function block call:

4. If a function block instance is called with EN=0, the Implementer shall specify if the input
and in-out variables are set in the instance.

5. The name of a function block instance can be used as the input to a function block in-
stance if declared as an input variable in a VAR_INPUT declaration, or as an input/output
variable of a function block instance in a VAR_IN_OUT declaration.

6. The output values of a different function block instance whose name is passed into the
function block via a VAR_INPUT, VAR_IN_OUT, or VAR_EXTERNAL construct can be
accessed, but not modified, from within the function block.

7. A function block whose instance name is passed into the function block via a
VAR_IN_OUT or VAR_EXTERNAL construction can be called from inside the function
block.

8. Only variables or function block instance names can be passed into a function block via
the VAR_IN_OUT construct.

 This is to prevent the inadvertent modifications of such outputs. However, “cascading” of
VAR_IN_OUT constructions is permitted.

The following Table 42 contains the features of the function block call.

Table 42 – Function block call

No. Description Example

1 Complete formal call (textual only)

Is used if EN/ENO is necessary in calls.

YourCTU(EN:= not B,
 CU:= r,
 PV:= c1,

 ENO=> next,
 Q => out,
 CV => c2);

2 Incomplete formal call (textual only) YourCTU(Q => out,
 CV => c2);

EN, CU, PV variable will have the value of the last call or
an initial value, if never called before.

3 Graphical call YourCTU
 +-------+
 | CTU |
 B --|EN ENO|-- next
 r --|CU Q|-- out
 c1 --|PV CV|-- c2
 +-------+

BS EN 61131-3:2013

 – 106 – 61131-3 © IEC:2013

No. Description Example

4 Graphical call with negated boolean input and
output

 YourCTU
 +-------+
 | CTU |
 B -0|EN ENO|-- next
 r --|CU Q|0- out
 c1 --|PV CV|-- c2
 +-------+
The use of these constructs is forbidden for in-out vari-
ables.

5a Graphical call with usage of VAR_IN_OUT

5b Graphical call with assignment of VAR_IN_OUT
to a variable

6a Textual call with separate assignment of input

FB_Instance.Input:= x;

YourTon.IN:= r;
YourTon.PT:= t;
YourTon(not Q => out);

6b Graphical call with separate assignment of input +------+
 r--| MOVE |--YourCTU.CU
 +------+

 +------+
 c--| MOVE |--YourCTU.PV
 +------+
 YourCTU
 +-------+
 | CTU |
 1--|EN ENO|-- next
 --|CU Q|0- out
 --|PV CV|--
 +-------+

7 Textual output read after FB call

x:= FB_Instance.Output;

8a Textual output assigned in FB call

8b Textual output assigned in FB call with negation

9a Textual call with function block instance name as
input

VAR_INPUT I_TMR: TON; END_VAR
 EXPIRED:= I_TMR.Q;

It is assumed that the variables EXPIRED and A_VAR
have been declared of type BOOL in this example and
in the following examples.

9b Graphical call with function block instance name
as input

a

10a Textual call with function block instance name as
VAR_IN_OUT

VAR_IN_OUT IO_TMR: TOF; END_VAR
 IO_TMR (IN:=A_VAR, PT:= T#10S);
 EXPIRED:= IO_TMR.Q;

10b Graphical call with function block instance name
as VAR_IN_OUT

11a Textual call with function block instance name as
external variable

VAR_EXTERNAL EX_TMR: TOF; END_VAR
 EX_TMR(IN:= A_VAR, PT:= T#10S);
 EXPIRED:= EX_TMR.Q;

11b Graphical call with function block instance name
as external variable

BS EN 61131-3:2013

61131-3 © IEC:2013 – 107 –

EXAMPLE Function block call with immediate and separate parameter assignment

 YourCTU
 +-------+
 | CTU |
 B -0|EN ENO|--
 r --|CU Q|0-out
 c --|PV CV|--
 +-------+

YourCTU (EN:= not b,
 CU:= r,
 PV:= c,
 not Q => out);

a) FB call with immediate assignment of inputs (typical usage)

 +------+
 r--| MOVE |--YourCTU.CU
 +------+
 +------+
 c--| MOVE |--YourCTU.PV
 +------+

 YourCTU
 +-------+
 | CTU |
 --|EN ENO|--
 --|CU Q|0-out
 --|PV CV|--
 +-------+

 YourCTU.CU:= r;
 YourCTU.PV:= V;

 YourCTU(not Q => out);

b) FB call with separate assignment of input

 YourCTU
 +-------+
 +----+ | CTU |
a--| NE |---0|EN ENO|--
b--| | r--|CU Q|0-out
 +----+ --|PV CV|--
 +-------+

 VAR a, b, r, out: BOOL;
 YourCTU: CTU; END_VAR
 YourCTU (EN := NOT (a <> b),
 CU := r,
 NOT Q => out);

c) FB call with immediate access to output (typical usage)
Also negation in call is permitted

 FF75
 +------+
 | SR |
 bIn1---|S1 Q1|---bOut3
 bIn2---|R |
 +------+

VAR FF75: SR; END_VAR (* Declaration *)
 FF75(S1:= bIn1, (* call *)
 R:= bIn2);

 bOut3:= FF75.Q1; (* Assign Output *)

d) FB call with textual separate output assignment (after call)

 TONs[12]
 +-------+
 | TON |
 bIn1 --|IN Q|--
 T#10ms --|PT ET|--
 +-------+

 TONs[i]
 +-------+
 | TON |
 bIn1 --|IN Q|--
 T#20ms --|PT ET|--
 +-------+

VAR
 TONs: array [0..100] OF TON;
 i: INT;
END_VAR

 TON[12](IN:= bIn1, PT:= T#10ms);

 TON[i](IN:= bIn1, PT:= T#20ms);

e) FB call using an instance array

 myCooler.Cooling
 +-------+
 | TOF |
 bIn1 --|IN Q|--
 T#30s --|PT ET|--
 +-------+

TYPE
 Cooler: STRUCT
 Temp: INT;
 Cooling: TOF;
 END_STRUCT;
END_TYPE

VAR
 myCooler: Cooler;
END_VAR

 myCooler.Cooling(IN:= bIn1, PT:= T#30s);

f) FB call using an instance as structure element

BS EN 61131-3:2013

 – 108 – 61131-3 © IEC:2013

6.6.3.4.2 Usage of input and output parameters

Figure 13 and Figure 14 summarize the rules for usage of input and output parameter of a
function block in the context of the call of this function block. This assignment to input and in-
out parameters shall become effective with the next call of the FB.

FUNCTION_BLOCK FB_TYPE;

VAR_INPUT In: REAL; END_VAR
VAR_OUTPUT Out: REAL; END_VAR
VAR_IN_OUT In_out: REAL; END_VAR
VAR M: REAL; END_VAR

END_FUNCTION-BLOCK

VAR FB_INST: FB_TYPE; A, B, C: REAL; END_VAR

Usage a) Inside function block b) Outside function block

1
.

Input read M:= In; A:= In; Not allowed
 (NOTES 1 and 2)

2
.

Input assignment In:= M; Not allowed

 (NOTE 1)

// Call with immediate parameter assignment

FB_INST(In:= A);

// Separate assignment (NOTE 4)

FB_INST.In:= A;

3
.

Output read M:= Out; // Call with immediate parameter assignment

FB_INST(Out => B);

// Separate assignment

B:= FB_INST.Out;

4
.

Output assign-
ment

Out:= M; FB_INST.Out:= B; Not Allowed

 (NOTE 1)

5
.

In-out read M:= In_out; FB_INST(In_out=> C); Not allowed
C:= FB_INST.In_out; Not allowed

6
.

In-out assign-
ment

In_out:= M; (NOTE 3) // Call with immediate parameter assignment
FB_INST(In_out:= C);

FB_INST.In_out:= C; Not allowed

NOTE 1 Those usages listed as “not allowed” in this table could lead to Implementer specific unpredictable side
effects.

NOTE 2 Reading and writing (assignment) of input, output parameters and internal variables of a function block
may be performed by the “communication function”, “operator interface function”, or the “programming, testing, and
monitoring functions” defined in IEC 61131-1.

NOTE 3 Modification within the function block of a variable declared in a VAR_IN_OUT block is permitted.

Figure 13 – Usage of function block input and output parameters (Rules)

The usage of input and output parameters defined by the rules of Figure 13 is illustrated in
Figure 14.

BS EN 61131-3:2013

http://dx.doi.org/10.3403/00345852U

61131-3 © IEC:2013 – 109 –

The tags 1a, 1b, etc are the rules from Figure 13.

Figure 14 – Usage of function block input and
output parameters (Illustration of rules)

The following examples shows examples of the graphical usage of function block names as
parameters and external variable.

EXAMPLES Graphical usage of function block names as parameter and external variables

FUNCTION_BLOCK

(* External interface *)

 +--------------+
 | INSIDE_A |
 TON---|I_TMR EXPIRED|---BOOL
 +--------------+

(* Function block body *)

 +------+
 | MOVE |
 I_TMR.Q--- | |---EXPIRED
 +------+

END_FUNCTION_BLOCK

FUNCTION_BLOCK

(* External interface *)

 +--------------+
 | EXAMPLE_A |
 BOOL---|GO DONE|---BOOL
 +--------------+

(* Function block body *)

 E_TMR

 +-----+ I_BLK
 | TON | +--------------+
 GO---|IN Q| | INSIDE_A |
 t#100ms---|PT ET| E_TMR---|I_TMR EXPIRED|---DONE
 +-----+ +--------------+

END_FUNCTION_BLOCK

a) Function block name as an input variable (NOTE)

In Out

InOut

M

InOut

1a 4a

2a 3a

5a 6a

A

1b

FB_INST

B

4b

3b

C
5b

6b

2b

X : Not allowed !

 : Permitted !
tag

X X X

BS EN 61131-3:2013

 – 110 – 61131-3 © IEC:2013

FUNCTION_BLOCK

(* External interface *)

 +--------------+
 | INSIDE_B |
 TON---|I_TMR----I_TMR|---TON
 BOOL--|TMR_GO EXPIRED|---BOOL
 +--------------+

(* Function block body *)

 I_TMR
 +-----+
 | TON |
 TMR_GO---|IN Q|---EXPIRED
 |PT ET|
 +-----+
END_FUNCTION_BLOCK

FUNCTION_BLOCK

(* External interface *)

 +--------------+
 | EXAMPLE_B |
 BOOL---|GO DONE|---BOOL
 +--------------+

(* Function block body *)

 E_TMR
 +-----+ I_BLK
 | TON | +---------------+
 |IN Q| | INSIDE_B |
 t#100ms---|PT ET| E_TMR---|I_TMR-----I_TMR|
 +-----+ GO------|TMR_GO EXPIRED|---DONE
 +---------------+

END_FUNCTION_BLOCK

b) Function block name as an in-out variable

FUNCTION_BLOCK

(* External interface *)

 +--------------+
 | INSIDE_C |
 BOOL--|TMR_GO EXPIRED|---
 +--------------+

VAR_EXTERNAL X_TMR: TON; END_VAR

(* Function block body *)

 X_TMR
 +-----+
 | TON |
 TMR_GO---|IN Q|---EXPIRED
 |PT ET|
 +-----+
END_FUNCTION_BLOCK

BS EN 61131-3:2013

61131-3 © IEC:2013 – 111 –

PROGRAM

(* External interface *)

 +--------------+
 | EXAMPLE_C |
 BOOL---|GO DONE|---BOOL
 +--------------+

VAR_GLOBAL X_TMR: TON; END_VAR

(* Program body *)
 I_BLK
 +---------------+
 | INSIDE_C |
 GO---|TMR_GO EXPIRED|---DONE
 +---------------+

END_PROGRAM

c) Function block name as an external variable

NOTE I_TMR is here not represented graphically since this would imply call of I_TMR within INSIDE_A, which is
forbidden by rules 3) and 4) of Figure 13.

6.6.3.5 Standard function blocks

6.6.3.5.1 General

Definitions of standard function blocks common to all programmable controller programming
languages are given below. The Implementer may provide additional standard function blocks.

Where graphical declarations of standard function blocks are shown in this subclause, equiva-
lent textual declarations can also be written, as for example in Table 44.

Standard function blocks may be overloaded and may have extensible inputs and outputs.
The definitions of such function block types shall describe any constraints on the number and
data types of such inputs and outputs. The use of such capabilities in non-standard function
blocks is beyond the scope of this standard.

6.6.3.5.2 Bistable elements

The graphical form and function block body of standard bistable elements are shown in Table
43.

BS EN 61131-3:2013

 – 112 – 61131-3 © IEC:2013

Table 43 – Standard bistable function blocksa

No. Description/Graphical form Function block body

1a Bistable function block (set dominant): SR(S1,R,Q1)

 +-----+
 | SR |
 BOOL---|S1 Q1|---BOOL
 BOOL---|R |
 +-----+

 +-----+
 S1 -------------| >=1 |-- Q1
 +---+ | |
 R ----O| & |----| |
 Q1 -----| | | |
 +---+ +-----+

1b Bistable function block (set dominant)
with long input names: SR(SET1, RESET, Q1)

 +--------+
 | SR |
 BOOL---|SET1 Q1|---BOOL
 BOOL---|RESET |
 +--------+

 +-----+
 SET1 ------------| >=1 |-- Q1
 +---+ | |
 RESET -O| & |----| |
 Q1 ----| | | |
 +---+ +-----+

2a Bistable function block (reset dominant): RS(S, R1, Q1)

 +-----+
 | RS |
 BOOL---|S Q1|---BOOL
 BOOL---|R1 |
 +-----+

 +---+
 R1 --------------O| & |-- Q1
 +-----+ | |
 S -----| >=1 |----| |
 Q1 -----| | | |
 +-----+ +---+

2b Bistable function block (reset dominant)
with long input names: RS(SET,RESET1, Q1)

 +--------+
 | RS |
 BOOL---|SET Q1|---BOOL
 BOOL---|R1 |
 +--------+

 +---+
 RESET1 --------------0| & |-- Q1
 +-----+ | |
 SET ----| >=1 |----| |
 Q1 ----| | +---+
 +-----+

a The initial state of the output variable Q1 shall be the normal default value of zero for Boolean variables.

6.6.3.5.3 Edge detection (R_TRIG and F_TRIG)

The graphic representation of standard rising- and falling-edge detecting function blocks shall
be as shown in Table 44. The behaviors of these blocks shall be equivalent to the definitions
given in this table. This behavior corresponds to the following rules:

1. The Q output of an R_TRIG function block shall stand at the BOOL#1 value from one exe-
cution of the function block to the next, following the 0 to 1 transition of the CLK input,
and shall return to 0 at the next execution.

2. The Q output of an F_TRIG function block shall stand at the BOOL#1 value from one exe-
cution of the function block to the next, following the 1 to 0 transition of the CLK input,
and shall return to 0 at the next execution.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 113 –

Table 44 – Standard edge detection function blocks

No. Description/Graphical form Definition
(ST language)

1 Rising edge detector: R_TRIG(CLK, Q)

 +--------+
 | R_TRIG |
 BOOL --|CLK Q|-- BOOL
 +--------+

FUNCTION_BLOCK R_TRIG
 VAR_INPUT CLK: BOOL; END_VAR
 VAR_OUTPUT Q: BOOL; END_VAR
 VAR M: BOOL; END_VAR
 Q:= CLK AND NOT M;
 M:= CLK;
END_FUNCTION_BLOCK

2 Falling edge detector: F_TRIG(CLK, Q)

 +--------+
 | F_TRIG |
 BOOL --|CLK Q|-- BOOL
 +--------+

FUNCTION_BLOCK F_TRIG
 VAR_INPUT CLK: BOOL; END_VAR
 VAR_OUTPUT Q: BOOL; END_VAR
 VAR M: BOOL; END_VAR
 Q:= NOT CLK AND NOT M;
 M:= NOT CLK;
END_FUNCTION_BLOCK

NOTE When the CLK input of an instance of the R_TRIG type is connected to a value of BOOL#1, its Q output will
stand at BOOL#1 after its first execution following a “cold restart”. The Q output will stand at BOOL#0 following all
subsequent executions. The same applies to an F_TRIG instance whose CLK input is disconnected or is connected
to a value of FALSE.

6.6.3.5.4 Counters

The graphic representations of standard counter function blocks, with the types of the associ-
ated inputs and outputs, shall be as shown in Table 45. The operation of these function blocks
shall be as specified in the corresponding function block bodies.

Table 45 – Standard counter function blocks

No. Description/Graphical form Function block body
(ST language)

 Up-Counter

1a CTU_INT(CU, R, PV, Q, CV) or CTU(..)

 +-----+
 | CTU |
 BOOL--->CU Q|---BOOL
 BOOL---|R |
 INT---|PV CV|---INT
 +-----+

 and also:

 +------------+
 | CTU_INT |
 BOOL--->CU Q|---BOOL
 BOOL---|R |
 INT---|PV CV|---INT
 +------------+

VAR_INPUT CU: BOOL R_EDGE; ...

/* The edge is evaluated internally by the data type
R_EDGE */

IF R
THEN CV:= 0;
ELSIF CU AND (CV < PVmax)
 THEN
 CV:= CV+1;
END_IF;
 Q:= (CV >= PV);

1b CTU_DINT PV, CV: DINT see 1a

1c CTU_LINT PV, CV: LINT see 1a

1d CTU_UDINT PV, CV: UDINT see 1a

1e CTU_ULINT(CD, LD, PV, CV) PV, CV: ULINT see 1a

 Down-counters

2a CTD_INT(CD, LD, PV, Q, CV) or CTD

BS EN 61131-3:2013

 – 114 – 61131-3 © IEC:2013

No. Description/Graphical form Function block body
(ST language)

 +-----+
 | CTD |
 BOOL--->CD Q|---BOOL
 BOOL---|LD |
 INT---|PV CV|---INT
 +-----+

and also:

 +-----------+
 | CTD_INT |
 BOOL--->CD Q|---BOOL
 BOOL---|LD |
 INT---|PV CV|---INT
 +-----------+

VAR_INPUT CU: BOOL R_EDGE; ...

// The edge is evaluated internally by the data type
R_EDGE

IF LD
THEN CV:= PV;
ELSIF CD AND (CV > PVmin)
 THEN CV:= CV-1;
END_IF;
 Q:= (CV <= 0);

2b CTD_DINT PV, CV: DINT See 2a

2c CTD_LINT PV, CV: LINT

2d CTD_UDINT PV, CV: UDINT See 2a

2e CTD_ULINT PV, CV: UDINT See 2a

 Up-down counters

3a CTUD_INT(CD, LD, PV, Q, CV) or CTUD(..)

 +-----------+
 | CTUD |
 BOOL--->CU QU|---BOOL
 BOOL--->CD QD|---BOOL
 BOOL---|R |
 BOOL---|LD |
 INT---|PV CV|---INT
 +-----------+

and also:

 +-----------+
 | CTUD_INT |
 BOOL--->CU QU|---BOOL
 BOOL--->CD QD|---BOOL
 BOOL---|R |
 BOOL---|LD |
 INT---|PV CV|---INT
 +-----------+

VAR_INPUT CU, CD: BOOL R_EDGE; ...

// Edge is evaluated internally by the data type
R_EDGE

IF R
THEN CV:= 0;
ELSIF LD
 THEN CV:= PV;
 ELSE
 IF NOT (CU AND CD)
 THEN
 IF CU AND (CV < PVmax)
 THEN CV:= CV+1;
 ELSIF CD AND (CV > PVmin)
 THEN CV:= CV-1;
 END_IF;
 END_IF;
 END_IF;
 QU:= (CV >= PV);
 QD:= (CV <= 0);

3b CTUD_DINT PV, CV: DINT See 3a

3c CTUD_LINT PV, CV: LINT See 3a

3d CTUD_UDINT PV, CV: UDINT See 3a

3e CTUD_ULINT PV, CV: ULINT See 3a

NOTE The numerical values of the limit variables PVmin and PVmax are Implementer specific.

6.6.3.5.5 Timers

The graphic form for standard timer function blocks shall be as shown in Table 46. The opera-
tion of these function blocks shall be as defined in the timing diagrams given in Figure 15.

The standard timer function blocks may be used overloaded with TIME or LTIME, or the base
data type for the standard timer may be specified as TIME or LTIME.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 115 –

Table 46 – Standard timer function blocks

No. Description Symbol Graphical form

1a Pulse, overloaded TP *** is: TP +-------+
 | *** |
 BOOL---|IN Q|---BOOL
 TIME---|PT ET|---TIME
 +-------+

PT see NOTE

IN: Input (Start)

PT: Preset Time

Q: Output

ET: Elapsed Time

1b Pulse using TIME TP_TIME

1c Pulse using LTIME TP_LTIME

2a On-delay, overloaded TON TON

2b On-delay using TIME TON_TIME

2c On-delay using LTIME TON_LTIME

2d a On-delay, overloaded (Graphical) T---0

3a Off-delay, overloaded TOF TOF

3b Off-delay using TIME TOF_TIME

3c Off-delay using LTIME TOF_LTIME

3d a Off-delay, overloaded (Graphical) 0---T

NOTE The effect of a change in the value of the PT input during the timing operation, e.g., the setting of PT to
t#0s to reset the operation of a TP instance, is an Implementer specific parameter.
a In textual languages, features 2b and 3b shall not be used.

BS EN 61131-3:2013

 – 116 – 61131-3 © IEC:2013

Figure 15 below shows the timing diagrams of the standard timer function blocks.

 +--------+ ++ ++ +--------+
 IN | | || || | |
 --+ +-----++-++---+ +---------
 t0 t1 t2 t3 t4 t5

 +----+ +----+ +----+
 Q | | | | | |
 --+ +---------+ +--+ +-------------
 t0 t0+PT t2 t2+PT t4 t4+PT

 PT +---+ + +---+
 : / | /| / |
ET : / | / | / |
 : / | / | / |
 : / | / | / |
 0-+ +-----+ +--+ +---------
 t0 t1 t2 t4 t5

a) Pulse (PT) timing

 +--------+ +---+ +--------+
 IN | | | | | |
 --+ +--------+ +---+ +-------------
 t0 t1 t2 t3 t4 t5

 +---+ +---+
 Q | | | |
 -------+ +---------------------+ +-------------
 t0+PT t1 t4+PT t5

 PT +---+ +---+
 : / | + / |
 ET: / | /| / |
 : / | / | / |
 : / | / | / |
 0-+ +--------+ +---+ +-------------
 t0 t1 t2 t3 t4 t5

b) On-delay (TON) timing

 +--------+ +---+ +--------+
 IN | | | | | |
 ---+ +--------+ +---+ +-----------
 t0 t1 t2 t3 t4 t5

 +-------------+ +---------------------+
 Q | | | |
 ---+ +---+ +------
 t0 t1+PT t2 t5+PT

 PT +---+ +------
 : / | + /
 ET: / | /| /
 : / | / | /
 : / | / | /
 0------------+ +---+ +--------+
 t1 t3 t5

c) Off-delay (TOF) timing

Figure 15 – Standard timer function blocks – timing diagrams (Rules)

6.6.3.5.6 Communication function blocks

Standard communication function blocks for programmable controllers are defined in
IEC 61131-5. These function blocks provide programmable communications functionality such
as device verification, polled data acquisition, programmed data acquisition, parametric con-
trol, interlocked control, programmed alarm reporting, and connection management and pro-
tection.

BS EN 61131-3:2013

http://dx.doi.org/10.3403/02228747U

61131-3 © IEC:2013 – 117 –

6.6.4 Programs

A program is defined in IEC 61131-1 as a “logical assembly of all the programming language
elements and constructs necessary for the intended signal processing required for the control
of a machine or process by a PLC-system.”

The declaration and usage of programs is identical to that of function blocks with the addi-
tional features shown in Table 47 and the following differences:

1. The delimiting keywords for program declarations shall be PROGRAM...END_PROGRAM.

2. A program can contain a VAR_ACCESS...END_VAR construction, which provides a
means of specifying named variables which can be accessed by some of the communica-
tion services specified in IEC 61131-5. An access path associates each such variable
with an input, output or internal variable of the program.

3. Programs can only be instantiated within resources while function blocks can only be in-
stantiated within programs or other function blocks.

4. A program can contain location assignments in the declarations of its global and internal
variables. Location assignments with partly specified direct representation can only be
used in the declaration of internal variables of a program.

5. The object-orientation features for programs are beyond the scope of this part of
IEC 61131.

Table 47 – Program declaration

No. Description Example

1 Declaration of a program
PROGRAM ... END_PROGRAM

PROGRAM myPrg ... END_PROGRAM

2a Declaration of inputs
VAR_INPUT ... END_VAR

VAR_INPUT IN: BOOL; T1: TIME; END_VAR

2b Declaration of outputs
VAR_OUTPUT ... END_VAR

VAR_OUTPUT OUT: BOOL; ET_OFF: TIME; END_VAR

2c Declaration of in-outs
VAR_IN_OUT ... END_VAR

VAR_IN_OUT A: INT; END_VAR

2d Declaration of temporary variables
VAR_TEMP ... END_VAR

VAR_TEMP I: INT; END_VAR

2e Declaration of static variables
VAR ... END_VAR

VAR B: REAL; END_VAR

2f Declaration of external variables
VAR_EXTERNAL ... END_VAR

VAR_EXTERNAL B: REAL; END_VAR

 Corresponding to

VAR_GLOBAL B: REAL

2g Declaration of external variables
VAR_EXTERNAL CONSTANT ... END_VAR

VAR_EXTERNAL CONSTANT B: REAL; END_VAR

 Corresponding to

VAR_GLOBAL B: REAL

3a Initialization of inputs VAR_INPUT MN: INT:= 0;

3b Initialization of outputs VAR_OUTPUT RES: INT:= 1;

3c Initialization of static variables VAR B: REAL:= 12.1;

3d Initialization of temporary variables VAR_TEMP I: INT:= 1;

4a Declaration of RETAIN qualifier
on input variables

VAR_INPUT RETAIN X: REAL; END_VAR

4b Declaration of RETAIN qualifier
 on output variables

VAR_OUTPUT RETAIN X: REAL; END_VAR

4c Declaration of NON_RETAIN qualifier
 on input variables

VAR_INPUT NON_RETAIN X: REAL; END_VAR

BS EN 61131-3:2013

http://dx.doi.org/10.3403/00345852U
http://dx.doi.org/10.3403/02228747U

 – 118 – 61131-3 © IEC:2013

No. Description Example

4d Declaration of NON_RETAIN qualifier
on output variables

VAR_OUTPUT NON_RETAIN X: REAL; END_VAR

4e Declaration of RETAIN qualifier
on static variables

VAR RETAIN X: REAL; END_VAR

4f Declaration of NON_RETAIN qualifier
on static variables

VAR NON_RETAIN X: REAL; END_VAR

5a Declaration of RETAIN qualifier
on local FB instances

VAR RETAIN TMR1: TON; END_VAR

5b Declaration of NON_RETAIN qualifier
on local FB instances

VAR NON_RETAIN TMR1: TON; END_VAR

6a Textual declaration of
- rising edge inputs

PROGRAM AND_EDGE
VAR_INPUT X: BOOL R_EDGE;
 Y: BOOL F_EDGE;

END_VAR

VAR_OUTPUT Z: BOOL; END_VAR
 Z:= X AND Y; (* ST language example *)
END_PROGRAM

6b Textual declaration of
- falling edge inputs (textual)

See above

7a Graphical declaration of
- rising edge inputs (>)

PROGRAM
 (* External interface *)
 +----------+
 | AND_EDGE |
 BOOL-->X Z|--BOOL
 | |
 BOOL--<Y |
 | |
 +----------+

 (* FB body *)
 +-----+
 | & |
 X--| |--Z
 Y--| |
 +-----+
END_PROGRAM

7b Graphical declaration of
- falling edge inputs (<)

See above

8a VAR_GLOBAL...END_VAR declaration
within a PROGRAM

VAR_GLOBAL z1: BYTE; END_VAR

8b VAR_GLOBAL CONSTANT declarations
within PROGRAM type declarations

VAR_GLOBAL CONSTANT z2: BYTE; END_VAR

9 VAR_ACCESS...END_VAR declaration
within a PROGRAM

VAR_ACCESS
 ABLE: STATION_1.%IX1.1: BOOL READ_ONLY;
 BAKER: STATION_1.P1.x2: UINT READ_WRITE;
END_VAR

NOTE The features 2a to 7b are equivalent to the same features of Table 40 for function blocks.

6.6.5 Classes

6.6.5.1 General

The language element class supports the object oriented paradigm, and is characterized by
the following concepts:

• Definition of a data structure partitioned into public and internal variables,

• Method to be performed upon the elements of the data structure,

• Classes, consisting of methods (algorithms) and data structures

BS EN 61131-3:2013

61131-3 © IEC:2013 – 119 –

• Interface with method prototypes and implementation of interfaces,

• Inheritance of interfaces and classes,

• Instantiation of classes.

NOTE The terms class and object used in IT programming languages like C#, C++, Java, UML etc., correspond
with the terms type and instance used in PLC programming languages of this standard. This is shown below.

IT Programming Languages: C#, C++, Java, UML PLC languages of the standard

Class (= type of a class) Type of a function block and class
Object (= instance of a class) Instance of a function block and class

The following Figure 16 illustrates the inheritance of interface and classes using the mecha-
nisms of implementation and extension. This is defined in this 6.6.5.

Figure 16 – Overview of inheritance and interface implementation

A class is a POU designed for object oriented programming. A class contains essentially vari-
ables and methods. A class shall be instantiated before its methods can be called or its varia-
bles can be accessed.

6.6.5.2 Class declaration

The features of the class declaration are defined in Table 48:

1. The keyword CLASS, followed by an identifier specifying the name of the class being de-
clared.

2. The terminating keyword END_CLASS.
3. The values of the variables which are declared via a VAR_EXTERNAL construct can be

modified from within the class.
4. The values of the constants which are declared via a VAR_EXTERNAL CONSTANT con-

struct cannot be modified from within the class.
5. A VAR...END_VAR construct, if required, specifying the names and types of the variables

of the class.
6. The variables may be initialized.
7. Variables of the VAR section (static) may be declared PUBLIC. A public variable may be

accessed from outside the class using the same syntax as for the access to FB outputs.
8. The RETAIN or NON_RETAIN qualifier can be used for internal variables of a class.
9. The asterisk ‘*‘ notation as defined in Table 16 may be used in the declaration of internal

variables of a class.
10. Variables may be PUBLIC, PRIVATE, INTERNAL, or PROTECTED. The access specifier

PROTECTED is default.
11. A class may support inheritance of other classes to extend a base class.
12. A class may implement one or more interfaces.
13. Instances of other function blocks, classes and object oriented function blocks can be de-

clared in the variable sections VAR and VAR_EXTERNAL.

extends

interface class

function block

extends

extends

implements

extends

implements

BS EN 61131-3:2013

 – 120 – 61131-3 © IEC:2013

14. A class instance declared inside a class should not use the same name as a function (of
the same name scope) to avoid ambiguities.

The class has the following differences to the function block:

– The keywords FUNCTION_BLOCK and END_FUNCTION_BLOCK are replaced by CLASS and
END_CLASS respectively.

– Variables are only declared in the VAR section. The sections VAR_INPUT, VAR_OUTPUT,
VAR_IN_OUT, and VAR_TEMP are not allowed.

– A class has no body. A class may define only methods.
– A call of an instance of a class is not possible. Only the methods of a class can be called.

The implementer of classes shall provide an inherently consistent subset of features defined
in the following Table 48.

Table 48 – Class

No. Description
Keyword

Explanation

1 CLASS ... END_CLASS Class definition

1a FINAL specifier Class cannot be used as a base class

 Adapted from function block

2a Declaration of variables
VAR ... END_VAR

 VAR B: REAL; END_VAR

2b Initialization of variables VAR B: REAL:= 12.1; END_VAR

3a RETAIN qualifier
on internal variables

VAR RETAIN X: REAL; END_VAR

3b NON_RETAIN qualifier
on internal variables

VAR NON_RETAIN X: REAL; END_VAR

4a VAR_EXTERNAL declarations
within class type declarations

For equivalent example see Table 40

4b VAR_EXTERNAL CONSTANT
declarations within class type
declarations

For equivalent example see Table 40

 Methods and specifiers

5 METHOD...END_METHOD Method definition

5a PUBLIC specifier Method may be called from anywhere

5b PRIVATE specifier Method may only be called from inside the defining POU

5c INTERNAL specifier Method may only be called from inside the same namespace

5d PROTECTED specifier Method may only be called from inside the defining POU
and its derivations (default)

5e FINAL specifier Method shall not be overridden

 Inheritance - these features are the same as in Table 53 feature inheritance

6 EXTENDS Class inherits from class (NOTE: no inheritance from FB)

7 OVERRIDE Method overrides base method – see dynamic name binding

8 ABSTRACT Abstract class – at least one method is abstract

Abstract method – this method is abstract

 Access reference

9a THIS Reference to own methods

9b SUPER Access reference to method in base class

BS EN 61131-3:2013

61131-3 © IEC:2013 – 121 –

No. Description
Keyword

Explanation

 Variable access specifiers

10a PUBLIC specifier The variable may be accessed from anywhere

10b PRIVATE specifier The variable may only be accessed from inside the defining POU

10c INTERNAL specifier The variable may only be accessed from inside the same namespace

10d PROTECTED specifier The variable may only be accessed from inside the defining POU and its
derivations (default)

 Polymorphism

11a with VAR_IN_OUT VAR_IN_OUT of a (base) class may be assigned an instance of a derived
class

11b with reference A reference to a (base) class may be assigned the address of an in-
stance of a derived class

The example below illustrates the features of the class declaration and its usage.

EXAMPLE Class declaration
Class CCounter

 VAR
 m_iCurrentValue: INT; (* Default = 0 *)
 m_bCountUp: BOOL:=TRUE;
 END_VAR

 VAR PUBLIC
 m_iUpperLimit: INT:=+10000;
 m_iLowerLimit: INT:=-10000;
 END_VAR

METHOD Count (* Only body *)

 IF (m_bCountUp AND m_iCurrentValue<m_iUpperLimit) THEN

 m_iCurrentValue:= m_iCurrentValue+1;

 END_IF;

 IF (NOT m_bCountUp AND m_iCurrentValue>m_iLowerLimit) THEN

 m_iCurrentValue:= m_iCurrentValue-1;

 END_IF;

END_METHOD

METHOD SetDirection

 VAR_INPUT
 bCountUp: BOOL;

 END_VAR

 m_bCountUp:=bCountUp;

END_METHOD

END_CLASS

6.6.5.3 Class instance declaration

A class instance shall be declared in a similar manner as defined for structured variables.

When a class instance is declared, the initial values for the public variables of the class in-
stance can be assigned in a parenthesized initialization list following the assignment operator
that follows the class identifier as shown in Table 49.

Elements which are not assigned in the initialization list shall have the initial values of the
class declaration.

BS EN 61131-3:2013

 – 122 – 61131-3 © IEC:2013

Table 49 – Class instance declaration

No. Description Example

1 Declaration of class instance(s) with default ini-
tialization

VAR
 MyCounter1: CCounter;
END_VAR

2 Declaration of class instance
with initialization of its public variables

VAR
MyCounter2: CCounter:=
(m_iUpperLimit:=20000;
 m_iLowerLimit:=-20000);
END_VAR

6.6.5.4 Methods of a class

6.6.5.4.1 General

For the purpose of the programmable controller languages the concept of methods well known
in the object oriented programming is adopted as a set of optional language elements defined
within the class definition.

Methods may be applied to define the operations to be performed on the class instance data.

6.6.5.4.2 Signature

For the purpose of this standard the term signature is defined in Clause 3 as a set of infor-
mation defining unambiguously the identity of the parameter interface of a METHOD.

A signature consists of

• name of method,

• result type,

• variable names, data types and the order of all its parameters,
i.e. inputs, outputs, in-out variables.

The local variables are not a part of the signature. VAR_EXTERNAL and constant variables are
not relevant for the signature.

The access specifiers like PUBLIC or PRIVATE are not relevant for the signature.

6.6.5.4.3 Method declaration and execution

A class may have a set of methods.

The declaration of a method shall comply with the following rules:

1. The methods are declared within the scope of a class.

2. A method may be defined in any of the programming languages specified in this standard.

3. In the textual declaration the methods are listed after the declaration of the variables of
the class.

4. A method may declare its own VAR_INPUT, internal temporary variables VAR and
VAR_TEMP, VAR_OUTPUT, VAR_IN_OUT and a method result.

The keywords VAR_TEMP and VAR have the same meaning and are both permitted for the
internal variables. (VAR is used in functions).

BS EN 61131-3:2013

61131-3 © IEC:2013 – 123 –

5. The method declaration shall contain one of the following access specifiers: PUBLIC,
PRIVATE, INTERNAL, and PROTECTED. If no access specifier is given, the method will
be PROTECTED by default.

6. The method declaration may contain the additional keyword OVERRIDE or ABSTRACT.

NOTE 1 Overloading of methods is not in the scope of this part of IEC 61131.

The execution of a method shall comply with the following rules:

7. When executed, a method may read its inputs and calculates its outputs and its result us-
ing its temporary variables.

8. The method result is assigned to the method name.
9. All method variables and the result are temporary (like the variables of a function),

i.e. the values are not stored from one method execution to the next. Therefore the eval-
uation of the method output variables is only possible in the immediate context of the
method call.

10. The variable names of each method and of the class shall be different (unique).
The names of local variables of different methods may be the same.
11. All methods have read/write access to the static and external variables declared in the

class.
12. All variables and results may be multi-valued, i.e. an array or a structure. As it is defined

for functions the method result may be used as an operand in an expression.
13. When executed, a method may use other methods defined within this class. Methods of

this class instance shall be called using the THIS keyword.

The following example illustrates the simplified declaration of a class with two methods and
the call of the method.

BS EN 61131-3:2013

 – 124 – 61131-3 © IEC:2013

EXAMPLE 1

NOTE 2

The algorithms of the
methods have access to
their own data and to the
class data.

(Temporary parameters
are parenthesized.)

Declaration of the class (type) with methods:

CLASS name
 VAR vars; END_VAR
 VAR_EXTERNAL externals; END_VAR

METHOD name_1
 VAR_INPUT inputs; END_VAR
 VAR_OUTPUT outputs; END_VAR
END_METHOD

METHOD name_i
 VAR_INPUT inputs; END_VAR
 VAR_OUTPUT outputs; END_VAR
END_METHOD
END_CLASS

NOTE 3
This graphical representa-
tion of the method is for
illustration only.

Call of a method:

a) Usage of the result: (result is optional)
 R1:= I.method1(inm1:= A, outm1 => Y);

b) Usage of call: (no result declared)
 I.method1(inm1:= A, outm1 => Y);

Assignment of method inputs from outside:
 I.inm1 := A; // Not permitted;

Read of method outputs from outside:
 Y:= I.outm1; // Not permitted,

EXAMPLE 2
Class COUNTER with two methods for counting up. Method UP5 shows how to call a method of the same class.
CLASS COUNTER
 VAR
 CV: UINT;
 Max: UINT:= 1000;
 END_VAR

// Current value of counter

 METHOD PUBLIC UP: UINT
 VAR_INPUT INC: UINT; END_VAR
 VAR_OUTPUT QU: BOOL; END_VAR

 IF CV <= Max - INC
 THEN CV:= CV + INC;
 QU:= FALSE;
 ELSE QU:= TRUE;
 END_IF
 UP:= CV;
 END_METHOD

// Method for count up by inc
// Increment
// Upper limit detection

// Count up of current value

// Upper limit reached

// Result of method

 METHOD PUBLIC UP5: UINT
 VAR_OUTPUT QU: BOOL; END_VAR
 UP5:= THIS.UP(INC:= 5, QU => QU);
 END_METHOD

END_CLASS

// Count up by 5
// Upper limit reached
// Internal method call

inm1

I
ClassX.name_1

outm1 A Y

Class (Type)

externals

vars

Object (Instance)

(vars) (inputs) (result)

m_1 algorithm

(outputs)

(vars)

Method name_i

(inputs) (result)

m_i algorithm

(outputs)

Method name_1

(in-outs)

R1

BS EN 61131-3:2013

61131-3 © IEC:2013 – 125 –

6.6.5.4.4 Method call representation

The methods can be called in textual languages (Table 50) and in graphical languages.

In all language representations there are two different cases of calls of a method.

a) Internal call

of a method of the own class instance. The method name shall be preceded by ‘THIS.’

This call may be issued by another method.
b) External call

of a method of an instance of another class. The method name shall be preceded by the
instance name and ‘.’.

This call may be issued by a method or a function block body where the instance is de-
clared.

NOTE The following syntax is used:

– The syntax A() is used to call a global function A.

– The syntax THIS.A() is used to call a method of the own instance.

– The syntax I1.A() is used to call a method A of another instance I1.

6.6.5.4.5 Textual call representation

A method with result shall be called as an operand of an expression.

A method without result shall not be called inside an expression.

The method can be called formal or non-formal.

The external call of a method additionally needs the name of the external class instance.

EXAMPLE 1 ... class_instance_name.method_name(parameters)

The internal call of a method is using THIS instead of the instance name.

EXAMPLE 2 ... THIS.method_name (parameters)

Table 50 – Textual call of methods – Formal and non-formal parameter list

No. Description Example

1a Complete formal call (textual only)

Shall be used if EN/ENO is necessary in calls.

A:= COUNTER.UP(EN:= TRUE, INC:= B,
 START:= 1, ENO=> %MX1, QU => C);

1b Incomplete formal call (textual only)

Shall be used if EN/ENO is not necessary in calls.

A:= COUNTER.UP(INC:= B, QU => C);

START variable will have the default value 0 (zero).

2 Non-formal call (textual only)

(fix order and complete)

A:= COUNTER.UP(B, 1, C);

This call is equivalent to 1a, but without EN/ENO.

BS EN 61131-3:2013

 – 126 – 61131-3 © IEC:2013

6.6.5.4.6 Graphical representation

The graphical representation of a method call is similar to the representation of a function or
function block. It is a rectangular block with inputs on the left and outputs on the right side of
the block.

The method calls may support EN and ENO as defined in Table 18.

• The internal call shows the class name and the method name separated with a period in-
side a block.

The keyword THIS shall be located above the block.

• The external call shows the class name and the method name separated with a period in-
side a block.
The class instance name shall be located above the block.

6.6.5.4.7 Error

The usage of a method output independent of the method call shall be treated as an error.
See the example below.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 127 –

EXAMPLE Internal and external method call

VAR

CT: COUNTER;
LIMIT: BOOL;
VALUE: UINT;

END_VAR

1) In Structured Text (ST)

 a) Internal call of a method:
 VALUE:= THIS.UP (INC:= 5, QU => LIMIT);

 b) External call of a method:
 VALUE:= CT.UP (INC:= 5, QU => LIMIT);

2) In Function Block Diagram (FBD)

 a) Internal call of a method

 THIS
 +------------+
 On ---│ COUNTER.UP │---VALUE
 │------------│
 5 ---│INC │
 │ QU│---LIMIT
 +------------+

Called in a class by another method

THIS is mandatory
Method UP returns the result

The graphical representation is for illustration only
The variable On enables the method call

b) External call of a method:

 CT
 +------------+
 On ---│ COUNTER.UP │---VALUE
 │------------│
 5 ---│INC │
 │ QU│---LIMIT
 +------------+

CT is a class instance declared within another class or FB

Called by a method or function block body

Method UP returns the result

The graphical representation is for illustration only

The variable On enables the method call

3) Error: Method output usage without graphical and textual call

 │ CT.UP VALUE
 │-------│ │---------()---
 │
 VALUE:= CT.UP;

This evaluation of the method output
is NOT possible because a method does not store its out-
puts from one execution to the next.

6.6.5.5 Class inheritance (EXTENDS, SUPER, OVERRIDE, FINAL)

6.6.5.5.1 General

For the purpose of the PLC languages the concept of inheritance defined in the general object
oriented programming is here adapted as a way to create new elements.

The inheritance of classes is shown in Figure 17. Based on an existing class one or more
classes may be derived. This may be repeated multiple times.

NOTE “Multiple inheritance” is not supported.

A derived (child) class typically extends the base (parent) class by additional methods.

The term “base” class stands for all “ancestors”, i.e. for the parent and their parent classes
etc.

BS EN 61131-3:2013

 – 128 – 61131-3 © IEC:2013

Figure 17 – Inheritance of classes (Illustration)

6.6.5.5.2 EXTENDS of class

A class may be derived from one already existing class (base class) using the keyword
EXTENDS.

EXAMPLE CLASS X1 EXTENDS X;

The following rules shall apply:

1. The derived class inherits without further declarations all methods (if any) from its base
class with the following exceptions.

• PRIVATE methods are not inherited.

• INTERNAL methods are not inherited outside the namespace.

2. The derived class inherits all variables (if any) from its base class.
3. A derived class inherits only from one base class.
 Multi-inheritance is not supported by this standard.

 NOTE A class can implement (using the keyword IMPLEMENTS) one or more interface(s).

4. The derived class may extend the base class, i.e. it may have own methods and variables
in addition to the inherited methods, variables of the base class and thus create new
functionality.

5. The class used as a base class may itself be a derived class. Then it passes also on to a
derived class the methods and variables it has inherited.

 This may be repeated several times.
6. If the definition of the base class is changed, all derived classes (and their children) also

change their functionality.

6.6.5.5.3 OVERRIDE a method

A derived class may override (replace) one or more inherited method(s) by an own implemen-
tation of the method(s). In order to override the base methods, the following rules apply:

1. The method that overrides an inherited method shall have the same signature (method
name and variables) within the scope of the derived class.

2. The method that overrides an inherited method shall have the following features:

• The keyword OVERRIDE follows the keyword METHOD.

CLASS X
METHOD (ma), (mb), (mc), md

CLASS X1 EXTENDS X
METHOD OVERRIDE mb

METHOD (ma), mb, (mc), (md)

CLASS X11 EXTENDS X1
METHOD (ma), (mb), (mc), (md), mf

CLASS X12 EXTENDS X1
METHOD (ma), (mb), (mc), (md), mg

CLASS C
METHOD mf

Class inheritance
 using EXTENDS

EXTENDS

CLASS C1 EXTENDS C
METHOD (mf), mg

EXTENDS

BS EN 61131-3:2013

61131-3 © IEC:2013 – 129 –

• The derived class has access to the base method which is PUBLIC or PROTECTED or
INTERNAL in the same namespace.

• The new method shall have the same access specifiers. But the method specifier
FINAL may be used for an overridden method.

EXAMPLE METHOD OVERRIDE mb;

6.6.5.5.4 FINAL for classes and methods

A method with the specifier FINAL shall not be overridden.

A class with the specifier FINAL cannot be a base class.

EXAMPLE 1 METHOD FINAL mb;

EXAMPLE 2 CLASS FINAL c1;

6.6.5.5.5 Errors for EXTENDS, SUPER, OVERRIDE, FINAL

The following situation shall be treated as an error:

1. The derived class defines a variable with the name of a variable already contained in its
base class, whether defined there or inherited. This rule does not apply on PRIVATE var-
iables.

2. The derived class defines a method with the name of a variable already contained in its
base class.

3. The derived class is derived from its own base class, whether directly or indirectly, i.e.
recursion is not permitted.

4. The class defines a method with the keyword OVERRIDE which is not overriding a meth-
od of a base class.

BS EN 61131-3:2013

 – 130 – 61131-3 © IEC:2013

EXAMPLE Inheritance and override

A class that extends the class LIGHTROOM.

CLASS LIGHTROOM
VAR LIGHT: BOOL; END_VAR

METHOD PUBLIC DAYTIME
 LIGHT:= FALSE;
END_METHOD

METHOD PUBLIC NIGHTTIME
 LIGHT:= TRUE;
END_METHOD
END_CLASS

CLASS LIGHT2ROOM EXTENDS LIGHTROOM

VAR LIGHT2: BOOL; END_VAR // Second light

METHOD PUBLIC OVERRIDE DAYTIME
 LIGHT := FALSE; // Access to parent’s variable
 LIGHT2:= FALSE; // specific implementation
END_METHOD

METHOD PUBLIC OVERRIDE NIGHTTIME
 LIGHT := TRUE; // Access to parent’s variable
 LIGHT2:= TRUE; // specific implementation
END_METHOD

END_CLASS

6.6.5.6 Dynamic name binding (OVERRIDE)

Name binding is the association of a method name with a method implementation. The bind-
ing of a name (e.g. by the compiler) before the execution of the program is called static or
“early” binding. A binding performed while the program is executed is called dynamic or “late”
binding.

In case of an internal method call, the overriding feature with the keyword OVERRIDE causes
a difference between the static and dynamic form of name binding:

• Static binding
associates the method name to the method implementation of the class with an internal
method call or contains the method doing the internal method call.

• Dynamic binding
associates the method name to the method implementation of the actual type of the class
instance.

BS EN 61131-3:2013

http://en.wikipedia.org/wiki/Dynamic_binding

61131-3 © IEC:2013 – 131 –

EXAMPLE 1 Dynamic name binding

Overriding with effect on the binding.

// Declaration

CLASS CIRCLE

METHOD PUBLIC PI: LREAL // Method yields less accurate PI
 PI:= 3.1415;
END_METHOD

METHOD PUBLIC CF: LREAL // Method yields circumference
 VAR_INPUT DIAMETER: LREAL; END_VAR
 CF:= THIS.PI() * DIAMETER; // Internal call of method PI
END_METHOD // using dynamic binding of PI
END_CLASS

CLASS CIRCLE2 EXTENDS CIRCLE // Class with method overriding PI

METHOD PUBLIC OVERRIDE PI: LREAL // Method yields more accurate PI
 PI:= 3.1415926535897;
END_METHOD
END_CLASS

PROGRAM TEST
VAR
 CIR1: CIRCLE; // Instance of CIRCLE
 CIR2: CIRCLE2; // Instance of CIRCLE2
 CUMF1: LREAL;
 CUMF2: LREAL;
 DYNAMIC: BOOL;
END_VAR

 CUMF1:= CIR1.CF(1.0); // Call of method CIR1
 CUMF2:= CIR2.CF(1.0); // Call of method CIR2
 DYNAMIC:= CUMF1 <> CUMF2; // Dynamic binding results in True

END_PROGRAM

In this example the class CIRCLE contains an internal call of its method PI with low accuracy to calculate the cir-
cumference (CF) of a circle.

The derived class CIRCLE2 overrides this method with a more accurate definition of PI.

The call of the method PI() refers either to CIRCLE.PI or to CIRCLE2.PI, according to the type of the instance
on which the call of CF was performed. Here CUMF2 is more accurate than CUMF1.

BS EN 61131-3:2013

 – 132 – 61131-3 © IEC:2013

EXAMPLE 2
Illustration of the textual example above (simplified)

6.6.5.7 Method call of own and base class (THIS, SUPER)

6.6.5.7.1 General

To access a method defined inside or outside the own class there are the keywords THIS and
SUPER available.

6.6.5.7.2 THIS

THIS is a reference to the own class instance.

With the keyword THIS a method of the own class instance can be called by another method
of this class instance.

THIS may be passed to a variable of the type of an INTERFACE.

The keyword THIS cannot be used with another instance e.g., the expression
myInstance.THIS is not allowed.

CLASS CIRCLE2 EXTENDS CIRCLE

METHOD PUBLIC CF // inherited
VAR_INPUT Diameter
 CF := THIS.PI()*Diameter;

CLASS CIRCLE

METHOD PUBLIC PI

 PI := 3.1415;

METHOD PUBLIC CF
VAR_INPUT Diameter
 CF := THIS.PI()*Diameter;

(CIR1)

(CIR2)

PROGRAM TEST
VAR
CIR1:CIRCLE;
CIR2:CIRCLE2;
...

EXTENDS

Declaration

METHOD PUBLIC OVERRIDE PI

 PI := 3.1415926535897;

 CUMF1 := CIR1.CF(1.0);
 // CUMF1 = 3.1415

 CUMF2 := CIR2.CF(1.0);
// CUMF2 = 3.1415926535897

BS EN 61131-3:2013

61131-3 © IEC:2013 – 133 –

EXAMPLE Usage of keyword THIS.

These examples are copied from examples above for convenience.

INTERFACE ROOM
 METHOD DAYTIME END_METHOD // Called during day-time
 METHOD NIGHTTIME END_METHOD // Called during night-time
END_INTERFACE

FUNCTION_BLOCK ROOM_CTRL //
 VAR_INPUT
 RM: ROOM; // Interface ROOM as type of input variable
 END_VAR

 VAR_EXTERNAL
 Actual_TOD: TOD; // Global time definition
 END_VAR

 IF (RM = NULL) // Important: test valid reference!
 THEN RETURN;
 END_IF;

 IF Actual_TOD >= TOD#20:15 OR Actual_TOD <= TOD#6:00
 THEN RM.NIGHTTIME(); // call method of RM
 ELSE RM.DAYTIME();
 END_IF;

END_FUNCTION_BLOCK

// Applies keyword THIS to assign the own instance

CLASS DARKROOM IMPLEMENTS ROOM // ROOM see above

VAR_EXTERNAL

 Ext_Room_Ctrl: ROOM_CTRL; // ROOM_CTRL see above

END_VAR

METHOD PUBLIC DAYTIME; END_METHOD
METHOD PUBLIC NIGHTTIME; END_METHOD

METHOD PUBLIC EXT_1
 Ext_Room_Ctrl(RM:= THIS); // Call Ext_Room_Ctrl with own instance
END_METHOD

END_CLASS

6.6.5.7.3 SUPER

SUPER offers access to methods of the base class implementation.

With the keyword SUPER a method which is valid in the base (parent) class instance can be
called. Thus, static name binding takes place.

The keyword SUPER cannot be used with another instance e.g., the expression my-
Room.SUPER.DAYTIME() is not allowed.

The keyword SUPER cannot be used to access further derived methods e.g., the expression
SUPER.SUPER.aMethod is not supported.

EXAMPLE Usage of the keyword SUPER and polymorphism.

LIGHT2ROOM using SUPER as alternative implementation to the example above.
Some previous examples are copied here for convenience.

INTERFACE ROOM
 METHOD DAYTIME END_METHOD // Called during day-time
 METHOD NIGHTTIME END_METHOD // Called during night-time
END_INTERFACE

BS EN 61131-3:2013

 – 134 – 61131-3 © IEC:2013

CLASS LIGHTROOM IMPLEMENTS ROOM

VAR LIGHT: BOOL; END_VAR

METHOD PUBLIC DAYTIME
 LIGHT:= FALSE;
END_METHOD

METHOD PUBLIC NIGHTTIME
 LIGHT:= TRUE;
END_METHOD
END_CLASS

FUNCTION_BLOCK ROOM_CTRL
 VAR_INPUT
 RM: ROOM; // Interface ROOM as type of a variable
 END_VAR

 VAR_EXTERNAL
 Actual_TOD: TOD; // Global time definition
 END_VAR

 IF (RM = NULL) // Important: test valid reference!
 THEN RETURN;
 END_IF;

 IF Actual_TOD >= TOD#20:15 OR
 Actual_TOD <= TOD#06:00
 THEN RM.NIGHTTIME(); // Call method of RM (dynamic binding) to
 // either LIGHTROOM.NIGHTTIME
 // or LIGHT2ROOM.NIGHTTIME)
 ELSE RM.DAYTIME();
 END_IF;
END_FUNCTION_BLOCK

// Applies keyword SUPER to call a method of the base class
CLASS LIGHT2ROOM EXTENDS LIGHTROOM // See above

VAR LIGHT2: BOOL; END_VAR // Second light

METHOD PUBLIC OVERRIDE DAYTIME
 SUPER.DAYTIME(); // Call of method in LIGHTROOM
 LIGHT2:= TRUE;
END_METHOD

METHOD PUBLIC OVERRIDE NIGHTTIME
 SUPER.NIGHTTIME() // Call of method in LIGHTROOM
 LIGHT2:= FALSE;
END_METHOD

END_CLASS

// Usage of polymorphism and dynamic binding
PROGRAM C
VAR
 MyRoom1: LIGHTROOM; // See above
 MyRoom2: LIGHT2ROOM; // See above
 My_Room_Ctrl: ROOM_CTRL; // See above
END_VAR

 My_Room_Ctrl(RM:= MyRoom1); // Calls in My_Room_Ctrl call methods of LIGHTROOM
 My_Room_Ctrl(RM:= MyRoom2); // Calls in My_Room_Ctrl call methods of LIGHT2ROOM
END_PROGRAM

6.6.5.8 ABSTRACT class and ABSTRACT method

6.6.5.8.1 General

The ABSTRACT modifier may be used with classes or with single methods. The Implementer
shall declare the implementation of these features according Table 48.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 135 –

6.6.5.8.2 Abstract class

The use of the ABSTRACT modifier in a class declaration indicates that a class is intended to
be a base type of other classes to be used for inheritance.

EXAMPLE CLASS ABSTRACT A1

The abstract class has the following features:

• An abstract class cannot be instantiated.

• An abstract class shall contain at least one abstract method.

A (non-abstract) class derived from an abstract class shall include actual implementations of
all inherited abstract methods.

An abstract class may be used as a type of an input or in-out parameter.

6.6.5.8.3 Abstract method

All methods in an abstract class that are marked as ABSTRACT shall be implemented by clas-
ses that derive from the abstract class, if the derived class itself is not marked as ABSTRACT.

Methods of a class which are inherited from an interface shall get the keyword ABSTRACT if
they are not yet implemented.

The keyword ABSTRACT shall not be used in combination with the keyword OVERRIDE.

The keyword ABSTRACT can only be used on methods of an abstract class.

EXAMPLE METHOD PUBLIC ABSTRACT M1

6.6.5.9 Method access specifiers (PROTECTED, PUBLIC, PRIVATE, INTERNAL)

For each method it shall be defined from where the call of the method is permitted. The ac-
cessibility of a method is defined by using one of the following access specifiers following the
keyword METHOD.

• PROTECTED

If inheritance is implemented then the access specifier PROTECTED is applicable. It indi-
cates for methods that they are only accessible from inside a class and from inside all de-
rived classes.

PROTECTED is default and may be omitted.

NOTE If inheritance is not supported, the default access specifier PROTECTED has the same effect as
PRIVATE.

• PUBLIC

The access specifier PUBLIC indicates for methods that they are accessible at any place
where the class can be used.

• PRIVATE

The access specifier PRIVATE indicates for methods that they are only accessible from
inside the class itself.

• INTERNAL

BS EN 61131-3:2013

 – 136 – 61131-3 © IEC:2013

If namespace is implemented then the access specifier INTERNAL is applicable. It indi-
cates for methods that they are only accessible from within the NAMESPACE, in which the
class is declared.

The access to method prototypes is implicitly always PUBLIC; therefore no access specifier
is used on method prototypes.

All improper uses shall be treated as errors.

EXAMPLE Access specifier for methods.

Illustration of the accessibility (call) of methods defined in class C:

a) Access specifiers: PUBLIC, PRIVATE, INTERNAL, PROTECTED

- PUBLIC M1 accessible by call M1 from inside class B (also class C)
- PRIVATE M2 accessible by call M2 from inside class C only
- INTERNAL M3 accessible by call M3 from inside NAMESPACE A (also class B , class C)
- PROTECTED M4 accessible by call M4 from inside class C_derived (also class C)

b) Method calls inside/outside:

- M2 is called from inside class C – with keyword THIS.
- M1, M3 and M4 are class C called from outside class C – with keyword SUPER for M4.

6.6.5.10 Variable access specifiers (PROTECTED, PUBLIC, PRIVATE, INTERNAL)

For the VAR section it shall be defined from where the access of the variables of this section
is permitted. The accessibility of the variables is defined by using one of the following access
specifiers following the keyword VAR.

NOTE The access specifiers can be combined with other specifiers like RETAIN or CONSTANT in any order.

• PROTECTED

If inheritance is implemented the access specifier PROTECTED is applicable. It indicates
for variables that they are only accessible from inside a class and from inside all derived
classes. PROTECTED is default and may be omitted.

If inheritance is implemented but not used, PROTECTED has the same effect as PRIVATE.

• PUBLIC

Call M1
THIS

NAMESPACE A

CLASS B

CLASS C

PRIVATE METHOD M2

PUBLIC METHOD M1

INTERNAL METHOD M3

PROTECTED METHOD M4

CLASS C_derived

Call M2

Call M3

a) Method call
My_Class

My_Class_derived

METHOD Mx Call M4
SUPER

BS EN 61131-3:2013

61131-3 © IEC:2013 – 137 –

The access specifier PUBLIC indicates for variables that they are accessible at any place
where the class can be used.

• PRIVATE

The access specifier PRIVATE indicates for variables that they are only accessible from
inside the class itself.

If inheritance is not implemented, PRIVATE is default and may be omitted.

• INTERNAL

If namespace is implemented the access specifier INTERNAL is applicable. It indicates for
variables that they are only accessible from within the NAMESPACE, in which the class is
declared.

All improper uses shall be treated as errors.

6.6.6 Interface

6.6.6.1 General

In the object oriented programming the concept of interface is introduced to provide for sepa-
ration of the interface specification from its implementation as a class. This allows different
implementations of a common interface specification.

An interface definition starts with the keyword INTERFACE followed by the interface name and
ends with the keyword END_INTERFACE (see Table 51).

The interface may contain a set of (implicitly public) method prototypes.

6.6.6.2 Usage of interface

The interface specification may be used in two ways:

a) In a class declaration.
This specifies which methods the class shall implement; e.g. for reuse of the interface
specification like illustrated in Figure 18.

b) As a type of a variable.
Variables whose type is interface are references to instances of classes and shall be as-
signed before usage. Interfaces shall not be used as in-out variables.

Table 51 – Interface

No. Description
Keyword

Explanation

1 INTERFACE ...
END_INTERFACE

Interface definition

 Methods and specifiers

2 METHOD...END_METHOD Method definition

 Inheritance

3 EXTENDS Interface inherits from interface

 Usage of interface

4a IMPLEMENTS interface Implements an interface in a class declaration

4b IMPLEMENTS multi-interfaces Implements more than one interface in a class declaration

4c Interface as type of a variable Referencing an implementation (function block instance) of the interface

BS EN 61131-3:2013

 – 138 – 61131-3 © IEC:2013

6.6.6.3 Method prototype

A method prototype is a restricted method declaration for the use with an interface. It contains
the method name, VAR_INPUT, VAR_OUTPUT and VAR_IN_OUT variables and the method re-
sult. A method prototype definition does not contain any algorithm (code) and temporary vari-
ables; i.e. it does not yet include the implementation.

The access to method prototypes is implicitly always PUBLIC; therefore no access specifier
is used in method prototypes.

Figure 18 – Interface with derived classes (Illustration)

6.6.6.4 Usage of interface in a class declaration (IMPLEMENTS)

6.6.6.4.1 General

A class can implement one or more INTERFACE(s) by using the keyword IMPLEMENTS.

EXAMPLE CLASS B IMPLEMENTS A1, A2;

The class shall implement the algorithms of all methods specified by the method prototype(s)
that are contained in the INTERFACE specification(s).

A class which does not implement all method prototypes shall be marked as ABSTRACT and
cannot be instantiated.

NOTE The implementation of a method prototype can have additional temporary variables in the method.

6.6.6.4.2 Errors

The following situations shall be treated as an error:

1. If a class does not implement all methods defined in the base (parent) interface and the
class is instantiated.

Illustration of INTERFACE general_drive with
 a) method prototypes (no algorithm)
 b) class drive_A and class drive_B: IMPLEMENTS the INTERFACE general_drive.
 These classes have methods with different algorithms.

b) CLASS IMPLEMENTS Interface

a) METHOD prototypes

Different
method algorithms

METHOD stop
Inputs & outputs & in-outs

Algorithm Y

INTERFACE general_drive

METHOD start
Inputs & outputs & in-outs

(no algorithm)

 CLASS drive_A
IMPLEMENTS

general_drive

METHOD start
Inputs & outputs & in-outs

Algorithm X

 CLASS drive_B
IMPLEMENTS

general_drive
 METHOD start

Inputs & outputs & in-outs
Algorithm V

METHOD stop
Inputs & outputs & in-outs

Algorithm W

METHOD stop
Inputs & outputs & in-outs

(no algorithm)

BS EN 61131-3:2013

61131-3 © IEC:2013 – 139 –

2. If a class implements a method with the same name as defined in the interface but with a
different signature.

3. If a class implements a method with the same name as defined in the interface but not
with the access specifier PUBLIC or INTERNAL.

6.6.6.4.3 Example

The example below illustrates the declaration of an interface in a class and the usage by an
external method call.

EXAMPLE Class implements an interface

// Declaration

INTERFACE ROOM
 METHOD DAYTIME END_METHOD // Called in day-time
 METHOD NIGHTTIME END_METHOD // in night-time
END_INTERFACE

CLASS LIGHTROOM IMPLEMENTS ROOM
 VAR LIGHT: BOOL; END_VAR

 METHOD PUBLIC DAYTIME
 LIGHT:= FALSE;
 END_METHOD

 METHOD PUBLIC NIGHTTIME
 LIGHT:= TRUE;
 END_METHOD
END_CLASS

// Usage (by an external method call)

PROGRAM A
 VAR MyRoom: LIGHTROOM; END_VAR; // class instantiation
 VAR_EXTERNAL Actual_TOD: TOD; END_VAR; // global time definition

 IF Actual_TOD >= TOD#20:15 OR Actual_TOD <= TOD#6:00
 THEN MyRoom.NIGHTTIME();
 ELSE MyRoom.DAYTIME();
 END_IF;

END_PROGRAM

6.6.6.5 Usage of interface as type of a variable

6.6.6.5.1 General

An interface may be used as the type of a variable. This variable is then a reference to an in-
stance of a class implementing this interface. The variable shall be assigned to an instance of
a class before it can be used. This rule applies for all cases where variables may be used.

The following values may be assigned to a variable of a type INTERFACE:

1. An instance of a class implementing the interface.

2. An instance of a class which is derived (by EXTENDS) from a class implementing the in-
terface.

3. Another variable of the same or derived type INTERFACE.

4. The special value NULL indicating an invalid reference. This is also the initial value of the
variable, if not initialized otherwise.

A variable of a type of an INTERFACE may be compared for equality with another variable of
the same type. The result shall be TRUE, if the variables reference the same instance or if
both variables equal to NULL.

BS EN 61131-3:2013

 – 140 – 61131-3 © IEC:2013

6.6.6.5.2 Error

The variable of type interface shall be assigned before usage to verify that a valid class in-
stance is assigned. Otherwise a runtime error will occur.

NOTE To avoid a runtime error the programming tool could provide a default “dummy” method. Another way is to
check in advance if it is assigned.

6.6.6.5.3 Example

Examples 1 and 2 illustrate the declaration and usage of interfaces as type of a variable.

EXAMPLE 1 Function block type with calls of the methods of an interface

// Declaration
INTERFACE ROOM
 METHOD DAYTIME END_METHOD // called during day-time
 METHOD NIGHTTIME END_METHOD // called during night-time
END_INTERFACE

CLASS LIGHTROOM IMPLEMENTS ROOM
 VAR LIGHT: BOOL; END_VAR

 METHOD PUBLIC DAYTIME
 LIGHT:= FALSE;
 END_METHOD

 METHOD PUBLIC NIGHTTIME
 LIGHT:= TRUE;
 END_METHOD
END_CLASS

FUNCTION_BLOCK ROOM_CTRL
 VAR_INPUT RM: ROOM; END_VAR
 // Interface ROOM as type of (input) variable
 VAR_EXTERNAL
 Actual_TOD: TOD; END_VAR // Global time definition

 IF (RM = NULL) // Important: test valid reference!
 THEN RETURN;
 END_IF;

 IF Actual_TOD >= TOD#20:15 OR
 Actual_TOD <= TOD#06:00
 THEN RM.NIGHTTIME(); // Call method of RM
 ELSE RM.DAYTIME();
 END_IF;
END_FUNCTION_BLOCK

// Usage

PROGRAM B
 VAR // Instantiations
 My_Room: LIGHTROOM; // See LIGHTROOM IMPLEMENTS ROOM
 My_Room_Ctrl: ROOM_CTRL; // See ROOM_CTRL above
 END_VAR

 My_Room_Ctrl(RM:= My_Room);
 // Calling FB with passing class instance as input

END_PROGRAM

BS EN 61131-3:2013

61131-3 © IEC:2013 – 141 –

In this example a function block declares a variable of the type of an interface as parameter. The call of the func-
tion block instance passes (as function block input, output, in-out, or result) an instance (reference) of a class im-
plementing the interface to this variable. Then the method called in the class uses the methods of the passed class
instance. By this usage it is possible to pass instances of different classes implementing the interface.

Declaration:
Interface ROOM with two methods and class LIGHTROOM implementing the interface.

The function block ROOM_CTRL with input variable RM which has the type of interface ROOM.
ROOM_CTRL calls methods of the passed class which implements the interface.

Usage:
Program B instantiates the class My_Room and the function block My_Room_Ctrl
and calls the function block My_Room_Ctrl with passing the class My_Room to input variable RM of type interface
ROOM.

BS EN 61131-3:2013

 – 142 – 61131-3 © IEC:2013

EXAMPLE 2 Illustration of the relationship of Example 1 above.

METHOD DAYTIME

METHOD NIGHTTIME

INTERFACE ROOM

FB ROOM_CTRL

 VAR_INPUT
 RM : ROOM;

... RM.DAYTIME ...
... RM.NIGHTTIME ...

(Class type)

Declaration:

Usage:

FB ROOM_CTRL

VAR_INPUT
 RM : ROOM;

... RM.DAYTIME ...
... RM.NIGHTTIME ...

My_Room_Ctrl

d) Instantiation : ROOM_CTRL c) Instantiation : MyRoom

Usage:
a) INTERFACE in a FB declaration

FB IMPLEMENTS interface

METHOD DAYTIME

METHOD NIGHTTIME

CLASS LIGHTROOM

(FB type)

METHOD DAYTIME

METHOD NIGHTTIME

CLASS LIGHTROOM

My Room

Usage:
b) INTERFACE ROOM as type of variable RM

My_Room

NOTE The function block has no methods imple-
mented but calls methods of passed class!

e) Call:
Passing FB Instance

BS EN 61131-3:2013

61131-3 © IEC:2013 – 143 –

6.6.6.6 Interface inheritance (EXTENDS)

6.6.6.6.1 General

For the purpose of the PLC languages the concept of inheritance and implementation defined
in the general object oriented programming is here adopted as a way to create new elements
as illustrated in Figure 19 a), b), c) below.

a) Interface inheritance

A derived (child) interface EXTENDS a base (parent) interface that has already been de-
fined or

b) Class implementation

A derived class IMPLEMENTS one or more interface(s) that has/have already been defined
or

c) Class inheritance

A derived class EXTENDS base class that has already been defined.

Illustration of the hierarchy of inheritance

a) Interface inheritance using keyword EXTENDS
b) Class implementation of interface(s) using keyword IMPLEMENTS
c) Class inheritance using keyword EXTENDS and OVERRIDE

Figure 19 – Inheritance of interface and class (Illustration)

The interface inheritance as shown in Figure 19 a) is the first of three inheritance/ implemen-
tation levels. Based on an existing interface one or more interfaces may be derived.

An interface may be derived from one or more already existing interface(s) (base interfaces)
using the keyword EXTENDS.

CLASS X EXTENDS B
METHOD (ma), (mb), (mc), md

CLASS X1 EXTENDS X
METHOD OVERRIDE mb

METHOD (ma), mb, (mc), (md)

CLASS X11 EXTENDS X1
METHOD (ma), (mb), (mc), (md), mf

CLASS X12 EXTENDS X1
METHOD (ma), (mb), (mc), (md), mg

INTERFACE A
METHOD ma

INTERFACE A1 EXTENDS A
METHOD (ma), mb

INTERFACE A2 EXTENDS A
METHOD (ma), mc

CLASS C
METHOD mf

c) Class inheritance
 (EXTENDS)

b) Class implementation
 (IMPLEMENTS)

IMPLEMENTS

EXTENDS

EXTENDS

No multi-inheritance

Multi-implementation

CLASS B IMPLEMENTS A1, A2
METHOD (ma), (mb), (mc)

EXTENDS

a) Interface inheritance
 (EXTENDS)

(also partially
as ABSTRACT)

CLASS C1 EXTENDS C
METHOD (mf), mg

BS EN 61131-3:2013

 – 144 – 61131-3 © IEC:2013

EXAMPLE INTERFACE A1 EXTENDS A

The following rules shall apply:

1. The derived (child) interface inherits without further declarations all method prototypes
from its base (parent) interfaces.

2. A derived interface can inherit from an arbitrary number of base interfaces.
3. The derived interface may extend the set of prototype methods; i.e. it may have method

prototypes in addition to its base interface and thus create new functionality.
4. The interface used as a base interface, may itself be a derived interface. Then it passes

on to its derived interfaces also the method prototypes it inherited.
 This may be repeated multiple times.
5. If the base interface changes its definition, all derived interfaces (and their children) have

also this changed functionality.

6.6.6.6.2 Error

The following situation shall be treated as error:

1. An interface defines an additional method prototype (according rule 3) with the same
name of a method prototype of one of its base interfaces.

2. An interface is its own base interface, whether directly or indirectly, i.e. recursion is not
permitted.

NOTE The OVERRIDE feature, as defined in 6.6.5.5 for classes, is not applicable for interfaces.

6.6.6.7 Assignment attempt

6.6.6.7.1 General

The assignment attempt is used to check if the instance implements the given interface (Ta-
ble 52). This is applicable for classes and function block types.

If the referenced instance is of a class or function block type that implements the interface,
the result is a valid reference to this instance. Otherwise the result is NULL.

The assignment attempt syntax can also be used for safe casts from interface references to
references to classes (or function block types), or from one reference to a base type to a ref-
erence to a derived type (downcast).

The result of an assignment attempt shall be checked to be unequal to NULL before used.

6.6.6.7.2 Textual representation

In Instruction List (IL) the operator “ST?” (Store) is used as shown in the following example.

EXAMPLE 1

 LD interface2 // in IL

 ST? interface1

In Structured Text (ST) the operator “?=” is used as shown in the following example.

EXAMPLE 2

 interface1 ?= interface2; // in ST

BS EN 61131-3:2013

61131-3 © IEC:2013 – 145 –

6.6.6.7.3 Graphical representation

In graphical languages the following function is used:

EXAMPLE 1
 +--------------+
interface2 ---│ ?= │--- interface1
 +--------------+

EXAMPLE 2 Assignment attempt with interface references

A successful and a failing assignment attempt with interface references
// Declaration

CLASS C IMPLEMENTS ITF1, ITF2
END_CLASS

// Usage

PROGRAM A
 VAR
 inst: C;
 interf1: ITF1;
 interf2: ITF2;
 interf3: ITF3;
 END_VAR

interf1:= inst; // interf1 contains now a valid reference
interf2 ?= interf1; // interf2 will contain a valid reference
 // equal to interf2:= inst;
interf3 ?= interf1; // interf3 will be NULL

END_PROGRAM

BS EN 61131-3:2013

 – 146 – 61131-3 © IEC:2013

EXAMPLE 3 Assignment attempt with references
// Declaration

CLASS ClBase IMPLEMENTS ITF1, ITF2
END_CLASS

CLASS ClDerived EXTENDS ClBase
END_CLASS

// Usage
PROGRAM A
 VAR
 instbase: ClBase;
 instderived:ClDerived;
 rinstBase1, pinstBase2: REF_TO ClBase;
 rinstDerived1, rinstDerived2: REF_TO ClDerived;
 rinstDerived3, rinstDerived4: REF_TO ClDerived;
 interf1: ITF1;
 interf2: ITF2;
 interf3: ITF3;
 END_VAR

rinstBase1:= REF(instBase); // rinstbase1 references base class
rinstBase2:= REF(instDerived); // rinstbase2 references derived class

rinstDerived1 ?= rinstBase1; // rinstDerived1 == NULL
rinstDerived2 ?= rinstBase2; // rinstDerived2 will contain a valid
 // reference to instDerived
interf1:= instbase; // interf1 is a reference to base class
interf2:= instderived; // interf2 is a reference to derived class

rinstDerived3 ?= interf1; // rinstDerived3 == NULL
rinstDerived4 ?= interf2; // rinstDerived4 will contain a valid
 // reference to instDerived
END_PROGRAM

The result of an assignment attempt shall be checked to be unequal to NULL before used.

Table 52 – Assignment attempt

No. Description Example

1 Assignment attempt with interfaces using ?= See above

2 Assignment attempt with references using ?= See above

6.6.7 Object oriented features for function blocks

6.6.7.1 General

The function block concept of IEC 61131-3:2003 is extended to support the object oriented
paradigm using the concepts as defined for classes.

• Methods used additionally in function blocks

• Interfaces implemented additionally by function blocks

• Inheritance additionally of function blocks

For the object oriented function blocks all features of the function blocks defined in Table 40
are applicable.

Additionally the Implementer of object oriented function blocks shall provide an inherently
consistent subset of the object oriented function block features defined in the following Table
53.

BS EN 61131-3:2013

http://dx.doi.org/10.3403/02829375

61131-3 © IEC:2013 – 147 –

Table 53 – Object oriented function block

No. Description
Keyword

Explanation

1 Object oriented function block Object oriented extension of the function block concept

1a FINAL specifier Function block cannot be used as a base function block.

 Methods and specifiers

5 METHOD...END_METHOD Method definition

5a PUBLIC specifier Method may be called from anywhere.

5b PRIVATE specifier Method may only be called from inside the defining POU.

5c INTERNAL specifier Method may only be called from inside the same namespace.

5d PROTECTED specifier Method may only be called from inside the defining POU
and its derivations (default).

5e FINAL specifier Method shall not be overridden.

 Usage of interface

6a IMPLEMENTS interface Implements an interface in a function block declaration

6b IMPLEMENTS multi-interfaces Implements more than one interface in a function block declaration

6c Interface as type of a variable Referencing an implementation (function block instance) of the in-
terface

 Inheritance

7a EXTENDS Function block inherits from base function bloc.k

7b EXTENDS Function block inherits from base class.

8 OVERRIDE Method overrides base method – see dynamic name binding.

9 ABSTRACT Abstract function block – at least one method is abstract.

Abstract method – this method is abstract.

 Access reference

10a THIS Reference to own methods

10b SUPER Access reference to method in base function block

10c SUPER() Access reference to body in base function block

 Variable access specifiers

11a PUBLIC specifier The variable may be accessed from anywhere.

11b PRIVATE specifier The variable may only be accessed from inside the defining POU.

11c INTERNAL specifier The variable may only be accessed from inside the same
namespace.

11d PROTECTED specifier The variable may only be accessed from inside the defining POU
and its derivations (default).

 Polymorphism

12a with VAR_IN_OUT
with equal signature

VAR_IN_OUT of a (base) FB type may be assigned an instance of
a derived FB type without additional VAR_IN_OUT, VAR_INPUT or
VAR_OUTPUT-variables.

12b With VAR_IN_OUT
with compatible signature

VAR_IN_OUT of a (base) FB type may be assigned an instance of
a derived FB type without additional VAR_IN_OUT-variables.

12c with reference
with equal signature

A reference to a (base) FB type may be assigned the address of an
instance of a derived FB type without additional VAR_IN_OUT,
VAR_INPUT or VAR_OUTPUT-variables.

BS EN 61131-3:2013

 – 148 – 61131-3 © IEC:2013

No. Description
Keyword

Explanation

12d with reference
with compatible signature

A reference to a (base) FB type may be assigned the address of an
instance of a derived FB type without additional VAR_IN_OUT –
variables.

6.6.7.2 Methods for function blocks

6.6.7.2.1 General

The concept of methods is adopted as a set of optional language elements defined within the
function block type definition.

Methods may be applied to define the operations to be performed on the function block in-
stance data.

6.6.7.2.2 Variants of a function block

A function block may have a function block body and additionally a set of methods. Since the
FB body and/or the methods may be omitted, there are three variants of the function block.
This is shown in the example in Figure 20 a), b), c).

a) Function block with a FB body only.
This function block is known from the IEC 61131-3: 2003.
In this case the function block has no methods implemented. The elements of the function
block (inputs, outputs, etc.) and the call of the function block are shown in the example in
Figure 20 a).

b) Function block with FB body and methods.
Methods shall support the access to their own locally defined variables as well as to varia-
bles defined in the function block declaration sections of the var_inputs, the var_outputs or
the vars.

c) Function block with methods only.
In this case this function block has an empty function block body implemented. The ele-
ments of the function block and the call of a method are shown in the example in Figure
20 b)

In this case this function block can also be declared as a class.

BS EN 61131-3:2013

http://dx.doi.org/10.3403/00316105U

61131-3 © IEC:2013 – 149 –

Illustration of the elements and the call of a function block with body and/or methods.
The example also shows the permitted and not permitted assignments and reads of inputs and outputs.

a) Function block with body only / Function block call:
- FB inputs, outputs are static and are accessible from outside
- also independent of the FB call.

I (in1:= A, inout:= B, out1 => Y);

Assignment of inputs from outside:
I.in1 := A;
I.inout:= B; // Not permitted. In call only!

Read of outputs from outside:
Y:= I.out1; // Permitted! Different to b)

c) Function block with methods only (i.e. empty body) / Method call:
- Method inputs, outputs, vars, and result are temporary (not static)
- but accessible from outside – in call only!

R1:= I.method1(inm1:= A, outm1 => Y);
 or // usage of the result is optional

I.method1(inm1:= A, outm1 => Y);

Assignment of method inputs from outside:
 I.inm1 := A; // Not permitted; in call only!

Read of method outputs from outside:
 Y:= I.outm1; // Not permitted.In call only

b) Combined function block with body and methods: including a) and c)

Figure 20 – Function block with optional body and methods (Illustration)

6.6.7.2.3 Method declaration and execution

A function block may have a set of methods as illustrated in Figure 20 c).

The declaration of a method shall comply with the following rules additionally to the rules con-
cerning methods of a class:

1. The methods are declared within the scope of a function block type.
2. In the textual declaration the methods are listed between the function block declaration

part and the function block body.

The execution of a method shall comply with the following rules additionally to the methods of
a class:

3. All methods have read/write access to the static variables declared in the function block:
Inputs (if not of data type BOOL R_EDGE or BOOL F_EDGE), outputs, static variables and
externals.

in1
inout

I

T

out1
inout

Y

A
B

FB type

FB body
algorithm

externals

vars

(temps) outputs inputs

FB instance

(in-outs)

inm1

I
FB.method1

outm1 A

(vars) (inputs) (result)

m_1 algorithm

(outputs)

(vars)

method_i

(inputs) (result)

m_i algorithm

(outputs)

method_1

FB continued

(in-outs)

R1

Y

This graphical representa-
tion of the method is for
illustration only.

Temporary parameters
are parenthesized.

This graphical representa-
tion of the method is for
illustration only.

Temporary parameters
are parenthesized.

BS EN 61131-3:2013

 – 150 – 61131-3 © IEC:2013

4. A method has no access to the temporary FB variables VAR_TEMP and the VAR_IN_OUT
variables.

5. The method variables are not accessible by the FB body (algorithm).

6.6.7.2.4 Method call representation

The methods can be called as defined for classes in textual languages and in graphical lan-
guages.

6.6.7.2.5 Method access specifiers (PROTECTED, PUBLIC, PRIVATE, INTERNAL)

For each method it shall be defined from where the call of the method is permitted.

6.6.7.2.6 Variable access specifiers (PROTECTED, PUBLIC, PRIVATE, INTERNAL)

For the VAR section it shall be defined from where the access of the variables of this section
is permitted.

The access to input and output variables is implicitly always PUBLIC, therefore no access
specifier is used on input and output variable sections. Output variables are implicitly read-
only. In-out variables can only be used in the function block body and within the call state-
ment. The access to variables of the VAR_EXTERNAL section is implicitly always PROTECTED;
therefore no access specifier shall be used on these variables.

6.6.7.2.7 Function block inheritance (EXTENDS, SUPER, OVERRIDE, FINAL)

6.6.7.2.8 General

The inheritance of function block is like the inheritance of classes. Based on an existing class
or function block type one or more function block types may be derived. This may be repeated
multiple times.

6.6.7.2.9 SUPER() in the body of a derived function block

The derived function blocks and their base function block may each have a function block
body. The function block body is not automatically inherited from the base function block. It is
empty by default. It can be called using SUPER().

In this case the rules above for EXTENDS of a function block and additionally the following
rules apply:

1. The body (if any) of the derived function block type will be executed when the function
block is called.

2. To execute additionally the body of the base function block (if any) in the derived function
block the call of SUPER() shall be used. The call of SUPER() has no parameters.

The call SUPER() shall occur once in the function block body and shall not be in a loop.

3. The names of the variables in the base and the derived function blocks shall be unique.
4. The call of the function block shall be bound dynamically.

a) A derived function block type can be used in all places where its base function block
type can be used.

b) A derived function block type can be used in all places where its base class type can
be used.

5. SUPER() may only be called in the function block body, not in the method of a function
block.

Figure 21 shows examples for SUPER():

BS EN 61131-3:2013

61131-3 © IEC:2013 – 151 –

Figure 21 – Inheritance of function block body with SUPER() (Example)

6.6.7.2.10 OVERRIDE a method

A derived function block type may override (replace) one or more inherited method(s) by an
own implementation of the method(s).

6.6.7.2.11 FINAL for function blocks and methods

A method with the specifier FINAL shall not be overridden.

A function block with the specifier FINAL cannot be a base function block.

6.6.7.3 Dynamic name binding (OVERRIDE)

Name binding is the association of a method name or function block name with a method or a
function block implementation and is used as defined in 6.6.5.6 also for methods of function
blocks.

VAR_INPUT a: INT;
VAR_OUTPUT x: INT;

(* body:*)
x := a+1;
NIGHTTIME

(FB type)

VAR_INPUT b: INT;

SUPER();
(* includes here
the body of BASE*)
x := 3*x+b;

FB DERIVED_1
EXTENDS BASE

(FB type)

FB BASE

VAR_INPUT a: INT;
VAR_INPUT b: INT;
VAR OUTPUT x: INT;

x := a+1;

x := 3*x+b;

FB DERIVED_1
EXTENDS BASE

Including of the body with SUPER()

(FB type)

(FB type)

FB DERIVED_2
EXTENDS DERIVED_1

VAR_IN_OUT c: INT;

SUPER();(*includes
here the body of
DERIVED_1 *)

c := x/c;

a := a+1;
x := 3*x+b;

c := x/c;

VAR_INPUT a: INT;
VAR_INPUT b: INT;
VAR_IN_OUT c: INT;
VAR_OUTPUT x: INT;

FB DERIVED_2
EXTENDS DERIVED_1

Including of the body with SUPER()

(FB type)

BS EN 61131-3:2013

 – 152 – 61131-3 © IEC:2013

6.6.7.4 Method call of own and base FB (THIS, SUPER) and polymorphism

To access a method defined inside or outside the own function block there are the keywords
THIS and SUPER available.

6.6.7.5 ABSTRACT function block and ABSTRACT method

The ABSTRACT modifier may also be used with function blocks. The Implementer shall declare
the implementation of these features.

6.6.7.6 Method access specifiers (PROTECTED, PUBLIC, PRIVATE, INTERNAL)

For each method it shall be defined from where the call of the method is permitted, as defined
for classes.

6.6.7.7 Variable access specifiers (PROTECTED, PUBLIC, PRIVATE, INTERNAL)

For the VAR section it shall be defined from where the access of the variables of this section
is permitted as defined in reference to classes.

The access to input and output variables is implicitly always PUBLIC, therefore no access
specifier is used on input and output variable sections. Output variables are implicitly read-
only. In-out variables can only be used in the function block body and within the call state-
ment. The access to variables of the VAR_EXTERNAL section is implicitly always PROTECTED;
therefore no access specifier shall be used on these variables.

6.6.8 Polymorphism

6.6.8.1 General

There are four cases in which polymorphism takes place, as shown in 6.6.8.2, 6.6.8.3, 6.6.8.4
and 6.6.8.5 below.

6.6.8.2 Polymorphism with INTERFACE

Since an interface cannot be instantiated, only derived types may be assigned to an interface
reference. Thus, any call of a method via an interface reference is a case of dynamic binding.

6.6.8.3 Polymorphism with VAR_IN_OUT

An in-out variable of a type may be assigned an instance of a derived function block type, if
the derived function block type has no additional in-out variables. Whether or not an instance
of a derived function block type with additional input and output variables can be assigned is
Implementer specific.

Thus, the call of a function block and the call of function block methods via a VAR_IN_OUT-
instance are cases of dynamic binding.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 153 –

EXAMPLE 1 Dynamic binding of function block calls

If the derived function blocks added an in-out variable, then dynamic binding of the function block call would result
in INDIRECT_3 in the evaluation of the not assigned in-out variable c and would cause a runtime error. Therefore
this assignment of the instance of the derived function blocks is an error.

EXAMPLE 2

CLASS LIGHTROOM
 VAR LIGHT: BOOL; END_VAR
 METHOD PUBLIC SET_DAYTIME
 VAR_INPUT: DAYTIME: BOOL; END_VAR
 LIGHT:= NOT(DAYTIME);
 END_METHOD
END_CLASS

X

(FB type)

FB INDIRECT

VAR_IN_OUT BASE_1:
BASE;

FB INDIRECT

VAR_IN_OUT B:
BASE;

BASE_A

FB INDIRECT

VAR_IN_OUT BASE_1:
BASE;

 x := a+1;
x := 3*x+b;
x := ..

INDIRECT_2

DERIVED_1_A

VAR
BASE_A: BASE;
DERIVED_2_A: DERIVED_2;
END_VAR;

INDIRECT_1

 x := a+1 //x=124

BASE
a x 123

BASE_1

BASE
a x 123

BASE_1

BASE
a x 123

BASE_1

is dynamically bound

FB INDIRECT

VAR_IN_OUT BASE_1:
BASE;

 error

INDIRECT_3

DERIVED_2_A

BASE
a x 123

BASE_1

not allowed

BS EN 61131-3:2013

 – 154 – 61131-3 © IEC:2013

CLASS LIGHT2ROOM EXTENDS LIGHTROOM
 VAR LIGHT2: BOOL; END_VAR // Second light

 METHOD PUBLIC OVERRIDE SET_DAYTIME
 VAR_INPUT: DAYTIME: BOOL; END_VAR
 SUPER.SET_DAYTIME(DAYTIME); // Call of LIGHTROOM.SET_DAYTIME
 LIGHT2:= NOT(DAYTIME);
 END_METHOD
END_CLASS

FUNCTION_BLOCK ROOM_CTRL
 VAR_IN_OUT RM: LIGHTROOM; END_VAR
 VAR_EXTERNAL Actual_TOD: TOD; END_VAR // Global time definition
 // In this case the class method to call is bound dynamically.
 // RM may refer to a derived class!

 RM.SET_DAYTIME(DAYTIME:= (Actual_TOD <= TOD#20:15) AND (Actual_TOD >= TOD#6:00));
END_FUNCTION_BLOCK

// Usage of polymorphism and dynamic binding with reference

PROGRAM D
VAR
 MyRoom1: LIGHTROOM;
 MyRoom2: LIGHT2ROOM;
 My_Room_Ctrl: ROOM_CTRL;
END_VAR

 My_Room_Ctrl(RM:= MyRoom1);
 My_Room_Ctrl(RM:= MyRoom2);
END_PROGRAM;

6.6.8.4 Polymorphism with reference

An instance of a derived type may be assigned to a reference to a base class.

A variable with a type may be assigned a reference to a derived function block type, if the de-
rived function block type has no additional in-out variables. Whether or not a reference to de-
rived function block type with additional input and output variables can be assigned is Imple-
menter specific.

Thus, the call of a function block and the call of function block methods via a dereferentiation
of a reference are cases of dynamic binding.

EXAMPLE 1 Alternative implementation of the lightroom example
FUNCTION_BLOCK LIGHTROOM

VAR LIGHT: BOOL; END_VAR

VAR_INPUT: DAYTIME: BOOL; END_VAR
LIGHT:= NOT(DAYTIME);

END_FUNCTION_BLOCK

FUNCTION_BLOCK LIGHT2ROOM EXTENDS LIGHTROOM

VAR LIGHT2: BOOL; END_VAR // Second light

SUPER(); // Call of LIGHTROOM
LIGHT2:= NOT(DAYTIME);

END_FUNCTION_BLOCK

BS EN 61131-3:2013

61131-3 © IEC:2013 – 155 –

FUNCTION_BLOCK ROOM_CTRL
 VAR_INPUT RM: REF_TO LIGHTROOM; END_VAR
 VAR_EXTERNAL Actual_TOD: TOD; END_VAR // Global time definition

// in this case the function block to call is bound dynamically
// RM may refer to a derived function block type!

IF RM <> NULL THEN
 RM^.DAYTIME:= (Actual_TOD <= TOD#20:15) AND (Actual_TOD >= TOD#6:00));
END_IF
END_FUNCTION_BLOCK

// Usage of polymorphism and dynamic binding with reference
PROGRAM D
VAR
 MyRoom1: LIGHTROOM; // see above
 MyRoom2: LIGHT2ROOM; // see above
 My_Room_Ctrl: ROOM_CTRL; // see above
END_VAR

My_Room_Ctrl(RM:= REF(MyRoom1));
My_Room_Ctrl(RM:= REF(MyRoom2));
END_PROGRAM;

6.6.8.5 Polymorphism with THIS

During runtime, THIS can hold a reference to the current function block type or to all of its
derived function block types. Thus, any call of a function block method via THIS is a case of
dynamic binding.

NOTE In special circumstances, e.g. if a function block type or a method is FINAL, or if there are no derived func-
tion block types, the type of an in-out variable, a reference or THIS can well be determined during compile time. In
this case no dynamic binding is necessary.

6.7 Sequential Function Chart (SFC) elements

6.7.1 General

Subclause 6.7 defines sequential function chart (SFC) elements for use in structuring the in-
ternal organization of a programmable controller program organization unit, written in one of
the languages defined in this standard, for the purpose of performing sequential control func-
tions. The definitions in 6.7 are derived from IEC 60848, with the changes necessary to con-
vert the representations from a documentation standard to a set of execution control elements
for a programmable controller program organization unit.

The SFC elements provide a means of partitioning a programmable controller program organ-
ization unit into a set of steps and transitions interconnected by directed links. Associated
with each step is a set of actions, and with each transition is associated a transition condition.

Since SFC elements require storage of state information, the program organization units
which can be structured using these elements are function blocks and programs.

If any part of a program organization unit is partitioned into SFC elements, the entire program
organization unit shall be so partitioned. If no SFC partitioning is given for a program organi-
zation unit, the entire program organization unit shall be considered to be a single action
which executes under the control of the calling entity.

6.7.2 Steps

A step represents a situation in which the behavior of a program organization unit with respect
to its inputs and outputs follows a set of rules defined by the associated actions of the step. A
step is either active or inactive. At any given moment, the state of the program organization
unit is defined by the set of active steps and the values of its internal and output variables.

BS EN 61131-3:2013

http://dx.doi.org/10.3403/00316574U

 – 156 – 61131-3 © IEC:2013

As shown in Table 54, a step shall be represented graphically by a block containing a step
name in the form of an identifier or textually by a STEP...END_STEP construction. The di-
rected link(s) into the step can be represented graphically by a vertical line attached to the top
of the step. The directed link(s) out of the step can be represented by a vertical line attached
to the bottom of the step. Alternatively, the directed links can be represented textually by the
TRANSITION... END_TRANSITION construct.

The step flag (active or inactive state of a step) can be represented by the logic value of a
Boolean structure element ***.X, where *** is the step name, as shown in Table 54. This
Boolean variable has the value 1 when the corresponding step is active and 0 when it is inac-
tive. The state of this variable is available for graphical connection at the right side of the step
as shown in Table 54.

Similarly, the elapsed time, ***.T, since initiation of a step can be represented by a structure
element of type TIME, as shown in Table 54. When a step is deactivated, the value of the
step elapsed time shall remain at the value it had when the step was deactivated. When a
step is activated, the value of the step elapsed time shall be reset to t#0s.

The scope of step names, step flags, and step times shall be local to the program organiza-
tion unit in which the steps appear.

The initial state of the program organization unit is represented by the initial values of its in-
ternal and output variables, and by its set of initial steps, i.e., the steps which are initially ac-
tive. Each SFC network, or its textual equivalent, shall have exactly one initial step.

An initial step can be drawn graphically with double lines for the borders. When the character
set defined in 6.1.1 is used for drawing, the initial step shall be drawn as shown in Table 54.

For system initialization the default initial elapsed time for steps is t#0s, and the default initial
state is BOOL#0 for ordinary steps and BOOL#1 for initial steps. However, when an instance of
a function block or a program is declared to be retentive for instance the states and (if sup-
ported) elapsed times of all steps contained in the program or function block shall be treated
as retentive for system initialization.

The maximum number of steps per SFC and the precision of step elapsed time are implemen-
tation dependencies.

It shall be an error if:

1. an SFC network does not contain exactly one initial step;
2. a user program attempts to assign a value directly to the step state or the step time.

Table 54 – SFC step

No. Description Representation

1a Step – graphical form with directed links |
 +-----+
 | *** |
 +-----+
 |

1b Initial step – graphical form with directed link |
 +=======+
 || *** ||
 || ||
 +=======+
 |

2a Step – textual form without directed links STEP ***:
 (* Step body *)
END_STEP

BS EN 61131-3:2013

61131-3 © IEC:2013 – 157 –

No. Description Representation

2b Initial step – textual form without directed links INITIAL_STEP ***:

 (* Step body *)
END_STEP

3a a Step flag – general form ***.X = BOOL#1
when *** is active, BOOL#0 otherwise

 ***.X

3b a Step flag – direct connection of Boolean varia-
ble ***.X to right side of step

 |
 +-----+
 | *** |----
 +-----+
 |

4 a Step elapsed time – general form
***.T = a variable of type TIME

 ***.T

NOTE 1 The upper directed link to an initial step is not present if it has no predecessors.

NOTE 2 *** = step name

a When feature 3a, 3b, or 4 is supported, it shall be an error if the user program attempts to modify the associated
variable. For example, if S4 is a step name, then the following statements would be errors in the ST language
defined in 7.3:

 S4.X:= 1; (* ERROR *)
 S4.T:= t#100ms; (* ERROR *)

6.7.3 Transitions

A transition represents the condition whereby control passes from one or more steps preced-
ing the transition to one or more successor steps along the corresponding directed link. The
transition shall be represented by a horizontal line across the vertical directed link.

The direction of evolution following the directed links shall be from the bottom of the prede-
cessor step(s) to the top of the successor step(s).

Each transition shall have an associated transition condition which is the result of the evalua-
tion of a single Boolean expression. A transition condition which is always true shall be repre-
sented by the symbol 1 or the keyword TRUE.

A transition condition can be associated with a transition by one of the following means, as
shown in Table 55:

a) By placing the appropriate Boolean expression in the ST language physically or logically
adjacent to the vertical directed link.

b) By a ladder diagram network in the LD language physically or logically adjacent to the ver-
tical directed link.

c) By a network in the FBD language defined in 8.3, physically or logically adjacent to the
vertical directed link.

d) By a LD or FBD network whose output intersects the vertical directed link via a connector.

e) By a TRANSITION...END_TRANSITION construct using the ST language. This shall con-
sist of:

• the keywords TRANSITION FROM followed by the step name of the predecessor step
(or, if there is more than one predecessor, by a parenthesized list of predecessor
steps);

• the keyword TO followed by the step name of the successor step (or, if there is more
than one successor, by a parenthesized list of successor steps);

BS EN 61131-3:2013

 – 158 – 61131-3 © IEC:2013

• the assignment operator (:=), followed by a Boolean expression in the ST language,
specifying the transition condition;

• the terminating keyword END_TRANSITION.

f) By a TRANSITION...END_TRANSITION construct using the IL language. This shall con-
sist of:

• the keywords TRANSITION FROM followed by the step name of the predecessor step
(or, if there is more than one predecessor, by a parenthesized list of predecessor
steps), followed by a colon (:);

• the keyword TO followed by the step name of the successor step (or, if there is more
than one successor, by a parenthesized list of successor steps);

• beginning on a separate line, a list of instructions in the IL language, the result of
whose evaluation determines the transition condition;

• the terminating keyword END_TRANSITION on a separate line.

g) By the use of a transition name in the form of an identifier to the right of the directed link.
This identifier shall refer to a TRANSITION...END_TRANSITION construction defining
one of the following entities, whose evaluation shall result in the assignment of a Boolean
value to the variable denoted by the transition name:

• a network in the LD or FBD language;

• a list of instructions in the IL language;

• an assignment of a Boolean expression in the ST language.

The scope of a transition name shall be local to the program organization unit in which the
transition is located.

It shall be an error if any “side effect” (for instance, the assignment of a value to a variable
other than the transition name) occurs during the evaluation of a transition condition.

The maximum number of transitions per SFC and per step is Implementer specific.

Table 55 – SFC transition and transition condition

No. Description Example

1a Transition condition physically or logically adjacent
to the transition using ST language

 |
 +-----+
 |STEP7|
 +-----+
 |
 + bvar1 & bvar2
 |
 +-----+
 |STEP8|
 +-----+
 |

2a Transition condition physically or logically adjacent
to the transition using LD language

 |
 +-----+
 |STEP7|
 +-----+
 |
 + bvar1 & bvar2
 |
 +-----+
 |STEP8|
 +-----+
 |

BS EN 61131-3:2013

61131-3 © IEC:2013 – 159 –

No. Description Example

3a Transition condition physically or logically adjacent
to the transition using FBD language

 |
 +-----+
 |STEP7|
 +-------+ +-----+
 | & | |
bvar1 ---| |-----+
bvar2 ---| | |
 +-------+ +-----+
 |STEP8|
 +-----+
 |

4a Use of connector |
 +-----+
 |STEP7|
 +-----+
 |
 >TRANX>-------------+
 |
 +-----+
 |STEP8|
 +-----+
 |

5a Transition condition: Using LD language | bvar1 bvar2
 +---||-----||---->TRANX>
 |

6a Transition condition: Using FBD language +-------+
 | & |
 bvar1 ---| |-->TRANX>
 bvar2 ---| |
 +-------+

7b Textual equivalent of feature 1 using ST language STEP STEP7: END_STEP
TRANSITION FROM STEP7 TO STEP8
 := bvar1 & bvar2;
END_TRANSITION
STEP STEP8: END_STEP

8b Textual equivalent of feature 1 using IL language STEP STEP7: END_STEP
TRANSITION FROM STEP7 TO STEP 8:
 LD bvar1
 AND bvar2
END_TRANSITION

STEP STEP8: END_STEP

9a Use of transition name |
+-----+
|STEP7|
+-----+
 |
 + TRAN7 TO STEP8
 |
+-----+
|STEP8|
+-----+
|

10a Transition condition using LD language TRANSITION TRAN78 FROM STEP7 TO STEP8:
| |
| bvar1 bvar2 TRAN78 |
+---||-----||------()---+
| |
END_TRANSITION

11a Transition condition using FBD language TRANSITION TRAN78 FROM STEP7 TO STEP8:
 +-------+
 | & |
bvar1 ---| |--TRAN78
bvar2 ---| |
 +-------+
END_TRANSITION

BS EN 61131-3:2013

 – 160 – 61131-3 © IEC:2013

No. Description Example
12b Transition condition using IL language TRANSITION TRAN78 FROM STEP7 TO STEP8:

 LD bvar1
 AND bvar2
END_TRANSITION

13b Transition condition using ST language TRANSITION TRAN78 FROM STEP7 TO STEP8
 := bvar1 & bvar2;
END_TRANSITION

a If feature 1 of Table 54 is supported, then one or more of features 1, 2, 3, 4, 5, 6, 9, 10 or 11 of this table shall
be supported.

b If feature 2 of Table 54 is supported, then one or more of features 7, 8, 12 or 13 of this table shall be support-
ed.

6.7.4 Actions

6.7.4.1 General

An action can be a Boolean variable, a collection of instructions in the IL language, a collec-
tion of statements in the ST language , a collection of rungs in the LD language, a collection
of networks in the FBD language or a sequential function chart (SFC) organized .

Actions shall be declared via one or more of the mechanisms defined in 6.7.4.1 and shall be
associated with steps via textual step bodies or graphical action blocks. Control of actions
shall be expressed by action qualifiers.

It shall be an error if the value of a Boolean variable used as the name of an action is modi-
fied in any manner other than as the name of one or more actions in the same SFC.

A programmable controller implementation which supports SFC elements shall provide one or
more of the mechanisms defined in Table 56 for the declaration of actions. The scope of the
declaration of an action shall be local to the program organization unit containing the declara-
tion.

6.7.4.2 Declaration

Zero or more actions shall be associated with each step. A step which has zero associated
actions shall be considered as having a “WAIT” function, that is, waiting for a successor tran-
sition condition to become true.

Table 56 – SFC declaration of actions

No. Descriptiona,b Example

1 Any Boolean variable declared in a VAR or
VAR_OUTPUT block, or their graphical
equivalents, can be an action.

2l Graphical declaration in LD language +--+
| ACTION_4 |
+--+
	bvar1 bvar2 S8.X bOut1					
+---		-----		----		-----()---+
	+------+					
+----	EN ENO	bvar2				
	C--	LT	----------(S)---+			
	D--					
	+------+					
+--+

BS EN 61131-3:2013

61131-3 © IEC:2013 – 161 –

2s Inclusion of SFC elements in action +--+
| OPEN_VALVE_1 |
+--+
| | ... |
| +=================+ |
| || VALVE_1_READY || |
| +=================+ |
| | |
| + STEP8.X |
| | |
| +-----------------+ +---+-----------+ |
| | VALVE_1_OPENING |--| N |VALVE_1_FWD| |
| +-----------------+ +---+-----------+ |
| | ... |
+--+

2f Graphical declaration in FBD language +--+
| ACTION_4 |
+--+
| +---+ |
bvar1--	&	
bvar2--		-- bOut1
S8.X---------		
+---+ FF28		
+----+		
	SR	
+------+	Q1	- bOut2
C--	LT	--
D--		+----+
+------+		
+--+

3s Textual declaration in ST language ACTION ACTION_4:
 bOut1:= bvar1 & bvar2 & S8.X;
 FF28(S1:= (C<D));
 bOut2:= FF28.Q;
END_ACTION

3i Textual declaration in IL language ACTION ACTION_4:
 LD S8.X
 AND bvar1
 AND bvar2
 ST bOut1
 LD C
 LT D
 S1 FF28
 LD FF28.Q
 ST bOut2
END_ACTION

NOTE The step flag S8.X is used in these examples to obtain the desired result such that, when S8 is deactivated,
bOut2:= 0.

a If feature 1 of Table 54 is supported, then one or more of the features in this table, or feature 4 of Table 57, shall
be supported.

b If feature 2 of Table 54 is supported, then one or more of features 1, 3s, or 3i of this table shall be supported.

6.7.4.3 Association with steps

A programmable controller implementation which supports SFC elements shall provide one or
more of the mechanisms defined in Table 57 for the association of actions with steps. The
maximum number of action blocks per step is an implementation dependency.

BS EN 61131-3:2013

 – 162 – 61131-3 © IEC:2013

Table 57 – Step/action association

No. Description Example

1 Action block physically or logically adja-
cent to the step

 |
 +----+ +-----+----------+---+
 | S8 |--| L | ACTION_1 |DN1|
 +----+ |t#10s| | |
 | +-----+----------+---+
 + DN1
 |

2 Concatenated action blocks physically
or logically adjacent to the step

 |
 +----+ +-----+---------------------+---+
 | S8 |--| L | ACTION_1 |DN1|
 +----+ |t#10s| | |
 | +-----+---------------------+---+
 +DN1 | P | ACTION_2 | |
 | +-----+---------------------+---+
 | | N | ACTION_3 | |
 | +-----+---------------------+---+

3 Textual step body STEP S8:
 ACTION_1(L,t#10s,DN1);
 ACTION_2(P);
 ACTION_3(N);
END_STEP

4 a Action block "d" field +-----+----------------------+---+
 ----| N | ACTION_4 | |---
 +-----+----------------------+---+
 | bOut1:= bvar1 & bvar2 & S8.X; |
 | FF28 (S1:= (C<D)); |
 | bOut2:= FF28.Q; |
 +-----+----------------------+---+

 When feature 4 is used, the corresponding action name cannot be used in any other action block.

6.7.4.4 Action blocks

As shown in Table 58, an action block is a graphical element for the combination of a Boolean
variable with one of the action qualifiers to produce an enabling condition, according to the
rules for an associated action.

The action block provides a means of optionally specifying Boolean “indicator” variables, indi-
cated by the “c” field in Table 58, which can be set by the specified action to indicate its com-
pletion, timeout, error conditions, etc. If the “c” field is not present, and the “b” field specifies
that the action shall be a Boolean variable, then this variable shall be interpreted as the “c”
variable when required. If the “c” field is not defined, and the “b” field does not specify a
Boolean variable, then the value of the “indicator” variable is considered to be always FALSE.

When action blocks are concatenated graphically as illustrated in Table 57, such concatena-
tions can have multiple indicator variables, but shall have only a single common Boolean input
variable, which shall act simultaneously upon all the concatenated blocks.

The use of the “indicator”-variable is deprecated.

As well as being associated with a step, an action block can be used as a graphical element
in the LD or FBD.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 163 –

Table 58 – Action block

No. Description Graphical form/example

1 a "a": Qualifier as per 6.7.4.5 +-----+--------------+-----+
 ---| "a" | "b" | "c" |---
 +-----+--------------+-----+
 | "d" |
 | |
 +--------------------------+

2 "b": Action name

3 b "c": Boolean "indicator" variables
(deprecated)

 "d": Action using:

4i IL language

4s ST language

4l LD language

4f FBD language

5l Use of action blocks LD | S8.X bIn1 +---+------+---+ OK1 |
 +--| |----| |----| N | ACT1 |DN1|--()--+
 | +---+------+---+ |

5f Use of action blocks in FBD +---+ +---+------+-----+
 S8.X ---| & |----| N | ACT1 | DN1 |---OK1
 bIn1 ---| | +---+------+-----+
 +---+

 Field “a” can be omitted when the qualifier is “N”.
 Field “c” can be omitted when no indicator variable is used.

6.7.4.5 Action qualifiers

Associated with each step/action association or each occurrence of an action block shall be
an action qualifier. The value of this qualifier shall be one of the values listed in Table 59. In
addition, the qualifiers L, D, SD, DS, and SL shall have an associated duration of type TIME.

Table 59 – Action qualifiers

No. Description Qualifier

1 Non-stored (null qualifier) None

2 Non-stored N

3 overriding Reset R

4 Set (Stored) S

5 time Limited L

6 time Delayed D

7 Pulse P

8 Stored and time Delayed SD

9 Delayed and Stored DS

10 Stored and time Limited SL

11 Pulse (rising edge) P1

12 Pulse (falling edge) P0

6.7.4.6 Action control

The control of actions shall be functionally equivalent to the application of the following rules:

BS EN 61131-3:2013

 – 164 – 61131-3 © IEC:2013

a) Associated with each action shall be the functional equivalent of an instance of the
ACTION_CONTROL function block defined in Figure 22 and Figure 23. If the action is de-
clared as a Boolean variable, the Q output of this block shall be the state of this Boolean
variable. If the action is declared as a collection of statements or networks, then this col-
lection shall be executed continually while the A (activation) output of the
ACTION_CONTROL function block stands at BOOL#1. In this case, the state of the output Q
(called the "action flag") can be accessed within the action by reading a read-only Boolean
variable which has the form of a reference to the Q output of a function block instance
whose instance name is the same as the corresponding action name, for example,
ACTION1.Q.

The Implementer may opt for a simpler implementation as shown in Figure 23 b). In this
case, if the action is declared as a collection of statements or networks, then this collec-
tion shall be executed continually while the Q output of the ACTION_ CONTROL function
block stands at BOOL#1. In any case, the Implementer shall specify which one of the fea-
tures given in Table 60 is supported.

NOTE 1 The condition Q=FALSE will ordinarily be used by an action to determine that it is being executed for
the final time during its current activation.

NOTE 2 The value of Q will always be FALSE during execution of actions called by P0 and P1 qualifiers.

NOTE 3 The value of A will be TRUE for only one execution of an action called by a P1 or P0 qualifier. For all
other qualifiers, A will be true for one additional execution following the falling edge of Q.

NOTE 4 Access to the functional equivalent of the Q or A outputs of an ACTION_CONTROL function block from
outside of the associated action is an Implementer specific feature.

b) A Boolean input to the ACTION_CONTROL block for an action shall be said to have an as-
sociation with a step or with an action block, if the corresponding qualifier is equivalent to
the input name (N, R, S, L, D, P, P0, P1, SD, DS, or SL). The association shall be said to
be active if the associated step is active, or if the associated action block's input has the
value BOOL#1. The active associations of an action are equivalent to the set of active as-
sociations of all inputs to its ACTION_CONTROL function block.

A Boolean input to an ACTION_CONTROL block shall have the value BOOL#1 if it has at
least one active association and the value BOOL#0 otherwise.

c) The value of the T input to an ACTION_CONTROL block shall be the value of the duration
portion of a time-related qualifier (L, D, SD, DS, or SL) of an active association. If no such
association exists, the value of the T input shall be t#0s.

d) It shall be an error if one or more of the following conditions exist:

• More than one active association of an action has a time-related qualifier (L, D, SD, DS,
or SL).

• The SD input to an ACTION_CONTROL block has the BOOL#1 when the Q1 output of its
SL_FF block has the value BOOL#1.

• The SL input to an ACTION_CONTROL block has the value BOOL#1 when the Q1 output
of its SD_FF block has the value BOOL#1.

e) It is not required that the ACTION_CONTROL block itself be implemented, but only that the
control of actions be equivalent to the preceding rules. Only those portions of the action
control appropriate to a particular action need be instantiated, as illustrated in Figure 24.
In particular, note that simple MOVE (:=) and Boolean OR functions suffice for control of
Boolean variable actions if the latter's associations have only “N” qualifiers.

Figure 22 and Figure 23 summarize the parameter interface and the body of the
ACTION_CONTROL function block. Figure 24 shows an example of the action control.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 165 –

 +----------------+
 | ACTION_CONTROL |
BOOL |N Q|---BOOL
BOOL---|R A|---BOOL
BOOL---|S |
BOOL---|L |
BOOL---|D |
BOOL---|P |
BOOL---|P1 |
BOOL---|P0 |
BOOL---|SD |
BOOL---|DS |
BOOL---|SL |
TIME---|T |
 +----------------+

 +----------------+
 | ACTION_CONTROL |
BOOL |N Q|---BOOL
BOOL---|R |
BOOL---|S |
BOOL---|L |
BOOL---|D |
BOOL---|P |
BOOL---|P1 |
BOOL---|P0 |
BOOL---|SD |
BOOL---|DS |
BOOL---|SL |
TIME---|T |
 +----------------+

a) With “final scan” logic b) Without “final scan” logic

NOTE These interfaces are not visible to the user.

Figure 22 – ACTION_CONTROL function block – External interface (Summary)

 +---+
 +---O| & |---Q
 | +-----+ | |
N--|---| >=1 |--| |
 | S_FF | | +---+
R--+ +----+ | |
 | | RS | | |
S--|----------------------|S Q1|-----------------| |
 +----------------------|R1 | | |
 | +----+ +---+ | |
L--|---------+--------------------| & |----------| |
	L_TMR +--O				
	+-----+	+---+			
		TON			
+------	IN Q	---+ D_TMR			
+-------------	PT	+-----+			
	+-----+	TON			
D--	--	-----------------------------	IN Q	------	
+-----------------------------	PT				
	P_TRIG +-----+				
	+--------+				
		R_TRIG			
P--	--	------------	CLK Q	--------------------	
	SD_FF +--------+ SD_TMR				
	+----+ +-----+				
		RS		TON	
SD-	--	---	S Q1	----------------	IN Q
+--	---	R1	+------------	PT	
	+----+	DS_TMR +-----+ DS_FF			
+------------+ +-----+ +----+					
		TON		RS	
DS-	--	----------------	IN Q	----------	S Q1
+----------------	PT	+---	R1		
	+-----+	+----+			
+--	-----------------------------+				
	SL_FF				
	+----+				
		RS	+---+		
SL-|--|--------|S Q1|--+------------------| & |--| |
 +--|--------|R1 | | SL_TMR +--O| | +-----+
 | +----+ | +-----+ | +---+
 | | | TON | |
 | +----|IN Q|---+ +-----+
T-----+---------------------|PT | +--------+ | >=1 |
 +-----+ | F_TRIG | Q---| |---A
 +--------+ Q---|CLK Q|---------| |
 | R_TRIG | +--------+ | |
P1--------------|CLK Q|----------------------------------| |
 +--------+ +--------+ | |
 | F_TRIG | | |
P0-----------------------------|CLK Q|-------------------| |
 +--------+ +-----+

a) Body with “final scan” logic

BS EN 61131-3:2013

 – 166 – 61131-3 © IEC:2013

 +---+
 +---O| & |---Q
 | +-----+ | |
N--|---| >=1 |--| |
 | S_FF | | +---+
R--+ +----+ | |
 | | RS | | |
S--|----------------------|S Q1|-----------------| |
 +----------------------|R1 | | |
 | +----+ +---+ | |
L--|---------+--------------------| & |----------| |
	L_TMR +--O				
	+-----+	+---+			
		TON			
+------	IN Q	---+ D_TMR			
+-------------	PT	+-----+			
	+-----+	TON			
D--	--	-----------------------------	IN Q	------	
+-----------------------------	PT				
	P_TRIG +-----+				
	+--------+				
		R_TRIG			
P--	--	------------	CLK Q	--------------------	
	SD_FF +--------+ SD_TMR				
	+----+ +-----+				
		RS		TON	
SD-	--	---	S Q1	----------------	IN Q
+--	---	R1	+------------	PT	
	+----+	DS_TMR +-----+ DS_FF			
+------------+ +-----+ +----+					
		TON		RS	
DS-	--	----------------	IN Q	----------	S Q1
+----------------	PT	+---	R1		
	+-----+	+----+			
+--	-----------------------------+				
	SL_FF				
	+----+				
		RS	+---+		
SL-|--|--------|S Q1|--+------------------| & |--| |
 +--|--------|R1 | | SL_TMR +--O| | | |
 | +----+ | +-----+ | +---+ | | | |
 | | | TON | | | |
 | +----|IN Q|---+ | |
T-----+---------------------|PT | | |
 +--------+ +-----+ | |
 | R_TRIG | | |
P1--------|CLK Q|-----------------------------| |
 +--------+ +--------+ | |
 | F_TRIG | | |
P0-----------------------|CLK Q|--------------| |
 +--------+ +-----+

b) Body without “final scan” logic

NOTE 1 Instances of these function block types are not visible to the user.

NOTE 2 The external interfaces of these function block types are given above.

Figure 23 – ACTION_CONTROL function block body (Summary)

BS EN 61131-3:2013

61131-3 © IEC:2013 – 167 –

 |
 +-----+ +---+------------+----------------+
 | S22 |---| N | HV_BREAKER | HV_BRKR_CLOSED |
 +-----+ +---+------------+----------------+
 | | S | START_INDICATOR |
 | +---+-----------------------------+
 + HV_BRKR_CLOSED
 |
 +-----+ +----+---------------+
 | S23 |---| SL | RUNUP_MONITOR |
 +-----+ |t#1m| |
 | +----+---------------+
 | | D | START_WAIT |
 | |t#1s| |
 | +----+---------------+
 + START_WAIT
 |
 +-----+ +-----+-----------------+------------------+
 | S24 |---| N | ADVANCE_STARTER | STARTER_ADVANCED |
 +-----+ +-----+-----------------+------------------+
 | | L | START_MONITOR |
 | |t#30s| |
 | +-----+------------------------------------+
 + STARTER_ADVANCED
 |
 +-----+ +-----+-----------------+-------------------+
 | S26 |---| N | RETRACT_STARTER | STARTER_RETRACTED |
 +-----+ +-----+-----------------+-------------------+
 |
 |
 + STARTER_RETRACTED
 |
 +-----+ +-----+-----------------+
 | S27 |---| R | START_INDICATOR |
 +-----+ +-----+-----------------+
 | | R | RUNUP_MONITOR |
 | +-----+-----------------+

a) SFC representation

S22.X---HV_BREAKER

S24.X--ADVANCE_STARTER

S26.X--RETRACT_STARTER

 START_INDICATOR_S_FF
 +----+
 | RS |
S22.X-----------------------|S Q1|-----------------START_INDICATOR
S27.X-----------------------|R1 |
 +----+

 START_WAIT_D_TMR
 +-----+
 | TON |
S23.X-----------------------|IN Q|---------------------START_WAIT
t#1s------------------------|PT |
 +-----+

RUNUP_MONITOR_SL_FF
 +----+
 | RS | +---+
S23.X---|S Q1|--+-----------------------------| & |--RUNUP_MONITOR
S27.X---|R1 | | RUNUP_MONITOR_SL_TMR +--O| |
 +----+ | +-----+ | +---+
 | | TON | |
 +---------|IN Q|---------+
t#1m----------------------|PT |
 +-----+

 +---+
S24.X------------+---------------------------| & |---START_MONITOR
 | START_MONITOR_L_TMR +---O| |
 | +-----+ | +---+
 | | TON | |
 +--------|IN Q|-------+
t#30s---------------------|PT |
 +-----+

BS EN 61131-3:2013

 – 168 – 61131-3 © IEC:2013

b) Functional equivalent

NOTE The complete SFC network and its associated declarations are not shown in this example.

Figure 24 – Action control (Example)

Table 60 shows the two possible action control features.

Table 60 – Action control features

No. Description Reference

1 With final scan per Figure 22 a) and Figure 23 a)

2 Without final scan per Figure 22 b) and Figure 23 b)

These two features are mutually exclusive, i.e., only one of the two shall be supported in a given SFC implemen-
tation.

6.7.5 Rules of evolution

The initial situation of a SFC network is characterized by the initial step which is in the active
state upon initialization of the program or function block containing the network.

Evolutions of the active states of steps shall take place along the directed links when caused
by the clearing of one or more transitions.

A transition is enabled when all the preceding steps, connected to the corresponding transi-
tion symbol by directed links, are active. The crossing of a transition occurs when the transi-
tion is enabled and when the associated transition condition is true.

The clearing of a transition causes the deactivation (or "resetting") of all the immediately pre-
ceding steps connected to the corresponding transition symbol by directed links, followed by
the activation of all the immediately following steps.

The alternation step/transition and transition/step shall always be maintained in SFC element
connections, that is:

• Two steps shall never be directly linked; they shall always be separated by a transition.

• Two transitions shall never be directly linked; they shall always be separated by a step.

When the clearing of a transition leads to the activation of several steps at the same time, the
sequences to which these steps belong are called simultaneous sequences. After their simul-
taneous activation, the evolution of each of these sequences becomes independent. In order
to emphasize the special nature of such constructs, the divergence and convergence of simul-
taneous sequences shall be indicated by a double horizontal line.

It shall be an error if the possibility can arise that non-prioritized transitions in a selection di-
vergence, as shown in feature 2a of Table 61, are simultaneously true. The user may make
provisions to avoid this error as shown in features 2b and 2c of Table 61.

Table 61 defines the syntax and semantics of the allowed combinations of steps and transi-
tions.

The clearing time of a transition may theoretically be considered as short as one may wish,
but it can never be zero. In practice, the clearing time will be imposed by the programmable
controller implementation. For the same reason, the duration of a step activity can never be
considered to be zero.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 169 –

Several transitions which can be cleared simultaneously shall be cleared simultaneously,
within the timing constraints of the particular programmable controller implementation and the
priority constraints defined in Table 61.

Testing of the successor transition condition(s) of an active step shall not be performed until
the effects of the step activation have propagated throughout the program organization unit in
which the step is declared.

Figure 25 illustrates the application of these rules. In this figure, the active state of a step is
indicated by the presence of an asterisk (*) in the corresponding block. This notation is used
for illustration only, and is not a required language feature.

The application of the rules given in this subclause cannot prevent the formulation of “unsafe”
SFCs, such as the one shown in Figure 26 a), which may exhibit uncontrolled proliferation of
tokens. Likewise, the application of these rules cannot prevent the formulation of “unreacha-
ble” SFCs, such as the one shown in Figure 26 b), which may exhibit “locked up” behavior.
The programmable controller system shall treat the existence of such conditions as errors.

The maximum allowed widths of the “divergence” and “convergence” constructs in Table 61
are Implementer specific.

Table 61 – Sequence evolution – graphical

No. Description Explanation Example

1 Single sequence The alternation step-transition is re-
peated in series.

 |
 +----+
 | S3 |
 +----+
 |
 + c
 |
 +----+
 | S4 |
 +----+
 |
An evolution from step S3 to step S4
takes place if and only if step S3 is in
the active state and the transition
condition c is TRUE

2a Divergence of sequence
with left to right priority

A selection between several se-
quences is represented by as many
transition symbols, under the horizon-
tal line, as there are different possi-
ble evolutions. The asterisk denotes
left-to-right priority of transition eval-
uations.

 |
 +----+
 | S5 |
 +----+
 |
 +----*----+-...
 | |
 + e + f
 | |
 +----+ +----+
 | S6 | | S8 |
 +----+ +----+
 | |

An evolution takes place from S5 to S6
if S5 is active and the transition condi-
tion e is TRUE (independent of the
value of f), or from S5 to S8 only if S5
is active and f is TRUE and e is FALSE

BS EN 61131-3:2013

 – 170 – 61131-3 © IEC:2013

No. Description Explanation Example

2b Divergence of sequence
with numbered branches

The asterisk (“ * ”), followed by num-
bered branches, indicates a user-
defined priority of transition evalua-
tion, with the lowest-numbered
branch having the highest priority.

 |
 +----+
 | S5 |
 +----+
 |
 +-----*-----+-...
 |2 |1
 + e + f
 | |
 +----+ +----+
 | S6 | | S8 |
 +----+ +----+
 | |

An evolution takes place from S5 to S8
if S5 is active and the transition condi-
tion f is TRUE (independent of the val-
ue of e), or from S5 to S6 only if S5 is
active and e is TRUE and f is FALSE.

2c Divergence of sequence
with mutual exclusion

The connection (“ + ”) of the branch
indicates that the user shall assure
that transition conditions are mutually
exclusive.

 |
 +----+
 | S5 |
 +----+
 |
 +-----+-----+-...
 | |
 +e +NOT e & f
 | |
 +----+ +----+
 | S6 | | S8 |
 +----+ +----+
 | |

An evolution takes place from S5 to
S6 if S5 is active and the transition
condition e is TRUE, or from S5 to S8
only if S5 is active and e is FALSE
and f is TRUE.

3 Convergence of se-
quence

The end of a sequence selection is
represented by as many transition
symbols, above the horizontal line, as
there are selection paths to be en-
ded.

 | |
 +----+ +----+
 | S7 | | S9 |
 +----+ +----+
 | |
 + h + j
 | |
 +-----+-----+-...
 |
 +-----+
 | S10 |
 +-----+
 |

An evolution takes place from S7 to
S10 if S7 is active and the transition
condition h is TRUE, or from S9 to
S10 if S9 is active and j is TRUE.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 171 –

No. Description Explanation Example

4a Simultaneous divergence
after a single transition

The double horizontal line of syn-
chronization can be preceded by a
single transition condition.

 |
 +-----+
 | S11 |
 +-----+
 |
 + b
 |
 +=====+=====+=...
 | |
 +-----+ +-----+
 | S12 | | S14 |
 +-----+ +-----+
 | |

An evolution takes place from S11 to
S12, S14, …, if S11 is active and the
transition condition b associated to the
common transition is TRUE.

After the simultaneous activation of
S12, S14, etc., the evolution of each
sequence proceeds independently.

4b Simultaneous divergence
after conversion

The double horizontal line of syn-
chronization can be preceded by a
sequence selection convergence.

 | |
 +----+ +----+
 | S2 | | S5 |
 +---- +----+
 | |
 + T2 + T6
 | |
 +-------+
 |
 +=======+=======+
 | | |
 +----+ +----+ +----+
 | S3 | | S6 | | S7 |
 +----+ +----+ +----+

An evolution takes place to the steps S3,
S6 and S7 if S2 is active and the transi-
tion T2 is TRUE or S5 is active and the
transition T6 is true.

4c Simultaneous conver-
gence
before one transition

Double lines of simultaneous conver-
gence can be followed by a single
transition.

 | |
 +-----+ +-----+
 | S13 | | S15 |
 +-----+ +-----+
 | |
 +=====+=====+=...
 |
 + d
 |
 +-----+
 | S16 |
 +-----+
 |

An evolution takes place from S13,
S15, ... to S16 only if all steps above
and connected to the double horizon-
tal line are active and the transition
condition d associated to the common
transition is TRUE.

BS EN 61131-3:2013

 – 172 – 61131-3 © IEC:2013

No. Description Explanation Example

4d Simultaneous conver-
gence
before a sequence selec-
tion

Double lines of simultaneous conver-
gence can be followed by a sequence
selection divergence.

 | | |
 +----+ +----+ +----+
 | S5 | | S4 | | S3 |
 +----+ +----+ +----+
 | | |
 +=======+=======+
 |
 +-------+-------+
 | | |
 + T2 + T5 + T6
 | | |
 +----+ +----+ |
 | S6 | | S7 | |
 +----+ +----+ |
 | | |
 + T4 + T7 |
 | | |
 +-------+-------+
 |
 +----+
 | S8 |
 +----+
 |
 + T8
 |
An evolution takes place from S5, S4 and
S3 to one of the steps S6, S7 or S8 only if
all steps above and connected to the
double horizontal line are active and the
transition condition T2, T5 or T6 is TRUE,
respectively.

5a,b,
c

Sequence skip A “sequence skip” is a special case
of sequence selection (feature 2) in
which one or more of the branches
contain no steps. Features 5a, 5b,
and 5c correspond to the representa-
tion options given in features 2a, 2b,
and 2c, respectively.

 |
 +-----+
 | S30 |
 +-----+
 |
 +----*----+
 | |
 + a + d
 | |
 +-----+ |
 | S31 | |
 +-----+ |
 | |
 + b |
 | |
 +-----+ |
 | S32 | |
 +-----+ |
 | |
 + c |
 | |
 +----+----+
 |
 +-----+
 | S33 |
 +-----+
 |

(feature 5a shown)
An evolution takes place from S30 to
S33 if “a” is FALSE and d is TRUE,
that is, the sequence (S31, S32) will
be skipped.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 173 –

No. Description Explanation Example

6a,
b, c

Sequence loop A “sequence loop” is a special case
of sequence selection (feature 2) in
which one or more of the branches
return to a preceding step. Features
6a, 6b, and 6c correspond to the rep-
resentation options given in features
2a, 2b, and 2c, respectively.

 |
 +-----+
 | S30 |
 +-----+
 |
 + a
 |
 +---------+
 | |
 +-----+ |
 | S31 | |
 +-----+ |
 | |
 + b |
 | |
 +-----+ |
 | S32 | |
 +-----+ |
 | |
 *-----+ |
 | | |
 + c + d |
 | | |
 +-----+ +---+
 | S33 |
 +-----+
 |

(feature 6a shown)
An evolution takes place from S32 to
S31 if “c” is false and “d” is TRUE,
that is, the sequence (S31, S32) will
be repeated.

7 Directional arrows When necessary for clarity, the “less
than” (<) character of the character
set defined 6.1.1 can be used to indi-
cate right-to-left control flow, and the
“greater than” (>) character to repre-
sent left-to-right control flow.

When this feature is used, the corre-
sponding character shall be located
between two “-” characters, that is, in
the character sequence “-<-” or “->-
”as shown in the accompanying ex-
ample.

 |
 +-----+
 | S30 |
 +-----+
 |
 + a
 |
 +----<----+
 | |
 +-----+ |
 | S31 | |
 +-----+ |
 | |
 + b |
 | |
 +-----+ |
 | S32 | |
 +-----+ |
 | |
 *-----+ |
 | | |
 + c + d |
 | | |
 +-----+ +->-+
 | S33 |
 +-----+
 |

BS EN 61131-3:2013

 – 174 – 61131-3 © IEC:2013

 | | | |
 +------+ +------+ +------+ +------+
 |STEP10| |STEP9 | |STEP13| |STEP22|
 | | | | | * | | * |
 +------+ +------+ +------+ +------+
 | | | |
 + X ====+=========+=========+====
 | |
 +------+ + X
 |STEP11| |
 | | ====+====+===+====
 +------+ | |
 | +------+ +------+
 |STEP15| |STEP16|
 | | | |
 +------+ +------+
 | |

a) Transition not enabled (NOTE 2)

 | | | |
 +------+ +-----+ +------+ +------+
 |STEP10| |STEP9| |STEP13| |STEP22|
 | * | | * | | * | | * |
 +------+ +-----+ +------+ +------+
 | | | |
 + X ====+========+=========+=====
 | |
 +------+ + X
 |STEP11| |
 | | ====+====+====+====
 +------+ | |
 | +------+ +------+
 |STEP15| |STEP16|
 | | | |
 +------+ +------+
 | |

b) Transition enabled but not cleared (X = 0)

 | | | |
 +------+ +-----+ +------+ +------+
 |STEP10| |STEP9| |STEP13| |STEP22|
 | | | | | | | |
 +------+ +-----+ +------+ +------+
 | | | |
 + X ====+========+==========+====
 | |
 +------+ + X
 |STEP11| |
 | * | ====+====+===+====
 +------+ | |
 | +------+ +------+
 |STEP15| |STEP16|
 | * | | * |
 +------+ +------+
 | |

c) Transition cleared (X = 1)

NOTE 1 In this figure, the active state of a step is indicated by the presence of an asterisk (*) in the corresponding
block. This notation is used for illustration only, and is not a required language feature.

NOTE 2 In a), the value of the Boolean variable X may be either TRUE or FALSE.

Figure 25 – SFC evolution (Rules)

BS EN 61131-3:2013

61131-3 © IEC:2013 – 175 –

+----------------------+
| |
| +=====+
| || A ||
| +=====+
| |
| + t1
| |
| ======+==========+============+=======
| | |
| +-----+ +-----+
| | B | | C |
| +-----+ +-----+
| | |
| | *--------+
| | | |
| | + t2 + t3
| | | |
| | +---+ +---+
| | | D | | E |
| | +---+ +---+
| | | |
| ===+==========+============+=== |
| | |
| + t4 + t5
| | |
| +---+ +---+
| | F | | G |
| +---+ +---+
| | |
| + t6 + t7
| | |
+----------------------+---------------------+

a) SFC error: an “unsafe” SFC

+----------------------+
| |
| +=====+
| || A ||
| +=====+
| |
| + t1
| |
| ======+==========+============+=======
| | |
| +-----+ +-----+
| | B | | C |
| +-----+ +-----+
| | |
| | *--------+
| | | |
| | + t2 + t3
| | | |
| | +---+ +---+
| | | D | | E |
| | +---+ +---+
| | | |
| ===+==========+============+=== |
| | |
| + t4 + t5
| | |
| +---+ +---+
| | F | | G |
| +---+ +---+
| | |
| ====+==========+==========+===
| |
| + t6
| |
+---------------------------------+

b) SFC error: an “unreachable” SFC

Figure 26 – SFC errors (Example)

BS EN 61131-3:2013

 – 176 – 61131-3 © IEC:2013

6.8 Configuration elements

6.8.1 General

A configuration consists of resources, tasks (which are defined within resources), global vari-
ables, access paths and instance specific initializations. Each of these elements is defined in
detail in this 6.8.

A graphic example of a simple configuration is shown in Figure 27 a). Skeleton declarations
for the corresponding function blocks and programs are given in Figure 27 b). The declaration
of the example in Figure 27 is shown in Figure 28.

a) Graphical representation

FUNCTION_BLOCK A
 VAR_OUTPUT
 y1: UINT;
 y2: BYTE;
 END_VAR
END_FUNCTION_BLOCK

FUNCTION_BLOCK B
 VAR_INPUT
 b1: UINT;
 b2: BYTE;
 END_VAR
END_FUNCTION_BLOCK

FUNCTION_BLOCK C
 VAR_OUTPUT
 c1: BOOL;
 END_VAR
 VAR
 C2 AT %Q*: BYTE;
 C3: INT;
 END_VAR
END_FUNCTION_BLOCK

FUNCTION_BLOCK D
 VAR_INPUT
 d1: BOOL;
 END_VAR
 VAR_OUTPUT
 y2: INT;
 END_VAR
END_FUNCTION_BLOCK

CONFIGURATION CELL_1
RESOURCE STATION_1

F G

B

RESOURCE STATION_2

C D

ACCESS PATHS

TASK
SLOW_1

P1 P2 P1 P4

x1 y1
y2

FB2

FB1 FB2

x2

FAST_1 SLOW_1

BAKER ABLE CHARLIE DOG GAMMA ALPHA BETA

x1
x2

PER_2

F H

HOUT1

INT_2

b1
b2

PER_2 COUNT

S1_COUNT
THETA

C2
C3

TASK TASK
PER_2

TASK
INT_2

%IX1.1

A y1
FB1

y2
SLOW_1

out1

w z2 %QW5

ZETA

%QB25

c1

OMEGA

FAST_1

Global and direct-represented variables
and instance-specific initialization

Z

d1

BS EN 61131-3:2013

61131-3 © IEC:2013 – 177 –

PROGRAM F
 VAR_INPUT
 x1: BOOL;
 x2: UINT;
 END_VAR
 VAR_OUTPUT
 y1: BYTE;
 END_VAR
 VAR
 COUNT: INT;
 TIME1: TON;
 END_VAR
END_PROGRAM

PROGRAM G
 VAR_OUTPUT
 out1: UINT;
 END_VAR
 VAR_EXTERNAL
 z1: BYTE;
 END_VAR
 VAR
 FB1: A;
 FB2: B;
 END_VAR

 FB1(...);
 out1:= FB1.y1;
 z1:= FB1.y2;
 FB2(b1:= FB1.y1, b2:= FB1.y2);
END_PROGRAM

PROGRAM H
 VAR_OUTPUT
 HOUT1: INT;
 END_VAR
 VAR
 FB1: C;
 FB2: D;
 END_VAR

 FB1(...);
 FB2(...);
 HOUT1:= FB2.y2;
END_PROGRAM

b) Skeleton function block and program declarations

Figure 27 – Configuration (Example)

Table 62 enumerates the language features for declaration of configurations, resources, glob-
al variables, access paths and instance specific initializations.

• Tasks
Figure 27 provides examples of the TASK features, corresponding to the example configu-
ration shown in Figure 27 a) and the supporting declarations in Figure 27 b).

• Resources
The ON qualifier in the RESOURCE...ON...END_RESOURCE construction is used to speci-
fy the type of “processing function” and its “man-machine interface” and “sensor and actu-
ator interface” functions upon which the resource and its associated programs and tasks
are to be implemented. The Implementer shall supply an Implementer specific resource li-
brary of such elements, as illustrated in Figure 3. Associated with each element in this li-
brary shall be an identifier (the resource type name) for use in resource declaration.

NOTE 1 The RESOURCE...ON...END_RESOURCE construction is not required in a configuration with a single
resource.

• Global variables
The scope of a VAR_GLOBAL declaration shall be limited to the configuration or resource
in which it is declared, with the exception that an access path can be declared to a global
variable in a resource using feature 10d in Table 62.

BS EN 61131-3:2013

 – 178 – 61131-3 © IEC:2013

• Access paths
VAR_ACCESS...END_VAR construction provides a means of specifying variable names
which can be used for remote access by some of the communication services specified in
IEC 61131-5. An access path associates each such variable name with a global variable, a
directly represented variable or any input, output, or internal variable of a program or func-
tion block.
The association shall be accomplished by qualifying the name of the variable with the
complete hierarchical concatenation of instance names, beginning with the name of the
resource (if any), followed by the name of the program instance (if any), followed by the
name(s) of the function block instance(s) (if any). The name of the variable is concatenat-
ed at the end of the chain. All names in the concatenation shall be separated by dots. If
such a variable is a multi-element variable (structure or array) then an access path can al-
so be specified to an element of the variable.
It shall not be possible to define access paths to variables that are declared in
VAR_TEMP, VAR_EXTERNAL or VAR_IN_OUT declarations.

The direction of the access path can be specified as READ_WRITE or READ_ONLY, indicat-
ing that the communication services can both read and modify the value of the variable in
the first case, or read but not modify the value in the second case. If no direction is speci-
fied, the default direction is READ_ONLY.

Access to variables that are declared CONSTANT or to function block inputs that are exter-
nally connected to other variables shall be READ_ONLY.

NOTE 2 The effect of using READ_WRITE access to function block output variables is Implementer specific.

• Configurations
The VAR_CONFIG...END_VAR construction provides a means to assign instance specific
locations to symbolically represented variables, which are nominated for the respective
purpose by using the asterisk notation “*” or to assign instance specific initial values to
symbolically represented variables, or both.
The assignment shall be accomplished by qualifying the name of the object to be located
or initialized with the complete hierarchical concatenation of instance names, beginning
with the name of the resource (if any), followed by the name of the program instance, fol-
lowed by the name(s) of the function block instance(s) (if any). The name of the variable to
be located or initialized is concatenated at the end of the chain, followed by the name of
the component of the structure (if the variable is structured). All names in the concatena-
tion shall be separated by dots. The location assignment or the initial value assignment
follows the syntax and the semantics.

Instance specific initial values provided by the VAR_CONFIG...END_VAR construction al-
ways prevail type specific initial values. It shall not be possible to define instance specific
initializations to variables which are declared in VAR_TEMP, VAR_EXTERNAL, VAR
CONSTANT or VAR_IN_OUT declarations.

Table 62 – Configuration and resource declaration

No. Description

1 CONFIGURATION...END_CONFIGURATION

2 VAR_GLOBAL...END_VAR within CONFIGURATION

3 RESOURCE...ON ...END_RESOURCE

4 VAR_GLOBAL...END_VAR within RESOURCE

5a Periodic TASK

5b Non-periodic TASK

6a WITH for PROGRAM to TASK association

6b WITH for FUNCTION_BLOCK to TASK association

6c PROGRAM with no TASK association

BS EN 61131-3:2013

http://dx.doi.org/10.3403/02228747U

61131-3 © IEC:2013 – 179 –

No. Description

7 Directly represented variables in VAR_GLOBAL

8a Connection of directly represented variables to PROGRAM inputs

8b Connection of GLOBAL variables to PROGRAM inputs

9a Connection of PROGRAM outputs to directly represented variables

9b Connection of PROGRAM outputs to GLOBAL variables

10a VAR_ACCESS...END_VAR

10b Access paths to directly represented variables

10c Access paths to PROGRAM inputs

10d Access paths to GLOBAL variables in RESOURCEs

10e Access paths to GLOBAL variables in CONFIGURATIONs

10f Access paths to PROGRAM outputs

10g Access paths to PROGRAM internal variables

10h Access paths to function block inputs

10i Access paths to function block outputs

11a VAR_CONFIG...END_VAR to variables

This feature shall be supported if the feature “partly defined” with “*” in Table 16 is supported.

11b VAR_CONFIG...END_VAR to components of structures

12a VAR_GLOBAL CONSTANT in RESOURCE

12b VAR_GLOBAL CONSTANT in CONFIGURATION

13a VAR_EXTERNAL in RESOURCE

13b VAR_EXTERNAL CONSTANT in RESOURCE

The following figure shows the declaration of the example in Figure 27.

Program code using feature of
Table 62

CONFIGURATION CELL_1 1

 VAR_GLOBAL w: UINT; END_VAR 2

 RESOURCE STATION_1 ON PROCESSOR_TYPE_1 3

 VAR_GLOBAL z1: BYTE; END_VAR 4

 TASK SLOW_1(INTERVAL:= t#20ms, PRIORITY:= 2); 5a

 TASK FAST_1(INTERVAL:= t#10ms, PRIORITY:= 1); 5a

 PROGRAM P1 WITH SLOW_1:

 F(x1:= %IX1.1);

6a

8a

 PROGRAM P2: G(OUT1 => w, 9b

 FB1 WITH SLOW_1, 6b

 FB2 WITH FAST_1); 6b

 END_RESOURCE 3

 RESOURCE STATION_2 ON PROCESSOR_TYPE_2 3

 VAR_GLOBAL z2 : BOOL; 4

 AT %QW5: INT ; 7

 END_VAR 4

 TASK PER_2(INTERVAL:= t#50ms, PRIORITY:= 2); 5a

 TASK INT_2(SINGLE:= z2, PRIORITY:= 1); 5b

BS EN 61131-3:2013

 – 180 – 61131-3 © IEC:2013

 PROGRAM P1 WITH PER_2:

 F(x1:= z2, x2:= w);

6a

8b

 PROGRAM P4 WITH INT_2:

 H(HOUT1 => %QW5,

6a

9a

 FB1 WITH PER_2); 6b

 END_RESOURCE 3

 VAR_ACCESS 10a

 ABLE : STATION_1.%IX1.1 : BOOL READ_ONLY; 10b

 BAKER : STATION_1.P1.x2 : UINT READ_WRITE; 10c

 CHARLIE : STATION_1.z1 : BYTE; 10d

 DOG : w : UINT READ_ONLY; 10e

 ALPHA : STATION_2.P1.y1 : BYTE READ_ONLY; 10f

 BETA : STATION_2.P4.HOUT1 : INT READ_ONLY; 10f

 GAMMA : STATION_2.z2 : BOOL READ_WRITE; 10d

 S1_COUNT : STATION_1.P1.COUNT : INT; 10g

 THETA : STATION_2.P4.FB2.d1 : BOOL READ_WRITE; 10h

 ZETA : STATION_2.P4.FB1.c1 : BOOL READ_ONLY; 10i

 OMEGA : STATION_2.P4.FB1.C3 : INT READ_WRITE; 10k

 END_VAR 10a

 VAR_CONFIG
 STATION_1.P1.COUNT: INT:= 1;
 STATION_2.P1.COUNT: INT:= 100;
 STATION_1.P1.TIME1: TON:= (PT:= T#2.5s);
 STATION_2.P1.TIME1: TON:= (PT:= T#4.5s);
 STATION_2.P4.FB1.C2 AT %QB25: BYTE;
 END_VAR

11

END_CONFIGURATION 1

NOTE 1 Graphical and semigraphic representation of these features is allowed but is beyond the scope of this
part of IEC 61131.

NOTE 2 It is an error if the data type declared for a variable in a VAR_ACCESS statement is not the same as the
data type declared for the variable elsewhere, e.g., if variable BAKER is declared of type WORD in the above exam-
ples.

Figure 28 – CONFIGURATION and RESOURCE declaration (Example)

6.8.2 Tasks

For the purposes of this part of the IEC 61131 series, a task is defined as an execution con-
trol element which is capable of calling, either on a periodic basis or upon the occurrence of
the rising edge of a specified Boolean variable, the execution of a set of program organization
units, which can include programs and function blocks whose instances are specified in the
declaration of programs.

The maximum number of tasks per resource and task interval resolution is Implementer spe-
cific.

Tasks and their association with program organization units can be represented graphically or
textually using the WITH construction, as shown in Table 63, as part of resources within con-
figurations. A task is implicitly enabled or disabled by its associated resource according to the
mechanisms. The control of program organization units by enabled tasks shall conform to the
following rules:

BS EN 61131-3:2013

61131-3 © IEC:2013 – 181 –

a) The associated program organization units shall be scheduled for execution upon each
rising edge of the SINGLE input of the task.

b) If the INTERVAL input is non-zero, the associated program organization units shall be
scheduled for execution periodically at the specified interval as long as the SINGLE input
stands at zero (0). If the INTERVAL input is zero (the default value), no periodic schedul-
ing of the associated program organization units shall occur.

c) The PRIORITY input of a task establishes the scheduling priority of the associated pro-
gram organization units, with zero (0) being highest priority and successively lower priori-
ties having successively higher numeric values. As shown in Table 63, the priority of a
program organization unit (that is, the priority of its associated task) can be used for pre-
emptive or non-pre-emptive scheduling.

• In non-pre-emptive scheduling, processing power becomes available on a resource
when execution of a program organization unit or operating system function is com-
plete. When processing power is available, the program organization unit with highest
scheduled priority shall begin execution. If more than one program organization unit is
waiting at the highest scheduled priority, then the program organization unit with the
longest waiting time at the highest scheduled priority shall be executed.

• In pre-emptive scheduling, when a program organization unit is scheduled, it can inter-
rupt the execution of a program organization unit of lower priority on the same re-
source, that is, the execution of the lower-priority unit can be suspended until the exe-
cution of the higher-priority unit is completed. A program organization unit shall not in-
terrupt the execution of another unit of the same or higher priority.

Depending on schedule priorities, a program organization unit might not begin execution at
the instant it is scheduled. However, in the examples shown in Table 63, all program organi-
zation units meet their deadlines, that is, they all complete execution before being scheduled
for re-execution. The Implementer shall provide information to enable the user to determine
whether all deadlines will be met in a proposed configuration.

d) A program with no task association shall have the lowest system priority. Any such pro-
gram shall be scheduled for execution upon “starting” of its resource and shall be re-
scheduled for execution as soon as its execution terminates.

e) When a function block instance is associated with a task, its execution shall be under the
exclusive control of the task, independent of the rules of evaluation of the program organi-
zation unit in which the task-associated function block instance is declared.

f) Execution of a function block instance which is not directly associated with a task shall
follow the normal rules for the order of evaluation of language elements for the program
organization unit (which can itself be under the control of a task) in which the function
block instance is declared.

NOTE 1 Classes instances cannot be associated with a task.

NOTE 2 The methods of a function block or of a class are executed in the POU they are called.

g) The execution of function blocks within a program shall be synchronized to ensure that
data concurrency is achieved according to the following rules:

• If a function block receives more than one input from another function block, then when
the former is executed, all inputs from the latter shall represent the results of the same
evaluation.

• If two or more function blocks receive inputs from the same function block, and if the
“destination” blocks are all explicitly or implicitly associated with the same task, then
the inputs to all such “destination” blocks at the time of their evaluation shall represent
the results of the same evaluation of the “source” block.

Provision shall be made for storage of the outputs of functions or function blocks which have
explicit task associations, or which are used as inputs to program organization units which
have explicit task associations, as necessary to satisfy the rules given above.

BS EN 61131-3:2013

 – 182 – 61131-3 © IEC:2013

It shall be an error if a task fails to be scheduled or to meet its execution deadline because of
excessive resource requirements or other task scheduling conflicts.

Table 63 – Task

No. Description Examples

1a Textual declaration of periodic
TASK

(feature 5a of Table 62)

1b Textual declaration of non-periodic
TASK

(feature 5b of Table 62)

 Graphical representation of TASKs
(general form)

 TASKNAME
 +---------+
 | TASK |
BOOL---|SINGLE |
TIME---|INTERVAL |
UINT---|PRIORITY |
 +---------+

2a Graphical representation of
periodic TASKs (with INTERVAL)

 SLOW_1 FAST_1
 +---------+ +---------+
 | TASK | | TASK |
 --|SINGLE | ---|SINGLE |
t#20ms--|INTERVAL | t#10ms---|INTERVAL |
 2--|PRIORITY | 1---|PRIORITY |
 +---------+ +---------+

2b Graphical representation of
non-periodic TASK (with SINGLE)

 INT_2
 +---------+
 | TASK |
 z2--|SINGLE |
 --|INTERVAL |
 1--|PRIORITY |
 +---------+

3a Textual association with PROGRAMs (feature 6a of Table 62)

3b Textual association with function
blocks

(feature 6b of Table 62)

4a Graphical association with PRO-
GRAMs

RESOURCE STATION_2

 P1 P4
+-------+ +-------+
F		H
+-------+ +-------+		
PER_2		INT_2
+-------+ +-------+

END_RESOURCE

4b Graphical association with
function blocks within PROGRAMs

P2
 +---+
 | G |
 | |
 | FB1 FB2 |
 | +------+ +------+ |
	A		B	
+------+ +------+				
	SLOW_1		FAST_1	
+------+ +------+				
 +---+

END_RESOURCE

5a Non-preemptive scheduling See Figure 28

5b Preemptive scheduling See Figure 28

NOTE 1 Details of RESOURCE and PROGRAM declarations are not shown.

NOTE 2 The notation X@Y indicates that program organization unit X is scheduled or executing at priority Y.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 183 –

The following examples show non-preemptive and preemptive scheduling defined in Table 63,
5a and 5b.

EXAMPLES 1 Non-preemptive and preemptive scheduling

1. Non-preemptive scheduling

- RESOURCE STATION_1 as configured in Figure 28
- Execution times: P1 = 2 ms; P2 = 8 ms
- P2.FB1 = P2.FB2 = 2 ms (see NOTE 1)
- STATION_1 starts at t = 0

Schedule (repeats every 40 ms)
t(ms) Executing Waiting

0 P2.FB2@1 P1@2, P2.FB1@2, P2

2 P1@2 P2.FB1@2, P2

4 P2.FB1@2 P2

6 P2

10 P2 P2.FB2@1

14 P2.FB2@1 P2

16 P2 (P2 restarts)

20 P2 P2.FB2@1, P1@2, P2.FB1@2

24 P2.FB2@1 P1@2, P2.FB1@2, P2

26 P1@2 P2.FB1@2, P2

28 P2.FB1@2 P2

30 P2.FB2@1 P2

32 P2

40 P2.FB2@1 P1@2, P2.FB1@2, P2

- RESOURCE STATION_2 as configured in Figure 28
- Execution times: P1 = 30 ms, P4 = 5 ms, P4.FB1 = 10 ms
- INT_2 is triggered at t = 25, 50, 90,... ms
- STATION_2 starts at t = 0

Schedule
t(ms) Executing Waiting

0 P1@2 P4.FB1@2
25 P1@2 P4.FB1@2, P4@1
30 P4@1 P4.FB1@2
35 P4.FB1@2
50 P4@1 P1@2, P4.FB1@2
55 P1@2 P4.FB1@2
85 P4.FB1@2
90 P4.FB1@2 P4@1
95 P4@1

100 P1@2 P4.FB1@2

2. Preemptive scheduling See Table 63, 5b

- RESOURCE STATION_1 as configured in Figure 28
- Execution times: P1 = 2 ms; P2 = 8 ms; P2.FB1 = P2.FB2 = 2 ms
- STATION_1 starts at t = 0

Schedule
t(ms) Executing Waiting

0 P2.FB2@1 P1@2, P2.FB1@2, P2
2 P1@2 P2.FB1@2, P2
4 P2.FB1@2 P2

BS EN 61131-3:2013

 – 184 – 61131-3 © IEC:2013

6 P2
10 P2.FB2@1 P2
12 P2
16 P2 (P2 restarts)
20 P2.FB2@1 P1@2, P2.FB1@2, P2

- RESOURCE STATION_2 as configured in Figure 28
- Execution times: P1 = 30 ms, P4 = 5 ms, P4.FB1 = 10 ms (NOTE 2)
- INT_2 is triggered at t = 25, 50, 90,... ms
- STATION_2 starts at t = 0

Schedule
t(ms) Executing Waiting

0 P1@2 P4.FB1@2
25 P4@1 P1@2, P4.FB1@2
30 P1@2 P4.FB1@2
35 P4.FB1@2
50 P4@1 P1@2, P4.FB1@2
55 P1@2 P4.FB1@2
85 P4.FB1@2
90 P4@1 P4.FB1@2
95 P4.FB1@2

100 P1@2 P4.FB1@2
NOTE 1 The execution times of P2.FB1 and P2.FB2 are not included in the execution time of P2.
NOTE 2 The execution time of P4.FB1 is not included in the execution time of P4.

BS EN 61131-3:2013

mailto:P4.FB1@2

61131-3 © IEC:2013 – 185 –

EXAMPLES 2 Task associations to function block instances

RESOURCE R1

PROGRAM X
 Y1 Y2
 +-----+ +-----+
 | Y | | Y |
 ---|A C|----+--------|A C|---
 ---|B D|----|--+-----|B D|---
 +-----+ | | +-----+
 |slow1| | | |fast1|
 +-----+ | | +-----+
 | |
 | | Y3
 | | +-----+
 | | | Y |
 +--|--|A C|---
 +--|B D|---
 +-----+
 |fast1|
 +-----+
END_PROGRAM

a) Function blocks with explicit task associations
 fast1
 +----------+
 | TASK |
t#10ms---|INTERVAL |
 1---|PRIORITY |
 +----------+

 slow1
 +----------+
 | TASK |
t#20ms---|INTERVAL |
 2---|PRIORITY |
 +----------+

P1
PROGRAM X
 Y1 Y2
 +-----+ +-----+
 | Y | | Y |
 ---|A C|----+--------|A C|---
 ---|B D|----|--+-----|B D|---
 +-----+ | | +-----+
 |fast1| | |
 +-----+ | |
 | |
 | | Y3
 | | +-----+
 | | | Y |
 +--|--|A C|---
 +--|B D|---
 +-----+
END_PROGRAM

slow1

b) Function blocks with implicit task associations
RESOURCE R1
 fast1
 +----------+
 | TASK |
t#10ms---|INTERVAL |
 1---|PRIORITY |
 +----------+

 slow1
 +----------+
 | TASK |
t#20ms---|INTERVAL |
 2---|PRIORITY |
 +----------+

BS EN 61131-3:2013

 – 186 – 61131-3 © IEC:2013

P1

PROGRAM X
 Y1 Y2
 +-----+ +-----+
 | Y | | Y |
 ---|A C|----+--------|A C|---
 ---|B D|----|--+-----|B D|---
 +-----+ | | +-----+
 |fast1| | | |slow1|
 +-----+ | | +-----+
 | |
 | | Y3
 | | +-----+
 | | | Y |
 +--|--|A C|---
 +--|B D|---
 +-----+
 |slow1|
 +-----+
END_PROGRAM

c) Explicit task associations equivalent to b)
NOTE 3 The graphical representations in these examples are illustrative only and are not normative.

6.9 Namespaces

6.9.1 General

For the purposes of programmable controller programming languages, a namespace is a lan-
guage element combining other language elements to a combined entity.

The same name of a language element declared within a namespace may also be used within
other namespaces.

Namespaces and types that have no enclosing namespace are members of the global
namespace. The global namespace includes the names declared in the global scope. All
standard functions and function blocks are elements of the global namespace.

Namespaces may be nested.

Namespaces and types declared within a namespace are members of that namespace. The
members of the namespace are in the local scope of the namespace.

With namespaces a library concept can be implemented as well as a module concept.
Namespaces can be used to avoid identifier ambiguities. A typical application of namespace
is in the context of the object oriented programming features.

6.9.2 Declaration

A namespace declaration starts with the keyword NAMESPACE optionally followed by the ac-
cess specifier INTERNAL, the name of the namespace and ends with the keyword
END_NAMESPACE. A namespace contains a set of language elements, each optionally fol-
lowed by the following access specifier:

• INTERNAL for an access only within the namespace itself.

The access specifier can be applied to the declaration of the following language elements:

• user-defined data types - using keyword TYPE,

• functions,

• programs,

• function block types and their variables and methods,

• classes and their variables and methods,

BS EN 61131-3:2013

61131-3 © IEC:2013 – 187 –

• interfaces,

• namespaces.

If no access specifier is given, the language elements of the namespace are accessible from
outside the namespace, i.e. a namespace is public by default.

Examples 1 and 2 show the namespace declaration and the nested namespace declaration.

EXAMPLE 1 Namespace declaration

NAMESPACE Timers

 FUNCTION INTERNAL TimeTick: DWORD
 // ...declaration and operations here
 END_FUNCTION

 // other namespace elements without specifier are PUBLIC by Default
 TYPE
 LOCAL_TIME: STRUCT
 TIMEZONE: STRING [40];
 DST: BOOL; // Daylight saving time
 TOD: TOD;
 END_STRUCT;
 END_TYPE;
 ...
 FUNCTION_BLOCK TON
 // ... declaration and operations here
 END_FUNCTION_BLOCK
 ...
 FUNCTION_BLOCK TOF
 // ... declaration and operations here
 END_FUNCTION_BLOCK

END_NAMESPACE (*Timers*)

BS EN 61131-3:2013

 – 188 – 61131-3 © IEC:2013

EXAMPLE 2 Nested namespace declaration

NAMESPACE Standard // Namespace = PUBLIC by Default

 NAMESPACE Timers // Namespace = PUBLIC by Default

 FUNCTION INTERNAL TimeTick: DWORD
 // ...declaration and operations here
 END_FUNCTION

 // other namespace elements without specifier are PUBLIC by Default
 TYPE
 LOCAL_TIME: STRUCT
 TIMEZONE: STRING [40];
 DST: BOOL; // Daylight saving time
 TOD: TOD;
 END_STRUCT;
 END_TYPE;
 ...
 FUNCTION_BLOCK TON // defines an implementation of TON with a new name
 // ... declaration and operations here
 END_FUNCTION_BLOCK
 ...
 FUNCTION_BLOCK TOF // defines an implementation of TOF with a new name
 // ... declaration and operations here
 END_FUNCTION_BLOCK

 CLASS A
 METHOD INTERNAL M1
 ...
 END_METHOD
 METHOD PUBLIC M2 // PUBLIC is given here to replace the default of PROTECTED
 ...
 END_METHOD
 END_CLASS

 CLASS INTERNAL B
 METHOD INTERNAL M1
 ...
 END_METHOD
 METHOD PUBLIC M2
 ...
 END_METHOD
 END_CLASS

 END_NAMESPACE (*Timers*)
 NAMESPACE Counters
 FUNCTION_BLOCK CUP
 // ... declaration and operations here
 END_FUNCTION_BLOCK
 ...
 FUNCTION_BLOCK CDOWN
 // ... declaration and operations here
 END_FUNCTION_BLOCK
 END_NAMESPACE (*Counters*)
END_NAMESPACE (*Standard*)

The accessibility on namespace elements, methods and variables of function blocks from in-
side and outside the namespace depends on the access specifiers of the variable or method
together with the namespace specifier at the namespace declaration and the language ele-
ments.

The rules of accessibility are summarized in Figure 29.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 189 –

Namespace
specifier

Public (default, no specifier) INTERNAL

Access specifier of
language element,
variable or method

Access from
outside the
namespace

Access from
inside the
namespace but
outside the POU

Access from outside the namespace Access from inside
the namespace but
outside the POU All Namespaces

except parent
namespace

Parent
namespace

PRIVATE No No No No No

PROTECTED No No No No No

INTERNAL No Yes No No Yes

PUBLIC Yes Yes No Yes Yes

Figure 29 – Accessibility using namespaces (Rules)

In the case of hierarchical namespaces, the outside namespace can additionally restrict the
access; it cannot allow additional access to entities which are already internal of the inner
namespace.

BS EN 61131-3:2013

 – 190 – 61131-3 © IEC:2013

EXAMPLE 3 Nested namespaces and access specifiers

NAMESPACE pN1

NAMESPACE pN11
FUNCTION pF1 ... END_FUNCTION // accessible from everywhere
FUNCTION INTERNAL iF2 ... END_FUNCTION // accessible in pN11
FUNCTION_BLOCK pFB1 // accessible from everywhere

VAR PUBLIC pVar1: REAL: ... END_VAR // accessible from everywhere
VAR INTERNAL iVar2: REAL ... END_VAR // accessible in pN11
...

END_FUNCTION_BLOCK
FUNCTION_BLOCK INTERNAL iFB2 // accessible in pN11

VAR PUBLIC pVar3: REAL: ... END_VAR // accessible in pN11
VAR INTERNAL iVar4: REAL ... END_VAR // accessible in pN11
...

END_FUNCTION_BLOCK
CLASS pC1

VAR PUBLIC pVar5: REAL: ... END_VAR // accessible from everywhere
VAR INTERNAL iVar6: REAL ... END_VAR // accessible in pN11
METHOD pM1 ... END_METHOD // accessible from everywhere
METHOD INTERNAL iM2 ... END_METHOD // accessible in pN11

END_CLASS
CLASS INTERNAL iC2

VAR PUBLIC pVar7: REAL: ... END_VAR // accessible in pN11
VAR INTERNAL iVar8: REAL ... END_VAR // accessible in pN11
METHOD pM3 ... END_METHOD // accessible in pN11
METHOD INTERNAL iM4 ... END_METHOD // accessible in pN11

END_CLASS
END_NAMESPACE
NAMESPACE INTERNAL iN12

FUNCTION pF1 ... END_FUNCTION // accessible in pN1
FUNCTION INTERNAL iF2 ... END_FUNCTION // accessible in iN12
FUNCTION_BLOCK pFB1 // accessible in pN1

VAR PUBLIC pVar1: REAL: ... END_VAR // accessible in pN1
VAR INTERNAL iVar2: REAL ... END_VAR // accessible in iN12
...

END_FUNCTION_BLOCK
FUNCTION_BLOCK INTERNAL iFB2 // accessible in iN12

VAR PUBLIC pVar3: REAL: ... END_VAR // accessible in iN12
VAR INTERNAL iVar4: REAL ... END_VAR // accessible in iN12
...

END_FUNCTION_BLOCK
CLASS pC1

VAR PUBLIC pVar5: REAL: ... END_VAR // accessible in pN1
VAR INTERNAL iVar6: REAL ... END_VAR // accessible in iN12
METHOD pM1 ... END_METHOD // accessible in pN1
METHOD INTERNAL iM2 ... END_METHOD // accessible in iN12

END_CLASS
CLASS INTERNAL iC2

VAR PUBLIC pVar7: REAL: ... END_VAR // accessible in iN12
VAR INTERNAL iVar8: REAL ... END_VAR // accessible in iN12
METHOD pM3 ... END_METHOD // accessible in iN12
METHOD INTERNAL iM4 ... END_METHOD // accessible in iN12

END_CLASS
END_NAMESPACE

END_NAMESPACE

Table 64 shows the features defined for namespace.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 191 –

Table 64 – Namespace

No Description Example

1a Public namespace (without access
specifier)

NAMESPACE name

 declaration(s)

 declaration(s)

END_NAMESPACE

All containing elements are accessible according to their access
specifiers.

1b Internal namespace (with INTERNAL
specifier)

NAMESPACE INTERNAL name

 declaration(s)

 declaration(s)

END_NAMESPACE

All containing elements without any specifier or the access specifier
PUBLIC are accessible in the namespace one level above.

2 Nested namespaces See Example 2

3 Variable access specifier INTERNAL CLASS C1

 VAR INTERNAL myInternalVar: INT; END_VAR
 VAR PUBLIC myPublicVar: INT; END_VAR

END_CLASS

4 Method access specifier INTERNAL CLASS C2

 METHOD INTERNAL myInternalMethod: INT; ... END_METHOD
 METHOD PUBLIC myPublicMethod: INT; ... END_METHOD

END_CLASS

5 Language element with access
specifier INTERNAL:

 User-defined data types
- using keyword TYPE

 Functions

 Function block types

 Classes

 Interfaces

CLASS INTERNAL

 METHOD INTERNAL myInternalMethod: INT; ... END_METHOD
 METHOD PUBLIC myPublicMethod: INT; ... END_METHOD

END_CLASS

CLASS

 METHOD INTERNAL myInternalMethod: INT; ... END_METHOD
 METHOD PUBLIC myPublicMethod: INT; ... END_METHOD

END_CLASS

The name of a namespace may be a single identifier or a fully qualified name consisting of a
sequence of namespace identifiers separated by dots (“.”). The latter form permits the decla-
ration of a nested namespace without lexically nesting several namespace declarations. It al-
so supports the extension of an existing namespace with further language elements by a fur-
ther declaration.

Lexically nested namespaces are declared by multiple namespace declarations with the key-
word NAMESPACE textually nested as shown in the first of the three features in Table 65. All
three features contribute language elements to the same namespace Standard.Timers.
HighResolution. The second feature shows the extension of the same namespace de-
clared by a fully qualified name. The third feature mixes the namespace declaration by fully
qualified name and by lexically nested NAMESPACE keywords to add another POU to the
namespace.

Table 65 shows the features defined for nested namespace declaration options.

BS EN 61131-3:2013

 – 192 – 61131-3 © IEC:2013

Table 65 – Nested namespace declaration options

No Description Example

1 Lexically nested namespace decla-
ration

Equivalent to feature 2 of Table 64

NAMESPACE Standard
 NAMESPACE Timers
 NAMESPACE HighResolution
 FUNCTION PUBLIC TimeTick: DWORD
 // ...declaration and operations here
 END_FUNCTION
 END_NAMESPACE (*HighResolution*)
 END_NAMESPACE (*Timers*)
END_NAMESPACE (*Standard*)

2 Nested namespace declaration by
fully qualified name

NAMESPACE Standard.Timers.HighResolution
 FUNCTION PUBLIC TimeResolution: DWORD
 // ...declaration and operations here
 END_FUNCTION
END_NAMESPACE (*Standard.Timers.HighResolution*)

3 Mixed lexically nested namespace
and namespace nested by fully
qualified name

NAMESPACE Standard.Timers
 NAMESPACE HighResolution
 FUNCTION PUBLIC TimeLimit: DWORD
 // ...declaration and operations here
 END_FUNCTION
 END_NAMESPACE (*HighResolution*)
END_NAMESPACE (*Standard.Timers*)

NOTE Multiple namespace declarations with the same fully qualified name contribute to the same namespace. In
the examples of this Table the functions TimeTick, TimeResolution, and TimeLimit are members of the same
namespace Standard.Timers.HighResolution even though they are defined in separate namespace declara-
tions; e.g. in different Structured Text program files.

6.9.3 Usage

Elements of a namespace can be accessed from outside the namespace by preceding the
name of the namespace and a following “.”. This is not necessary from within the namespace
but permitted.

Language elements declared with an INTERNAL access specifier cannot be accessed from
outside the namespace except the own namespace.

Elements in nested namespaces can be accessed by naming all parent namespaces as
shown in the example.

EXAMPLE

Usage of a Timer TON from the namespace Standard.Timers.

FUNCTION_BLOCK Uses_Timer

VAR

 Ton1: Standard.Timers.TON;
 (* starts timer with rising edge, resets timer with falling edge *)
 Ton2: PUBLIC.TON; (* uses the standard timer *)

bTest: BOOL;

END_VAR

 Ton1(In:= bTest, PT:= t#5s);

END_FUNCTION_BLOCK

6.9.4 Namespace directive USING

A USING namespace directive may be given following the name of a namespace, a POU, the
name and result declaration of a function or a method.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 193 –

If the USING directive is used within a function block, class or structure it shall immediately
follow the type name.

If the USING directive is used within a function or a method it shall immediately follow the re-
sult type declaration of the function or method.

A USING directive starts with the keyword USING followed by one or a list of fully qualified
names of namespaces as shown in Table 64, feature 2. It enables the use of the language
elements contained in the specified namespaces immediately in the enclosing namespace
resp. POU. The enclosing namespace might be the global namespace, too.

Within member declarations in a namespace that contains a USING namespace directive, the
types contained in the given namespace can be referenced directly. In the example shown
below, within member declarations of the namespace Infeed, the type members of Stand-
ard.Timers are directly available, and thus function block Uses_Timer can declare an in-
stance variable of function block TON without qualification.

Examples 1 and 2 below show the usage of the namespace directive USING.

EXAMPLE 1 Namespace directive USING

NAMESPACE Counters
 FUNCTION_BLOCK CUP
 // ... declaration and operations here
 END_FUNCTION_BLOCK
END_NAMESPACE (*Standard.Counters*)

NAMESPACE Standard.Timers
 FUNCTION_BLOCK TON
 // ... declaration and operations here
 END_FUNCTION_BLOCK
END_NAMESPACE (*Standard.Timers*)

NAMESPACE Infeed
FUNCTION_BLOCK Uses_Std

USING Standard.Timers;
 VAR
 Ton1: TON;
 (* starts timer with rising edge, resets timer with falling edge *)
 Cnt1: Counters.CUP;
 bTest: BOOL;
 END_VAR
 Ton1(In:= bTest, PT:= t#5s);
END_FUNCTION_BLOCK
END_NAMESPACE

A USING namespace directive enables the types contained in the given namespace, but spe-
cifically does not enable types contained in nested namespaces. The using namespace di-
rective enables the types contained in Standard, but not types of the namespaces nested in
Standard. Thus, the reference to Timers.TON in the declaration of Uses_Timer results in
a compile-time error because no members named Standard are in scope.

BS EN 61131-3:2013

 – 194 – 61131-3 © IEC:2013

EXAMPLE 2 Invalid import of nested namespaces

NAMESPACE Standard.Timers
 FUNCTION_BLOCK TON
 // ... declaration and operations here
 END_FUNCTION_BLOCK
END_NAMESPACE (*Standard.Timers*)

NAMESPACE Infeed
 USING Standard;
 USING Standard.Counters;

 FUNCTION_BLOCK Uses_Timer
 VAR
 Ton1: Timers.TON; // ERROR: Nested namespaces are not imported
 (* starts timer with rising edge, resets timer with falling edge *)
 bTest: BOOL;
 END_VAR
 Ton1(In:= bTest, PT:= t#5s);
 END_FUNCTION_BLOCK
END_NAMESPACE (*Standard.Timers.HighResolution*)

For usage of language elements of a namespace in the global namespace the keyword USING
and the namespace identifiers shall be used.

Table 66 shows the features defined for the namespace directive USING.

Table 66 – Namespace directive USING

No Description Example

1 USING in global namespace USING Standard.Timers;
 FUNCTION PUBLIC TimeTick: DWORD
 VAR
 Ton1: TON;
 END_VAR // ...declaration and operations here
 END_FUNCTION

2 USING in other namespace NAMESPACE Standard.Timers.HighResolution
 USING Counters;
 FUNCTION PUBLIC TimeResolution: DWORD
 // ...declaration and operations here
 END_FUNCTION
END_NAMESPACE (*Standard.Timers.HighResolution*)

3 USING in POUs
• Functions

• Function block types

• Classes

• Methods

• Interfaces

FUNCTION_BLOCK Uses_Std
 USING Standard.Timers, Counters;
 VAR
 Ton1: TON;
 (* starts timer with rising edge, resets timer with
falling edge *)
 Cnt1: CUP;
 bTest: BOOL;
 END_VAR
 Ton1(In:= bTest, PT:= t#5s);
END_FUNCTION_BLOCK

FUNCTION myFun: INT
 USING Lib1, Lib2;
 USING Lib3;
 VAR
....
END_FUNCTION

BS EN 61131-3:2013

61131-3 © IEC:2013 – 195 –

7 Textual languages

7.1 Common elements

The textual languages defined in this standard are IL (Instruction List) and ST (Structured
Text). The sequential function chart (SFC) can be used in conjunction with either of these
languages.

Subclause 7.2 defines the semantics of the IL language, whose syntax is given in Annex A.
Subclause 7.3 defines the semantics of the ST language, whose syntax is given.

The textual elements specified in Clause 6 shall be common to the textual languages (IL and
ST) defined in this Clause 7. In particular, the following program structuring elements in Fig-
ure 30 shall be common to textual languages:

TYPE ...END_TYPE

VAR ...END_VAR

VAR_INPUT ...END_VAR

VAR_OUTPUT ...END_VAR

VAR_IN_OUT ...END_VAR

VAR_EXTERNAL ...END_VAR

VAR_TEMP ...END_VAR

VAR_ACCESS ...END_VAR

VAR_GLOBAL ...END_VAR

VAR_CONFIG ...END_VAR

FUNCTION ...END_FUNCTION

FUNCTION_BLOCK...END_FUNCTION_BLOCK

PROGRAM ...END_PROGRAM

METHOD ...END_METHOD

STEP ...END_STEP

TRANSITION ...END_TRANSITION

ACTION ...END_ACTION

NAMESPACE ...END_NAMESPACE

Figure 30 – Common textual elements (Summary)

7.2 Instruction list (IL)

7.2.1 General

This language is outdated as an assembler like language. Therefore it is deprecated and will
not be contained in the next edition of this standard.

7.2.2 Instructions

An instruction list is composed of a sequence of instructions. Each instruction shall begin on a
new line and shall contain an operator with optional modifiers, and, if necessary for the par-
ticular operation, one or more operands separated by commas. Operands can be of any of the
data representations for literals, for enumerated values, and for variables.

The instruction can be preceded by an identifying label followed by a colon (:). Empty lines
can be inserted between instructions.

BS EN 61131-3:2013

 – 196 – 61131-3 © IEC:2013

EXAMPLE The fields of an instruction list

LABEL OPERATOR OPERAND COMMENT

START: LD %IX1 (* PUSH BUTTON *)

 ANDN %MX5 (* NOT INHIBITED *)

 ST %QX2 (* FAN ON *)

7.2.3 Operators, modifiers and operands

7.2.3.1 General

Standard operators with their allowed modifiers and operands shall be as listed in Table 68.

7.2.3.2 “Current result”

Unless otherwise defined in Table 68 the semantics of the operators shall be

 result:= result OP operand

That is, the value of the expression being evaluated is replaced by its current value operated
upon by the operator with respect to the operand.

EXAMPLE 1 The instruction AND %IX1 is interpreted as result:= result AND %IX1.

The comparison operators shall be interpreted with the current result to the left of the compar-
ison and the operand to the right, with a Boolean result.

EXAMPLE 2 The instruction GT %IW10 will have the Boolean result 1 if the current result is greater than the
value of Input Word 10, and the Boolean result 0 otherwise.

7.2.3.3 Modifier

The modifier “N” indicates bitwise Boolean negation (one's complement) of the operand.

EXAMPLE 1 The instruction ANDN %IX2 is interpreted as result:= result AND NOT %IX2.

It shall be an error if the current result and operand are not of same data type, or if the result
of a numerical operation exceeds the range of values for its data type.

The left parenthesis modifier “(” indicates that evaluation of the operator shall be deferred
until a right parenthesis operator “)” is encountered. In Table 67, two equivalent forms of a
parenthesized sequence of instructions are shown. Both features in Table 67 shall be inter-
preted as

 result:= result AND (%IX1 OR %IX2)

An operand shall be a literal as defined in 6.3, an enumerated value or a variable.

The function REF() and the dereferencing operator “^” shall be used in the definition of the
operands, Table 67 shows the parenthesized expression.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 197 –

Table 67 – Parenthesized expression for IL language

No. Descriptionˆ Example

1 Parenthesized expression beginning with explicit operator: AND(
LD %IX1 (NOTE)
OR %IX2
)

2 Parenthesized expression (short form) AND(%IX1
OR %IX2
)

NOTE In feature 1 the LD operator may be modified or the LD operation may be replaced by another operation or
function call respectively.

The modifier “C” indicates that the associated instruction shall be performed only if the value
of the currently evaluated result is Boolean 1 (or Boolean 0 if the operator is combined with
the “N” modifier). Table 68 shows the Instruction list operators.

Table 68 – Instruction list operators

No. Description
Operatora

Modifier
 (see NOTE)

Explanation

1 LD N Set current result equal to operand

2 ST N Store current result to operand location

3 Se , Re Set operand to 1 if current result is Boolean 1

Reset operand to 0 if current result is Boolean 1

4 AND N, (Logical AND

5 & N, (Logical AND

6 OR N, (Logical OR

7 XOR N, (Logical exclusive OR

8 NOTd Logical negation (one's complement)

9 ADD (Addition

10 SUB (Subtraction

11 MUL (Multiplication

12 DIV (Division

13 MOD (Modulo-division

14 GT (Comparison: >

15 GE (Comparison: >=

16 EQ (Comparison: =

17 NE (Comparison: <>

18 LE (Comparison: <=

9 LT (Comparison: <

20 JMPb C, N Jump to label

21 CALc C, N Call function block (see Table 69)

22 RETf C, N Return from called function, function block or program

23) Evaluate deferred operation

24 ST? Assignment attempt Store with test

See preceding text for explanation of modifiers and evaluation of expressions.

BS EN 61131-3:2013

 – 198 – 61131-3 © IEC:2013

a Unless otherwise noted, these operators shall be either overloaded or typed.
b The operand of a JMP instruction shall be the label of an instruction to which execution is to be transferred.

When a JMP instruction is contained in an ACTION... END_ACTION construct, the operand shall be a label
within the same construct.

c The operand of this instruction shall be the name of a function block instance to be called.
d The result of this operation shall be the bitwise Boolean negation (one's complement) of the current result.
e The type of the operand of this instruction shall be BOOL.
f This instruction does not have an operand.

7.2.4 Functions and function blocks

7.2.4.1 General

The general rules and features for function calls and for function block calls apply also in IL.

The features for the call of function blocks and functions are defined in Table 69.

7.2.4.2 Function

Functions shall be called by placing the function name in the operator field. The parameters
may be given all together in one operand field or each parameter in an operand field line by
line.

In case of the non-formal call the first parameter of a function need not to be contained in the
parameter, but the current result shall be used as the first parameter of the function. Addition-
al parameters (starting with the second one), if required, shall be given in the operand field,
separated by commas, in the order of their declaration.

Functions may have a result. As shown in features 3 in Table 69 the successful execution of a
RET instruction or upon reaching the end of the POU the POU delivers the result as the “cur-
rent result”.

If a function is called which does not have a result, the “current result” is undefined.

7.2.4.3 Function block

Functions block shall be called by placing the keyword CAL in the operator field and the func-
tion block instance name in the operand field. The parameters may be given all together or
each parameter may be placed in an operand field.

Function blocks can be called conditionally and unconditionally via the EN operator.

All parameter assignments defined in a parameter list of a conditional function block call shall
only be performed together with the call, if the condition is true.

If a function block instance is called, the “current result” is undefined.

7.2.4.4 Methods

Methods shall be called by placing the function block instance name, followed by a single pe-
riod “.”, and the method name in the operator field. The parameters may be given all together
in one operand field or each parameter in an operand field line by line.

In case of the non-formal call the first parameter of a method need not to be contained in the
parameter, but the current result shall be used as the first parameter of the function. Addition-

BS EN 61131-3:2013

61131-3 © IEC:2013 – 199 –

al parameters (starting with the second one), if required, shall be given in the operand field,
separated by commas, in the order of their declaration.

Methods may have a result. As shown in features 4 in Table 69 the successful execution of a
RET instruction or upon reaching the end of the POU the POU delivers the result as the “cur-
rent result”.

If a method is called which does not have a result, the “current result” is undefined.

Table 69 shows the alternative calls of the IL language.

Table 69 – Calls for IL language

No. Description Example (NOTE)

1a Function block call with non-formal parameter
list

CAL C10(%IX10, FALSE, A, OUT, B)

CAL CMD_TMR(%IX5, T#300ms, OUT, ELAPSED)

1b Function block call with formal parameter list CAL C10(// FB instance name
 CU := %IX10,
 R := FALSE,
 PV := A,
 Q => OUT,
 CV => B)

 CAL CMD_TMR(
 IN := %IX5,
 PT := T#300ms,
 Q => OUT,
 ET => ELAPSED,
 ENO => ERR)

2 Function block call with load/store of standard
input parameters

LD A
ADD 5
ST C10.PV
LD %IX10
ST C10.CU
CAL C10 // FB instance name
LD C10.CV // current result

3a Function call with formal parameter list LIMIT(// Function name
 EN := COND,
 IN := B,
 MN := 1,
 MX := 5,
 ENO => TEMPL
)
ST A // Current result new

3b Function call with non-formal parameter list LD 1 // set current result
LIMIT B, 5 // and use it as IN
ST A // new current result

4a Method call with formal parameter list FB_INST.M1(// Method name
 EN := COND,
 IN := B,
 MN := 1,
 MX := 5,
 ENO => TEMPL
)
ST A // Current result new

4b Method call with non-formal parameter list LD 1 // set current result
FB_INST.M1 B, 5 // and use it as IN
ST A // new current result

BS EN 61131-3:2013

 – 200 – 61131-3 © IEC:2013

No. Description Example (NOTE)

NOTE A declaration such as
VAR
 C10 : CTU;
 CMD_TMR: TON;
 A, B : INT;
 ELAPSED: TIME;
 OUT, ERR, TEMPL, COND: BOOL;
END_VAR
is assumed in the above examples.

The standard input operators of standard function blocks defined in Table 70 can be used in
conjunction with feature 2 (load/store) in Table 69. This call is equivalent to a CAL with a pa-
rameter list, which contains only one variable with the name of the input operator.

Parameters, which are not supplied, are taken from the last assignment or, if not present,
from initialization. This feature supports problem situations, where events are predictable and
therefore only one variable can change from one call to the next.

EXAMPLE 1
Together with the declaration
 VAR C10: CTU; END_VAR
the instruction sequence
 LD 15
 PV C10
gives the same result as
 CAL C10(PV:=15)

 The missing inputs R and CU have values previously assigned to them. Since the CU input detects a rising
edge, only the PV input value will be set by this call; counting cannot happen because an unsupplied pa-
rameter cannot change. In contrast to this, the sequence
 LD %IX10
 CU C10
results in counting at maximum in every second call, depending on the change rate of the input %IX10.
Every call uses the previously set values for PV and R.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 201 –

EXAMPLE 2
With bistable function blocks, taking a declaration
 VAR FORWARD: SR; END_VAR
this results into an implicit conditional behavior. The sequence
 LD FALSE
 S1 FORWARD
does not change the state of the bistable FORWARD. A following sequence
 LD TRUE
 R FORWARD
resets the bistable.

Table 70 – Standard function block operators for IL language

No. Function
block

Input
operator

Output
operator

1 SR S1,R Q

2 RS S,R1 Q

3 F/R_TRIG CLK Q

4 CTU CU,R,PV CV, Q,
also RESET

5 CTD CD,PV CV, Q

6 CTUD CU,CD,R,PV CV, QU,QD,
also RESET

7 TP IN,PT CV, Q

8 TON IN,PT CV, Q

9 TOF IN,PT CV, Q

NOTE LD (Load) is not necessary as a Standard Function Block input operator, because the LD functionality is
included in PV.

Parameters, which are not supplied, are taken from the last assignment or, if not present,
from initialization. This feature supports problem situations, where events are predictable and
therefore only one variable can change from one call to the next.

7.3 Structured Text (ST)

7.3.1 General

The textual programming language “Structured Text, ST” is derived from the programming
language Pascal for the usage in this standard.

7.3.2 Expressions

In the ST language, the end of a textual line shall be treated the same as a space (SP) char-
acter.

An expression is a construct which, when evaluated, yields a value corresponding to one of
the data types. The maximum allowed length of expressions is an Implementer specific.

Expressions are composed of operators and operands. An operand shall be a literal, an enu-
merated value, a variable, a call of function with result, call of method with result, call of func-
tion block instance with result or another expression.

The operators of the ST language are summarized in Table 71.

The Implementer shall define explicit and implicit type conversions.

BS EN 61131-3:2013

 – 202 – 61131-3 © IEC:2013

The evaluation of an expression shall apply the following rules:

1. The operators apply the operands in a sequence defined by the operator precedence
shown in Table 71. The operator with highest precedence in an expression shall be ap-
plied first, followed by the operator of next lower precedence, etc., until evaluation is
complete.

EXAMPLE 1

 If A, B, C, and D are of type INT with values 1, 2, 3, and 4, respectively, then
 A+B-C*ABS(D)
 is calculated to -9, and
 (A+B-C)*ABS(D)
 is calculated to 0.

2. Operators of equal precedence shall be applied as written in the expression from left to
right.

EXAMPLE 2
 A+B+C is evaluated as (A+B)+C.

3. When an operator has two operands, the leftmost operand shall be evaluated first.

EXAMPLE 3
 In the expression
 SIN(A)*COS(B) the expression SIN(A) is evaluated first,
 followed by COS(B), followed by evaluation of the product.

4. Boolean expressions may be evaluated only to the extent necessary to determine the re-
sultant value including possible side effects. The extent to which a Boolean expression is
evaluated is Implementer specific.

EXAMPLE 4
 For the expression(A>B)&(C<D)it is sufficient, if
 A<=B , to evaluate only (A>B), to decide
 that the value of the expression is FALSE.

5. Functions and methods may be called as elements of expressions consisting of the func-
tion or method name followed by a parenthesized list of parameters.

6. When an operator in an expression can be represented as one of the overloaded func-
tions, conversion of operands and results shall follow the rule and examples given here.

The following conditions in the execution of operators shall be treated as errors:

a) An attempt is made to divide by zero.
b) Operands are not of the correct data type for the operation.
c) The result of a numerical operation exceeds the range of values for its data type.

Table 71 – Operators of the ST language

No. Description
 Operationa

Symbol Example Precedence

1 Parentheses (expression) (A+B/C), (A+B)/C, A/(B+C) 11 (Highest)

2 Evaluation of result of
function and method
– if a result is declared

Identifier
 (parameter list)

LN(A), MAX(X,Y),

myclass.my_method(x)

10

3 Dereference ^ R^ 9

4 Negation - -A, - A 8

5 Unary Plus + +B, + B 8

5 Complement NOT NOT C 8

7 Exponentiationb ** A**B, B ** B 7

BS EN 61131-3:2013

61131-3 © IEC:2013 – 203 –

No. Description
 Operationa

Symbol Example Precedence

8 Multiply * A*B, A * B 6

9 Divide / A/B, A / B / D 6

10 Modulo MOD A MOD B 6

11 Add + A+B, A + B + C 5

12 Subtract - A-B, A – B - C 5

13 Comparison < , > , <= , >= A<B A < B < C 4

14 Equality = A=B, A=B & B=C 4

15 Inequality <> A<>B, A <> B 4

16a Boolean AND & A&B, A & B, A & B & C 3

16b Boolean AND AND A AND B 3

17 Boolean Exclusive OR XOR A XOR B 2

18 Boolean OR OR A OR B 1 (Lowest)

a The same rules apply to the operands of these operators as to the inputs of the corresponding standard func-
tions.

b The result of evaluating the expression A**B shall be the same as the result of evaluating the function
EXPT(A,B).

7.3.3 Statements

7.3.3.1 General

The statements of the ST language are summarized in Table 72. The maximum allowed
length of statements is an Implementer specific.

Table 72 – ST language statements

No. Description Examples

1 Assignment Variable:= expres-
sion;

1a Variable and expression of elemen-
tary data type

A:= B; CV:= CV+1; C:= SIN(X);

1b Variables and expression of differ-
ent elementary data types with im-
plicit type conversion according
Figure 11

A_Real:= B_Int;

1c Variable and expression of user-
defined type

A_Struct1:= B_Struct1;

C_Array1 := D_Array1;

1d Instances of function block type A_Instance1:= B_Instance1;

 Call

2a b Function call FCT(17);

2b b Function block call and FB output
usage

CMD_TMR(IN:= bIn1, PT:= T#300ms);

A:= CMD_TMR.Q;

2c b Method call FB_INST.M1(17);

3 RETURN RETURN;

BS EN 61131-3:2013

 – 204 – 61131-3 © IEC:2013

No. Description Examples

 Selection

4 IF ...

THEN ...

 ELSIF ...
 THEN ...

ELSE ...END_IF

D:= B*B – 4.0*A*C;
IF D < 0.0
THEN NROOTS:= 0;
 ELSIF D = 0.0
 THEN
 NROOTS:= 1;
 X1:= - B/(2.0*A);
 ELSE
 NROOTS:= 2;
 X1:= (- B + SQRT(D))/(2.0*A);
 X2:= (- B - SQRT(D))/(2.0*A);
END_IF;

5 CASE ... OF

 ...

 ELSE ...

END_CASE

TW:= WORD_BCD_TO_INT(THUMBWHEEL);

TW_ERROR:= 0;

CASE TW OF
 1,5: DISPLAY:= OVEN_TEMP;
 2: DISPLAY:= MOTOR_SPEED;
 3: DISPLAY:= GROSS - TARE;
 4,6..10: DISPLAY:= STATUS(TW - 4);
 ELSE DISPLAY := 0;
 TW_ERROR:= 1;

END_CASE;
QW100:= INT_TO_BCD(DISPLAY);

 Iteration

6 FOR ... TO ... BY ... DO

 ...
END_FOR

J:= 101;
FOR I:= 1 TO 100 BY 2 DO
 IF WORDS[I] = 'KEY' THEN
 J:= I;
 EXIT;
 END_IF;

END_FOR;

7 WHILE ... DO

...

END_WHILE

J:= 1;
WHILE J <= 100 & WORDS[J] <> 'KEY' DO
 J:= J+2;
END_WHILE;

8 REPEAT ...

 UNTIL ...

END_REPEAT

J:= -1;
REPEAT
 J:= J+2;
 UNTIL J = 101 OR WORDS[J] = 'KEY'
END_REPEAT;

9 a CONTINUE J:= 1;
WHILE (J <= 100 AND WORDS[J] <> 'KEY') DO
..IF (J MOD 3 = 0) THEN

 CONTINUE;

 END_IF;

(* if j=1,2,4,5,7,8, ... then this statement*);

 ...

END_WHILE;

10 a EXIT an iteration EXIT; (see also in feature 6)

11 Empty Statement ;

a If the EXIT or CONTINUE statement (feature 9 or 11) is supported, then it shall be supported for all of the itera-
tion statements (FOR, WHILE, REPEAT) which are supported in the implementation.

b If the function, function block type, or method provides a result and the call is not in an expression of an assign-
ment, the result is discarded.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 205 –

7.3.3.2 Assignment (Comparison, result, call)

7.3.3.2.1 General

The assignment statement replaces the current value of a single or multi-element variable by
the result of evaluating an expression. An assignment statement shall consist of a variable
reference on the left-hand side, followed by the assignment operator “:=”, followed by the ex-
pression to be evaluated.

For instance, the statement

 A:= B;

would be used to replace the single data value of variable A by the current value of variable B
if both were of type INT or the variable B can implicitly be converted to type INT.

If A and B are multi-element variables the data types of A and B shall be the same. In this
case the elements of the variable A get the values of the elements of variable B.

For instance, if both A and B were of type ANALOG_CHANNEL_CONFIGURATION then the val-
ues of all the elements of the structured variable A would be replaced by the current values of
the corresponding elements of variable B.

7.3.3.2.2 Comparison

A comparison returns its result as a Boolean value. A comparison shall consist of a variable
reference on the left-hand side, followed by a comparison operator, followed by a variable
reference on the right-hand side. The variables can be single or multi-element variables.

The comparison

 A = B

would be used to compare the data value of variable A by the value of variable B if both were
of the same data type or one of the variables can implicitly be converted to the data type of
the other one.

If A and B are multi-element variables the data types of A and B shall be the same. In this
case the values of the elements of the variable A is compared to the values of the elements of
variable B.

7.3.3.2.3 Result

An assignment is also used to assign the result of a function, function block type, or method.
If a result is defined for this POU at least one assignment to the name of this POU shall be
made. The value returned shall be the result of the most recent evaluation of such an assign-
ment. It is an error to return from the evaluation with an ENO value of TRUE, or with a non-
existent ENO output, unless at least one such assignment has been made.

7.3.3.2.4 Call

Function, method, and function block control statements consist of the mechanisms for calling
this POU and for returning control to the calling entity before the physical end of the POU.

• FUNCTION

Function shall be called by a statement consisting of the name of the function followed by
a parenthesized list of parameters as illustrated in Table 72.
The rules and features defined in 6.6.1.7 for function calls apply.

BS EN 61131-3:2013

 – 206 – 61131-3 © IEC:2013

• FUNCTION_BLOCK

Function blocks shall be called by a statement consisting of the name of the function block
instance followed by a parenthesized list of parameters, as illustrated in Table 72.

• METHOD

Methods shall be called by a statement consisting of the name of the instance followed by
‘.’ and the method name and a parenthesized list of parameters.

• RETURN

The RETURN statement shall provide early exit from a function, function block or program
(for example, as the result of the evaluation of an IF statement).

7.3.3.3 Selection statements (IF, CASE)

7.3.3.3.1 General

Selection statements include the IF and CASE statements. A selection statement selects one
(or a group) of its component statements for execution, based on a specified condition. Ex-
amples of selection statements are given in Table 72.

7.3.3.3.2 IF

The IF statement specifies that a group of statements is to be executed only if the associated
Boolean expression evaluates to the value 1 (TRUE). If the condition is false, then either no
statement is to be executed, or the statement group following the ELSE keyword (or the
ELSIF keyword if its associated Boolean condition is true) is to be executed.

7.3.3.3.3 CASE

The CASE statement consists of an expression which shall evaluate to a variable of elemen-
tary data type (the “selector”), and a list of statement groups, each group being labeled by
one or more literals, enumerated values, or subranges, as applicable. The data types of these
labels shall match to the data type of the selector variable i.e. the selector variable shall be
able to be compared with the labels.

It specifies that the first group of statements, one of whose ranges contains the computed
value of the selector, shall be executed. If the value of the selector does not occur in a range
of any case, the statement sequence following the keyword ELSE (if it occurs in the CASE
statement) shall be executed. Otherwise, none of the statement sequences shall be executed.

The maximum allowed number of selections in CASE statements is an Implementer specific.

7.3.3.4 Iteration statements (WHILE, REPEAT, EXIT, CONTINUE, FOR)

7.3.3.4.1 General

Iteration statements specify that the group of associated statements shall be executed re-
peatedly.

The WHILE and REPEAT statements shall not be used to achieve inter-process synchroniza-
tion, for example as a "wait loop" with an externally determined termination condition. The
SFC elements shall be used for this purpose.

It shall be an error if a WHILE or REPEAT statement is used in an algorithm for which satisfac-
tion of the loop termination condition or execution of an EXIT statement cannot be guaran-
teed.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 207 –

The FOR statement is used if the number of iterations can be determined in advance; other-
wise, the WHILE or REPEAT constructs are used.

7.3.3.4.2 FOR

The FOR statement indicates that a statement sequence shall be repeatedly executed, up to
the END_FOR keyword, while a progression of values is assigned to the FOR loop control vari-
able. The control variable, initial value, and final value shall be expressions of the same inte-
ger type (for example, SINT, INT, or DINT) and shall not be altered by any of the repeated
statements.

The FOR statement increments the control variable up or down from an initial value to a final
value in increments determined by the value of an expression. If the BY construct is omitted
the increment value defaults to 1.

The test for the termination condition is made at the beginning of each iteration, so that the
statement sequence is not executed if the value of the control variable exceeds the final value
i.e. the value of the control variable is greater respectively less than the final value if the in-
crement value is positive respectively negative. The value of the control variable after comple-
tion of the FOR loop is Implementer specific.

The iteration is terminated when the value of the control variable is outside the range speci-
fied by the TO construct.

A further example of the usage of the FOR statement is given in feature 6 of Table 72. In this
example, the FOR loop is used to determine the index J of the first occurrence (if any) of the
string 'KEY' in the odd-numbered elements of an array of strings WORDS with a subscript
range of (1..100). If no occurrence is found, J will have the value 101.

7.3.3.4.3 WHILE

The WHILE statement causes execution of the sequence of statements up to the END_WHILE
keyword. The statements are repeatedly executed until the associated Boolean expression is
false. If the expression is initially false, then the group of statements is not executed at all.

For instance, the FOR...END_FOR example can be rewritten using the WHILE...END_WHILE
construction shown in Table 72.

7.3.3.4.4 REPEAT

The REPEAT statement causes the sequence of statements up to the UNTIL keyword to be
executed repeatedly (and at least once) until the associated Boolean condition is true.

For instance, the WHILE...END_WHILE example can be rewritten using the WHILE
...END_WHILE construct also shown in Table 72.

EXAMPLE

 The FOR loop specified by

 FOR I:= 3 TO 1 STEP -1 DO ...;

 terminates when the value of the variable I reaches 0.

BS EN 61131-3:2013

 – 208 – 61131-3 © IEC:2013

7.3.3.4.5 CONTINUE

The CONTINUE statement shall be used to jump over the remaining statements of the iteration
loop in which the CONTINUE is located after the last statement of the loop right before the
loop terminator (END_FOR, END_WHILE, or END_REPEAT).

EXAMPLE

After executing the statements, the value of the variable if the value of the Boolean variable FLAG=0, and SUM=9
if FLAG=1.

 SUM:= 0;
 FOR I:= 1 TO 3 DO
 FOR J:= 1 TO 2 DO
 SUM:= SUM + 1;
 IF FLAG THEN

 CONTINUE;

 END_IF;
 SUM:= SUM + 1;
 END_FOR;
 SUM:= SUM + 1;
 END_FOR;

7.3.3.4.6 EXIT

The EXIT statement shall be used to terminate iterations before the termination condition is
satisfied.

When the EXIT statement is located within nested iterative constructs, exit shall be from the
innermost loop in which the EXIT is located, that is, control shall pass to the next statement
after the first loop terminator (END_FOR, END_WHILE, or END_REPEAT) following the EXIT
statement.

EXAMPLE

After executing of the statements, the value of the variable SUM=15 if the value of the Boolean variable FLAG= 0, and SUM=6 if
FLAG=1.

SUM:= 0;
FOR I:= 1 TO 3 DO
 FOR J:= 1 TO 2 DO
 SUM:= SUM + 1;

 IF FLAG THEN

 EXIT;
 END_IF;
 SUM:= SUM + 1;
 END_FOR;
 SUM:= SUM + 1;
END_FOR;

8 Graphic languages

8.1 Common elements

8.1.1 General

The graphic languages defined in this standard are LD (Ladder Diagram) and FBD (Function
Block Diagram). The sequential function chart (SFC) elements can be used in conjunction
with either of these languages.

The elements apply to both the graphic languages in this standard, that is, LD and FBD, and
to the graphic representation of sequential function chart (SFC) elements.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 209 –

8.1.2 Representation of variables and instances

All supported data types shall be accessible as operands or parameters in the graphical lan-
guages.

All supported declarations of instances shall be accessible in the graphical languages.

The usage of expression as parameters or as subscript of arrays is beyond the scope of this
part of the IEC 61131 series.

EXAMPLE

TYPE
 SType: STRUCT
 x: BOOL;
 a: INT;
 t: TON;
 END_STRUCT;
END_TYPE;

Type declarations

VAR
 x: BOOL;
 i: INT;
 Xs: ARRAY [1..10] OF BOOL;
 S: SType;
 Ss: ARRAY [0..3] OF SType;
 t: TON;
 Ts: ARRAY [0..20] OF TON;
END_VAR

Variable declarations

a) Type and variable declarations

BS EN 61131-3:2013

 – 210 – 61131-3 © IEC:2013

 +--------+
 x | myFct |
------| |------|IN |
 +--------+

 +--------+
 Xs[3] | myFct |
------| |------|IN |
 +--------+

 +--------+
 Xs[i] | myFct |
------| |------|IN |
 +--------+

 +--------+
 S.x | myFct |
------| |------|IN |
 +--------+

 +--------+
 Ss[3].x | myFct |
------| |------|IN |
 +--------+

Uses an operand:

as an elementary variable

as an array element with constant subscript

as an array element with variable subscript

as an element of a structure

as an element of a structured array

b) Representation of operands

 +--------+
 t.Q | myFct2 |
------| |------|aTON |
 +--------+

 +--------+
 Ts[10].Q | myFct2 |
------| |------|aTON |
 +--------+

 +--------+
 Ts[i].Q | myFct2 |
------| |------|aTON |
 +--------+

 +--------+
 S.t | myFct2 |
------| |------|aTON |
 +--------+

 +--------+
 Ss[2].t | myFct2 |
------| |------|aTON |
 +--------+

Instance used as a parameter:

as a normal instance

as an array element with constant subscript

as an array element with variable subscript

as an element of a structure

as an element of a structured array

c) Representation of an instance as parameter

BS EN 61131-3:2013

61131-3 © IEC:2013 – 211 –

 t
 +--------+
 x | TON |
------| |------|IN Q|
 |PT ET|
 +--------+

 Ts[12]
 +--------+
 x | TON |
------| |------|IN Q|
 |PT ET|
 +--------+

 Ts[i]
 +--------+
 x | TON |
------| |------|IN Q|
 |PT ET|
 +--------+

 s.t
 +--------+
 x | TON |
------| |------|IN Q|
 |PT ET|
 +--------+

 Ss[i].t
 +--------+
 x | TON |
------| |------|IN Q|
 |PT ET|
 +--------+

Instance as:

plain instance

array element with constant subscript

array element with variable subscript

element of a structure

element of a structured array

d) Representation of an instance call

8.1.3 Representation of lines and blocks

The usage of letters, semigraphic or graphic for the representation of graphical elements is
Implementer specific and not a normative requirement.

The graphic language elements defined in this Clause 8 are drawn with line elements using
characters from the character set. Examples are shown below.

Lines can be extended by the use of connector. No storage of data or association with data
elements shall be associated with the use of connectors; hence, to avoid ambiguity, it shall be
an error if the identifier used as a connector label is the same as the name of another named
element within the same program organization unit.

Any restrictions on network topology in a particular implementation shall be expressed as Im-
plementer specific.

BS EN 61131-3:2013

 – 212 – 61131-3 © IEC:2013

EXAMPLES Graphical elements

Horizontal lines

Vertical lines
|
|

Horizontal/vertical connection (node)
|

--+--
|

Line crossings without connection (no node)
|

----|----
|

Connected and non-connected corners (nodes)

| |

----+ +----
| |

------+ +----
| | |

Blocks with connecting lines

 |
 +--------+
---| |

 | |---
---| |
 +--------+

 |

Connectors and continuation

---------->OTTO>
>OTTO>----------

8.1.4 Direction of flow in networks

A network is defined as a maximal set of interconnected graphic elements, excluding the left
and right rails in the case of networks in the LD language. Provision shall be made to associ-
ate with each network or group of networks in a graphic language a network label delimited on
the right by a colon (:). This label shall have the form of an identifier or an unsigned decimal
integer. The scope of a network and its label shall be local to the program organization unit in
which the network is located.

Graphic languages are used to represent the flow of a conceptual quantity through one or
more networks representing a control plan, that is:

• “Power flow”,
analogous to the flow of electric power in an electromechanical relay system, typically
used in relay ladder diagrams.
Power flow in the LD language shall be from left to right.

• “Signal flow”,
analogous to the flow of signals between elements of a signal processing system, typically
used in function block diagrams.
Signal flow in the FBD language shall be from the output (right-hand) side of a function or
function block to the input (left-hand) side of the function or function block(s) so connect-
ed.

• “Activity flow”,
analogous to the flow of control between elements of an organization, or between the
steps of an electromechanical sequencer, typically used in sequential function charts.
Activity flow between the SFC elements shall be from the bottom of a step through the ap-
propriate transition to the top of the corresponding successor step(s).

BS EN 61131-3:2013

61131-3 © IEC:2013 – 213 –

8.1.5 Evaluation of networks

8.1.5.1 General

The order in which networks and their elements are evaluated is not necessarily the same as
the order in which they are labeled or displayed. Similarly, it is not necessary that all networks
be evaluated before the evaluation of a given network can be repeated.

However, when the body of a program organization unit consists of one or more networks, the
results of network evaluation within the said body shall be functionally equivalent to the ob-
servance of the following rules:

a) No element of a network shall be evaluated until the states of all of its inputs have been
evaluated.

b) The evaluation of a network element shall not be complete until the states of all of its out-
puts have been evaluated.

c) The evaluation of a network is not complete until the outputs of all of its elements have
been evaluated, even if the network contains one of the execution control elements.

d) The order in which networks are evaluated shall conform to the provisions for the LD lan-
guage and for the FBD language.

8.1.5.2 Feedback path

A feedback path is said to exist in a network when the output of a function or function block is
used as the input to a function or function block which precedes it in the network; the associ-
ated variable is called a feedback variable.

For instance, the Boolean variable RUN is the feedback variable in the example shown below.
A feedback variable can also be an output element of a function block data structure.

Feedback paths can be utilized in the graphic languages defined, subject to the following
rules:

a) Explicit loops such as the one shown in the example below a) shall only appear in the
FBD language.

b) It shall be possible for the user to utilize an Implementer specific means to determine the
order of execution of the elements in an explicit loop, for instance by selection of feedback
variables to form an implicit loop as shown in the example below b).

c) Feedback variables shall be initialized by one of the mechanisms. The initial value shall
be used during the first evaluation of the network. It shall be an error if a feedback varia-
ble is not initialized.

d) Once the element with a feedback variable as output has been evaluated, the new value
of the feedback variable shall be used until the next evaluation of the element.

BS EN 61131-3:2013

 – 214 – 61131-3 © IEC:2013

EXAMPLE Feedback path

 +---+
 ENABLE---| & |-----RUN---+
 +---| | |
 +---+ | +---+ |
 START1---|>=1|---+ |
 START2---| | |
 +--| | |
 | +---+ |
 +------------------------------+

a) Explicit loop

 +---+
 ENABLE---| & |-----RUN
 +---| |
 +---+ | +---+
 START1---|>=1|---+
 START2---| |
 RUN---| |
 +---+

b) Implicit loop

 | START1 ENABLE RUN |
 +---| |----+---| |------()---+
 | START2 | |
 +---| |----+ |
 | RUN | |
 +---| |----+ |
 | |

c) LD language equivalent

8.1.6 Execution control elements

Transfer of program control in the LD and FBD languages shall be represented by the graph-
ical elements shown in Table 73.

Jumps shall be shown by a Boolean signal line terminated in a double arrowhead. The signal
line for a jump condition shall originate at a Boolean variable, at a Boolean output of a func-
tion or function block, or on the power flow line of a ladder diagram. A transfer of program
control to the designated network label shall occur when the Boolean value of the signal line
is 1 (TRUE); thus, the unconditional jump is a special case of the conditional jump.

The target of a jump shall be a network label within the program organization unit body or
method body within which the jump occurs. If the jump occurs within an ACTION
...END_ACTION construct, the target of the jump shall be within the same construct.

Conditional returns from functions and function blocks shall be implemented using a RETURN
construction as shown in Table 73. Program execution shall be transferred back to the calling
entity when the Boolean input is 1 (TRUE), and shall continue in the normal fashion when the
Boolean input is 0 (FALSE). Unconditional returns shall be provided by the physical end of the
function or function block, or by a RETURN element connected to the left rail in the LD lan-
guage, as shown in Table 73.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 215 –

Table 73 – Graphic execution control elements

No. Description Explanation

 Unconditional jump

1a FBD language 1---->>LABELA

1b LD language |
 +---->>LABELA
 |

 Conditional jump

2a FBD language Example:
jump condition, jump target

 X---->>LABELB

 +---+
 bvar0---| & |--->>NEXT
 bvar50--| |
 +---+
 NEXT:
 +---+
 bvar5---|>=1|---bOut0
 bvar60--| |
 +---+

2b LD language Example:
jump condition, jump target

 | X
 +-| |---->>LABELB
 |
 |
 | bvar0 bvar50
 +---| |-----| |--->>NEXT
 |
 |
 NEXT:
 | bvar5 bOut0 |
 +----| |----+----()---+
 | bvar60 | |
 +----| |----+ |
 | |

 Conditional return

3a LD language | X
 +--| |---<RETURN>
 |

3b FBD language X---<RETURN>

 Unconditional return

4 LD language |
 +---<RETURN>
 |

8.2 Ladder diagram (LD)

8.2.1 General

Subclause 8.2 defines the LD language for ladder diagram programming of programmable
controllers.

A LD program enables the programmable controller to test and modify data by means of
standardized graphic symbols. These symbols are laid out in networks in a manner similar to

BS EN 61131-3:2013

 – 216 – 61131-3 © IEC:2013

a “rung” of a relay ladder logic diagram. LD networks are bounded on the left and right by
power rails.

The usage of letters, semigraphic or graphic for the representation of graphical elements is
Implementer specific and not a normative requirement.

8.2.2 Power rails

As shown in Table 74, the LD network shall be delimited on the left by a vertical line known as
the left power rail, and on the right by a vertical line known as the right power rail. The right
power rail may be explicit or implied.

8.2.3 Link elements and states

As shown in Table 74, link elements may be horizontal or vertical. The state of the link ele-
ment shall be denoted “ON” or “OFF”, corresponding to the literal Boolean values 1 or 0, re-
spectively. The term link state shall be synonymous with the term power flow.

The state of the left rail shall be considered ON at all times. No state is defined for the right
rail.

A horizontal link element shall be indicated by a horizontal line. A horizontal link element
transmits the state of the element on its immediate left to the element on its immediate right.

The vertical link element shall consist of a vertical line intersecting with one or more horizon-
tal link elements on each side. The state of the vertical link shall represent the inclusive OR of
the ON states of the horizontal links on its left side, that is, the state of the vertical link shall
be:

• OFF if the states of all the attached horizontal links to its left are OFF;

• ON if the state of one or more of the attached horizontal links to its left is ON.

The state of the vertical link shall be copied to all of the attached horizontal links on its right.
The state of the vertical link shall not be copied to any of the attached horizontal links on its
left.

Table 74 – Power rails and link elements

No. Description Symbol

1 Left power rail
(with attached horizontal link)

 |
 +---
 |

2 Right power rail
(with attached horizontal link)

 |
 ---+
 |

3 Horizontal link -----------

4 Vertical link
(with attached horizontal links)

 |
 ----+----
 ----+
 |
 +----

8.2.4 Contacts

A contact is an element which imparts a state to the horizontal link on its right side which is
equal to the Boolean AND of the state of the horizontal link at its left side with an appropriate
function of an associated Boolean input, output, or memory variable. A contact does not modi-

BS EN 61131-3:2013

61131-3 © IEC:2013 – 217 –

fy the value of the associated Boolean variable. Standard contact symbols are given in Table
75.

Table 75 – Contacts

No. Description Explanation, Symbol

 Static contacts

1 Normally open contact ***
--| |--

The state of the left link is copied to the right link if the state of
the associated Boolean variable (indicated by "***") is
ON. Otherwise, the state of the right link is OFF.

2 Normally closed contact ***
--|/|--

The state of the left link is copied to the right link if the state of
the associated Boolean variable is OFF. Otherwise, the state of
the right link is OFF.

 Transition-sensing contacts

3 Positive transition-sensing contact ***
--|P|--

The state of the right link is ON from one evaluation of this ele-
ment to the next when a transition of the associated variable from
OFF to ON is sensed at the same time that the state of the left link
is ON. The state of the right link shall be OFF at all other times.

4 Negative transition-sensing contact ***
--|N|--

The state of the right link is ON from one evaluation of this ele-
ment to the next when a transition of the associated variable from
ON to OFF is sensed at the same time that the state of the left link
is ON. The state of the right link shall be OFF at all other times.

5a Compare contact (typed)

<cmp>
<operand 1>

<operand 2>
 DT

The state of the right link is ON from one evaluation of this ele-
ment to the next when the left link is ON and the <cmp> result of
the operands 1 and 2 is true.

The state of the right link shall be OFF otherwise.
< cmp> may be substituted by one of the compare functions that
are valid for the given data type.

DT is the data type of both given operands.

Example:

If the left link is ON and (intvalue1 > intvalue2) the right link
switches to ON.Both intvalue1 and intvalue2 are of the data type
INT

BS EN 61131-3:2013

 – 218 – 61131-3 © IEC:2013

No. Description Explanation, Symbol

5b Compare contact, (overloaded)

<cmp>

<operand 1>

<operand 2>

The state of the right link is ON from one evaluation of this ele-
ment to the next when the left link is ON and the <cmp> result of
the operands 1 and 2 is true.

The state of the right link shall be OFF otherwise.

<cmp> may be substituted by one of the compare functions that
are valid for the operands data type. The rules defined in 6.6.1.7
shall apply.

Example:

If the left link is ON and (value1 <> value2) the right link switches
to ON.

8.2.5 Coils

A coil copies the state of the link on its left to the link on its right without modification, and
stores an appropriate function of the state or transition of the left link into the associated
Boolean variable. Standard coil symbols are given in Table 76.

EXAMPLE

In the rung shown below, the value of the Boolean output is always TRUE, while the value of outputs c, d
and e upon completion of an evaluation of the rung is equal to the value of the input b.

| a b c d |
+--()--| |--+--()---()--+
| | e |
| +-----()-----+

Table 76 – Coils

No. Description Explanation, Symbol

 Momentary coils

1 Coil ***
--()—

The state of the left link is copied to the associated Bool-
ean variable and to the right link.

2 Negated coil ***
--(/)—

The state of the left link is copied to the right link. The in-
verse of the state of the left link is copied to the associated
Boolean variable, that is, if the state of the left link is OFF,
then the state of the associated variable is ON, and vice
versa.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 219 –

No. Description Explanation, Symbol

 Latched coils

3 Set (latch) coil ***
--(S)—

The associated Boolean variable is set to the ON state
when the left link is in the ON state, and remains set until
reset by a RESET coil.

4 Reset (unlatch) coil
.

--(R)—

The associated Boolean variable is reset to the OFF state
when the left link is in the ON state, and remains reset un-
til set by a SET coil.

 Transition-sensing coils

8 Positive transition-sensing coil ***
--(P)—

The state of the associated Boolean variable is ON from
one evaluation of this element to the next when a transition
of the left link from OFF to ON is sensed. The state of the
left link is always copied to the right link.

9 Negative transition-sensing coil ***
--(N)—

The state of the associated Boolean variable is ON from
one evaluation of this element to the next when a transition
of the left link from ON to OFF is sensed. The state of the
left link is always copied to the right link.

8.2.6 Functions and function blocks

The representation of functions, methods, and function blocks in the LD language shall be
with the following exceptions:

a) Actual variable connections may optionally be shown by writing the appropriate data or
variable outside the block adjacent to the formal variable name on the inside.

b) At least one Boolean input and one Boolean output shall be shown on each block to allow
for power flow through the block.

8.2.7 Order of network evaluation

Within a program organization unit written in LD, networks shall be evaluated in top to bottom
order as they appear in the ladder diagram, except as this order is modified by the execution
control elements.

8.3 Function Block Diagram (FBD)

8.3.1 General

Subclause 8.3 defines FBD, a graphic language for the programming of programmable con-
trollers which is consistent, as far as possible, with IEC 60617-12. Where conflicts exist be-
tween this standard and IEC 60617-12, the provisions of this standard shall apply for the pro-
gramming of programmable controllers in the FBD language.

8.3.2 Combination of elements

Elements of the FBD language shall be interconnected by signal flow lines following the con-
ventions of 8.1.4.

BS EN 61131-3:2013

http://dx.doi.org/10.3403/00249317U
http://dx.doi.org/10.3403/00249317U

 – 220 – 61131-3 © IEC:2013

Outputs of function blocks shall not be connected together. In particular, the “wired-OR” con-
struct of the LD language is not allowed in the FBD language; an explicit Boolean “OR” block
is required instead, as shown in the example below.

EXAMPLE Boolean OR

 | a c |
 +---| |--+--()--+
 | b | |
 +---| |--+ |
 | |

 +-----+
 a---| >=1 |---c
 b---| |
 +-----+

a) “Wired-OR” in LD language b) Function in FBD language

8.3.3 Order of network evaluation

When a program organization unit written in the FBD language contains more than one net-
work, the Implementer shall provide Implementer specific means by which the user may de-
termine the order of execution of networks.

BS EN 61131-3:2013

61131-3 © IEC:2013 – 221 –

Annex A
(normative)

Formal specification of the languages elements

The syntax of the textual languages are defined in a variant of the "Extended BNF" (Extended Backus Naur Form.)

The syntax of this EBNF variant is as follows:

For the purposes of this Annex A, terminal textual symbols consist of the appropriate character string enclosed in paired single
quotes. For example, a terminal symbol represented by the character string ABC is represented by 'ABC'.

Non-terminal textual symbols shall be represented by strings of lower-case letters, numbers, and the underline character (_),
beginning with an upper-case letter.

Production rules

The production rules for textual languages are of the form
 non_terminal_symbol: extended_structure;
This rule can be read as: "A non_terminal_symbol can consist of an extended_structure."

Extended structures can be constructed according to the following rules:

Any terminal symbol is an extended structure.

Any non-terminal symbol is an extended structure.

 If S is an extended structure, then the following expressions are also extended structures:
 (S) meaning S itself
 (S)* closure, meaning zero or more concatenations of S.
 (S)+ closure, meaning one or more concatenations of S.
 (S)? option, meaning zero or one occurrence of S.

 If S1 and S2 are extended structure, then the following expressions are extended structures:
 S1 | S2 alternation, meaning a choice of S1 or S2.
 S1 S2 concatenation, meaning S1 followed by S2.
 Concatenation precedes alternation, that is,
 S1 | S2 S3 is equivalent to S1 | (S2 S3),
 S1 S2 | S3 is equivalent to (S1 S2) | S3.

 If S is an extended structure that denotes a single character or an alternation of single characters, then the fol-
lowing is also an extended structure:
 ~(S) negation, meaning any single character that is not in S.
 Negation precedes closure or option, that is,
 ~(S)* is equivalent to (~(S))*.

The following symbols are used to denote certain characters or classes of characters:
 . Any single character
 \' The "single quote" character
 \n Newline
 \r Carriage return
 \t Tabulator

Comments within the grammar start with double slashes and end at the end of the line:
 // This is a comment

BS EN 61131-3:2013

 – 222 – 61131-3 © IEC:2013

// Table 1 - Character sets
// Table 2 - Identifiers
Letter : 'A'..'Z' | '_';
Digit : '0'..'9';
Bit : '0'..'1';
Octal_Digit : '0'..'7';
Hex_Digit : '0'..'9' | 'A'..'F';
Identifier : Letter (Letter | Digit)*;

// Table 3 - Comments
Comment : '//' ~('\n' | '\r')* '\r' ? '\n' {$channel=HIDDEN;}
 | '(*' (options{greedy=false;}: .)* '*)' {$channel=HIDDEN;}
 | '/*' (options{greedy=false;}: .)* '*/' {$channel=HIDDEN;};
WS : (' ' | '\t' | '\r' | '\n') {$channel=HIDDEN;}; // white space
EOL : '\n';

// Table 4 - Pragma
Pragma : '{' (options{greedy=false;}: .)* '}' {$channel=HIDDEN;};

// Table 5 - Numeric literal
Constant : Numeric_Literal | Char_Literal | Time_Literal | Bit_Str_Literal | Bool_Literal;
Numeric_Literal : Int_Literal | Real_Literal;
Int_Literal : (Int_Type_Name '#')? (Signed_Int | Binary_Int | Octal_Int | Hex_Int);
Unsigned_Int : Digit ('_' ? Digit)*;
Signed_Int : ('+' | '-')? Unsigned_Int;
Binary_Int : '2#' ('_' ? Bit)+;
Octal_Int : '8#' ('_' ? Octal_Digit)+;
Hex_Int : '16#' ('_' ? Hex_Digit)+;
Real_Literal : (Real_Type_Name '#')? Signed_Int '.' Unsigned_Int ('E' Signed_Int)?;
Bit_Str_Literal : (Multibits_Type_Name '#')? (Unsigned_Int | Binary_Int | Octal_Int | Hex_Int);
Bool_Literal : (Bool_Type_Name '#')? ('0' | '1' | 'FALSE' | 'TRUE');

// Table 6 - Character String literals
// Table 7 - Two-character combinations in character strings
Char_Literal : ('STRING#')? Char_Str;
Char_Str : S_Byte_Char_Str | D_Byte_Char_Str;
S_Byte_Char_Str : '\'' S_Byte_Char_Value + '\'';
D_Byte_Char_Str : '"' D_Byte_Char_Value + '"';
S_Byte_Char_Value : Common_Char_Value | '$\'' | '"' | '$' Hex_Digit Hex_Digit;
D_Byte_Char_Value : Common_Char_Value | '\'' | '$"' | '$' Hex_Digit Hex_Digit Hex_Digit Hex_Digit;
Common_Char_Value : ' ' | '!' | '#' | '%' | '&' | '('..'/' | '0'..'9' | ':'..'@' | 'A'..'Z' | '['..'`' | 'a'..'z' | '{'..'~'
 | '$$' | '$L' | '$N' | '$P' | '$R' | '$T';
 // any printable characters except $, " and '

// Table 8 - Duration literals
// Table 9 – Date and time of day literals
Time_Literal : Duration | Time_Of_Day | Date | Date_And_Time;
Duration : (Time_Type_Name | 'T' | 'LT') '#' ('+' | '-')? Interval;
Fix_Point : Unsigned_Int ('.' Unsigned_Int)?;
Interval : Days | Hours | Minutes | Seconds | Milliseconds | Microseconds | Nanoseconds;
Days : (Fix_Point 'd') | (Unsigned_Int 'd' '_' ?)? Hours ?;
Hours : (Fix_Point 'h') | (Unsigned_Int 'h' '_' ?)? Minutes ?;
Minutes : (Fix_Point 'm') | (Unsigned_Int 'm' '_' ?)? Seconds ?;
Seconds : (Fix_Point 's') | (Unsigned_Int 's' '_' ?)? Milliseconds ?;
Milliseconds : (Fix_Point 'ms') | (Unsigned_Int 'ms' '_' ?)? Microseconds ?;
Microseconds : (Fix_Point 'us') | (Unsigned_Int 'us' '_' ?)? Nanoseconds ?;
Nanoseconds : Fix_Point 'ns';
Time_Of_Day : (Tod_Type_Name | 'LTIME_OF_DAY') '#' Daytime;
Daytime : Day_Hour ':' Day_Minute ':' Day_Second;
Day_Hour : Unsigned_Int;
Day_Minute : Unsigned_Int;
Day_Second : Fix_Point;
Date : (Date_Type_Name | 'D' | 'LD') '#' Date_Literal;
Date_Literal : Year '-' Month '-' Day;
Year : Unsigned_Int;
Month : Unsigned_Int;
Day : Unsigned_Int;
Date_And_Time : (DT_Type_Name | 'LDATE_AND_TIME') '#' Date_Literal '-' Daytime;

// Table 10 - Elementary data types
Data_Type_Access : Elem_Type_Name | Derived_Type_Access;
Elem_Type_Name : Numeric_Type_Name | Bit_Str_Type_Name
 | String_Type_Name | Date_Type_Name | Time_Type_Name;
Numeric_Type_Name : Int_Type_Name | Real_Type_Name;
Int_Type_Name : Sign_Int_Type_Name | Unsign_Int_Type_Name;
Sign_Int_Type_Name : 'SINT' | 'INT' | 'DINT' | 'LINT';
Unsign_Int_Type_Name : 'USINT' | 'UINT' | 'UDINT' | 'ULINT';

BS EN 61131-3:2013

61131-3 © IEC:2013 – 223 –

Real_Type_Name : 'REAL' | 'LREAL';
String_Type_Name : 'STRING' ('[' Unsigned_Int ']')? | 'WSTRING' ('[' Unsigned_Int ']')? | 'CHAR' | 'WCHAR';
Time_Type_Name : 'TIME' | 'LTIME';
Date_Type_Name : 'DATE' | 'LDATE';
Tod_Type_Name : 'TIME_OF_DAY' | 'TOD' | 'LTOD';
DT_Type_Name : 'DATE_AND_TIME' | 'DT' | 'LDT';
Bit_Str_Type_Name : Bool_Type_Name | Multibits_Type_Name;
Bool_Type_Name : 'BOOL';
Multibits_Type_Name : 'BYTE' | 'WORD' | 'DWORD' | 'LWORD';

// Table 11 - Declaration of user-defined data types and initialization
Derived_Type_Access : Single_Elem_Type_Access | Array_Type_Access | Struct_Type_Access
 | String_Type_Access | Class_Type_Access | Ref_Type_Access | Interface_Type_Access;
String_Type_Access : (Namespace_Name '.')* String_Type_Name;
Single_Elem_Type_Access : Simple_Type_Access | Subrange_Type_Access | Enum_Type_Access;
Simple_Type_Access : (Namespace_Name '.')* Simple_Type_Name;
Subrange_Type_Access : (Namespace_Name '.')* Subrange_Type_Name;
Enum_Type_Access : (Namespace_Name '.')* Enum_Type_Name;
Array_Type_Access : (Namespace_Name '.')* Array_Type_Name;
Struct_Type_Access : (Namespace_Name '.')* Struct_Type_Name;
Simple_Type_Name : Identifier;
Subrange_Type_Name : Identifier;
Enum_Type_Name : Identifier;
Array_Type_Name : Identifier;
Struct_Type_Name : Identifier;

Data_Type_Decl : 'TYPE' (Type_Decl ';')+ 'END_TYPE';
Type_Decl : Simple_Type_Decl | Subrange_Type_Decl | Enum_Type_Decl
 | Array_Type_Decl | Struct_Type_Decl
 | Str_Type_Decl | Ref_Type_Decl;
Simple_Type_Decl : Simple_Type_Name ':' Simple_Spec_Init;
Simple_Spec_Init : Simple_Spec (':=' Constant_Expr)?;
Simple_Spec : Elem_Type_Name | Simple_Type_Access;
Subrange_Type_Decl : Subrange_Type_Name ':' Subrange_Spec_Init;
Subrange_Spec_Init : Subrange_Spec (':=' Signed_Int)?;
Subrange_Spec : Int_Type_Name '(' Subrange ')' | Subrange_Type_Access;
Subrange : Constant_Expr '..' Constant_Expr;
Enum_Type_Decl : Enum_Type_Name ':' ((Elem_Type_Name ? Named_Spec_Init) | Enum_Spec_Init);
Named_Spec_Init : '(' Enum_Value_Spec (',' Enum_Value_Spec)* ')' (':=' Enum_Value)?;
Enum_Spec_Init : (('(' Identifier (',' Identifier)* ')') | Enum_Type_Access) (':=' Enum_Value)?;
Enum_Value_Spec : Identifier (':=' (Int_Literal | Constant_Expr))?;
Enum_Value : (Enum_Type_Name '#')? Identifier;
Array_Type_Decl : Array_Type_Name ':' Array_Spec_Init;
Array_Spec_Init : Array_Spec (':=' Array_Init)?;
Array_Spec : Array_Type_Access | 'ARRAY' '[' Subrange (',' Subrange)* ']' 'OF' Data_Type_Access;
Array_Init : '[' Array_Elem_Init (',' Array_Elem_Init)* ']';
Array_Elem_Init : Array_Elem_Init_Value | Unsigned_Int '(' Array_Elem_Init_Value ? ')';
Array_Elem_Init_Value : Constant_Expr | Enum_Value | Struct_Init | Array_Init;
Struct_Type_Decl : Struct_Type_Name ':' Struct_Spec;
Struct_Spec : Struct_Decl | Struct_Spec_Init;
Struct_Spec_Init : Struct_Type_Access (':=' Struct_Init)?;
Struct_Decl :'STRUCT' 'OVERLAP' ? (Struct_Elem_Decl ';')+ 'END_STRUCT';
Struct_Elem_Decl : Struct_Elem_Name (Located_At Multibit_Part_Access ?)? ':'
 (Simple_Spec_Init | Subrange_Spec_Init | Enum_Spec_Init | Array_Spec_Init
 | Struct_Spec_Init);
Struct_Elem_Name : Identifier;
Struct_Init : '(' Struct_Elem_Init (',' Struct_Elem_Init)* ')';
Struct_Elem_Init : Struct_Elem_Name ':=' (Constant_Expr | Enum_Value | Array_Init | Struct_Init | Ref_Value);
Str_Type_Decl : String_Type_Name ':' String_Type_Name (':=' Char_Str)?;

// Table 16 - Directly represented variables
Direct_Variable : '%' ('I' | 'Q' | 'M') ('X' | 'B' | 'W' | 'D' | 'L')? Unsigned_Int ('.' Unsigned_Int)*;

// Table 12 - Reference operations
Ref_Type_Decl : Ref_Type_Name ':' Ref_Spec_Init;
Ref_Spec_Init : Ref_Spec (':=' Ref_Value)?;
Ref_Spec : 'REF_TO' + Data_Type_Access;
Ref_Type_Name : Identifier;
Ref_Type_Access : (Namespace_Name '.')* Ref_Type_Name;
Ref_Name : Identifier;
Ref_Value : Ref_Addr | 'NULL';
Ref_Addr : 'REF' '(' (Symbolic_Variable | FB_Instance_Name | Class_Instance_Name) ')';
Ref_Assign : Ref_Name ':=' (Ref_Name | Ref_Deref | Ref_Value);
Ref_Deref : Ref_Name '^' +;

// Table 13 - Declaration of variables/Table 14 – Initialization of variables
Variable : Direct_Variable | Symbolic_Variable;

BS EN 61131-3:2013

 – 224 – 61131-3 © IEC:2013

Symbolic_Variable : (('THIS' '.') | (Namespace_Name '.')+)? (Var_Access | Multi_Elem_Var);
Var_Access : Variable_Name | Ref_Deref;
Variable_Name : Identifier;
Multi_Elem_Var : Var_Access (Subscript_List | Struct_Variable)+;
Subscript_List : '[' Subscript (',' Subscript)* ']';
Subscript : Expression;
Struct_Variable : '.' Struct_Elem_Select;
Struct_Elem_Select : Var_Access;
Input_Decls : 'VAR_INPUT' ('RETAIN' | 'NON_RETAIN')? (Input_Decl ';')* 'END_VAR';
Input_Decl : Var_Decl_Init | Edge_Decl | Array_Conform_Decl;
Edge_Decl : Variable_List ':' 'BOOL' ('R_EDGE' | 'F_EDGE');
Var_Decl_Init : Variable_List ':' (Simple_Spec_Init | Str_Var_Decl | Ref_Spec_Init)
 | Array_Var_Decl_Init | Struct_Var_Decl_Init | FB_Decl_Init | Interface_Spec_Init;
Ref_Var_Decl : Variable_List ':' Ref_Spec;
Interface_Var_Decl : Variable_List ':' Interface_Type_Access;
Variable_List : Variable_Name (',' Variable_Name)*;
Array_Var_Decl_Init : Variable_List ':' Array_Spec_Init;
Array_Conformand : 'ARRAY' '[' '*' (',' '*')* ']' 'OF' Data_Type_Access;
Array_Conform_Decl : Variable_List ':' Array_Conformand;
Struct_Var_Decl_Init : Variable_List ':' Struct_Spec_Init;
FB_Decl_No_Init : FB_Name (',' FB_Name)* ':' FB_Type_Access;
FB_Decl_Init : FB_Decl_No_Init (':=' Struct_Init)?;
FB_Name : Identifier;
FB_Instance_Name : (Namespace_Name '.')* FB_Name '^' *;
Output_Decls : 'VAR_OUTPUT' ('RETAIN' | 'NON_RETAIN')? (Output_Decl ';')* 'END_VAR';
Output_Decl : Var_Decl_Init | Array_Conform_Decl;
In_Out_Decls : 'VAR_IN_OUT' (In_Out_Var_Decl ';')* 'END_VAR';
In_Out_Var_Decl : Var_Decl | Array_Conform_Decl | FB_Decl_No_Init;
Var_Decl : Variable_List ':' (Simple_Spec | Str_Var_Decl | Array_Var_Decl | Struct_Var_Decl);
Array_Var_Decl : Variable_List ':' Array_Spec;
Struct_Var_Decl : Variable_List ':' Struct_Type_Access;
Var_Decls : 'VAR' 'CONSTANT' ? Access_Spec ? (Var_Decl_Init ';')* 'END_VAR';
Retain_Var_Decls : 'VAR' 'RETAIN' Access_Spec ? (Var_Decl_Init ';')* 'END_VAR';
Loc_Var_Decls : 'VAR' ('CONSTANT' | 'RETAIN' | 'NON_RETAIN')? (Loc_Var_Decl ';')* 'END_VAR';
Loc_Var_Decl : Variable_Name ? Located_At ':' Loc_Var_Spec_Init;
Temp_Var_Decls : VAR_TEMP' ((Var_Decl | Ref_Var_Decl | Interface_Var_Decl) ';')* 'END_VAR';
External_Var_Decls : 'VAR_EXTERNAL' 'CONSTANT' ? (External_Decl ';')* 'END_VAR';
External_Decl : Global_Var_Name ':'
 (Simple_Spec | Array_Spec | Struct_Type_Access | FB_Type_Access | Ref_Type_Access);
Global_Var_Name : Identifier;
Global_Var_Decls : 'VAR_GLOBAL' ('CONSTANT' | 'RETAIN')? (Global_Var_Decl ';')* 'END_VAR';
Global_Var_Decl : Global_Var_Spec ':' (Loc_Var_Spec_Init | FB_Type_Access);
Global_Var_Spec : (Global_Var_Name (',' Global_Var_Name)*) | (Global_Var_Name Located_At);
Loc_Var_Spec_Init : Simple_Spec_Init | Array_Spec_Init | Struct_Spec_Init | S_Byte_Str_Spec | D_Byte_Str_Spec;
Located_At : 'AT' Direct_Variable;
Str_Var_Decl : S_Byte_Str_Var_Decl | D_Byte_Str_Var_Decl;
S_Byte_Str_Var_Decl : Variable_List ':' S_Byte_Str_Spec;
S_Byte_Str_Spec : 'STRING' ('[' Unsigned_Int ']')? (':=' S_Byte_Char_Str)?;
D_Byte_Str_Var_Decl : Variable_List ':' D_Byte_Str_Spec;
D_Byte_Str_Spec : 'WSTRING' ('[' Unsigned_Int ']')? (':=' D_Byte_Char_Str)?;
Loc_Partly_Var_Decl : 'VAR' ('RETAIN' | 'NON_RETAIN')? Loc_Partly_Var * 'END_VAR';
Loc_Partly_Var : Variable_Name 'AT' '%' ('I' | 'Q' | 'M') '*' ':' Var_Spec ';';
Var_Spec : Simple_Spec | Array_Spec | Struct_Type_Access
 | ('STRING' | 'WSTRING') ('[' Unsigned_Int ']')?;

// Table 19 - Function declaration
Func_Name : Std_Func_Name | Derived_Func_Name;
Func_Access : (Namespace_Name '.')* Func_Name;
Std_Func_Name : 'TRUNC' | 'ABS' | 'SQRT' | 'LN' | 'LOG' | 'EXP'
 | 'SIN' | 'COS' | 'TAN' | 'ASIN' | 'ACOS' | 'ATAN' | 'ATAN2 '
 | 'ADD' | 'SUB' | 'MUL' | 'DIV' | 'MOD' | 'EXPT' | 'MOVE '
 | 'SHL' | 'SHR' | 'ROL' | 'ROR'
 | 'AND' | 'OR' | 'XOR' | 'NOT'
 | 'SEL' | 'MAX' | 'MIN' | 'LIMIT' | 'MUX '
 | 'GT' | 'GE' | 'EQ' | 'LE' | 'LT' | 'NE'
 | 'LEN' | 'LEFT' | 'RIGHT' | 'MID' | 'CONCAT' | 'INSERT' | 'DELETE' | 'REPLACE' | 'FIND';
 // incomplete list
Derived_Func_Name : Identifier;
Func_Decl : 'FUNCTION' Derived_Func_Name (':' Data_Type_Access)? Using_Directive *
 (IO_Var_Decls | Func_Var_Decls | Temp_Var_Decls)* Func_Body 'END_FUNCTION';
IO_Var_Decls : Input_Decls | Output_Decls | In_Out_Decls;
Func_Var_Decls : External_Var_Decls | Var_Decls;
Func_Body : Ladder_Diagram | FB_Diagram | Instruction_List | Stmt_List | Other_Languages;

BS EN 61131-3:2013

61131-3 © IEC:2013 – 225 –

// Table 40 – Function block type declaration
// Table 41 - Function block instance declaration
FB_Type_Name : Std_FB_Name | Derived_FB_Name;
FB_Type_Access : (Namespace_Name '.')* FB_Type_Name;
Std_FB_Name : 'SR' | 'RS' | 'R_TRIG' | 'F_TRIG' | 'CTU'| 'CTD' | 'CTUD' | 'TP' | 'TON' | 'TOF';
 // incomplete list
Derived_FB_Name : Identifier;
FB_Decl : 'FUNCTION_BLOCK' ('FINAL' | 'ABSTRACT')? Derived_FB_Name Using_Directive *
 ('EXTENDS' (FB_Type_Access | Class_Type_Access))?
 ('IMPLEMENTS' Interface_Name_List)?
 (FB_IO_Var_Decls | Func_Var_Decls | Temp_Var_Decls | Other_Var_Decls)*
 (Method_Decl)* FB_Body ? 'END_FUNCTION_BLOCK';
FB_IO_Var_Decls : FB_Input_Decls | FB_Output_Decls | In_Out_Decls;
FB_Input_Decls : 'VAR_INPUT' ('RETAIN' | 'NON_RETAIN')? (FB_Input_Decl ';')* 'END_VAR';
FB_Input_Decl : Var_Decl_Init | Edge_Decl | Array_Conform_Decl;
FB_Output_Decls : 'VAR_OUTPUT' ('RETAIN' | 'NON_RETAIN')? (FB_Output_Decl ';')* 'END_VAR';
FB_Output_Decl : Var_Decl_Init | Array_Conform_Decl;
Other_Var_Decls : Retain_Var_Decls | No_Retain_Var_Decls | Loc_Partly_Var_Decl;
No_Retain_Var_Decls : 'VAR' 'NON_RETAIN' Access_Spec ? (Var_Decl_Init ';')* 'END_VAR';
FB_Body : SFC | Ladder_Diagram | FB_Diagram | Instruction_List | Stmt_List | Other_Languages;
Method_Decl : 'METHOD' Access_Spec ('FINAL' | 'ABSTRACT')? 'OVERRIDE' ?
 Method_Name (':' Data_Type_Access)?
 (IO_Var_Decls | Func_Var_Decls | Temp_Var_Decls)* Func_Body 'END_METHOD';
Method_Name : Identifier;

// Table 48 - Class
// Table 50 Textual call of methods – Formal and non-formal parameter list
Class_Decl : 'CLASS' ('FINAL' | 'ABSTRACT')? Class_Type_Name Using_Directive *
 ('EXTENDS' Class_Type_Access)? ('IMPLEMENTS' Interface_Name_List)?
 (Func_Var_Decls | Other_Var_Decls)* (Method_Decl)* 'END_CLASS';
Class_Type_Name : Identifier;
Class_Type_Access : (Namespace_Name '.')* Class_Type_Name;
Class_Name : Identifier;
Class_Instance_Name : (Namespace_Name '.')* Class_Name '^' *;
Interface_Decl : 'INTERFACE' Interface_Type_Name Using_Directive *
 ('EXTENDS' Interface_Name_List)? Method_Prototype * 'END_INTERFACE';
Method_Prototype : 'METHOD' Method_Name (':' Data_Type_Access)? IO_Var_Decls * 'END_METHOD';
Interface_Spec_Init : Variable_List (':=' Interface_Value)?;
Interface_Value : Symbolic_Variable | FB_Instance_Name | Class_Instance_Name | 'NULL';
Interface_Name_List : Interface_Type_Access (',' Interface_Type_Access)*;
Interface_Type_Name : Identifier;
Interface_Type_Access : (Namespace_Name '.')* Interface_Type_Name;
Interface_Name : Identifier;
Access_Spec : 'PUBLIC' | 'PROTECTED' | 'PRIVATE' | 'INTERNAL';

// Table 47 - Program declaration
Prog_Decl : 'PROGRAM' Prog_Type_Name
 (IO_Var_Decls | Func_Var_Decls | Temp_Var_Decls | Other_Var_Decls
 | Loc_Var_Decls | Prog_Access_Decls)* FB_Body 'END_PROGRAM';
Prog_Type_Name : Identifier;
Prog_Type_Access : (Namespace_Name '.')* Prog_Type_Name;
Prog_Access_Decls : 'VAR_ACCESS' (Prog_Access_Decl ';')* 'END_VAR';
Prog_Access_Decl : Access_Name ':' Symbolic_Variable Multibit_Part_Access ?
 ':' Data_Type_Access Access_Direction ?;

// Table 54 - 61 - Sequential Function Chart (SFC)
SFC : Sfc_Network +;
Sfc_Network : Initial_Step (Step | Transition | Action)*;
Initial_Step : 'INITIAL_STEP' Step_Name ':' (Action_Association ';')* 'END_STEP';
Step : 'STEP' Step_Name ':' (Action_Association ';')* 'END_STEP';
Step_Name : Identifier;
Action_Association : Action_Name '(' Action_Qualifier ? (',' Indicator_Name)* ')';
Action_Name : Identifier;
Action_Qualifier : 'N' | 'R' | 'S' | 'P' | (('L' | 'D' | 'SD' | 'DS' | 'SL') ',' Action_Time);
Action_Time : Duration | Variable_Name;
Indicator_Name : Variable_Name;
Transition : 'TRANSITION' Transition_Name ? ('(' 'PRIORITY' ':=' Unsigned_Int ')')?
 'FROM' Steps 'TO' Steps ':' Transition_Cond 'END_TRANSITION';
Transition_Name : Identifier;
Steps : Step_Name | '(' Step_Name (',' Step_Name)+ ')';
Transition_Cond : ':=' Expression ';' | ':' (FBD_Network | LD_Rung) | ':=' IL_Simple_Inst;
Action : 'ACTION' Action_Name ':' FB_Body 'END_ACTION';

BS EN 61131-3:2013

 – 226 – 61131-3 © IEC:2013

// Table 62 - Configuration and resource declaration
Config_Name : Identifier;
Resource_Type_Name : Identifier;
Config_Decl : 'CONFIGURATION' Config_Name Global_Var_Decls ?
 (Single_Resource_Decl | Resource_Decl +) Access_Decls ? Config_Init ?
 'END_CONFIGURATION';
Resource_Decl : 'RESOURCE' Resource_Name 'ON' Resource_Type_Name
 Global_Var_Decls ? Single_Resource_Decl
 'END_RESOURCE';
Single_Resource_Decl : (Task_Config ';')* (Prog_Config ';')+;
Resource_Name : Identifier;
Access_Decls : 'VAR_ACCESS' (Access_Decl ';')* 'END_VAR';
Access_Decl : Access_Name ':' Access_Path ':' Data_Type_Access Access_Direction ?;
Access_Path : (Resource_Name '.')? Direct_Variable
 | (Resource_Name '.')? (Prog_Name '.')?
 ((FB_Instance_Name | Class_Instance_Name) '.')* Symbolic_Variable;
Global_Var_Access : (Resource_Name '.')? Global_Var_Name ('.' Struct_Elem_Name)?;
Access_Name : Identifier;
Prog_Output_Access : Prog_Name '.' Symbolic_Variable;
Prog_Name : Identifier;
Access_Direction : 'READ_WRITE' | 'READ_ONLY';
Task_Config : 'TASK' Task_Name Task_Init;
Task_Name : Identifier;
Task_Init : '(' ('SINGLE' ':=' Data_Source ',')?
 ('INTERVAL' ':=' Data_Source ',')?
 'PRIORITY' ':=' Unsigned_Int ')';
Data_Source : Constant | Global_Var_Access | Prog_Output_Access | Direct_Variable;
Prog_Config : 'PROGRAM' ('RETAIN' | 'NON_RETAIN')? Prog_Name ('WITH' Task_Name)? ':'
 Prog_Type_Access ('(' Prog_Conf_Elems ')')?;
Prog_Conf_Elems : Prog_Conf_Elem (',' Prog_Conf_Elem)*;
Prog_Conf_Elem : FB_Task | Prog_Cnxn;
FB_Task : FB_Instance_Name 'WITH' Task_Name;
Prog_Cnxn : Symbolic_Variable ':=' Prog_Data_Source | Symbolic_Variable '=>' Data_Sink;
Prog_Data_Source : Constant | Enum_Value | Global_Var_Access | Direct_Variable;
Data_Sink : Global_Var_Access | Direct_Variable;
Config_Init : 'VAR_CONFIG' (Config_Inst_Init ';')* 'END_VAR';
Config_Inst_Init : Resource_Name '.' Prog_Name '.' ((FB_Instance_Name | Class_Instance_Name) '.')*
 (Variable_Name Located_At ? ':' Loc_Var_Spec_Init
 | ((FB_Instance_Name ':' FB_Type_Access)

| (Class_Instance_Name ':' Class_Type_Access)) ':=' Struct_Init);

// Table 64 - Namespace
Namespace_Decl : 'NAMESPACE' 'INTERNAL' ? Namespace_H_Name Using_Directive * Namespace_Elements
 'END_NAMESPACE';
Namespace_Elements : (Data_Type_Decl | Func_Decl | FB_Decl
 | Class_Decl | Interface_Decl | Namespace_Decl)+;
Namespace_H_Name : Namespace_Name ('.' Namespace_Name)*;
Namespace_Name : Identifier;
Using_Directive : 'USING' Namespace_H_Name (',' Namespace_H_Name)* ';';
POU_Decl : Using_Directive *
 (Global_Var_Decls | Data_Type_Decl | Access_Decls
 | Func_Decl | FB_Decl | Class_Decl | Interface_Decl
 | Namespace_Decl)+;

// Table 67 - 70 - Instruction List (IL)
Instruction_List : IL_Instruction +;
IL_Instruction : (IL_Label ':')? (IL_Simple_Operation | IL_Expr | IL_Jump_Operation
 | IL_Invocation | IL_Formal_Func_Call
 | IL_Return_Operator)? EOL +;
IL_Simple_Inst : IL_Simple_Operation | IL_Expr | IL_Formal_Func_Call;
IL_Label : Identifier;
IL_Simple_Operation : IL_Simple_Operator IL_Operand ? | Func_Access IL_Operand_List ?;
IL_Expr : IL_Expr_Operator '(' IL_Operand ? EOL + IL_Simple_Inst_List ? ')';
IL_Jump_Operation : IL_Jump_Operator IL_Label;
IL_Invocation : IL_Call_Operator (((FB_Instance_Name | Func_Name | Method_Name | 'THIS '
 | (('THIS' '.' ((FB_Instance_Name | Class_Instance_Name) '.')*) Method_Name))
 ('(' ((EOL + IL_Param_List ?) | IL_Operand_List ?) ')')?) | 'SUPER' '(' ')');
IL_Formal_Func_Call : Func_Access '(' EOL + IL_Param_List ? ')';
IL_Operand : Constant | Enum_Value | Variable_Access;
IL_Operand_List : IL_Operand (',' IL_Operand)*;
IL_Simple_Inst_List : IL_Simple_Instruction +;
IL_Simple_Instruction : (IL_Simple_Operation | IL_Expr | IL_Formal_Func_Call) EOL +;
IL_Param_List : IL_Param_Inst * IL_Param_Last_Inst;
IL_Param_Inst : (IL_Param_Assign | IL_Param_Out_Assign) ',' EOL +;
IL_Param_Last_Inst : (IL_Param_Assign | IL_Param_Out_Assign) EOL +;
IL_Param_Assign : IL_Assignment (IL_Operand | ('(' EOL + IL_Simple_Inst_List ')'));
IL_Param_Out_Assign : IL_Assign_Out_Operator Variable_Access;

BS EN 61131-3:2013

61131-3 © IEC:2013 – 227 –

IL_Simple_Operator : 'LD' | 'LDN' | 'ST' | 'STN' | 'ST?' | 'NOT' | 'S' | 'R'
 | 'S1' | 'R1' | 'CLK' | 'CU' | 'CD' | 'PV'
 | 'IN' | 'PT' | IL_Expr_Operator;
IL_Expr_Operator : 'AND' | '&' | 'OR' | 'XOR' | 'ANDN' | '&N' | 'ORN'
 | 'XORN' | 'ADD' | 'SUB' | 'MUL' | 'DIV'
 | 'MOD' | 'GT' | 'GE' | 'EQ' | 'LT' | 'LE' | 'NE';
IL_Assignment : Variable_Name ':=';
IL_Assign_Out_Operator : 'NOT' ? Variable_Name '=>';
IL_Call_Operator : 'CAL' | 'CALC' | 'CALCN';
IL_Return_Operator : 'RT' | 'RETC' | 'RETCN';
IL_Jump_Operator : 'JMP' | 'JMPC' | 'JMPCN';

// Table 71 - 72 - Language Structured Text (ST)
Expression : Xor_Expr ('OR' Xor_Expr)*;
Constant_Expr : Expression;
 // a constant expression must evaluate to a constant value at compile time
Xor_Expr : And_Expr ('XOR' And_Expr)*;
And_Expr : Compare_Expr (('&' | 'AND') Compare_Expr)*;
Compare_Expr : (Equ_Expr (('=' | '<>') Equ_Expr)*);
Equ_Expr : Add_Expr (('<' | '>' | '<=' | '>=') Add_Expr)*;
Add_Expr : Term (('+' | '-') Term)*;
Term : Power_Expr ('*' | '/' | 'MOD' Power_Expr)*;
Power_Expr : Unary_Expr ('**' Unary_Expr)*;
Unary_Expr : '-' | '+' | 'NOT' ? Primary_Expr;
Primary_Expr : Constant | Enum_Value | Variable_Access | Func_Call | Ref_Value| '(' Expression ')';
Variable_Access : Variable Multibit_Part_Access ?;
Multibit_Part_Access : '.' (Unsigned_Int | '%' ('X' | 'B' | 'W' | 'D' | 'L') ? Unsigned_Int);
Func_Call : Func_Access '(' (Param_Assign (',' Param_Assign)*)? ')';
Stmt_List : (Stmt ? ';')*;
Stmt : Assign_Stmt | Subprog_Ctrl_Stmt | Selection_Stmt | Iteration_Stmt;
Assign_Stmt : (Variable ':=' Expression) | Ref_Assign | Assignment_Attempt;
Assignment_Attempt : (Ref_Name | Ref_Deref) '?=' (Ref_Name | Ref_Deref | Ref_Value);
Invocation : (FB_Instance_Name | Method_Name | 'THIS'
 | (('THIS' '.')? (((FB_Instance_Name | Class_Instance_Name) '.')+) Method_Name))
 '(' (Param_Assign (',' Param_Assign)*)? ')';
Subprog_Ctrl_Stmt : Func_Call | Invocation | 'SUPER' '(' ')' | 'RETURN';
Param_Assign : ((Variable_Name ':=')? Expression) | Ref_Assign | ('NOT' ? Variable_Name '=>' Variable);
Selection_Stmt : IF_Stmt | Case_Stmt;
IF_Stmt : 'IF' Expression 'THEN' Stmt_List ('ELSIF' Expression 'THEN' Stmt_List)* ('ELSE' Stmt_List)?

 'END_IF';
Case_Stmt : 'CASE' Expression 'OF' Case_Selection + ('ELSE' Stmt_List)? 'END_CASE';
Case_Selection : Case_List ':' Stmt_List;
Case_List : Case_List_Elem (',' Case_List_Elem)*;
Case_List_Elem : Subrange | Constant_Expr;
Iteration_Stmt : For_Stmt | While_Stmt | Repeat_Stmt | 'EXIT' | 'CONTINUE';
For_Stmt : 'FOR' Control_Variable ':=' For_List 'DO' Stmt_List 'END_FOR';
Control_Variable : Identifier;
For_List : Expression 'TO' Expression ('BY' Expression)?;
While_Stmt : 'WHILE' Expression 'DO' Stmt_List 'END_WHILE';
Repeat_Stmt : 'REPEAT' Stmt_List 'UNTIL' Expression 'END_REPEAT';

// Table 73 - 76 - Graphic languages elements
Ladder_Diagram : LD_Rung *;
LD_Rung : 'syntax for graphical languages not shown here';
FB_Diagram : FBD_Network *;
FBD_Network : 'syntax for graphical languages not shown here';

// Not covered here
Other_Languages : 'syntax for other languages not shown here';

BS EN 61131-3:2013

 – 228 – 61131-3 © IEC:2013

Annex B
(informative)

List of major changes and extensions of the third edition

This standard is fully compatible with IEC 61131-3:2003. The following list shows the major
changes and extensions:

Editorial improvements: Structure, numbering, order, wording, examples, feature tables
Terms and definitions like class, method, reference, signature
Compliance table format

New major features

Data types with explicit layout
Type with named values
Elementary data types
Reference, functions and operations with reference; Validate
Partial access to ANY_BIT
Variable-length ARRAY
Initial value assignment
Type conversion rules: Implicit – explicit
Function – call rules, without function result
Type conversion functions of numerical, bitwise Data, etc.
Functions of concatenate and split of time and date
Class, including method, interface, etc.
Object-oriented FB, including method, interface, etc.
Namespaces
Structured Text: CONTINUE, etc.
Ladder Diagram: Contacts for compare (typed and overloaded)
ANNEX A - Formal specification of language elements

Deletions (of informative parts)

ANNEX - Examples
ANNEX - Interoperability with IEC 61499

Deprecations

Octal literal
Use of directly represented variables in the body of POUs and methods
Overloaded truncation TRUNC
Instruction list (IL)
“Indicator” variable of action block

BS EN 61131-3:2013

http://dx.doi.org/10.3403/02829375

61131-3 © IEC:2013 – 229 –

Bibliography

IEC 60050 (all parts), International Electrotechnical Vocabulary (available at
http://www.electropedia.org)

IEC 60848, GRAFCET specification language for sequential function charts

IEC 60617, Graphical symbols for diagrams (available at http://std.iec.ch/iec60617)

IEC 61499 (all parts), Function blocks

ISO/IEC 14977:1996, Information technology – Syntactic Metalanguage – Extended BNF

ISO/AFNOR:1989, Dictionary of computer science

BS EN 61131-3:2013

http://www.electropedia.org/
http://std.iec.ch/iec60617
http://dx.doi.org/10.3403/00316574U

This page deliberately left blank

This page deliberately left blank

BSI is the national body responsible for preparing British Standards and other
standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization
products are published by BSI Standards Limited.

British Standards Institution (BSI)

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

About us
We bring together business, industry, government, consumers, innovators
and others to shape their combined experience and expertise into standards
-based solutions.

The knowledge embodied in our standards has been carefully assembled in
a dependable format and refined through our open consultation process.
Organizations of all sizes and across all sectors choose standards to help
them achieve their goals.

Information on standards
We can provide you with the knowledge that your organization needs
to succeed. Find out more about British Standards by visiting our website at
bsigroup.com/standards or contacting our Customer Services team or
Knowledge Centre.

Buying standards
You can buy and download PDF versions of BSI publications, including British
and adopted European and international standards, through our website at
bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development
Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions
Our range of subscription services are designed to make using standards
easier for you. For further information on our subscription products go to
bsigroup.com/subscriptions.

With British Standards Online (BSOL) you’ll have instant access to over 55,000
British and adopted European and international standards from your desktop.
It’s available 24/7 and is refreshed daily so you’ll always be up to date.

You can keep in touch with standards developments and receive substantial
discounts on the purchase price of standards, both in single copy and subscription
format, by becoming a BSI Subscribing Member.

PLUS is an updating service exclusive to BSI Subscribing Members. You will
automatically receive the latest hard copy of your standards when they’re
revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits
of membership, please visit bsigroup.com/shop.

With a Multi-User Network Licence (MUNL) you are able to host standards
publications on your intranet. Licences can cover as few or as many users as you
wish. With updates supplied as soon as they’re available, you can be sure your
documentation is current. For further information, email bsmusales@bsigroup.com.

Revisions
Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your
business. If you find an inaccuracy or ambiguity within a British Standard or other
BSI publication please inform the Knowledge Centre.

Copyright
All the data, software and documentation set out in all British Standards and
other BSI publications are the property of and copyrighted by BSI, or some person
or entity that owns copyright in the information used (such as the international
standardization bodies) and has formally licensed such information to BSI for
commercial publication and use. Except as permitted under the Copyright, Designs
and Patents Act 1988 no extract may be reproduced, stored in a retrieval system
or transmitted in any form or by any means – electronic, photocopying, recording
or otherwise – without prior written permission from BSI. Details and advice can
be obtained from the Copyright & Licensing Department.

Useful Contacts:
Customer Services
Tel: +44 845 086 9001
Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions
Tel: +44 845 086 9001
Email: subscriptions@bsigroup.com

Knowledge Centre
Tel: +44 20 8996 7004
Email: knowledgecentre@bsigroup.com

Copyright & Licensing
Tel: +44 20 8996 7070
Email: copyright@bsigroup.com

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

www.bsigroup.com/standards
www.bsigroup.com/shop
www.bsigroup.com/shop
www.bsigroup.com/subscriptions

	30280469-VOR.pdf
	English
	CONTENTS
	FOREWORD
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Architectural models
	4.1 Software model
	4.2 Communication model
	4.3 Programming model

	5 Compliance
	5.1 General
	5.2 Feature tables
	5.3 Implementer’s compliance statement

	6 Common elements
	6.1 Use of printed characters
	6.1.1 Character set
	6.1.2 Identifiers
	6.1.3 Keywords
	6.1.4 Use of white space
	6.1.5 Comments

	6.2 Pragma
	6.3 Literals – External representation of data
	6.3.1 General
	6.3.2 Numeric literals and string literals
	6.3.3 Character string literals
	6.3.4 Duration literal
	6.3.5 Date and time of day literal

	6.4 Data types
	6.4.1 General
	6.4.2 Elementary data types (BOOL, INT, REAL, STRING, etc.)
	6.4.3 Generic data types
	6.4.4 User-defined data types

	6.5 Variables
	6.5.1 Declaration and initialization of variables
	6.5.2 Variable sections
	6.5.3 Variable length ARRAY variables
	6.5.4 Constant variables
	6.5.5 Directly represented variables (%)
	6.5.6 Retentive variables (RETAIN, NON_RETAIN)

	6.6 Program organization units (POUs)
	6.6.1 Common features for POUs
	6.6.2 Functions
	6.6.3 Function blocks
	6.6.4 Programs
	6.6.5 Classes
	6.6.6 Interface
	6.6.7 Object oriented features for function blocks
	6.6.8 Polymorphism

	6.7 Sequential Function Chart (SFC) elements
	6.7.1 General
	6.7.2 Steps
	6.7.3 Transitions
	6.7.4 Actions
	6.7.5 Rules of evolution

	6.8 Configuration elements
	6.8.1 General
	6.8.2 Tasks

	6.9 Namespaces
	6.9.1 General
	6.9.2 Declaration
	6.9.3 Usage
	6.9.4 Namespace directive USING

	7 Textual languages
	7.1 Common elements
	7.2 Instruction list (IL)
	7.2.1 General
	7.2.2 Instructions
	7.2.3 Operators, modifiers and operands
	7.2.4 Functions and function blocks

	7.3 Structured Text (ST)
	7.3.1 General
	7.3.2 Expressions
	7.3.3 Statements

	8 Graphic languages
	8.1 Common elements
	8.1.1 General
	8.1.2 Representation of variables and instances
	8.1.3 Representation of lines and blocks
	8.1.4 Direction of flow in networks
	8.1.5 Evaluation of networks
	8.1.6 Execution control elements

	8.2 Ladder diagram (LD)
	8.2.1 General
	8.2.2 Power rails
	8.2.3 Link elements and states
	8.2.4 Contacts
	8.2.5 Coils
	8.2.6 Functions and function blocks
	8.2.7 Order of network evaluation

	8.3 Function Block Diagram (FBD)
	8.3.1 General
	8.3.2 Combination of elements
	8.3.3 Order of network evaluation

	Annex A (normative) Formal specification of the languages elements
	Annex B (informative) List of major changes and extensions of the third edition
	Bibliography
	Figures
	Figure 1 – Software model
	Figure 2 – Communication model
	Figure 3 – Combination of programmable controller language elements
	Figure 4 – Implementer’s compliance statement (Example)
	Figure 5 – Hierarchy of the generic data types
	Figure 6 – Initialization by literals and constant expressions (Rules)
	Figure 7 – Variable declaration keywords (Summary)
	Figure 8 – Usage of VAR_GLOBAL, VAR_EXTERNAL and CONSTANT (Rules)
	Figure 9 – Conditions for the initial value of a variable (Rules)
	Figure 10 – Formal and non-formal representation of call (Examples)
	Figure 11 – Data type conversion rules – implicit and/or explicit (Summary)
	Figure 12 – Supported implicit type conversions
	Figure 13 – Usage of function block input and output parameters (Rules)
	Figure 14 – Usage of function block input and output parameters (Illustration of rules)
	Figure 15 – Standard timer function blocks – timing diagrams (Rules)
	Figure 16 – Overview of inheritance and interface implementation
	Figure 17 – Inheritance of classes (Illustration)
	Figure 18 – Interface with derived classes (Illustration)
	Figure 19 – Inheritance of interface and class (Illustration)
	Figure 20 – Function block with optional body and methods (Illustration)
	Figure 21 – Inheritance of function block body with SUPER() (Example)
	Figure 22 – ACTION_CONTROL function block – External interface (Summary)
	Figure 23 – ACTION_CONTROL function block body (Summary)
	Figure 24 – Action control (Example)
	Figure 25 – SFC evolution (Rules)
	Figure 26 – SFC errors (Example)
	Figure 27 – Configuration (Example)
	Figure 28 – CONFIGURATION and RESOURCE declaration (Example)
	Figure 29 – Accessibility using namespaces (Rules)
	Figure 30 – Common textual elements (Summary)

	Tables
	Table 1 – Character set
	Table 2 – Identifiers
	Table 3 – Comments
	Table 4 – Pragma
	Table 5 – Numeric literals
	Table 6 – Character string literals
	Table 7 – Two-character combinations in character strings
	Table 8 – Duration literals
	Table 9 – Date and time of day literals
	Table 10 – Elementary data types
	Table 11 – Declaration of user-defined data types and initialization
	Table 12 – Reference operations
	Table 13 – Declaration of variables
	Table 14 – Initialization of variables
	Table 15 – Variable-length ARRAY variables
	Table 16 – Directly represented variables
	Table 17 – Partial access of ANY_BIT variables
	Table 18 – Execution control graphically using EN and ENO
	Table 19 – Function declaration
	Table 20 – Function call
	Table 21 – Typed and overloaded functions
	Table 22 – Data type conversion function
	Table 23 – Data type conversion of numeric data types
	Table 24 – Data type conversion of bit data types
	Table 25 – Data type conversion of bit and numeric types
	Table 26 – Data type conversion of date and time types
	Table 27 – Data type conversion of character types
	Table 28 – Numerical and arithmetic functions
	Table 29 – Arithmetic functions
	Table 30 – Bit shift functions
	Table 31 – Bitwise Boolean functions
	Table 32 – Selection functions d
	Table 33 – Comparison functions
	Table 34 – Character string functions
	Table 35 – Numerical functions of time and duration data types
	Table 36 – Additional functions of time data types CONCAT and SPLIT
	Table 37 – Function for endianess conversion
	Table 38 – Functions of enumerated data types
	Table 39 – Validate functions
	Table 40 – Function block type declaration
	Table 41 – Function block instance declaration
	Table 42 – Function block call
	Table 43 – Standard bistable function blocksa
	Table 44 – Standard edge detection function blocks
	Table 45 – Standard counter function blocks
	Table 46 – Standard timer function blocks
	Table 47 – Program declaration
	Table 48 – Class
	Table 49 – Class instance declaration
	Table 50 – Textual call of methods – Formal and non-formal parameter list
	Table 51 – Interface
	Table 52 – Assignment attempt
	Table 53 – Object oriented function block
	Table 54 – SFC step
	Table 55 – SFC transition and transition condition
	Table 56 – SFC declaration of actions
	Table 57 – Step/action association
	Table 58 – Action block
	Table 59 – Action qualifiers
	Table 60 – Action control features
	Table 61 – Sequence evolution – graphical
	Table 62 – Configuration and resource declaration
	Table 63 – Task
	Table 64 – Namespace
	Table 65 – Nested namespace declaration options
	Table 66 – Namespace directive USING
	Table 67 – Parenthesized expression for IL language
	Table 68 – Instruction list operators
	Table 69 – Calls for IL language
	Table 70 – Standard function block operators for IL language
	Table 71 – Operators of the ST language
	Table 72 – ST language statements
	Table 73 – Graphic execution control elements
	Table 74 – Power rails and link elements
	Table 75 – Contacts
	Table 76 – Coils

	Français
	SOMMAIRE
	AVANT-PROPOS
	1 Domaine d'application
	2 Références normatives
	3 Termes et définitions
	4 Modèles architecturaux
	4.1 Modèle logiciel
	4.2 Modèle de communication
	4.3 Modèle de programmation

	5 Conformité
	5.1 Généralités
	5.2 Tableaux de caractéristiques
	5.3 Déclaration de conformité de l'Intégrateur

	6 Eléments communs
	6.1 Utilisation des caractères d'impression
	6.1.1 Jeu de caractères
	6.1.2 Identificateurs
	6.1.3 Mots-clés
	6.1.4 Utilisation de l'espace blanc
	6.1.5 Commentaires

	6.2 Pragma
	6.3 Littéraux€– représentation externe de données
	6.3.1 Généralités
	6.3.2 Littéraux numériques et littéraux de chaîne
	6.3.3 Littéraux de chaîne de caractères
	6.3.4 Littéraux de durée
	6.3.5 Littéraux de date et heure

	6.4 Types de données
	6.4.1 Généralités
	6.4.2 Types de données élémentaires€(BOOL, INT, REAL, STRING, etc.)
	6.4.3 Types de données génériques
	6.4.4 Types de données définis par l'utilisateur

	6.5 Variables
	6.5.1 Déclaration et initialisation de variables
	6.5.2 Sections de variables
	6.5.3 Variables€ARRAY de longueur variable
	6.5.4 Variables constantes
	6.5.5 Variables directement représentées (%)
	6.5.6 Variables persistantes (RETAIN, NON_RETAIN)

	6.6 Unités d'organisation de programme€(POU)
	6.6.1 Caractéristiques communes pour les POU
	6.6.2 Fonctions
	6.6.3 Blocs fonctionnels
	6.6.4 Programmes
	6.6.5 Classes
	6.6.6 Interface
	6.6.7 Caractéristiques orientées objet pour les blocs fonctionnels
	6.6.8 Polymorphisme

	6.7 Eléments d'un diagramme fonctionnel séquentiel€(SFC)
	6.7.1 Généralités
	6.7.2 Etapes
	6.7.3 Transitions
	6.7.4 Actions
	6.7.5 Règles d'évolution

	6.8 Eléments de configuration
	6.8.1 Généralités
	6.8.2 Tâches

	6.9 Espaces de noms
	6.9.1 Généralités
	6.9.2 Déclaration
	6.9.3 Utilisation
	6.9.4 Directive d'espace de noms€USING

	7 Langages textuels
	7.1 Eléments communs
	7.2 Liste d'instructions€(IL)
	7.2.1 Généralités
	7.2.2 Instructions
	7.2.3 Opérateurs, modificateurs et opérandes
	7.2.4 Fonctions et blocs fonctionnels

	7.3 Texte structuré€(ST)
	7.3.1 Généralités
	7.3.2 Expressions
	7.3.3 Enoncés

	8 Langages graphiques
	8.1 Eléments communs
	8.1.1 Généralités
	8.1.2 Représentation de variables et d'instances
	8.1.3 Représentation de traits et de blocs
	8.1.4 Sens du flux dans les réseaux
	8.1.5 Evaluation des réseaux
	8.1.6 Eléments de contrôle d'exécution

	8.2 Diagramme à contacts€(LD)
	8.2.1 Généralités
	8.2.2 Rails de puissance
	8.2.3 Eléments de liaison et états
	8.2.4 Contacts
	8.2.5 Bobines
	8.2.6 Fonctions et blocs fonctionnels
	8.2.7 Ordre d'évaluation des réseaux

	8.3 Diagramme de bloc fonctionnel€(FBD)
	8.3.1 Généralités
	8.3.2 Combinaison d'éléments
	8.3.3 Ordre d'évaluation des réseaux

	Annexe A (normative) Spécification formelle des éléments de langage
	Annexe B (informative) Liste des modifications et extensions majeures de la troisième édition
	Bibliographie
	Figures
	Figure€1€– Modèle logiciel
	Figure€2€– Modèle de communication
	Figure€3€– Combinaison d'éléments de langage pour automate programmable
	Figure€4€– Déclaration de conformité de l'Intégrateur (exemple)
	Figure€5€– Hiérarchie des types de données génériques
	Figure€6€– Initialisation par des littéraux et des expressions constantes (règles)
	Figure€7€– Mots-clés pour une déclaration de variable (résumé)
	Figure€8€– Utilisation de VAR_GLOBAL, VAR_EXTERNAL et CONSTANT (règles)
	Figure€9€– Conditions associées à la valeur initiale d'une variable (règles)
	Figure€10€– Représentation formelle et informelle d'appel (exemples)
	Figure€11€– Règles de conversion d'un type de données – implicite et/ou explicite (résumé)
	Figure€12€– Conversions de type implicites prises en charge
	Figure€13 – Utilisation des paramètres d'entrée et de sortie de bloc fonctionnel (règles)
	Figure€14€– Utilisation des paramètres d'entrée et de sortie de bloc fonctionnel (illustration des règles)
	Figure€15€– Blocs fonctionnels normalisés minuteur – diagrammes temporels (règles)
	Figure€16€– Présentation de la mise en œuvre d'héritage et d'interface
	Figure€17€– Héritage de classes (illustration)
	Figure€18€– Interface avec classes dérivées (illustration)
	Figure€19€– Héritage d'interface et de classe (illustration)
	Figure€20€– Bloc fonctionnel avec corps et méthodes facultatifs (illustration)
	Figure€21€– Héritage de corps de bloc fonctionnel avec SUPER() (exemple)
	Figure€22€– Bloc fonctionnel€ACTION_CONTROL – Interface externe (résumé)
	Figure€23€– Corps de bloc fonctionnel€ACTION_CONTROL (résumé)
	Figure€24€– Contrôle d'action (exemple)
	Figure€25€– Evolution d'un SFC (règles)
	Figure€26€– Erreurs d'un SFC (exemple)
	Figure€27€– Configuration (exemple)
	Figure€28€– Déclaration de CONFIGURATION et de RESOURCE (exemple)
	Figure€29€– Accessibilité à l’aide des espaces de noms (règles)
	Figure€30€– Eléments textuels communs (résumé)

	Tableaux
	Tableau€1 – Jeu de caractères
	Tableau€2€– Identificateurs
	Tableau€3€– Commentaires
	Tableau€4€– Pragma
	Tableau€5€– Littéraux numériques
	Tableau€6€– Littéraux de chaîne de caractères
	Tableau€7€– Combinaisons de deux€caractères dans les chaînes de caractères
	Tableau€8€– Littéraux de durée
	Tableau€9€– Littéraux de date et heure
	Tableau€10€– Types de données élémentaires
	Tableau€11 – Déclaration des types de données définis par l'utilisateur et initialisation
	Tableau€12€– Opérations sur les références
	Tableau€13€– Déclaration de variables
	Tableau€14€– Initialisation de variables
	Tableau€15€– Variables€ARRAY de longueur variable
	Tableau€16€– Variables directement représentées
	Tableau€17€– Accès partiel aux variables€ANY_BIT
	Tableau€18€– Contrôle de l'exécution en utilisant graphiquement EN et ENO
	Tableau€19€– Déclaration de fonction
	Tableau€20€– Appel d'une fonction
	Tableau€21€– Fonctions typées et en surcharge
	Tableau€22€– Fonction de conversion de type de données
	Tableau€23€– Conversion de type de données des types de données numériques
	Tableau€24€– Conversion de type de données des types de données binaires
	Tableau€25€– Conversion de type de données des types binaires et numériques
	Tableau€26€– Conversion de type de données des types date et heure
	Tableau€27€– Conversion de type de données des types caractère
	Tableau€28€– Fonctions numériques et arithmétiques
	Tableau€29€– Fonctions arithmétiques
	Tableau€30€– Fonctions de décalage de bit
	Tableau€31€– Fonctions booléennes au niveau du bit
	Tableau€32€– Fonctions de sélection d
	Tableau€33€– Fonctions de comparaison
	Tableau€34€– Fonctions de chaîne de caractères
	Tableau€35€– Fonctions numériques des types de données de temps et de durée
	Tableau€36€– Fonctions additionnelles des types de données de temps€CONCAT et SPLIT
	Tableau€37€– Fonctions de conversion de boutisme
	Tableau€38€– Fonctions des types de données énumérés
	Tableau€39€– Fonctions de validation
	Tableau€40€– Déclaration du type de bloc fonctionnel
	Tableau€41€– Déclaration d'instance de bloc fonctionnel
	Tableau€42€– Appel de bloc fonctionnel
	Tableau€43€– Blocs fonctionnels normalisés bistablesa
	Tableau€44€– Blocs fonctionnels normalisés de détection de front
	Tableau€45€– Blocs fonctionnels normalisés compteur
	Tableau€46€– Blocs fonctionnels normalisés minuteur
	Tableau€47€– Déclaration de programme
	Tableau€48€– Classe
	Tableau€49€– Déclaration d'instance de classe
	Tableau€50€– Appel textuel de méthodes – Liste des paramètres formels et informels
	Tableau€51€– Interface
	Tableau€52€– Tentative d'affectation
	Tableau€53€– Bloc fonctionnel orienté objet
	Tableau€54€– Etape d'un SFC
	Tableau€55€– Transition et condition de transition d'un SFC
	Tableau€56€– Déclaration des actions d'un SFC
	Tableau€57€– Association étape/action
	Tableau€58€– Bloc d'action
	Tableau€59€– Qualificateurs d'action
	Tableau€60€– Caractéristiques de contrôle d'action
	Tableau€61€– Evolution de séquence€– graphique
	Tableau€62€– Déclaration de configuration et de ressource
	Tableau€63€– Tâche
	Tableau€64€– Espace de noms
	Tableau€65€– Options de déclaration d'espace de nom imbriqué
	Tableau€66€– Directive d'espace de noms€USING
	Tableau€67€– Expression entre parenthèses du langage€IL
	Tableau€68€– Opérateurs de liste d'instructions
	Tableau€69€– Appels du langage€IL
	Tableau€70€– Opérateurs normalisés de bloc fonctionnel du langage€IL
	Tableau€71€– Opérateurs du langage€ST
	Tableau€72€– Enoncés en langage€ST
	Tableau€73€– Eléments de contrôle d'exécution graphiques
	Tableau€74€– Rails de puissance et éléments de liaison
	Tableau€75€– Contacts
	Tableau€76€– Bobines

