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INTERNATIONAL ELECTROTECHNICAL COMMISSION 

____________ 

 
RELIABILITY BLOCK DIAGRAMS 

 
FOREWORD 

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising 
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote 
international co-operation on all questions concerning standardization in the electrical and electronic fields. To 
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, 
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC 
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested 
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely 
with the International Organization for Standardization (ISO) in accordance with conditions determined by 
agreement between the two organizations. 

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international 
consensus of opinion on the relevant subjects since each technical committee has representation from all 
interested IEC National Committees.  

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National 
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC 
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any 
misinterpretation by any end user. 

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications 
transparently to the maximum extent possible in their national and regional publications. Any divergence 
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in 
the latter. 

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity 
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any 
services carried out by independent certification bodies. 

6) All users should ensure that they have the latest edition of this publication. 

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and 
members of its technical committees and IEC National Committees for any personal injury, property damage or 
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and 
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC 
Publications.  

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is 
indispensable for the correct application of this publication. 

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of 
patent rights. IEC shall not be held responsible for identifying any or all such patent rights. 

International Standard IEC 61078 has been prepared by IEC technical committee 56: 
Dependability. 

This third edition cancels and replaces the second edition published in 2006. This edition 
constitutes a technical revision.  

This edition includes the following significant technical changes with respect to the previous 
edition: 

a)  the structure of the document has been entirely reconsidered, the title modified and the 
content extended and improved to provide more information about availability, reliability 
and failure frequency calculations; 

b) Clause 3 has been extended and clauses have been introduced to describe the electrical 
analogy, the "non-coherent" RBDs and the "dynamic" RBDs; 

c) Annex B about Boolean algebra methods has been extended; 
d) Annex C (Calculations of time dependent probabilities), Annex D (Importance factors), 

Annex E (RBD driven Petri net models) and Annex F (Numerical examples and curves) 
have been introduced.   
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The text of this standard is based on the following documents: 

FDIS Report on voting 

56/1685/FDIS 56/1694/RVD 

 
Full information on the voting for the approval of this standard can be found in the report on 
voting indicated in the above table. 

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2. 

The committee has decided that the contents of this publication will remain unchanged until 
the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data 
related to the specific publication. At this date, the publication will be  

• reconfirmed, 

• withdrawn, 

• replaced by a revised edition, or 

• amended. 
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INTRODUCTION 

A reliability block diagram (RBD) is a pictorial representation of a system's successful 
functioning. It shows the logical connection of (functioning) components (represented by 
blocks) needed for successful operation of the system (hereafter referred to as “system 
success”). Therefore an RBD is equivalent to a logical equation of Boolean variables and the 
probabilistic calculations are primarily related to constant values of the block success/failure 
probabilities.  

Many different analytical methods of dependability analysis are available, of which the RBD is 
one. Therefore, the purpose of each method and their individual or combined applicability in 
evaluating the availability, reliability, failure frequency and other dependability measures as 
may be applicable to a given system or component should be examined by the analyst prior to 
deciding to use the RBD. Consideration should also be given to the results obtainable from 
each method, data required to perform the analysis, complexity of analysis and other factors 
identified in this standard. 

Provided that the blocks in the RBD behave independently from each other and that the order 
in which failures occur does not matter then the probabilistic calculations can be extended to 
time dependent probabilistic calculations involving non-repaired as well as repaired blocks 
(e.g. blocks representing non-repaired or repaired components). In this case three 
dependability measures related to the system successful functioning have to be considered: 
the reliability itself, RS(t), but also the availability, AS(t) and the failure frequency, wS(t). While, 
for systems involving repaired components, the calculations of AS(t) or wS(t) can be done 
quite straightforwardly, the calculation of RS(t) implies systemic dependencies (see definition 
3.34) which cannot be taken into account within the mathematical framework of RBDs.  
Nevertheless, in particular cases, approximations of RS(t) are available. 

The RBD technique is linked to fault tree analysis [1]1 and to Markov techniques [2]: 

• The underlying mathematics is the same for RBDs and fault tree analysis (FTA): when an 
RBD is focused on system success, the FT is focused on system failure. It is always 
possible to transform an RBD into an FT and vice versa. From a mathematical point of 
view, RBD and FT models share dual logical expressions. Therefore, the mathematical 
developments and the limitations are similar in both cases. 

• When the availability Ai(t) of one block can be calculated by using an individual Markov 
process [2] independent of the other blocks, this availability, Ai(t), can be used as input for 
the calculations related to an RBD including this block. This approach where an RBD 
provides the logic structure and Markov processes numerical values of the availabilities of 
the blocks is called "RBD driven Markov processes". 

For systems where the order of failures is to be taken into account, or where the repaired 
blocks do not behave independently from each other or where the system reliability, RS(t), 
cannot be calculated by analytical methods, Monte Carlo simulation or other modelling 
techniques, such as dynamic RBDs, Markov [2] or Petri net techniques [3], may be more 
suitable. 

 

_______________ 

1  Numbers in square brackets refer to the Bibliography. 
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RELIABILITY BLOCK DIAGRAMS 
 
 
 

1 Scope 

This International Standard describes: 

• the requirements to apply when reliability block diagrams (RBDs) are used in 
dependability analysis; 

• the procedures for modelling the dependability of a system with reliability block diagrams; 

• how to use RBDs for qualitative and quantitative analysis; 

• the procedures for using the RBD model to calculate availability, failure frequency and 
reliability measures for different types of systems with constant (or time dependent) 
probabilities of blocks success/failure, and for non-repaired blocks or repaired blocks;  

• some theoretical aspects and limitations in performing calculations for availability, failure 
frequency and reliability measures; 

• the relationships with fault tree analysis (see IEC 61025 [1]) and Markov techniques (see 
IEC 61165 [2]). 

2 Normative references 

The following documents, in whole or in part, are normatively referenced in this document and 
are indispensable for its application. For dated references, only the edition cited applies. For 
undated references, the latest edition of the referenced document (including any 
amendments) applies. 

IEC 60050-192, International Electrotechnical Vocabulary  – Part 192: Dependability 
(available at http://www.electropedia.org) 

IEC 61703, Mathematical expressions for reliability, availability, maintainability and 
maintenance support terms 

3 Terms and definitions 

For the purposes of this document, the terms and definitions given in IEC 60050-192 as well 
as the following apply. 

NOTE Some terms have been taken from IEC 60050-192 and modified for the needs of this standard. 

3.1  
reliability block diagram 
RBD 
logical, graphical representation of a system showing how the success states of its sub-items 
(represented by blocks) and combinations thereof, affect system success state  

Note 1 to entry:  The RBD technique was developed a long time ago when the term “reliability” was used as an 
umbrella term for “successful functioning”. This umbrella term is now superseded by “dependability”. Nevertheless 
it is still in use in the vernacular language and terms like “reliability engineering”, “reliability studies” or “reliability 
block diagram”. Therefore the term “reliability” used in RBD does not mean that this technique allows to calculate 
the reliability of a complex system straightforwardly from reliabilities of its constituting blocks (see 10.3.1.4).  

Note 2 to entry: An RBD is a directed acyclic graph (i.e. a graph without loops) representing the logical links 
between the success state of a system and the success states of its constituting blocks. This logical architecture is 
mainly represented by conventional series and parallel graphical structures (see Clause 4 and Clause 7). 
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Note 3 to entry: RBDs may be extended to represent multi-state (i.e. more than two states) systems but those 
extensions cannot be handled within the Boolean framework. 

[SOURCE: IEC 60050-192:2015, 192-11-03, modified – Notes added] 

3.2  
Boolean related model 
mathematical model where the state of a system is represented by a logical function of 
Boolean variables representing the states of its components 

Note 1 to entry: A Boolean variable a only has two values and a logical function of several Boolean variables also 
has only two values. Those two values may be for example, {0, 1}, {up, down}, {true, false}, {working, failed}, etc. 
The underlying mathematics behind the logical functions is Boolean algebra.    

3.3  
RBD driven Markov process 
Markov process modelled by an RBD made of blocks modelled by individual sub-Markov 
models behaving independently from each other 

Note 1 to entry: The underlying logic of an RBD allows to combine the individual availabilities of the blocks to 
obtain the system availability. When the block are modelled by small individual Markov processes (e.g. with less 
than 10 states) the RBD is equivalent to the Markov process related to the system which may encompass millions 
of states. This is the basis for most of the probabilistic calculations achieved with RBDs. Such Markov process built 
through the use of the RBD as guideline is called "RBD driven Markov process". 

Note 2 to entry: The independent Markov process is developed in [2]. 

3.4  
dynamic RBD 
DRBD 
reliability block diagram where the assumption of independency between the blocks is not 
fulfilled  

Note 1 to entry: The blocks of a DRBD can have interactions with elements external to the RBD itself.  

3.5  
non-coherent RBD 
reliability block diagram modelling a non-monotonic logical function 

Note 1 to entry: A non-coherent RBD is an RBD where the blocks may appear both in direct and inverted states 
(see Table 3). In this case, some of the minimal success path (see definition 3.15) may have some blocks in down 
state and some minimal failure paths, some blocks in up state. The concepts of minimal tie and cut sets are no 
longer valid and have to be replaced by the concept of prime implicants. 

Note 2 to entry: In a non-coherent RBD, a minimal success path may become a failure path by the repair of a 
block in down state and a minimal failure path may become a success path by a further failure of one block in up 
state. This is why they are named "non-coherent".  

3.6  
item 
subject being considered 

Note 1 to entry: In this International Standard the word “item” covers mainly the system modelled by the RBD and 
the “blocks” in the RBD. 

[SOURCE: IEC 60050-192:2015, 192-01-01, modified – Notes to entry have been deleted, 
Note 1 to entry has been added] 

3.7  
block 
basic element used to build an RBD 

Note 1 to entry: A block has only two states (up and down) and may represent any item with two states (e.g. 
components, functions, subsystems) repaired or not repaired. By analogy and to simplify the wording, a 
repaired/non-repaired block represents a repaired/non-repaired item, the failure/repair of a block represents the 

BS EN 61078:2016



IEC 61078:2016 © IEC 2016 – 13 – 

failure/repair of the modelled item and the up/down state of a block represents the up/down state of the modelled 
item. 

Note 2 to entry: The number of states may be extended to more than two states in order to represent multi-state 
(i.e. more than two states) systems but those extensions cannot be handled within the Boolean framework.   

Note 3 to entry: For the purposes of this standard, the blocks are divided between "elementary blocks" – or more 
simply, "blocks" – and "composite blocks" comprising several "elementary blocks". This is illustrated in Table 3.  

3.8  
repeated block 
block appearing more than once in an RBD 

Note 1 to entry: Repeated blocks represent the same physical items. This should not be confused with duplicated 
blocks which represent different but similar physical items used to implement redundancy.  

Note 2 to entry: Repeated blocks can appear in the direct or inverted state (i.e.; the block appears in up state in a 
part of the RBD and down state in another part, or vice versa). They are very useful to represent RBDs related to a 
complex system or for representing RBDs in the form of success or failure paths (see 8.2). 

3.9  
up state 
available state 
state of being able to perform as required 

Note 1 to entry: The absence of necessary external resources may prevent operation, but do not affect the up 
state. 

Note 2 to entry: Up state relates to availability of the item.  

Note 3 to entry: An item may be considered to be in an up state for some functions and in a down state for others, 
concurrently. 

Note 4 to entry: The adjectives "up" and “available” designate an item in an up state. 

Note 5 to entry: Within the context of RBDs, the state of a block is identical to the state of the component 
modelled by this block. Therefore a block in up state refers to a component in up state. The same concept applies 
to the RBD and the corresponding system. 

Note 6 to entry: Within an RBD and by analogy with an electrical circuit, a block in the up state can be considered 
as a virtual switch in closed position and a block in the down state as a virtual switch in open position. 

[SOURCE: IEC 60050-192:2015, 192-02-01, modified – Note 5 to entry and Note 6 to entry 
have been added] 

3.10  
up time 
time interval for which the item is in an up state 

[SOURCE: IEC 60050-192:2015, 192-02-02] 

3.11  
mean up time 
MUT  
expectation of the up time 

 [SOURCE: IEC 60050-192:2015, 192-08-09] 

3.12  
down state 
unavailable state 
state of being unable to perform as required, due to internal fault, or preventive maintenance 

Note 1 to entry: “Down” state relates to unavailability of the item.  

Note 2 to entry: The adjectives “down” or “unavailable” designate an item in a down state. 
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Note 3 to entry: Within the context of RBDs, the state of a block (respectively an RBD) is assimilated to the state 
of the component (respectively the system) modelled by this block (respectively this RBD). Therefore a block 
(respectively an RBD) in down state refers to a component (respectively a system) in down state. 

Note 4 to entry: Within an RBD, a block in the down state may be interpreted as an open electrical switch.  

[SOURCE: IEC 60050-192:2015, 192-02-20, modified – Note 3 and 4 to entry have been 
added] 

3.13  
down time 
time interval for which the item is in a down state 

[SOURCE: IEC 60050-192:2015, 192-02-21, modified – the figure and Note 1 to entry have 
been deleted] 

3.14  
mean down time 
MDT  
expectation of the down time 

[SOURCE: IEC 60050-192:2015, 192-08-10] 

3.15  
success path 
tie set 
set of blocks, with each block in the set being in the up state thus resulting in the RBD to be in the 
up state 

Note 1 to entry: The name tie set is given by analogy with an electrical circuit: the blocks in up states constitute a 
closed (tied) circuit between the RBD input and the RBD output. 

3.16  
minimal tie set 
tie set such as that any failure of one of the blocks in up state also fails the whole RBD 

Note 1 to entry: In a minimal tie set, every block in up state is necessary to retain the RBD in up state. 

Note 2 to entry: The order of a minimal tie set is given by the number of blocks in the set in up state: order 1 
comprises 1 block in up state, order 2 comprises 2 blocks in up state, etc. 

3.17  
failure path 
cut set 
set of blocks, with each block in the set being in the down state thus resulting in the RBD to 
be in the down state 

Note 1 to entry: The name cut set is given by analogy with an electrical circuit: the blocks in down state constitute 
an open (cut) circuit between the RBD input and the RBD output. 

3.18  
minimal cut set 
cut set such as that any restoration of one of the blocks in down state also restore the RBD to 
up state 

Note 1 to entry: In a minimal cut set, every block in down state is necessary to retain the RBD in down state  

Note 2 to entry: The order of a minimal cut set is given by the number of blocks in the down state: order 1 
comprises 1 block in down state, order 2 comprises 2 blocks in down state, etc. 

3.19  
disjoint set of elements 
set of Boolean elements whose intersections are empty  
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EXAMPLE If )( d
i

C  is a set of disjoint cut sets then jiCC
ji

≠∀=∩    dd Φ  and therefore, the 

probability jiCCP
ji

≠∀=∩    0)( dd . 

Note 1 to entry: The term "element" is used here in the general meaning used in the set theory, i.e. a member of 
a given collection of objects.   

Note 2 to entry: Disjoint elements are incompatible: when one is true, the other is false and vice versa. This 
describes mutual exclusiveness and, therefore, complete dependency between the elements. 

3.20  
availability  
<item> ability to be in up state 

[SOURCE: IEC 60050-192:2015, 192-01-23, modified – notes have been deleted] 

3.21  
A(t) 
instantaneous availability  
point availability 
<measure> probability of being in up state at a given instant  

[SOURCE: IEC 60050-192:2015, 192-08-01, modified] 

3.22  
U(t) 
instantaneous unavailability  
point unavailability 
<measure> probability of being in down state at a given instant  

[SOURCE: IEC 60050-192:2015, 192-08-04, modified] 

3.23  
Aavg(t1, t2) 
mean availability  
average availability 
<measure> average value of the instantaneous availability over a given time interval [t1, t2] 

[SOURCE: IEC 60050-192:2015, 192-08-05, modified – Note 1 to entry has been deleted] 

3.24  
Uavg(t1, t2) 
mean unavailability  
average unavailability 
<measure> average value of the instantaneous unavailability over a given time interval (t1, t2) 

Note 1 to entry: The mean unavailability of a safety instrumented system (see IEC 61508 [5]) is also called 
“average probability of failure on demand” (Acronym: PFDavg). 

[SOURCE: IEC 60050-192:2015, 192-08-06, modified – Note 1 to entry has been replaced] 

3.25  
Ast 
Aas 
steady state availability 
asymptotic availability 
limit, if it exists, of the instantaneous availability, when the time tends to infinity 
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Note 1 to entry: Under certain conditions, the steady state availability may be expressed as the quotient 
MUT/(MUT+MDT). See IEC 61703. 

[SOURCE: IEC 60050-192:2015, 192-08-07, modified – Note 1 to entry modified] 

3.26  
reliability  
<item> ability to perform as required, without failure, for a given time interval, under given 
conditions 

[SOURCE: IEC 60050-192:2015, 192-01-24, modified – Notes to entry have been deleted] 

3.27  
R(t1, t2)  
R(t) 
reliability  
<measure> probability of performing as required for time interval [t1, t2], under given 
conditions 

Note 1 to entry: The reliability R(t) is the reliability for the time interval [0, t]. 

[SOURCE: IEC 60050-192:2015, 192-01-24, modified – Notes to entry were replaced by new 
Note 1 to entry] 

3.28  
F(t1, t2) 
F(t) 
unreliability  
<measure> probability of not performing as required for time interval [t1, t2], under given 
conditions 

Note 1 to entry: The unreliability F(t) is the unreliability for the time interval [0, t]. 

Note 2 to entry: The unreliability is the complement to 1 of the reliability: F(t)=1-R(t). 

3.29  
λ(t) 
instantaneous failure rate 
failure rate 
limit, if it exists, of the quotient of the conditional probability that an item goes from up state to 
down state within time interval [t, t + ∆t], and ∆t, when ∆t tends to zero, given that it has not 
been in down state within time interval [0, t] 

Note 1 to entry: The definition has been adapted from IEC 60050-192 to also cover repairable items: 

– if the item has no internal built-in redundancy, the failure rate is identical to what it would be if it was not 
repairable; 

– if the item has built-in internal redundancy it can remain in up state when some redundant parts are failed. 
Therefore, those failures are repairable as long as the whole item has no transition to the down state due 
to a further part failure.  

Note 2 to entry: The terms failure rate (3.29), conditional failure intensity (3.30) and unconditional failure intensity 
(3.31) seem similar but they differ by the conditional events used in their definitions. Even if these parameters can 
have close numerical values in particular cases, they behave in different ways and should not be confused with 
each other.  

[SOURCE: IEC 60050-192:2015, 192-05-06, modified – Notes to entry have been replaced by 
new notes to entry] 
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3.30  
λv(t) 
instantaneous conditional failure intensity 
conditional failure intensity 
Vesely failure rate 
limit, if it exists, of the quotient of the conditional probability that the failure of an item occurs 
within time interval [t, t + ∆t], and ∆t, when ∆t tends to zero, given that the item was in up state 
at time t and at time 0 

Note 1 to entry: See Note 2 to entry of the failure rate definition (3.29). 

3.31  
w(t) 
instantaneous unconditional failure intensity 
unconditional failure intensity 
failure frequency 
limit, if it exists, of the quotient of the conditional probability that the failure of an item occurs 
within time interval [t, t + ∆t], and ∆t, when ∆t tends to zero, given that the item was in up state 
at time 0 

Note 1 to entry: See Note 2 to entry of the failure rate definition (3.29). 

Note 2 to entry: This parameter is equivalent to the failure intensity defined in IEC 60050-192:2015, 192-05-08. 
The name has been modified to distinguish it from the term, conditional failure intensity (3.30). 

3.32  
wavg(0,T) 
average failure frequency 
number of failures per unit of time of an item averaged over a given period of time T 

Note 1 to entry: If N is the number of failures of the item over [0, T] then the average failure frequency over this 
period of time is calculated as wavg(0,T) = N/T. 

Note 2 to entry: If m is the mean time  between failures (see IEC 60050-192) of an item then the average number 
of failures occurring over [0, T] is N≈T/m. Therefore wavg(0,T) = N/T ≈ 1/m.  

Note 3 to entry: Mathematically speaking, wavg(0,T) is the average of w(t) over [0, T]. Then 

∫=
T

dw
T

Tw
0

avg )(1),0( ττ . 

3.33  
mean operating time to failure 
MTTF 
expectation of operating time to failure 

Note 1 to entry: In the case of non-repairable items with an exponential distribution of times to failure (thus a 
constant failure rate) the MTTF is numerically equal to the reciprocal of the failure rate. This is also true for 
repairable items if, after restoration, they can be considered to be “as-good-as-new”. 

Note 2 to entry: This note only applies to the French language. 

[SOURCE IEC 60050-192, 192-05-11, modified – Note 2 to entry has been deleted] 

3.34  
systemic dependency 
holistic dependency 
dependency between the parts of a system which are related to the system considered as a 
whole 

EXAMPLE 1 A single repair team constitutes a systemic dependency between repairable items: when an item fails 
it can be repaired only if the repair team is not busy due to the repair of another item belonging to the system. 

EXAMPLE 2 The reliability R(t) of a system can be expressed as the probability for the system to be in up state at 
time t, provided it has never been in down state over the interval [0, t]. Therefore only the sequences of events 
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which do not lead to the down state over [0, t] can be retained and the sequences of events which include a 
succession "up state"→"down state"→"up state" have to be excluded from the calculations. This implies that, with 
regards to the calculation of R(t), an item going to the down state is repairable only if the system remains in up 
state during the repair of the item. Therefore, with regards to the calculation of R(t), the items are repairable or not 
depending on the states of the other blocks and this constitutes systemic dependencies between all blocks of the 
RBD modelling the system.  

Note 1 to entry: A systemic dependency cannot be described as a local property of the individual items of the 
system. 

3.35  
binary decision diagram 
BDD 
compact decision tree based on the Shannon decomposition of a Boolean expression 

 

Figure 1 – Shannon decomposition of a simple Boolean expression and resulting BDD 

Note 1 to entry: Figure 1 illustrates how the simple Boolean expression s = a + b can be transformed into a 
decision tree by using the Shannon decomposition and then how the corresponding BDD is obtained by gathering 
the paths giving the same value (0 or 1) of the Boolean expression. 

Note 2 to entry: Mathematically speaking, BDDs are rooted, directed acyclic graphs. This is a data structure 
expressing Boolean expressions as unions of disjointed terms. This, in turn, leads to exact probabilistic 
calculations. This is the state of the art with regards to probabilistic calculation on Boolean related models. More 
details about BDDs can be found in reference [33]. 

Note 3 to entry: This note only applies to the French language. 

4 Symbols and abbreviated terms  

Table 1 – Acronyms used in IEC 61078  

Abbreviation/Acronym Meaning 
BDD Binary decision diagram. 

CCF Common cause failure. 

FMEA Failure modes and effects analysis. 

FT, FTA Fault tree, fault tree analysis. 

MTTF Mean operating time to failure. 

MTTR Mean time to restoration. 

DRBD Dynamic reliability block diagram. 

PFDavg Average of the probability of failure on demand (mean unavailability). 

PAND Priority AND gate. 

PN Petri net. 

RBD Reliability block diagram. 

SEQ Sequential gate. 
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Table 2 – Symbols used in IEC 61078  

Symbol Meaning 

S  System modelled by an RBD. 

SX C,..),B,(A,X ≠∈  Blocks used within an RBD. S is reserved for the system and the 
other letters for the blocks. 

state up"" in S =s  Boolean variable indicating that the system S is in the up state. 
This is also the event "S in up state". 

state down"" in S =s  Boolean variable indicating that the system S is in the down state. 
This is also the event "S in down state". 

state up"" in X =x  Boolean variable indicating that block X is in the up state. This is 
also the event "X in up state". 

state down"" in X =x  Boolean variable indicating that block X is in the down state. This 
is also the event "X in down state". 

)(),( ii CΠ  Minimal success paths (minimal tie sets), minimal failure paths 
(minimal cut sets). 

)(),( dd
i

CiΠ  
Disjoint success paths (disjoint tie sets), disjoint failure paths 
(disjoint cut sets). 

(.)P  Probability function. 

)stateup""inS(PPs =  Constant probability that the system S is in the up state. 

)statedown"" inS(PPs =  Constant probability that the system S is in the down state. 

)stateup""inX(PPx =  Constant probability that block X is in the up state. 

)statedown"" inX(PPx =  Constant probability that block X is in the down state. 

)state up"" in X stateup""inS(| |PP xs =  Conditional probability that the system S is in the up state given 
that block X is in the up state. 

)state down"" in X stateup""inS(| |PP xs =  Conditional probability that the system S is in the up state given 
that block X is in down state. 

(t)Ps  Time dependent probabilities that the system S is in the up state. 

)(tPx  Time dependent probability that block X is in the up state. 

(t)Ps  Time dependent probabilities that the system S is in the down 
state. 

)(tPx  Time dependent probability that block X is in the down state. 

),( tOKP  Probability of state OK at time t. 

itt,  Current instant of time.  

iTT,  Time duration. 

],[ 21 tt , ],[],[ 21 TttT +==≡ 000  Time interval, t1<t2 

) time at state up"" in S(S )( tPtA =  Availability of the system S at time t. 

)(),,(),,( avg
S

avg
S21

avg
S TATAttA 0  

Average availability of the system S over the time interval [t1, t2] 
or [0,T]. 

as
S

st
S

avg
S ,, AAA  

Average availability of the system S over[0, ∝], steady state 
availability and asymptotic availability. 

) time at state up"" in X(X )( tPtA =  Availability of block X at time t. 

) time at state up"" in X(X )()( tii PtAtA i ==  Availability of block Xi at time t. 

)(),,(),,( avg
X

avg
X21

avg
X TATAttA 0  

Average availability of block X over the time interval [t1, t2] or 
[0,T]. 
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Symbol Meaning 

as
X

st
X

avg
X ,, AAA  

Average availability of block X over [0, ∝], steady state availability 
and asymptotic availability. 

) time at state down"" in S(S )( tPtU =  Unavailability of the whole system S at time t. 

)(),,(),,( avg
S

avg
S21

avg
S TUTUttU 0  Average unavailability of the system S over the time interval [t1, 

t2] or [0,T]. 

as
S

st
S

avg
S ,, UUU  Average unavailability of the system S over [0, ∝], steady state 

unavailability and asymptotic unavailability. 

) time at state down"" in X(X )( tPtU =  Unavailability of block X at time t. 

) time at state down"" in X(X )()( tii PtUtU i ==  Unavailability of block Xi at time t. 

)(),,(),,( avg
X

avg
X21

avg
X TUTUttU 0  

Average unavailability of block X over the time interval [t1, t2] or 
[0,T]. 

as
X

st
X

avg
X ,, UUU  Average unavailability of block X over [0, ∝], steady state 

unavailability and asymptotic unavailability. 

])[0, over all state up"" in S (S )( tPtR =  Reliability of the system S over [0, t].  

)(1)( SS tRtF −=  Unreliability of the overall system S over [0, t] (failure distribution 
of the system S). 

)(S tf  Time to failure density functions of system S. 

])[0, over all state up"" in X (X )( tPtR =  Reliability of block X over [0, t].  

)(1)( XX tRtF −=  Unreliability of block X over [0, t] (failure distribution of block X). 

)(X tf  Time to failure density functions of block X. 

)(, SS tΛΛ  Constant and time dependent failure rates of the system S. 

)(, VSVS tΛΛ  Conditional failure intensity (Vesely failure rate) of the overall 
system. 

)(S tw  Unconditional failure intensity (failure frequencies) of the system 
S, at time t. 

)(),,( SS TWTW 0  Expected number of failures of the system S over [0, T]. 

)(),,0( avg
S

avg
S TwTw  

Average unconditional failure intensity (average failure frequency) 
of the system S over [0, T]. 

)(, XX tλλ  Constant and time dependent failure rates of block X. 

)(X tw  Unconditional failure intensity (failure frequencies) of block X, at 
time t. 

)(),,( XX TWTW 0  Expected number of failures of block X over [0, T]. 

)(),,0( avg
X

avg
X TwTw  

Average unconditional failure intensity (average failure frequency) 
of block X over [0, T]. 

Xdλ  Dormant failure rate of block X. 

)(, XX tµµ  Constant or time-dependent repair rates of block X. 









r
n  Number of ways of selecting r blocks from n blocks without order: 

)!(!
!

rnr
n

r
n

−
=







 . 

"0", "1" Symbols used in truth tables, Karnaugh map, Shannon 
decomposition and binary decision diagrams to denote down 
(failure) states and up (success) states of blocks or of systems. 

•∩,  Boolean operators denoting AND logic, e.g. baba •∩ ,  
(intersection). 
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Symbol Meaning 

+∪,  Boolean operators denoting OR logic, e.g. baba +∪ ,  (union). 

ΩΦ ,  "Impossible" event and "certain" events. 

 
The use of the symbols in Table 3 is recommended when drafting a reliability block diagram 
(RBD). 

Table 3 – Graphical representation of RBDs: Boolean structures 

Graphical representation Meaning 

 

Indicates input. 

Indicates output. 

Such indications are used for convenience. They are not mandatory, but 
may be useful where connections have a directional significance. 

 

An RBD is a directed graph. The direction of each link is from input to 
output (i.e., from left to right). When needed, arrows may be added to avoid 
confusion. 

 

(Elementary) block: grouping of equipment, components, units or other 
system elements.  

 

Series structure: the system is up if A and B are in up states. 

This represents the logic functions bas ∩= . From a failure point of view it is 
equivalent to bas ∪=   

 

Parallel structure (full active redundancy): the system is up if A or B are in 
up state. 

This represents the logic functions bas ∪= . From a failure point of view it 
is equivalent to bas ∩=  

 

NOT gate: the output of the gate is equal to 0 when its input is equal to 1 
and vice-versa. 

 

Transfer gates: the output ι is linked to the input(s) with the same name. 
This is useful to: 

– split large RBDs into several smaller parts (sub-RBDs); 
– transfer the output at one place in an RBD to another place in the RBD.  

  

Composite block: grouping of elementary blocks. This may be useful to 
simplify the RBD drawing, to indicate parts needing further development or 
to gather non independent individual blocks into a structure independent of 
the rest of the RBD. 

  

Repeated blocks: the same block representing a given item appears in 
several places of the RBD either in the direct state or the inverted state i.e. 
when the block A in direct state is "up", the block in the inverted state is 
"down" and vice versa.  

These symbols are used for non-coherent RBDs. 

 

External element interacting with one or several blocks of the RBD. 

This symbol is used for dynamic RBDs. IEC 
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Graphical representation Meaning 

 

Success majority vote logic (symbol m/n): at least m-out-of-n blocks are 
needed for system success in an active redundant configuration. 

NOTE It is important to make the difference between the "success" 
majority vote logics implemented in RBDs and the "failure" majority vote 
logics implemented in fault trees. Generally the context (RBD or fault tree) 
is sufficient to show the difference. The relationship is the following: 
(m/n)Suc ≡ ([n-m+1]/n)Fail. 

 
Table 4 – Graphical representation of RBDs: non-Boolean structures/DRBD 

Graphical representation Meaning 

 

Standby redundancy: B takes over the function of A when A fails. 

 

Functional dependencies: the state of A depends on the event Ev. This 
event may be external or internal to the RBD. This symbol reminds that a 
dependency exists but the type of dependency may be diverse and has to 
be described somewhere else. 

 

Complete functional dependency: when the event Ev occurs, then block A 
goes to the down state. This event may be external or internal to the RBD. 
It plays the role of the trigger used in similar structures implemented in 
dynamic fault trees. 

 

PAND gate: the output goes to the down state when the inputs go to the 
down states in the order I1, then I2, then I3, ... then In. The inputs I1, I2, I3, 
... In behave independently from each other.  

This gate has been introduced to be used in dynamic fault trees and this is 
why NOT gates are used to invert the inputs and the output in order to be 
consistent with the RBD logic. 

 

SEQ gate: the output goes to the down state when the inputs go to the 
down states in the order I1, then I2, then I3, ... then In. The inputs don't 
behave independently as In cannot go to the down state if In-1 is not already 
in the down state, In-1 cannot go to the down state if In-2 is not already in 
the down state,  etc., I2 cannot go to the down if I1 is not already in the 
down state. 

This gate has been introduced to be used in dynamic fault trees and this is 
why NOT gates are used to invert the inputs and the output in order to be 
consistent with the RBD logic. 

 

5 Preliminary considerations, main assumptions, and limitations 

5.1 General considerations 

An RBD models a system using the logical links existing between the success state (up state) 
of the system (i.e., the overall RBD) and the success states (up states) of its components 
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(i.e., the blocks of the RBD). Therefore, an RBD embeds a logical formula and this is why an 
RBD is not necessarily similar to the physical architecture of the system (e.g. two redundant 
isolation valves in series on the same pipe are represented by two blocks in parallel into the 
corresponding RBD). 

An RBD can be firstly used for qualitative analysis purposes by identifying the combinations of 
the blocks in the up state allowing the system to be in an up state (success paths or tie sets) 
or the combinations of the blocks being in down states leading to the system down state 
(failure paths or cut sets). 

Secondly an RBD can be used for probabilistic calculations and, as this is a static 
representation (i.e., independent of the time), the probabilistic rules are basically related to 
blocks with constant probabilities of success or failure. 

This can be extended to time dependent probabilistic calculations. This may be difficult for 
reliability calculations but, for availability and frequency calculations and provided that the 
blocks behave independently from each other, there is no restriction, other than mathematical 
tractability, on the distribution that may be used to describe the times to failure or repair of the 
blocks. This allows, for example, to model the (un)availabilities of each of the blocks by 
individual analytical formulae whose results are combined through the logic of the RBD to 
obtain the system (un)availability. When those analytical formulae are obtained through 
individual Markov processes, the RBD is equivalent to a global Markov process modelling the 
whole system. Such a model is called "RBD driven Markov process". This is the basis for most 
of the probabilistic calculations achieved with RBDs. 

5.2 Pre-requisite/main assumptions 

An RBD is an acyclic directed graph (i.e. no loops or retroactions are modelled in an RBD) 
which can be drawn by using the basic logical structures presented in Table 3. It is used to 
model the behaviour of a system on the basis of the following fundamental assumptions:  

a) the system has only two states: working (“success” state, “up” state) or failed (“down” 
state); 

b) the blocks of an RBD model the components of a system or parts (e.g. groups of 
components) of a system. Each of them has only two states: working ("success" state, 
“up” state) or failed ("down" state); 

c) the RBD represents the logic linking the success state of the system to the success states 
of its components (blocks); 

d) each block behaves independently from the others at all times. 

The above assumptions have to be generally fulfilled to apply the analytical calculations (i.e. 
calculations with formulae) developed in this standard. When they are not fulfilled, the 
analytical calculations can be replaced by Monte Carlo simulation or other techniques like 
Markov analysis [2] or Petri nets [3] or the dynamic RBDs described in 12.2 and Annex E. 

5.3 Limitations 

The assumptions presented in 5.2 constitute some limitations but there are other limitations 
which are less obvious when dealing with time dependent probabilities. In particular, the users 
of this standard should be aware of the issues introduced by the independency requirements 
which shall be fulfilled at all times. For example: 

a) sequential events are outside the scope of the Boolean models. Therefore they cannot, in 
principle, be handled by RBDs. Nevertheless, in simple cases like standby redundancy, it 
is possible to overcome the problem by considering composite blocks (see Table 3 and 
7.5.3) independently of the other blocks; 

b) availability or frequency calculations of repaired systems assume that the repairs of 
repaired blocks are independent from each other all the time, i.e. each block has its own 
repair team;   

BS EN 61078:2016



 – 24 – IEC 61078:2016 © IEC 2016 

c) reliability calculations of repaired systems imply that a failed block can be repaired only if 
the system is still operating when the block failure occurs. This introduces systemic 
dependencies between the blocks states, and between the blocks and the system states 
(see 10.3.1.4). This infringes the assumption described in 5.2 d) and so, except in 
particular cases and with approximations, analytical reliability calculations are generally 
not possible. 

In short, provided that the assumptions in 5.2 are fulfilled, the RBD technique can be used 
straightforwardly for qualitative analysis and availability/frequency calculations but it can be 
used for reliability calculation only in particular cases. 

It should be noted that, when dealing with probabilistic calculations, good approximations are 
available with low probabilities (e.g. failure of components/blocks) which cannot be used with 
high probabilities (e.g. probabilities of success of components/blocks). Therefore to overcome 
this limitation, it is often better to work with probabilities of failure (unavailability or 
unreliability) rather than probabilities of success (availability or reliability). 

6 Establishment of system success/failed states 

6.1 General considerations 

A prerequisite for constructing system reliability models is a sound understanding of the ways 
in which the system and its components can operate. Systems often require more than one 
success/failure definition. These should be defined and listed. An RBD diagram can be made 
at different levels: system level, sub-system (module) level or assembly level. When an RBD 
is made for further analysis (for example for FMEA analysis), a level suitable for such analysis 
has to be chosen. 

In addition, there should be clear statements concerning 

– the functions to be performed, 
– the performance parameters and permissible limits on such parameters, 
– the environmental and operating conditions. 

After establishing the system's success/failure definition the next step is to identify logical 
blocks in order to divide the system as appropriate for the purpose of the reliability analysis. 
Particular blocks may represent system substructures, which in turn may be represented by 
other RBDs (system reduction – see 11.2). 

For the quantitative evaluation of an RBD, various methods are available. Depending on the 
type of structure, simple Boolean techniques (see 7) and/or path and cut set analyses (see 8) 
may be employed. Calculations may be made using analytical methods (e.g. basic component 
availability methods) or Monte Carlo simulation. An advantage with Monte Carlo simulation is 
that the probabilities of the events in the RBD do not have to be combined analytically since 
the simulation itself takes into account whether each block is failed or functional (see 12.2 
and Clause F.5). 

Since the RBD describes the logical relations needed for the system to function, the block 
diagram does not necessarily represent the way in which the hardware is physically 
connected, although an RBD should generally follow, as far as possible, the physical system 
connections. 

6.2 Detailed considerations 

6.2.1 System operation 

It may be possible to use a system in more than one functional mode. If separate systems 
were used for each mode, such modes should be treated independently of other modes, and 
separate reliability models should be used accordingly. Therefore, when the same system is 
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used to perform all these functions, separate diagrams should be used for each type of 
operation. Clear statements of what constitutes system success/failure for each aspect of 
system operation is a prerequisite. 

6.2.2 Environmental conditions 

The system performance specifications should be accompanied by a description of the 
environmental conditions under which the system is designed to operate. Also included 
should be a description of all the conditions to which the system will be subjected during 
transportation, storage and use. 

A particular piece of equipment is often used in more than one environment, for example, on 
shipboard, in an aircraft or on the ground. When this is so, reliability evaluations may be 
carried out using the same RBD each time but using the appropriate component/block failure 
rates for each environment. 

6.2.3 Duty cycles  

The relationship between calendar time, operating time and on/off cycles should be 
established. If it can be assumed that the process of switching equipment on and off does not 
in itself promote failures, and that the failure rate of equipment during non-use periods is 
negligible, then only the actual working time of the equipment needs to be considered.  

However, in some instances, the process of switching on and off is in itself the prime cause of 
equipment failure, and equipment may have a higher failure rate in non-use period than when 
in-service (e.g. due to moisture and corrosion). In complex cases where only parts of the 
system are switched on and off, modelling techniques other than RBDs (e.g. Markov analysis 
or Petri nets) may be more suitable. 

7 Elementary models 

7.1 Developing the model 

The first step is to select a system success/failure definition. If more than one definition is 
involved, a separate RBD may be required for each. The next step is to divide the system into 
blocks to reflect the logical behaviour so that each block is statistically independent of the 
others. Attempt should be made to make the blocks as large as possible while ensuring that 
each block contains (preferably) no redundancy. 

The next step is to refer to the system success/failure definition and construct a diagram that 
connects the blocks to form a "success path" (see 3.15). As indicated in the diagrams that 
follow, the various success paths, between the input and output of the diagram, pass through 
those combinations of blocks that need to function in order that the system functions.  

NOTE In practice, depending on the system configuration, it can be necessary to make repeated attempts at 
constructing the RBD (each time bearing in mind the steps referred to above) before a suitable block diagram is 
finalized. 

7.2 Series structures 

If all the blocks are required to function for the system to function, then the corresponding 
RBD will be one in which all the blocks are connected in series as illustrated in Figure 2.  

 

Figure 2 – Series reliability block diagram 
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I OA B C ZI OA B C Z

BS EN 61078:2016



 – 26 – IEC 61078:2016 © IEC 2016 

In this diagram "I" is the input, "O" the output and A, B, C, ... Z are the blocks which together 
constitute the system. RBDs of this type are known as "series” RBDs or “series models”. 

This structure models the following logical function: zcbas ••••= ...   (1) 

where a, b, c and z represent the success states of the blocks A, B, C and Z (see Table 2) and 
s the success state of the corresponding system. 

7.3 Parallel structures 

A different type of RBD is needed when only one system component (i.e. one block) is 
required for system success. This is the case when redundant components are implemented.  

This is modelled by parallel structures such as that presented in Figure 3 and which represent 
several redundant blocks. In this structure, the system is down if and only if all blocks are 
down. 

 

Figure 3 – Parallel reliability block diagram 

This structure models the following logical function: zcbas ++++= ...   (2) 

7.4 Mix of series and parallel structures 

The basic structure presented in Figure 2 and Figure 3 can be used to model more complex 
RBDs. For example, if the entire RBD presented in Figure 2 is duplicated (i.e. made 
redundant), then the RBD illustrated by Figure 4 is obtained. Alternatively, if each block within 
the RBD presented in Figure 2 is duplicated, the RBD illustrated by Figure 5 is obtained. 
Diagrams of this type are known as "series/parallel” RBDs or “series/parallel” models. Note 
that the terms “duplicated”, “redundant” and “parallel” are very similar in meaning but should 
not be used interchangeably. 

1) Duplicated is related to the way the RBD is built by repeating similar structures. For 
example, Figure 4 is the duplication of the structure presented in Figure 2 and Figure 5 is 
only the duplication of the components. In fact the parallel structures (B1,B2), (C1,C2) etc. 
are the duplication in series of the parallel structure (A1, A2). 

2) Redundant is related to the fact that if one component fails, another one can perform its 
function. For example, A1 and A2 in Figure 5 are redundant.  

3) Parallel is related to the logic of the architecture of the system and to the graphical 
representation. For example, A1 and A2 are drawn in parallel in Figure 5 because they are 
redundant. 

 

Figure 4 – Parallel structure made of duplicated series sub-RBD 

This structure models the following logical function: 
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 )...()...( 222111 zbazbas •••+•••=  (3) 

 

Figure 5 – Series structure made of parallel reliability block diagram 

This structure models the following logical function: 

 )(...)()( 212121 zzbbaas +••+•+=  (4) 

RBDs used for modelling system reliability are often more complicated mixtures of series and 
parallel structures. For example, a duplicated communication link comprising three repeaters 
(A1, B1, C1 and A2, B2, C2), and a common power supply block (D) may take the form of, for 
example, Figure 6 or Figure 7. 

 

Figure 6 – General series-parallel reliability block diagram 

This structure models the following logical function: 

 )]()[( 222111 cbacbads ••+•••=  (5) 

 

Figure 7 – Another type of general series-parallel reliability block diagram 

This structure models the following logical function: 

 )()()( 212121 ccbbaads +•+•+•=  (6) 

On account of the assumed statistical independence stated above, failure of any block does 
not give rise to a change in the probability of failure of any other block within the system. In 
particular, failure of a redundant block does not affect system power supplies or signal 
sources. 

7.5 Other structures 

7.5.1 m out of n structures 

The need frequently arises to model systems where the success definition is that m or more 
out of n items connected in parallel are required for system success. Such logical structures 
are often called "majority vote" structures. For example see RBDs shown in Figure 8 or  
Figure 9. 
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Figure 8 – 2 out of 3 redundancy Figure 9 – 3 out of 4 redundancy 

Thus, in Figure 8 at least 2 blocks are required for system success and in Figure 9, 3 blocks 
are required for system success. In both cases the failure of one item is tolerated but failure 
of two or more items is not. 

These structures model the following logical functions: 

– 2/3 redundancy: 323121 xxxxxxs •+•+•= ;  (7) 

– 3/4 redundancy: 432431421321 xxxxxxxxxxxxs ••+••+••+••= . (8) 

These logical functions cannot be represented by a simple combination of elementary series 
and parallel structure without the implementation of repeated blocks.  

7.5.2 Structures with common blocks 

Most RBDs are easily understood and the conditions for system success are evident. Not all 
RBDs, however, can be simplified to combinations of series or parallel structures with blocks 
appearing only once. The RBD in Figure 10 is an example with a block A being common to 
two paths. 

 

Figure 10 – Diagram not easily represented by series/parallel arrangement of blocks 

This structure models the following logical function: 

 )()()( 222111 cbccacbs •++•+•=  (9) 

Again, the diagram is self-explanatory. System success is achieved if blocks B1 and C1 are 
both in up state, or blocks A and C1, or A and C2, or finally B2 and C2. Figure 10 could 
represent the fuel supply to engines of a light aircraft. B1 represents the supply to the port 
engine (C1), B2 represents the supply to the starboard engine (C2), and A represents a 
common backup supply to both engines. The system success definition is that at least one 
engine needs to be working for aircraft success, or alternatively, both engines need to fail for 
the aircraft to fail. 

It should be noted that in all the above diagrams (Figure 2 to Figure 10), no block appears 
more than once in a given diagram. The procedures for developing the reliability expression 
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for diagrams of this type are outlined in 8.2. Figure 18 and Figure 19 provide series-parallel 
RBDs equivalent to Figure 10 where repeated blocks are implemented. 

7.5.3 Composite blocks 

 

Figure 11 – Example of RBD implementing dependent blocks 

Figure 11 models a system with cold standby redundancy where the item B starts when the 
item A fails and with a perfect switching from A to B. Then in the corresponding RBD, the 
blocks A and B are not independent and this structure infringes the fundamental assumption 
of independency between blocks which is the basis of this standard.  

As blocks A and B cannot be considered independently from each other, it is necessary to 
consider them as a whole and this can be done by the use of a composite block like the block 
C presented in Figure 12. 

 

Figure 12 – Example of a composite block 

The composite block C has two states, success/failure. Then if it is independent from the 
other blocks of the RBD, it can be handled as a single block. Of course its probability of 
failure/success has to be calculated by taking into account the blocks A and B and the 
dependency between them. 

7.6 Large RBDs and use of transfer gates 

RBDs related to industrial systems can be too large to be drawn as a whole on a single sheet 
of paper. In this case, they can be split in several smaller parts (sub-RBDs) linked together by 
using transfer gates.  
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Figure 13 – Use of transfer gates and sub-RBDs 

Figure 13 gives two examples of the use of transfer gates: each of the two RBDs at the 
bottom of the figure is equivalent to the RBD at the top. They are split in two parts: main 
RBDs and sub-RBDs. It should be noted that a sub-RBD does not necessarily need to have 
only one input and one output.  

The overall underlying logical function is not affected by such a splitting but this allows the 
drawing of a large RBD on several separate pages. It is a matter for the analyst to choose a 
subdivision while keeping a good understanding of the whole RBD and of its sub-RBDs.  

8 Qualitative analysis: minimal tie sets and minimal cut sets  

8.1 Electrical analogy  

The RBD can be used first for qualitative analysis purposes by identifying 

– the combinations of the blocks in up states leading to the system being in the up state 
("success" paths or "tie" sets), 

– the combinations of the blocks in down states leading to the system being in the down 
state ("failure" paths or "cut" sets).  

 

Figure 14 – Analogy between a block and an electrical switch 

NOTE When building an RBD related to a physical electrical circuit, the position of a physical switch can be 
different from its representation by using the analogy described in Figure 14. For example, a physical switch stuck 
closed will be represented by a virtual switch open as it is in down state.  

For doing that, the analogy with an electrical circuit shown in Figure 14 is very useful. This 
consists in considering that each block is equivalent to an electrical switch which is closed 
when the block is in up state and open when it is in down state. This has been done to 
represent Figure 10 by the equivalent Figure 15 where each block has been modelled by an 
electrical switch. 
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Figure 15 – Analogy with an electrical circuit 

When this electrical circuit is closed ("tied"), an electrical signal sent from the input circulates 
throughout the RBD and reaches the output. Therefore, any combination ("set") of closed 
switches allowing a signal to circulate from the RBD input to the RBD output models an up 
state of the system. This is called a "success" path with regards to the state of the system or 
a "tie" set with regards to the closure of the electrical circuit. 

 

Figure 16 – Example of minimal success path (tie set)  

Figure 16 illustrates one of the success paths, (a•c1), of the RBD shown in Figure 15. This 
success path is minimal as, if A fails or C1 fails, the overall system also fails, i.e. the 
successes of A an C1 are necessary and sufficient for the system to be in a success state. 

B.3.1 gives other examples of minimal and non-minimal tie sets. 

The Boolean algebra properties provide a general representation of the system up state, s, as 
the union of the minimal tie sets (Πi) of the RBD. This leads to the following formula:  

 


i
is Π=  (10) 

When this electrical circuit is broken ("cut"), an electrical signal sent from the input is not able 
to circulate throughout the RBD and does not reach the output. Therefore any combination 
("set") of open switches preventing a signal to circulate from the RBD input to the RBD output 
models a down state of the system. This is called a "failure" path with regards to the state of 
the system or a "cut" set with regards to the closure of the electrical circuit. 

 

Figure 17 – Example of minimal failure path (cut set) 
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Figure 17 illustrates one of the failure paths, )( 12 cba •• , of the RBD shown in Figure 15. This 
failure path (cut set) is minimal as when any of A, B2 or C1 are repaired (switches closing), 
the system is also repaired, i.e. the failures of A, B2 and C1 are necessary and sufficient for 
the system being in failed state. 

B.3.1 gives others examples of minimal and non-minimal cut sets. 

The Boolean algebra properties provide a general representation of the down state, s , as the 
union of the minimal cut sets (Cj) of the RBD:  

 


j
jCs =  (11) 

Therefore, from Formulae (10) and (11) the identity: 


j
j

i
i Cs ≡= Π  (12)  

is obtained. 

The minimal cut sets and minimal tie sets can be obtained by expanding from the logical 
formulae corresponding to the RBD. Except in simple cases, this is not easy to do that by 
hand but powerful algorithms are available and implemented into RBD software packages. 

8.2 Series-parallel representation with minimal success path and cut sets 

The identity (12) provides two equivalent ways to represent an RBD from its minimal tie sets 
or its minimal cut sets. 

Applied to the RBD presented in Figure 10, this leads to the two equivalent logical formulae 
(see detailed explanations in B.3.2): 

 222111 cbcacacbs
i

i •+•+•+•==


Π  (13) 

 )()()()( 12212121 cabcabccbabCs
j

j ++•++•+•++==


 (14) 

Then this RBD can be replaced by the equivalent representations presented in Figure 18 
(made of ties sets) and in Figure 19 (made of cut sets) where it can be noticed that some 
blocks are repeated several times. 

 

Figure 18 – Equivalent RBDs with minimal success paths  

Figure 18 is made of four tie sets of order two (see 3.16, Note 2 to entry): 
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)(),(),( 2111 cacacb •••  and )( 22 cb • . 

 

Figure 19 – Equivalent RBDs with minimal cut sets 

Figure 19 is made of one cut set of order two )( 21 cc •  and of three cut sets of order three: 

)( 21 bba •• , )( 21 cba ••  and )( 12 cba •• .  

8.3 Qualitative analysis from minimal cut sets 

For performing qualitative analysis it is more useful to consider the minimal cut sets rather 
than the minimal tie sets. This can be shown by using the above example: the cut set of order 
two )( 21 cc •  is likely to be more probable than the cut sets of order three )( 21 bba •• , 

)( 21 cba ••  or )( 12 cba •• . Therefore, from a qualitative point of view, the minimal cut set 
)( 21 cc •  is the weak point of the system and should be improved first.   

Therefore, the qualitative analysis may be performed with the following steps: 

a) identify the minimal cut sets from the logical equation of the system failure; 
b) sort the minimal cut sets in their increasing orders; 
c) focus on the lowest order minimal cut sets to improve the system. 

When failure probabilities are available for the blocks, the minimal cut sets can be more 
accurately sorted at step b) by calculating the probability of occurrence of each of them.  

9 Quantitative analysis: blocks with constant probability of failure/success  

9.1 Series structures 

Figure 20 shows the link between the Boolean formulae of a basic series structure and the 
probabilistic calculations. 

 

Figure 20 – Link between a basic series structure and probability calculations 

This probabilistic formula is basically established for independent blocks with constant 
probabilities. It expresses the probability of success of the system PS as a function of the 
individual probabilities of success of block A, PA, and block B, PB. Therefore, the RBD models 
can be primarily used for systems comprising independent blocks with constant probability of 
being in the up state. 
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At this step it would be irrelevant to talk about reliability, availability or failure frequency of the 
system as those probabilistic measures are only defined for systems with time dependent 
behaviour. 

The formula established in Figure 20 can be easily extended to be used for systems such as 
those illustrated by Figure 2 (see B.4.1). When blocks A, B, ..., Z are independent, the 
probability of success of the system is given by the simple equation: 

  zcbas ...PP.P.PP =  (15) 

i.e. by multiplying together the probabilities of success of all the blocks constituting the RBD. 

In general, with n blocks Bi in series, ∏
=

=
n

i
ibs PP

1
. (16) 

9.2 Parallel structures 

Figure 21 shows the link between the Boolean formulae of a basic parallel structure and the 
probabilistic calculations. 

 

Figure 21 – Link between a parallel structure and probability calculations  

As for the basic series structure, the formula for the basic parallel structure is established for 
constant probabilities and independent blocks in order to express Ps as a function of Pa and 
Pb.  

As it is, the formula shown in Figure 21 is not easy to extend to more than two components 
(see the Sylvester-Poincaré formula in 11.7 and B.4.2). Fortunately, it can be observed that 

)1()1()(1)1( bababass PPPPPPPP −⋅−=⋅−+−=−= . This expresses simply that the system is 
failed when both A and B are failed. 

Hence the probability of success of the system ( sP ) is given by:  

 )1)(1(1 bababas PPPPPPP −−−=⋅−+=  (17) 

Formula (17) can be easily extended to n blocks Bi in parallel (see B.4.2), i.e.: 

– Probability of failure: ( )∏
=

−=
n

i
bs iPP

1
1   (18) 

– Probability of success: ( )∏
=

−−=−=
n

i
bss iPPP

1
11)1(   (19) 

9.3 Mix of series and parallel structures 

Formulae (15) and (17) can be combined and this can be done by hand in simple cases but 
the above calculations are generally not easily tractable by hand. Fortunately, powerful 
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algorithms are available and implemented into RBD software packages. They are based on 
the techniques described in Clauses B.5, B.6 or B.7. 

9.4 m/n architectures (identical items) 

The m/n architectures are analysed in B.4.4. When the blocks are identical (i.e. each with the 
same probability of success p), the probability of success of the system sP  is given by: 

 ( ) ( )∑
−

=

− −⋅⋅=
mn

r

rrnn
rs ppP

0
1  (20) 

and the probability of failure is given by: 

 ( )∑
−

=

− ⋅−⋅=
1

0
)1(

m

r

rrnn
rs ppP  (21) 

When n = 2m-1 (e.g. 1/1, 2/3, 3/5, etc.), the system is up if m blocks are “up” and the system 
is down if m blocks are "down". Those structures are symmetrical with regards to the success 
and failure events. Some of them, for example structure 2/3, are widely used for safety 
systems.  

If the n items are not identical, use of a more general procedure is recommended 
(see 11.8.2). 

10 Quantitative analysis: blocks with time dependent probabilities of 
failure/success 

10.1 General 

The calculations developed for constant probabilities in Clause 9 can be easily extended to 
the time dependent probability of the system )(tPs  provided that the probabilities )(tP ix  of the 
blocks behave independently from each other. This means that the failure (or repair) of any 
block shall not affect the probability of failure or repair of any other block within the system 
being modelled. This implies that sufficient repair resources are available to service those 
blocks needing repair and that, when two or more persons are repairing a particular block at 
the same time, neither gets in the other’s way. Thus failures and repairs of individual blocks 
are considered to be statistically independent events. The calculations for the time dependent 
probability of system success are detailed in Annex C. 

As the probability for an item to be in the up state at a given instant is its instantaneous 
availability, )()(S tPtA s=  and )()(X tPtA ii x= . This result holds for complicated structures as well 
as large RBDs (see Clause 11 and Annex B): provided that the blocks behave independently 
from each other at all times, the formulae developed for the constant probability case are still 
valid for availability/unavailability calculations. 

– Series structures: )()(
1

S tAtA
n

i
i∏

=

=  and )](1[1)(
1

S tUtU
n

i
i∏

=

−−=  (22) 

– Parallel structures: ( )∏
=

−−=
n

i
i tAtA

1
S )(11)(  and ( )∏

=

=
n

i
i tUtU

1
S )()(  (23) 
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– m/n structure: ( )∑
−

=

− −⋅⋅=
mn

r

rrnn
r tAtAtA

0
S )](1[)()(  and ( )∑

−

=

− −⋅⋅=
1

0
S )](1[)()(

m

r

rrnn
r tUtUtU  (24) 

The availability/unavailability calculations described above are not so simple but 
reliability/unreliability calculations are even more difficult. This is due to the definition of the 
reliability itself: ])[0, over state up"" in S()(S tPtR =  which implies that the system remains in up 
state over the time interval [0, t]. That means that only the sequences of system events which 
do not go through to the system down state are relevant for calculating )(S tR . Therefore the 
sequences of system events which include a succession "up state"→"down state"→"up state" 
have to be excluded from the calculations. This implies that a system part going to the down 
state is repairable only if the system remains in up state during the repair of this part. Thus, 
with regards to the calculation of )(S tR , the system parts (e.g. components) are repairable or 
not depending on the system state (i.e. on the states of the other parts). This constitutes a 
systemic dependency between the system parts and therefore between the blocks modelling 
these parts within the RBD modelling the system. This happens in the case of redundancy of 
repairable items. This is the main difficulty in the understanding of this standard: except for 
RBDs made of blocks in series, the system reliability RS(t) cannot be calculated by combining 
the reliability RBi(t) of its individual blocks. The formulae established above under the 
independency hypothesis are no longer valid. This is further discussed in 10.3.1.4.  

10.2 Non-repaired blocks 

10.2.1 General 

When a block X is not repaired, its probability to be available at time t is equal to its 
probability to have had no failure over [0, t]. Therefore, its reliability RX(t) is equal to its 
availability AX(t).  

When none of the blocks within a system are repaired, the system made of these blocks is not 
repaired either. Then its availability and reliability are identical and RS(t) = AS(t) 

10.2.2 Simple non-repaired block 

The reliability of any item X is linked to its failure rate λX(t), with the following relationship: 

 ( )













−== ∫

t
duutRtA

0
XXX exp)()( λ  (25) 

where )(X uλ  denotes the failure rate of the block X at ut = , u being a dummy variable.  

When λX is constant, Figure 25 is simplified to the classical formula: 

 )exp()()( XXX ttRtA ⋅−== λ  (26) 

Therefore  )exp(1)()( XXX ttFtU ⋅−−== λ  (27) 

10.2.3 Non-repaired composite blocks 

A non-repaired composite block C can be handled as a whole and as a simple non-repaired 
block provided its availability AC(t) is established. Note that in this case AC(t)= RC(t). 

This can be illustrated by the composite block presented in Figure 12. It corresponds to a cold 
standby system with the following parameters: 
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• λA is the constant failure rate of block A and fA(τ) is the probability density function of its 
time to failure; 

• dBλ  is the constant failure rate of block B when in a passive (dormant) state, either cold or 
under low power; 

• Bλ  is the constant failure rate of block B when in an active state, after it has started due to 
the failure of block A. 

NOTE In the following calculations, the switch is considered to be perfect but examples of modelling of the 
imperfect switching are given in 10.3.1.2 (Figure 23) and C.3.3. 

This system is analysed in C.3.3 which provides the following results: 

• if the dormant failure rate of item B is assumed to be equal to zero, then the availability of 
a standby redundant system is: 

 [ ]ttt
C tRtA ⋅−⋅−⋅− −⋅

−
+=≡ ABA eee)()(

BA

A
C

λλλ
λλ

λ  (28) 

• if both failure rates are equal (λA = λ and λB = λ), then the equation for system reliability 
can be shown to be given by: 

 ( )ttRtA t ⋅+⋅=≡ − λλ 1e)()( .
CC  (29) 

If, under the ideal conditions just above, there are n (instead of one) items on standby, this 
latter equation becomes: 

 ( ) ( ) ( )












 ⋅
++

⋅
+

⋅
+⋅+=≡ ⋅−

!!3!2
1e)()(

32

CC n
tttttRtA

n
t λλλλλ

  (30) 

Formulae (28), (29) or (30) can be used for the composite block C in exactly the same way as 
Formula (26) is used for ordinary blocks. Nevertheless, establishing those formulae is difficult 
and other procedures, such as Markov analysis, should be used to analyse standby systems 
(see 10.3.1.2). 

10.2.4 RBDs with non-repaired blocks 
– Availability/reliability: provided that the blocks behave independently from each other, 

the availability/reliability of the RBD can be calculated by combining 
availabilities/reliabilities of the blocks (see 10.2.2 and 10.2.3) according to the logic of the 
RBD and by using the formulae presented in 10.1.  

– Frequency: a system made of non-repaired components can fail only once. The 
probability to observe this failure over [0, T] is )(S TF  and the average failure frequency 

)(avg
S Tw  is equal to 

T
TF )(S . It decreases and tends to zero as time increases.  

10.3 Repaired blocks 

10.3.1 Availability calculations 

10.3.1.1 Simple block 

When a block i is repaired, its availability depends both on its failure rate and on the repair 
resources. Those resources are generally allocated at the system level and, when they are 
limited, this constitutes a systemic dependency between the blocks. Therefore, the blocks are 
independent only if the repair resources are unlimited. In this way the repair of one block can 
be done at any time even when one or several other blocks are already under repair. This 
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assumption implies, in particular, that there are as many repair teams as the number of 
blocks. 

The block availabilities [Ai(t)] can be expressed by any formula (simple or complex). In the 
simplest case, the repaired blocks are characterized by a constant failure rate λi and a 
constant repair rate µi and this leads to the classical formula: 

 ])(exp[)( ttA ii
ii

i

ii

i
i µλ

µλ
λ

µλ
µ

+−
+

+
+

=  (31) 

This analytical formula can be replaced by the equivalent Markov graph presented in  
Figure 22 where Ai(t) = P(OK, t) where P(OK, t) is the probability of the state OK at time t. 

 

Figure 22 – "Availability" Markov graph for a simple repaired block 

NOTE A Markov graph devoted to availability calculations is called "availability" Markov graph. 

10.3.1.2 Repaired composite blocks 

A repaired composite block, C, can be handled as a whole and as a simple repaired block 
provided its availability AC(t) is established. Note that in this case AC(t) ≠ RC(t). 

This can be illustrated by the composite block presented in Figure 12. It has already been 
analysed in 10.2.3 in the non-repair case. If the components A and B are considered 
repairable, then the formula of the availability AC(t) of the composite block C can now be 
established by using the Markov graph in Figure 23.  

 

Figure 23 – Standby redundancy 

In this graph, C is repaired after it has had a failure (see the transitions from the failed state 
to the success states): then, this is an "availability" Markov graph (see 10.3.3 to see the 
difference with a "reliability" Markov graph). This Markov graph can be used to establish 
availability AC(t) of the composite block C or even be used as an RBD input (see C.3). 

In this Markov graph, the failure of the switching and sensing mechanism is modelled by using 
the probability γB that block B fails to start when A fails. As this occurs as soon as the 
component A fails, a zero-duration state has been introduced into the Markov graph. From 
this state, B immediately starts (probability 1-γB) or not (probability γB).  
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The Markov graph shown in Figure 23 models the dependencies existing between the blocks 
A and B: 

• B starts only after A has failed; 

• B may fail when demanded by a failure of A; 

• B comes back to a standby position as soon as A and B are in the up state. 

Those dependencies between A and B cannot be taken into account by combining the 
individual availabilities of A and B and this is why C has to be considered as a whole. If blocks 
A and B were considered separately, a typical sequential structure outside the scope of the 
RBD would be obtained. Gathering A and B into a composite block C allows to manage this 
composite block as an individual block within the RBD framework.  

The above principle is general and can be implemented when a few blocks are not 
independent. When the number of dependent blocks increases, other techniques like dynamic 
RBDs (see 12.2), Markov processes [2] or Petri nets [3] should be used. 

10.3.1.3 Periodically tested blocks 

With regards to the safety functions that they have to perform, the safety systems are only 
available or not available. Therefore, they are typical systems with only two states. Their main 
characteristic is that, in spite of the fact that they remain in the standby position most of the 
time, they have to react with a high availability when a safety demand occurs. 

The components of such safety systems are then periodically tested in order to detect failures 
that may have occurred when the system is in the standby position. Therefore, the availability 
of a periodically tested component is maximal just after a test where the possible failures 
have been detected and repaired, and decreases afterwards until the next test is performed. 
The typical saw tooth curve shape of the availability AB(t) of such a block is illustrated in 
Figure 24. It can be modelled by a multi-phase Markov process (see Figure C.4). A whole 
RBD implementing periodically tested blocks is also illustrated in Figure C.5. 

 

Figure 24 – Typical availability of a periodically tested block  

The shape of the blocks availabilities does not change the principle of the calculation and 
they can be combined as described above in order to calculate the overall system availability 
AS(t) or unavailability US(t). This is very useful to implement the average unavailability 
calculations (i.e. PFDavg) required by functional safety standards (e.g. IEC 61508 [5] or 
IEC 61511 [6]) as explained at the end of 10.3.2.    

10.3.1.4 Complex repaired blocks (RBD driven Markov processes) 

Provided that the independency requirements are fulfilled, the idea developed in Figure 22 
and Figure 23 to use small Markov graphs with few states to model the block availabilities can 
be easily extended to all the blocks of an RBD.  

This allows the construction of large Markov models (comprising millions of states) made of 
small individual sub-Markov models (comprising a few states each) combined through the 
logic of an RBD. Therefore 

– the Markov graphs provide the block availabilities, 
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– the RBD provides the logic used to combine the block availabilities.  

Such models are called "RBD driven Markov processes". 

See Clause C.4 for more details. 

10.3.2 Average availability calculations 

Another useful parameter to calculate from an RBD is the average availability ),0(avg TAS  of the 
system over a given period [0, T]. This can be done by the integration of the instantaneous 
system availability AS(t): 

 ∫=
T

SS dttA
T

TA
0

avg )(1),0(   (32) 

In the general case, such calculations are not really possible by hand but nowadays RBD 
software packages are available to make the needed numerical calculations. 

Nevertheless, under certain conditions, a steady state is reached where the probability for Bi 
to leave the up state by a failure is equal to the probability for Bi to reach it by a repair. When 
a steady state exists, the availability )(B tA i  reaches an asymptotic value as

Bi
A .  

This occurs when 

• the failures are quickly detected and repaired (i.e. 1/µi <<1/λi), 

• the failure and repair rates (λi, µi) are constant. 

For example, in the case described in Figure 22, the steady state availability of the block is 
equal to )/(as

Bi iiiA µλµ += .  

When all the blocks reach such steady states, the system also reaches a steady state (see 
Figure 25 and Figure C.3) where as

S S
)( AtA → . Then, outside the transient period, 

Equation (32) gives the long term average availability of the system: as
S

avg
S AA = .   

Therefore, when an RBD reaches a steady state, the steady state availabilities of the blocks 
become constant and the formulae established in Clause 9 can be used to carry out system 
steady-state availability predictions. This is accomplished by simply replacing the constant 
probabilities ibP  by the constant values as

Bi
A . 

BS EN 61078:2016



IEC 61078:2016 © IEC 2016 – 41 – 

 

Figure 25 – Example of RBD reaching a steady state  

Warning: the calculations given above are valid only with asymptotic block availabilities. They 
are not valid with ordinary average availabilities. 

Then, when the RBD does not reach a steady state, the average availability has to be 
calculated by using the general Formula (32). 

 

Figure 26 – Example of RBD with recurring phases  

A special case occurs when the RBD is used through recurring phases such as: 

– succession of seasons: winter, spring, summer and autumn; 
– test intervals for periodically tested items. 

Figure 26 illustrates a system with three recurring phases such that the same pattern of three 
phases is repeated with a time interval equal to ρ = τ1+τ2+τ3. The availability of such a system 
has no asymptotical value but the average availability ])1(,[avg ρρ +nnA  generally reaches a 
limit value when n is large enough: 

 ])1(,[)( avg
Lim
avg

ρρρ + →= ∞→ nnAA n  (33) 
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As ])1(,[avg ρρ +nnA  decreases when n increases, )(Lim
avg

ρA  provides a good conservative 

approximation of the average availability over a time interval [0, T] encompassing several sets 
of recurring phases. 

Therefore, the techniques described in this standard can be used to calculate the average 
unavailability of safety systems and this makes the link with the functional safety standards 
(IEC 61508 or IEC 61511) which require such calculations for safety instrumented systems 
and where the average unavailability is called PFDavg (average of the probability of failure on 
demand). This is described in Clauses C.4 and C.5. 

10.3.3 Reliability calculations 

When repaired blocks are considered, the calculation of the reliability RS(t) implies that the 
repairs of the blocks in the system (RBD) need to be considered only as long as the system 
remains in the up state (see in 10.1).  

This can be illustrated by the simple redundant system modelled by the RBD on the left hand 
side of Figure 27. With regards to the calculation of RS(t), when the block B fails, it can be 
repaired only if S in the up state (i.e. if A is in the up state). In the same way when the block A 
fails, it can be repaired only if S in the up state (i.e. if B is in the up state). Therefore when 
one block fails, its repair depends on the state of the system S which, in turn, depends on the 
states of all the blocks. This systemic dependency between the blocks is modelled in the 
Markov graph presented on the right hand side of Figure 27. It is equivalent to the RBD 
presented on the left hand side. 

 

Figure 27 – RBD and equivalent Markov graph for reliability calculations 

The simple redundant system is made of two redundant blocks A and B and it has 4 states. 
The success states are ab, ba  and ba  and the failed state is ba . The system is reliable over 
a given period [0, t] only if it remains in the "success" states all the time. Therefore, the states 
ab, ba  and ba  are "reliable" states only if they come from transitions between each other. 
That means that, for reliability calculations at time t, the transition out of ba  is not allowed 
during [0, t]. The state ba  is an absorbing state and the presence of an absorbing state 
characterizes a reliability Markov graph. 

In this graph, block A can be repaired in the state ba  but not in the state ba  and block B can 
be repaired in the state ba  but not in the state ba . Therefore, the repair of a failure of a block 
depends on the state of the whole system when it occurs: this is what is called a "systemic" 
dependency.  

It is no longer possible to calculate the system reliability by combining the individual 
probabilities of success of the blocks. 

• The block availabilities, [Ai(t)], cannot be used as this would give the system availability 
and not the system reliability. 
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• The block reliabilities, [Ri(t)], cannot be used as this would give the reliability of a system 
with non-repaired blocks (because the reliability of a repaired component is the same as 
the reliability of a non-repaired component with the same failure rate).   

Therefore, except in the particular case developed hereafter, other techniques like Monte 
Carlo simulation (e.g. DRBDs, see 12.2 and Annex E), Markov [2] or Petri Nets [3] should be 
used instead. 

The only case where reliability calculations are manageable occurs for quickly (i.e. MTTRi << 
MTTFi) and completely (i.e. every failure is repaired) repaired systems. That means that, 
when a block fails, the repair starts at once and lasts a short time. In this case the system 
reaches a steady state rather quickly and its availability AS(t) an asymptotic value as

SA . In this 
steady state the conditional failure intensity, ΛVS (also called Vesely failure rate) is constant 
and provides a good approximation of the system failure rate, ΛS. Then the system reliability 

is obtained by using the classical formula tt eetR ..
S VSS)( ΛΛ −− ≈=  and the system unreliability 

is given by tt eetF ..
S VSS 11)( ΛΛ −− −≈−= .  

For example in Figure 27, when the steady state is reached, the properties of the Markov 
processes allow to obtain a good approximation of ΛVS and ΛS directly from the Markov 
process:  

 
BA

A
B

AB

B
AVSS µλ

λλ
µλ

λλΛΛ
+

+
+

≈≈  (34)  

This is not a simple formula even though the system is very simple. For larger RBDs, the 
Vesely failure rate, ΛVS, can be obtained from conditional probabilities which can be 
calculated by the algorithms currently in use in RBD software packages. The way to obtain the 
conditional and unconditional failure intensities from an RBD is detailed in Clause C.6 and 
more details are given about reliability calculations in Clause C.7. 

10.3.4 Frequency calculations 

When the blocks are repaired, another useful probabilistic measure is the average failure 
frequency of the system over a given time interval [0, T] which is equal to n/T if n failures 
occur over T. This average failure frequency is obtained by calculating the average 
unconditional failure intensity of the system TnTw /),0(avg

S = .  

The failure frequency can be calculated in any case but this is difficult by hand. Algorithms 
have been developed to do that and the principle is explained in Clause C.6. 

11 Boolean techniques for quantitative analysis of large models 

11.1 General 

It is possible to evaluate the availability )(S tA  of all the systems considered so far by the 
application of a suitable availability formula selected from Formulae (15) to (24). However, 
when the number of blocks increases, the corresponding RBDs may not conveniently be 
evaluated by any of the above formulae. Calculations are more difficult and so other 
mathematical approaches have to be employed.  

Such approaches provide several ways to manipulate the Boolean equations in order to make 
the calculations possible. They can be generally employed manually on small RBDs but most 
of them can be used through a software package when the number of blocks is large. They 
are based on the following techniques: 
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– reduction of the RBD to simpler structures; 
– use of the total probability theorem; 
– use of Boolean truth tables; 
– use of Karnaugh maps; 
– use of Shannon decomposition and binary decision diagrams; 
– use of general Sylvester-Poincaré formulae. 

For the procedures that follow, the condition of independence, as stated in 5.2 d), applies and 
the formulae provided hereafter for constant probability calculations may be straightforwardly 
transformed for availability calculations by applying 10.1 and Annex C. 

It should be noted that Monte Carlo simulation can also be used for complex RBDs. The use 
of such procedures is not dealt with in this standard but the dynamic RBDs are described in 
12.2 and Annex E. 

11.2 Method of RBD reduction 

The RBDs modelling an industrial system may seem very complicated. By careful 
examination, however, the blocks in the diagram can often be grouped together such that the 
groups are statistically independent. In particular, this means that no two (or more) groups 
can contain the same block.  

 

Figure 28 – Illustrating grouping of blocks before reduction 

This can be illustrated by considering the RBD shown in Figure 28. 

Figure 28 can be reduced to the diagram shown in Figure 29 which is made of the four dotted 
groups of blocks X1, X2, X3 and X4 as illustrated in Figure 10, Figure 8, Figure 37, and 
Figure 9 respectively. 

  

Figure 29 – Reduced reliability block diagrams 

Hence the final system availability is given by 

 X4X3X2X1X4X3XX1S )( AAAAAAAAtA ⋅⋅⋅−⋅+⋅= 2  (35) 
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as explained in 9.2. 

This technique of reduction is difficult to automate but very useful for calculations by hand. 

11.3 Use of total probability theorem 

When dealing with RBDs of the type illustrated by Figure 10 which implement a common block 
A, it is possible to implement an approach based on the total probability theorem. 

Two mutually exclusive events x and x  form a complete set of events (i.e. Ω=+ xx ) and the 
total probability theorem can be summarized as follows: 

 )P1(PPPPPPPP xx|sxx|sxx|sxx|ss −⋅+⋅=⋅+⋅=  (36) 

In Equation (36) sP  denotes the probability of success of a system, xsP |  denotes the 

probability of success of the system given that a particular item X is working, and xsP |  

denotes the probability success of the system given that the particular item X has failed. 

Formula (36) can be applied to the block A of Figure 10 and this leads to: 

 aa|saa|ss PPPPP ⋅+⋅=   (37) 

For example, when the item A has failed, the RBD of Figure 10 becomes the RBD shown in 
Figure 30 so that 22112211| cbcbcbcbas PPPPPPPPP ⋅⋅⋅−⋅+⋅=  

 

Figure 30 – Representation of Figure 10 when item A has failed 

Similarly, when A is working, the RBD of Figure 10 becomes that given in Figure 31 so that 
2121| ccccas PPPPP ⋅−+= . 

 

Figure 31 – Representation of Figure 10 when item A is working 

Hence ( ) )1()( 221122112121 acbcbcbcbaccccs PPPPPPPPPPPPPPP −⋅⋅⋅⋅−⋅+⋅+⋅⋅−+=  (38) 

If c21 PPP cc ==  and bbb PPP == 21 , the above Formula (38) simplifies to: 

 ( ) ( ) ( )acbcbaccs PPPPPPPPP −⋅⋅−⋅+⋅−= 122 222  (39) 
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This procedure can be extended to n mutually exclusive events naa ,,1 , whose probabilities 
sum to unity (i.e., Ω=+++ naaa 21 ), then 

naP
nasPaPasPsP ⋅++= |.| 11

 . It can be used to 

deal with an RBD with repeated blocks (see 11.8.1.2). When there are n repeated blocks, this 
leads to develop 2n terms for the formula of Ps. Therefore, this technique is useful to deal with 
RBDs with a limited number of repeated blocks for example m/n structures. 

11.4 Use of Boolean truth tables 

The system success paths depicted by RBDs are the graphical description of an underlying 
Boolean expression. For example, three redundant items A, B and C (one out of three 
required for system success) can be represented by the parallel RBD configuration illustrated 
in Figure 32, or by the Boolean expression: 

 cbas ++=  (40) 

 

Figure 32 – RBD representing three redundant items  

The Sylvester-Poincaré formula (see 11.7 and B.5) applied to three independent events leads 
to the following result:  

 cbacbcabacbas PPPPPPPPPPPPP ⋅⋅+⋅+⋅+⋅−++= )(  (41) 

Formula (41) comprises seven terms when there are only three blocks (i.e. three events a, b 
and c). This number of terms increases exponentially when the number of involved events 
increases.  

To prevent the increasing of terms, the idea is then to replace the events a, b and c by 
equivalent combinations of disjoint events (see 11.7) and this can be done by using the truth 
table of the system according to the states of blocks A, B and C.  

Table 5 – Application of truth table to the example of Figure 32 

State 
number 

Block 
System 

Disjointed 
terms 

Consensus 
A B C 

1 0 0 0 0 cba ••  
  

2 0 0 1 1 cba ••  cba ••  cba ••  

3 0 1 0 1 cba ••  
ba •  ba •  

4 0 1 1 1 cba ••  

5 1 0 0 1 cba ••  
ba •  

a 
6 1 0 1 1 cba ••  

7 1 1 0 1 cba ••  
ba •  

8 1 1 1 1 cba ••  

NOTE 1= working, 0 = failed. 
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This truth table identifies 8 disjoint terms representing the 8 possible states of the system: the 
state number 1 corresponds to the failure of the system and the states 2 to 8 to the success 
states of the system.  

Again there are seven terms to handle and therefore this raw decomposition in disjointed 
terms is not very effective to calculate sP . Note that there is generally no link between the 
number of terms of the Sylvester-Poincaré formula and the number of the disjoint terms from 
the truth table. 

Fortunately, some disjoint terms can be combined through "consensus" as this has been done 
on the right hand side of the table. In a first step, terms 7 and 8, 5 and 6 and 3 and 4 have 
been combined together to obtain 4 disjoint terms. In a second step, terms 5 to 7 have been 
merged into a single term and three disjoint terms are obtained: 

 )()()( cbabaacbas ••+•+≡++=  (42) 

Finally, the probability of failure of the system can be calculated as: 

 cbabaas PPPPPPP )1()1()1( −⋅−+⋅−+=  (43) 

Formula (43) can be directly used to evaluate the system availability: 

 )()](1[)](1[)()](1[)()( CBABAAS tAtAtAtAtAtAtA ⋅−⋅−+⋅−+=  (44) 

It has to be noted that Table 5 identifies only one term leading to the system down state 
cba •• . Therefore, the calculation of the probability of failure is simpler than the probability 

of success and: 

 cbass PPPPP ⋅⋅−=−= 11  (45) 

and finally  )()()(1)(1)( CBASS tUtUtUtUtA ⋅⋅−=−=  (46) 

Formulae (44) and (46) are equivalent. 

For a system with n blocks, the Boolean truth table has 2n rows and therefore this approach 
can soon become unwieldy, although the principle involved is quite straightforward. This 
problem is overcome to some extent by using Karnaugh maps (see 11.5) but it is actually 
solved by using the Shannon decomposition and the binary decision diagrams explained 
hereafter (see 11.6). For a detailed description of a general application of Boolean methods, 
see Annex B. 

11.5 Use of Karnaugh maps 

The Karnaugh maps [8][9][10][11] technique has been developed to simplify the logical 
equation corresponding to a truth table. Therefore, it can be used for RBDs as well.  

The principle of the use of such maps is illustrated hereafter with maps related to the RBD 
presented in Figure 10. This RBD comprises 5 blocks. As the Karnaugh maps are easier to 
manipulate with 4 variables, the whole map has been split into two disjoint cases: 

– A is in up state (Table 6); 
– A is in down state (Table 7). 
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Table 6 – Karnaugh map related to Figure 10 when A is in up state 

 

 
Table 7 – Karnaugh map related to Figure 10 when A is in down state 

 

 
In Table 6 and Table 7, the blocks have been split in two groups (B1 B2 and C1 C2) and the 
states of the components have been organized in such a way that only one state changes 
from a column to the next one and from a line to the next one. Therefore, the combinations 
which can be simplified are close together. For example, in Table 6, the combinations boxed 
in plain lines represent only C2 as the states of C1, B1 and B2 do not matter. In the same 
way, the combinations boxed in dotted lines represent only C1 as the states of C2, B1 and B2 
do not matter. This leads to 

  s|a = c1 + c2  (47) 

where s|a represents the system S being in up state given the block A is in the up state and c1 
and c2 represent the state variables related to blocks C1 and C2. 

With the Karnaugh map presented in Table 7 the following formula is obtained 

 2211| cbcbas •+•=  (48) 

where as /  represents the system S being in up state given A is in the down state and b1, b2, 
c1 and c2 represent the state variables related to blocks B1, B2, C1 and C2. 

Gathering the results gives: 

 )()( 221121 cbcbaccas •+••++•=  (49) 

And finally, the system availability can be calculated with the following formula: 

})]t(A)t(A1[)]t(A)t(A1[-{1)]t(A1[})A1()]t(A1[{1)t(A)t(A C2B2C1B1AC2C1AS ⋅-⋅⋅-⋅-+-⋅--⋅=  (50) 
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The Karnaugh maps have the same number of terms (2n) as the original truth tables but they 
are more compact and the combinations are organized in a better way to identify the 
combinations which can be merged together. This is very useful to identify the minimal tie or 
cut sets.    

11.6 Use of the Shannon decomposition and binary decision diagrams 

Like the truth or Karnaugh maps, the Shannon decomposition allows to identify the disjoint 
terms of a Boolean equation. 

Figure 33 illustrates the principle of the Shannon decomposition on the Boolean function (1 
out of 3) related to the RBD presented in Figure 32. 

 

Figure 33 – Shannon decomposition equivalent to Table 5 

This decomposition is done in several steps: 

1) choose the order of the variable appearing in the logical function (here order a, b, c); 
2) for each variable draw two branches (success and failure); 
3) if a state of the system (success or failure) is reached, then stop the decomposition, 

otherwise continue with the next variable; 
4) identify the paths leading to the success (or failed) state of the system. 

Figure 33 leads to 3 disjoint success paths: )(),(, cbabaa ••• . This is the same result as the 
truth table but it has been obtained in a simpler way. This decomposition is not unique and 
depends on the order which has been chosen for the variables. 

 

Figure 34 – Binary decision diagram equivalent to Table 5 
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When the up and down states are gathered, the Shannon decomposition provides the binary 
decision diagram (BDD) shown in Figure 34. The BDDs provide very compact representations 
of Boolean equations in the form of disjoint terms. They are very effective in computation and 
constitute the present state of the art (see references [31], [32] and [33]) for probabilistic 
calculations on Boolean models (e.g. RBD and fault trees). 

11.7 Use of Sylvester-Poincaré formula 

When the number of components increases, the simple formulae and the manual application 
of the above techniques become unmanageable because of the combinatorial explosion of the 
number of terms involved in the calculation.  

As this has been explained in Clause 8, an RBD can be represented by the union of its 
success paths (minimal tie sets).  

Then, the probabilistic calculations can be performed from the unions of the tie sets by using 
the Sylvester-Poincaré formula (see B.4.2 and B.5.2) which is the generalization of the basic 
formula baba PPPPbaP ⋅−+=+ )( : 

 ...)()()((
1

−••+•−== ∑∑∑
<<<= kji

kji
ji

ji
i

i

n

i
is PPPPP PPPPPPP



  (51) 

A similar calculation (see B.5.3) may be done by using the failure paths (minimal cut sets): 
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

1  (52) 

The Sylvester-Poincaré formula is an alternate sum whose result converges toward the exact 
value when the number of considered terms increases. The difference is that Formula (51) 
which handles probabilities )( iP P  close to 1 converges very slowly when Formula (52) which 
handles probabilities )( iCP  << 1 converges rather quickly. In this case, the first term of 
Formula (52) provides a conservative estimation of the probability of failure: 

  ∑
=

≈=
i

Ci

n

i
is PCPP



1
)(  (53)  

This approximation is widely used and works well when the probabilities of failures of the 
blocks are small which is generally true for the components in safety systems. It is the basis 
of calculations performed by numerous software packages available for availability/reliability 
calculations on RBD or fault trees.  

Nevertheless, it is possible to overcome the difficulty of using Formula (51) by transforming 

the tie sets into equivalent sets of disjoint terms 


n

i
i

q

i
i

11

d

==

= ΠΠ  such as jiji ,,dd ∀=• ΦΠΠ .  

In this case, the Sylvester-Poincaré Formula (51) is reduced to its first term:  
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The same can be done with Formula (52) by replacing the minimal cut sets )( iC  by an 

equivalent set of disjoint terms )( d
iC . Then the Sylvester-Poincaré Formula (52) is reduced to 

its first term:  

 ∑
=
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i

m

i
s ii

CPCPP )(( d

1

d


 (55) 

The disjoint sets can be found by using the truth tables (11.4), the Karnaugh maps (11.5) or 
the Shannon decomposition and the binary decision diagrams (11.6). At the present time the 
state of the art to identify the disjoint terms of a Boolean equation is based on the binary 
decision diagrams (BDDs) described in 11.6. This provides powerful algorithms able to handle 
very large RBDs comprising a lot of blocks repeated or not repeated. 

11.8 Examples of RBD application 

11.8.1 Models with repeated blocks 

11.8.1.1 Cut and tie set representation 

In Clause 7 no block in the RBD appeared more than once. It may sometimes be 
advantageous to use block diagrams of the type illustrated by Figure 35. 

The left hand side of Figure 35 shows a conventional RBD with 4 blocks: blocks C and D 
might model two functionally similar items acting as duplicates for one another, but item A can 
power only item C, whereas item B is capable of supplying power to both C and D. 

The middle and the right hand side of Figure 35 provide 2 equivalent RBDs for modelling not 
only the physical arrangements of the items, but the RBD as well. It is important for the RBD 
on the right hand side to include arrows in order to remove the uncertainty which occurs with 
such a diagram. 

 

Figure 35 – RBD using an arrow to help define system success 

The system success paths a•c, b•c, b•d of the system modelled in Figure 35 can be used to 
build an equivalent RBD in which some blocks appear more than once. When all success 
paths fail, this would cause the system to fail. Therefore, the RBD can be represented by a 
parallel combination of such success paths. This is illustrated in Figure 36. 

 

Figure 36 – Alternative representation of Figure 35 using repeated blocks and success 
paths 

Alternatively, the failure paths (e.g., the minimal cut sets of the system) dccbba ••• ,,  
can be used to build an equivalent RBD. This is done in Figure 37. When all components fail 
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in one of the minimal cut sets this would cause the system to fail and Figure 37 is thus a 
series combination of such minimal cut sets. 

 

Figure 37 – Other alternative representation of Figure 35 
using repeated blocks and minimal cut sets 

The representations in Figure 36 and Figure 37 illustrate the concepts covered in 8.2: any 
RBD can be represented by the parallel combination of its success paths or by the series 
combination of its minimal cut sets. 

Blocks B and C are repeated in both the RBDs presented in Figure 36 and Figure 37. It would 
be incorrect to treat the blocks as if they were independent of the others. Instead, the 
methods given in 11.3, 11.5 and 11.6 can be applied. 

11.8.1.2 Total probability theorem implementation 

The method of the total probability decomposition described in 11.3 applied to Figure 36 and 
extended for two repeated components gives: 

 
)()()()(.

.

,|,|,|,|

,|,|,|,|

cbcbsabcbscbcbscbcbs

cbcbsabcbscbcbscbcbss

PPPPPPPPPPPP

PPPPPPPPPPPPP

−⋅−⋅+⋅−⋅+−⋅⋅+⋅=

⋅⋅+⋅+⋅⋅+⋅⋅=

1111
 (56) 

In Formula (56) x,ysP |  means that system S is available given that the events x and y are true. 

It has to be noted that the number of terms is 2n if n blocks are repeated. This implies that this 
method is tractable only for a small number of repeated blocks. 

Figure 36 gives: 1| =b,csP , dcb,s PP =| , a,cbs PP =| , 0| =c,bsP  

Then: dcbcbadbcbcacbacbdcbs PPPPPPPPPPPPPPPPPPPPP ⋅⋅−⋅⋅−⋅+⋅+⋅=⋅−+−⋅⋅+⋅= )()( 11 (57) 

11.8.1.3 Karnaugh map implementation 

Another way to handle the RBD presented in Figure 35 is to develop truth tables or, better, 
the Karnaugh map (see 11.5) which is presented in Table 8. 

From this Karnaugh map the minimal success paths of the system can be found directly. They 
are identified by the 3 boxes drawn in Table 8. 

 dbcabas •+•+•=  (58) 
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Table 8 – Karnaugh map related to Figure 35 

 

 
Therefore, the Karnaugh map is a good way to identify the success paths which have already 
been represented in Figure 36. This is useful from a qualitative analysis point of view but 
those success paths are not disjoint and this implies that the Sylvester-Poincaré formula 
cannot be simplified for probabilistic calculations.   

11.8.1.4 Shannon decomposition implementation 
The Shannon decomposition has been done in Figure 38 and 3 disjoint success paths have 
been identified:  

 bcadcbcbs ••+••+•=  (59) 

Of course, from the Boolean algebra point of view, Formulae (59) and (58) are equivalent but 
Formula (59) which is made of disjoint terms leads directly to the system availability: 

 )]t(A1[)t(A)t(A)t(A)]t(A1[)t(A)t(A)t(A)t(A BCADCBCBS −⋅⋅+⋅−⋅+⋅=  (60) 

The result of the Shannon decomposition depends on the order of the variables used to 
develop it and therefore other equivalent expressions can be found when the order of variable 
changes (see B.7 where the same RBD has been analysed). 

 

Figure 38 – Shannon decomposition related to Figure 35 
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11.8.2 m out of n models (non-identical items) 

The procedure described in 9.4 is not applicable here because the blocks are not identical. As 
an example, consider a 2/5 system represented by the RBD in Figure 39. 

 

Figure 39 – 2-out-of-5 non-identical items 

The availability of such a system may be evaluated by either of the techniques described in 
11.3, 11.4, 11.5 or 11.6. Among them, the truth table described in 11.4 will require 32 entries 
from which 6 lead to the system failure: 

)(),(),( edcbaedcbaedcba ••••••••••••  

)(),(),( edcbaedcbaedcba ••••••••••••  

Then the unavailability SU  can be derived as 

+⋅−⋅−⋅−⋅−+−⋅−⋅−⋅−⋅−= EDCBAEDCBAS )1()1()1()1()1()1()1()1()1( AAAAAAAAAAU  

       +−⋅−⋅⋅−⋅−+−⋅⋅−⋅−⋅− )1()1()1()1()1()1()1()1( EDCBAEDCBA AAAAAAAAAA  

       )1()1()1()1()1()1()1()1( EDCBAEDCBA AAAAAAAAAA −⋅−⋅−⋅−⋅+−⋅−⋅−⋅⋅−  (61) 

and so SS UA −= 1  can be found. 

In the Formula (61), ..., and , BASS AAUA  can be replaced by )...(),( and (t)),( BASS tAtAUtA  for 
time dependent calculations. 

12 Extension of reliability block diagram techniques 

12.1 Non-coherent reliability block diagrams 

Non-coherent block diagrams are an extension from the RBDs representing monotonic logical 
functions to the RBDs representing non-monotonic logical functions. This may correspond, for 
example, to failed systems "repaired" by a further failure or to working systems failed by a 
further repair. This is generally unrealistic for "physical" systems but often appears when 
dealing with "logical" systems or with models generated automatically by model generation 
tools. 

The main difference with an ordinary RBD is that a given block may appear in its two states 
(up/down). As shown in Figure 40, a new symbol has been introduced for this purpose. 

IEC 

I O

A

C

B

2/5

D

E

I O

A

C

B

2/5

D

E

BS EN 61078:2016



IEC 61078:2016 © IEC 2016 – 55 – 

 

Figure 40 – Direct and inverted block  

The functioning of the "inverted" blocks can be illustrated thanks to the electrical analogy: in 
Figure 40, when B1 is in up state (switch closed), the inverted block B1 is in down state 
(switch open) and vice versa. This is also illustrated by the electrical circuit presented in 
Figure 41.  

 

Figure 41 – Example of electrical circuit with a commutator A 

The nominal configuration of this system is presented on the left hand side of Figure 41. With 
regards to the supply of motor M by S2, A is in the up state when the contact toward S2 is 
closed and in the down state when the same contact is open. 

The motor M can be fed by the electrical source S2 or, when this is not available, by the 
electrical source S1. Thanks to the commutator A it cannot be fed by S1 and S2 at the same 
time in order to prevent short circuits between the sources.  

Figure 41 highlight the two success paths allowing to feed the motor M: 

– A is switched to S2 and the switch C is closed: ca • ; 

– A is switched to S1 and the switch B is closed: ba • . 

 

Figure 42 – Electrical circuit: failure paths  

In the same way, Figure 42 shows the failure paths of the same electrical system: 
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– A is switched to S2 and the switch C is open: ca • ; 

– A is switched to S1 and the switch B is open: ba • . 

A, B and C being two state components, this electrical system can be modelled by the RBD 
shown in Figure 43 (for the sake of simplicity, S1, S2 and M are considered to be perfect). 
This RBD, based on failure paths, implements repeated blocks in both direct and inverted 
states to model the two positions of commutator A. 

 

Figure 43 – Example RBD with blocks with inverted states  

The logical structure in Figure 43 is rather general and can be found in other situations. For 
example, the state of block A can impact the value of a physical parameter θ: 

– when block A is in up state (nominal functioning), θ is lower than a given threshold Θ,  B is 
inhibited and makes C able to work;  

– when block A fails then θ becomes greater than Θ and this inhibits the functioning of C 
and makes B able to work. 

This RBD corresponds to the following logical equation: )()( cabas +•+= . 

This equation provides the three success paths: )( ),( ),( cbbaca ••• . 

This shows that, in addition to the two success paths identified above in Figure 41, a third one 
exists: cb • . In this case the state of A does not matter. 

Contrarily to the ordinary case, the success paths are not made only with blocks in up state. 
This produces the following side effects:  

– when this system is, for example, in the up state, cba •• , it goes to the down state 
cba ••  when A goes to the up state. In other words the success state cba ••  is failed 

when A is repaired; 

– when the system is, for example, in the down state, cba •• , it goes to the up state 
cba ••  when A goes to the down state. In other words the failed state cba ••  is repaired 

when A fails. 

This counter intuitive behaviour is a typical property of non-coherent RBDs modelling non-
monotonic logical functions. This leads to difficulties when minimal success or failure paths 
are needed for qualitative analysis. For example, the two failure paths, )( ba •  and )( ca • , are 

easily identified from Figure 43 but not the third one, ( cb • ). This last one is not really evident 
and cannot be found by the classical minimal cut sets algorithms. 

For non-coherent RBDs, the minimal cut sets or minimal tie sets concepts do not hold 
anymore. They should be superseded by the concept of prime implicants and 

• the three success paths )( ),( ),( cbbaca •••  are three prime implicants related to the 
success of the system,  
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• the tree failure paths )( ),( ),( cbcaba •••  are three prime implicants related to the failure of 
the system. 

This implies that the popular algorithms based on the use of minimal cut sets or minimal tie 
sets are no longer valid for the probabilistic calculations of non-coherent RBDs.   

 

Figure 44 – BDD equivalent to Figure 43  

Fortunately and as shown in Figure 44, the BDD approach can be easily implemented for non-
coherent RBDs. There is no difference with a BDD built for a coherent RBD and the BDD in 
Figure 44 can be used for the probabilistic calculation of the RBD presented in Figure 43 
exactly in the same way as if it was coherent. Therefore, the use of BDDs overcomes the 
difficulties encountered when using minimal tie or cut sets. Nevertheless, RBD software 
packages are seldom able to handle prime implicants. 

12.2 Dynamic reliability block diagrams 

12.2.1 General 

The dynamic reliability block diagram (DRBD) is an extension of common RBDs to RBDs 
implementing blocks interacting between themselves or with external elements. The purpose 
is similar to that of dynamic fault trees (see references [16] and [17]) but from the success 
point of view.  

The RBDs developed in the previous chapters to model repaired systems (e.g. the RBD driven 
Markov processes described in C.4) are obviously dynamic models but the term DRBD is 
generally used to name RBDs fulfilling all the basic assumptions of Clause 5 except the last 
one concerning block independency (see 5.2 d)). 

Some dynamic interactions have already been encountered in this standard when standby 
redundancies, m/n structures or reliability calculations of repaired systems have been dealt 
with. 

More work has been done on dynamic fault trees than on dynamic RBDs but the problems are 
similar. Therefore, this standard proposes to adapt and use graphical symbols usually used 
for dynamic fault trees.  

Some types of dynamic interactions are analysed in literature [15] but they are virtually 
endless. The effect of such interactions may be 

– local: the states of the blocks are impacted but the logical rules of ordinary RBDs are still 
valid for establishing the whole system state, 

– systemic: the logical rules of ordinary RBDs are no longer valid for establishing the whole 
system state. 
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12.2.2 Local interactions 

Those interactions which impact only the states of the blocks can be split into the following 
categories: 

– interactions between blocks of the DRBD; 
– interactions between elements external to the DRBD and blocks of the DRBD. 

An event occurring on one block or on an external element (sometimes named the trigger 
event) interacts with the behaviour of one or several other blocks of the DRBD. 

A new symbol is needed to make the difference between the external elements which do not 
belong to the structure of the RBD and the blocks belonging to the RBD itself. It is presented 
in Figure 45 where a common cause failure (CCF) and a maintenance team (MT) have been 
represented.  

 

Figure 45 – Symbol for external elements  

Examples of local interactions are the following: 

• Functional dependency:  
– common cause failure: when a CCF occurs, all the related blocks fail immediately. This 

constitutes a strong functional dependency which can be modelled as illustrated in 
Figure 46; 

– loss of energy: when the energy is lost, all the related blocks stop immediately (down 
state). This also constitutes a strong functional dependency; 

– repair team dependency: if several blocks are repaired by the same repair team, then a 
failing block has to wait to be repaired if the repair team is busy with another failed 
block. This constitutes a functional dependency which can be modelled as illustrated in 
Figure 48; 

– collective repair: several blocks are repaired within the same repair operation; 
– standby redundancy: when the active block fails, this starts the standby block (see 

Figure 11); 
– spare parts: when an active block fails, the repair may need to use some spare parts. 

Therefore, the repair is possible only if one spare part is available. In addition, the 
spare part used to repair one block becomes unavailable to repair another block; 

– blocks in series: when one of the blocks in series fails or is under repair, the others 
may be stopped (e.g. because the output of the failed block is needed for later blocks 
in the series).  

–  etc. 

• Events able to occur only in a given order (an event cannot occur before another one has 
occurred): 
– the repair of a block cannot start before the block has failed. Such functional 

dependency has been already handled with ordinary RBDs for availability, reliability 
and frequency calculations; 

– for a given set of blocks (B1,B2, ..., Bn), the repair starts only when all of them have 
failed; 
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– the blocks become non-repairable after the whole system has failed. This is what 
happens when reliability calculations are performed; 

– more generally, for a set of events (e1, e2, ..,en), this implies that e2 cannot occur as 
long as e1 has not occurred, that e3 cannot occur as long as e2 has not occurred, ..., 
that en cannot occurs as long as en-1 has not occurred. In other words, e1 is inhibited 
by 2e , e2 is inhibited by 3e , ..., en is inhibited by 1−ne . Therefore, the events can only 
occur in the sequence e1, e2, ..,en. This may be the case when an electrical device 
cannot be started before the electrical power is switched on or when a cold standby 
device cannot be activated before the failure of the active device. This interaction is 
similar to sequential gates (often noted SEQ) found in dynamic fault tree analysis (see 
the SEQ gate in Table 4); 

– etc. 

12.2.3 Systemic dynamic interactions 

Those interactions do not necessarily imply functional dependencies between the blocks 
which may behave independently from each other. They occur when the ordinary logical rules 
cannot be used.  

Examples are the following: 

• m/n majority vote: this logical configuration has already been analysed (see 7.5.1 and 9.4) 
and a special logical gate has been introduced to model it. 

• Events which shall occur in a given order:  
– demand triggering an action performed by a given block B: if the demand occurs 

before B has failed, the action is performed and the system remains in up state, if the 
demand occurs after B has failed, the action is not performed and the system fails; 

– isolation valve protecting a system against overpressure: a hazardous event occurs 
only if the valve is opened before the pressure has been dropped down upstream the 
isolation valve; 

– more generally, for a set of events e1, e2, ..,en , the output is produced only if the 
events occur in this given order, otherwise no output is produced. This interaction is 
similar to the "priority" AND gates (often noted PAND) found in dynamic fault tree 
analysis and which can also be used for DRBDs. This may be represented as a gate 
combining the input of several blocks. 

Special gates are needed to represent the systemic dynamic dependencies as, for example, 
the m/n and the PAND or SEQ gates presented in Table 4 and which are popular extensions 
of dynamic fault trees. 

The m/n gate has already been analysed and PAND and SEQ gates are analysed hereafter 
(see Figure 49 to Figure 52). The symbols usually implemented in dynamic fault trees have 
been used here but NOT gates have been inserted in inputs and outputs in order to keep the 
coherence with regards to the RBD logic.  

12.2.4 Graphical representations of dynamic interactions 

As said in 12.2.2 and 12.2.3, the kinds of possible dynamic interactions are virtually endless. 
Therefore, even if some attempts have been made (see references [15], [16] and [17]) to 
propose graphical symbols for specific cases, this does not cover all the cases and only some 
basic graphical elements can be proposed in this standard. 

BS EN 61078:2016



 – 60 – IEC 61078:2016 © IEC 2016 

 

Figure 46 – Dynamic interaction between a CCF and RBDs' blocks 

Figure 46 shows the strong interactions (i.e. strong functional dependencies) between an 
external element and some blocks: blocks A and B fail when the common cause failure 
represented by the external block CCF occurs. 

 

Figure 47 – Various ways to indicate dynamic interaction between blocks  

Figure 47 shows two ways to represent the interaction (i.e. functional dependencies) between 
blocks: the state of blocks C and D depends on the state of block A. 

The same mechanisms have been implemented in Figure 48 to represent the interaction 
between the single repair team and the repaired blocks. 

 

Figure 48 – Dynamic interaction between a single repair team and RBDs' blocks   

These simple graphical representations aim only at indicating that there is some dynamic 
interaction between the blocks and the external elements. The dotted lines on the left hand 
side of Figure 47 and Figure 48 can be used when only few interactions have to be 
represented in an RBD. When there are many interactions to be represented, the proposal on 
the right hand side of Figure 47, Figure 46 and Figure 48 is clearer. The very nature of the 
interactions themselves should be specified elsewhere. The main use of these 
representations is to support the graphical presentation of the RBD and to ensure that the 
external elements are well identified. 

Figure 49 shows how a PAND gate can be used within a DRBD: the output O goes to the 
down state only if I1 goes to the down state before I2 goes to the down state. 
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Figure 49 – Implementation of a PAND gate  

The functioning of the PAND gate is illustrated in Figure 50. The PAND gate is equivalent to 
the 5 states of the finite-state automaton drawn on the left hand side of the figure. 

– State 1: I1 and I2 are in up state. Then the output O is in the up state. 
– State 2: I2 has gone to the down state first and I1 is still in the up state. Then the output O 

is in the up state. 
– State 3: I1 has gone to the down state first and I2 is still in the up state. Then the output O 

is in the up state. 
– State 4: I1 and I2 have gone to the down state but I2 has gone first. Then the output O is 

in the up state. 
– State 5: I1 and I2 have gone to the down state but I1 has gone first. Then the output O has 

gone to the down state. 

 

Figure 50 – Equivalent finite-state automaton and example 
of chronogram for a PAND gate  

Then, when the input I1 and I2 varies between 1 and 0, the output of the PAND gate  
(Figure 49) changes according to the rules presented by this finite-state automaton. This 
gives, for example, the chronogram presented on the right hand side of Figure 50. A Petri net 
modelling the same finite-state automaton is analysed in Annex E and Figure E.6. 

Figure 51 shows how a SEQ gate can be used within a DRBD: as for the PAND gate, the 
output O goes to the down state only if I1 goes to the down state before I2 goes to the up 
state. The difference is that I2 cannot go to the down state before I1 has gone to the down 
state first. Therefore, the failure of B and D are inhibited as long as I1 is in up state and this is 
indicated thanks to the dynamic interactions drawn in dotted lines.  

 

Figure 51 – Implementation of a SEQ gate  

The functioning is illustrated in Figure 52. The SEQ gate is equivalent to the 5 states finite-
state automaton drawn on the left hand side of the figure. The states are the same as for the 
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PAND gate except that there is no transition from state 1 to state 2 in order to force the order 
of the failures: I1 first, then I2. 

 

Figure 52 – Equivalent finite-state automaton and example 
of chronogram for a SEQ gate  

As shown in the chronogram, I2 cannot fail before I1 has previously failed. 

A Petri net modelling the same finite-state automaton is analysed in Annex E, Figure E.6 and 
Figure E.7. 

12.2.5 Probabilistic calculations 

Making the probabilistic calculation by using the Markovian approach is proposed in literature 
(see references [2], [29] and [30]). Nevertheless, building a Markov process for a whole DRBD 
is quickly limited by the combinatorial explosion of the number of states. Therefore, this 
approach should be restricted to small independent parts of the DRBD as this has been done 
for the RBD driven Markov processes described in Clause C.4. 

Another approach which is proposed in literature is to make the link between DRBDs and 
finite state automata (state-events machine or Petri net). This is more effective than the 
markovian approach but the analytical calculations are no longer possible and Monte Carlo 
simulation has to be implemented. 

The RBD driven Petri nets described in Annex E are an effective way to mix the RBD and PN 
approaches in order to deal with dynamic RBDs problems and calculations. 
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Annex A 
(informative) 

 
Summary of formulae 

 

Warning: The formulae presented in Table A.1 are intended to be used by users aware of the 
underlying hypothesis and mathematics and of the limitations when approximations are 
implemented.   

NOTE In Table A.1, frequent use is made of the terms “active” and “standby”. The former is used to indicate that 
the blocks concerned (each of which can consist of a component, sub-system, system, etc.) are energized 
(powered-up) and hence are liable to failure. The latter on the other hand is used to indicate that the block or 
blocks concerned are de-energized (powered-down) and not liable to failure. 

Table A.1 – Example of equations for calculating the probability 
of success of basic configurations  

Basic configuration Equation for system PS, RS(t), AS(t) 

1 Series structures  

 
 

A General case 

Constant probabilities:  

 nPPPP 21s ⋅=  

Time dependent probabilities:  

 )()()()( 21s tRtRtRtR n⋅=  

 )()()()( 21s tAtAtAtA n⋅=  

 B With PPPP n === 21    

 => nPP =s  

C With )()()()( 21 tRtRtRtR n ===     

 => ntRtR )()(s =  

D With )()()()( 21 tAtAtAtA n ===     

 => ntAtA )()(s =  

2 Parallel structures  

Active 

 
 

A Active general case 

Constant probabilities: 

 )1()1()1(1 21s zPPPP −−⋅−−=   

Time dependent probabilities: 

 )(s tR : no simple general formula (see NOTE 1) 

 )]([)]([)](1[1)( 21s tAtAtAtA z−−⋅−−= 11   

 B With PPP == 21   => zPP )1(1s −−=  

C With )()()()( 2 tAtAtAtA z === 1    

 => ztAtA )](1[)(s −=  
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Basic configuration Equation for system PS, RS(t), AS(t) 

Standby 

 

D Standby with ttAtR ⋅−== λe)()(  (i.e., non-repaired items) 

( )
( )!1

ee.e)()(
1

SS −
⋅

++⋅+==
⋅−−

⋅−⋅−

z
tttAtR

tz
tt

λ
λλ λλ   

3 Series-parallel structures  
(redundant systems)  

 

Active A Active general case 

Constant probabilities 

 ]1[1)1(1 n21S ∏ ∏∏
= ==

−−=⋅−−=
z

ai

n

j
ij

z

ai
iii PPPPP

1
  

Time dependent probabilities: 

 )(s tR : no simple general formula (see NOTE 1) 

 ])(1[1)(S ∏ ∏
= =

−−=
z

ai

n

j
ij tAtA

1
 

 

 

B Active with 

iPPP iii    21 ∀===   => ∏
=

−−=
z

ai

n
iPP )(S 11  

C Active with 

itAtAtA iii    )()()( 21 ∀===   => ∏
=

−−=
z

ai

n
i tAtA ])([)(S 11  

D Active with 

jiPPij ,   ∀=  => ∏
=

−−=
z

ai

nPP )(S 11  

E Active with 

jitAtAij ,   )()( ∀=  => zntAtA ])([)(S −−= 11  

Standby 

 

 

F Standby with ttAtR λ−== e)()( (i.e., non-repaired items) 

( )
( )!1

eee)()(
1

SS −
++⋅+==

−−
⋅⋅−−

z
tntntAtR

tnz
tntn

λ
λλ λλ   
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Basic configuration Equation for system PS, RS(t), AS(t) 

4 Parallel-series structures 
(redundant elements)  

Active A Active general case 

Constant probabilities 

 ∏ ∏
= = 











−−=
n

ai

z

j
ijPP

1
S )1(1  

 

Time dependent probabilities: 

 )(s tR : no simple general formula (see NOTE 1) 

 ∏ ∏
= = 











−−=
n

ai

z

j
ij tAtA

1
S )](1[1)(  

 

B Active with 

iPPP iii    21 ∀===   => ∏
=

−−=
n

ai

z
iPP ])(1[S 1  

E Active with 

itAtAtA iii    )()()( 21 ∀===    

          => ∏
=

−−=
n

ai

z
i tAtA })]([{1)(S 1  

 F  Active with 

 jiPPij ,   ∀=   => nzPP ])(1[S −−= 1  

G Active with 

jitAtAij ,   )()( ∀=  => { }nztAtA )]([1)(S −−= 1  

 

H Assuming ttAtR ⋅−== λe)()(  

ntttAtR )ee()()( SS
⋅⋅−⋅− −⋅== λλ 22  

Standby  

 

D Standby with ttAtR ⋅−== λe)()(  

ntt ttAtR )ee()()( SS
⋅−⋅− ⋅⋅+== λλ λ  
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Basic configuration Equation for system PS, RS(t), AS(t) 

5 Parallel-series structures 
(redundant elements)  

 

A Active with jiPPij ,   ∀=  except Psw  

 => ( ) ( ) nzPPPP ]111[ 1
swS

−⋅−⋅−−=  

B Active with jitAtAij ,   )()( ∀=  except Asw(t) 

 => { }nztAtAtAtA 1
swSSS )]()(1[)](1[1)( −⋅−⋅−−=  

 

C Active with z = 2, n = 1  

 and jietAtR t
ijij ,   )()( ∀== −λ  except Psw 

 => ttt
S PPtAtR λλλ 2−−− −+== eee)()( swswS  

NOTE 1 In case of non-repaired blocks )()( SS tAtR = . 

NOTE 2 For non-repaired blocks with constant failure rates, P can be replaced by tetAtR λ−== )()( . 

NOTE 3 Formulae for standby systems are based on the assumption that the reliability of switching and sensing 
mechanisms is 100 % (PSW = 1). 
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P
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Annex B 
(informative) 

 
Boolean algebra methods 

 

B.1 Introductory remarks 

Apart from the use of Boolean truth tables (see 11.4) and binary decision diagrams (see 
11.5), the analysis of RBDs as described so far makes use mainly of conventional algebraic 
mathematical formulae. However, Boolean algebra in general can also be used for such 
analyses, and in many instances is much more efficacious and straightforward. In particular, 
the use of Boolean algebra may well be the most straightforward approach whenever 

a) RBDs contain repeated blocks (see Figure 37), 
b) RBDs contain directional arrows (see Figure 10 and Figure 35), 
c) the system is particularly complicated, 
d) it is easier to construct a Boolean expression for system success (or failure) than it is to 

construct an RBD, 
e) the system comprises a number of blocks too large to be tractable by simple formulae.  

Item d) of the above list is worthy of note. For many systems and networks the listing of 
equipment success (or failure) combinations in Boolean terms is often a more straightforward 
task than the construction of the corresponding RBD. By employing at the outset the Boolean 
approach to analyse the system, the risk of making errors in the course of constructing the 
RBD is entirely avoided. 

Item e) of the above list may be related to RBDs modelling industrial systems with a dozen of 
components and leading to the combinatorial explosion of the terms to be taken into account 
in the formulae. This is particularly crucial when numerous repeated blocks also have to be 
managed.  

B.2 Notation 

The conventional symbols ∪  and ∩  denoting the logical “OR” and “AND” play for the Boolean 
algebra the same role as the addition (+) and of the multiplication (·) for ordinary algebra. This 
is why, in what follows, it has been found more convenient, to use a ”+” symbol to denote 
logical “OR” and a full stop "•" to denote logical “AND”2. As usual a bar over a Boolean 
variable will denote the inverse or complement of the variable concerned: e.g. a  is 
interpreted as “not a ”. For example gfecba •+•••  is to be interpreted “a AND b AND NOT c 
AND e OR f AND g“. The context in which the symbols are used should make the meaning 
clear. 

_______________ 

2  The advantage of such a notation becomes apparent in Annex B where expressions of the type 
dcbadcadebadeabeaba •••+••+•••+••+••+•=S  are frequently found. Taking this latter expression 

as an example and writing it using set theory symbols, one obtains: 
dcbadcadebadeabeaba ∩∩∩∪∩∩∪∩∩∩∪∩∩∪∩∩∪∩=S  which for many readers may be quite 

difficult to interpret or evaluate.  
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B.3 Tie sets (success paths) and cut sets (failure paths) analysis 

B.3.1 Notion of cut and tie sets 

As said in 8.1, an RBD can be considered as an electrical circuit (see Figure 14) and this 
analogy is useful to identify: 

– the tie sets which correspond to a closed electrical circuit and represent the combinations 
of the blocks in up states leading to the system being in the up state. The tie sets are also 
the "success" paths of the RBD; 

– the cut sets which correspond to a cut electrical circuit and represent the combinations of 
the blocks in down states leading to the system being in the down state. The cut sets are 
also the "failure" paths of the RBD.  

Using this analogy allows to transform the RBD presented in Figure 10 into the electrical 
circuit presented in Figure 15. From this representation it is easy to identify various tie sets of 
this RBD and Figure B.1 and Figure B.2 show various examples of combinations of closed 
switches corresponding to the system up state. 

 

Figure B.1 – Examples of minimal tie sets (success paths)  

In Figure B.1 any opening (i.e. any failure) of the closed switches will cut the circuit and lead 
to the system down state. All those closed switches (i.e. blocks in up states) are necessary 
and sufficient to have the system in up state. Those combinations are minimal and are named 
minimal tie sets. 

 

Figure B.2 – Examples of non-minimal tie sets (non minimal success paths) 

In Figure B.2 some opening of the closed switches (e.g. B2 on the left or C1 on the right) will 
not change the system up state. All the closed switches (i.e. blocks in up states) are not 
necessary to have the system in up state. Those combinations are not minimal and are named 
non-minimal tie sets (or ordinary tie sets). 

From the same Figure 15 it is also easy to identify various cut sets of this RBD and Figure B.3 
and Figure B.4 show various examples of combinations of open switches corresponding to the 
system down state. 
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Figure B.3 – Examples of minimal cut sets 

In Figure B.3 any closing (i.e. any repair) of the open switches will close the circuit and lead 
to the system up state. All the open switches (i.e. blocks in down states) are necessary and 
sufficient to have the system in down state. Those combinations are minimal and are named 
minimal cut sets. 

 

Figure B.4 – Examples of non-minimal cut sets 

In Figure B.4 some closing of the open switches (e.g. C2 on the left or B2 on the right) will not 
change the system down state. All the open switches (i.e. blocks in down states) are not 
necessary to have the system in down state. Those combinations are not minimal and are 
named non-minimal cut sets (or ordinary cut sets). 

B.3.2 Series-parallel representation using minimal tie and cut sets 

Applying the Boolean algebra properties leads to represent the system up state, s, as the 
union of the minimal tie sets (Πi) of the RBD and the system down state, s , as the union of 
the minimal cut sets (Ck) of the RBD.  

This can be applied to the previous example which has four minimal tie sets, )( 11 cb • , )( 1ca • , 
)( 2ca • , )( 22 cb • . This leads to: 

 222111 cbcacacbs
i

i •+•+•+•==


Π  (B.1)  

The same example has four minimal cut sets, )( 21 bab •• , )( 21 cc • , )( 21 cab •• , )( 12 cab ••  and 
this leads to: 

 1221212 cabcabccbabCs
j

j ••+••+•+••== 1

 (B.2) 

These formulae provide "dual" representations of the same system. Formula (B.1) is focused 
on the system success when Formula (B.2) is focused on system failure. 

Formula (B.2) is equivalent to 12212121 cabcabccbabCss
j

j ••+••+•+••===


.  

The transformation of Formula (B.2) involves the use of the De Morgan laws: 
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baba +=•  

baba •=+  

This leads to: 

12212121 cabcabccbabs ••••••••••=  which gives: 

 )()()()( 12212121 cabcabccbabs ++•++•+•++=  (B.3) 

Finally two equivalent representations of the logical formula representing the RBD in the up 
state are obtained. Formula (B.1) provides a representation with the success paths and 
Formula (B.3) (see Figure 18) a representation of the RBD with the minimal cut sets (see 
Figure 19). 

B.3.3 Identification of minimal cuts and tie sets 

The minimal cut sets and minimal tie sets can be obtained by expanding the logical formulae 
corresponding to the RBD.  

This can be done with a simple RBD as shown hereafter with the RBD drawn in Figure B.5.  

 

Figure B.5 – Example of RBD with tie and cut sets of various order 

The logical structure of this RBD provides the following logical formula: 

 }{ ])([)( 2111122 bacbacads •+••+••=  (B.4) 

Then expanding Formula (B.4) leads to: 

}{ ][)( 2111122 bacbacads •+••+••=  and 2111122 badcbadcads ••+•••+••= . 

Therefore this RBD has three minimal success paths: )( 22 cad •• , )( 21 bad •• , )( 111 cbad ••• . 

The minimal cut sets can be obtained by complementing Formula (B.4) and using the De 
Morgan laws: 

}{ ])([)( 2111122 bacbacads •+••+••=  

)()()(])([)( 21111222111122 bacbacadbacbacads +•++•++=•+••••+=  

2122122122122121 bbcbccbcabbacaaads ••+••+••+••+•+•+=  
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And finally, seven minimal cut sets are found: d , )( 21 aa • , )( 21 ca • , )( 212 bba •• , )( 212 bca •• , 

)( 212 bcc •• , )( 212 bbc •• . 

Minimal tie and cut sets represent the same information but, from a qualitative analysis point 
of view, the minimal cut sets are more relevant because the shortest minimal cut sets are 
likely to be more probable than the other minimal cut sets.  

Therefore, the cut sets of the above RBD in Figure B.5 can be sorted by order (see 3.18, Note 
2 to entry): 

– order one, d ;  

– order two, )(),( 2121 caaa •• ;  

– order three, )(),(),(),( 212212212212 bbcbccbcabba •••••••• . 

From a qualitative point of view, the weak point of this system is certainly the minimal cut set 
of order one, d . 

Except in simple cases, the above calculations are not really tractable by hand but powerful 
algorithms are available and implemented into RBD software packages. Minimal tie and cut 
sets may be found by using, for example, the binary decision diagrams explained in the 
probabilistic calculation part of this standard. 

B.4 Principles of calculations 

B.4.1 Series structures 

Consider a system made of n blocks (Bi) in series similar to that depicted in Figure 2. For that 
system, it can be seen that the system as a whole is in up state provided all of the blocks Bi 
are in up states. In other words, the Boolean expression for system success is given by 

 n
ni

i bbbbbs ••••≡=
=

...321
,1


 (B.5) 

where bi is a Boolean variable corresponding to the up state of blocks Bi.  

If the blocks are independent then the probability of the system to be in up state is: 

 ∏==
i

bbbbbs in PPPPPP ...... 321  (B.6) 

Therefore, there are no particular calculation problems for calculating Ps in case of series 
structures. 

Nevertheless, if the above series structure (B.5) belongs to a larger RBD, this calculation can 
be done only if no block of this series structure is repeated elsewhere in the larger RBD. 
Otherwise the techniques described in Clauses B.5 or B.6 should be applied 

B.4.2 Parallel structures 

Consider a two unit active redundant system such as that depicted in Figure 21. For that 
system, it can be seen that the system as a whole is in up state provided A or B (or both) are 
in up states. In other words, the Boolean expression for system success is given by 
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 babas +≡∪=  (B.7) 

where a  and b  are Boolean variables corresponding to the up state of blocks A and B 
respectively.  

For a given time t it is tempting to substitute aP  and bP  for a  and b  respectively and rewrite 
Formula (B.7) in the form: 

 bas PPP +=  (B.8) 

Formula (B.8) is expected to provide the probability Ps that the system is in the up state but, 
unfortunately, is incorrect owing to the fact it is obtained from a Boolean expression in which 
the variables overlap (i.e. Φ≠•≡∩ baba ). It does not even provide, in the general case, an 
acceptable approximation of Ps. For example Ps = 1,2 is obtained with Pa and Pb equal to 0,6. 
This is obviously incorrect.  

Therefore Formula (B.8) shall be completed to: 

 babas PPPPP ⋅−+=  (B.9) 

Contrarily to Formula (B.8), Formula (B.9) provides the exact result in any case. With the 
previous figures it leads to: Ps = 0,6 + 0,6 – 0,36 = 0,84. 

Considering a structure made of n blocks (Bi) in parallel leads to: 

n

n

i
i bbbbbs ++++== ...321

 

The extension of Formula (B.9) is known as the Sylvester-Poincaré formula: 

 ....)( etcPPPPPPbPP
nkji

bbb
nji

bb
ni

b
ni

is kjijii −+−== ∑∑∑
≤<<≤<≤≤



 (B.10) 

This is an alternate sum of decreasing terms which converge toward the result Ps. The 
number of terms drastically increases when n increases and the convergence is very slow 
when the probabilities are high. This is unfortunately the case here because the 
probabilities, ibP , for the blocks to be in up state are normally close to 1. Therefore, 
Formula (B.10) is not manageable to evaluate Ps because too many terms need to be taken 
into consideration.  

Fortunately, several alternatives can be considered. The first one is to evaluate the probability 
for the system to be in the down state rather than in the up state.  

For example, the "down state" of the small system (B.7) analysed above is given by bas +=  
which, by applying the De Morgan laws, leads to the equivalent dual form of the Boolean 
expression bas •= . 

If a and b are independent from each other, this is the same for a  and b . Then the probability 
for the system to be in the down state is given by: bas PPP ⋅= . 
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And finally: )1()1(11 bass PPPP −⋅−−=−= . 

This can easily be extended to n blocks in parallel and 


ni
i

ni
i bsbs

,1,1 ==

=⇔=  is obtained by 

applying the De Morgan laws. 

And finally: ∏∏
===

−−=−=−==
ni

b
ni

b
ni

i
i

is ii
PPbPbPP

,1,1,1
)1(11)(1)(



  (B.11) 

Formula (B.11) which involves only simple products is easier to use for parallel structures 
than the Sylvester-Poincaré formula analysed just above. 

B.4.3 Mix of series and parallel structures 

Formulae (B.6) and (B.11) can be combined and this can be done by hand in simple cases. 

Thus, if a system exists as depicted by Figure 4 but with only three items in each branch, the 
probability of success of the system is: 

 222111222111 cbacbacbacbas PPPPPPPPPPPPP ⋅⋅⋅⋅⋅−⋅⋅+⋅⋅=  (B.12) 

Similarly, for Figure 5, the following applies: 

 ( ) ( ) ( )212121212121 ccccbbbbaaaas PPPPPPPPPPPPP ⋅−+⋅⋅−+⋅⋅−+=  (B.13) 

For Figure 6 and Figure 7, the probability of success of the system equations are obtained 
simply by multiplying Formulae (B.12) and (B.13) by Pd. 

Nevertheless and except in simple cases, the above calculations (B.12) or (B.13) are not 
easily tractable by hand. Fortunately, powerful algorithms are available and implemented into 
RBD software packages. They are based on the techniques described in Clauses B.5, B.6 or 
B.7. 

B.4.4 m out of n architectures (identical items) 

Among the simple cases, the formulae related to the probability of success of systems 
corresponding to Figure 8 (2/3 logics) and Figure 9 (3/4 logics) are a little more complicated 
than those developed in B.4.3. 

Looking at the 2/3 system presented in Figure 8, Formula (B.9) leads to: 

)()()()(
)()()()()(

)()()()(

321323121

321323213121

321323121323121

xxxPxxPxxPxxP
xxxPxxPxxxPxxPxxP

xxxPxxPxxxxPxxxxxxPPs

••−•+•+•=

••−•+••−•+•=

••−•+•+•=•+•+•=

2
 

Then if the blocks are independent and have the same probability of success, p, this leads to 
32 23 ppPs ⋅−⋅= . 

It can be transformed into 323 33 pppPs ⋅−⋅+=  and finally  
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 ( )pppPs −⋅⋅+= 13 23  (B.14) 

is obtained. 

Formula (B.14) can be generalized to an m/n logical structure made of n identical blocks. In 
this case m blocks out of n are required for system success and the probability of success of 
the system sP  is given by the general formula: 

 ( ) ( )∑
−

=

− −⋅⋅=
mn

r

rrnn
rs ppP

0
1  (B.15) 

Applying Formula (B.15) to the 2/4 logical structure presented in Figure 9 gives: 

 ( ) ( ) 2342234 6831614 ppppppppPs ⋅+⋅−⋅=−⋅⋅+−⋅⋅+=  (B.16) 

An m/n system needs m blocks in up states to be in up state. Then it needs (n-m+1) blocks in 
down states to be in down state. Therefore an m/n system with regards to up state is a (n-
m+1)/n with regards to down state and the probability of failure of an m/n system is given by 
exchanging m ↔ (n-m+1) and p ↔ (1-p) in Formula (B.15): 

 ( )∑
−

=

− ⋅−⋅=
1m

r

rrnn
rs ppP

0
)1(  (B.17) 

Particular cases 

– When m = n -1 (e.g. 2/3, 3/4, etc.) Formula (B.15) is reduced to: 

 nm
s pmpnP ⋅+⋅=  (B.18) 

– When n = 2m-1, the systems are symmetrical with regards to success and failures: the 
system is in up state if m blocks are in up states and is in down state if m blocks are in 
down states. This is the case for the 1/1, 2/3, 3/5, etc. logical structures. Because of this 
property, the 2/3 structure is widely used in industry for designing safety systems. 

If the n items are not identical, use of a more general procedure is recommended 
(see 11.8.2). 

B.5 Use of Sylvester-Poincaré formula for large RBDs and repeated blocks 

B.5.1 General 

When repeated blocks are implemented, the formulae developed in Clause B.3 can be applied 
only for the parts of the RBD which do not contain the repeated blocks. For other parts of the 
RDB, the repeated blocks shall be properly taken into account. 

Equivalent RBDs made of success paths (minimal tie sets) or of failure combinations (minimal 
cut sets) are typical RBDs with such repeated blocks. This is why they are analysed hereafter. 

B.5.2 Sylvester-Poincaré formula with tie sets 

The success state of a system having n success path (minimal tie sets), (Πi), can be written: 
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

i
is Π=  

The minimal tie sets, Πi, are not independent from each other and the corresponding 
Sylvester-Poincaré formula therefore takes the following form: 

 

- etc.SPSP-SP

etcPPPPP

ijkiji

kji
kji

ji
ji

i
i

n

i
is

                                                                              

.)()()((
1

+=

-••+•-== ∑∑∑
<<<=

PPPPPPP
  (B.19) 

Formula (B.19) expresses that the probability of the union of the tie sets is equal to 

1) the sum of the probability of the tie sets (term SPi), 

2) minus the sum of the probabilities of the intersection of the tie sets 2 × 2 (term SPij), 

3) plus the sum of the probabilities of the intersection of the tie sets 3 × 3 (term SPijk), 

4) minus the sum of the probabilities of the intersection of the tie sets 4 × 4 (term SPijkl), 
5) etc. 

The tie sets are not independent as the same event can appear in several tie sets. Therefore, 
it is necessary to analyse all the intersections of the tie sets before doing the probabilistic 
calculations in order to simplify them when they include identical events.  

This can be shown with the example developed in Clause 8 which comprises 4 minimal tie 
sets: 2242312111 ,,, cbcacacb •=•=•=•= ΠΠΠΠ . 

Implementing Formula (B.19) leads to the following calculations. 

a) First term iSP : 

222111)( cbcacacb
i

i PPPPPPPPP ⋅+⋅+⋅+⋅=∑ P  

b) Second term ijSP : 

2222121221121111  
)()( )()()()(

)()()()()()(

)()()()()()()(

2222121221121111

222221212211211111

434232413121

cbacbcaccacbcbcacbacb

ji
ji

PPPPPPPPPPPPPPPPPPPPP
cbaPcbcaPccaPcbcbPcacbPacbP

cbcaPcbcaPcacaPcbcbPcacbPcacbP

PPPPPPP

⋅⋅+⋅⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅=
••+•••+••+•••+•••+••=

/•••+•••+•/••+•••+•••+/•••=

•+•+•+•+•+•=•∑
<

PPPPPPPPPPPPPP

 

c) Third term ijkSP : 

2212211211

)()()(
)()()(

)()()()(

2212211211

2221221112111

43 2421321

cbcacbacbcacb

kji
kji

PPPPPPPPPPPPP
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d) Fourth term ijklSP : 

2211)()(

)()(

2211222111

4321

bcacb

lkji
lkji

PPPPPbcacbPcbcacacbP

PP
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Therefore, with these 4 minimal tie sets 4 + 6 + 3 + 1 = 14 terms to be calculated have been 
identified. 

As the probability of tie sets, )( iP P , are normally not small compared to 1, the probabilities of 
)( jiP PP • , )( kjiP PPP ••  are also not small and cannot be neglected.  

With 3 events with high probabilities Pa = Pb = Pc = 0,9 the following results are obtained: 

cbacbcabacba PPPPPPPPPPPPcbaP ⋅⋅+⋅+⋅+⋅−++=++ )()(  

999,0729,043,27,2)( =+−=++ cbaP  

Therefore, no term is negligible and all terms have to be considered in the calculations. 
Therefore Formula (B.19) is not really manageable because too many terms are needed to 
obtain suitable approximations. 

B.5.3 Sylvester-Poincaré formula with cut sets 

The failed state of a system having m failure paths (minimal cut sets), (Ci) can be written: 



i
iCs =  

This leads to the corresponding Sylvester-Poincaré formula: 

 

.                                                                                  

.)()()((
1

etcSPSPSP
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kji
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ji

i
i
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i
iss
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<<<=



1
 (B.20) 

The example from Clause 8 provides also 4 minimal cut sets 

22421321221 ,,, cabCcabCccCbabC ••=••=•=••=1  

and, as with the tie sets, this also implies the calculations of 14 terms however the situation is 
very different because the probabilities )( iCP  are normally small compared to 1.  

Then the probabilities of )( ji CCP • , )( kji CCCP •• , etc. are smaller and smaller and 
Formula (B.20) converges rather quickly. Therefore, approximations are available. 

If the formula cbacbcabacba PPPPPPPPPPPPcbaP ⋅⋅+⋅+⋅+⋅−++=++ )()(  is considered, the 
results with 3 events with high (Pa = Pb = Pc = 0,9) and 3 events with low probabilities 
(Pa = Pb = Pc = 0,01) can be compared: 

– 0,9990,7292,432,7)( =+−=++ cbaP  is obtained with Pa = Pb = Pc = 0,9; 

– 701 0,029001 0,0003 0,0000,03)( =+−=++ cbaP  is obtained with Pa = Pb = Pc = 0,01. 

Then in the case with low probabilities 

– the term SPi alone provides an upper bound of the probability: 0,03, 
– the sum SPi-SPij provides a lower bound: 0,029 7,  
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and the exact result belongs to the interval [0,03 – 0,029 7]. 

These results can be extrapolated to a large number of events: 

• when the probabilities are high, the convergence is very slow and all the terms have to be 
considered to obtain the result; 

• when the probabilities are low, the convergence is fast and the first term of the Sylvester-
Poincaré formula provides an acceptable approximated result and the first two terms a 
good interval to which the result belongs. 

Then the Sylvester-Poincaré Formula (B.20) using cut sets (Ci) which generally involves low 
probabilities, is a better candidate than Formula (B.19) using tie sets (Πi) to derive acceptable 
approximations. Therefore, it is better to consider the minimal cut sets (Ci) than the tie sets 
(Πi) when performing probabilistic calculations.  

The lower the resulting probability, Ps, the faster the convergence is obtained and in the best 
cases the following approximation works well: 

  ∑
=

≈=
i

Ci

n

i
is PCPP



1
)(   (B.21) 

This approximation is widely used and is the basis of calculations performed by numerous 
software packages available for availability/reliability calculations on RBD or fault trees. In 
some cases the second term of the Sylvester-Poincaré formula is calculated in order to 
provide the bounds of the interval framing sP .  

B.6 Method for disjointing Boolean expressions 

B.6.1 General and background 

Formula (B.7) can be written in the equivalent form: 

 baaaabababas •+=+•+=•+≡+= )()()( Ω  (B.22) 

The process of rewriting Formula (B.7) in the form of Formula (B.22) will be referred to as 
disjointing.  

In Formula (B.22) the terms a and ba •  are disjoint terms. This implies that Φ=•• )( baa  and 
therefore 0=•• )]([ baaP . Then Ps is reduced to the well-known result: 

 baas PPPP ⋅−+= )1(  (B.23) 

Note that it is also possible to write Formula (B.7) in other disjointed forms, one of which is 
abbs •+=  leading to another correct expression, namely: 

 abbs PPPP ⋅−+= )1(  (B.24) 

Needless to say Formulae (B.23) and (B.24) are equivalent to the formulae babas PPPPP ⋅−+=  
and )1()1(1 bas PPP −⋅−−=  previously found. 
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The difference with the previous calculations is that the number of terms in the probability 
formula is the same as the number of disjoint terms in the Boolean equation. 

Let us consider that s is expressed by the union of disjoint success paths: 

 


i
i

s dΠ=  where jiji ,dd ∀=∩ ΦΠΠ . 

Then the Sylvester-Poincaré formula will be reduced to: 

 ∑
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i
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ii
PPP d
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P

P


 (B.25)  

In the same way if s  is expressed by the union of disjoint cut sets the following formula is 
obtained: 



i
i

Cs d=  where jiCC ji ,dd ∀=∩ Φ   

and the Sylvester-Poincaré formula will be reduced to: 

 ∑
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==
i
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n

i
s ii

PCPP d
1

d)(


 (B.26) 

Therefore and provided the minimal tie sets or cut sets are disjointed, Formulae (B.25) and 
(B.26) can be used to perform exact calculations. When the block failure probabilities vary 
with time they can be used for availability, )(S tA , or unavailability )(S tU  calculations as well. 

The primary objective therefore is to be able to cast Boolean expressions for system success 
(or to system failure) into a disjointed form. This means that each term in the final Boolean 
expression is disjoint with respect to every other term. Further details of the method can be 
found in [19]. 

It should be noted that two terms are mutually disjoint if at least one variable in one term 
appears in its complementary form in the other. For example the terms srqp •••  and 

uts ••  are disjoint by virtue of s. The converse is also true. Namely two terms are not disjoint 
(i.e., they overlap) if none of the variables in one term appear in complementary form in the 
other. For example, the two terms rqp ••  and uts ••  are not mutually disjoint. 

B.6.2 Disjointing principle 

If two terms θ1 and θ2 are not disjoint, and it is required to make θ2 disjoint with respect to θ1 
several procedures may be used.  

The basic principle is the following:  

– pick out all the variables in θ1 which do not appear in θ2 (such terms are known 
collectively as the relative complement of θ2 with respect to θ1.). Suppose the relative 
complement is 4321 vvvv ••• ; 

– then replace θ2 by 

2432123212211* θθθθθ ••••+•••+••+•= vvvvvvvvvv 22 . 
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The resulting expression *
21 θθ +  will consist of terms which will all be disjoint with respect to 

one another. 

For example, to make the term fed ••=2θ  disjoint with respect to the term edcba ••••=1θ , 
proceed as follows:  

– the relative complement of θ2 with respect to θ1 is cba •• ;  

– so that if θ2 is replaced by  

fedcbafedbafeda •••••+••••+•••=*2θ  

then θ1 and θ2* will be disjoint with respect to one another.  

B.6.3 Disjointing procedure 

The basic disjointing procedure is as follows: 

a) express system success (denoted by s1) in “sum-of-product” Boolean terms3 (i.e. tie sets) 
and label the terms from left to right, “θ11, θ12, θ13, …”; 

b) select θ11 as a “pivotal” term and compare θ12 with θ11; 

c) if necessary (i.e. if the two terms are not disjoint), make θ12 disjoint with respect to θ11 as 
described in B.6.2; 

d) if necessary, make θ13 disjoint with respect to θ11; 
e) continue the process for the remaining terms in s1; 
f) examine the somewhat expanded (on account of additional terms added) expression 

reached at this stage, and simplify (where possible) using the rules of Boolean algebra 
(make use of rules such as xxx =+ , xyxx =•+ , yyxyx =•+• ). Call the resulting 
expression s2 and label the terms from left to right, “θ21, θ22, θ23, …”; 

g) select the second term (θ22) of s2 as a “pivotal” term and compare θ23 with θ22, and 
proceed as indicated in c) to f) but using the terms of s2. Call the resulting expression s3;  

h) continue as above until all the terms have been used as “pivotal” terms by which time the 
final expression obtained will be the fully disjointed version of the original expression s1. 

Finally a set of disjoint terms )( d
i

Π  related to the success of the system as described in B.6.1 

is obtained. Therefore, the probability of success Ps or the availability As(t) of the system can 
be calculated by applying Formula (B.25). 

The same procedure may be used to obtain the disjoint terms )( d
i

C  related to the failure of the 

system as described in B.6.1. Therefore, the probability of failure sP  or the unavailability Us(t) 
of the system can be calculated by applying Formula (B.26). 

The procedure described is very basic and can be improved as this is done to process the 
example given in B.6.4. 

B.6.4 Example of application of disjointing procedure 

It is supposed that a network or system consists of five elements A, B, C, D and E and that 
dcba ,,,  and e  denote the corresponding Boolean “success” variables. It is also supposed that 

_______________ 

3  For particularly simple Boolean expressions for system success, single as well as products of two or more 
terms may be used. 
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system success in Boolean terms (s) is defined by the following expression, which comprises 
four sum-of-product terms (i.e. tie sets): 

dcdebebas •+•+•+•=  

To make the above expression disjoint, the basic procedure described in B.6.3 can be 
improved and applied as follows: 

Step 0 – Classification of the paths by increasing lengths and in alphabetic order 

eddcebbas •+•+•+•=  

Step 1 – The disjunctive procedure starts with the last product ( ed • ) to make it disjoint from 
all its predecessors: 

• 1.1: This procedure applies to its immediate predecessor ( dc • ) by: 

– identifying the event(s) belonging to dc •  but not to ed • . This gives c ; 

– changing ed •  by ced ••  in the original formula. 

• 1.2: Reiterate step 1.1 with the next term on the left ( eb • ) by: 

– identifying the event(s) belonging to eb •  but not to ed • . This gives b ;  

– changing the expression of ed •  modified in step 1.1, (i.e., ced •• ), by bced •••  
in the original formula. 

• 1.3: It is not necessary to reiterate step 1.2 with the next term on the left ( ba • ), 
because the last product ed •  modified as bced •••  is already made disjoint from 

ba • . The disjunctive procedure applied to ed •  is now achieved.  

The original formula can be rewritten as follows: bceddcebbas •••+•+•+•= .  

Step 2 – Reiterate the above procedure (steps 1.1 to 1.3) to make dc •  disjoint from its 
predecessors. 

• 2.1: As previously the procedure is first applied to its immediate predecessor eb •  by: 

– identifying the event(s) belonging to eb •  but not to dc • . This gives b  and e ; 

– changing the expression of dc •  by ebdc •••  in the original formula, by keeping in 

mind (De Morgan law) that )()( ebbdcebdcebdc •+••=+••=••• . It becomes: 

bcedebdcbdcebbas •••+•••+••+•+•= . 

• 2.2: Because the first term of the decomposition of dc • , ( i.e., bdc ••  is already 
disjoint from all its predecessors ba •  and eb • , and the second term ebdc •••  is 
already disjoint from its predecessor eb • , it remains to make dc •  disjoint from its 
second predecessor ba •  by:  

– identifying the event(s) belonging to ba •  but not to ebdc ••• .This gives a ; 

– changing the expression of ebdc •••  by aebdc ••••  in the original formula that 
becomes:  

bcedaebdcbdcebbas •••+••••+••+•+•= . 

Step 3 – Reiterate the disjunctive procedure to make eb •  disjoint from its unique 
predecessor ba •  by:  
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– identifying the event(s) belonging to ba •  but not to eb • . This gives a ; 

– changing the expression of eb •  by aeb ••  in the original formula.  

Step 4 – Because the first product (here ba • ) remains always unchanged, the procedure is 
achieved and gives the following final sum of disjoint products: 

bcedaebdcbdcaebbas •••+••••+••+••+•=  

Finally 5 disjoint terms are obtained 

– ba •=d
1Π , 

– aeb ••=d
2Π , 

– bdc ••=d
3Π , 

– aebdc ••••=d
4Π , 

– bced •••=d
5Π , 

and s can be written 


i
i

s dΠ=  as described in B.6.1. 

Therefore, the probability of success Ps or the availability As(t) of the system can be 

calculated by applying Formula (B.25): ∑
=

==
i

n

i
s

ii
PPP d

1

d)(
P

P


. 

Finally the system availability is found as: 

)](1[)](1[)()()](1[)](1[)()()(            
)](1[)()()](1[)()()()()(

BCAEC

BCABAS
tAtAtAtAtAtAtAtAtA

tAtAtAtAtAtAtAtAtA

EDBD

DEB
−⋅−⋅⋅+−⋅−⋅⋅⋅

+−⋅⋅+−⋅⋅+⋅=
 

The number of disjoint terms depends on the order in which the success paths are used to 
apply the disjunction algorithms. All results are equivalent but are obtained more or less 
quickly. There is no theoretical optimum and the choice can be based on heuristics which 
have proven to work well. The use of the alphabetical order is an example of such a heuristic. 

Of course the same procedure can be used with the minimal cut sets to find disjoint sets )( d
i

C  

allowing to calculate the probability of failure sP  or the unavailability Us(t) of the system by 

applying Formula (B.26): ∑
=

==
i

C

n

i
s ii

PCPP d
1

d)(


. 

B.6.5 Comments 

The most important attribute of the procedures described in B.6.4 is that the sequence of 
steps needed to carry out the disjointing is relatively straightforward to program for running on 
a computer. The improved procedure described in B.6.4 is often used on modern PCs where 
quite complicated sum-of-product Boolean expressions can be disjointed almost 
instantaneously. It is intended that the details given in this standard will be sufficient to enable 
a suitable program to be written.  

Another important attribute is the fact that the procedure, being primarily aimed at disjointing 
Boolean expressions, can be applied with equal efficacy to Boolean expressions arising from 
fault tree analyses. 
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B.7 Binary decision diagrams 

B.7.1 Establishing a BDD 

At the present time the state of the art in probabilistic calculations on Boolean functions is the 
use of the Shannon decomposition of the Boolean functions in order to build binary decision 
diagrams (BDD) encoding all the disjoint combinations leading to the realization of the 
function modelled by this function. 

 

Figure B.6 – Reminder of the RBD in Figure 35 

The Boolean function modelled by the RBD in Figure B.6 depends on 4 Boolean variables a, 
b, c and d.  

The Shannon decomposition is similar to the truth table of the Boolean function modelled by 
the RBD. 

 

Figure B.7 – Shannon decomposition of the Boolean function represented by Figure B.6 

This decomposition has been represented in a graphical form, illustrated in Figure B.7. The 
process to do that is the following one: 

1) choose one of the variables (e.g. a) and place it at the top of the graph; 
2) from this variable, draw two arrows to represent its two possible states: e.g. 1 on the left 

and 0 on the right (solid and dotted lines have been used to make the figure clearer); 
3) choose another variable (e.g. b) and connect it to the previous arrows. This variable will 

appear twice; 
4) for each occurrence of this variable draw two arrows to represent its two possible states; 
5) choose another variable (e.g. c) and connect it to the previous arrows. This variable will 

appear four times; 
6) etc. continue the process until all variables have been processed. 

Then, for n variables, 2n paths are obtained. Each of them leads either to the success of the 
function (s = 1) or its failure 0=s . This can be achieved by analysing the RBD corresponding 
to this Shannon decomposition.  
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Figure B.8 – Identification of the parts which do not matter 

The next step is the simplification of this graph by identifying the parts which do not matter. 
They have been boxed in dotted line in Figure B.8. For example on the left hand side the state 
of the system does not depend on the state of the variable d and on the right hand side it 
does not depend on the states of the variables c and d. 

 

Figure B.9 – Simplification of the Shannon decomposition 

This allows to obtain the simplified the graph shown in Figure B.9. It is not identical to the 
graph previously obtained in Figure 38 for the same RBD. This is due to a different choice for 
the order of the variables used for the decomposition. This shows that the decomposition is 
not unique and leads to a more or less simple graph according to the order which has been 
chosen.  

On this graph 9 paths can be identified: 5 paths lead to the success of S and 4 to its failure. 
Reading those paths from the BDD allows to obtain the relationship between s or s  and the 
states of the variables a, b, c and d:  

dcbacbacbadcbacbas •••+••+••+•••+••=  

badcbacbadcbas •+•••+••+•••=  

The next step is to build the BDD related to this RBD. As shown in Figure B.10 this is done 
just by gathering the inputs with the same values. 

IEC 

a

bb

cc c c

dd d ddd d d

"c" and "d"
do not matter

"d" do not
matter

"d" do not
matter

01 1 1 1 1 1 1 10 0 0 0 0 0 0

a

bb

cc c c

dd d ddd d d

"c" and "d"
do not matter

"d" do not
matter

"d" do not
matter

01 1 1 1 1 1 1 10 0 0 0 0 0 0

IEC 

a

bb

cc c

dd

11 1 0 0 1 01 0

a

bb

cc c

dd

11 1 0 0 1 01 0

BS EN 61078:2016



 – 84 – IEC 61078:2016 © IEC 2016 

 

Figure B.10 – Binary decision diagram related to the RBD in Figure B.6 

B.7.2 Minimal success paths and cut sets with BDDs 

The same block can appear in different places but in the basic RBD, it has always the same 
state in its various locations. This implies that the RBD is "coherent" and that the related 
Boolean function is "monotonic". That means that if the system is failed it cannot be repaired 
by a further block failure or if the system is in the up state it cannot be failed by a further 
block repair. In this case the Boolean function can be represented by the union of the minimal 
tie sets (success paths) and its complementary function can be represented by the union of 
the minimal cut sets (failure paths).  

When a Boolean function is non-monotonic then the concepts of minimal tie or cut sets are 
not relevant and must be replaced by the concept of "prime implicants". The difference is that 
a minimal tie set is made only of a combination of blocks in up states (and a minimal cut set 
only of a combination of blocks in down states), whereas a prime implicant may be made of a 
combination of blocks in up and down states. The prime implicants cannot be reduced to 
minimal tie or cut sets and should not be mixed up with the disjoint terms analysed in B.7.1 
which are equivalent to a union of minimal tie or cut sets. 

Therefore, if the Boolean function is monotonic and Πi a success path containing failed 
blocks, removing the failed blocks provide also a success path. For example, dcba •••  
being a success path, db •  is also a success path. 

In the same way, if Ci is a cut set containing blocks in the up state, then removing those 
blocks provides also a cut set: for example dcba •••  being a cut set, dc •  is also a cut set. 

Therefore, disjoint success paths identified in B.7.1 can be used to identify the success paths 
of the related to the Boolean function. This is illustrated in Figure B.11.  

 

Figure B.11 – Obtaining success paths (tie sets) from an RBD 
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Among the found tie sets, some are non-minimal sets which are included (from the Boolean 
algebra point of view) in the minimal tie sets. Finally three minimal success paths are found 
and they are similar to those previously identified. 

 

Figure B.12 – Obtaining failure paths (cut sets) from an RBD 

Figure B.12 shows how the minimal cut sets can be found from the Boolean equation of the 
system failure. The principle is exactly the same as for the success paths. Three minimal cut 
sets are found and they are identical to those previously found. 

The BDDs provide also an efficient tool to identify the minimal tie or cut sets.  

The principle to find the tie sets (success paths) is illustrated in the left hand side of  
Figure B.13. This is valid only when the BDD is related to a "coherent" RBD as explained in 
B.7.2 . 

The process consists in starting from the success state of the system and exploring the graph 
from bottom to up in the reverse order (of the variables) used to build the BDD. When 
exploring a branch, if a variable is found in the failed state, then it is by-passed and a new link 
with the variable just above is introduced. And so on. If the graph on the left hand side is 
considered, the next tie sets: )(),(),(),(),(),( bdbcacacabdabc ••••••••  are found. Some of 
these combinations are not minimal and one combination appears twice. 

 

Figure B.13 – Finding cut and tie sets from BDDs 

Similarly, the principle to find the cut sets (failure paths) is illustrated in the right hand side of 
Figure B.13. The process consists in starting from the failed state of the system and exploring 
the graph from bottom to up in the reverse order (of the variables) used to build the BDD. 
When exploring a branch, if a variable is found in the up state, then it is by-passed and a new 
link with the variable just above is introduced. And so on. If the graph on the right hand side is 
considered, the next cut sets: )(),(),(),( abacdbccd •••••  are found. One of these 

combinations, )( acd •• , is not minimal.  
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Therefore, the graphs can be simplified in order to encode only minimal combinations. This is 
not really easy by hand but powerful algorithms have been developed to do that on large 
BDDs in order to handle RBDs with millions of minimal tie or cut sets. 

When the Boolean functions are non-monotonic, the minimal tie or cut sets are meaningless 
and must be replaced by the prime implicants. This is more complicated to handle but 
powerful algorithms are also available to deal with this problem.  

B.7.3 Probabilistic calculations with BDDs 

B.7.3.1 General 

The BDD structure presented in Figure B.10 models in a very compact way all the paths 
leading to the system failure and to the system success. Several equivalent BDDs may be 
developed for the same RBD. As for the simplified Shannon decomposition, the size of those 
BDDs depends on the choice of the order of the variables. 

All the paths encoded within a BDD being disjoint, the BDD can be used directly for 
probabilistic calculations just by replacing the state variables by the corresponding 
probabilities of success or probabilities of failure (see Figure B.14).  

Using the paths leading to the system success gives directly: 

dcbacbacbadcbacbas PPPPPPPPPPPPPPPPPP ⋅−⋅⋅−+⋅⋅−+⋅−⋅+⋅−⋅⋅+⋅⋅= )1()1()1()1()1(  

Using the paths leading to the system failure gives directly: 

)1()1()1()1()1()1()1()1()1( badcbacbadcbas PPPPPPPPPPPPPP −⋅−+−⋅−⋅⋅−+−⋅−⋅+−⋅−⋅⋅=  

 

Figure B.14 – Probabilistic calculations from a BDD 

B.7.3.2 Conditional probability calculations with RBD 

BDDs can be used to calculate conditional probabilities. Figure B.15 shows how to calculate 
bsP |  on the left hand side and 

bsP |
 on the right hand side. This is the basis of the calculations 

related to conditional failure intensity (Vesely failure rate), unconditional failure intensity 
(failure frequency) and various importance factors (see Annex D). 
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Figure B.15 – Calculation of conditional probabilities using BDDs 

B.7.4 Key remarks about the use of BDDs 

This BDD structure has proven to be very powerful to encode in a very effective and compact 
way all the disjoint paths leading to the system failure and the system success. This allows to 
perform probabilistic calculations without approximations. 

The BDD can also be used to encode the minimal tie sets (success paths) or minimal cut sets 
(failure paths) when the RBDs are coherent or to encode the prime implicants when the RBDs 
are not coherent.  

With n variables, the Shannon decomposition (as well as the truth table) leads to 2n paths. 
This is not tractable when n is large. This is why the modern BDD algorithms have been 
developed to build the BDD without having to build the whole Shannon decomposition. This 
allows to handle hundreds of variables (i.e. RBD with hundreds of blocks) and billions of 
success paths or minimal cut sets. The size is dependent on the choice of the order of the 
variables used to develop the BDDs and heuristics are available to select, to some extent, the 
better ones. 

Using BDDs is a very effective way to store the RBD within a computer memory and to make 
probabilistic calculations on Boolean functions (e.g. RBDs and fault trees). 
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Annex C 
(informative) 

 
Time dependent probabilities and RBD driven Markov processes 

 

C.1 General 

The underlying mathematics behind RBDs is Boolean algebra which is static in nature. 
Therefore, the probabilistic calculations with RBDs are primarily related to constant values. 
Nevertheless, when the blocks behave independently from each other over time, the use of 
the formulae developed for constant probability values can be used straightforwardly for the 
calculation of the system availability )()( SS tPtA =  from availabilities )()(X tPtA ii x=  of the blocks 
Xi. 

The calculations can also be extended to average availability ),( 21
avg
S ttA , steady state 

availability st
SA , asymptotic availability as

SA , failure frequency )(S tw  and, only in particular 
cases, reliability )(S tR . 

The user of RBDs should understand that RBDs are rather more focused on availability 
calculations than on reliability calculations. 

C.2 Principle for calculation of time dependent availabilities 

 

Figure C.1 – Principle of time dependent availability calculations 

Figure C.1 illustrates the principle of the availability calculations by using RBDs. On this 
figure the availabilities of each block have been drawn. Those availabilities may have any 
form. The only constraint is that, according to the basic independency requirement in 5.2 d), 
they behave independently from each other. 

Therefore, the principle is to pick up a set of block availabilities for a given time t (small 
circles on the figure) and use it to calculate the system availability at time t through the logic 
modelled by the RBD. This procedure can be used for any time in order to provide the whole 
evolution of the system availability )(S tA  (in dotted line on the figure).  
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Except in very simple cases, this procedure is not easy to handle by hand but this can be 
easily undertaken by the fast algorithms implemented nowadays in the RBD/FT software 
packages (e.g., the algorithms based on binary decision diagrams). 

C.3 Non-repaired blocks 

C.3.1 General 

The principle explained in C.2 is very easy to apply with non-repaired blocks. 

C.3.2 Simple non-repaired blocks 

For example, if the RBD presented in Figure C.1 is made of simple non-repaired blocks Xi 
with constant failure rates, the input curves will simply be of the classical form: 

)exp()()( XXX ttRtA
iii ⋅−== λ . 

C.3.3 Composite block: example on a non-repaired standby system 

This can also be applied to the composite block like that represented by the diagrams in 
Figure 11 and which models a frequently used form of redundancy known as standby 
redundancy (see 7.5.3 and first paragraph of Annex A). 

In its most elementary form the blocks A and B are not repaired and do not behave 
independently from each other: B starts when A fails. Then the composite block C has to be 
considered as a whole (see Figure 12) and its availability AC(t) has to be established as 
shown in C.2. When A and B are not repaired, C is also not repaired and therefore 
AC(t) = RC(t).  

The availability AC(t), of such a system can be obtained by considering what possible events 
may occur during a mission time t. The following are possibilities: 

• block A is in up state throughout time t; or 

• block A fails at time τ < t, item B starts at τ (i.e., B has not failed in dormant state and 
the switch has not failed before τ) and does not fail over the interval [τ, t].  

If it is noted: 

• λA is the failure rate of block A and fA(τ) is its failure density function; 

• dBλ  is the failure rate of block B when in the passive (dormant) state, either cold or 
under low power; 

• Bλ  is the failure rate of block B when in active state, after it has started due to the 
failure of A; 

• λSW is the failure rate of the switch S and RSW(τ) is its reliability at time τ. 

This leads to the following mathematical expression: 

∫ ⋅−⋅⋅⋅+=≡
t

d dtRRRftRtRtA
0

BSWBAACC )()()()()()()( ttttt  

If it is assumed that all items have a constant active or dormant failure rate, then this 
mathematical expression becomes: 
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τλ τλτλτλτλλ dτRτA τ
τ

τ d ⋅⋅⋅+=≡ −⋅−−−− ⋅⋅∫ )(

0
A

−
CC BSWBAA eeeee)()(  

NOTE If the reliability of the switch is not a function of time but a function of some other variable (number of 
operations, demands, etc.), it would be preferable not to use functional notation at all, but to use instead Psw to 
denote the switch reliability or γB to denote the probability of B to fail to start on demand. 

On evaluating the integral of the above mathematical expression: 

[ ]tt

d

t dtRtA ⋅++−⋅−⋅− −⋅
−++

+=≡ )(

BBSWA

A
CC BSWABA eee)()( λλλλλ

λλλλ
λ  

With an assumption of perfect switching, 0SW =λ , the equation becomes:  

[ ]tt

d

t dtRtA ⋅+−⋅−⋅− −⋅
−+

+=≡ )(

BBA

A
CC BABA eee)()( λλλλ

λλλ
λ  

If the dormant failure rate of item B is also assumed equal to zero, then the availability of a 
standby redundant system is: 

 [ ]ttt
C tRtA ⋅−⋅−⋅− −⋅

−
+=≡ ABA eee)()(

BA

A
C

λλλ
λλ

λ  (C.1) 

If, in addition, both failure rates are equal (λA = λ and λB = λ), then the formula for system 
availability can be shown to be given by: 

 ( )ttRtA t ⋅+⋅=≡ − λλ 1e)()( .
CC  (C.2) 

If, under such ideal conditions, there are n (instead of one) items on standby, this latter 
formula becomes: 

 ( ) ( ) ( )












 ⋅
++

⋅
+

⋅
+⋅+=≡ ⋅−

!!3!2
1e)()(

32

CC n
tttttRtA

n
t λλλλλ

  (C.3) 

It should be noted that a practical RBD should include blocks to represent the availability of 
the switch plus sensing mechanism, which is often the "weak link" in standby systems. 

Formulae (C.1), (C.2) and (C.3) can be used for the composite block C in the same way the 
ordinary formulae are used for ordinary blocks. Nevertheless, establishing those formulae is 
difficult and other procedures, such as Markov analysis, should be used to analyse standby 
systems. 
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C.4 RBD driven Markov processes 

 

Figure C.2 – Principle of RBD driven Markov processes 

As said in the previous clauses, the block availabilities may have any form and, as shown in 
Figure C.2, they can be calculated by using Markov processes. Such a model which is a mix 
between RBD and Markov graphs is an "RBD driven Markov process": the RBD provides the 
backbone of the model and the small Markov graphs the availabilities of the blocks. It is a way 
to build Markov processes for large systems and help to avoid the combinatorial explosion of 
the number of states. 

This approach covers most of the problems encountered when dealing with repaired blocks as 
in most of the cases only constant failure and repair rates are considered. 

In Figure C.2 the block availabilities are modelled by single Markov graphs where the repairs 
start as soon as the failures occur. Then, after a transient period, asymptotic values are 
reached and this leads to the typical behaviour of the availability illustrated in Figure C.3.  

 

Figure C.3 – Typical availability of RBD with quickly repaired failures 

For example, the availability of the block A which is modelled by the parameters (λ, µ), 
reaches an asymptotic value µλ

µ
+

=as
AA  after a duration equal to 2 or 3 MTTRs (where 

µ/MTTR 1= ). 

The RBD driven Markov process can also be implemented when the blocks have hidden 
failures which are not immediately detected when they occur. In this case, periodic tests have 
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to be performed to detect the failures and repair them. This cannot be modelled by single 
Markov graphs as in Figure C.2 but "multi-phase" Markov processes have to be used instead.  

 

Figure C.4 – Example of simple multi-phase Markov process 

Figure C.4 illustrates a simple multi-phase Markov model related to a periodically tested 
block: each test interval is a phase and the probabilities of states at the beginning of a phase 
are calculated from the probabilities at the end of the previous one. Then, during the test 
intervals, the block availability is modelled by a simple Markov graph where failure F is hidden 
and when a test occurs the failure is detected and repaired instantaneously. The availability of 
such periodically tested blocks is equal to 1 just after a test and then decreases until the next 
test is performed where it comes back to 1 again. This leads to the typical "saw tooth" curves 
shown in Figure C.5 where all blocks are tested with the same test interval. 

 

Figure C.5 – Typical availability of RBD with periodically tested failures 

Safety systems implementing periodically tested components are easily modelled in this way. 
This is in particular the typical case of the safety instrumented systems described in the 
functional safety standards IEC 61508, IEC 61511 and ISO/TR 12489. 

This combination of individual Markov processes through logical combinations has proven 
very useful for both RBD and FT approaches. 

C.5 Average and asymptotic (steady state) availability calculations 

It is easy to calculate average availability ),( 21
avg ttAS  by a simple numerical averaging of the 

curve )(S tA , as shown as a dotted line in Figure C.1 over a period of time [t1, t2].  
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This calculation is valid in any case but when an asymptotic value )(lim S
as
S tAA

t ∞→
=  is reached 

like in Figure C.5, this asymptotic value also gives the average availability as soon as t is long 
enough for allowing all the block availabilities to have reached the asymptotic values. 
Therefore, when the system availability has an asymptotic value, this is also the long term 
average availability: as

S
avg
S AA = . 

When the blocks are very quickly repaired (MTTRi << MTTFi), the asymptotic values are 
reached very quickly (after a duration equal to 2 or 3 times the largest MTTRi) and this case is 
almost the same as the one with constant probabilistic values. 

When as in Figure C.5 there is no asymptotic value, the average availability has to be 
calculated from )(S tA . Nevertheless, in case of recurrent phases, the availability )(S tA  
converges toward a recurrent profile after some phases. For example, for a simple block and 
when the repairs are not instantaneous, the recurrent profile is reached after 2 or 3 test 
intervals and the average availability during an interval converges to a limit value: 

])1(,[lim)( avg
S

lim
S τττ +=

∞→
nnAA

n
. 

Models like Figure C.5 can be used to model safety systems and calculate the PFDavg 
(average of the probability of failure on demand) required by the functional safety standards 
IEC 61508 and IEC 61511 for safety instrumented systems operating in low demand mode: 

),(1),(PFD avg
S

avg
Savg TATU 00 −== . 

When a recurrent profile exists, and this is often the case, then )(1)(PFD lim
S

lim
Savg ρρ AU −==  

where ρ is the length of the recurring interval (see 10.3.2). 

C.6 Frequency calculations 

In addition of the classical availability AS(T) and reliability RS(T), the average failure frequency 
),0(avg

S Tw  is another relevant probabilistic indicator useful to characterize a system. 

This parameter which does not exist for constant failure probabilities and is not useful for non-
repaired systems is very useful when dealing with repaired systems which may fail (and be 
repaired) several times over a given period [0, T]. In this case, if n is the number of failures 
over this given time interval, the average failure frequency is given by n/T = ),0(avg

S Tw .  

The average failure frequency can be calculated by using RBDs but the mathematics which 
implies the calculation of the Birnbaum importance factors (see Clause D.3) are not as simple 
as for availability and reliability calculations. Therefore, it is difficult to perform the 
calculations by hand but powerful algorithms are available to do that. 

The calculation of the average frequency is performed in several steps. 

1) Calculation of Birnbaum importance factors ),B(S tMIF i  related to each block Bi. This 
importance factor is also called "marginal importance factor" (see Annex D). ),B(S tMIF i  is 
obtained from the conditional availabilities )(B|S tA i  and )(B|S tA

i
 by the following formula 

(see reference [14]): 
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 )()(
)]([
)]([),B( B|SB|S

B

S
S tAtA

tA
tAtMIF

ii
i

i −=
∂
∂

=  (C.4) 

2) Calculation of the unconditional failure intensities wi(t) of each block Bi. This is obtained 
by combining the failure rate λi(t) and the availability )(B tA i  of the related block: 

 )()()( B tAttw iii ⋅= λ  (C.5) 

3) Calculation of the unconditional failure intensity of the system: 

 )(),B()( SS twtMIFtw i
i

i ⋅= ∑  (C.6) 

4) Calculation of the expected number of failures WS(T) over [0,T]. As the unconditional 
failure intensity wS(t) is also the failure frequency (see 3.31) of the system at time t, the 
expected number of failures can be obtained by a simple integration: 

 ∫ ⋅=
T

0
SS dt)t(w)T(W  (C.7) 

5) Calculation of the average failure frequency: 

 
T

)T(Wdt)t(w
T
1)T(w S

T

0
SS =⋅= ∫avg  (C.8) 

Except in very simple cases, Formula (C.8) cannot be done by hand and must be done 
numerically. 

C.7 Reliability calculations 

While the average failure frequency ),0(avg
S tw  can be calculated in any case, the system 

reliability )(S tR  can be obtained by analytical calculations only in very particular cases: 

a) the RBD comprises only non-repaired blocks and in this case )()( SS tAtR = ; 

b) the conditional failure intensity )(tSvΛ  reaches an asymptotic value as
vSΛ . 

In the case b) the conditional failure intensity )(tSvΛ  can be obtained from the unconditional 
failure intensity and the system availability by the following formula: 

 )(/)()( tAtwt SSSv =Λ  (C.9) 

)(tSvΛ  is also called Vesely failure rate as it can be used as an approximation of the system 
failure rate )(tSΛ  to perform reliability calculation from the classical equation:  

 )d)(exp()(
0

uutR Sv

t

S ⋅−≈ ∫ Λ  (C.10) 
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Of course this is particularly useful when the system reaches a steady state because in this 
case )t(SvΛ  reaches a constant asymptotic value as

vS
t

Sv t ΛΛ  → ∞→)( . This is typically the case 
of RBDs like those presented in Figure C.3 where the availability )(S tA , the unconditional 
failure intensity )(S tw  and the conditional failure intensity )(S tVΛ  reach asymptotic values 

as
S

as
S

as
S ,, VwA Λ .  

Then in this case the system failure rate SΛ  can be approximated by as
S

as
S

as
SS / AwV =≈ ΛΛ  and 

the system reliability is obtained as:  

 )exp()( as ttR vSS ⋅−≈ Λ  (C.11) 

The accuracy of the approximation given by Formula (C.11) is very good when the transient 
period has elapsed. This transient period is very short when the failures of the blocks of the 
RBD are quickly detected and repaired: i.e. Formula (C.11) can be used after two or three 
times the largest MTTR of the blocks. 

All those calculations are not easy to perform by hand but the fast algorithms now available 
and based on BDD are able to process large RBDs for reliability calculation purposes. 

For cases other than a) and b), other techniques, like Monte Carlo simulation (e.g. by using 
DRBDs, see 12.2 and Annex E), Markov or Petri net techniques, should be used instead. 
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Annex D 
(informative) 

 
Importance factors 

 

D.1 General 

When analysing a system, it is useful to rank the components according to their impact on the 
probability of success (or of failure) of the system of interest. This can be done by using one 
or several of the importance factors which have been developed for this purpose (see 
references [12], [13], [14], [29] and [30]). 

The following Clauses D.2 to D.9 describe the main importance factors and explain how to 
compute them when coherent RBDs are implemented. For the sake of simplicity, this is 
developed for the constant probability case but when the probabilities are time-dependent 
(e.g., repaired systems), the formulae are similar for a given value of the time t. 

D.2 Vesely-Fussell importance factor 

The Vesely-Fussell importance factor, )B(S iFV , is one of the most popular importance factors. 
It is based on the minimal cut sets of the system. It measures the probability that, when 
system S fails, the failure of the block Bi participates in at least one of the minimal cut sets 
having caused the failure of S. This importance factor takes into account both the probability 
of failure of Bi and the order of the minimal cut set that it belongs to. This is a rather accurate 
importance factor for measuring the impact of a component on the probability of failure of the 
system.  

Let us consider jibC )(  a minimal cut set containing ib  (i.e. the failure of component Bi). Then 
the Vesely-Fussell importance factor is given by: 

 
s

j
ji

i P

bCP

tFV


])([

),B(S =  (D.1) 

Formula (D.1) is not very easy to calculate and, when the probability of system failure is low 
( 1<<sP ), the following approximation is often used instead: 

 
∑

∑
≈

ji,
ji

j
ji

i
bCP

bCP

tFV
])([

])([

),B(S  (D.2) 

This Formula (D.2) is very easy to use by hand when the number of minimal cut sets is not too 
high: this is the sum of the probabilities of minimal cut sets containing the failure of Bi divided 
by the sum of all the minimal cut sets. 

D.3 Birnbaum importance factor or marginal importance factor 

The marginal importance factor )B(S iMIF  is also called Birnbaum importance factor. It 
provides the basis for estimating the equivalent failure rate (and therefore the reliability) of a 
repaired system (see 10.3.1.4). It is based on the partial derivative of the probability of 
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success (or failure) of the system with regards to the probability of success (or failure) of the 
considered block Bi. The Birnbaum importance factor is basically given by the following 
Formula (D.3): 

 
ii b

s

b

s
i P

P
P
P

MIF
∂
∂

=
∂
∂

=)B(S  (D.3) 

It is symmetrical with regards to success or failure. It may be interpreted as the probability 
that the system is in a critical state (working or failed) due to the state of Bi i.e., if S is working 
the failure of Bi will fail S and if S is failed then the repair of Bi will cause the repair of S. 

Formula (D.3) is equivalent to Formula (D.4): 

 
iiii bsbsbsbsi PPPPMIF ||||S )B( −=−=  (D.4) 

Therefore, this importance factor can be calculated by using the BDD calculations described 
in 11.6 for the conditional probabilities ibsP |  and 

ibsP | . 

It has to be noted that the Birnbaum importance factor does not depend on the probability of 
success (or failure) of the component Bi. 

D.4 Lambert importance factor or critical importance factor 

The critical importance factor )B(S iCIF  is also called Lambert importance factor. This is a 
normalized Birnbaum importance factor. It is given by the following Formula (D.5): 

 )B(
1
1

)B()B( S
s

SS i
b

i
s

b
i MIF

P
P

MIF
P

P
CIF ii

−

−
==  (D.5) 

This importance factor is easy to calculate when )B(S iMIF  has been calculated. 

D.5 Diagnostic importance factor 

The diagnostic importance factor )B(S iDIF  is given by the conditional probability that Bi is 
failed given that S is failed. Therefore, it allows to determine which components have to be 
examined in priority when S is failed in order to repair it as soon as possible.  

It is given by the following Formula (D.6): 

 sbi i
PDIF |S )B( =  (D.6) 

The following equivalent Formula (D.7) is easier to calculate: 

 
s

bs
bi P

P
PDIF i

i

|
S )B( =  (D.7) 

This importance factor is linked to )B(S iRAW  (see Clause D.6) by: 

)B()1()B()B( SSS ibibi RAWPRAWPDIF
ii

⋅−=⋅=  
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NOTE 1 When )B(S iDIF  is low, the probability that Bi is failed when S is failed is low. When )B(S iDIF  is high, the 
probability that Bi is failed when S is failed is also high. Therefore, the most useful is to examine Bi with 
intermediate values of )B(S iDIF  to diagnose if they are failed or not. 

NOTE 2 The repair of a failed component identified by using the DIF does not necessarily repair the system S. 

D.6 Risk achievement worth  

The risk achievement worth )B(S iRAW  is the conditional probability that S is failed given Bi is 
failed, normalized by the probability of failure of S. It allows to measure the increase of the 
probability of failure when Bi actually fails.  

It is given by the following Formula (D.8): 
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==

1

1
)B( ||

S  (D.8) 

D.7 Risk reduction worth 

The risk reduction worth )B(S iRRW  is the conditional probability that S is failed given Bi is not 
failed, normalized by the probability of failure of S. It allows to measure the reduction of the 
probability of failure when Bi actually works.  

It is given by the following Formula (D.9): 
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D.8 Differential importance measure 

The differential importance measure )B(S iDIM  is a local sensitivity measure of ibP  on sP  
defined as follows: 
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In the Formula (D.10), i
i

b
b

s dP
P
P

∂
∂  is the change of sP  induced by a small change ( ibdP ) in the 

probability of block Bi. 

The differential importance measure has two important properties: 

– this is an additive measure: )B()B()B,B( SSS jiji DIMDIMDIM += ; 

– the sum of the differential importance measure of all blocks within an RBD equals unity: 
1)B( ...)B()B()B ...,,B ,B( S2S1S21S =+++= nn DIMDIMDIMDIM . 

The differential importance measure )B(S iDIM  is linked to other importance factors in special 
cases: 

BS EN 61078:2016



IEC 61078:2016 © IEC 2016 – 99 – 

a) uniform change (criterion H1): nkjPP ki bb  ..., 2, 1,   , for      1 =<<= ∆∆  
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b) proportional relative changes (criterion H2): nkiPP
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The calculations of marginal importance factor are explained in Clause D.3 and that of critical 
importance factor in Clause D.4. 

D.9 Remarks about importance factors 

There are many importance factors which have been developed for specific uses. It can be 
demonstrated that: 

)B()B()B()B( SSSS iiii CIFFVDIFRAW ≥≥≥  

Among them only the Vesely-Fussell importance factor can be handled by hand (when 
11 <<− sP  and the number of minimal cut sets is not too high). The others imply the use of 

conditional probabilities difficult to handle by hand but easy to calculate by for example, using 
the BDD method described in 11.6.  

Other importance factors have been developed to deal with non-coherent RBDs (see 12.2). 
They shall be used in this case as the importance factors described above are not valid and 
may lead to inconsistent results. 
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Annex E 
(informative) 

 
RBD driven Petri nets 

 

E.1 General 

One effective way to deal with the dynamic RBDs is to mix the RBD and Petri net approaches. 
This allows to build large PNs and to use Monte Carlo simulation to calculate the probabilistic 
results of interest.  

The simplest method is to model the blocks and the external elements by individual sub-PNs 
which interact through the use of predicates and assertions. Such model is an RBD driven 
Petri net (see reference [18]) which 

– keeps the logical RBD structure for the logical calculation of the system state from the 
block states, 

– takes advantage of the powerfulness of Petri nets to model the interactions between 
blocks and/or external elements. 

E.2 Example of sub-PN to be used within RBD driven PN models 

 

Figure E.1 – Example of a sub-PN modelling a DRBD block 

Figure E.1 gives an example of a sub-PN developed to be used within a DRBD. The block is 
characterized by: 

• three states: up (U), down (D) and repair (R); 

• four transitions: (independent) failure, failure due to common cause failure, start of repair 
and end of repair; 

• several predicates and assertions: 
– two assertions, !!a=true and !!a=false, to update the state of the block (up or down). 

Each block state is modelled in this way in order to evaluate the state of the whole 
system through the logical architecture of the RBD; 

– one predicate, ??ccf = true, which triggers the failure of the block when the CCF 
occurs. This is used to model the interactions with an external element modelling the 
CCF; 

– one predicate, ??r > 0, allowing to start the repair when at least one repair team is 
available. This is used to model the interactions between the blocks sharing the same 
repair teams; 
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– one assertion, !!r = r-1, to decrease the number of repair teams available by one when 
a repair is started. This is used to model the interactions between the blocks sharing 
the same repair teams; 

– one assertion, !!r = r+1, to increase the number of repair teams available by one when 
a repair is completed. This is used to model the interactions between the blocks 
sharing the same repair teams. 

On the right hand side of Figure E.1 is proposed a representation of the block related to this 
sub-PN. 

 

Figure E.2 – Example of a sub-PN modelling a common cause failure 

Figure E.2 gives an example of a sub-PN developed to be used as an external element of a 
DRBD. It models a common cause failure characterized by 

• two states: U (up: not occurred CCF), D (down: occurred CCF), 

• two transitions: occurrence of CCF, reset of the CCF, 

• several predicates and assertions: 
– two assertions, !!ccf=true and !!ccf=false, to update the state of the CCF (not-occurred 

or occurred). This is used to fail the blocks related to this CCF; 
– several predicates, ??a = true, ??b = true, etc. which allow to reset the CCF only after 

all the blocks affected by this CCF have been repaired. 

On the right hand side of Figure E.2 is proposed a representation of the external element 
related to this sub-PN. 

Those sub-PNs may be used to build DRBD as this is shown in Figure E.3.  

 

Figure E.3 – Example of DRBD based on RBD driven PN 
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This DRDB models 

– a common cause failure on blocks A and B and another common cause failure on 
blocks C and D, 

– a limited number of repair teams for repairing the four blocks. The number of repair 
teams is given by the initial conditions: r = 1 models a single repair team, r = 2 models 
two available repair teams, etc., r = 4 is equivalent to the classical assumption 
considering that there are as many repair teams as repaired blocks. 

E.3 Evaluation of the DRBD state 

 

Figure E.4 – Logical calculation of classical RBD structures 

The state of the system is given by the combinations of the states of the blocks (a, b, c and d) 
and this can be done exactly as for an ordinary RBD by using the global assertions presented 
in Figure E.4: 

– !!Oa= Ia • a for series structures: the output of block A is up if its input is up and if the 
block is in up state; 

– !!O = I1 + I2 + … + In for parallel structures: the output is up if at least one of the inputs is 
up. 

 

Figure E.5 – Example of logical calculation for an n/m gate 

Figure E.5 shows that a 2/3 gate can also be calculated by a simple logical formula. This can 
be easily extended to any kind of n/m gates.  

For the PAND gate, no logical formula exists but a simple sub-PN such as the one presented 
in Figure E.6 can be used instead. This PN has been drawn for two inputs but can be easily 
extended to n inputs. It is equivalent to the finite-state automaton presented in Figure 50. 
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Figure E.6 – Example of sub-PN modelling a PAND gate with 2 inputs  

The behaviour of this PN is the following: 

1) at the beginning, the output is in the up state (O = 1) and the place Pl1 is marked with 
1 token; 

2) if I2 is false (I2 = 0) when I1 is true (I1 = 1) the transition Tr1 is inhibited; 
3) if I1 becomes false (I1 = 0) when I2 is true (I2 = 1) that means that I1 has occurred 

before I2 and then the transition Tr1 is immediately fired. The token is removed from 
Pl1 and one token is added in Pl2. This inhibits Tr1 (thanks to the inhibitor arrow in 
dotted lines) and validates Tr2 and Tr4; 

4) if I1 is true (I1 = 1) before I2 becomes false, then Tr4 is fired and the PN comes back to 
its initial state; 

5) if I2 becomes false (I2 = 0) while I1 is still false (I1 = 0), the transition Tr2 is 
immediately fired and the output becomes false (O = 0); 

6) if I1 or I2 become true again (I1 = 1 or I2 = 1), then Tr3 is fired and the output becomes 
true again (O = 1); 

7) if Tr3 has been fired because I1 = 1 the PN comes back to step 2 where Tr1 is 
inhibited; 

8) if Tr3 has been fired because I2 = 1 the PN comes back to step 3 and Tr1 is 
immediately fired.   

With this sub-PN the output becomes "false" (O = 0) only if I1 and I2 become "false" (I1 = 0, 
I2 = 0) and in this order.  

The same sub-PN can be used to model the finite-state automaton presented in Figure 52 for 
a SEQ gate but it is not sufficient to model the dynamic interaction between I2 and I1: I2 
cannot go into the down state before I1 has gone to the down state. This can be achieved, for 
example, by modelling blocks C and D in Figure 51 by sub-PNs like the one presented in  
Figure E.7 for block C. 
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Figure E.7 – Example of the inhibition of the failure of a block  

This sub-PN is derived from the one presented in Figure E.1 where the failure transitions of 
the block (independent and common cause failures) are inhibited as long as I1 has not gone 
to the down state (I1 = 0). 

E.4 Availability, reliability, frequency and MTTF calculations 

When the model is built, it can be used for probabilistic calculation and this is achieved by 
using Monte Carlo simulation. The sub-PN presented in Figure E.8 models the DRBD output 
and it can be used to obtain all the needed probabilistic results: 

– the marking of place U at time t gives the system availability AS(t); 
– the marking of place D at time t gives the system unavailability US(t); 
– the mean marking of place U at over [0, T] gives the average system availability A(0, T) 

over [0, T]; 
– the mean marking of place D at over [0, T] gives the average system unavailability U(0, T) 

over [0, T]; 
– the frequency of firing of the transition "First failure" gives the system unreliability RS(t) 

over [0, t]; 
– the frequency of firing of the transition "failure" gives the average system failure frequency 

),0(avg twS ; 

– the mean marking of the place M gives the mean time before the first failure occurs. When 
the time is long enough to have at least one failure per simulation, then this gives the 
MTTF of the system modelled by the DRBD; 

– etc. 

 

Figure E.8 – Sub-PN for availability, reliability and frequency calculations 
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Annex F 
(informative) 

 
Numerical examples and curves 

 

F.1 General 

Annex F develops some numerical examples on a typical RBD structure and establishes the 
corresponding availability (definition 3.21), reliability (definition 3.26), conditional failure 
intensity (Vesely failure rate) (definition 3.30) and unconditional failure intensity (failure 
frequency) (definition 3.31). Curves are drawn in order to show how those parameters vary 
when time elapses.  

Analytical calculations are performed by using a tool implementing the BDD approach in order 
to propose results without approximations.  

In Clause F.5 the Monte Carlo simulation approach is used to calculate the availability of 
dynamic RBDs involving several functional dependencies.   

F.2 Typical series RBD structure 

F.2.1 Non-repaired blocks 

Figure F.1 represents a typical RBD series structure made of 3 non-repaired blocks. In this 
case the reliability and availability of the blocks are equal and this is the same for the whole 
system. 

 

Figure F.1 – Availability/reliability of a typical non-repaired series structure  

The left hand side of the figure represents the reliability/availability of the blocks which are 
modelled by constant failure rates (exponential laws): 

– Block B1: λ1 = 1,0 × 10-3 h-1, 

– Block B2: λ2 = 5,0 × 10-4 h-1, 

– Block B3: λ3 = 2,0 × 10-3 h-1 

The right hand side of the figure represents the reliability/availability of the whole system. 

Figure F.2 represents the failure rate, Λ(t), and the failure frequency w(t) of the non-repaired 
series structure.  

In this case the Vesely failure rate ΛV(t) (conditional failure intensity) and the failure rate Λ(t) 
are equal and constant. As expected Λ(t) = ΛV(t) =  λ1 + λ2 + λ3 = constant. 
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Figure F.2 – Failure rate and failure frequency related to Figure F.1 

Therefore, the system made of three blocks is equivalent to a single block C with 
λC =  λ1 + λ2 + λ3. 

 

Figure F.3 – Equivalence of a non-repaired series structure to a single block 

The failure frequency (unconditional failure intensity) decreases as the time t increases and 
goes to 0 when t goes to infinity. This is due to the fact that, being non-repaired, the system 
can fail only once. 

F.2.2 Repaired blocks 

Figure F.4 represents a typical RBD series structure made of 3 repaired blocks. In this case 
the availability and the reliability of the blocks are different and this is the same for the whole 
system. 

 

Figure F.4 – Availability/reliability of a typical repaired series structure 

The left hand side of the figure represents the availability of the blocks which are modelled by 
the following constant failure and repair rates: 

– Block B1: λ1 = 1,0 × 10-3 h-1, µ = 0,1 h-1; 

– Block B2: λ2 = 5,0 × 10-4 h-1, µ = 0,1 h-1; 

– Block B3: λ3 = 2,0 × 10-3 h-1, µ = 0,1 h-1. 

The system availability is presented in the middle of the figure and the reliability on the right 
hand side. 
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The behaviour is very different compared to the non-repaired case: as shown in Figure F.4, 
the availabilities of the blocks (left hand side) as well as the availability of the whole system 
(middle of the figure) quickly reach asymptotic values.  

 

Figure F.5 – Failure rate and failure frequency related to Figure F.4  

Figure F.5 represents the failure rate, Λ(t), and the failure frequency w(t) of the repaired 
series structure. Λ(t) is the same as in non-repaired case because each block failure causes 
the whole system failure and then, from a reliability calculation point of view cannot be 
repaired (see 10.3.3).  

F.3 Typical parallel RBD structure 

F.3.1 Non-repaired blocks 

Figure F.6 represents a typical RBD parallel structure made of 3 non-repaired blocks. In this 
case the reliability and availability of the blocks are equal and this is the same for the whole 
system. 

 

Figure F.6 – Availability/reliability of a typical non-repaired parallel structure  

The left hand side of the figure represents the availability/reliability of the blocks which are 
modelled by constant failure rates (exponential laws): 

– block B1: λ1 = 1,0 × 10-2 h-1; 

– block B2: λ2 = 5,0 × 10-3 h-1; 

– block B3: λ3 = 2,0 × 10-2 h-1. 

The right hand side of the figure represents the reliability/availability of the whole system. 

IEC 

3.49 10-3

3.50 10-3

3.51 10-3

0 500 1000 1500 2000 3000

Time (h)

Fa
ilu

re
 ra

te

2500

Λ: failure rate

0 25 50 75 100

Time (h)

Fr
eq

ue
nc

y

3.50 10-3

3.45 10-3

3.40 10-3

3.35 10-3w(t): frequency3.49 10-3

3.50 10-3

3.51 10-3

0 500 1000 1500 2000 3000

Time (h)

Fa
ilu

re
 ra

te

2500
3.49 10-3

3.50 10-3

3.51 10-3

0 500 1000 1500 2000 3000

Time (h)

Fa
ilu

re
 ra

te

2500

Λ: failure rate

0 25 50 75 100

Time (h)

Fr
eq

ue
nc

y

3.50 10-3

3.45 10-3

3.40 10-3

3.35 10-3

0 25 50 75 100

Time (h)

Fr
eq

ue
nc

y

3.50 10-3

3.45 10-3

3.40 10-3

3.35 10-3w(t): frequency

IEC 

0

0.25

0.5

0.75

1

0 250 500 750 1000

Time (h)Av
ai

la
bi

lit
y 

/ R
el

ia
bi

lit
y

0

0.25

0.5

0.75

1

0 250 500 750 1000

Time (t)Av
ai

la
bi

lit
y 

/ R
el

ia
bi

lit
y

B1

B2

B3

λ = 10-2

λ = 5.0 10-3

λ = 2.0 10-2

Output

0

0.25

0.5

0.75

1

0 250 500 750 1000

Time (h)Av
ai

la
bi

lit
y 

/ R
el

ia
bi

lit
y

0

0.25

0.5

0.75

1

0 250 500 750 1000

Time (h)Av
ai

la
bi

lit
y 

/ R
el

ia
bi

lit
y

0

0.25

0.5

0.75

1

0 250 500 750 1000

Time (t)Av
ai

la
bi

lit
y 

/ R
el

ia
bi

lit
y

0

0.25

0.5

0.75

1

0 250 500 750 1000

Time (t)

0

0.25

0.5

0.75

1

0 250 500 750 1000

Time (t)Av
ai

la
bi

lit
y 

/ R
el

ia
bi

lit
y

B1

B2

B3

λ = 10-2

λ = 5.0 10-3

λ = 2.0 10-2

Output

B1

B2

B3

λ = 10-2

λ = 5.0 10-3

λ = 2.0 10-2

Output

BS EN 61078:2016



 – 108 – IEC 61078:2016 © IEC 2016 

Figure F.7 represents the failure rate, Λ(t), and the failure frequency, w(t), of the non-repaired 
parallel structure. As the availabilities and reliabilities are the same, the failure rate and the 
Vesely failure rate are also the same: Λ(t) = ΛV(t). 

 

Figure F.7 – Failure rate and failure frequency related to Figure F.6 

The behaviour is very different compared to the non-repaired series structure: 

– Λ(t) needs a very long time to reach an asymptotic value which is equal to that of the 
lower failure rate of the three blocks. This asymptotic value is reached when the blocks 
with higher failure rates have had time to fail. It is reached very slowly and cannot be used 
as an approximation of the failure rate.   

– the failure intensity, w(t), goes through a maximum value before decreasing to zero. 

F.3.2 Repaired blocks 

Figure F.8 represents a typical RBD parallel structure made of 3 repaired blocks. In this case 
the reliability and availability of the blocks are different and this is the same for the whole 
system. 

 

Figure F.8 – Availability/reliability of a typical repaired parallel structure 

The left hand side of the figure represents the availability of the blocks which are modelled by 
the following constant failure and repair rates: 

– block B1: λ1 = 1,0 × 10-2 h-1, µ = 0,1 h-1; 

– block B2: λ2 = 5,0 × 10-3 h-1, µ = 0,1 h-1; 

– block B3: λ3 = 2,0 × 10-2 h-1, µ = 0,1 h-1. 

The system availability is presented in the middle of the figure and the reliability on the right 
hand side. 
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The behaviour is very different compared to the non-repaired case: as shown in Figure F.8, 
the availabilities of the blocks (left hand side) as well as the availability of the whole system 
(middle of the figure) quickly reach asymptotic values. 

Figure F.9 represents the Vesely failure rate (conditional failure intensity), ΛV(t), and the 
failure frequency w(t) of the repaired parallel structure. 

 

Figure F.9 – Vesely failure rate and failure frequency related to Figure F.8 

The behaviour is very different compared to the non-repaired parallel structure: 

– ΛV(t) very quickly reaches an asymptotic value. In this case, it becomes constant after 3 or 
4 MTTR (30 h to 40 h) and this asymptotic value can be used as a constant failure rate to 
calculate the system reliability;   

– the failure intensity, w(t), also very quickly reaches an asymptotic value which can be used 
to calculate the average system failure frequency. 

F.4 Complex RBD structures 

F.4.1 Non series-parallel RBD structure 

Figure F.10 represents the RBD with a common block introduced in 7.5.2. This is a structure 
which cannot be reduced to simple series or parallel structures. 

 

Figure F.10 – Example 1 from 7.5.2 

The left hand side and the middle of the figure represent the availability of the blocks which 
are modelled by the following constant failure and repair rates: 

– blocks B1 and B2: λ1 = 1,0 × 10-4 h-1, µ = 0,014 h-1; 

– blocks C1 and C2: λ2 = 5,0 × 10-5 h-1, µ = 0,014 h-1; 
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– block A: λ3 = 1,0 × 10-5 h-1, µ = 3,0 × 10-3 h-1, γ = 0,5. 

The blocks are common repaired blocks but the repair rate of A is longer than the others and 
this block also has a probability of 0,5 to be in up state at time t equal to 0. As a result and as 
shown on Figure F.10, the availability of this block does not behave as the availability of the 
other blocks. 

The system availability and the system reliability are presented on the right hand side of the 
figure. Due to the behaviour of A, the availability goes to a minimum before reaching an 
asymptotic value. This minimum corresponds to the MTTR of A. 

The reliability behaves as usual. 

 

Figure F.11 – Failure rate and failure frequency related to Figure F.10  

Figure F.11 represents the Vesely failure rate (conditional failure intensity), ΛV(t), and the 
failure frequency w(t) of the system presented in Figure F.10. The shape of these parameters 
is due to the special behaviour of A: ΛV(t) as well as w(t) reach a maximum value before 
reaching asymptotic values 

F.4.2 Convergence to asymptotic values versus MTTR 

The unavailability and the equivalent failure rate of the RBD shown in Figure F.12 have been 
calculated with 4 different constant repair rates in order to visualize the impact of the MTTR 
on the speed of the convergence toward asymptotic values. 
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Figure F.12 – Impact of the MTTR on the convergence quickness  

The blocks of the RBD presented in Figure F.12 have constant failure and repair rates. 
Therefore, they have markovian behaviours and this is why the system availability, system 
unavailability and conditional failure intensity (Vesely failure rate) converge toward asymptotic 
values.  

Figure F.12 shows clearly that the convergence speed increases when the MTTR decreases. 
Then, when the system is quickly repaired, it behaves as if it had 

– constant probabilities of success or of failures for the availability or unavailability 
calculations, 

– constant failure rate for the reliability calculations. 

F.4.3 System with periodically tested components 

Figure F.13 represents the same RBD as above but with periodically tested components. 
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Figure F.13 – System with periodically tested blocks 

The left hand side and the middle of the figure represents the availability of the blocks which 
are periodically tested and modelled by the following test intervals and constant failure and 
repair rates: 

– blocks B1 and B2: λ1 = 1,0 × 10-4 h-1, µ = 0,1 h-1, τ = 2 160 h; 

– blocks C1 and C2: λ2 = 5,0 × 10-5 h-1, µ = 0,1 h-1, τ = 2 160 h; 

– block A: λ3 = 8,0 × 10-5 h-1, µ = 0,1 h-1, τ = 2 160 h. 

The availabilities of the blocks are typical saw tooth curves and this is the same for the 
system availability on the right hand side.  

The test intervals give the special shape to the system reliability shown on the right hand side 
of Figure F.13. This is still a non-increasing function. 

Such RBDs are commonly encountered when dealing with the functional safety of safety 
instrumented systems where some dangerous failures are detected by periodical tests. The 
average unavailability of these systems is called PFDavg (see 3.24 and IEC 61508 [5]). 

Figure F.14 illustrates the Vesely failure rate and the failure frequency of such a system made 
of periodically tested components. 

 

Figure F.14 – Failure rate and failure frequency related to Figure F.13  
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F.5 Dynamic RBD example 

F.5.1 Comparison between analytical and Monte Carlo simulation results 

Figure F.15 represents a small parallel-series RBD structure made of 4 similar blocks with the 
same failure and repair rate: λ = 1,0 × 10-3 h-1, µ = 0,01 h-1. 

 

Figure F.15 – Analytical versus Monte Carlo simulation results  

The results obtained by a classical analytical calculation implementing the BDD approach are 
presented on the left hand side of Figure F.15 and those obtained by Monte Carlo simulation 
are presented on the right hand side. 

The Monte Carlo results have been obtained in about 10 s on an ordinary laptop computer 
and 50 000 histories have been simulated. Of course the analytical curve is smoother than the 
one obtained from Monte Carlo simulation but the shape is the same and the two curves 
provide the same average availability value of 0,973 9 over 1 000 h and converge toward the 
same asymptotic value of 0,97. 

F.5.2 Dynamic RBD example 

Several dynamic dependencies have been added to the previous RBD presented in F.5.1 in 
order to see which impact they can have on the results: 

– common cause failures on B1 and B3, and common cause failures on B2 and B4 
(λCCF = 1,0 × 10-4); 

– single repair team; 
– both a single repair team and common cause failures. 
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Figure F.16 – Impact of CCF and limited number of repair teams  

Figure F.16 shows clearly that the impacts are not negligible and this is analysed in more 
details in Table F.1: 

Table F.1 – Impact of functional dependencies 

 System availability System unavailability 

Configuration )000 1(avgA  asA  )000 1(avgU  asU  

No functional dependencies 9,74 × 10-1 9,71 × 10-1 2,6 × 10-2 2,9 × 10-2 

CCFs 9,63 × 10-1 9,59 × 10-1 3,7 × 10-2 4,1 × 10-2 

Single repair team 9,47 × 10-1 9,32 × 10-1 5,4 × 10-2 6,8 × 10-2 

CCF + single repair team 9,26 × 10-1 9,06 × 10-1 7,4 × 10-2 9,4 × 10-2 

 
The impact is more visible when considering the unavailability rather than the availability. For 
example, for the asymptotic unavailabilities, the rates are: 

– common cause failures: 140 %; 
– single repair team: 234 %; 
– both: 323 %. 

Therefore, the assumption that there is as many repair teams as blocks is not really neutral 
and is non-conservative. The impact increases when: 

a) the block failure rates increase (the probability to have several failures at the same time 
increases), 

b) the MTTR increases (the probability to have the failure of one block during the repair of 
another one increases), 

c) the order of the preponderant minimal cut sets increases.  
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When the blocks are very reliable and when the MTTR is short, items a) and b) have a very 
limited impact. The main problem occurs with item c).   

 

Figure F.17 – Markov graphs modelling the impact of the number of repair teams  

Let us imagine an RBD made of two similar blocks B1 and B2 with the same failure and repair 
rates (λ, µ). Figure F.17 proposes the Markov graphs drawn in the case of two repair teams 
(top of the figure) and of a single repair team (bottom of the figure). Those Markov graphs 
have 3 states: 

– 2B: 2 blocks in up states; 
– 1B: 1 block in up state and 1 block in down state; 
– 0B: 2 blocks in down states (0 blocks in up states). 

The system is failed when both B1 and B2 are failed (state 0B). The sojourn time in this state 
is 

• 1/µ = MTTR when there is only a single repair team,  

• 1/2µ = 2xMTTR when there are several repair teams. 

Then, with a single repair team, the mean time to repair the system is twice the needed mean 
time to repair when there are several teams. Therefore, when there is only a single repair 
team, a conservative approach should be to use an MTTR equal to twice that used with 
several repair teams. This is illustrated in Figure F.18 where the Markov graph on the right 
hand side (two repair teams with a repair rate υ = µ/2) is an approximation of the Markov 
graph on the left hand side (one single repair team with a repair rate µ). Therefore the MTTR 
of each block has been multiplied by 2 on the right hand side. 

 

Figure F.18 – Approximation for two redundant blocks 

This approach is conservative because the mean sojourn time in the state 1B has been 
multiplied by 2. Nevertheless, even in this simple case, it may be too conservative. In 
addition, this may be difficult to apply for larger or more complex RBDs and it would be better 
to use, for example, an RBD driven PN (see Annex E) and perform Monte Carlo simulations 
which are now achievable on simple laptop computers. 
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